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ABSTRACT 

Mercury released during thermal processing (induration) of beneficiated taconite 

ore (referred to as green balls) can be captured by scrubber waters if it is in an oxidized 

form. Consequently, mercury emissions from Taconite facilities can be reduced by 

oxidation of the mercury released from the green balls, followed by capture in their 

scrubbers. Moreover, sequestration of the captured mercury from the scrubber slurry 

could prevent possible (re-)emission by ensuring that the driving force for oxidized 

mercury capture by scrubber liquids is at an optimum; and prevent recycling of captured 

mercury back to previous process steps. 

This research investigates the ability of certain proprietary additive-based 

technologies to achieve oxidation, capture and sequestration of mercury in Taconite 

facilities. The said additive-based technologies have showed successful mercury control 

capabilities in coal-fired utilities, but need to be retrofitted for Taconite facilities. The 

additive-based technologies consist of the injection of powdered activated carbon (PAC) 

and ESORB-HG-11 (a halogenated PAC) into the waste gas of a selected Taconite 

facility and dosing of the plant’s scrubber slurry with diethyl dithiocarbamate (DEDTC). 

Testing of the technologies was done in three steps: bench- , pilot- , and field-

scale testing. Bench-scale testing was done to determine sequestering capabilities of the 

additives used in the technologies investigated, and it involved testing the interaction of 
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PAC, ESORB-HG-11, diethyldithiocarbamate (DEDTC), and a fourth additive, TMT–

15®; with mercuric chloride in a 200 ml scrubber slurry sample obtained from a Taconite 

facility. Pilot-scale testing was a scale up of the bench-scale tests using a glass scrubber 

consisting of a 30 L tank and a 6 ft high scrubbing tower for scrubbing mercuric chloride. 

Flue gas generated from combusting methane (natural) gas was spiked with mercuric 

chloride generated by permeation tubes from VICI Metronics, and scrubbed using a 

Taconite plant’s scrubber slurry that was dosed with the additives. 

The final step involved testing of the three best additives: ESORB-HG-11, PAC 

and DEDTC; at United States (U.S.) Steel Minnesota Taconite (Minntac) Plant –Line 3. 

ESORB-HG-11 and PAC were injected in Line 3’s waste gas. DEDTC was added to 

scrubber re-circulating tank. ESORB-HG-11 technology was the most successful with 

injection resulting in reductions in stack mercury emissions of up to 80% (oxidation and 

capture of mercury), while scrubber liquids dissolved mercury concentration decreased 

by greater than 90% (sequestration). However, during ESORB-HG-11 testing, an 

increase in particulate mercury (Hg
P
) was observed, suggesting that the ESORB-HG-11 

penetrates the scrubber as a result of its fine particulate size. 

ESORB-HG-11 was the only additive-based technology that showed potential of 

oxidation, capture and sequestration when tested at U.S. Steel Minntac Line 3. Additional 

testing would however be required to retrofit this technology in other Taconite facilities 

and/or Lines. Measures also need to be taken to address the increase in Hg
P
 observed 

during ESORB-HG-11. Finally, potential separation steps for mercury sequestered in 

scrubber solids also need to be investigated based on the way each facility handles its 

scrubber slurry.  
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CHAPTER I 

INTRODUCTION 

 The Great Lakes – Superior, Michigan, Huron, Erie and Ontario; comprise the 

largest fresh surface water systems on earth (1); and are bordered by eight states of the 

United States of America (USA). In 1978, an amendment to the 1972 historic agreement 

known as the Great Lakes Water Quality Agreement (GLWQA) was signed between the 

USA and Canada to maintain the chemical, physical and biological integrity of the Great 

Lakes Basin Ecosystem (2). Another amendment to GLWQA in 1987 led to the 

development and implementation of Lakewide Management Plans (LaMP) for each Great 

Lake, aimed at identifying the critical pollutants that affect the beneficial uses of the lake 

and outline strategies necessary to reduce loadings and restore those uses (3). The 

research covered in this thesis was funded partly due to the desire to achieve the 

requirements of the LaMP established for Lake Superior.  

 Lake Superior is the largest of the Great Lakes and is bordered by the states of 

Minnesota, Wisconsin, Michigan, and the Canadian province of Ontario. Its integrity is 

protected not just by its LaMP, established through the 1978 GLWQA amendment, but 

also by the Lake Superior Binational Program established in 1991 (4) and the Clean 

Water Act. The first two programs required establishing a Zero Discharge Demonstration 

Program aimed at achieving zero discharge and zero emission (or virtual elimination) of 
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nine toxic, persistent and bio-accumulative chemicals through a four stage approach: 1) 

defining the problem and identifying critical pollutants; 2) establishing load reduction 

schedules; 3) selecting remedial measures; 4) confirming, through monitoring, that the 

contributions of all critical pollutants towards impairment of lake integrity have been 

eliminated (5). The nine toxins identified were mercury, total polychlorinated biphenyls 

(PCB), dieldrin/aldrin, chlordane, dichlorodiphenyltrichloroethane (DDT), toxaphene, 

dioxin, hexachlorobenzene (HCB) and octachlorostyrene (OCS). Load reduction 

schedules were set for all the nine toxins listed above with specific deadlines. This 

research focuses on efforts undertaken to eliminate mercury. Meanwhile, the Clean Water 

Act (CWA) required that every state establish Water Quality Standards for their rivers, 

streams, lakes and wetlands (6). These standards identified required levels for pollutants, 

such as mercury, that were required in order to protect human health, fish, and wildlife. 

Permits were to be issued by the states or the EPA, to persons discharging mercury into 

waters. 

Ongoing mercury discharge/deposition into the Lake Superior basin was 

identified in stage 2 of its LaMP to come from several different sources ranging from 

municipal discharge to industrial and mining activities in 1990. Significant reductions in 

these discharges/deposits were reported in 1999 suggesting that measures taken so far to 

reduce mercury were effective. However, the mining sector of the state of Minnesota was 

identified as the one area in which more reduction work needs to be done (7). Looking at 

Table 1 below, it is observed that the most significant source of mercury to Lake Superior 

is from mining. The main mining activity around Lake Superior’s basin is taconite ore 
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mining and beneficiation. A sector specific reduction strategy is thus needed to reduce 

these emissions significantly.  

Table 1: Ongoing Release: Mercury to Air and Water from sources in the Lake Superior Basin, 1990 

and 1999 (kg/year) (7) 

Source 
US 

1990 
Canada 

1990 
Total 

1990 
US 

1999 
Canada 

1999 

Total 

Remaining 

1999 

Percent 

Reduction 

Industrial 11 23 34 11 20 31 8.8% 

Mining 912 604 1516 385 0.4 385.4 74.6% 

Fuel Combustion 137 126 263 193 122 315 +19.8% 

Incineration 85 1 86 14 1 15 82.6% 

Products 150 41 191 1 34 35 81.7% 

Municipal 61 53 114 40 53 93 18.4% 

Re-emission (from 

15% potential release 

of land filled mercury) 
146 55 201 34 15 49 75.6% 

Total 1502 903 2405 705 244 949 60.5% 

  

 In 1999, partly due to the LaMP reduction schedule for mercury and the 

requirements of the Clean Water Act, the Minnesota legislature tasked the Minnesota 

Pollution Control Agency (MPCA) to prepare a Total Maximum Daily Load (TMDL) to 

evaluate mercury sources and quantify reductions needed to meet water quality standards; 

and to develop an implementation plan for attaining reduction requirements of the 

TMDL. The proceedings of these two plans require that the Taconite Industry reduce 

emissions to 210 lbs/yr by the year 2025, a 75% reduction from 1999 levels (8).  In order 

to attain these reduction targets, the Minnesota Department of Natural Resources (DNR) 

and others have funded research aimed at identifying control technologies capable of 

achieving the 75% reduction in mercury emissions from the Taconite industry. 
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CHAPTER II 

BACKGROUND 

Mercury Cycle and Health Effects 

 Mercury is an element that exists as a heavy, silvery-white liquid at typical 

ambient temperatures and atmospheric pressures (9). It exists in three main oxidation 

states: metallic/elemental (Hg
0
), mercurous (Hg2

2+
), and mercuric (Hg

2+
); and its 

properties and behavior depend on the oxidation state (9). Natural and anthropogenic 

activities create a mercury ‘cycle’ in the environment which consists mainly of release of 

mercury into the atmosphere, transport from point of release, re-deposition (which 

depends partly on the chemical form of mercury (10)), re-release into atmosphere or 

chemical transformation. Anthropogenic emissions of mercury are believed to have 

increased significantly in the last century, with U.S. emissions alone in 1994 to 1995 

estimated at 158 tons/year, 3% of the estimated total annual global output of 5,500 tons 

(9). In the U.S. specifically, the EPA estimated that from 1994 to 1995, anthropogenic 

emissions deposited within the 48 contiguous states was greater than deposits from the 

global reservoir (9).  

 Mercury and its many different forms have been shown to bioaccumulate in 

aquatic biota and living organisms and are toxic to humans (9,11,12). Toxicity was 

ascertained following epidemics in Japan and Iraq where infants exposed to different 
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mercury forms were born with birth defects and/or were mentally retarded (12). The Iraq 

episode involved acute high dose exposure during fetal development associated with 

alkylmercury-contaminated grain; meanwhile the Japan episode involved longer high 

dose exposure from methylmercury contaminated fish (12). Methylmercury is a form of 

mercury formed through a chemical process known as methylation. It is the main form in 

which mercury is present in fish, and is believed to bioaccumulate more significantly than 

other forms of mercury (9). The events in Iraq caused the EPA to establish a reference 

dose (RfD) for mercury of 0.1 µg/kg/day, based on benchmark dose modeling of 

neurological endpoints reported for children exposed in utero (13). More mercury toxicity 

research work was conducted focusing more on long term, low dose exposure to mercury 

and/or its other forms. The results showed considerable uncertainty in determining the 

exact dose-response relationships for mercury toxicity in humans (14,15,16,12). 

However, in August of 2000, the National Research Council reaffirmed the EPA’s 

mercury exposure RfD following extensive evaluation of scientific evidence of prior and 

ongoing research (17). Because of its greater ability to bioaccumulate in aquatic biota 

such as fish, coupled with its higher toxicity, methylmercury is of greater concern when 

looking at the potential health risks of mercury. Research shows that high methylmercury 

concentrations present in aquatic environments are due to microbial and chemical 

methylation of inorganic mercury (18). Consequently, reducing the load of inorganic 

mercury deposited in aquatic environment is necessary to reduce the concentration of 

methyl mercury found in fish consumed by humans. 
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 Taconite Industry Profile 

  Taconite is a low grade iron ore with 20 to 30 percent iron content and is the 

principal form in which iron ore is mined in the United States (US). US Ore reserves are 

located in Minnesota (Mesabi Iron Range) and Michigan (Marquette Iron Range) (19). It 

accounted for 70% of US domestic demand in 2000 with 76% of the total production 

coming from the State of Minnesota alone (19). The production process as shown in 

Figure 1 is divided into open pit mining, beneficiation of mined ore, and agglomeration to 

give pellets. Beneficiation involves crushing and grinding to liberate iron-bearing 

particles inside the ore and then concentrating the ore by using mainly magnetic 

separation and/or flotation. Magnetic concentration targets iron existing as magnetite and 

maghemite which show magnetic properties, meanwhile other forms of iron (hematite) 

are concentrated mainly through froth flotation (20). 

 Agglomeration, also known as pelletization, is the final major step in taconite ore 

processing. Concentrated ore is rolled in balling drums into small pellets either after 

addition of just a binder to form green balls referred to as ‘acid pellets’; or addition of a 

binder and 1 to 10 percent limestone forming green balls referred to as ‘fluxed pellets’. 

The main binder used is bentonite; however, one plant uses a different proprietary binder. 

The pellets are then heated up in oxidizing conditions through a process known as 

induration to temperatures ranging from 1290 
0
C to 1400 

0
C for several minutes. 

Induration is achieved using either a straight grate or grate/kiln (one facility used a 

vertical shaft furnace, but the facility has been shut down) with natural gas being the most 

common fuel used. Some facilities also (co-)fire other fuels such as biomass, coal, coke 



7 

 

and heavy oils (20). Mercury release is believed to occur during induration of the pellets 

(21). 

 

Figure 1: Production process for Taconite pellets (19) 

  

 Induration in the Minnesota range involves use of grate-kilns and straight grate 

furnaces. Straight grates consists of a horizontal travel grate where the pellets are dried, 

preheated, fired to oxidize the magnetite to hematite, and finally cooled; meanwhile, 

grate-kilns consist of a straight grate with a drying zone usually called down draft zone 

1and/or 2(DD1and/or DD2); and a preheat zone, followed by a kiln for oxidation of the 

magnetite to hematite. Finally, there is an annular cooler which uses ambient air to cool 

the pellets. In the grate-kiln, a portion of the air used to cool the fired pellets flows into 

the kiln in a countercurrent direction to pellet flow. It enters the preheat zone and flows 
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vertically down through the pellets heating them up and then exits under the grate. It is 

then transported by preheat fans to the top of the drying zone of the grate where it flows 

once more in a down draft direction to dry the green balls, hence the name down draft 

(19). The waste gas fan then transports the waste gas from the drying zone containing 

dust, moisture and particles from the pellets; released during heating of the green balls in 

the grate and/or kiln. The waste gas is transported to various pollution control devices 

(multiclones, wet scrubber or electrostatic precipitator [ESP]). After cleaning by these 

control devices, it is then emitted from the plant stack. Pollution control devices depend 

on the plant and operating line, with a wet scrubber being the most common, usually 

preceded by multiclones in some plant lines. Field testing was done at a grate-kiln facility 

- United States Steel Minnesota Taconite – Line 3 (USS Minntac), so focus would be on 

grate-kiln operation. The grate portion is divided into the drying zone (DD1) and the pre-

heat zone, with two fans (the preheat fans) responsible for moving the waste gas through 

this region. The kiln is inclined and followed by the cooling bins which collect and cool 

the fired pellets using air from two fans known as cooling fans. A portion of this air exits 

through the cooler vent stack above the cooling bins, meanwhile the rest flows through 

the kiln to the preheat and DD1. Waste gas from the grate then flows through 

multiclones, a waste gas fan, a wet scrubber and finally, the stack. Grate-kilns from the 

other lines are similar to that of Minntac-Line 3, with differences being the grate size, air 

flow, fuel burnt, number of fans, design of the drying zone (other lines have two drying 

zones – DD1 and DD2); and type of pollution control devices. 
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Mercury in Taconite Plants 

 The main source of mercury in taconite plant emissions is from the ore with 

contribution from coal (if used) minimal (22,23). Most of the mercury in the ore is 

associated with the gangue (80%) and is removed during beneficiation of the ore (21); 

however, mercury associated with the green balls is still significant as it is the main 

source of mercury stack emissions (21). Research (24) suggests that mercury is bound 

predominantly to the magnetite portion of the green balls and is completely released after 

conversion to hematite. Moreover, at temperatures of 400 
0
C to 500 

0
C, magnetite 

converts to a solid solution of magnetite and maghemite, which reacts with waste gas 

mercury. The behavior of mercury with the different crystal structures of iron oxides have 

been shown to be significant because they could influence the oxidation of elemental 

mercury (Hg
0
) to oxidized mercury (Hg

2+
) especially in the presence of gaseous hydrogen 

chloride and/or nitrogen oxides (25,26). Mercury released during induration is believed to 

interact with taconite dust (mainly iron oxides), maghemite and chlorine (from fluxing 

agents and pore fluids) in the oxidizing conditions of the grate-kiln (25,27). These 

interactions are believed to result in oxidation of Hg
0
 to Hg

2+
 (17,25) and formation of 

particulate mercury (Hg
P
) (28), thus explaining the high concentrations of mercury seen 

in scrubber systems present on the range (28). Any mercury that is not captured by the 

scrubber systems should then be emitted through the plant stack.  

More work was performed on scrubber systems to better evaluate the mercury 

captured. First, it was observed that the fate of captured mercury depends on adsorption 

to particles in the scrubber slurry, and plant routing of said slurry (28). Mercury captured 

by the wet scrubbers was present both in the liquid portion of the slurry as dissolved 
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mercury (Hg
D
), and in the solid portion as particulate mercury (Hg

P
). However, the 

concentration of Hg
D
 was seen to decrease with time, while the concentration of Hg

P
 

increased. This suggested that Hg
D
 was adsorbing unto the solid portion of the slurry with 

time to become Hg
P
, and also that the mercury captured by the scrubber was captured 

both as Hg
2+

, which is soluble, and as Hg
P
 (28). This behavior is considered significant 

because it could determine the final fate of the captured mercury. Handling of scrubber 

slurry varies with different facilities and lines. For the liquids, some plants/lines recycle 

their scrubber liquids and make up for losses with a fresh stream of water; others 

discharge their liquids. Meanwhile for the solids, some plants recycle their solids 

captured by the scrubber back to the front-end of the process (agglomerator or 

concentrator) after settling in a scrubber thickener; others discharge their solids. For 

plants which recycle their solids, any Hg
P
 would be re-introduced into the system; 

meanwhile, high Hg
D
 in scrubbers that recycle their waters might reduce the driving force 

for Hg
2+

 capture over time. More analyses also suggested that the scrubber Hg
P
  is mainly 

associated with the non-magnetic portion of the scrubber slurry, thus magnetic separation 

during ore beneficiation could be used to provide an “exit” point for the Hg
P
 from the 

process (28).   

With this understanding of mercury in taconite processing, the Minnesota 

Department of Natural Resources (MN DNR), co-funded by the MPCA and 

Environmental Protection Agency (EPA), was tasked with identifying and testing 

potential mercury control technologies applicable to the Taconite industry.  
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Potential Control Technologies for Taconite Industry 

A review funded by the MN DNR, identified two potential mercury control 

technologies for the Taconite industry: Sorbent and Oxidation technologies (22). Sorbent 

technologies refer mainly to technologies that use powdered activated carbon (PAC) or 

halogenated PAC for mercury control. The sorbents are delivered either by injection 

directly into the waste gas ducts or as a fixed bed through which the waste gas flows 

through. Oxidation technologies refer to the use of chemical additives which would 

enhance oxidation of Hg
0
 in the process.  

Oxidation technologies were the first technologies tested in different plants by the 

MN DNR. The tests were carried out for just one hour to determine if the oxidants used 

had the potential to achieve significant reduction in stack mercury emission. Longer 

testing would be necessary to fully assess effectiveness of the technologies. The tests 

consisted of: 1) Adding sodium chloride (NaCl) or calcium bromide (CaBr2) to the green 

ball feed of both a straight grate and grate-kiln; 2) Halide salt (bromide or chloride) 

injection into the preheat zone of a straight grate and grate-kiln facility; 3) Using oxidants 

in the scrubber waters to oxidize Hg
0
. Of the three different tests performed, bromide salt 

injection into pre-heat or kiln seemed to be the most promising in reducing stack 

emissions of mercury (29,30). However, during bromide salt injection, an increase in 

Hg
2+

 at the stack was observed suggesting that either all the Hg
2+

 was not captured by the 

scrubber, or Br2 was formed during injection of the salt which was not captured by the 

scrubber. The uncaptured Br2 then possibly oxidizes Hg
0
 in the stack or the sampling 

probe, biasing the oxidized mercury reading (30). Moreover, use of halide salts raised the 

possibility of corrosion of plant equipment (29).  



12 

 

With this preliminary knowledge of how effective oxidation technologies could 

be in controlling mercury emissions from Taconite facilities, the MN DNR then 

submitted a Request for Proposals (RFP) aimed at funding testing of different mercury 

control technologies with the potential of achieving significant reductions in the Taconite 

Industry. This research presents the results of one of the technologies proposed by the 

University of North Dakota – Department of Chemical Engineering and Envergex LLC. 

The objectives of the proposed work were: 1) Investigate the effectiveness of two 

mercury sorbents: plain activated carbon (PAC), and ESORB-HG-11 (a proprietary 

halogenated carbon supplied by Envergex LLC of Sturbridge, MA); to capture mercury 

in the waste gas stream; 2) Sequester both dissolved and captured mercury onto either the 

sorbent or a mercury complexing agent (TMT-15® or DEDTC) which can be physically 

or magnetically differentiated from the scrubber process solids. The benefit of this 

approach would be threefold: 1) Increase mercury capture, thus reducing total stack 

mercury emitted; 2) Improve driving force of oxidized mercury capture by scrubber 

liquids through sequestration to solid phase (also preventing any possibility of mercury 

re-emission from scrubber slurry); 3) Provide a possible ‘exit’ point for captured mercury 

by sequestering it to a non-magnetic or physical differentiable sorbent. This research 

documents the methods used and results obtained from testing the technologies proposed. 

Chemistry of Proposed Control Technologies 

Powdered Activated Carbon (PAC) 

 Activated carbon is considered one of the most advanced commercially available 

mercury control technologies (22). Significant amount of testing has been performed 

using PAC in the coal industry (31,17,32) establishing PAC as a potential mercury 
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control technology. Several factors: flue gas composition, sorbent particle size, 

temperature, and presence of moisture; have been shown to affect the performance of 

PAC in mercury control during different bench-scale fixed-bed work (17). However, for 

the case of the Taconite Industry specifically, flue gas composition is probably the most 

important factor. This is because even though physical adsorption is believed to be one of 

the methods for mercury capture on PAC (33), capture of Hg
0
 by PAC is most effective 

when acid gases (SO2, NOx, HCl) are present in the flue gas (33,34,17). It is believed that 

oxidation of elemental mercury followed by chemisorption is a significant component in 

the mechanism of mercury capture by PAC (34,35,36). So for PAC to show some amount 

of success in capturing mercury in Taconite facilities, the waste gas constituents should 

be able to promote oxidation of Hg
0 

to the oxidized species followed by chemisorption in 

the presence on PAC. Measurements of flue gas compositions at a taconite facility 

suggests lower CO2, NOx, and SO2 (facilities not burning high sulfur coal as fuel) 

concentrations (37) as compared to flue gas in coal facilities (38,39,17). The HCl 

concentration is roughly the same for both systems. On the other hand, Taconite waste 

gas has a high dust loading comprising largely of reactive iron oxides believed to be 

responsible for the high degree of oxidation observed in the systems (26,24). So even 

though the waste gas composition of acidic gases such as SO2 and NOx is lower than in 

coal flue gas, the presence of HCl and iron oxides is expected to enhance Hg
0
 oxidation 

and capture with PAC. The results obtained from testing PAC are discussed in chapters 

IV and VI. 
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ESORB-HG-11 

 It has been shown that chlorine (as HCl) is one of the important factors in 

mercury control using PAC (17,36). Consequently, effectiveness of PAC may be limited 

when the amount of chlorine in the flue gas is insufficient (40). Moreover, PAC testing 

has been most effective for controlling mercury emissions in coal facilities equipped with 

a fabric filter (FF) over electrostatic precipitators (ESP) as the particulate control device 

(PCD) (17). To overcome these limitations, PAC sorbents such as ESORB-HG-11 

impregnated with compounds containing halogens, have been developed to reduce the 

dependence of the Hg
0
 capture mechanism on chlorine from waste/flue gas. Testing of 

halogenated PACs has shown that mainly bromine based PACs achieve high mercury 

control potential even in the absence of FF (41,22). Taconite facilities use multiclones 

and wet scrubber systems as their main PCDs, so halogenated sorbents might be the best 

sorbent technology able to overcome the short residence time of the injected sorbent in 

the waste gas (residence time depends mainly on waste gas flow rates and duct lengths). 

However, for better results, good distribution of the sorbent in the waste gas and higher 

injection loadings might be necessary to achieve significant capture of mercury (22).  

 Other than capture, another important aspect concerning mercury control with 

Taconite facilities’ wet scrubber systems, is the ability of the sorbent used to sequester 

Hg
2+

 (as Hg
D
) from liquid to solid portion of scrubber slurry. ESORB-HG-11, supplied 

Envergex LLC of Sturbridge, MA, is a proprietary brominated powdered activated 

carbon sorbent believed to be able to achieve both capture and sequestration of mercury. 

Testing was carried out to investigate the potential of ESORB-HG-11 to sequester Hg
D
 

and capture Hg
2+

 after oxidation of Hg
0
. The results are discussed in chapters IV and VI. 
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TMT-15® & DEDTC 

  TMT-15® is a commercially available heavy metal chelator containing the 

functional group 2,4,6-trimercaptotriazine (TMT) and is used to precipitate heavy metals 

from solution. Meanwhile, diethyldithiocarbamate (DEDTC) is a chemical compound 

containing the carbamate functional group capable of forming chelates with heavy metals 

such as mercury. TMT reacts with mercury in aqueous solutions to form mercaptotriazine 

(Hg-TMT) which precipitates from solution (42); meanwhile the chemistry of 

dithiocarbamates reacting with mercury is not well documented. The two additives were 

tested to determine their efficiency in sequestering Hg
D
 in a Taconite plant’s scrubber 

slurry. Their effectiveness was also compared with the sequestering capabilities of 

sorbents – PAC and ESORB-HG-11. Several other concerns would need to be 

investigated if these metal chelators are to be adopted by scrubber systems, such as their 

toxicity and stability. The results from using them are discussed in chapters IV and VI. 
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CHAPTER III 

EXPERIMENTAL METHODS (BENCH & PILOT) 

Demonstration of the mercury control technologies proposed by UND & Envergex 

LLC was done in three phases:  

 Bench-scale testing to establish sequestration properties of the additives in 

Taconite scrubber slurry. 

  Pilot-scale tests to establish improved driving force of Hg
2+

 capture by scrubber 

slurry containing additives. 

 Field-scale tests to establish oxidation and capture of Hg
0
 by the two sorbents – 

PAC and ESORB-HG-11; and demonstrate sequestration of Hg
D
 from the liquid 

portion of the scrubber slurry. 

Each different step is described in detail in the subsequent sections and chapter. 

However, field testing methods and results are discussed separately in chapters V and VI 

respectively. Chapter III focuses on the experimental methods used during bench- and 

pilot-scale tests meanwhile chapter IV looks at their results. Bench- and pilot-scale tests 

investigated only the sequestering abilities of all four sorbents/chelates proposed. Field 

tests investigated oxidation, capture and sequestration of mercury from waste gas. US 

Steel Minntac-Line 3 was selected as the facility and line at which field testing was going 
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to be conducted, so all calculations, methods and estimates for the bench and pilot work 

were done based on Line 3 conditions. 

Bench-Scale Test  

 For all bench-scale tests, scrubber slurry obtained from Minntac-Line 3 was used. 

First, a mercury mass balance was performed on Minntac Line 3 using concentrations 

reported in work performed in 2005 by Berndt and Engesser (28,27), to obtain an 

estimate of the mercury concentration captured by the liquid portion of the scrubber 

slurry from the process waste gas. This gave an estimate of the total mercury (Hg
T
) in the 

scrubber slurry of 62.5 µg Hg /l. The mass balance was performed because Berndt (28) 

determined that Hg
D
 adsorbs unto the solid particles in the slurry significantly with time, 

implying that the scrubber slurry obtained from Line 3 would have little Hg
D
. Mercury 

analysis of the slurry confirmed this, with results showing less than 1 µg Hg/l of slurry. 

So samples used for bench tests were spiked with mercuric chloride (HgCl2) to a 

concentration of 62.5 µg Hg/l. The mercury residence time in the scrubber of line 3 was 

also calculated to be approximately 10 min.  

 Testing apparatus consisted of a 500 ml conical flask, magnetic stirrer, a Buchner 

funnel, 0.7 micron Whatman glass fiber filters purchased from Millipore, and acidified 

sample bottles for EPA Method 7470 analysis obtained from Pace Analytical Services. 

The procedure consisted of measuring 200 ml of Line 3 scrubber slurry and spiking with 

50 µl of 0.25 g/l mercury (as mercuric chloride) to obtain a mercury concentration in the 

slurry of 62.5 µg Hg/l. The solution was stirred and a fixed volume or mass of the sorbent 

or chelate was added and stirred for 10 min, followed by filtration into the sample bottles. 
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The samples were then shipped to Pace Analytical laboratories for analysis of mercury 

content left. 

 The test matrix for the bench-scale experiments consisted of first testing the 

sorbents/chelates following a low, mid and high loading; in the scrubber sample spiked 

with mercury. A different method was used to determine the loadings for each additive 

and sorbent. For PAC and ESORB-HG-11, PAC testing in coal fired utilities suggest that 

carbon/Hg ratio is a function of sorbent particle size (17) with the minimum carbon-

mercury ratio for effective removal usually around 1000 (17). Consequently, the loadings 

used in the bench scale tests were 0, 25, 50 and 100 mg/l, which correspond to a 

carbon/Hg ratio of 400, 800 and 1600 g carbon/g Hg. PAC testing in coal fired utilities 

consists of injection into flue gas ducts to achieve mercury capture, not sequestration; so 

using this method as a means to estimate the bench-scale loading of sorbents in the 

scrubber slurry might seem misleading at first look. However, since during field-scale 

tests, the sorbents would not be added directly into the scrubber recirculation tank but 

injected into the waste gas stream and end up in the scrubber slurry, C/Hg ratios from 

PAC injection is actually a reliable way to estimate minimum concentration of sorbent in 

the scrubber slurry. 

 To estimate the loadings of TMT-15®, a ratio of 15 liters TMT-15®/kg of Hg 

was used. This ratio was obtained from the manufacturer, and is 6 times larger than the 

ratio from the stoichiometric equation for mercury chelation by TMT-15®: 
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The final loadings used for TMT-15® were 0.42, 0.56 and 1.12 mg TMT-15®/l of 

scrubber slurry (TMT-15® was supplied as a 15% solution; the loadings reported are 

based on the actual mass present in the solution added to the scrubber slurry).  

 For DEDTC, the loadings used were based on the stoichiometric equation for Hg 

chelation with DEDTC. 

                           
The loadings used were 0.13, 0.43 and 0.69 mg DEDTC/l of scrubber slurry. DEDTC 

exists as a white crystalline solid, but it was administered as a solution of 860 mg/l. The 

volume of this solution containing the mass required was measured and delivered to the 

scrubber slurry using microsyringes. Table 2 summarizes the loadings investigated for the 

first series of tests. 

Table 2: Loading of sorbents and additives during bench-scale testing 

Level ESORB-HG- 11 

(mg/l) 
PAC 

(mg/l) 
TMT-15® 

(mg/l) 
DEDTC 

(mg/l) 

Low 25 25 0.40 0.13 

Mid 50 50 0.60 0.43 

High 100 100 1.12 0.69 

 

The next tests involved testing the PAC sorbent impregnated with either TMT-

15® or DEDTC.  PAC was impregnated with the chelates using a two level, one factor 

design; with mass being the factor. The impregnation technique used was the incipient 

wetness impregnation (IWI). The two levels used for PAC were 25 and 100 mg PAC/l of 

scrubber solution. The levels used for TMT-15® were 0.28 and 2.24 mg TMT/l of 

scrubber slurry; while that for DEDTC was 0.43 and 0.69 mg DEDTC/l of scrubber 
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slurry. The impregnation sought to investigate the effectiveness of PAC combined with 

heavy metal chelators; and if this combination significantly improved the sequestering 

capabilities of PAC. Table 3 summarizes the impregnation test matrix. Two different IWI 

methods were used to prepare TMT-15® as it was suspected that the initial method might 

cause degradation of TMT during impregnation. The loading for each preparation method 

was kept the same. 

Table 3: Loadings used during incipient wetness impregnation testing 

PAC  TMT-15® DEDTC 

(mg/l) 
Low 

(mg/l) 
High 
(mg/l) 

Low 

(mg/l) 
High 

(mg/l) 

25 0.28 2.24 0.43 0.69 

100 0.28 2.24 0.43 0.69 

  

The last test performed investigated the effect of time on sequestration of Hg
2+

 by 

PAC. This test was performed to verify that the initial results obtained during the PAC 

test was a function of PAC loading only and not time. Moreover, determining the effect 

of time helped determine if the experiment was kinetically or mass transfer limited. In 

this test, 20 mg of PAC was used and stirred for 1, 2, 4 and 10 minutes. The slurry was 

then filtered and sent for analyses. 

 To conclude, bench-scale tests were performed to establish sequestration 

properties such as minimum loading versus sequestration of Hg
D
, effect of time on 

sequestration experiments, and effectiveness in Taconite scrubber slurry.  
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Pilot-scale Test 

 The goal of the pilot-scale tests was to investigate the effectiveness of the 

sequestration additives when used with a pilot scrubber system. Flue gas spiked with 

mercuric chloride (HgCl2) was scrubbed using a glass, counter-current flow scrubber. 

The post-scrubber flue gas concentration was then sampled and analyzed to determine its 

Hg
0
 and Hg

2+
 concentration. Initially, it was planned to monitor both the pre-scrubber Hg 

concentration and post-scrubber Hg concentration, but pre-scrubber sampling was not 

effective. Details concerning testing methodology are further discussed below. During 

operation, one of the sorbents or chelates from the bench-scale tests was added by dosing 

to the scrubber recirculation tank to observe the effect it had on Hg
2+

 scrubbing from the 

flue gas. The testing process could be summarized into five main steps: Flue gas 

generation, Hg
2+

 (as HgCl2) generation and injection into the flue gas stream, flue gas 

scrubbing, sampling and conditioning of scrubbed flue gas, and finally, analysis of 

conditioned sample gas. Each step, methodology and equipment used is discussed in 

further detail. 

Flue Gas Generation 

Flue gas was generated using a modified natural gas home furnace equipped with 

a Mass Trak 810C Mass Flow Controller (MFC), calibrated for methane gas and provided 

by Sierra instruments. The flue gas flowed from the furnace to the scrubber and was then 

vented through the roof of the building housing the equipment. Flue gas flow rate was 

controlled using an eductor located downstream of the scrubber. The eductor uses 

compressed air and is controlled by a rotameter located on the furnace. Several operating 

factors were monitored during each experimental run. First the flue gas, which was 
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sampled before the scrubber, was conditioned and analyzed for the O2 concentration 

using a Model 3000M series O2 analyzer supplied by Teledyne Analytical Instruments. 

This measurement was used to calculate the excess air and flow rate of the flue gas 

produced. To determine the flue gas flow rate, first the molar flow of natural gas burnt (as 

methane-CH4) was calculated from the flow rate reading of the MFC (in liters per 

minute). The molar flow is then combined with the O2 concentration and stoichiometric 

combustion equation for CH4 to estimate the volumetric flow of the flue gas. The average 

flue gas flow during testing was 50±10 lpm, with an average oxygen concentration of 

17.0±1.5%. The second factor monitored was the temperature of the flue gas before 

injection of the oxidized mercury, using type K thermocouples inserted in the flue gas 

sample lines. A temperature range of 150
o
C ± 20

o
C was the target to prevent 

condensation from occurring in the lines and ensure the Hg
2+

 is not reduced to Hg
0
. The 

furnace and rotameter are depicted in Figure 2 below. The MFC is not shown in the 

picture. 
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HgCl2 Generation 

Mercuric chloride (HgCl2) was generated using two certified Dynacal mercuric 

chloride permeation tubes obtained from VICI Metronics. The tubes were certified 

traceable to NIST standards for permeation rates of 10,470.60 ng/min and 12,963.90 

ng/min, when maintained at a constant temperature of 80
0
C. The permeation tubes were 

inserted into a constant temperature chamber known as Dynacalibrator, obtained from 

VICI Metronics. The Dynacalibrator maintained the tubes at the 80
0
C temperature. The 

permeation chamber was then swept out at a constant rate of 1 liter per minute using 

nitrogen as carrier gas with flow rate controlled by a Brooks Instrument Mass Flow 

Controller - Series 4850, certified for N2 gas flow. High purity N2 from a gas tank was 

used. With the temperature of the calibrator at 80
0
C, and using both permeation tubes, a 

Rotameter 

for 

controlling 

eductor 

Figure 2: Modified furnace and rotameter controlling eductor 
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nitrogen stream containing approximately 23 µg/min of HgCl2 flowing at a rate of 1 lpm, 

was expected. Adding this to a flue gas flow rate of approximately 50 (±10) lpm, meant 

that final Hg
2+

 concentration in the flue gas would be less than 1 ug/m
3
, a lot less than 

what was required. Surprisingly though during preliminary testing of the equipment set-

up mercury concentrations higher than 18 µg Hg/m
3
 were detected in the flue gas stream. 

This suggested that the permeation rate of the tubes was either higher than the certified 

rates or better yet, that there was a significant build up of HgCl2 concentration in the 

Dynacalibrator during temperature ramp-up and steady-state, producing a nitrogen stream 

with very high mercury concentrations. To verify this, the HgCl2-containing N2 stream 

was diluted with air using a dilution chamber and then analyzed. High Hg readings of > 

20 µg Hg/m
3
 confirmed that the 1 lpm stream coming from the dynacalibrator had high 

concentrations of mercury. Figure 3 below shows a picture of the Dynacalibrator and 

Brooks MFC. 
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 Scrubber Operation 

 The scrubber consists of a 30 L slurry tank with a 6 ft high, 3 inch internal 

diameter scrubbing tower as shown in Figure 4 and 5. The tank is connected to a 

diaphragm pump which circulates the slurry through the scrubber. The slurry is pumped 

through perfluoralkoxy (PFA) tubing from the slurry tank to the spray nozzles. The flue 

gas flows into the scrubber at the base of the scrubbing tower, and exits the scrubber at 

the top. The spray nozzles provide a 90
0
 spray pattern, are clog resistant, spray slurry 

counter-current to the flue gas flow, and scrub Hg
2+

 in the process. However, because of 

the small 3 inch internal diameter, most of the slurry sprayed in the 90
0
 cone-shape hits 

and flows down the walls of the scrubbing tower, reducing the effective liquid-gas 

contacting. An atomizing nozzle was used to try and circumvent this problem, and even 

though it worked effectively producing a fine mist, significant clogging was observed 

Figure 3: Brooks MFC and Dynacalibrator 
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when used with scrubber slurry. As a result, the 90
0
 spray nozzles were maintained for 

the test. The diaphragm pump was operated using compressed air at 80 psig giving slurry 

flow rates of 2.0 to 3.0 lpm (depending on number of spray nozzles used), measured 

using a Seametrics Low Flow Magnetic Flowmeter.  Sampling of the flue gas for 

analyses was done from the top of the scrubber through PFA lines heated to 150 ± 20 
0
C 

with silicone heat tapes. It was initially planned to sample before and after scrubbing so 

as to get a ‘mercury in - mercury out’ measurement; but the only possible pre-scrubber 

sampling point was from a U-shaped, 2 ft long Teflon-coated stainless steel pipe used for 

injecting the HgCl2 - carrying nitrogen gas into the flue gas. Sampling from this pipe 

produced abnormal results attributed to poor mixing of the HgCl2 in the flue gas before 

entering the glass scrubber. Flue gas flow in the scrubber was believed to be better mixed 

thanks to the longer residence time and contacting with the scrubber liquids. As a result, 

sampling was done from the top of the scrubber only.  

 

Teflon-

coated 

stainless 

steel U-tube 

Figure 4: Glass scrubber and Teflon-coated U-tube for injecting HgCl2 
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 Wet-Chemistry Pre-Treatment Unit 

A wet chemistry pre-treatment was used to condition the sample gases before 

mercury analysis. It consisted of two parallel sets of impingers: one for determining Hg
0
 

concentration in sample gas, while the other for determining Hg
T
 concentration in the 

sample gas. The set-up was designed based on a modified wet chemistry PS Analytical 

pre-treatment conversion system (43) and ASTM D6784-02 (also known as the Ontario 

Hydro [OH] method). In this design, the first
 
impinger train is for conditioning the 

elemental mercury stream. It consists of two impingers in series: The first impinger 

contains a 200 ml of 1N potassium chloride (KCl) solution that captures the oxidized 

mercury in order to obtain only elemental mercury concentration, while the second 

impinger sits in an ice bath and traps all moisture present in the gas sample before 

analysis by the mercury analyzer. The second impinger train is for conditioning the total 

Figure 5: Diaphragm pump and scrubber 30 L tank 
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mercury stream. Here, the first impinger contains 200 ml of 10% (w/v) stannous chloride 

(SnCl2) solution. The SnCl2 reduces the oxidized mercury in order to obtain a total 

mercury measurement of the flue gas. The second impinger sits in an ice bath and traps 

all moisture present in the gas sample before analysis. The trains were modified from a 

continuous flow to a batch system. Previous work done using a wet chemistry method 

involved a continuous or semi-continuous system in which the chemicals used for 

conditioning the mercury were continuously replaced (43,44,45). Also, NaOH was added 

in the Hg
T
 line to scrub out acid gases (43,45,44); and in some cases, sodium thiosulfate 

was either added to KCl in the Hg
0
 impinger to prevent oxidation of Hg

0
 (44), or replaced 

KCl completely (45). Most of these modifications were done to prevent flue gas 

constituents such as Cl2, Br2, particulates and SO2 from interfering with Hg pre-treatment 

or accumulating in the impingers. However, the flue gas used for pilot-scale tests was 

obtained from burning natural gas, and was considered free of all the interferents listed 

above, so solutions were prepared based on the OH method. Figure 6 presents a 

schematic of the impingers used. 

    

 

Flue gas 

1N KCl 

 To Horiba Hg 

CEM 

To Horiba 

Hg-CEM 

Impingers 

Flue gas 

10% SnCl2 
Ice 

bath 

Ice 

bath 

Impingers 

 
 

Figure 6: Schematic of wet-chemistry set-up 
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Mercury Analysis of Sample Gas 

 Conditioned gas from the wet pre-treatment step was analyzed using a Horiba 

DM-6B continuous mercury monitor (CMM) with dual channel analyzers belonging to 

the department of Chemical Engineering - University of North Dakota. It consists of a 

detector which uses cold vapor atomic absorption spectroscopy (CVAAS), and reports 

mercury concentration every 10 seconds. It also has a mercury generator (MG1), used to 

calibrate the Horiba DM-6B detector by producing a stream of gas of known Hg
0
 

concentration. A dry speciation unit was also supplied with the CMM, but researchers 

who worked previously with the analyzer recommended that the dry speciation unit be 

replaced with a wet-chemistry pre-treatment unit (43). The detector is equipped with a 

vacuum pump on each channel, controlled using a rotameter and pressure indicators. The 

flow rate for each channel was set at the manufacturer’s recommended setting of 0.5 lpm, 

and pulled the sample gas from the scrubber through the pre-treatment units. Figure 7 is a 

picture showing the Horiba and mercury generator.  

 A typical pilot-scale run consisted of first turning on the furnace and heat tapes to 

bake out any residual mercury left in the sampling lines or scrubber tower after cleaning. 

The next step was calibrating the Horiba DM-6B and O2 analyzer. Calibration of the O2 

analyzer was done with high purity oxygen (99.6%); meanwhile the Horiba DM-6B was 

calibrated with the mercury generator set at a flow rate of 1.75 lpm producing a 

concentration of 9.1 ug Hg/m
3
. During calibration of the analyzers the chemicals for the 

pre-treatment were prepared and the impinger train assembled and a leak check 

performed. To perform the leak check, the assembled impinger train is connected to the 

calibrated Horiba DM-6B and the impinger inlet is sealed using parafilm. 
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Figure 8: Schematic summarizing pilot-scale test equipment set-up 

Figure 7: Horiba DM-6B and MG-1 mercury generator 
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The pumps of the Horiba DM-6B then pull a vacuum through the trains, and the leak test 

is successful if a vacuum of at least 20 psi is pulled within one minute. If the leak test is 

successful, a calibration verification is then performed by connecting the calibration gas 

to the impinger train inlet. Once the calibration verification is completed, the heated 

sampling lines are connected to the impinger train IF the temperature of the heat tapes is 

steady at approximately 150
0
C; and IF there is no more condensation on the scrubber 

walls. The Dynacalibrator is then turned on with the permeation tubes loaded, and 

allowed to come to steady-state. These steps took a minimum of 2 hrs. During heating up, 

the flow of N2 through the Dynacalibrator was turned on, but diverted from the flue gas 

stream to a carbon trap bed with the discharge end leading to a fume hood. While the 

Dynacalibrator was getting to a steady temperature (80
0
C), the Horiba DM-6B was 

measuring the scrubber baseline Hg concentration. Once steady, the N2 stream containing 

HgCl2 was then diverted back to the flue gas flow entering the scrubber.  The mercury 

concentration of the flue gas leaving the scrubber was then allowed to reach a new 

steady-state value. This usually took 1 to 2 hours. Once the new steady-state was 

attained, the pump was turned on and slurry spray began to scrub the flue gas of Hg
2+

. 

After scrubbing for 1 hour, the sorbent/chelate to be investigated was added by dosing to 

the scrubber slurry and the effect recorded. After the effect of the additives on the 

scrubbing efficiency was steady once more, the set-up was then shut-down. Shut down 

consisted of first disconnecting the pre-treatment unit, then turning off the HgCl2 stream, 

the scrubber, furnace and finally heat tapes. Post-run calibration verification of the 

Horiba DM-6B and O2 analyzer was then performed and the data obtained saved. The 

scrubber was then washed by rinsing three times with tap water, followed by baking out 
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with flue gas and then a final rinse. A complete mercury wash of glassware requires 

soaking in nitric acid for at least 12 hours, but because of the size of the scrubber this was 

not feasible so only the bake out and rinse method was used.  
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CHAPTER IV 

RESULTS (BENCH & PILOT) 

Bench-Scale Test Results and Discussions 

 The bench-scale test investigated three different goals: performance of each 

respective sorbent/chelate; the effect of combining PAC with the chelates; finally, the 

effect of time on sequestration of additives. For the first goal, the results obtained from 

analysis of the filtered scrubber slurry for all the additives are shown in Figure 9. 

 

 

Esorb 11 

(mg/l)

PAC 

(mg/l)

TMT-15 

(mg/l)

DEDTC 

(mg/l)

Low 25 25 0.40 0.13

Mid 50 50 0.60 0.43

High 100 100 1.12 0.69

Figure 9: Sequestration results of each additive during bench-scale tests 
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From the results, it can be seen that ESORB-HG-11 was the most effective 

additive for all the three loadings investigated. All ESORB-HG-11 gave final slurry 

concentration of mercury to be less than 1 µg/m
3
 with the 200 mg/l loading giving a non-

detect sample. These results suggest that ESORB-HG-11 is very effective in sequestering 

Hg
2+

 from solution. 

The second sorbent tested was PAC. After testing, PAC showed the lowest Hg
D
 

sequestration observed in the analyzed samples for the loadings investigated. The Hg
D
 

concentration in the scrubber slurry after filtration decreased from 21.6 to 2.3 µg Hg/m
3
 

for an increased loading of 25 to 100 mg/l. Looking at the clear decrease in slurry Hg
D
 

suggests that even though PAC seems to be less effective, at higher loadings it should be 

more effective. So its effectiveness as a sequestering agent should be investigated further 

at higher loadings. 

DEDTC also showed an increase in performance with increase in loading as 

observed with PAC. Also final slurry Hg
D
 concentrations with DEDTC were lower than 

those observed for PAC at all the levels investigated. The low (0.13 mg/l), mid (0.43 

mg/l) and high (0.69 mg/l) loadings gave final Hg
D
 concentrations of 4.8, 3.3 and 1.7 µg 

Hg/l respectively.  

The results obtained from TMT-15® testing did not show a decrease in Hg
D
 with 

increase in loading. The low (0.40 mg/l), mid (0.60 mg/l) and high (1.12 mg/l) loadings 

gave final Hg
D
 concentrations of 6.7, 1.0 and 2.8 µg Hg/l respectively. The differing 

behavior observed was attributed to possible experimental error. Final TMT-15® 

concentrations were also comparable to the final concentrations of DEDTC. To fully 
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compare effectiveness between TMT-15® and DEDTC, it is important to recall that 

DEDTC loading was based on the stoichiometric mass required to form a complex with 

Hg
2+

; meanwhile TMT-15® loading ws based on the vendor’s suggested dose which is 6 

times more than the stoichiometric requirement for chelation of Hg
2+

 by TMT. This 

therefore suggests that DEDTC is more effective than TMT-15® on a stoichiometric 

basis. 

Compared to ESORB-HG-11, none of the additives were as effective, so PAC 

was combined with TMT-15® and DEDTC by incipient wetness impregnation (IWI), to 

verify if this would produce a more effective sequestration agent. One important step of 

IWI is drying of the PAC at a temperature of 103 
0
C to drive off water. However, TMT-

15® has a lower boiling point of 101 
0
C. So to ensure that the PAC was effectively 

impregnated with TMT-15®, two different drying temperatures were used: 103 
0
C and 

approximately 90 
0
C. Two TMT-impregnated PACs were thus produced and tested. The 

results for the impregnated PAC are shown in Figures 10 and 11 below, as well as the 

result obtained for testing PAC with no impregnation. A two level design was used with 

mass loading as the level.  

For DEDTC, the main observable difference was the 25 mg PAC/l and 0.45 mg 

DEDTC/l combination. The value for Hg
D 

was 8.6 µg/l which was half the value for 25 

mg PAC/l only and 25 mg PAC/l + 0.75mg DEDTC/l. However, when looking at the 

higher PAC dosing, no significant difference was observed except that sequestration 

seemed to decrease with increase in DEDTC loading on PAC. This trend was also 

observed for 25 mg PAC/l, and suggesting that impregnation with DEDTC is counter-

productive with increase in DEDTC loading. However, PAC-alone testing already 
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established that higher concentrations of PAC (> 100 mg/l) would be needed for the 

sequestration to be significant (Hg
D
 < 1 µg/l). So the similar reductions between DEDTC 

impregnated on PAC and PAC alone, suggests DEDTC impregnation is not an effective 

option worth investigating further. 

 

Figure 10: Results for dissolved Hg concentration with PAC and PAC impregnated with DEDTC 

 

 As mentioned earlier, PAC impregnated with TMT-15® was prepared using two 

different temperatures, so the samples were labeled A and B - where B referred to the 

lower temperature preparation. Looking at the results in Figure 11, the first point noticed 

was a similar trend as with DEDTC impregnation. Increase in the amount of TMT-15® 

with respect to PAC led to a decrease in mercury capture. However, combining TMT-

15B at the low or high level with carbon led to sequestration values as good as those seen 

for ESORB-HG-11, except for the TMT-15B (2240 µg/l) which gave an abnormally high 
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value and was treated as an outlier attributed to experimental error. The results also 

suggested that the lower temperature preparation was more effective, and that most of the 

sequestration ability of the sorbent was more dependent on TMT-15® than on PAC. This 

final point is backed by the fact that the TMT-15® concentration used for the high level 

(2240 µg/l) is twice that used during TMT-15® alone tests. 

 

 

Figure 11: Results for dissolved Hg concentration with PAC and PAC impregnated with DEDTC 

 

 The last test investigated was the effect of time on the capture efficiency. As seen 

in Figure 13, PAC was chosen for this test due to its low sequestering ability at the 

temperatures investigated. A very slight decrease in Hg
D
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Figure 12: Effect of time on sequestration of Hg
D
 by PAC 

 

Bench-Scale Testing Conclusion 

 To conclude, ESORB-HG-11 was the most effective additive capable of 

achieving sequestration significantly (< 1 µg/m
3
) for all loadings used. Other additives 

showed promise as sequestration agents except for PAC whose results suggested higher 

loadings would be required for better results. Impregnating PAC with TMT-15® at 

temperatures lower than 100
0
C showed the best possible results, with reductions of Hg

D
 

in the slurry to less than 1 µg/m
3
. However, producing impregnated PAC at temperatures 

lower than 100
0
C led to long drying times (> 24 hrs), making this preparation method not 

very plausible for future applications such as large scale production. So for the scope of 

this work, the impregnated sorbents were not investigated further. 
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For PAC, a minimum concentration of 100 mg/l was chosen; DEDTC was 1.1 mg/l; and 

TMT-15® was 10 mg/l. For the chelates, the concentrations chosen for the pilot-scale 

tests were increased from the bench-scale high values to account for scale-up issues. 

Pilot-Scale Test Results and Discussion 

 The first results obtained for the pilot-scale tests were for preliminary testing of 

the scrubber using water as scrubbing liquid. For the tests, 200 ml of both pre-treatment 

solutions (1N KCl and 10% w/v SnCl2) were prepared and loaded into the impingers. The 

sampling lines were all heated to 150 ± 20 
0
C, the volume of natural gas burnt was 0.9 ± 

0.1 lpm, the oxygen concentration was 16.40 ± 0.30%, for an estimated average flue gas 

flow rate of 45 ± 10 lpm; the volume of water in the scrubber was approximately 2 

gallons. 

The first test was done using TMT-15®. The run lasted a total of approximately 

6.5 hrs and Figure 13 summarizes the results obtained from the Horiba DM-6B. Region A 

represents the baseline of the mercury concentration for total and elemental mercury. The 

average for the values was 3.2 µg/m
3
 (σ = 0.4 µg/m

3
) and 1.0 µg/m

3
 (σ = 0.1 µg/m

3
) 

respectively. Region B is the start of oxidized mercury injection into the system. 

Sampling for regions A and B was from the pre-scrubber sample lines. Very little 

speciation of the mercury, Hg
T
 = 17.6 µg/m

3
 (σ = 4.8 µg/m

3
), Hg

0
 = 16.7 µg/m

3
 (σ = 2.4 

µg/m
3
); was observed in this region. This was attributed to possible degradation of 

mercury in pre-scrubber sample lines. So sampling was switched to the post-scrubber 

outlet lines (region C), which was the sampling location for the rest of the pilot tests. 
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Figure 13: Preliminary pilot-scale test using water as scrubber liquid and dosed with TMT-15® 

 

In region D, the scrubber waters were turned on, and a drop of approximately 

53% was seen for the total mercury (18.3 to 8.5 µg/m
3
); and 43% for the elemental 

mercury (7.1 to 3.6 µg/m
3
). However, after 20 min of scrubbing, the mercury 

concentration in the flue gas started increasing again. TMT-15® was added 25 min after 

scrubbing started (Region E) to give a concentration of 11.2 mg TMT/l of scrubber water. 

The result was a peak that went as high as 32 µg/m
3
 and then gradually decreased to 

previous levels averaging 9.8 µg/m
3
 (σ = 1.0 µg/m

3
) for total mercury and 4.3 µg/m

3
 (σ = 

0.5 µg/m
3
) for elemental mercury. Addition of the TMT-15® was by dosing. The flow of 

scrubber slurry through the nozzles was interrupted during dosing, thus explaining the 

peak observed when the additives were added to the slurry tank (Region E). In region F, 

scrubber waters were turned off and the mercury concentration steadily increased. Region 

G corresponds to shut down. The huge spike seen between region F and G occurred as 
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the waters on the walls of the scrubber dried off, which possibly resulted in re-emission 

of the Hg
D
. 

The second preliminary test was done using DEDTC. The operating parameters 

were kept the same as with the TMT-15® test and run time was also 6.5 hrs. The result is 

shown in Figure 14. During this test, after switching on the scrubber waters, mercury was 

allowed to reach a steady value before DEDTC was added to the scrubber water. 

 

Figure 14: Preliminary pilot-scale test using water as scrubber liquid dosed with DEDTC 

 

Region A represents the baseline mercury concentrations which averaged 4.0 

µg/m
3
 (σ = 0.2 µg/m

3
) and 1.6 µg/m

3
 (σ = 0.2 µg/m

3
) for total and elemental mercury 

respectively. Region B represents the start of injection of mercury. The average 

concentrations here were different from those obtained during the TMT-15® test: Hg
T
 

was 14.3 µg/m
3 

(σ = 0.8 µg/m
3
) and Hg

0
 was 8.5 µg/m

3
 (σ = 0.3 µg/m

3
), compared to 

previous test values 18.3 µg/m
3
 and 7.1 µg/m

3
 respectively. In region C, the scrubber 
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waters were turned on, producing a drop of 13.9 µg/m
3
 to an average Hg

T
 value of 4.5 

µg/m
3
 which was lower than that for Hg

0
 of 5.8 µg/m

3
. This unusual occurrence was 

attributed to possible upset in the pre-treatment unit. The upset didn’t last and during the 

reemission phase, Hg
T
 became higher than Hg

0
 once more. This time, the scrubber was 

allowed to reach a steady re-emission level (period from 6:03 pm to 6:55 pm). The 

average concentration at these levels was 14.6 µg/m
3
 (σ = 2.5 µg/m

3
) for Hg

T
; and 8.4 

µg/m
3
 (σ = 2.9 µg/m

3
) for Hg

0
. 10 ml of 860 mg/l DEDTC was added to the scrubber to 

obtain a concentration of 1.1 mg/l in the scrubber waters. This produced a drop of 

approximately 50% (14.3 µg/m
3
 to 4.6 µg/m

3
) for Hg

T
 and 46% (9.1 µg/m

3
 to 3.6 µg/m

3
)
 

for Hg
0
.  

From the preliminary results obtained using water in the scrubber, it can be seen 

clearly that adding a sequestration agent to the water helps improve the driving force for 

Hg capture by the scrubber waters. The decrease in Hg once the additives was added was 

not as immediate as when the scrubber slurry was turned on suggesting that some other 

factors are in play and time might be one of them. It is possible that because the scrubber 

tank was not agitated, sequestration of Hg
D
 might be limited by mass transfer. However, 

because the actual kinetics of the complexing equation was not studied, it is also possible 

that sequestration was kinetically limited. Whatever the reason, it is clear that it takes at 

least an hour for the full effect of adding chelates to be seen (full effect defined as new 

steady Hg concentration in post scrubber flue gas). 

The next set of runs done were runs using scrubber slurry obtained from Minntac-

Line 3. Line 3 slurry has a TSS of approximately 0.7%. Each additive was tested twice. 

During the first test of each additive, 2 spray nozzles were used to deliver a flow rate of 
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approximately 2.5 ± 0.50 lpm. Meanwhile during the second test, one spray nozzle was 

used to improve the spray pattern of the nozzle even though flow rates now averaged 1.5 

± 0.50 lpm. All other operating parameters were kept the same during all the tests as 

mentioned in Chapter III. The results on all the graphs are divided into these regions: 

 Region A: Scrubber baseline with only flue gas flowing. 

 Region B: Steady-state concentration of Hg
2+

 injected into flue gas. 

 Region C: Scrubber waters with NO additive turned on. 

 Region D: Additive added to scrubber recirculation tank by dosing. 

 Region D′: More additive added to increase slurry concentration (not done in all 

experiments). 

 Region E: Shut down of experiment. 

ESORB-HG-11 Results and Discussion 

For the first test in Figure 15 below, a steady mercury concentration of 

approximately 20 µg/m
3
 was attained during mercury injection and slurry operation for 

both regions B and C. ESORB-HG-11 was added to the slurry (region D) to give a 

concentration of 100 mg/l and a drop to 7.6 µg/m
3
 (σ = 0.5 µg/m

3
). More ESORB-HG-11 

was added to increase the concentration to 200 mg/l further decreasing the final 

concentration to 5.1 µg/m
3 

(σ = 0.4 µg/m
3
). This suggested a 75% decrease from baseline 

concentrations (region C) to additive concentration (region D′). Meanwhile, during test 2 

the data was less smooth as shown in Figure 16. An increase in the Hg
T
 value was 

observed from region B to C, followed by a third increase in region C only. Addition of 

ESORB-HG-11 led to a final decrease of 68%, from Hg
T
 of 12.0 µg/m

3
 (σ = 1.1 µg/m

3
) 

to 3.8 µg/m
3
 (σ = 0.8 µg/m

3
). The noise in the data was due to fluctuations of the air flow 



44 

 

controlling the eductor. Pulsing of the educator flow due to moisture in the rotameter 

caused pulsing of the flue gas flow rate and hence the spikes observed. 

 

Figure 15: Pilot-scale test result for slurry ESORB-HG-11 concentration of 100 and 200 mg/l 
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Figure 16: Pilot-scale test results for slurry ESORB-HG-11 concentration of 200 mg/l 

 

 The fluctuations in the flue gas flow explain the bump observed during test 2 just 

after 16:00 hour. As soon as the fluctuations were controlled, the bump dropped to a final 

value.  ESORB-HG-11 was the additive which showed the best reductions in flue gas 

Hg
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was then increased to 200 mg/l. This resulted in a decrease of 39%, from Hg
T
 of 14.4 

µg/m
3
 (σ = 0.8 µg/m

3
) to 8.6 µg/m

3
 (σ = 1.6 µg/m

3
). For the second test, a 200 mg/l 

slurry concentration was used and the decrease was 53% for Hg
T
, 21.2 µg/m

3
 (σ = 2.2 

µg/m
3
) to 9.9 µg/m

3
 (σ = 0.9 µg/m

3
), as shown in Figure 18 below. The second test for 

PAC had a higher average baseline Hg
T
 concentration of 21.2 µg/m

3
 as compared to that 

of the first test which was 14.4 µg/m
3
. These different baseline averages are the main 

reasons for the difference in reduction of 39% and 53% for PAC for the two tests because 

the final mercury concentrations for both tests were within 1.5 µg/m
3
.  

 Clearly PAC does achieve some degree of sequestration, and even though the 

results are not as good as the results seen with ESORB-HG-11, it is worth investigating 

the effect PAC would have on Hg
D 

sequestration during field testing at Minntac Line 3 

scrubber. 

 

Figure 17: Pilot-scale test result for slurry PAC concentration of 100 mg/l and 200 mg/l 
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Figure 18: Pilot-scale test result for slurry PAC concentration of 200 mg/l 

 

DEDTC Results and Discussions 

 The first test using DEDTC as additive, see Figure 19, showed an increase in 

mercury average when scrubbing started (region C). This increase was attributed to better 

mixing of the flue gas showed by a higher Hg
T
 average value for the period the scrubber 

waters were turned on. During this test, a DEDTC concentration of 1.1 mg/l was used to 

match the value used during the preliminary test. A reduction of 46% for Hg
T
 occurred 

after this, 27.0 µg/m
3
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3
) to 14.5 µg/m

3
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3
). Test 2 however, had 

a significant amount of noise, as shown in Figure 20, and was characterized by constant 

spikes that had to be formatted out of the graph. The spiking was seen mainly with the 
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T
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0
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data showed a possible concentration of 16.3 µg/m
3
 in region C, and a drop to 11.3 µg/m

3
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after DEDTC concentration was increased to 2.2 mg/l (standard deviations were not 

calculated due to the spiking).  

TMT-15® Results and Discussions 

 Test 1 of TMT-15® was very smooth, however, it was the only test which showed 

a drop in average Hg
T
 value when the scrubber waters were turned on, see Figure 21 

region C. A drop of 2.4 µg/m
3
 was observed, and no other reason can be given for this 

except that there was possible channeling of injected Hg
2+

 before scrubber waters were 

turned on, causing a higher value of Hg
T
 to be measured in region B. A decrease of 58%, 

9.6 µg/m
3
 (σ = 0.8 µg/m

3
) to 4.0 µg/m

3
 (σ = 0.3 µg/m

3
), was observed after adding TMT-

15® to a concentration of 10 mg/l in the slurry. Test 2 didn’t show the drop in average 

Hg
T
 for region C as was the case in test 1, instead and increase of 3.9 µg/m

3
 was 

observed, see Figure 22. 

 

Figure 19: Pilot-scale test result for scrubber DEDTC concentration of 1.1 mg/l 
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Figure 20: Pilot-scale test result for scrubber DEDTC concentration of 2.2 mg/l 

 

 

Figure 21: Pilot-scale test result for scrubber TMT-15® concentration of 10 mg/l 
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Figure 22: Pilot-scale test result for scrubber TMT-15® concentration of 20 mg/l 
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3
. This was unexpected because 

all the mercury in solution was believed to be adsorbed unto the solid particles, so it was 
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expected that the slurry might still be able to capture HgCl2. Preliminary testing also 

showed that fresh water gets saturated pretty fast when used to scrub Hg
2+

, and once that 

occurs Hg
2+

 concentration in the flue gas increases again. Re-emission of the Hg
D
 

captured with tap water was not investigated, so it wasn’t determined if that might be a 

contributing factor to the flue gas Hg concentrations increase during scrubbing with 

water. 

During the repeat tests for all the additives, a lot of noise was observed in the 

data. This was due to a couple of problems encountered with the test equipment. The first 

of these problems was the flow rate of the flue gas. Flue gas flow was controlled using air 

obtained form a compressor and an eductor. Fluctuations in the compressed air pressure 

and significant presence of moisture in compressed air lines, as observed during repeat 

tests, caused intermittent surges in the flue gas flow rate that resulted in significant spikes 

(noise) observed in the CMM mercury reading.  This phenomenon largely affected the 

smoothness of the data reported, and even required resolving the data for DEDTC repeat 

test. Steps required to mitigate this occurrence are constant monitoring of the flow rate 

coupled with purging of the compressed air lines to eliminate moisture. Optimizing test 

equipment performance (spray pattern of nozzles, stable flue gas flow and stable Hg
2+

 

stream) also would improve the quality of the results. 
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CHAPTER V 

FIELD TESTING METHODLOGY 

Testing Plan 

Field testing was performed at Minntac-Line 3 plant located in Mountain Iron, 

Minnesota. Testing on Minntac-Line 3 was performed over a period of three weeks 

starting on October 10, 2011 and lasting until October 28, 2011. Equipment set-up 

occurred on October 11 and 12; meanwhile, tear down was on October 27 and 28. The 

first stage of testing involved equipment set-up and establishing pre-test baseline 

emissions. This took a total of four days. Testing consisted of injecting halogenated 

activated carbon (ESORB-HG-11) and PAC sorbents into the process waste gas using 

injection equipment supplied by a UND sub-contractor (IAC International, Mission, KS); 

and dosing the recirculation tank with the mercury chelate - DEDTC. 

Sorbents were supplied by Envergex LLC of Sturbridge, MA in 1000-lb bulk 

bags. The sorbent injection equipment (Figures 23 and 24) consisted of a bulk bag 

handling system, feeder to meter sorbent, blower and compressor for supplying the 

conveying air, an eductor to pick up the sorbent discharged from feeder, hoses to convey 

the sorbent, distributors, and injection lances to disperse the sorbent into the flue gas 

duct. The injection testing agents - PAC and ESORB-HG-11; were transported through 

the hoses and distributors to the injection lances and into the flue gas, using air as 
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transport media. The sorbent feed hopper was placed on a mass scale to determine 

additive injection rate. 

 

Figure 23: Sorbent injection trailer with blower and compressor housing; bulk bag lifter assembled, 

and the bulk bag in place. 
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Figure 24: Close-up view of bulk/sorbent bag handling system and discharge hose 

 

The first injection test ports were about 30 feet upstream of the pre-heat fans. The 

pre-heat fans are the fans located under the pre-heat section of the grate, and they handle 
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waste gas flow from the pre-heat to the drying zone of the grate (see chapter II for 

description). Four ports were installed by Minntac personnel on each of the ducts leading 

to the fans. This allowed the installation of eight lances for sorbent injection. Injection of 

the sorbent upstream the fans provided an additional benefit of improved distribution of 

the sorbent particles in the flue gas.  

The second injection location were ports located on the wall of the preheat zone. 

Initially, it was planned to inject upstream of the waste gas fan. However, due to the short 

residence time that would be available for mercury capture at this location and the low 

temperatures of the flue gas after the drying zone, it was anticipated that the mercury 

capture efficiencies would be low. It was decided to have this injection location changed 

to the preheat zone wall. A request regarding this change was presented to the plant and 

Minnesota DNR and approval was obtained.  

For the dosing of the scrubber, DEDTC was added to the scrubber by dosing the 

scrubber recirculation tank to concentrations of 0.7, 1.4 and 7 mg/l; meanwhile, PAC and 

ESORB-HG-11 injected into the flue gas ended up in the recirculation tank so no direct 

addition into scrubber was needed. The fact that the scrubber of Line 3 is a recirculation 

had the unfortunate effect of affecting a return to baseline speciation of mercury in the 

scrubber slurry. It would take approximately 4 hours to replace one tank volume or more 

than 12 hours for the injected ESORB-HG-11/PAC to reduce to insignificant levels in the 

scrubber tank. Consequently, the sequestering properties of these additives kept the 

dissolved mercury concentrations lower than normal for most of the test period (except 

on Mondays as no injection was performed on weekends). Table 1 summarizes the testing 

matrix at Minntac Line 3. 



 

 

 

5
6
 

Table 4: Field test matrix 

Date Time Test Condition Sorbent Type Injection Rate 
Injection 

Location 
Sampling 

Location 
Sampling 

Type 
Samples 

Collected 

10/10/2011 7am -7 pm Orientation by Minntac       

         

10/11/2011 7am -7 pm Equipment Setup 
   

Scrubber Stack CMM 
 

 
7am -7pm Equipment Setup 

   
Scrubber Stack OH 

 

10/12/2011 7am-7pm Pre-Test 
   

Scrubber Stack CMM 
 

10/13/2011 7am -10am Baseline 
   

Scrubber Stack CMM 
Green Pellets, 

Scrubber Slurry 

 10am - 1pm Baseline    Scrubber Stack 
CMM & 

OH 
 

 1pm - 4pm Baseline    Scrubber Stack   

 
4pm - 7pm Baseline    Scrubber Stack   

10/14/2011 7am – 4pm Baseline    Scrubber Stack 
CMM & 

OH 

Green Pellets, 

Scrubber Slurry 

 
4 pm - 5 pm Condition 1 ESORB-HG-11 25 lb/hr 

1A & 1B 
Pre-Heat 

Fans 

Scrubber Stack CMM 
Multi-clone solids, 

Scrubber Slurry 

 
5pm - 7pm Condition 2  50 lb/hr  Scrubber Stack CMM  

 
7pm - 9pm Condition 3 

 
100 lb/hr 

 
Scrubber Stack 

CMM & 

OH  

10/17/2011 7am - 10am Baseline 
  

1A & 1B 

Pre-Heat 
Fans 

Scrubber Stack 
CMM & 

OH 

Green Pellets, 
Multi-Clone 

Solids, Scrubber 
Slurry 

 
10am - 2pm Condition 2 ESORB-HG-11 50 lb/hr 

 
Scrubber Stack 

  

 
2pm - 4pm Condition 3 ESORB-HG-11 100 lb/hr 

 
Scrubber Stack CMM 

 

 
4pm - 7pm Condition 4 ESORB-HG-11 150 lb/hr 

 
Scrubber Stack 

CMM & 

OH 
Scrubber Slurry 
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Table 4. Cont. 
       

Date Time Test Condition Sorbent Type Injection Rate 
Injection 

Location 

Sampling 

Location 

Sampling 

Type 

Samples 

Collected 

10/18/2011 7am - 10am Baseline ESORB-HG-11 
 

1A & 1B 

Pre-Heat 
Fans 

Scrubber Stack 
CMM & 

OH 

Green Pellets, 
Multi-Clone 

Solids, Scrubber 

Slurry 

 
10am - 7pm Condition 3 ESORB-HG-11 100 lb/hr 

 
Scrubber Stack 

  

10/19/2011 7am -11am Baseline 
 

 
 

1A & 1B 

Pre-Heat 

Fans 

Scrubber Stack 
CMM & 

OH 

Multi-Clone 

Solids, Scrubber 

Slurry 

 
11am - 2pm Condition 1 DEDTC 0.7 mg/l 

 
Scrubber Stack CMM 

 

 
2pm - 3pm Condition 2 DEDTC 1.4 mg/l 

 
Scrubber Stack CMM 

 

 
3pm -5pm Condition 3 DEDTC 7.0 mg/l 

 
Scrubber Stack CMM 

 

 
5pm - 9am Condition 4 

DEDTC and 
ESORB-HG-11 

BC = 50 lb/hr 

DEDTC = 7.0 

mg/l 

1A & 1B 

Pre-Heat 

Fans 

Scrubber Stack 
CMM & 

OH 
Scrubber slurry & 

Multi-clone 

 
10am -1 pm Condition 3 

 
  Scrubber Stack 

  

10/20/2011 7am - 11am Baseline 
   

Scrubber Stack 
CMM & 

OH 

Multi-Clone 
Solids, 

Scrubber 

Slurry, Green 
Pellets 

 
11am - 12pm Condition 1 PAC 50 lb/hr 

1A & 1B Pre-Heat 

Fans 
Scrubber Stack CMM 

 

 
12pm - 3pm Condition 2 PAC 100 lb/hr 

 
Scrubber Stack 

CMM & 

OH  

 
3pm -5pm Condition 3 PAC 150 lb/hr 

 
Scrubber Stack 

CMM & 

OH  

10/21/2011 7am -12pm Baseline 
   

Scrubber Stack 
CMM and 

OH 

Green Pellets, 
Multi-Clone 

Solids, 

Scrubber Slurry 

 
12am - 5pm Condition 4 ESORB-HG-11 150 lb/hr 

1A & 1B Pre-Heat 

Fans 
Scrubber Stack 

  

10/24/2011 7am - 10am Baseline 
   

Scrubber Stack 
CMM and 

OH 

Green Pellets, 
Multi-Clone 

Solids, 

Scrubber Slurry 
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Table 4. Cont. 
       

Date Time Test Condition Sorbent Type 
Injection 

Rate 
Injection Location Date Time Test Condition 

 
10am - 1 pm Condition 5 ESORB-HG-11 75 lb/hr 

1A & 1B Pre-Heat 

Fans 
Scrubber Stack 

CMM & 

OH  

10/25/2011 7pm – 10am Baseline 
   

Scrubber Stack 
 

Green Pellets, 

Multi-Clone 

Solids, 
Scrubber Slurry 

 
10am - 12pm Condition 1 ESORB-HG-11 50 lb/hr 

1A & 1B pre-heat fans 

(4 inj. Lances) + Pre-
Heat zone (8 inj. 

Lances) 

Scrubber Stack CMM 
 

 
12pm - 4pm Condition 2 ESORB-HG-11 75 lb/hr 

 
Scrubber Stack 

CMM and 
OH  

 
4pm - 5pm Condition 3 ESORB-HG-11 75 lb/hr 

1A & 1B pre-heat fans 

(4 inj. Lances) + Pre-
Heat zone (4 inj. 

Lances) 

Scrubber Stack CMM 
 

10/26/2011 7pm – 10am Baseline 
 

 
 

Scrubber Stack 
CMM & 

OH 

Green Pellets, 

Multi-Clone 

Solids, 

Scrubber Slurry 

 
10am -12pm Condition 4 ESORB-HG-11 100 lb/hr 

1A & 1B pre-heat fans 

(4 inj. Lances) + Pre-

Heat zone (4 inj. 
Lances) 

Scrubber Stack CMM 
 

 
2pm -6pm Condition 5 ESORB-HG-11 100 lb/hr 

1A & 1B pre-heat fans 

(4 inj. Lances) + Pre-
Heat zone (4 inj. 

Lances) 

Scrubber Stack 
CMM & 

OH  

10/27/2011 7am -7pm 
Equipment 

Tear-Down  
 

 
Scrubber Stack 

  

    
 

    

10/28/2011 7am -7 pm 
Equipment 
Tear-Down  

 
 

Scrubber Stack 
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Sampling Plan 

 Sampling during mercury control testing was aimed at understanding the fate of 

mercury during technology deployment. Sampling focused on three areas: Amount of 

mercury entering induration system, mercury captured by particulate control devices, and 

mercury emitted through stack (not captured). The mercury entering the system was 

determined by sampling the green balls; meanwhile, the mercury captured by particulate 

control devices was determined by sampling multiclones dust and scrubber slurry. 

Mercury emitted was determined by sampling the stack. 

Stack Sampling 

 Stack measurements were performed by UND’s sub-contractor, Western 

Kentucky University’s Institute for Combustion Science and Environmental Technology 

in Bowling Green, KY (WKU - ICSET). WKU - ICSET used a PS Analytical (PSA) 

continuous mercury monitor (CMM) with a wet conversion system to obtain semi-

continuous mercury concentrations in the stack gas, and an extractive sampling method - 

ASTM D 6784 (commonly known as Ontario Hydro Method- OHM); to measure total 

and speciated mercury concentrations in the stack gases. Measurements were performed 

on the roof of the facility housing the stack. Several ports are located at the stack and two 

of these ports were used to set up the probes for the OHM and CMM. The OHM was the 

preferred measurement technique for evaluating performance of the additive; meanwhile, 

the CMM was used to observe trends during testing. The OHM method typically provides 

an average of all components of the mercury emission over the sampling period: Hg
0
, 

Hg
2+

, and particulate mercury (Hg
P
). The sum of these components provides the total 

mercury (Hg
T
) concentration in the stack gas. The OHM was run for approximately 1 
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hour during each run, with a gas sampled volume in the range of 0.70 to 0.90 m
3
. During 

a typical test day, one OHM sample was collected before testing to obtain a baseline, and 

at least one during testing. This made it possible to obtain a baseline and average mercury 

reductions for each test day. The CMM was operated continuously during each testing 

day but not overnight. Because of the long duration of the tests, coupled with the fact that 

the CMM was not operated overnight, the stack mercury behavior at the end of each 

testing was not fully investigated. It is also important to note that on some testing days, 

the technology investigated was not always deployed immediately after performing the 

baseline OHM.  

Impinger solutions used in the OHM test were immediately analyzed at the end of 

each test by WKU - ICSET’s mobile laboratory. The quality of OHM data was ensured 

through use of QA/QC procedures as required for laboratory and field analyses. Leak 

checks were performed during runs, and samples obtained were analyzed by ICSET 

mobile laboratory following the QA/QC procedures: Sampling analyses as 

duplicates/triplicates, spiking, use of standards and blanks to ensure precision and 

accuracy. The PSA monitor for semi-continuous mercury concentration measurement 

was calibrated at the beginning of each day and re-calibrated after any upset/troubleshoot 

during sampling. Accuracy of measurements was further assured by comparing OHM and 

CMM results at local O2 concentrations (approximately 18%) on a dry basis. Relative 

difference between OHM and CMM was less than 12%, except for one measurement 

(24%). This relative difference is considered good agreement when compared to data 

from similar mercury testing work using OHM and CMMs (31).  
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Green Ball Sampling 

 Green ball samples were collected by Minntac laboratory personnel and delivered 

to the UND testing team. Sampling of the green balls consisted of collecting a 5 minute 

composite sample in buckets from roll feeders upstream of the grate. The buckets were 

then delivered to the UND sampling team that proceeded to transfer the samples into 

clean, labeled plastic bags and then stored them for submission later to ICSET for 

mercury analysis. Samples were collected at three different time intervals each day. 

The objective of the green ball sampling was to determine the daily average 

mercury concentration in the feed to the taconite furnace. Due to variability observed in 

green ball mercury concentrations during previous work, it was decided that the daily 

average mercury concentration of the green balls would be considered as the mercury 

concentration input for all mass balance calculations of that day. The daily average 

mercury concentration was determined by averaging the results from the samples 

obtained on each test day. The mercury concentrations obtained for the green ball 

samples show close agreement with concentrations obtained during previous work 

performed on Minntac Line 3 (30). 

Scrubber Slurry Sampling 

Scrubber samples were collected by UND testing team from the scrubber 

recirculation tank from a valve located upstream of the scrubber blow down pump. The 

slurry in the tank is agitated continuously, thus providing a high degree of confidence on 

the representativeness of sampling from the blow down pump. For sample collection, the 

valve was first purged for at least 10 seconds, and then a sample was collected in a large 

bucket. The bucket was then transported to the filtration area. Here, using clean 
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hands/dirty hands, the bucket was further agitated, and then a 500 ml sample was 

collected and filtered entirely using 0.7 micron Whatman glass fiber filters obtained from 

Millipore. The filtrate was then transferred into pre-washed containers containing nitric 

acid (filtrate containers only) and stored on ice. Another 500 ml sample was collected and 

filtered to determine total suspended solids (TSS). Initially the filtrate samples were sent 

to ICSET for mercury analysis. ICSET used EPA Method 7470 to determine mercury 

concentration in the filtrate samples. However, it was observed that most filtrate samples 

obtained during sorbent injection testing had mercury concentration values below the 

detection limit for this method. Later, samples were sent to Pace Analytical, which used a 

more sensitive method, EPA Method 1631, for obtaining mercury concentration in the 

filtrate obtained from the scrubber slurry. For filtrate samples analyzed by ICSET that 

returned a non-detect value, a default value of 0.2 µg/L was assumed during data 

reduction. This number was selected because it is the detection limit of the method used. 

To ensure QA/QC during sampling, duplicates and blanks were also collected to 

assess sampling accuracy and precision. A field blank was processed which involved 

transporting a bottle containing clean water, and transferring it into a pre-cleaned sample 

bottle. The result was below the MDL for EPA Method 1631-low mercury analysis. 

Duplicates showed good agreement. Blanks initially processed using EPA Method 7470 

also showed values below the minimum detection limit. 

Multi-clone Solids Sampling 

 Multi-clone solids were collected by the UND testing team from the multi-clone 

blow down. Minntac Line 3 is equipped with 8 cyclones each having its own blow down 

port. Sampling from all ports required collecting a composite from each blow down port 



 

63 

 

consecutively. Multi-clone dust samples are required to provide an estimate of the 

mercury leaving the system through the multi-clones. The blow down rate (mass loading) 

is not measured and varied significantly during different sampling periods, with no 

sample collected during certain sampling periods. Additionally, analysis of collected 

samples showed a large variability in mercury concentration. We therefore estimated the 

blow down rate using the scrubber TSS and an assumed cyclone efficiency of 90%. The 

estimated value was calculated to be 390 lb/hr of solids and was combined with the 

highest multi-clone mercury measurement of 450 ng/g to give a maximum possible 

mercury flux of 0.08 grams/hr through the blow down, which is less than 3% of the 

average mercury (3.0 grams/hr) entering the system. This is consistent with 

measurements done by Berndt (23), that showed very low mercury content in multi-clone 

blow down. 

Sampling involved collecting blow down dust into a clean plastic bag and then 

transferring into a second plastic bag for storage. The location of the blow down port 

required extra caution during sampling to avoid the risk of contamination of samples by 

the water used to wash and transport the blow down to the thickener. Collected samples 

were stored on ice for analysis later by WKU - ICSET. 

Samples from the multi-clones and scrubber were collected 30 min after the start 

of the OHM. This way the samples collected were representative of the testing taking 

place. Consequently, samples were collected during baseline and technology deployment, 

providing results obtained during the same time frame.  
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CHAPTER VI 

FIELD TEST RESULTS 

 Results obtained during field testing are divided into different sections to facilitate 

interpretation of the data obtained. Three different control technologies were tested: PAC, 

ESORB-HG-11 and DEDTC. Testing of ESORB-HG-11 was done at two different 

locations, while testing of PAC and DEDTC was done at one location each. Moreover, 

three main objectives were sought: Oxidation, capture and sequestration. Only ESORB-

HG-11 and PAC were tested for oxidation and capture potential, while all three were 

tested for sequestration potential. In order to present the results coherently, the following 

objectives were set when interpreting the data: First, establishing average daily 

concentration of mercury entering the induration step of the process and corresponding 

baseline mercury emissions for Minntac-Line 3. The second objective is presenting the 

results obtained for tests aimed at improving oxidation and capture of mercury, and the 

third is presenting the results obtained for sequestration tests. 

Green Ball and Baseline Sampling Results 

Green ball samples were analyzed using EPA Method D6722 and showed 

mercury levels varying from a low 4 ng/g to a high 18 ng/g for samples collected and 

analyzed over the three week testing period. The lowest values were obtained for samples 

collected on October 13 and 21, which were not submitted for analyses to WKU-ICSET 
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with the rest of the samples collected, so were flagged as possibly not accurate. Table 5 

lists the green ball mercury concentrations for the test duration. The average mercury 

concentration in the green balls for the entire test period was 12.4 ng/g, (σ = 2.9 ng/g). 

The average value showed good agreement with previous work (30). The daily results 

obtained for green ball samples submitted for analyses were averaged. The average value 

was then used for any mercury reduction calculations. This method of determining green 

ball concentration was chosen because previous work suggested that concentrations could 

show large variability even when sampled on the same day (27,28). So it was assumed 

that this average would provide a sufficiently reliable estimate of the mercury 

concentration entering the system.  

Table 5: Showing green ball mercury concentrations 

Date Sample 

ID 

Collection 

time 

Mercury 

concentration ng/g 

Daily Average 

(Std Dev) 

10/13/2011* GB1 7:20 AM 6   

GB2 10:50 AM 7 6.3 

GB3 2:55 PM 6 (0.6) 

10/14/2011 GB4 7:10 AM 15   

GB5 11:00 AM 13 14.3 

GB6 2:00 PM 15 (1.2) 

10/17/2011 GB10 7:15 AM 12   

GB11 10:45 AM 12 10.7 

GB12 1:40 PM 8 (2.3) 

10/18/2011 GB13 7:15 AM 18   

GB14 10:45 AM 15 16.3 

GB15 1:55 PM 16 (1.5) 

10/19/2011 GB16 7:10 AM 12   

GB17 10:50 AM 13 12.0 

GB18 1:25 PM 11 (1.0) 

10/20/2011 GB19 7:15 AM 11   

GB20 10:45 AM 15 11.0 

GB21 1:40 PM 7 (4.0) 

10/21/2011* GB22 7:23 AM 5   

GB23 11:06 AM 5 4.7 

GB24 1:55 PM 4 (0.6) 

10/24/2011 GB25 7:00 AM 11   

GB26 11:00 AM 11 10.3 

GB27 2:00 PM 9 (1.2) 

* Values flagged as too low and possibly inaccurate 
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Due to the fluctuations in taconite feed mercury concentrations in the green ball 

material metered to the grate kiln inlet, baseline emissions were considered important for 

estimating oxidation and capture. The first testing day, October 13, was used for baseline 

mercury emissions. Also a baseline measurement was performed every day before 

testing, to account for daily variations in mercury concentrations. The main technique 

used for measuring mercury concentrations was the OHM. The CMM was used to 

provide trends and observe the effects of sorbent injection.  

Baseline emission data for the stack gases from the three week testing period is 

summarized in Table 6 and Figure 25 below. The OHM provides mercury speciation: 

Hg
2+

, Hg
0
 and Hg

P
. Summing Hg

2+
 and Hg

0 
give the total vapor mercury (Hg

VT
). In Table 

3, the sum of the different mercury forms, Hg
VT

 and Hg
P
, gives the total mercury (Hg

T
) in 

the waste gas. Table 6 also lists Hg
VT

 concentrations, as measured using the CMM. CMM 

Hg
0
 and Hg

VT
 are also calculated by averaging CMM data obtained during the time 

period of OHM sampling. The standard deviation of these averages is also listed. Several 

observations can be made from the baseline data shown in Table 3. Baseline Hg
T
 from 

the OHM data for stack emissions at Minntac Line 3 ranged from 3.5 - 8.2 µg/m
3
; with 

most values between 4.0 and 6.2 µg/m
3
 (dry basis). Hg

P
 emissions during baseline 

operation were minimal, with most values below 3% of the total mercury emitted. This 

indicates that the taconite dust has a low propensity to adsorb mercury in the time scale 

that it is in contact with the flue gas in the ductwork leading to the scrubber and the stack. 

The predominant form of mercury in the stack emissions was Hg
0
; and the values ranged 

from 83 to 90 % of Hg
T
, with the exception of one measurement. 
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Table 6: Baseline CMM and OHM concentrations for Hg
VT

, Hg
0
, Hg

P
 and Hg

T
 

 
CMM CMM OHM 

Hg
0
 

µg/m
3
 

OHM OHM 

Hg
P
 

µg/m
3
 

OHM 

Hg
T
 

µg/m
3
 

 
Hg

0
 Std Dev Hg

VT
 Std Dev Hg

VT
 

Date µg/m
3
 µg/m

3
 µg/m

3
 

13th 

(1) 
2.32 0.26 4.24 0.41 3.70 4.45 - - 

13th 

(2) 
2.58 0.13 3.88 0.30 3.98 4.93 - - 

13th 

(3) 
2.78 0.08 4.1 0.32 4.64 5.19 - - 

   
      

14th 4.20 0.19 5.51 0.27 5.86 6.69 - - 

   
      

17th 5.12 0.30 7.08 0.88 5.82 8.22 0.02 8.24 

   
      

*18th n/a n/a n/a n/a 5.35 6.17 0.03 6.20 

   
      

19th 4.08 0.13 5.19 0.15 4.63 4.86 0.07 4.93 

   
      

20th 1.56 0.14 2.11 0.17 3.14 3.44 0.03 3.47 

   
      

21st 3.12 0.50 3.96 0.13 4.50 5.04 0.02 5.06 

   
      

24th 3.56 0.16 5.11 0.41 4.38 4.98 0.08 5.06 

   
      

25th 3.11 0.29 4.39 0.39 3.35 3.81 0.20 4.01 

   
      

26th 4.03 0.37 4.55 0.30 3.84 4.09 0.10 4.19 

 * CMM not running during OHM due to troubleshooting 
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Figure 25: Bar graph summarizing baseline data obtained during entire field test program and showing standard deviation of CMM data 

0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

7.0 

8.0 

9.0 

13th 

(1) 

13th 

(2) 

13th 

(3) 

14th 17th 19th 20th 21st 24th 25th 26th 

M
er

cu
ry

 c
o

n
ce

n
tr

a
ti

o
n

, 
u

g
/m

3
 

Date 

Baseline OHM Hg(VT) vs CMM Average Hg(VT) 

OHM Baseline Hg(VT) CMM Baseline Average 



 

69 

 

There was a reasonable agreement between the CMM and the OHM 

measurements for the vapor phase mercury components. The standard deviation of the 

mercury concentration values as measured by the CMM were typically 10 percent or 

lower of the average CMM values. A specific example of the comparison of OHM and 

CMM data is for October 13, a full day of baseline measurements. On this day, three 

OHM measurements were performed along with data collection on the CMM. The three 

OHM measurements showed consecutive values of 4.45, 4.93 and 5.19 µg/m
3
 for Hg

VT
. 

Meanwhile, average CMM measurements during the same period during which each 

OHM measurement was performed showed concentrations of 4.24 (0.41), 3.88 (0.30) and 

4.10 (0.32) µg/m
3
 respectively (standard deviations shown in brackets). The relative 

difference between the OHM and CMM values are less than 12%. This trend was also 

seen during other test days. Figure 26 shows the CMM baseline data for the 13
th

. 

 

Figure 26: Baseline CMM data for October 13
th
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Oxidation and Capture Results 

ESORB-HG-11 Testing 

Pre-heat Fan Injection Location 

The objective of injecting ESORB-HG-11 upstream of the preheat fans was to 

increase oxidation and capture of mercury in the flue gas. ESORB-HG-11 is a proprietary 

halogenated PAC provided by Envergex LLC. A key aspect of this proposed technology 

was the identified choice of the injection location. The first injection test locations were 

about 30 feet upstream of the preheat fan inlets, after the process gases have exited the 

preheat section of the grate-kiln. Injection of the sorbent upstream of the fans provided 

another benefit – the improved distribution of the sorbent particles in the flue gas.  

The objective of the first injection tests performed during the first two test days - 

14
th

 and 17
th

; aimed at identifying the most promising sorbent injection rates for mercury 

reduction in stack waste gas. Injection rates of 25, 50, 100 and 150 lb/hr; were tested for 

at least an hour. During testing, the CMM was monitored for any observable change. On 

the 14
th

, electrical issues were encountered with the injection equipment, delaying the 

start of testing by 5 hours from the time the OHM baseline was performed. The OHM 

baseline gave an Hg
VT

 of 6.69 µg/m
3
 (table 7). The first injection rate investigated was 25 

lb/hr of ESORB-HG-11. During this injection period, an upset occurred, as seen on the 

CMM chart (Figure 27), so no actual reduction was seen. After the effects of the upset on 

the CMM subsided, the injection rate was then increased to 50 lb/hr and Hg
VT

, per the 

CMM, dropped from approximately 3.93 µg/m
3
 to 2.60 µg/m

3
. The injection rate was 

then increased to 100 lb/hr and an OHM performed. The OHM after analysis gave an 
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Hg
VT

 of 2.85 µg/m
3 (table 7). The CMM’s average HgVT

 during the time the OHM was 

performed was 1.98 μg/m3
. 

On the 17
th

, the injection rates tested were 50, 100, and 150 lb/hr. OHM 

measurements were done for baseline conditions and for sorbent injection rates of 50 and 

150 lb/hr. The OHM baseline Hg
VT

 was 8.22 μg/m3
 (table 7). The CMM average during 

this same period was 7.08 μg/m3
 (Figure 28). OHM measurements for the 50 and 150 

lb/hr injection rates yielded values for Hg
VT

 of 2.16 and 1.22 µg/m
3
 respectively.  The 

CMM average Hg
VT

 concentration during the same time as the OHM sampling gave 

values of 2.93 μg/m3
 and 1.07 μg/m3

 for 50 and 150 lb/hr injection rates respectively.  

Table 7: OHM and CMM Hg concentrations during short term testing on the 14
th

 and 17
th

  

    OHM OHM OHM OHM CMM CMM 

    Hg
0 
 Hg

VT
  Hg

P
  Hg

T
  Hg

0 
 Hg

VT
  

Date   (µg/m
3
) (µg/m

3
) (µg/m

3
) (µg/m

3
) (µg/m

3
) S.D. (µg/m

3
) S.D. 

17
th

  Baseline 5.82 8.22 0.02 8.24 5.12 0.30 7.08 0.88 

 
50 lb/hr 1.71 2.16 0.06 2.22 2.12 0.16 2.93 0.21 

 
150 lb/hr 1.14 1.22 0.59 1.81 0.53 0.06 1.07 0.29 

14
th

  Baseline 5.86 6.69 n/a 6.69 4.26 0.10 5.65 0.08 

 
100 lb/hr 2.36 2.85 0.13 2.98 1.16 0.25 1.98 0.57 
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Figure 27: CMM chart for short term testing on 14
th

  

 

 

Figure 28: CMM chart for short term testing on the 17
th
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A couple of observations arose during data reduction. First of all, closer 

observation of the CMM graph for the 17
th

 (Figure 28), showed a spike for the oxidized 

mercury from 8:50 to 9:40. This spike was consistent with OHM data, which also showed 

an abnormally high oxidized mercury concentration of 2.40 µg/m
3
 (Table 7). The CMM 

and OHM used separate probes; meaning whatever caused this spike occurred either 

before or in the stack. The second observation made was with the Hg
P
 during injection.  

The total mercury concentrations Hg
T
 from the OHM measurements for the 50 and 150 

lb/hr injection rates are 2.22 and 1.81 µg/m
3
, compared to Hg

VT 
concentrations of 2.16 

and 1.22 µg/m
3
 respectively (table 7). This suggests that at the higher injection rates, 

some of the ESORB-HG-11 penetrates the scrubber and contributes to the stack emission 

as particulate mercury. Visual inspection of the probe filter confirmed this. 

Testing results for 150 lb/hr for the 17
th

 suggested a decrease of 78% from the 

baseline Hg
T
 value 8.24 µg/m

3
. This was actually a very good result, so it was decided 

that the injection rates of 100 lb/hr and 150 lb/hr be investigated further for longer 

periods of approximately 5 hrs. An additional injection rate of 75 lb/hr was also 

investigated to see if a lower injection rate could still provide promising results. 

The objective of the second test series was to investigate the effect of injecting 

ESORB-HG-11 for approximately 5 hrs. The first of these tests was done on the 18
th

, 

were injection of 100 lb/hr was performed for a duration of 5 hours. There were three 

OHM measurements: baseline, 3 hours, and 5 hours after start of injection was started. 

The baseline values for Hg
VT

 before injection was 6.17 μg/m3
; meanwhile, the Hg

T
 was 

6.20 µg/m
3
 (Table 8).  
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Table 8: OHM and CMM concentrations during long term testing on the 18
th

, 21
st
 and 24

th
  

    OHM OHM OHM OHM CMM CMM 

    Hg
0 
 Hg

VT
  Hg

P
  Hg

T
  Hg

0 
 Hg

VT
  

Date   (µg/m
3
) (µg/m

3
) (µg/m

3
) (µg/m

3
) (µg/m

3
) S.D. (µg/m

3
) S.D. 

18
th

  Baseline 5.35 6.17 0.03 6.20 n/a* n/a* n/a* n/a* 

(100 lb/hr) 3 hr 1.40 1.77 0.33 2.10 1.22 0.15 1.53 0.11 

 
5 hr 1.07 1.40 0.55 1.95 0.80 0.10 1.15 0.14 

21
st
   Baseline 4.50 5.04 0.02 5.06 3.12 0.50 3.96 0.13 

(150 lb/hr) 4 - 5 hr 0.61 0.83 0.67 1.50 0.33 0.05 0.61 0.07 

24
th

  Baseline 4.38 4.98 0.08 5.06 3.56 0.16 5.11 0.41 

(75 lb/hr) 2 hr 1.91 2.21 0.77 2.98 1.26 0.08 2.11 0.08 

 
5 hr 1.50 1.71 0.99 2.70 1.16 0.04 2.05 0.13 

* CMM undergoing troubleshooting during OHM baseline 

Injection did not start immediately following the baseline OHM measurement 

because of troubleshooting of the CMM analyzer. The analyzer was brought back online 

subsequently and run for two hours before injection was started. The mercury 

concentration as measured by the CMM during the hour before injection was stable at an 

average of 5.06 μg/m3
; and was close to the OHM baseline value (relative difference of 

10% consistent with other OHM and CMM data comparisons), see Figure 29. This 

suggests that the baseline mercury emissions did not change significantly during 

troubleshooting. 

Looking at the OHM results, it is clear that Hg
T
 decreases with time at the 

injection rate. We believe that the reduction profile occurs because the induration process 

comprises gas ducts and other surfaces which accumulate a portion of the injected 

sorbent, providing additional reduction in the mercury concentrations with time. The 

stack gas Hg
VT

 after 5 hours of injection was 1.40 µg/m
3
, while Hg

T
 was 1.95 µg/m

3
, per 

OHM. This corresponds to 77% and 69% respectively, meaning the Hg
P
 emissions were 
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significant with time. The corresponding values for Hg
VT

 determined from the CMM data 

was 1.15 µg/m
3
, see Figure 29. 

 

Figure 29: CMM data for the 18
th

 showing results of 100 lb/hr injection 

 

The increase in Hg
P
 with sorbent injection increased the Hg

T
 to 1.95 µg/m

3
, 

diminishing the overall reduction to 69% for total mercury emissions from the baseline 

values. These confirmed the previous observation that ESORB-HG-11 penetrates the 

scrubber in this unit, carrying with it a portion of the captured mercury. So improving the 

capture of ESORB-HG-11 would definitely increase mercury emission reductions. 

The next long term testing investigated was for 150 lb/hr. On the 21
st
, ESORB-

HG-11 testing was performed at 150 lb/hr. Two OHM measurements were performed, 

one for the baseline, and the other started after 4 hours into the injection schedule. The 

baseline OHM measurement showed an Hg
VT

 of 5.04 µg/m
3
 Hg

VT
 (table 7); and Hg

T
 of 

5.06 µg/m
3
. After 4 to 5 hours of injection, the OHM data showed a value of 0.83 µg/m

3
, 

a reduction of 84% for Hg
VT

; meanwhile, the Hg
T
 showed a value of 1.50 µg/m

3
, a 71% 
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reduction from the baseline value. Hg
P
 also increased for this higher injection test 

condition as compared to previous tests, where the sorbent injection rates were lower. 

Injection was started immediately after the OHM baseline was completed, and the CMM 

data showed steady values (Figure 30). Average Hg
VT

 as measured by the CMM was 

0.61µg/m
3
 (table 7). Filters for both the CMM and OHM showed evidence of carbon 

penetration through the scrubber contributing.  

 

Figure 30: CMM data for the 21
st
 showing results for 150 lb/hr injection 

 

The last long term test involving ESORB-HG-11 at the preheat fans was 75 lb/hr, 

investigated for a total time of 5 hours. The goal was to determine if a lower feed rate 

would still produce reductions considered significant. OHM baseline value was 4.98 

µg/m
3
 for Hg

VT
 (table 7), and injection started 20 minutes after the OHM baseline 

measurement was completed. Reductions of 56% and 66% Hg
VT

 were observed for OHM 
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measurements performed 2 hours and 5 hours into injection (table 7). Meanwhile in the 

CMM data (Figure 31), after the initial drop in the mercury concentration over a 30 

minute period, the values remained reasonably steady at the lower value for the rest of the 

injection period. A gradual increase was observed at the end of the injection, but 

measurement using the CMM was stopped well before the stack mercury emissions 

returned to baseline values. Hg
P
 was significantly higher during this test condition (table 

7), than observed previously. The baseline Hg
P
 was also higher (0.08 µg/m

3
) than usual. 

The possible cause of this was attributed in a drop in performance of the scrubber during 

that week. This conclusion was drawn based on the fact that the 24
th

 was a Monday, and 

the baseline values obtained for the rest of that week (see preheat zone injection testing 

below) were higher than 0.08 µg/m
3
. Moreover, the slurry mercury concentrations also 

suggested poor capture by the scrubber (see sequestration results).  

 

Figure 31: CMM data for the 24
th

 showing injection result for 75 lb/hr 
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 To conclude, long term injections for the rates of 100 lb/hr and 150 lb/hr showed 

the potential of attaining 75% reduction on Minntac-Line 3, especially if measures are 

taken to improve capture of fine particulates, as ESORB-HG-11 is a powdered activated 

carbon with fine particle sizes.. The results from the 75 lb/hr were well below the desired 

target, however, it is possible that during this period, the scrubber operation was not as 

optimal as during the previous test week. Unfortunately, it was not possible to verify this. 

Pre-heat Zone Injection Location 

 The second sorbent injection location investigated at Minntac Line 3 was injection 

into the pre-heat zone. These tests were conducted on the 25
th

 and 26
th

.  Injection into the 

pre-heat zone was believed to provide a longer contact time between the sorbent and the 

mercury, and also higher temperatures. Ports located at the base of the preheat zone wall 

were used, enabling injection of ESORB-HG-11 directly into preheat section. However, 

the location of the ports on the walls of the zone did not allow for effective distribution of 

the injected material into the flue gas above the pellet bed. Injection rates of 50 lb/hr, 75 

lb/hr and 100 lb/hr were investigated. The goal was to see if changing to an upstream 

location and using low injection rates could achieve reductions comparable or greater 

than those seen during injection in the preheat fans. 

OHM and CMM baseline measurements (table 8) showed good agreement during 

testing; however, Hg
P
 was significantly higher than during the previous week. The high 

Hg
P
 was also observed during 75 lb/hr injection in the pre-heat fans, further supporting 

the suggestion that scrubber performance during the last week of testing was not as 

effective as previously. 
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Table 9: OHM and CMM concentrations during injection testing at preheat zone location 

    OHM OHM OHM OHM CMM CMM 

    Hg
0 
 Hg

VT
  Hg

P
  Hg

T
  Hg

0 
 Hg

VT
  

Date   (µg/m
3
) (µg/m

3
) (µg/m

3
) (µg/m

3
) (µg/m

3
) S.D. (µg/m

3
) S.D. 

25
th

  Baseline 3.35 3.81 0.20 8.24 3.11 0.29 4.39 0.39 

 
75 lb/hr 1.91 2.18 0.60 2.22 1.57 0.07 2.30 0.11 

26
th

  Baseline 3.84 4.09 0.10 6.69 4.03 0.37 4.55 0.30 

 
100 lb/hr 1.65 2.05 1.09 2.98 1.81 0.21 2.30 0.30 

 

The injection rates investigated were 50 lb/hr, 75 lb/hr, and 100 lb/hr. However, 

OHMs were performed during 75 lb/hr and 100 lb/hr injection only. The reductions seen 

at these rates ranged from 43 to 50% for Hg
VT

 and 25 to 31% for Hg
T
 respectively. The 

high Hg
P
 observed during injection in pre-heat zone suggests that the injected carbon is 

transported in the waste gas and not burnt in the preheat zone. Lower reductions than 

testing in pre-heat fans suggest that the poor distribution of ESORB-HG-11 is a lot 

significant with respect to mercury oxidation and capture. No more testing was 

performed at the preheat zone due to the low reductions observed as seen on the CMM 

graphs (Figure 32 and 33). 
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Figure 32: CMM data for the 25
th

 showing injection results for 75 lb/hr in pre-heat zone 

 

 

Figure 33: CMM data for the 26
th

 showing injection results for 100 lb/hr in pre-heat zone 
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PAC Testing 

 The PAC testing objective was the same with the first two ESORB-HG-11 tests: 

perform short term tests to determine the PAC injection rate with the most promising 

mercury reduction. The testing was performed on the 20
th

 and the injection rates 

investigated were 50, 100 and 150 lb/hr; and injection was at the pre-heat fan location. 

Baseline OHM showed low stack Hg
VT

 of just 3.44 μg/m3
, the lowest baseline during the 

entire test duration (table 10). CMM baseline was even lower at 2.11 µg/m
3
. Injection 

with PAC showed very little reduction on the OHM measurements; meanwhile CMM 

data suggested almost no reduction (Figure 34). PAC is effective in oxidizing mercury 

and capturing it if there are oxidizing components such as halogens, present in the flue 

gas (33,34,17). However, mercury oxidation in taconite processing is believed to be 

caused by not just chlorides in the waste gas, but also reactive iron oxides (25,26). So it is 

unsure if the little or no oxidation is as a result of no halogens present or because of a 

different mechanism for oxidation than that seen in coal combustion systems (39).  

 On the other hand, Hg
P
 did not increase during PAC injection (table 10) as 

compared with ESORB-HG-11. There are two possible reasons for this: PAC did not 

capture any significant mercury species - it is not halogenated, so Hg
P
 should be low; or, 

PAC, which is a coarser grain than ESORB-HG-11, was more easily captured by the 

scrubber over ESORB-HG-11. However, inspection of the filters for the OHM and CMM 

probes after sampling showed very little carbon deposited on the filter, as was seen when 

testing ESORB-HG-11. With no significant results observed for PAC injection, no 

further testing was done using PAC. 
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Table 10: OHM and CMM concentrations during PAC injection testing at pre-heat fans 

    OHM OHM OHM OHM CMM CMM 

    Hg
0 
 Hg

VT
  Hg

P
  Hg

T
  Hg

0 
 Hg

VT
  

Date   (µg/m
3
) (µg/m

3
) (µg/m

3
) (µg/m

3
) (µg/m

3
) S.D. (µg/m

3
) S.D. 

20
th

  Baseline 3.14 3.44 0.03 3.47 1.56 0.14 2.11 0.38 

 
100 lb/hr 2.51 2.75 0.03 2.78 1.48 0.07 1.97 0.15 

 
150 lb/hr 2.31 2.57 0.04 2.61 1.23 0.26 1.68 0.42 

 

 

Figure 34: CMM data for the 20
th

 showing injection results for PAC at pre-heat fan location 

 

Sequestration Results 

ESORB-HG-11 Results 

 Sequestration potential of ESORB-HG-11 was determined during injection tests 

for determining oxidation and capture. Injected ESORB-HG-11 ended being captured by 

the scrubber slurry, meaning any Hg
2+

 present in the slurry would be sequestered by the 
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captured ESORB-HG-11. Oxidation/capture testing using ESORB-HG-11 was done on 7 

different days for both injection locations. However, sequestration was investigated only 

on the days when injection was at the pre-heat fan location: 14
th

, 17
th

, 18
th

, 21
st
, and 24

th
. 

Sequestration testing involved collecting scrubber samples during injection, filtering 

them and sending the filtrate and filter cake for analysis. Unfortunately, errors were 

encountered with filter cake sample analysis results. Consequently, only the results for 

the filtrate samples, Hg
D
, is reported and discussed. 

 On the 14
th

, scrubber slurry samples were collected during OHM measurement for 

the baseline and 100 lb/hr injection rate. The filtrate from the baseline sample gave a Hg
D
 

of 1100 ng/l; meanwhile, the filtrate during 100 lb/hr injection gave a non-detect (Hg
D
 < 

0.2 µg/l) (Figure 35). Recall that in the sampling section above, it was mentioned that the 

filtrates from the slurry samples during the first four sampling days were analyzed using 

EPA Method 7470 which has a detection limit of 0.2 µg/l or 200 ng/l. Consequently, a 

200 ng/l value was assigned as the default value for the non-detect samples. The decrease 

suggests sequestration of the mercury by ESORB-HG-11 to the solid portion of the 

slurry. Unfortunately, solid samples results are not available to confirm the sequestration. 

Approximately 300 lbs of ESORB-HG-11 were injected, producing a scrubber slurry 

concentration of approximately 1400 mg/l. 

 On the 17
th

, the results mirrored those obtained on the 14
th

 with a high dissolved 

Hg
D
 of 4000 ng/l during baseline OHM, which also decreased significantly with injection 

of ESORB-HG-11 to non-detect levels (Figure 36).  Approximately 900 lbs of ESORB-

HG-11 was injected on this day. This produced a maximum slurry concentration of 

approximately 4000 mg/l in the scrubber recirculation tank. 
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Figure 35: Scrubber Hg
D
 concentrations during OHM measurements on the 14

th
. Hg

D
 for 100 lb/hr 

(200 ng/l) not actual concentration but method detection limit.  

 

 

Figure 36: Scrubber Hg
D
 concentrations during OHM measurements on the 17

th
. Hg

D
 for 150 lb/hr 

(200 ng/l) not actual concentration but method detection limit. 

 

 The 18
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 was the next day on which ESORB-HG-11 testing was performed (100 
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sample was 600 ng/l, which was lower than previous baseline values (Figure 37). Further 

investigation suggested that ESORB-HG-11 injected previously was still in the 

recirculation tank, but had reduced to smaller levels. If this was the case, some level of 

sequestration was still taking place in the recirculation tank. The Hg
D
 in the scrubber 

filtrate during sorbent injection decreased to very low values, 44.6 ng/l (this value was 

analyzed using EPA method 1631); further confirming the sequestration ability of 

ESORB-HG-11.  

 The 21
st
, which was a Friday, showed baseline Hg

D
 even lower than on the 18

th
.  

Analysis of the samples was done using EPA Method 1631, and baseline Hg
D
 was 82 

ng/l. PAC was tested on the previous day, suggesting that trace amounts of PAC were 

still left in the system were responsible for the very low Hg
D
. Even with such a low 

baseline Hg
D
, injection of ESORB-HG-11 (750 lb of ESORB-HG-11 was injected) still 

resulted in further reduction of the Hg
D
 to 20 ng/l (Figure 38). 

 Finally, on the 24
th

 – a Monday, baseline Hg
D
 for the filtrate increased to 4370 

ng/l. This confirmed the suggestion that residual sorbent in the recirculation was still 

performing sequestration, because over the weekend, any residual sorbent in the scrubber 

recirculation tank would definitely be eliminated. If that is the case, baseline Hg
D
 should 

return to high levels as observed on the 17
th

, which was the case (Figure 39). Hg
D
 

decreased once injection with 75 lb/hr of ESORB-HG-11 was started. At least 300 lbs of 

ESORB-HG-11 had been injected when the scrubber was sampled for analysis. 

Surprisingly, the Hg
D
 did not drop as significantly as it did on previous days after sorbent 

injection (599 ng/l). This unexpected observation coupled with the high Hg
P
 observed 

during stack testing is the reason for the suggestion that scrubber operation was not 
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optimal during the last week of testing. However, slurry samples collected on the 25
th

 and 

26
th

 were not analyzed, so the observation cannot be confirmed. 

 

Figure 37: Scrubber Hg
D
 concentrations during OHM on the 18

th
.  

 

 

Figure 38: Scrubber Hg
D
 concentrations during OHM on the 21

st
.  

 

600 

44.6 

0 

100 

200 

300 

400 

500 

600 

700 

Baseline 100 lb/hr 

M
er

cu
ry

 c
o

n
ce

n
tr

a
ti

o
n

, 
n

g
/l

 

Scrubber Slurry Hg Distribution - 10/18/2011 

Dissolved mercury Hg(D) 

82 

21.1 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

Baseline 150 lb/hr 

M
er

cu
ry

 c
o

n
ce

n
tr

a
ti

o
n

, 
n

g
/l

 

Scrubber Slurry Hg Distribution - 10/21/2011 

Dissolved mercury Hg(D) 



 

87 

 

 

Figure 39: Scrubber Hg
D
 concentrations during OHM on the 24

th
.  

 

 To conclude, other than on the 24
th

, significant reduction in Hg
D
 was observed 

when ESORB-HG-11 was added to the scrubber recirculation tank through injection into 

the waste gas. Reductions in Hg
D
 ranged from 74% to 95% as a result of addition of 

ESORB-HG-11. The concentrations of ESORB-HG-11 in the scrubber recirculation tank 

were significantly high by the end of the injection, with the lowest being on the 14
th

 and 

approximately 1000 mg/l. These concentrations are a lot higher than those investigated 

during bench- and pilot-scale tests, so it is no surprise that the reductions were so high. 

Another important fact observed was the residual effect of the injected sorbent hours after 

injection stopped. The long time it took for concentrations to return to previous baseline 

values (estimated to be 24 to 48 hr), suggested that ESORB-HG-11 was effective at lower 

concentrations in the scrubber tank, just as observed in the bench-scale tests. 
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PAC Results 

 Field sequestering capabilities of PAC have already been mentioned during 

sequestration results of the 21
st
. Analysis of scrubber samples collected during testing 

confirmed that even though PAC did not show any significant reduction in stack mercury 

emissions, it still showed sequestration of Hg
D
. Baseline Hg

D
 for this test was analyzed 

using EPA method 7470 and returned a non-detect value (ESORB-HG-11 was injected 

on previous day), so a default baseline Hg
D
 of 200 ng/l was assumed. All other samples 

on this day were analyzed using low level mercury analysis (EPA Method 1631) by Pace 

Analytical Laboratories. Hg
D
 decreased during injection of PAC, confirming bench and 

pilot testing that PAC effectively captures and sequesters mercury from the liquids. 

Figure 40 summarizes the results obtained during PAC injection. 

 

Figure 40: Scrubber HgD concentrations during PAC injection on the 20
th

. Hg
D
 for baseline (200 

ng/l) not actual concentration but method detection limit.  

 

200 

25.7 24.6 17.1 

0 

50 

100 

150 

200 

250 

Baseline 100 lb/hr 100 lb/hr (duplicate) 150 lb/hr 

M
er

cu
ry

 c
o

n
ce

n
tr

a
ti

o
n

, 
n

g
/l

 

Scrubber Slurry Hg Distribution - 10/20/2011 

Dissolved mercury Hg(D) 



 

89 

 

 As the baseline obtained was just an estimate, the percent reduction during PAC 

testing cannot be calculated, however, the decrease observed in Hg
D
 from 100 lb/hr to 

150 lb/hr, suggests that PAC is still effective in mercury sequestration. This is further 

confirmed by the low baseline (82 ng/l) seen on the 21
st
. 

DEDTC Results 

 The last technology tested investigated the addition of diethyl dithiocarbamate 

(DEDTC). The test was performed on the 19
th

. Recall that DEDTC is a mercury chelating 

agent used to improve oxidized mercury capture in the scrubber by reducing Hg
D
 

concentration. Testing of DEDTC was performed in two steps: first, testing the DEDTC 

alone to see if this improved capture of oxidized mercury (if any) that is not captured by 

the scrubber; and second, increase oxidation of mercury species upstream of the scrubber 

using ESORB-HG-11 (at 50 lb/hr injection rate) and observe the difference from results 

obtained from the injection of ESORB-HG-11 by itself on the 17
th

. 

For the first step, DEDTC was added to the scrubber recirculation tank by dosing 

to first maintain a concentration of 0.7mg/l, then 1.4 mg/l, and finally, 7.0 mg/l. Scrubber 

slurry was sampled at least one hour after dosing the recirculation tank. Stack mercury 

concentration data and slurry analysis during this test period showed no impact of 

DEDTC (Figure 41 and 42). On the contrary, the dissolved mercury concentration Hg
D 

increased from low baseline values, suggesting that ESORB-HG-11 in the system from 

injection on the 18
th

 was reducing to insignificant levels while the DEDTC was not 

forming chelates with the Hg
D
 (Figure 42).  
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In the second test, which involved both the addition of the DEDTC to the 

scrubber recirculation tank and the injection of ESORB-HG-11 at the preheat fan inlet 

location, the mercury concentration in the stack gases decreased as expected (Figure 41). 

However, the reduction in mercury emission was similar with and without the addition of 

DEDTC to the scrubber slurry, indicating that the entire impact on the mercury 

concentrations was most likely from the injection of ESORB-HG-11 (Figure 41). 

Injection of ESORB-HG-11 also decreased the dissolved mercury in the scrubber slurry 

filtrate significantly after just two hours of injection (Figure 42). To summarize, injection 

of the scrubber additive DEDTC did not improve mercury capture or mercury 

sequestration. 

 

Figure 41: Scrubber Hg
D
 concentrations during dosing with DEDTC and injection of 50 lb/hr 

ESORB-HG-11 on the 19
th
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Figure 42: Stack mercury concentrations during DEDTC dosing and injection of 50 lb/hr ESORB-

HG-11 
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CHAPTER VII 

CONCLUSION AND RECOMMENDATIONS 

Conclusion 

Bench-scale tests investigated the sequestration performance of the sorbents: PAC 

and ESORB-HG-11; and the chelates: DEDTC and TMT-15®; when added to a slurry 

solution spiked with Hg
2+

 as HgCl2. Of these four additives, ESORB-HG-11, a 

halogenated powdered activated carbon supplied by Envergex LLC of Sturbridge, MA, 

was the most effective at sequestration, constantly achieving more than 98% reduction in 

Hg
D
 when tested on three concentration levels. Its sequestration capabilities were further 

confirmed during pilot-scale and field tests, where for the pilot-scale tests, it improved 

the driving force for Hg
2+

 capture by scrubber waters with little or no capability of 

capturing any more mercury. During field tests, analysis of the scrubber filtrate showed 

decreasing Hg
D
 concentrations from baseline values once ESORB-HG-11 was added to 

the slurry. The ability of ESORB-HG-11 to sequester mercury from the liquid to solid 

portion of scrubber slurry should have a three-fold advantage: First, concerns such as re-

emission of Hg
D
 are most likely to be eliminated as re-emission is believed to occur 

largely from reduction of Hg
2+ 

in scrubber slurry to Hg
0
 that is not soluble (46). 

Secondly, and most important, sequestering most of the captured mercury to one phase of 

the slurry facilitates removal and disposal of that mercury from the process loops. 
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Thirdly, sequestration using a non-magnetic, low density additive introduces a 

possible method for separating the mercury from the valuable portion of the scrubber 

solids allowing the possibility of solids recycle.  

Other additives (PAC, DEDTC, and TMT-15®) also showed promise during 

bench and pilot-scale tests, but their performance was not effective enough to warrant any 

recommendation for further work. Impregnation of PAC with TMT-15® showed promise 

for a 20 and 90 parts per thousand concentration of TMT-15® on PAC, prepared at a 

lower temperature. However, the lower temperature used for preparation resulted in 

longer preparation times, so this new additive was not tested further. DEDTC used in 

scrubber slurry for Hg sequestration showed no observable effect, even though the 

concentration was increased to 7 times the pilot concentration. Possible reasons for this 

could be the chemistry of the slurry during field test (temperature, effective pH, other 

constituents not yet adsorbed to solid portion) could be hindering the effectiveness of 

DEDTC. Also, it is possible that there was heavy metal partitioning in the scrubber 

slurry, were other metals were competing with Hg
2+

for DEDTC, reducing effectiveness 

of DEDTC loading significantly. Unfortunately, investigating concentrations higher than 

7.0 mg/l raised the risk of introducing a new problem to the system, sulfur 

concentrations. Sulfur levels in Minntac discharge waters are regulated, so sulfur 

concentrations are controlled using limestone. Any additional source of sulfur to their 

system would probably require further studies to ensure a new problem is not created.  

 On the other hand, field testing also investigated oxidation and capture potential 

of sorbent technologies: PAC and ESORB-HG-11. Once more, ESORB-HG-11 proved to 

be the most promising technology, achieving total stack mercury reductions higher than 
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70%. The reduction potential on the line could even be improved further if particulate 

capture potential of the scrubber was improved to capture fine particles such as ESORB-

HG-11. If improving particulate control is not feasible, then certain measures, as pointed 

out in the recommendation section below, might be needed.  

PAC testing showed very little capture, with the capture observed probably not a 

function of the injected PAC. However, it is important to observe that during PAC 

testing, baseline Hg emissions were very low (3.44 µg/m
3
), the lowest for the entire test 

period. It is possible that the lower baseline biased the effectiveness of the PAC in 

mercury oxidation and capture; however, even if that is the case, it just goes further to 

support the observation that PAC might not be suitable for mercury control in Taconite 

facilities.  

Recommendations 

 Recommendations for future work focuses mainly on the field test. The first 

recommendation will be to investigate injection of PAC alongside an oxidation 

technology such as a sodium bromide (NaBr) solution which was shown to achieve a 

62% oxidation when injected n the pre-heat zone (29). This combination was also 

suggested by Laudal (22), based on the fact that PAC is believed to improve oxidation of 

Hg
0
 in the presence of halogens (38).  

 The second recommendation would be to investigate the redesign and/or 

operation of the scrubber to capture finely powdered activated carbon effectively. 

ESORB-HG-11 was extremely effective in oxidizing and capturing vapor phase mercury. 

However, the scrubber was not fully effective in removing the fine sorbent particles 



 

95 

 

loaded with the captured mercury. Better particulate capture by the scrubber may be 

achieved by increasing the pressure drop through the scrubber, using finer droplets for 

particulate capture, and/or minimizing the bypass or sneakage of the flue gas through the 

scrubber. The use of another halogenated sorbent using coarser PAC grains may also be 

investigated. The goal here would be to take advantage of the observation that PAC 

testing did not exhibit any significant increase in Hg
P
 or particulate emission. It must be 

noted that the benefit of fine particle size on mercury oxidation and capture is well 

established (17) and the approach of using larger particles may be counterproductive. 

 The third recommendation involves testing ESORB-HG-11 and the recommended 

technologies above at other Taconite facilities. Minntac-Line 3 has a lot more duct work 

when compared to the lines of other facilities. Considering that duct work is believed to 

play a positive role in the capture of mercury, it would mean that lines with less duct 

work might require higher injection rates. The only way to verify this would be to 

perform tests on the other lines. 

 The fourth recommendation focuses on the sequestration results obtained. First, if 

sequestration tests are performed at any other line, then extra measures should be taken to 

ensure that the solids mercury data is not compromised. Secondly, separation tests should 

be performed on taconite scrubby slurry containing ESORB-HG-11 and process solids. 

The goal should be to confirm the ease of separation of the ESORB-HG-11 from the 

valuable scrubber solids. The tests should look at magnetic separation and/or density 

based separation, as scrubber solids are very dense. 
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 More testing would be required before this testing can be recommended as a 

mercury control technology for the Taconite industry of the Minnesota range. Continuous 

injection and monitoring for several days would be necessary to confirm that the above 

technology would permanently reduce mercury emissions as well as verify that the use of 

this technology doesn’t create additional issues such as increased particulate emissions. 
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APPENDIX A 

Field Test Results Raw Data 

 

Table 11: Field test raw OHM data 

  
Hg

0
 Hg

P
 Hg

VT
 

 
Date 

 
(µg/m

3
) (µg/m

3
) (µg/m

3
) Std Dev 

20111026 Baseline 3.84 0.10 4.09 0.30 

 
100 lb/hr-E-HG-11 1.65 1.09 2.05 0.3 

20111025 Baseline 3.35 0.20 3.81 0.39 

 
75 lb/hr-E-HG-11 1.91 0.60 2.18 0.11 

20111024 Baseline 4.38 0.08 4.98 0.41 

 
75 lb/hr-E-HG-11 1.91 0.77 2.21 0.08 

 
75 lb/hr-E-HG- 11 1.5 0.99 1.71 0.13 

20111021 Baseline 4.50 0.02 5.04 0.13 

 
150 lb/hr-E-HG-11 0.61 0.67 0.83 0.07 

20111020 Baseline 3.14 0.03 3.44 0.38 

 
100 lb/hr-PAC 2.51 0.03 2.75 0.15 

 
150 lb/hr-PAC 2.31 004 2.57 0.42 

20111019 Baseline 4.63 0.07 4.86 0.15 

 
7 mg/l-DEDTC 3.9 0.03 4.21 0.28 

 
50 lb/hr-E-HG-11 2.09 0.27 2.33 0.12 

20111018 Baseline 5.35 0.03 6.17 n/a 

 
100 lb/hr-E-HG-11 1.4 0.33 1.77 0.11 

 
100 lb/hr-E-HG-11 1.07 0.55 1.4 0.14 

20111017 Baseline 5.82 0.02 8.22 0.88 

 
50 lb/hr-E-HG-11 1.71 0.06 2.16 0.21 

 
150 lb/hr-E-HG-11 1.14 0.59 1.22 0.29 

20111014 Baseline 5.86 n/a 6.69 0.08 

 
100 lb/hr-E-HG-11 2.36 0.13 2.85 0.57 

20111013 Baseline 1 3.70 n/a 4.45 0.41 

 
Baseline 2 3.98 n/a 4.93 0.30 

 
Baseline 3 4.64 0.00 5.19 0.32 
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Table 12: Field raw CMM data 

    Hg
0
 Hg

VT
 

Date   (µg/m
3
) Std Dev (µg/m

3
) Std Dev 

20111026 Baseline 4.03 0.37 4.55 0.30 

  100 lb/hr-E-HG-11 1.81 0.21 2.3 0.3 

20111025 Baseline 3.11 0.29 4.39 0.39 

  75 lb/hr-E-HG-11 1.57 0.07 2.30 0.11 

20111024 Baseline 3.56 0.16 5.11 0.41 

  75 lb/hr-E-HG-11 1.26 0.08 2.11 0.08 

  75 lb/hr-E-HG-11 1.16 0.04 2.05 0.13 

20111021 Baseline 3.12 0.50 3.96 0.13 

  150 lb/hr-E-HG-11 0.33 0.05 0.61 0.07 

20111020 Baseline 1.56 0.14 2.11 0.38 

  100 lb/hr-PAC 1.48 0.07 1.97 0.15 

  150 lb/hr-PAC 1.23 0.26 1.68 0.42 

20111019 Baseline 4.08 0.13 5.19 0.15 

  7 mg/l-DEDTC 2.68 0.27 4.29 0.28 

  50 lb/hr-E-HG-11 1.68 0.11 2.43 0.12 

20111018 Baseline n/a n/a n/a n/a 

  100 lb/hr-E-HG-11 1.22 0.15 1.53 0.11 

  100 lb/hr-E-HG-11 0.80 0.10 1.15 0.14 

20111017 Baseline 5.12 0.30 7.08 0.88 

  50 lb/hr-E-HG-11 2.12 0.16 2.93 0.21 

  150 lb/hr-E-HG-11 0.53 0.06 1.07 0.29 

20111014 Baseline 4.26 0.10 5.65 0.08 

  100 lb/hr-E-HG-11 1.16 0.25 1.98 0.57 

20111013 Baseline 1 2.32 0.26 4.24 0.41 

  Baseline 2 2.58 0.13 3.88 0.30 

  Baseline 3 2.78 0.08 4.1 0.32 
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Table 13: Field raw results for multiclones solids analysis 

Date ID Time ng/g 

10/17/2011 MS1 1:00PM 139 

10/17/2011 MS2 4:00AM 82 

10/17/2011 MS3 6:00PM 42 

10/18/2011 MS5 950AM 212 

10/19/2011 MS7 1030AM 45 

10/19/2011 MS8 230PM 15 

10/19/2011 MS9 410PM 26 

10/19/2011 MS10 555PM 90 

10/20/2011 MS11 850AM 90 

10/20/2011 MS13 2PM 182 

10/20/2011 MS14 420PM 451 

10/21/2011 MS15 1115AM 65 

10/21/2011 MS16 405PM 86 

10/24/2011 MS17 10AM 47 

10/24/2011 MS19 330PM 40 

 

Table 14: Field raw results for scrubber filtrate analysis and TSS 

  
Injection rate (lb/hr) ID Hg

D
 (ng/l) TSS (%) 

10/13/2011 Baseline n/a SS3 5000 0.68 

 
Baseline n/a SS 5 5000 0.68 

10/14/2011 None Baseline SS3 1100 0.68 

 
E-HG-11 150 SS 5 200 0.68 

10/17/2011 None Baseline SS8 4000 0.67 

 
E-HG-11 150 SS14 200 0.59 

10/18/2011 None Baseline SS17 600 0.86 

 
E-HG-11 100 SS 19 45 0.65 

10/19/2011 DEDTC Baseline SS 23 907 0.39 

 
DEDTC 1.4 mg/l SS 25 1750 0.78 

 
DEDTC 7.0 mg/l SS 27 2140 0.99 

 

DEDTC & E-

HG-11 
7.0 mg/l  & 50 SS 29 45 1.04 

10/20/2011 PAC Baseline SS 31 200 0.76 

 
PAC 100 SS 36A 25.7 0.69 

 
PAC 100 SS 36B 24.6 0.69 

 
PAC 150 SS 38 17.1 0.67 

10/21/2011 E-HG-11 Baseline SS 41 82 0.59 

 
E-HG-11 150 SS 43 21.1 0.46 

10/24/2011 E-HG-11 Baseline SS 46 3970 0.77 

 
E-HG-11 75 SS 51 599 0.80 
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APPENDIX B 

Horiba DM-6B Operation and Maintenance 

 The following section focuses on operation with the wet-chemistry pre-

treatment in batch and not continuous mode. For continuous mode operation see 

Hrdlicka, 2006 (43). To setup the wet solution conditioning system, four 500 ml modified 

Greenburg-Smith impingers are used.  Two are for the elemental mercury side and two 

are for the total mercury side.  The two sides are setup into parallel impinger trains using 

two impingers for each train.  The outlets of the trains are connected to the DM-6B 

mercury analyzer. Quarter inch socket joints ordered from HS Martin are used with 

quarter inch PFA unions (from Swagelok) to connect the impingers to the outlet and inlet 

tubing. The right impinger ball joints should be connected to the tubing going to the 

Horiba DM-6B to prevent the solutions in the impingers from being sucked by the Horiba 

DM-6B into the sample lines. 

The chemicals used for the impingers would depend on what kind of gas is being 

sampled. For sampling of acidic gases, the elemental mercury side uses a solution of 1 M 

KCl and 1 M NaOH.  The total mercury side uses a solution of 2% SnCl2 and 1 M NaOH 

(43). Other possible solutions used can be obtained from Buitrago, 2011 (44); and 

Zhuang, 2011 (45).   The chemicals must be reagent grade or trace metal grade and can 

be purchased from Fisher Scientific.  Impingers are kept in an ice bath. Once the entire 

setup is connected, a leak test must be performed.  Begin sampling and block the flow of 

the inlet of the conditioning unit.  A vacuum will begin to develop in the system and can 

be monitored by the pressure sensors in the DM-6B analyzer.  The vacuum in each 

impinger should be greater than 20 psig for each line after one minute. If it takes longer 
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than one minute to reach 20 psig, then there is most likely a leak. Fittings and impinger 

connections need to be checked.  

Every time the equipment is turned on, a calibration should be performed.  

Perform a standard manual calibration with the MG-1 mercury generator as outlined in 

the user manual.  Mercury concentration from the MG-1 can be verified by the Energy 

and Environmental Research Center – EERC. Before and after any major sampling 

episode, a calibration verification must be performed. To perform one, the calibration gas 

should be connected to the impinger inlets and allowed to reach a stable value. It takes at 

least 2 hrs for the MG-1 to reach steady state. So to prevent build-up of mercury 

concentration in the sampling line, the MG-1 should be fitted with a tee. One line from 

the tee should be connected to a fume hood and flow should NOT be restricted; 

meanwhile the other line should be used to calibrate the analyzer. This line can be 

equipped with a valve which is closed when system is not undergoing calibration or 

verification. If calibration verification is not successful, then another calibration should 

be performed, this time, bypassing the impinger solutions. If this verification also fails, 

then recalibrate the analyzer. If not, then there is either a leak in the impinger trains or the 

solutions need to be changed. 

To start sampling begin measurement on the DM-6B mercury analyzer control 

panel.  The analyzer will automatically perform a zero calibration every hour on the hour.  

To begin recording measurements open the DM-6B software and select run from the file 

menu.  The software will begin recording measurements every 10 seconds and store the 

information a Microsoft Excel file. It is important to note that on the last day of the 

month, 30
th

 or 31
st, the data acquisition software does not work. A “run-time error” is 
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displayed when the software is turned on. When this happens, change the date on the 

Horiba DM-6B and set to a any other day other than the first or last day of the month, 

then restart acquisition. 

The following paragraphs will discuss analyzer maintenance and highlight things 

to watch for during operation.  The most important thing to monitor during operation is 

the pressure of the sample in the DM-6B pressure sensors.  The pressure sensors monitor 

the amount of vacuum being pulled by the analyzer’s sample vacuum pumps.  The 

pressure should stay around some normal value on a daily basis.  Depending on the type 

of work being done, the normal pressure will vary.  Normal operating pressures for the 

work done in this thesis were between 1 and 3 psig. 

If the pressure gets too high (>10 psig) then something in the system is plugging 

the sample flow.  In this work, the most common source of this problem was the Teflon 

moisture filters.  Directly at the inlet of the analyzer is a filter that is used to detect 

moisture in the sample gas.  This filter can easily be plugged up with various 

contaminants or moisture.  To replace this filter stop sampling, disconnect the tubing 

from the filter, and replace with a new one.  The filters can be obtained from Savillex.  

If the pressure is still too high then other sources of plugging need to be 

investigated.  Check all tubing, fittings, and other equipment in the system.  Start at the 

inlet of the analyzer and move to the inlet of the sample conditioning system.  Checking 

each component separately will pinpoint the source of the plugging.  Once the source is 

found, clean out the component and the pressure should decrease back to normal values. 

Other problems could occur during operation of analyzer. For more information 

on maintenance, see Horiba DM-6B manual and Hrdlicka 2006 (43). 
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