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The groundwater system in Olkiluoto, Finland, is stratified with a mixing layer at a depth of approximately 300 m between sulphate-
rich, methane-poor and sulphate-poor, methane-rich groundwaters. New sequence library data obtained by 454 pyrotag sequencing
of the v4v6 16S rDNA region indicated that sulphate-reducing bacteria (SRB) dominated the mixing layer while SRB could
not be detected in the deep sulphate-poor groundwater samples. With the indispensable support of the sequence data, it
could be demonstrated that sulphate was the only component needed to trigger a very large community transition in deep
sulphate-poor, methane-rich groundwater from a non-sulphate-reducing community comprising Hydrogenophaga, Pseudomonas,
Thiobacillus, Fusibacter, and Lutibacter to a sulphate-reducing community with Desulfobacula, Desulfovibrio, Desufobulbaceae,
Desulfobacterium, Desulfosporosinus, and Desulfotignum. Experiments with biofilms and planktonic microorganisms in flow cells
under in situ conditions confirmed that adding sulphate to the sulphate-poor groundwater generated growth of cultivable SRB and
detectable SRB-related sequences. It was also found that the 16S rDNA diversity of the biofilms was conserved over 103 d and that
there was great similarity in diversity between the microorganisms in the biofilms and in the flowing groundwater. This work
demonstrates that the presence/absence of only one geochemical parameter, i.e., sulphate, in the groundwater significantly
influenced the diversity of the investigated subterranean microbial community.

Keywords: ATP, biofilm, cultivation, deep biosphere, 16S rDNA

Introduction

On the island of Olkiluoto, selected for the construction of a
deep repository for high-level radioactive wastes, a tunnel
denoted ONKALO has been excavated to the future reposi-
tory area at a depth of 420 m. The current vertical variation
in hydrogeochemical groundwater parameters at Olkiluoto
comprises a shallow and partly oxygenic freshwater from 0 to
approximately 25 m followed by an intermediate-depth
brackish, sulphate-rich, methane-poor groundwater with a
salinity of less than 1% to a depth of approximately 300 m.
In the depth range from 300 m to more than 1000 m, the
salinity increases with depth from 1% to >10%, the sulphate
concentration is very low or below detection, and the concen-
trations of hydrogen and methane increase from 1 to
>20 mM and 5 mM to >50 mM, respectively. At depths of

250–350 m, there is a layer in which sulphate-rich and meth-
ane-rich groundwater mix (Pedersen et al. 2008; Posiva Oy
2009).

The construction of the ONKALO tunnel intersects
groundwater-conducting aquifers; this generates a drawdown
of sulphate-rich groundwater that mixes with the deep meth-
ane-rich groundwater. This mixing layer is expected to slowly
move deeper in the water-conducting fracture system due to
the drawdown effect (Aalto et al. 2011). In other words, the
construction of ONKALO can be regarded as a large-scale
experiment investigating how a slow and continuous mixing
of sulphate-rich groundwater with methane-rich groundwater
influences microbial diversity and activity.

Initial research into microorganisms in Scandinavian deep
granitic aquifers strongly suggested that the vast majority of
these microorganisms live attached to surfaces and that
they are more metabolically active than are unattached
microorganisms (Ekendahl and Pedersen 1994; Pedersen and
Ekendahl 1992a, 1992b). This poses a sampling challenge,
because core drilling is required to collect attached microor-
ganisms (J€agevall et al. 2011). Due to the obvious risk of the
contamination and washout of attached microorganisms by
drilling water, an alternative investigation approach is to use
in situ experimental installations in underground tunnels
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(Pedersen 2012a) or mines (Lin et al. 2006). Flow cells (FCs)
incorporating rock surfaces or other solid materials can be
installed in contact with deep aquifers under in situ conditions
and later be sampled after the attachment of and biofilm for-
mation by groundwater microorganisms.

In this work, deep groundwater from a methane-rich, sul-
phate-poor aquifer from a depth of 399 m was circulated
through crushed rock in FCs for 70 days at in situ pressure.
Sulphate was then added to the circulating groundwater, and
metabolic activity, numbers of cultivable microorganisms,
and 16S rDNA diversity in biofilms and groundwater were
studied for 103 d. The effect of adding a 10% portion of
groundwater from the mixing layer (318 m), containing a
large diversity of sulphate-reducing bacteria (SRB), to meth-
ane-rich, sulphate-poor groundwater devoid of SRB was also
investigated.

The microbial diversities of cultures were analyzed
using cloning and 16S rDNA Sanger sequencing, while
the attached and unattached microbial diversities were
examined using 454 pyrotag sequencing of the bacterial
v4v6 region of 16S rDNA. The concentrations of H2, meth-
ane, sulphate, sulphide, ferrous iron, organic acids, and car-
bon as well as pH and Eh were analyzed. The numbers of
cultivable heterotrophic aerobic bacteria (CHAB), SRB,
nitrate-reducing bacteria (NRB), iron-reducing bacteria
(IRB), autotrophic acetogens (AA), heterotrophic methano-
gens (HM), and virus-like particles (VLP) as well as the total
number of cells (TNC) and amounts of unattached and
attached biomass measured as ATP were determined.

Materials and Methods

Groundwater Sources and Characterization

A 76-mm-diameter borehole denoted ONK-KR15 was
drilled in the ONKALO tunnel at a depth of 387.9 m (Tor-
opainen 2011). The drilling was conducted at an 8.6� incli-
nation on 23–28 February 2011 to a total length of
79.96 m. A metal-free packer system isolated an aquifer
in the borehole located 75.0–75.2 m from the tunnel rock
face at a depth of 399 m; the transmissivity of the aquifer
was 7.6 £ 10¡9 m2 s¡1. The groundwater was directed by
this packer system to the FCs described next and then
back to the aquifer via two parallel, 1/8-inch polyethere-
therketone (PEEK) thermoplastic tubes of high-pressure
liquid chromatography quality (IDEX Health and Science,
Oak Harbor, WA, USA). The packer system is illustrated
in Figure 1 and described in detail elsewhere (Pedersen
2005). The system was modified by using a 6-mm stainless
steel tube to shield the PEEK tubing in the part of the
drillhole exposed to air. The second source of groundwa-
ter was a 76-mm-diameter borehole denoted ONK-PVA6
drilled in the ONKALO tunnel at a depth of 318.7 m
(Toropainen 2009). The drilling was conducted at a 14.8�

inclination on 3–4 November 2009 to a total length of
35.15 m. A metal-free packer system isolated an aquifer
in the borehole located 32.7–32.9 m from the tunnel rock
face at a depth of 327 m. Groundwater samples for

chemical analysis were collected from these boreholes on
12 April 2012 and immediately transported to Teollisuu-
den Voima, where the chemical analyses were performed
according to internal protocols or were subcontracted to

Fig. 1. Images of the experimental systems. (a) The packer sys-
tem used to isolate the aquifer to which flow cells (FCs) with
crushed rock were connected. (b) The FCs were installed under-
ground in series, four by four, in racks with flow meters and
pumps. Groundwater was circulated from the isolated aquifer
through the FCs and back to the aquifer for 70 days. The FCs
were then disconnected and transferred to (c) temperature-con-
trolled flow cell circulation systems in the laboratory.
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external laboratories as described in detail elsewhere (Sup-
plementary Table 3 in Pedersen et al. 2008).

FC Systems for Field Work

Three identical FC field systems comprising four FCs each,
a micropump (Micropump GAH, series V21 J with a
PEEK impeller; Labinett, G€oteborg, Sweden), two pressure
meters (S-11, 40 Bar 4–20 G1/2; WIKA – AB Svenska
Industri Instrument, G€oteborg, Sweden), a flow meter
(Promag 50; EndressCHauser Flowtech AG, Sollentuna,
Sweden), and a 4-L expansion vessel (Pedersen 2005) were
installed in a container placed in the ONKALO tunnel at a
depth of 387 m and connected to the packer system in
ONK-KR15 (Figure 1). Each FC consisted of a steel tube
(length 300 mm, diameter 65 mm) lined with polyvinyldi-
fluoride (PVDF) plastic. Each FC also had a 120-mm-long
PVDF insert with a 22 £ 32-mm opening that supported
110 g of crushed rock grains offering a rock surface area
of approximately 850 cm2 per FC for microbial adhesion
and biofilm formation, assuming spherical rock grains with
an average diameter of 3 mm.

The rock grains, which were heat sterilized (160�C for
5 h), were obtained from the drill core of the ONK-KR15
drillhole at the approximate location of the intersected
aquifer. Three flow stabilizers at each end of the insert
ensured an evenly distributed slow laminar flow of water
through each FC (Pedersen 1982). The FCs were installed
on 7 February 2012. Groundwater was circulated through
them at an in situ pressure of 3.2 MPa for 70 d at a flow
rate from and to the aquifer of 22–25 mL min¡1. The total
volumes of groundwater circulated were 2562, 2381, and
2287 L in the three field systems, respectively, as registered
by the flow meters.

Configuration of Growth Experiments

The 12 FCs exposed to ONK-KR15 groundwater for 70 d
were transported under pressure from the ONKALO tunnel
to the laboratory in M€olnlycke, Sweden, and four replicate
FCs were installed in each of three flow cell circulation sys-
tems (FCCSs), resulting in a total of three treatment possibili-
ties (Figure 1). Sulphate and ONK-PVA6 groundwater were
then added as follows: Three Teflon-lined, 500-mL stainless
steel cylinders (304L-HDF4-500-T; Swagelok, G€oteborg,
Sweden) were filled at room temperature (RT, 20�C) with: 1)
500 mL of ONK-KR15 groundwater, 2) 5 mmol Na2SO4

dissolved in 500 mL of ONK-KR15 groundwater, and 3)
5 mmol Na2SO4 dissolved in 500 mL of ONK-PVA6
groundwater. Each cylinder was connected in line with the
circulating groundwater in one FCCS, resulting in a total cir-
culating volume of 5500 mL per FCCS.

These treatments are hereafter denoted control, sulphate,
and sulphate C ONK-PVA6. The start date for these ground-
water circulations was 26 April 2012 and the end date was 7
August 2012, the duration of the experiment being 103 d.
The flow rate was kept at 22–25 mL min¡1, corresponding to
a flow of approximately 1 mm s¡1 over the rock grains. Four

pressure-resistant microsensor Eh electrode couples equipped
with one platinum micro-electrode with a tip diameter of
400–600 mm (RD500; Unisense A/S, Aarhus, Denmark) and
one Ag/AgCl reference electrode with a tip diameter of 90–
110 mm in gel-stabilized electrolyte (REF100; Unisense) were
installed in line in each FCCS. The electrodes represented an
adaptation of the standard glass Unisense microsensors
mounted in the stainless steel flow cells. The electrodes were
connected to two eight-channel mV amplifiers that trans-
formed the recorded voltages into digital signals, which were
subsequently collected and stored in Microsoft Office Excel
files every 600 s using SensorTrace Basic software (version
1.9; Unisense A/S).

Complete sampling was performed six times, i.e., on days
0, 7, 19, 40, 61, 82, and 103, for analysis as described next.
On each sampling occasion, 20 mL of circulating water was
drained and discharged; two 25-mL volumes of water were
collected in sterile 50-mL polypropylene (PP) tubes (Sarstedt,
Landskrona, Sweden) and deep frozen until sulphate analy-
sis, and 10 mL of water was collected in a sterile 15-mL PP
tube for immediate ATP analysis. Six 10-mL volumes of
water were collected, using syringes, in butyl rubber-stop-
pered anaerobic glass tubes (no. 2048-00150; Bellco Glass,
Vineland, NJ, USA) for MPN analysis and 10 mL was col-
lected for CHAB analysis. Two 10-mL volumes of water
were collected in PP tubes, preserved with 0.02 mm of filtered,
neutralized formaldehyde to a final concentration of 2.5%,
and analyzed for TNC and VLP, respectively. Thereafter,
9 mL of water was sampled for sulphide analysis, and two
5-mL volumes were sampled using a 0.2-mm syringe filter
(Minisart, Sartorius syringe filter, hydrophilic; Fisher Scien-
tific, G€oteborg, Sweden) and stored at ¡20�C until acetate
and lactate analyses could be performed.

Next, 25 mL of water was sampled using a 0.2-mm syringe
filter (Minisart) for immediate ferrous iron analysis. Two
10-mL volumes of water were sampled using a 0.2-mm
syringe filter (Minisart) and deep frozen until DOC analysis.
Finally, 10 mL of groundwater was collected for pH analysis
and 100 mL for gas analysis. In total, 334 mL of water was
sampled on each sampling occasion. After sampling the water
on days 0 and 103, one batch of rock grains was collected
from each of two FCs in each FCCS for subsequent analysis
of the amount of attached ATP and the 16S rDNA diversity.

Acetate, Lactate, Organic Carbon, Ferrous Iron, Sulphate and

Sulphide Analysis and pH

Acetate and lactate concentrations were determined using the
enzymatic UV method (kit no. 10148261035 for acetate and
kit no. 10139084035, for lactate; Boehringer Mannheim/R-
Biopharm AG, Darmstadt, Germany) using a Genesys 10UV
spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA) for detection. Samples for dissolved organic car-
bon (DOC) analysis were diluted 1–100 times before analysis
to obtain the optimal analytical concentration range. Sam-
ples of 25 mL were filtered through 0.2-mm hydrophilic
syringe filters (Minisart) and deep frozen at ¡20�C until anal-
ysis at ALS Scandinavia AB (T€aby, Sweden) according to the
CSN EN 1484 method. The uncertainty was §20% of the
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analyzed values. Sulphate was analysed using the SulfaVer 4
method (method no. 8051, programme 680; HACH Lange
AB; range 0.03–0.73mM with 95% confidence limits of distri-
butionof §10%). Sulphide was analyzed using a colorimetric
methylene blue method with an uncertainty of §17% (Swed-
ish Standard Method SIS 028115). Ferrous iron concentra-
tions were determined using the 1-10 phenanthroline method
(method no. 8146, program 255, range 0.4–54 mM with 95%
confidence limits of distribution of §11%; HACH Lange AB,
Stockholm, Sweden). The pH of 5-mL subsamples was deter-
mined immediately following extraction from the FCCSs,
using a Schott CG84310 pH meter (Schott AG, Mainz, Ger-
many) fitted with a BlueLine 13 pH electrode (VWR, Stock-
holm, Sweden) calibrated according to the manufacturer’s
instructions.

ATP Analysis

The ATP Biomass Kit HS (no. 266–311; BioThema, Han-
den, Stockholm) was used to determine total ATP in cells
living in groundwater. The ATP biomass method used here
has been described, tested in detail, and evaluated for use
with Fennoscandian Shield groundwater (Eydal and Peder-
sen 2007). The method was also used for biomass attached
to the rock grains, but with the following modification:
Approximately 10 rock grains were sampled from each of
two FCs per FCCS and placed in ATP extraction solution
and analyzed.

TNC and VLP

The TNC mL¡1 was determined in 10-mL samples using
the acridine orange direct count method as devised by
Hobbie et al. (1977) and modified by Pedersen and Eken-
dahl (1990). The total number of VLP was determined
using a direct count method with SYBR Gold (Molecular
Probes, Eugene, OR, USA) according to Noble and Fuhr-
man (1998).

Gas Sampling and Analysis

Water samples were collected using a pressure vessel as
described elsewhere (Hallbeck and Pedersen 2008). The
sample was transferred to a vacuum container and any gas
in the water was boiled off under vacuum (i.e., water vapor
pressure) at RT; the transfer time was approximately 20–
30 min. After extraction, the gas was compressed and
transferred to a 10-mL syringe (SGE Analytical Science,
Melbourne, Victoria, Australia) and the volumes of
extracted gas and water were measured. The captured gas
was subsequently transferred to a 6.6-mL glass vial stop-
pered with a butyl rubber stopper and sealed with an alu-
minium crimp seal. The vial had previously been evacuated
and flushed twice with N2, and left under high vacuum (1
Pa). A silica gel dehydrant was added to adsorb any traces
of water remaining in the gas. Analysis was then performed
using gas chromatography.

Two different chromatographs were used and equipped
as follows. H2 (<20 ppm) Ar and CO2 were analyzed on a
Bruker 450 gas chromatograph equipped with a CP7355

PoraBOND Q 50 m £ 0.53 mm ID column, a CP7536
MOLSIEVE 5A PLOT 25 m £ 0.32 mm ID column, and
a pulsed discharge helium ionization detector (PDHID)
(Bruker Daltonics Scandinavia AB, Solna, Sweden). He
and N2 were analyzed on a Varian Star 3400CX gas chro-
matograph (Varian Analytical Instruments, Varian AB,
Bromma, Sweden) using a thermal conductivity detector
with oven, detector, and filament temperatures of 65, 120,
and 250�C, respectively. The gases were separated using a
Porapak-Q column (2 m £ 1/8 inch diameter; Sigma-
Aldrich, St. Louis, MO, USA) followed by a molecular sieve
5A column (6 m £ 1/8 inch; Sigma-Aldrich) with argon as
the carrier gas. CH4, C2H6, and CO were analyzed on a
Varian Star 3400CX gas chromatograph (Varian Analytical
Instruments) using a flame ionization detector (FID) with
an oven temperature of 65�C and a detector temperature of
200�C. The gas was separated using a Porapak-Q column
(2 m £ 1/8 inch diameter; Sigma-Aldrich) and analyzed on
the FID with N2 as the carrier gas.

Cultivation Media

Media were prepared for CHAB and for the most probable
number analysis of NRB, IRB, MRB, SRB, AA, and AM as
described elsewhere (Hallbeck and Pedersen 2008). The culti-
vation time was about 8 weeks to ensure that slow-growing
microorganisms would be included in the results.

DNA Extraction from MPN Cultures, Groundwater,

and Biofilms

Total genomic DNA from groundwater and most probable
number (MPN) cultures was extracted according to the man-
ufacturer’s protocol using the MO BIO PowerWater DNA
isolation kit (cat. no. 12888) and from biomass attached to
rock grains using the MO BIO PowerBiofilm DNA isolation
kit (cat. no. 24000–50), both from MO BIO Laboratories,
Carlsbad, CA, USA. The extraction volume of the MO BIO
extraction kits used in this work was 100 mL.

Groundwater was pressure filtered using high-pressure,
stainless steel, 47-mm filter holders (X4504700; Millipore
AB, Solna, Sweden) equipped with the water filters from
PowerWater kit filter units (MO BIO Laboratories). The fil-
ter holder was equipped with a pressure relief valve (Swage-
lok SS-RL3S6MM; SWAFAB, Sollentuna, Sweden) and a
manometer that enabled adjustment of a pressure drop over
the filter between 200 and 400 kPa relative to the ambient
aquifer pressure. Groundwater was filtered at a flow rate of
0.05–0.2 L min¡1 from the ONK-PVA6 and ONK-KR15
tunnel boreholes on 17 April 2012. The approximate filtered
volumes of groundwater were 57 L for the high-permeability
aquifer in ONK-KR15 and 14 L for the low-permeability
aquifer in ONK-PVA6.

From selected MPN cultures, 9 mL of culture was filtered
onto 0.22-mm water filters (cat. no. 14880-100-WF; MO
BIO Laboratories) using vacuum suction. Using sterile,
DNA-free tweezers, 40 rock grains were collected from each
of the three FCCSs and pooled (2 g of rock) on day 0, and
80 rock grains were collected from each FCCS and pooled

620 Pedersen et al.



(4 g of rock) on day 103; these rock grains were placed
directly into empty biofilm DNA extraction vessels provided
by the manufacturer.

Total extracted nucleotide concentrations were measured
using the ND-1000 UV-vis spectrophotometer (Nanodrop
Technologies, Wilmington, DE, USA) and double-stranded
(ds) DNA concentrations were measured fluorometrically
using the Stratagene MX3005p fluorometer with MXPro
software (Agilent Technologies, Santa Clara, CA, USA) and
the Quant-it Picogreen reagent kit (cat. no. P7589; Molecular
Probes), according to the manufacturer’s specifications. The
extracted DNA was stored at ¡20�C and subsequently used
for sequencing.

Cloning and 16S rDNA Sequencing of MPN Cultures

The species diversity of MPN culture microorganisms was
gauged by their bacterial 16S rDNA sequence. The PCR
amplification used the universal 16S rDNA forward and
reverse primers 27f and 1492r, respectively (Lane 1991).
Thermal cycling conditions were 98�C for 30 s, 30 cycles
of 98�C for 30 s, 60�C for 30 s, and 72�C for 30 s with a
final extension of 72�C for 5 min. The amplification prod-
ucts were visualized using gel electrophoresis on 1% aga-
rose gel, stained with ethidium bromide, and illuminated
by UV exposure. Amplification products were then puri-
fied using a QIAquick Gel Extraction Kit (cat. no. 28704;
QIAGEN, Solna, Sweden) following the manufacturer’s
protocol. To produce 3´A overhangs of the blunt-ended
iProof polymerase product, 1 mL of Taq polymerase (cat.
no. 18038–042; Molecular Probes) and additional dATP
were added to the reaction mixtures, which were then
incubated for 30 min at 72�C.

The purified samples were cloned into the linearized PCR
2.1-TOPO vector and transformed into chemically compete-
nt TOP10´F Escherichia coli cells using the TOPO TA
cloning kit (cat. no. K4550-01; Molecular Probes) following
the manufacturer’s protocol. White clones containing the
insert were randomly selected and each colony was inocu-
lated on-to LB agar plates containing kanamycin (40 mg
mL¡1) and incubated overnight at 37�C. The recombinant
plasmids were extracted and subsequently sequenced using
the Value Read Plate service (Eurofins MWGOperon, Ebers-
berg, Germany) with the M13rev(¡29) sequencing primer
(5´-CAGGAAACAGCTATGAC-3´) and the M13uni(¡21)
sequencing primer (5´-TGT AAAACGACGGCCAGT-3´)
provided by Eurofins MWG for the Value Read Plate service
for the 16S rDNA clones.

Raw data sequences were screened for chimeric sequen-
ces using the Bellerophon program (Huber et al. 2004).
Sequence data were analyzed and aligned using the Genei-
ous 6.0.3 software package (Biomatters, Auckland, New
Zealand). The 16S rDNA reference gene E. coli Brosius
with accession number J01695 was used as a sequence
mask for aligning the 16S rDNA clones (Huber et al.
2004). In addition, the clones were compared with sequen-
ces available in the BLAST nucleotide database. Sequence
homology was analyzed using either the nucleotide–nucleo-
tide algorithm or the 16S rDNA microbial algorithm.

Sequences that were <99.9% similar to database records
were submitted to the GenBank database under accession
numbers KC676781 to KC676786.

454 Pyrotag Sequencing, Processing, and Analysis of DNA

from Groundwater and FC Biofilms

The degenerate forward 518F (5´-CCAGCAGCYGCGG-
TAA-3´) and reverse 1064R (5´-CGACRRCCATGCAN-
CACCT-3´) primers targeting the v4v6 region of the bacterial
16S rDNA were used for pyrotag sequencing on a 454 Roche
GS-FLX system (454 Life Sciences, Branford, CT, USA)
using the Roche Titanium protocol for generating reads as
part of the Census of Deep Life initiative (http://www.
deepcarbon.net/content/deep-life). The beginning and end
of each read were trimmed for primer bases, and sequences
likely to be of low quality based on assessment of pyrotag
sequencing error rates were removed (Huse et al. 2007). The
454 pyrotag sequence processing to assign a taxonomic classi-
fication was done using the Global Alignment for Sequence
Taxonomy (GAST) tag mapping methodology (Sogin et al.
2006), in which the reference database of 16S rDNA,
RefSSU, was based on the SILVA database (Pruesse et al.
2007). If two-thirds or more of the full-length sequences
shared the same assigned operational taxonomic unit (OTU),
the tag was assigned to that OTU. Tags that did not match
any reference tag according to BLAST were not given a taxo-
nomic assignment.

Further details of methodology and library construction
can be found elsewhere (Marteinsson et al. 2013). The repre-
sentativeness of sequences was tested by rarefaction analysis
and the Chao index was used to estimate OTU richness. To
statistically estimate the abundance and evenness of each
sample, Shannon and Simpson indices were calculated. Dis-
tance calculations for sequence similarities were performed
using the Morsita–Horn algorithm. The data generated have
been submitted to the NCBI Sequence Read Archive (SRA)
with accession numbers SRX268395 and SRX268398–
SRX268402. Sequences appearing at approximately 3% or
more frequency-abundance were searched using BLAST
against the GenBank nucleotide database and sample sites of
the closest match were registered. These sequences were
aligned using BioEdit 7.1.3.0 (Tom Hall, Ibis Biosciences,
Carlsbad, CA, 92008) and the identity of sequences between
samples was analyzed.

Bioinformatics and Statistical Analyses

The 454 data were evaluated using the Visualization and
Analysis of Microbial Population Structure (VAMPS) web-
site (www.vamps.ml.edu). Data graphics design and statisti-
cal analyses were performed in Statistica 10 (Statsoft, Tulsa,
OK, USA).

Results

Groundwater Characterization

The geochemistry of groundwater from ONK-PVA6 and
ONK-KR15 was analyzed on 12 April 2012 (Table 1). The
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ratios of the groundwater parameters shown in Table 1
indicate that the two experimental groundwater types only
differed substantially in their content of sulphur com-
pounds; otherwise, most other parameters differed at most
by a factor of 2, which can mainly be ascribed to the
higher salinity of ONK-KR15 than of ONK-PVA6
groundwater. The composition of dissolved gases was ana-
lyzed twice in ONK-KR15 groundwater, on 11 January
and 17 April 2012, and once in ONK-PVA6 groundwater,
on 18 September 2012 (Table 2). More dissolved gas, par-
ticularly methane and hydrogen, was contained in ONK-
KR15 than in ONK-PVA6 groundwater.

There were 1.8 £ 104 cells mL¡1 and 4.5 £ 103 amol ATP
mL¡1 in the groundwater from OL-KR15 sampled on 11
January 2012 (Table 3). NRB dominated the MPN determi-
nation, with only the MPN of NRB and MRB being above
the detection limit. There were 4.9 £ 104 cells mL¡1 and 1.06
£ 104 amol ATP mL¡1 in the groundwater from OL-PVA6
sampled on 17 April 2012 (Table 3). IRB and MRB domi-
nated the MPN determination and the MPN of NRB and
SRB were also above the detection limit.

TNC, VLP, and ATP in the FCCSs

The total number of cells mL¡1 and the amount of ATP
mL¡1 did not differ significantly between the FCCSs for
most of the experimental time, but there was an increasing
trend in all three systems (Figures 2a and b). Similarly,
the amounts of ATP g¡1 of rock grains differed significantly

over time only in the sulphate C ONK-PVA6 FCCS
(Table 4). The numbers of VLPs were approximately con-
stant in all FCCSs and the numbers of VLPs per cell were
highest in the control and the sulphate FCCSs, while this
number was lower in the sulphateC ONK-PVA6 FCCS (Fig-
ure 2c). The number of VLPs per cell decreased significantly
after approximately 40 d from an average of 20 to an average
of 2–3 for the remaining experimental time. This decrease in
VLPs per cell was correlated with increasing TNC and ATP

Table 2. Concentrations of dissolved gases in ONK-KR15
groundwater, sampled on 11 January 2012, in ONK-KR15
groundwater used to fill the flow cell circulation systems sampled
on 17 April 2012 and in ONK-PVA6 groundwater

Gas

ONK-KR15,
11 January
2012, mM

ONK-KR15,
17 April
2012, mM

ONK-PVA6,
18 September
2012, mM

H2 1.89 3.66 0.21
Helium 208 216 79.6
Argon 32.2 32.5 19.8
N2 3720 3640 2740
Carbon

monoxide
0.06 0.21 0.03

Carbon
dioxide

0.44 11.0 1.0

Methane 6100 6190 1660
Ethane 21.7 20.0 8.42

Table 1.Geochemical parameters of the experimental groundwater and a comparative ratio for each parameter

Analysis Unit ONK-PVA6 ONK-KR15 PVA6/KR15

pH 8.1 7.9 1.03
Temperature �C 10.5 12.5 0.84
Total dissolved solids g L¡1 7.78 10.6 0.73
Conductivity mS cm¡1 13.70 18.30 0.75
Alkalinity mM 0.38 0.17 2.24
NH4

C mM 1.11 1.11 1.00
HCO3

¡ mM 377 164 2.30
Br mM 313 588 0.53
Ca mM 23.7 35.0 0.68
Cl mM 130 185 0.70
Na mM 82 107 0.77
Mg mM 2.3 1.5 1.51
DIC1 mM 308 <250 >1.23
DOC2 mM 167 267 0.63
Fe2C mM 0.4 <0.40 >1
F mM 42 79 0.53
NO3

¡ mM <0.30 <0.30 >1
NO2

¡ mM <0.20 <0.20 >1
PO4

3¡ mM 2.11 1.00 2.11
K mM 238 307 0.77
SiO2 mM 183 105 1.74
Sr mM 108 126 0.86
SO4

2¡ mM 1900 <8 >234
HS¡ mM 63 0.63 100

1Dissolved inorganic carbon; 2Dissolved organic carbon.
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concentration. The lytic activity of phages appears to have
decreased over time, allowing room for an increase in unat-
tached biomass.

Cultivated Microorganisms and Organic Acids in the FCCSs

The MPN of SRB increased to approximately 104 cells mL¡1

in both sulphate-amended FCCSs and was around the detec-
tion limit (i.e., 0.2 cells mL¡1) in the sulphate-poor control
FCCS (Figure 3a). The MPN of NRB was highest in the sul-
phate C ONK-PVA6 FCCS after 40 d (Figure 3b). At the
start and the end of the experiment, all three FCCSs had a
similar MPN of NRB. The MPN of IRB varied over time
and was highest in the sulphate C ONK-PVA6 FCCS (Fig-
ure 3c). Likewise, the numbers of CHAB were approximately
similar throughout the experiment in all FCCSs, averaging
approximately 5 £ 104 cells mL¡1 (Figure 3d). The MPN of
AA was at the detection limit in the control system and
increased to at most 1–10 AA mL¡1 in the sulphate-amended
system, and acetate was not produced in any of the FCCSs.
The MPNs of HM were below detection limits on all sam-
pling occasions in all FCCSs. The concentrations of acetate
and DOC did not change relative to the starting values on
sampling occasion 0 of 18 mM acetate and 0.25 mM DOC,
respectively.

Chemistry in the FCCSs

The methane concentrations decreased by approximately
15% relative to the starting values (Figure 2d). There
was less methane in the sulphate C ONK-PVA6 FCCS
because the added ONK-PVA6 groundwater contained
less methane than did ONK-KR15 groundwater (Table 2).

The pH decreased at roughly the same rate in all FCCSs,
declining from a starting value of approximately 8.2 to
approximately 7.5 after 103 d. The Eh of the control and
the sulphate FCCSs decreased to a steady level of approx-
imately ¡250 mV after 70 d, as registered by the internal
microelectrodes (Figure 3e). The Eh of the sulphate C
ONK-PVA6 FCCS slowly decreased to approximately
¡100 mV by the end of the experiment. The sulphate
additions resulted in 1 mM sulphate in the sulphate FCCS
and in a somewhat higher concentration in the sulphate C
ONK-PVA6 FCCS; this difference was due to a high sul-
phate concentration in the added ONK-PVA6 groundwa-
ter (1.9 mM) (Figure 3f). The sulphate concentration did
not change over the experimental time and was below
detection in the control FCCS. The sulphide concentration
was below detection in all FCCSs on all sampling occa-
sions. The ferrous iron concentration increased to approx-
imately 20 mM in all FCCSs.

Cloning and 16S rDNA Sequencing of MPN Cultures

DNA extracted from the highest dilutions of positive NRB
and SRB cultures inoculated on days 82 and 103 were cloned
and sequenced (Table 5). The sequence data revealed a total
of eight clone taxa from the studied MPN cultures. The
sequences found represented the Deltaproteobacteria,
Alphaproteobacteria, and Gammaproteobacteria phyla. The
dominant species affiliations were to Desulfovibrio aespoeen-
sis and Pseudomonas stutzeri with 41 and 14 clone observa-
tions, respectively; these clones were 99.9–100% similar to
database records in NCBI GenBank.

Table 3. The most probable numbers of cultivable microorganisms and the total number of cells in groundwater from borehole
ONK-KR15 sampled on 11 January 2012 and from borehole ONK-PVA6 sampled on 17 April 2012; SD D standard deviation,
n D number of observations

ONK-KR15 ONK-PVA6

Analysis SD (n D 3)

Upper–lower 95%
confidence interval

(cells mL¡1) SD (n D 3)

Upper–lower 95%
confidence interval

(cells mL¡1)

Total number of cells
(cells mL¡1)

18000 5000 — 49000 10000 —

ATP (amol mL¡1) 4500 810 — 10600 2230 —
Cultivable heterotrophic

aerobic bacteria
(cells mL¡1)

2500 436 — 70 17 —

Nitrate-reducing bacteria
(cells mL¡1)

800 — 300–2500 35 — 16–82

Iron-reducing bacteria
(cells mL¡1)

<0.2 — — 900 — 300–2900

Manganese-reducing
bacteria (cells mL¡1)

8 — 3–25 110 — 40–300

Sulphate-reducing bacteria
(cells mL¡1)

<0.2 — — 7 — 3–21

Acetogens (cells mL¡1) <0.2 — — <0.2 — —

Methanogens (cells mL¡1) <0.2 — — <0.2 — —
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DNA Recovery in the Groundwater and Biofilm Extractions

The total amounts of extracted DNA ranged from 26 to 243
£ 10¡9 g (Table 6). The average amount of DNA in a typical
groundwater bacterium, for example, D. aespoeensis (Mota-
medi and Pedersen 1998), is 649 Daltons/base pair £
3,629,109 bases (Locus CP002431) D 2.36 £ 109 Daltons
cell¡1 D 2.36 £ 109 Daltons cell¡1 £ 1.6605402 £ 10¡24 g
Dalton¡1 D 3.9 £ 10¡15 g DNA cell¡1. Approximately 57 L

of groundwater was filtered from ONK-KR15 and the DNA
recovery was 63 £ 10¡9 g of DNA (Table 6), which corre-
sponds to 1.62 £ 107 average-sized cells based on the DNA
estimate for D. aespoeensis. There were 1.8 £ 104 cells mL¡1

in ONK-KR15 groundwater at the start of filtration
(Table 3).

The calculated average DNA recovery then becomes 1.6%.
Calculated in the same way, the DNA recovery was 9.2% for
ONK-PVA6 groundwater. The number of cells in deep
groundwater tends to decrease during aquifer drainage; if this
occurred here, the DNA recovery was larger because a
decreasing TNC during filtration will increase the observed
amount of DNA over the total number of cells captured on
the filter. Using the same formula for biofilms suggests that
there were approximately 2 £ 106 cells (g rock grains)¡1,
which is more than the ATP analysis indicated, i.e., approxi-
mately 5 £ 105 cells (g rock grains)¡1, assuming an average
of 0.4 amol ATP per cell (Eydal and Pedersen 2007). It is
impossible to decide whether ATP underestimated the bio-
mass or whether free dsDNA was adsorbed on the rock from

Table 4. Amount of ATP on rock grains from FC 2 (n D 3) and
FC 4 (n D 3) in each flow cell circulation system

10Log(ATP) (amol g¡1) (§ SD)

Sampling day Control Sulphate
Sulphate C
ONK-PVA6

0 5.13 (§0.52) 4.91 (§0.48) 4.85 (§0.11)
103 5.24 (§0.1) 4.82 (§0.25) 5.42 (§0.13)

Fig. 2. (a) Total number of cells (TNC), (b) ATP concentration, (c) number of virus-like particles (VLPs) per total number of cells
(TNC), and (d) concentration of dissolved methane in groundwater circulating through the three flow cell cabinets supplemented
with 500 mL of ONK-KR15 groundwater (�), 500 mL of ONK-KR15 groundwater and 1 mM NaSO4 (&), and 500 mL of ONK-
PVA6 groundwater and 1 mMNaSO4 (~). Bars indicate §1 standard deviation; n D 3 in (a)–(b).
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Fig. 3. (a) Most probable number (MPN) of sulphate-reducing bacteria (SRB), (b) MPN of nitrate-reducing bacteria (NRB), (c)
MPN of iron-reducing bacteria (IRB), (d) cultivable heterotrophic aerobic bacteria (CHAB), (e) Eh measured using internal electrode
couples: average of four electrode signals (blue line in e), in the sulphate flow cell circulation system (FCCS) (red line in e), and in the
sulphate C ONK-PVA6 FCCS (green line in e), and (f) sulphate concentration in groundwater circulating through the three FCCSs
supplemented with 500 mL of ONK-KR15 groundwater (�), 500 mL of ONK-KR15 groundwater and 1 mM NaSO4 (&), and
500 mL of ONK-PVA6 groundwater and 1 mMNaSO4 (~).
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cells lysed by phages or from dead adsorbed cells. The three
different assays, i.e., DNA, TNC, and ATP, agreed reason-
ably well, given the relatively large uncertainties with the
input data for these calculations.

Groundwater 16S rDNA v6v4 Sequence Diversity

Except for 11 Desulfosporosinus reads ( D 0.06%), sequences
related to SRB were absent in the sequence library from
ONK-KR15 groundwater (Table 7). Not even singletons of
other SRB OTUs were found among the 18134 reads. Rare-
faction curves indicated that 90–95% of the 16S rDNA diver-
sity was captured for each sample. This observation agrees
well with the lack of cultivable SRB (Table 3). The dominant
sequences were closely related to the hydrogen-oxidizing

genus Hydrogenophaga (30.3%) (Willems et al. 1989) fol-
lowed by Pseudomonas- (8.8%) and Thiobacillus- (8.6%)
related sequences (Figure 4).

Archaea were represented by sequences related to Eur-
yarchaeota and to Thermoplasmata (3.5%), the latter
sequence having previously been described in samples from
deep South African goldmines (Gihring et al. 2006). Unlike
the sequence library from ONK-KR15 groundwater, that
from ONK-PVA6 groundwater was dominated by 454
sequences related to genus or family of SRB, represented by
Desulfobacula (33.3%) and Desulfobulbaceae (23.2%), respec-
tively (Figure 4). The three most abundant sequences from
ONK-KR15 were also found to some extent in the ONK-
PVA6 sequence library. The incidence of similar sequences in
the ONK-PVA6 and ONK-KR15 sequence libraries is rea-
sonable, because hydrological modelling suggests that inter-
mediate-depth, sulphate-rich groundwater containing SRB
penetrates downwards and mixes with the deep, sulphate-
poor groundwater in the aquifer region to which ONK-
PVA6 is connected (Aalto et al. 2011).

Biofilm 16S rDNA v6v4 Sequence Diversity

A clear phylogenetic similarity was observed among biofilm
samples, and the diversity profile of each FCCS treatment
indicated little change over 103 d relative to the biofilm diver-
sity on day 0 (Figure 4). Many of the OTUs found in ONK-
KR15 groundwater were also found in the FC biofilms. How-
ever, some genera seemed to prefer the planktonic state as
they were not found, or found at very low frequencies, in the
biofilms. Sequences related to the Fusibacter, Thermoplas-
mata, and Nitrospira OTUs were not found in the biofilm
sequence libraries. Others, such as the Brevundimonas OTU,
were ten times more abundant in the biofilms than in the
groundwater libraries.

Table 5. Taxa detected in clones from MPN cultures of SRB and
NRB sampled on days 82 and 103 from the sulphate and the sul-
phate C ONK-PVA6 flow cell circulation systems

Sample ID

Most similar
annotated record

in database
Number
of clones

SRB cultures Desulfovibrio aespoeensis 38
NRB cultures Pseudomonas stutzeri 14

Flavobacteriaceae bacterium 6
Rhizobium selenitireducens 5
Desulfovibrio aespoeensis 3
Hoeflea alexandrii 2
Marispirillum indium 1
Agrobacterium tumefaciens 1
Rhizobium sp. 1

Table 6. Amounts of extracted double-stranded DNA analysed fluorometrically using the Stratagene MX3005p fluorometer with
MXPro software and the Quant-it Picogreen reagent kit from Molecular Probes; observed and estimated diversity at total OTU level
(>0% sequence abundance) in groundwater and biofilm sequence libraries

Sample

Amount of
extracted
DNA

(g £ 10¡9)

Sampling
depth,i.e.,
number of
sequences

Number of
OTU at
>0%

abundance

Number of
OTU

at �0.1%
abundance

Number of
OTU
at �1%

abundance ACE1 CHAO2

Shannon-
Weaver
diversity
index

Simpson
diversity
index

ONK-KR15, 17
April 2012

63 18134 135 38 14 157 213 2.7 0.87

Biofilm, day 0 50 19769 126 37 12 139 158 2.55 0.85
Biofilm, day 103,

control
26 15330 108 39 13 117 147 2.6 0.86

Biofilm, day 103,
sulphate

46 20632 119 45 14 138 264 2.74 0.88

Biofilm, day 103,
sulphate C
ONK-PVA6

80 19074 113 47 17 119 131 2.68 0.86

ONK-PVA6, 17
April 2012

243 12795 116 37 13 133 157 2.33 0.81

1Abundance-based coverage estimator; 2 Unbiased richness estimate.
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Otherwise, most OTUs found in the groundwater were
also represented in a generally comparable order of fre-
quency-abundance in all biofilm samples. The Hydrogeno-
phaga, Lutibacter, and Pseudomonas OTUs together
constituted most of the sequence reads in all biofilm samples
at >50% sequence abundance and constituted 45% of the
sequence reads in ONK-KR15 groundwater. The biofilm
diversity appeared to constitute a good predictor of ground-
water diversity and vice versa.

The MPN of SRB in the sulphate-amended FCCS was
5000 cells mL¡1 on day 103 (Figure 3a), indicated by cloni-
ng to beD. aespoeensis (Table 5), while the control was below
detection (<0.2 cells mL¡1). The sequence data agreed with
this, with only 11 reads related to Desulfobulbaceae in the
contr-ol biofilm library on day 103, yet the sulphate biofilm
library had a total of 218 reads related to SRB, of which 168

(0.81%) were related to D. aespoeensis. The sulphate C
ONKPVA6 biofilm library similarly contained 211 reads
related to SRB with 43 related to D. aespoeensis and 22
related to the Desulfobacula OTU. Details on the frequency-
abundance of SRB are presented in Table 7.

Discussion

As outlined in the Introduction, two major hydrogeochemical
types of groundwater are layered over depth in Olkiluoto sep-
arated by a mixing layer between 250 and 350 m in depth.
Consequently, this variation over depth presents distinctly
different geochemical environments for microbial diversity
and activity. The 454 sequence diversities of these layers dif-
fered considerably, with most SRB-related sequences in the
ONK-PVA6 groundwater library representing the mixing
layer (Table 6). This agreed with the results for cultivable
microorganisms (Table 3) and with previous observations of
a significant reduction of sulphate to sulphide in the mixing
layer (Pedersen et al. 2008). In contrast, the deep groundwa-
ter system that feeds ONK-KR15 appeared “desert-like”
with a very low diversity of cultivable cells, i.e., only faculta-
tive anaerobic bacteria with a nitrate-reducing capacity
(Table 3).

Notably, the absence of sulphate appeared to exclude
SRB-related sequences from the ONK-KR15 groundwater
and biofilm sequence libraries. However, the species richness
(i.e., number of taxons >0%) and the calculated sequence
diversity indexes (Table 6) were somewhat greater for ONK-
KR15 than for ONK-PVA6 groundwater. The most abun-
dant sequences in the ONK-KR15 sequence library were
related to the potentially autotrophic, hydrogen-utilizing
genus Hydrogenophaga (Willems et al. 1989) and to Pseudo-
monas, Thiobacillus, and Fusibacter (Ravot et al. 1999). The
media used for cultivation were not supplemented with the
electron donors and acceptors used by these genera, such as
hydrogen and thiosulphate, which might have favoured their
growth. In view of these new results, cultivation media can
now be redesigned to increase the variety of cultivable micro-
organisms. Because PCR primers specific to Archaea were
not used in this analysis, the task of analyzing the full
Archaeal diversity in ONKALO groundwater remains.

Observed Sequence Diversity

Over the 103-d experimental time and the two treatments, the
diversity of the biofilms changed only slightly (Figure 4).
Alignment analysis of OTU sequences appearing in abundan-
ces >3% indicated that they were identical between the
groundwater and all four biofilm samples, except for the
Hydrogenophaga sequences, which varied somewhat in OTU
composition between the samples. Similarly, biomass ana-
lyzed as ATP (Table 4) and biofilm diversity changed little
over 103 d, implying a constant level of diversity in the
ONK-KR15 biofilms. The reproducible 454 pyrotag sequenc-
ing results for biofilms over treatments and time clearly attest
to the reproducibility and robustness of the DNA extraction
and 454 pyrotag sequencing methodology, in which each

Fig. 4. Composition of v4v6 pyrotag sequencing libraries for
samples of ONKALO groundwater and FCCS biofilms. Sequen-
ces with �1% frequency-abundance are shown. Bar designations:
KR15 D ONK-KR15 groundwater sampled on 17 April 2012; bf
0 D biofilm on day 0; bf C D control biofilm on day 103; bf S D
sulphate biofilm on day 103; bf S 6 D sulphate C ONK-PVA6
biofilm on day 103; PVA6 D ONK-PVA6 groundwater sampled
on 17 April 2012. NA: not annotated. The tree above the bar
graph depicts a Morisita–Horn distance measure, constructed
using an unweighted pair group method with arithmetic mean
(UPGMA) with taxonomic depth at the species level. The scale
bar represents 5% nucleotide substitutions.
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biofilm can be regarded as an independent sample for
sequencing.

The numbers of unique OTUs observed were in the 108–
135 range (Table 6), more than previously found in Kalahari
(Gihring et al. 2006) and Fennoscandian Shield (Pedersen
et al. 1996, 1997) groundwaters using cloning and sequenc-
ing, but somewhat fewer than found using 454 pyrotag
sequencing on subglacial waters (i.e., 208-410 OTUs; Mar-
teinsson et al. 2013) and over 10 times fewer than found in
deep seawater (Sogin et al. 2006). The observed 454 sequen-
ces were generally comparable to sequences from sediments,
salt marshes, groundwater, sludge, and lake waters reported
to GenBank (Table 7). However, although the similarities
were close to 100%, the Blast results were too diverse to per-
mit conclusions as to the global site specificity of the observed
OTUs from ONKALO.

The deep saline and slightly alkaline groundwater of Olki-
luoto may be under the influence of a much deeper ultramafic
environment with ongoing serpentinization, which could
explain the observed very high concentrations of methane
and hydrogen (Sherwood Lollar et al. 1993). Such subterra-
nean environments seem to enrich Hydrogenophaga else-
where (Brazelton et al. 2013). A similar enrichment was
suggested in the case of ONK-KR15 because this genus dom-
inated the 454 sequence library. The few percent of Archaea
sequences in the data set were related to Thermoplasmata
sequences from deep, saline groundwater from South African
goldmines (Gihring et al. 2006; Takai et al. 2001). The domi-
nation of Hydrogenophaga OTUs indicates that the diversity
of deep subterranean life is controlled by environmental
parameters that regulate the growth and activity of various
genera with relevant physiological and metabolic capacities.
Major relevant parameters would be the presence and
absence of various carbon and electron donors and electron
acceptors.

Effect of Sulphate on SRB Diversity and Activity

The only major difference in geochemistry between ONK-
KR15 and ONK-PVA6 groundwaters was the absence of
sulphate and sulphide from ONK-KR15 groundwater
(Table 1). This difference profoundly influenced the observed
numbers of cultivable SRB and the 16S rDNA diversity of
SRB, which were great in ONK-PVA6 groundwater and vir-
tually absent from ONK-KR15 (Figure 4, Tables 3 and 7).
With sulphate being the main available electron acceptor in
the mixing layer, methane could potentially be the largest
electron donor for sulphate reduction, 10 times larger in con-
centration than the second-largest potential electron donor,
DOC (Tables 1 and 2). However, unlike methane, which, if
oxidized by microorganisms, can be continuously replenished
from the deep methane-rich layer via diffusion and ground-
water movement, DOC must be synthesized by chemo- or
photo-autotrophic metabolic processes.

In a previous study, the production of at most 320 mM
acetate was observed in FCCSs charged with ONK-PVA6
groundwater, and it was speculated that the acetate was pro-
duced by microorganisms using methane as the source of

carbon (Pedersen 2013). Several of the SRB in ONK-PVA6
(Table 7) are known as complete acetate-oxidizing genera,
i.e., Desulfobacterium (Brysch et al. 1987), Desulfobacula,
and Desulfotignum (Kuever et al. 2001). Consequently, in
agreement with the presence of acetate and its possible
production from methane, present and previous results
suggest that the mixing of intermediate-depth sulphate-
rich and deep methane-rich groundwaters induced a sul-
phate-reducing microbial community using methane and
acetate as the key electron and carbon donors in the aqui-
fers of ONK-PVA6.

The construction of the ONKALO tunnel causes a draw-
down of sulphate-rich groundwater that mixes with the deep
methane-rich groundwater. It has been found that the mixing
layer is slowly moving deeper in fractures intersected by the
ONKALO tunnel. The ONK-PVA6 borehole was drilled on
3–4 November 2009 and the groundwater at that time was
sulphate poor. The sulphate concentration has, due to the
drawdown, been slowly rising since then to 1.9 mM, analyzed
as of 12 April 2012. The FCCS experiments reported here
were designed to mimic this human-induced transition in
groundwater geochemistry that is slowly working its way
deeper in ONKALO, triggering SRB growth in the mixing
layer. Sequences and cultures with sulphate-reducing ability
appeared in both groundwater and biofilms in the sulphate-
enriched FCCS in similar proportions, i.e., approximately
1% of total numbers of cells and sequences (Tables 1 and 7).
Sulphate was consequently the only compound needed to
cause SRB growth in ONK-KR15 groundwater. Adding
ONK-PVA6 groundwater had only a small effect on the
sequence diversity and number of cultivable microorganisms.

The ONK-PVA6 groundwater had sequences representing
Desulfobacula, an OTU found in the Sulphate C ONK-
PVA6 biofilm but not in the sulphate biofilm. Otherwise, the
two treatments did not differ substantially. The effect of sul-
phate was slow, and it took more than 60 d for the MPN of
cultivable SRB to increase (Figure 3a). This coincided with
the time when Eh approached –250 mV in the sulphate
FCCS, which is a typical Eh at which SRB activity has previ-
ously been observed in the FCCSs (Pedersen 2012b).
Although no SRB-related sequences were detected in the con-
trol biofilm 454 sequence library, there may still have been a
few cells of SRB genera in the rare biosphere (Sogin et al.
2006) of the FCCSs that could grow after the sulphate treat-
ment. The FCCS experiment accordingly corroborated the
hypothesis that sulphate is the only compound needed to
invoke SRB growth in sulphate-poor deep groundwater of
Olkiluoto.

A high Km for methane of 37 mM has been reported for
an anaerobic oxidation of methane (AOM) process in sedi-
ments (Zhang et al. 2010). If methane was the main electron
donor for the SRB community, the observed slow increase in
cell numbers and the limited representation of SRB-related
OTUs in the sequence libraries of the sulphate-amended
FCCSs may relate to such a high Km for AOM with sulphate.
Consequently, although AOM with sulphate may have been
ongoing in the sulphate-amended FCCSs, the process may
have been too slow for detection at the apparent methane
concentration of approximately 4.5 mM.

Sulphate-controlled Microbial Communities 629



The presence of viruses, i.e., phages that attack microor-
ganisms in groundwater must originate from lytic infec-
tions of host microorganisms. Investigation of €Asp€o Hard
Rock Laboratory groundwater for phage abundance
returned large numbers of a diverse phage population
(Kyle et al. 2008). The average ratio of VLP to TNC was
12, indicating active microbial populations. If phages in
deep groundwater are active and lytic, they will constitute
an important group of predators that might control micro-
organism numbers and activity. Furthermore, their pres-
ence suggests that their prey—the microorganisms—are
active and growing. The ratio of VLP to TNC was high
during the first half of the experiment, after which it
decreased to 2–4 (Figure 1c). This decrease coincided with
the increase in NRB and SRB in the sulphate-amended
FCCSs (Figures 2a and b). It seems as the phages initially
exerted a significant controlling effect on the numbers of
microbial cells, in particular SRB, in the FCCSs.

In conclusion, this work has demonstrated a clear rela-
tionship between deep groundwater composition and
microbial diversity. The presence/absence of only one geo-
chemical parameter, i.e., sulphate, in the groundwater
induced a very large community transition. The investi-
gated subterranean microbial communities consequently
had the capacity to respond to changes in the geochemical
environment by manifesting community transitions. Both
cultivation and 454 pyrotag sequencing indicated SRB
communities to be very competitive in the deep biosphere
in the presence of sulphate. Because SRB activity generates
sulphide that is corrosive to metals, these conclusions
should be considered when evaluating the influence of
microbial processes on the future geological disposal of
radioactive wastes in metal canisters.
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