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Meteorological studies in high-mountain environments form the basis of our
understanding of catchment hydrology and glacier accumulation and melt processes,
yet high-altitude (.4000m above sea level, asl) observatories are rare. This research
presents meteorological data recorded between December 2012 and November 2013 at
seven stations in Nepal, ranging in elevation from 3860 to 5360m asl. Seasonal and
diurnal cycles in air temperature, vapour pressure, incoming short-wave and long-wave
radiation, atmospheric transmissivity, wind speed, and precipitation are compared
between sites. Solar radiation strongly affects diurnal temperature and vapour pressure
cycles, but local topography and valley-scale circulations alter wind speed and
precipitation cycles. The observed diurnal variability in vertical temperature gradients
in all seasons highlights the importance of in situ measurements for melt modelling.
The monsoon signal (progressive onset and sharp end) is visible in all data-sets, and the
passage of the remnants of Typhoon Phailin in mid-October 2013 provides an
interesting case study on the possible effects of such storms on glaciers in the region.

Keywords: meteorology; glaciers; water resources; monsoon; Himalaya; Nepal

Introduction

High-altitude catchments in Asia play a pivotal role in regional hydrology and water

resources (Immerzeel, van Beek, & Bierkens, 2010; Viviroli, Dürr, Messerli, Meybeck, &

Weingartner, 2007). Glacier melt, snow melt, and rainfall contributions to streamflow vary

across the region (Lutz, Immerzeel, Shrestha, & Bierkens, 2014) and are ultimately

determined by the interactions between terrain and atmospheric circulation patterns.

However, future climate changes are projected to substantially impact snow and glacier

water resources (Lutz et al., 2014), and warming signals appear to be enhanced at high

elevations (Rangwala & Miller, 2012). Identification of glacier responses to climate

change in this large and remote area is challenging, but nevertheless required to quantify

glacier contribution to water resources (Immerzeel, Pellicciotti, & Bierkens, 2013; Kaser,

Grosshauser, & Marzeion, 2010) and sea-level rise (Gardner et al., 2013), or to reliably

project their response to twenty-first-century climate changes (Marzeion, Jarosch, &

Hofer, 2012; Radić & Hock, 2011).

Glaciers are good climatic indicators (Oerlemans, 2001), and recent studies have

demonstrated that glaciers across the Karakoram-Himalaya region experience contrasting

patterns of volume change (Gardelle, Berthier, Arnaud, & Kääb, 2013; Kääb, Berthier,
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Nuth, Gardelle, & Arnaud, 2012). Over the last decade, Karakoram glaciers have been in

balanced conditions or slightly gaining mass (the so-called Karakoram anomaly; Hewitt,

2005) though glaciers in the Himalaya have been shrinking at an accelerated rate since the

beginning of the twenty-first century (Azam et al., 2014a; Bolch et al., 2012). Spatial

patterns of glacier change have been linked to both climatic changes (Shrestha & Aryal,

2011) and the geomorphologic characteristics of glaciers (i.e. debris-covered versus clean

glaciers (Scherler, Bookhagen, & Strecker, 2011). From west to east, the region is subject

to different climate systems, with an increased influence of the Asian and Indian summer

monsoons and simultaneously decreased influence of westerly storm systems (Bookhagen

& Burbank, 2006).

Long-term, high-resolution meteorological records at glacier elevations are an

essential prerequisite to (1) place the observed glacier changes in the context of current

climatic change and (2) calibrate and validate statistically and dynamically downscaled

climate fields (Maussion et al., 2014; Mölg, Maussion, Yang, & Scherer, 2012), which are

essential for spatially distributed models of glacier–climate response and hydrology. But

in this region, where glaciers are located at high altitudes in remote environments that are

difficult to access, the collection of long-term and high-quality meteorological data is

challenging. Consequently, year-round meteorological observations at high-altitude

glacier stations are extremely scarce in the Himalaya (Table 1), especially in comparison

with other mountain regions such as the European Alps. Nevertheless, before making any

projections of future glacier change, understanding how glaciers respond to the present

climate is necessary, and this requires combining meteorological records at glacier

elevations with glaciological monitoring.

Table 1. A summary of selected high-elevation automatic weather stations (AWS) in the HKH
region, with elevation (Z) and on- or off-glacier designation, station type (A ¼ year-round,
S ¼ seasonal/temporary), and type of observations: T ¼ temperature, RH ¼ relative humidity,
P ¼ precipitation, u ¼ wind speed, u ¼ wind direction, K # ¼ downwelling short-wave radiation,
L # ¼ downwelling long-wave radiation, p ¼ atmospheric pressure.

Site Z (m)
Station
type Observations Period

Country/
source

Pyramid 5035 (off) A T, RH, P, u, u,
K # , L # , p

1994–2014 Nepal/1, 2

Khumbu 5350 (on) S T, RH, u 1999 Nepal/3
Everest S. Col 7986 (off) S T 1998 Nepal/4
EB050 Khumbu 5160 (on) S P 1976 Nepal/5
Mera 5360 (on) A T, RH, u, u,

K # , L # , p
2009–2010,

2012–2014
Nepal/6

AX010 4958 (off) S T, P 1973–1978 Nepal/7
Hidden Valley 5055 (off) S T, RH, P, p 1974 Nepal/8
Tibetan Plateau 4070, 4420 A K # , L # 1998, 2003 China/9
Zhadang 5400, 5660, 5800 A T, RH, P, u, u,

K # , L # , p
2005–2011 China/10, 11

Baltoro 5033 (on) S T, RH, u, u,
K # , L # , p

2004 Pakistan/12

Baltoro 4022 (off) A T, RH, u, u,
K # , L # , p

2004 Pakistan/12

Sources: Ageta, Ohata, Tanaka, Ikegami, and Higuchi (1980); Bollasina, Bertolani, and Tartari (2002); Diodato
et al. (2012); Higuchi (1977); Higuchi, Ageta, Yasunari, and Inoue (1982); Mihalcea et al. (2006); Mölg et al.
(2012); Moore and Semple (2004); Takeuchi (2000); Wagnon et al. (2013); Yang, He, Tang, Qin, and Cheng
(2010); Zhang et al. (2013).
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Combined glaciological and meteorological studies have already been conducted in

various mountain ranges such as the Alps (Oerlemans, 2000), the Andes (Favier, Wagnon,

& Ribstein, 2004; Hardy, Vuille, Braun, Keimig, & Bradley, 1998), Africa (Nicholson,

Prinz, Mölg, & Kaser, 2013), and Tibet (Mölg et al., 2012; Zhang et al., 2013). Similar

studies are still needed in the Karakoram-Himalaya region, though some short-term

studies have been published (Azam et al., 2014b; Fujita, Sakai, & Chhetri, 1997;

Immerzeel, Petersen, Ragettli, & Pellicciotti, 2014; Takahashi et al., 1987). This article

presents first analyses of high-quality meteorological data-sets recorded in three distinct

catchments in the Nepal Himalaya where glaciological monitoring is simultaneously

performed. Long-term mass balance and meteorological observations at selected

benchmark glaciers representative of various climates in Nepal are required to better

understand the climate–glacier relationship and inform models and projections.

During the melt season, observations of radiative fluxes and surface height changes

are required for calibration of empirical and physically based snow and ice melt

models (Hock, 2005; Pellicciotti et al., 2008; Ragettli & Pellicciotti, 2012). On-glacier

observations of temperature, relative humidity and wind speeds can also be used to

evaluate the effect of katabatic flows on meteorological variables within the surface

boundary layer (Petersen & Pellicciotti, 2011; Shea & Moore, 2010). High-altitude

precipitation is perhaps the most important meteorological variable to consider with

respect to both glacier mass balance and the hydrological water balance (Rasmussen et al.,

2012). Gradients of precipitation in mountainous environments are subject to both vertical

and horizontal variability (Barry, 2012), are affected by the mechanism of precipitation,

and are often defined by an elevation of maximum precipitation. In monsoon-dominated

Langtang Valley, orographic uplift and valley-scale convection result in precipitation

maxima at relatively low elevations (ca. 2000m), while winter synoptic events result in

precipitation maxima at higher elevations (Bookhagen & Burbank, 2006; Immerzeel et al.,

2014). However, given the uncertainties and complexity of solid precipitation analyses

(Marks, Winstral, Reba, Pomeroy, & Kumar, 2013) and the limited number of stations,

solid precipitation and precipitation gradients are not addressed in this study.

The main objective of this paper is to characterize and compare meteorological

conditions in different high-altitude glacierized catchments in Nepal, assessed from in situ

measurements. The following sections describe the study areas and measurements and

identify data gaps and sources of error, describe the calculation of derived quantities and

gradients, and compare and contrast meteorological quantities between stations and

between basins. We also assess temperature and vapour pressure gradients in the Langtang

catchment, and examine the high-altitude meteorological impacts of Typhoon Phailin, a

large post-tropical cyclone that crossed the study area in October 2013. Based on these

analyses, key points are emphasized that need to be addressed for distributed energy

balance studies, glacio-hydrological modelling (spatial variability of meteorological

variables), or downscaling studies.

Study area and methods

Nepal contains a glacierized area of approximately 3900 km2 (Bajracharya, Maharjan,

Shrestha, Bajracharya, & Baidya 2014; http://rds.icimod.org), 90% of which is located at

elevations between 4500 and 6500m asl. The climate in central and eastern Nepal is

dominated by the Indian monsoon, with nearly 80% of total annual precipitation occurring

between June and October (Bookhagen & Burbank, 2006; Wagnon et al., 2013). The

Himalaya form a large orographic barrier which can produce strong horizontal and vertical
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gradients of temperature and precipitation, but field-based studies of other meteorological

parameters are limited. Furthermore, the climate stations operated by the Department of

Hydrology and Meteorology of the Government of Nepal are mostly below 3000m (http://

www.dhm.gov.np) and thus are difficult to reconcile with high-altitude glaciological and

hydrological studies.

Station locations and specifications

Combined glacier and meteorological modelling studies have been initiated by the

International Centre for Integrated Mountain Development (ICIMOD) and the GLACI-

OCLIM project (through the Institut de Recherche pour le Développement). Through these

projects, detailed meteorological observations (Table 2) have been collected at five

stations, located in three catchments in Nepal: Langtang, Dudh Kosi, and Hidden Valley

(Figure 1). This study compares and contrasts diurnal and seasonal patterns of air

temperature (T), vapour pressure (ea), wind speed (u), incoming solar radiation (K # ),
incoming longwave radiation (L # ), and precipitation (P).

Meteorological observations were collected at the Kyanging and Yala Base Camp

stations in Langtang Valley, at the Changri Nup and Mera Glacier stations in Dudh Kosi

Valley, and at the Rikha Samba station in Hidden Valley (Figure 1). Precipitation

observations were collected at Kyanging, Yala Base Camp, Yala2 andMorimoto stations in

Langtang Valley, and at the Pyramid observatory near Changri Nup glacier. Station

instrumentation and specifications, as well as some morphological features, are given in

Table 2. All stations were off-glacier, except the Changri Nup station, which was on the

debris-covered part of the glacier, and the Mera Glacier station, which was on a clean-ice

glacier. The approximate measurement height at all stations was 2.0m. The Pyramid, Yala2

and Morimoto precipitation gauges were shielded with Nipher and Tretyakov-type

wind shields, respectively, while the Kyanging and Yala Base Camp precipitation

sites were unshielded. A ventilated radiation shield working only during daytime was

used for air temperature measurements at the Changri Nup and Mera glaciers.

Meteorological observations were sampled at a frequency between 10 and 60 seconds,

and recorded as 10-to-30-minute averages by Campbell Scientific and Real Time Solutions

data-loggers. For all analyses in this paper, hourly averageswere constructed from the data of

the preceding hour.

Identification of errors

Errors in meteorological observations are not uncommon, particularly in harsh, high-

elevation environments. From the five meteorological stations and three additional

precipitation stations, a period of overlap from 1 December 2012 to 30 November 2013

was identified. The following steps were taken to address erroneous observations.

. Where available, data warnings and flags are used to remove spurious precipitation

observations at the Pluvio sites (see Table 2).

. Night-time power losses occurred at the Changri Nup station starting in April 2013.

Mean daily values at this site are used for illustrative purposes only, and when

evaluating the mean daily cycle, mean hourly values are computed only for periods

where more than 80% of observations are available.

. Incoming short-wave and long-wave radiation at the Mera Glacier station were

affected by water ingress into the CNR4 housing. Radiation measurements from

5 September to 30 November 2013 were discarded for this analysis.
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. Values of K # lower than 7W m22 are set to zero, and the maximum albedo

(a ¼ K # /K " ) was assumed to be 0.95. For observations where a exceeds 0.95

(i.e. where snowfall or dew/frost has reduced the amount of incoming solar

radiation), K # was recalculated as K " /0.95.
. Precipitation data at the Pyramid site are extracted from the bucket weight, which is

recorded with a GeonorT-200B at 15-minute intervals. To extract the precipitation

at each time step, we first calculate the change in bucket content, which is supposed

to be always positive given that evaporation is blocked with a layer of oil spread out

over the water. However, the vibrating device used to weigh the bucket is sensitive

to external perturbations such as wind, which results in a background noise, i.e.

small positive or negative changes for every 15-minute time step. To smooth the

signal and avoid any negative precipitation values, each negative change recorded

over a 15-minute time step is compensated by summing it with the neighbouring

positive changes. In this way, the accumulated precipitation recorded over the entire

period remains unchanged.

. While there are a number of empirical corrections for gauge undercatch based on air

temperature and wind speed (Førland et al., 1996; Michelson, 2004; Wagnon et al.,

Figure 1. Location of meteorological and precipitation stations in (a) Langtang Valley, (b) Hidden
Valley, and (c) DudhKosi, with location map of Nepal. Station location maps are given in UTM 45N
projection.
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2009), these corrections need to be calibrated for different regions. Future research

will be specifically focused on solid precipitation, rain/snow thresholds, and gauge

undercatch issues, which do not substantially affect the results presented here.

Derived meteorological quantities and methods of comparison

To calculate vapour pressure we first calculate the saturation vapour pressure (es)

following Teten’s formulae (Bolton, 1980):

es ¼
6:108 £ 10 9:5T

Tþ265:5 ; T , 0

6:108 £ 10 7:5T
Tþ237:3 ; T . 0

8<
: ð1Þ

where T is the observed air temperature in 8C. Actual vapour pressure (in hPa) is calculated
from es and relative humidity (RH), which ranges from 0 to 100%:

ea ¼ esRH ð2Þ

Bulk daily atmospheric transmissivity (t, unitless) is calculated as the ratio between

observed mean daily incoming solar radiation and mean daily extraterrestrial solar

radiation (K # ex),

t ¼ K #
K #ex tcs ð3Þ

where K # ex (W m22) was calculated for the latitude and longitude of each site (Table 2)

using the United States National Renewable Energy Laboratory’s online solar calculator

(http://www.nrel.gov/midc/srrl_bms/), and tcs is the clear sky atmospheric transmissivity.

We estimate tcs for each site by fitting daily K # observations with K # extcs. To facilitate t
comparisons with the Changri Nup record, which is missing early-morning insolation data

(usually between 1 and 2 hours after sunrise) between April and October 2013, mean daily

K # ex at Changri Nup was recalculated by excluding the morning hours when observations

were missing.

To compare the seasonal and diurnal patterns of each meteorological data-set, we first

divide the year into four seasons: winter (December–February), pre-monsoon (March–

May), monsoon (June–September), and post-monsoon (October–November). These

divisions are arbitrary, but similar to those noted by Bonasoni et al. (2010). Mean daily

values and total daily P are calculated for each station to examine seasonal trends and

variability. For each station we also calculate the hourly mean and standard deviation to

examine diurnal cycles of temperature, vapour pressure and wind speed in each season.

Wind speeds and directions at each site are also compared with wind rose plots. For each

hour, season and station we define a mean precipitation intensity (mm h21) for all hourly

observations where P . 0.1mm (NP.0.1), and calculate an hourly precipitation frequency

as NP.0.1/N, where N is the total number of hourly observations. Gradients of near-surface

temperature (gT) and vapour pressure (gea) provide important information for distributed

melt models. In Langtang Valley, where two stations are separated by only 2 km

horizontally but by 1300m in elevation, gT and gea are computed as:

gT ¼ T1 2 T2

Z1 2 Z2

ð4Þ
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gea ¼ ea1 2 ea2

Z1 2 Z2

ð5Þ

where Z1 and Z2 are elevations of the automatic weather stations. Gradients of near-

surface temperature are a large source of uncertainty in temperature-indexed hydrological

models (Immerzeel et al., 2014; Petersen & Pellicciotti, 2011), and melt modelling at

hourly timescales requires understanding of sub-diurnal variability in temperature lapse

rates. We thus examine seasonal variations in mean daily temperature gradients, and

compare hourly temperature gradients calculated (a) for each season and (b) for snow-

cover conditions at the Yala Base Camp site, as the presence of snow can affect near-

surface temperatures.

In energy-balance models, the calculation of both sensible and latent heat fluxes

requires estimates of near-surface T and ea. Information about gT can also be used to infer

the elevation of the zero-degree isotherm, which affects both precipitation phase (liquid or

solid) and the sign of the sensible heat flux. The vapour pressure immediately above a

melting snow or ice surface at 08C is fixed at 6.11 hPa. The elevation of the 6.11 hPa

isoline (obtained from gea) thus impacts the sign of the latent heat flux, which controls the

energy gain (condensation) or loss (evaporation or sublimation) at the surface (Shea &

Moore, 2010).

From the computed temperature and vapour pressure gradients, we derive the

approximate elevations of the 0 8C isotherm (ZT¼0) and the 6.11 hPa isoline (Zea¼6.11) as:

ZT¼0 ¼ 2TK

gT
þ ZK ð6Þ

Zea¼6:11 ¼ 6:112 eaK

gea
þ ZK ð7Þ

where ZK is the elevation of the Kyanging station. For glaciers in monsoon climates, these

quantities provide important information about the phase of precipitation at different

elevations, and have a significant control on the sign of the sensible and latent heat fluxes.

Results

Comparison of seasonal variations in meteorological components

Time series of meteorological variables recorded at the Kyanging, Yala Base Camp, Rikha

Samba, and Changri Nup and Mera Glacier stations illustrate the seasonal variation of

meteorological variables across the region (Figure 2).

Temperature and vapour pressure

Air temperatures at all sites are strongly correlated at daily time step (r ¼ 0.93–0.97), with

high variability in the post-monsoon and winter months, and reduced variability in the

monsoon. Temperatures at the Changri Nup station are elevated in the pre-monsoon period

(after 21 April 2013) due to the missing early-morning (approximately 03:00–07:00) data.

At the Mera Glacier site, mean daily temperatures do not exceed 38C, a consequence of

excess energy at the surface being directed to snow and ice melt. Vapour pressures

calculated from air temperature and relative humidity are also highly correlated at daily

time step (r ¼ 0.95–0.97). However, the seasonal evolution of vapour pressure is different

between low elevation (Kyanging) and high elevation (Yala, Changri Nup, Rikha Samba,
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Mera). In winter, vapour pressures at all sites are extremely low (,2 hPa). Moisture

advection and increased temperatures in the pre-monsoon season lead to elevated vapour

pressures at all sites, but the increase is greatest at Kyanging. During the monsoon, vapour

pressures at Kyanging remain 3–4 hPa higher than the high-elevation sites, but this

difference is reduced to less than 1 hPa by the end of the post-monsoon.
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Figure 2. Summary of mean daily 2012–2013 meteorological data. From top to bottom, air
temperature (T), vapour pressure (e), incoming short-wave radiation (K # ), incoming long-wave
radiation (L # ), and wind speed (u). Climatological seasons (see text) are shown as vertical grey
lines, and extraterrestrial global radiation calculated for 28N, 85E is given in black.
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Incoming short-wave and long-wave radiation

At all stations, increased cloudiness in the pre-monsoon leads to reductions in mean daily

K # , and low values of K # during the monsoon (Figure 2). Compared to incoming solar

radiation at the top of the atmosphere (KTOA), the Kyanging and Yala sites exhibit

significantly different incoming short-wave radiation during the monsoon, which is

probably related to cloud formation and valley circulation patterns. Similarly, Rikha

Samba appears to have a higher mean incoming solar radiation. A sharp drop in vapour

pressures at the high-elevation sites near the beginning of September corresponds with an

increase in K # . The relative absence of clouds during the post-monsoon and winter

seasons is also evident, as K # parallels the extraterrestrial radiation. Correlations in mean

daily K # are moderate (r ¼ 0.55–0.80) between the Kyanging, Yala Base Camp, Changri

Nup, and Mera stations, and low (r ¼ 0.01–0.41) between Rikha Samba and all other

stations. The low correlations point towards the differences between cloud formation

processes in windward and leeward sites, and the influence of the monsoon; Rikha Samba

is the most westerly site, and is also the only site of our study located on the north side of

the main mountain range, i.e. on its leeward slope.

Downwelling long-wave radiation (not measured at Rikha Samba) shows a minimum

in the winter months, a gradual increase through the pre-monsoon, and a stable maximum

for much of the monsoon (Figure 2). The break in the monsoon recorded in both the vapour

pressure and solar radiation time series results in a steep decline in L # , which recovers

until the end of September, and then declines rapidly during the post-monsoon period.

Values for L # are greatest at the lowest-elevation station (Kyanging), and lowest at the

Yala station. Inter-station correlations in mean daily L # range between 0.92 and 0.99 at

daily time steps, and the highest correlation occurs between the Mera Glacier and Changri

Nup stations.

Wind speed

Observed wind speeds are greatest at the Rikha Samba and Mera Glacier sites, and are

particularly strong (greater than 4m s21) during the winter and pre-monsoon (Figure 2).

Wind speeds at all sites decrease during the monsoon, and exhibit reduced variability.

Correlations in mean daily u are positive between all stations, with the greatest correlation

(r ¼ 0.76) between the Changri Nup and Yala Base Camp stations. The lowest correlation

in mean daily u (r ¼ 0.10) is found between the Kyanging and Mera Glacier stations.

A surprisingly low correlation (r ¼ 0.26) is also observed between the Kyanging and Yala

Base Camp stations, which are only separated by 5 km horizontally (Table 2).

Precipitation

Daily precipitation totals in 2012–2013 demonstrate (1) the strong seasonality of

precipitation, (2) differences in the magnitude of precipitation events between the

Langtang and Dudh Kosi sites, and (3) the extraordinary precipitation amounts received

during the passage of remnants of Typhoon Phailin in October 2013 (Figure 3). Winter and

pre-monsoon precipitation events are sporadic, but with some significant accumulation

totals, whereas precipitation occurs almost daily during the monsoon. Total annual

precipitation observed at the Kyanging and Pyramid stations was 924.0 and 521.5mm,

respectively, with 56.5% and 70.0% of the precipitation occurring between June and

September (Table 3). The share of monsoon precipitation in the annual total typically

averages 80% in the region (Shea et al., in review; Wagnon et al., 2013). However, due to
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three-day precipitation totals of 129.9mm and 63.9mm at Kyanging and Pyramid during

the Typhoon Phailin event (11–13 October 2013), the post-monsoon precipitation totals

are elevated (Table 3). At Kyanging, 96.1mm of precipitation fell during the second day of

the event, and the Pluvio station at Yala overflowed during the event.

Previous studies of Kyanging meteorological data observed mean annual precipitation

totals of 646.5mm (Racoviteanu, Armstrong, & Williams, 2013), which is 30% less than

that observed in this study, and a transect of tipping bucket stations in the valley recorded

annual precipitation totals between 867 and 1819mm (Immerzeel et al., 2014). While

Table 3. Seasonal and annual precipitation totals, 2012–2013. Morimoto precipitation totals were
not calculated due to missing data. Relative contributions are given in parentheses for stations with a
full year of data.

Total precipitation, mm

Site DJF MAM JJAS ON Total
Kyanging 100.2 (11%) 136.9 (15%) 535.4 (58%) 151.5 (16%) 924.0 (100%)
Pyramid 27.0 (5%) 57.0 (11%) 371.9 (70%) 75.6 (14%) 531.5 (100%)
Yala Base Camp 85.8 157.9 746.4 – –
Yala2 172.7 205.1 – – –
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Figure 3. Total daily precipitation at Kyanging, Yala Base Camp, Yala2, Morimoto and Pyramid
stations. Periods with no data are indicated in grey.
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meteorological variability may explain some of the 30% difference between historical and

2012–2013 precipitation observations, a more likely explanation is that our measurements

were automated, in contrast to the historical measurements, which were manual. Manual

measurements are collected by an observer and are integrated over an approximate

24-hour period. Historical measurements may be subject to both systematic and random

errors due to evaporation, measurement errors, and data transcription. This measurement

bias has potentially large implications for the development, calibration and testing of

hydrological and glaciological models in the region, and should be considered in future

studies.

Kyanging, Yala Base Camp and Yala2 precipitation totals during the common period

of record (1 December 2012–1 June 2013) are 269.5, 274.9 and 415.1mm, respectively.

The 150% higher precipitation observed during this period at the Yala2 station is probably

due to the effects of the wind shield installed only at this location. Indeed, precipitation

during the winter and pre-monsoon seasons occurs primarily as snowfall, and gauge

accumulation totals are thus highly sensitive to wind speed (Yang, Goodison, Ishida, &

Benson, 1998). Precipitation totals at Kyanging and Yala Base Camp are nearly identical

during the winter and pre-monsoon but these totals are probably both under-estimated due

to gauge undercatch. However, during the monsoon Yala Base Camp received 143mm

more precipitation than Kyanging – nearly 150% of the Kyanging value. This higher

value, observed at two unshielded measurement sites, is probably due to orographic or

convective effects that exist during the monsoon (Immerzeel et al., 2014).

Atmospheric transmissivity

Net all-wave radiation is the greatest contributor to the surface energy balance of high-

altitude snowpacks and glaciers (Wagnon, Ribstein, Francou, & Pouyaud, 1999).

Atmospheric transmissivity, which regulates the amount of short-wave radiation reaching

the surface, is a function of atmospheric water vapour content, impurities, and clouds.

As observations of short-wave radiation may be difficult to establish at high-elevation

sites, atmospheric transmissivity is typically parameterized and used to scale global solar

radiation at the top of the atmosphere.

Our estimates of clear-sky transmissivity (tcs) range from 0.98 (Yala Base Camp) to

0.85 (Rikha Samba). Time series of bulk daily transmissivity (t; Figure 4) illustrates the
synoptic (large-scale) nature of winter precipitation events, which result in correlated

reductions in t at the Langtang andDudhKosi sites. Similar reductions in transmissivity are

also observed during the Typhoon Phailin event. During the pre-monsoon, steady declines

in t are observed in theKyanging, Yala Base Camp,MeraGlacier andChangri Nup records,

sporadically interrupted by sharp decreases due to precipitation events. Atmospheric

transmissivity values at these sites are lowest during themonsoon, and themonsoon break in

September results in sharply reduced vapour pressures (Figure 2) and a concomitant

increase in atmospheric transmissivity. In contrast, transmissivity values at Rikha Samba

are higher during themonsoon, and themonsoon break is not clearly defined by changes in t.

Comparison of diurnal cycles in meteorological components

Temperature and vapour pressure

Temperature and vapour pressure exhibit strong diurnal cycles that reflect daytime solar

heating (Figures 5 and 6). Minimum daily temperatures at the Yala and Kyanging sites

occur at 07:00, while maximum temperatures are observed between 15:00 and 16:00.
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Maximum temperatures during the monsoon occur at 13:00 at Rikha Samba, and at 12:00

at Changri Nup. At all sites, the diurnal range of mean hourly air temperature (Figure 5) is

strongly reduced during the monsoon. At Changri Nup, post-monsoon temperatures

exhibit a marked early-afternoon maximum, in comparison with other records.

Examination of the hourly records at Changri Nup suggests that this peak results from

strong solar heating and relatively low wind speeds after the Typhoon Phailin snowfall

event. In contrast, the daily temperature cycles at Mera Glacier show that peak

temperatures occur in mid-morning (09:00), and the daily cycle is damped as surplus

energy at the surface is directed to snow and ice melt, as opposed to increased air

temperatures.

Vapour pressures follow a similar diurnal pattern (Figure 6), with maximum vapour

pressures observed in late afternoon, and minima between 07:00 and 08:00. In pre- and

post-monsoon seasons, the cycle is more gradual than that observed for temperature.

Diurnal variations and absolute values of vapour pressure are lowest in winter, and the

range of observed hourly vapour pressures is greatest in the post-monsoon.

Downwelling long-wave radiation

Unsurprisingly, diurnal cycles in L # follow a pattern similar to mean daily temperatures

and vapour pressures (Figure 7). Minimum values are observed at approximately 08:00 in

all seasons, and increase towards late-afternoon/early-evening (16:00–20:00) maxima.

The diurnal range and the standard deviation of observed L # are lowest for the monsoon,

and greatest in the post-monsoon. In the winter months, the diurnal signal of L # is weak in
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(b) Yala Base Camp
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Figure 4. Bulk atmospheric transmissivity, 2012–2013, at (a) Kyanging, (b) Yala Base Camp,
(c) Changri Nup, (d) Rikha Samba, and (e) Mera Glacier.
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spite of the substantial warming observed (Figure 5) and appears to follow the vapour

pressure cycle more closely. Changri Nup and Mera Glacier long-wave radiation cycles

are very similar over their common periods of record.

Precipitation

At high altitudes, the timing and magnitude of precipitation can have a significant impact

on glacier melt totals, as the phase is determined by air temperature. In the pre-monsoon,

the frequency of precipitation is greatest in the late afternoon at all sites (Figure 8).

Precipitation frequency during the monsoon is characterized by minima in the early

morning (6:00–7:00), and two maxima in the mid-afternoon (13:00–16:00) and the

middle of the night (23:00–2:00), with relatively high frequencies of occurrence

throughout the day. In the post-monsoon and winter seasons, precipitation frequencies are

generally low, with a slight tendency towards greater frequencies in the late afternoon.

Precipitation intensities are greatest in the pre- and post-monsoon seasons, with a

maximum observed mean intensity of 5mm h21 at Kyanging. There do not appear to be

any consistent diurnal patterns of precipitation intensity except in the pre-monsoon season,

when intensities are greatest in the afternoon. Higuchi (1977) suggested that 60% of the

total precipitation at Rikha Samba was received between 17:40 and 05:40. We find similar
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and (d) winter. Solid lines show the hourly mean (calculated for periods where greater than 80% of
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values at our stations, where between 49.3% (at Yala2) and 69.2% (at Pyramid) of total

monsoon precipitation occurs between 17:00 and 05:00.

Wind speed and direction

In mountainous terrain, wind speed and direction are products of synoptic and valley-scale

circulations, and topographic exposure (Whiteman, 2000). Wind speeds regulate the

turbulent transfer of sensible and latent heat over melting snow and ice surfaces (Hock,

2005), but are among the most difficult meteorological parameters to model accurately in

complex terrain (Jiménez et al., 2012).

Wind roses for the five sites demonstrate the dominance of valley winds at the

Kyanging and Yala Base Camp stations, and the exposure of stations to synoptic-scale

flows at Rikha Samba and Mera Glacier (Figure 9). Diurnal wind speed cycles are given in

Figure 10. At Kyanging, the predominant wind direction is up-valley (westerly), with a

secondary down-valley wind maximum. The Kyanging site (Figure 1) is above the main

valley floor, on the northern slope, and daytime heating occurs in all seasons (Figure 5).

Maximum mean wind speeds of 5–7m s21 occur between 15:00 and 16:00 at Kyanging.

In all seasons except the post-monsoon, wind speeds at Yala Base Camp follow a similar

pattern, though maximum wind speeds are lower (3–5m s21). Wind directions at Yala

Base Camp also follow a bi-modal distribution (Figure 9), with dominant up-valley (south-

west) winds, and secondary down-glacier (north-east) winds.
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Figure 6. As in Figure 5, but for vapour pressure.
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At Changri Nup, mid-afternoon wind maxima occur in the pre-monsoon and monsoon

(Figure 10), but the maximum wind speed is the lowest of all four stations (2–3m s21),

also partly due to the fact that there is a large data gap in this series (no data between

December 2012 and March 2013). Wind directions at Changri Nup are mainly from the

south-west, which suggests that valley wind circulations are weak, and that this on-glacier

station is influenced by glacier katabatic winds. At Rikha Samba, the distribution of wind

direction is also bimodal. The dominant wind direction is from the north-west, with a

secondary maximum from the south (up-valley). The greatest wind speeds, observed in

winter (Figure 2), result from the channelling of synoptic-scale winds (Figure 1). At Rikha

Samba, strong valley circulation results in up-valley wind maxima that average 5m s21 at

16:00 during the monsoon. Finally, at the Mera Glacier station there is no evidence of

valley wind circulation. Winds are almost entirely from the west and reach up to 12m s21,

a result of the exposure of the station to synoptic-scale winds.

Temperature and vapour pressure gradients

Temperature and vapour pressure gradients computed from the hourly data observed at the

Kyanging and Yala stations (Figures 11 and 12) highlight the importance of having

multiple stations at different elevations. While vertical gradients would ideally be

calculated with a number of stations at different elevations, this two-station gradient

reflects a common measurement scenario. At daily scales, vertical temperature gradients
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Figure 7. As in Figure 5, but for downwelling long-wave radiation. Data for the Mera Glacier
station are missing in the monsoon and post-monsoon.
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vary from 26 to 288C km21 during the winter and post-monsoon, and are least negative

during the monsoon (24 to258C km21). This is consistent with previous results reported

from a transect of temperature loggers in Langtang Valley that covered a greater elevation

range (Immerzeel et al., 2014), but different from the values reported by Fujita and Sakai

(2000). The derived height of the estimated 08C isotherm varies from approximately

3000m asl in the winter to 6000m asl during the monsoon. Glaciers in the region are

situated mainly between 5000 and 6000m (Bajracharya et al., 2014), which would suggest

that a majority of glaciers in the basin experienced melt and liquid precipitation during the

monsoon. During the Typhoon Phailin event in October 2013, ZT¼0 increased to 7000m

asl for a short duration.

Calculated vapour pressure gradients (Figure 12) range from 0 to 23 hPa km21, with

the most negative values occurring during the monsoon. The strong gradient during

monsoon results in Zea¼6.11 values of approximately 5000m asl, and lower values for the
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rest of the year. This information suggests that glaciers in the region experience primarily

evaporation/sublimation (energy loss) from the surface, which has implications for both

energy balance melt models and glacier mass balance.

The diurnal cycle of hourly temperature gradients (Figure 13) calculated for the

Kyanging – Yala Base is similar in all seasons and snow conditions. Vertical gradients are
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least negative at 8:00 am, and most negative in the mid-afternoon, with 1–2 8C km21

differences between maximum and minimum temperature gradients. Temperature

gradients are more negative when there is snow at the Yala Base Camp station, which

occurs mainly during the winter and pre-monsoon months. It is probably a combination of

both (a) the presence of snow that causes more negative lapse rates, and (b) the increased

moisture during monsoon that results in less negative temperature gradients. Hourly

temperature gradients calculated in this study show strong similarities to those reported by

Fujita and Sakai (2000), though the gradients presented here are more negative.

Discussion and conclusions

Meteorological observations at high altitudes are a critical component of glacial and

hydrological monitoring strategies, particularly in the Hindu Kush–Himalaya region,

where standard meteorological networks exist almost exclusively at low elevations. High-

altitude meteorological data are used as both input and calibration data for glacio-

hydrological models (Ragettli, Pellicciotti, Bordoy, & Immerzeel, 2013) and are necessary

for the evaluation of dynamically and statistically downscaled fields (Jiménez et al., 2010,

Maussion et al., 2013).

Based on our analyses of seasonal and diurnal patterns of meteorological variables

recorded at four stations in the Nepal Himalaya, we can make several observations that

have implications for snow and ice melt modelling and dynamical downscaling. First,

diurnal heating through solar radiation and valley wind circulation play significant roles in

daytime temperatures and wind speed, though wind speed magnitude appears to be a

function of station location in relation to the main valley axis. Both mean daily

temperatures and diurnal variations are highly correlated at all sites within the study area,

but sub-diurnal variations in temperature gradients (Figure 13) will strongly affect melt

estimated using empirical degree-day approaches (Petersen & Pellicciotti, 2011). Wind

speed extrapolations for physically based melt models or snow redistribution models

remain highly uncertain.
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Second, all sites exhibit a strong relation between daily bulk atmospheric

transmissivity and vapour pressure (r ¼ 20.53 to 20.83). Absorbed solar radiation at

the surface is an important component of the surface energy balance at high-altitude snow

and ice sites (Wagnon et al., 1999), and empirical models of atmospheric transmissivity

typically rely on relatively simple measurements, such as temperature and humidity.

Future research will aim to develop models of atmospheric transmissivity at these high-

altitude sites and to identify the causes of different clear-sky transmissivities.

Third, our precipitation measurements support previous observations of early-morning

and late-evening precipitation maxima during the monsoon in Langtang (Ueno, Shiraiwa,

& Yamada, 1993). Observations from Pyramid indicate that this could be a regional

phenomenon, but also raise important questions about the development of valley

circulation and the precise mechanism of precipitation. At the Morimoto site, which is the

farthest up-valley, the maximum precipitation frequency occurs two hours earlier than in

Kyanging. Observations from multiple field trips suggest that cloud formation and

condensation occur at the head of the valley first. Sustained valley circulation then drives

uplift, and precipitation starts at the head of the valley before progressing to down-valley

locations. Future research with high-resolution dynamical downscaling and an expanded

network of precipitation stations will be able to test this hypothesis.

Fourth, the derived gradients of T, ea and P, though computed from only two stations,

shed light on the energy and mass balance of glaciers in the region. The sensible latent heat

flux, for example, is expected to be positive over much of the glacierized area in the

Langtang catchment as the 0 8C isotherm hovers near 6000m asl during themonsoon. At the

same time, low vapour pressure gradients during the monsoon signal that evaporation/

sublimation could be an important component of the surface energy balance, as most

glacierized areas will experience near-surface vapour pressures below 6.11 hPa throughout

the year. Temperature gradients can also be used to identify the phase of precipitation

(Higuchi, 1977) at different elevations and the resulting mass gain. Assessing the elevation

of the precipitation phase change is crucial for glacier volume change studies because it has

a direct impact on albedo, a key variable that controls the surface energy balance and in turn
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the glaciermelt. The increase in precipitation betweenKyanging andYala stations observed

during themonsoon is approximately 0.19mmm21, but this increase should not be expected

to be linear over the elevation range of the catchment. Future monitoring plans in the region

should strongly consider the establishment of at least two, and preferably three or more, full

meteorological stations at a range of elevations so that vertical gradients can be established

and hourly variability in vertical gradients assessed.

Fifth, the monsoon signal is clearly visible in nearly all of the data-sets examined here,

though muted in the leeward Rikha Samba site. The monsoon exerts a strong impact on

mean daily temperatures and vapour pressures, on incoming short-wave and long-wave

radiation, on precipitation frequency, and even on wind speeds and directions. Local

topography plays a key role in the regulation of these meteorological quantities, but the

synoptic setting can be clearly established by examining multiple data-sets

simultaneously. In our data-sets, we observe an asymmetric shape in the onset and

finish of the monsoon (Figures 2 to 4). Indeed, during the second half of the pre-monsoon,

we observe a progressive build-up of the monsoon with a regular increase in precipitation

frequency, temperature, vapour pressure and downwelling long-wave radiation and a

simultaneous decrease in atmospheric transmissivity, mainly due to progressively

increased cloudiness blocking incoming solar radiation. Conversely, the end of the

monsoon is sharp. The transition between the monsoon and post-monsoon seasons,

passing from cloudy, rainy and warm to clear, dry and cold, takes no more than a few days.

Consequently, changes in future monsoon onset, duration and intensity (Turner &

Figure 14. MODIS-TERRA RGB composites showing (a) the approach of Typhoon Phailin in the
Indian Ocean, 10 October 2013; (b) extensive snow cover in middle and eastern Nepal and the
Tibetan Plateau, 6 November 2013; and (c) remaining high-altitude snow cover, 1 January 2014.
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Annamalai, 2012) will have significant impacts on glacier melt and accumulation

processes (Diodato, Bellocchi, & Tartari, 2012).

Finally, the strong impact of the Typhoon Phailin remnants on all meteorological

quantities highlights another possible area of future research. Changes in the frequency

and intensity of such post-tropical storm systems may affect annual accumulation totals

and glacier melt and mass balance on a regional scale. Indeed, following this rather short

event (only 3 days), all the high-elevation areas of central and eastern Nepal, above

approximately 4500m asl, were covered by snow (Figure 14). In some regions this snow

cover was of sufficient thickness to last until the following pre-monsoon, although the

winter months are typically dry and snow cover disappears at lower elevations.

Consequently, besides the direct effect on accumulation, this 3-day event affected ablation

the following season. With a highly reflective snow cover on glaciers and moraine areas,

melt onset was probably delayed during the following pre-monsoon period.

In conclusion, this study provides analyses of key meteorological information in a

high-altitude region where data availability is severely limited. Rivers in the eastern and

central Himalaya are dominated by monsoon precipitation signals (Immerzeel et al., 2013;

Lutz et al., 2014), yet little is known about radiation budgets, vertical temperature and

vapour pressure gradients, or precipitation mechanisms and spatial variability at high

altitude. High-altitude meteorological studies are typically of limited duration, and the

insights and raw data gained from our analyses can be applied to test downscaling methods

and constrain key parameters in hydrological and glacier melt models. Long-term

operation of these stations and their corresponding glaciological measurements will

facilitate research into glacier-climate relations and long-term trends that impact regional

water availability (Barry, 2012). Indeed, a regional network of high-altitude

meteorological stations coupled with glacier mass balance measurements would provide

critical information for future water resource assessments in the water towers of Asia.
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