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ABSTRACT 

 

The study investigated the impact of agroclimatic variables on the loss cost of hard red spring 

wheat (HRSW), durum, barely and canola in Saskatchewan. Using daily data on temperature and 

precipitation, we estimated the water balance or soil moisture using American Society of Civil 

Engineers standard reference evapotranspiration formula. Accounting for model uncertainty by 

using Bayesian modeling averaging (BMA), we find that loss cost is influence by monthly 

temperature and water balance.  We find that water balance in June and August impact loss cost 

of the HRSW, durum, barley and canola. Depending on the crop, one percent increase June water 

balance, above its long-term average, decreases loss cost between 0.35 percent and 0.64 percent 

while a one percent increase in August water balance, above its long-term average, increases the 

loss cost between 0.24 percent and 0.36 percent. A one percent increase in water balance 

variability increases the loss cost between 0.35 percent and 0.66 percent. 

Temperature also affects loss cost, depending on the crop and month. For the early stage of the 

growing season, a percent increase in GDD increases loss cost between 0.75 and 1.99 percent. 

However, at the later stages of the growing season, a one per increase in GDD decreases loss 

cost between 0.7 percent and 2.25 percent. 

We find that BMA, in general, outperforms OLS model for out-sample-forecast. Lastly, we find 

that the forecasted premium rate based on weather probabilities from BMA predictors performed 

better than simple or 10 year moving average. 
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CHAPTER 1 

INTRODUCTION 

1.0 Background 

Agricultural production is susceptible to annual weather variability. Such variability has a 

significant impact on the agriculture-dependent economies such as Saskatchewan. Saskatchewan, 

as a leader in agri-food production and export value in Canada, has 44 percent of the total 

cultivated farmland in Canada and a total export value of $13 billion CDN in 2015 

(Saskatchewan Ministry of Agriculture, 2015). The main crops grown are canola, hard red spring 

wheat (HRSW), barley, durum, field peas, and lentils. Given the significant contribution of 

Saskatchewan agriculture to Canada’s agri-food economy, changes in production emanating 

from climatic variability can have a significant effect on both the regional and national economy.   

Variability in climatic variables such as precipitation, temperature, humidity, solar radiation, and 

wind speed impacts crop evapotranspiration (ET) regimes and consequently crop growth and 

production. The extent of crop losses is influenced by the frequency and the severity of climate 

variability (including extreme weather events such as drought, flood, heat stress, or frost) in the 

growing season Easterling et al., (2007); McKenzie & Woods, (2011).  

The weather uncertainty in any of these variables poses production and financial risk to 

producers, government, and other stakeholders. For instance, the 2002 drought decreased crop 

production in Saskatchewan by 48 percent in 2 years, an estimated value of $3.6 billion in crop 

revenue loss. Crop insurance has been one of the risk-sharing strategies employed by 

governments to mitigate the impact of such catastrophic events on farm incomes. For instance, 

the 2002 drought resulted in a $1 billion payout to producers from Saskatchewan Crop Insurance 
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Corporation, SCIC. At the farm level, cash receipt declined by $652 million in 2001 and $968 

million in 2002 (Kulshreshtha, 2011; SCIC 2015).  

Though the purpose of crop insurance is to stabilize farm incomes from the insurer perspective, 

long-term financial sustainability of the crop insurance agency is equally important. Therefore, 

climatic variability (including the occurrence of extreme weather events such as drought, flood, 

frost, heat stress) is also a concern to the insurer since it signals higher premiums to stabilize 

their financial position. The 2002 drought increased the loss ratio to 4.79 and increased average 

customer premiums from $2,381 per customer to $3,604 per customer, a 51 percent increase. 

Since both the insured (farmer) and the insurer (SCIC) are affected, the extent to which the 

agroclimatic variables affect crop yield is essential for estimating crop production risk and crop 

insurance rate-making Woodard, (2014).  

Crop ET is a measure of crop water use or water demand, and precipitation is a measure of crop 

water supply for non-irrigated production. It forms the basis for determining crop water 

requirements (Thurlow et al., 2009). An increase in temperature, wind speed, and solar radiation 

and a decrease in precipitation and humidity result in an increase in crop ET: water demand 

exceeds supply (moisture deficit) and consequently crop yields decreases. Similarly, a decrease 

in temperature, wind speed, and solar radiation and an increase in precipitation and humidity will 

increase water supply (moisture surplus), and consequently increase crop yields (Brouwer & 

Heibloem, 1986). Crop water usage and temperature are usually the limiting factors in crop 

yields. When crop water supply is sufficient for crop water demand over the growing season, 

crop yields are not adversely affected. However, when there is an imbalance between water 

supply and crop water demand, crop yields are significantly affected. For the purposes of this 

analysis, the difference between crop ET (demand) and precipitation (supply) is called water 
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balance, ignoring surface runoff and deep drainage. When crop water demand exceeds water 

supply for a considerable period of time, drought occurs. Conversely, when water supply exceeds 

demand over a considerable period of time, excess moisture or flood occurs.  

Similarly, temperature above or below a critical value affects crop yield.  Crop growth and 

development, and consequently crop yields, are inhibited if temperature exceeds a critical 

maximum (heat stress) or below a critical minimum (frost).  For HRSW, durum, barley, and 

canola, the critical maximum is 30º C, and the critical minimum is -5º C. Growing degree days 

(GDD), an average of the daily minimum temperature and maximum temperature compared to a 

base temperature of 5º C, is used to measure temperature in agronomy. Therefore, crop water 

balance and GDD has a direct effect on crop yields, and consequently, crop insurance claims or 

payout. 

Analysis of the historical claimants in the last 17 years showed the major causes of yield loss are 

drought (45 percent), flood (27.1 percent), frost (20.8 percent), and heat stress (3.4 percent) 

among producers of HRSW, durum, barley, and canola, as shown in Figure 1. 

Figure 1: Primary Cause of Yield Loss from 1998 to 2015 for Major Crops 

 

Source: SCIC 2016 
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This paper investigates the extent of water balance and GDD impact on crop insurance payouts 

or claims. It also used to predict crop insurance expected payouts or claims and price crop 

insurance risk using water balance and GDD. The major crops investigated are canola, hard red 

spring wheat, barley, and durum because they constitute approximately 64 percent of 2016 total 

insured acres in Saskatchewan as shown in Figure 2. 

Figure 2: 2016 Total Insured Acres by Major Crops 

 

Source: SCIC 2016 
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yield risk. To best of our knowledge, no study has used water balance and GDD as indices to 

estimate the impact of climate variability on crop insurance claims in Saskatchewan.  

The objective of the study is: 

 To determine the relationship between loss cost of HRSW, barley, durum and canola,  

and variants of water balance and GDD 

 Evaluate the performance of Bayesian Modeling Average (BMA), compared to standard 

regression (OLS), in predicting loss cost of HRSW, durum, barley, and canola.  

 Estimate the weights for historical loss cost in premium rating methodology. 

1.2  Importance of Study 

This study will be beneficial to crop producers, the crop insurance agencies, commodity traders, 

insurance and reinsurance companies, and provincial and federal governments. The study will 

provide crop producers guide as the level of yield risk anticipated given the prevailing weather 

conditions and aid in their risk management decisions. 

For the insurer such as SCIC, such information will be vital in predicting claims at the start, 

during, and at the end of the growing season using information such as Environment Canada’s 

weather forecast. It will also provide an alternative means of forecasting claims instead of the 

current heuristic approach. The results from this study will be essential for the short-term and 

long-term planning and budgetary allocation decisions. Knowledge about the relationship 

between climate variables and loss cost will assist the insurer in assessing its reinsurance needs; 

evaluate its financial position and long-term program sustainability. 

The study will also provide important information for the commodity traders and weather 

derivatives players in further understanding the impact of weather risk on crop losses. Such 
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information will enhance their weather-derivatives contract structuring, and understanding and 

estimating weather-crop losses conversion factors to develop appropriate weather-based hedging 

strategies. 

We find that water balance in June and August impact loss cost of the HRSW, durum, barley and 

canola. Depending on the crop, one percent increase in June water balance decreases loss cost 

between 0.35 percent and 0.64 percent while a one percent increase in August water balance 

increases the loss cost between 0.24 percent and 0.36 percent. We also find that the impact of 

water balance variability on loss cost depends on the crop and month.  In general, a one percent 

increase in water balance variability increases the loss cost between 0.35 percent and 0.66 

percent. 

Temperature also affects loss cost, depending on the crop and month. For the early stage of the 

growing season, a percent increase in GDD increases loss cost between 0.75 and 1.99 percent. 

However, at the later stages of the growing season, a one per increase in GDD decreases loss 

cost between 0.70 percent and 2.25 percent. 

BMA is appropriate methodology for predicting loss cost and perform better that full model 

OLS. We also find that weather probabilities based on the BMA predicted values could be used 

to price risk in crop insurance since it outperforms the 10-year moving average and simple 

methods for estimating premium rates. 

1.3 Organisation 

The study is organized into six chapters. The present chapter discusses the introduction, purpose 

and objectives, and the importance of the study to relevant industry players. Chapter 2 reviews 

literature on agroclimatic based indices and their impact on crop yield and yield risk. Chapter 3 
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presents the study area, description and sources of data used in the study. Chapter 4 shows the 

theoretical framework for loss cost modeling and the empirical application of Bayesian modeling 

averaging (BMA) for the study. Chapter five presents the result and discussion of (BMA); 

compares predictive ability between BMA and OLS and then determines the appropriate weight 

for risk pricing. The final chapter, (6) provides a summary of the result and conclusion and 

policy implications of the study.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.0 Review of Existing Climatic Indices for Agricultural Production 

There are various types of indices to capture weather variation. It can be a thermal index such as 

just temperature, growing degree days, heating degree days or cooling degree days. It can also be 

moisture index, which usually combines temperature precipitation, such as soil moisture 

capacity, Palmer drought severity index, moisture deficit, water stress index or moisture index 

(Sauchyn and Kulshreshtha, 2008; Bornn & Zidek, 2012).  Other indices include Standardized 

precipitation index (SPI), Crop Moisture Index (CMI), Surface Water Supply Index, Percent of 

Normal, Palmers Drought Index, Deciles (Hayes, 2014) and, Reconnaissance Drought Index 

(RDI) Tigkas & Tsakiris, (2013). See Heim Jr, (2012) for a complete review of drought indices.  

However, the Palmer’s Z Index is widely accepted and considered the most appropriate measure 

of drought indices particularly in Saskatchewan even though the calculation is complex and long 

series of data is not readily available (Wheaton et al., 2008; Quiring & Papakryiakou, 2003). 

Therefore most studies used direct temperature and/or precipitation at fixed calendar periods as a 

proxy for crop moisture or ET. They include daily precipitation and/or daily temperature  (He, et 

al., 2013; Kutcher et al., 2010; Warland & Brandt, 2010); monthly precipitation and/or monthly 

temperature or growing degree days as in Meng et al., (2016); An & Carew, (2015) and 

Robertson et al., (2013); or temperature and precipitation for entire growing season  as in An and 

Carew, (2015) and Robertson et al., (2013). Other variables such as the number of days that 

temperature exceeds the critical maximum (An and Carew, 2015) and cumulative hour of crop 

exposure to temperature interval  (Robertson et al., 2013: Schlenker & Roberts, 2008).  
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Changes in temperature and precipitation affect the potential ET and soil moisture. Therefore, 

the accurate measure of climatic variability, necessary for estimating the appropriate impact on 

crop yield risk, should include other agri-climate variables such as duration of solar radiation, 

elevation of the location, wind speed, air humidity (Dixon et al., 1994; McKenzie & Woods, 

2011). Some studies such as  Chipanshi et al., (2015); Bornn & Zidek, (2012)  and (Sun et al., 

2011) used ET based models, such as water deficit index, palmers z-index, and multi-drought 

indices, to estimate the impact of agroclimatic variables on crop yields and/or risk. However, 

Penman-Monteith (PM) models such as the reference ET equation, developed by American 

Society of Civil Engineers (ASCE), provides sufficient accuracy for crop production models 

compared to other ET models (Maule et al., 2006).  ASCE ET based model is adaptable, 

reproducible, comprehensible, standardized, universally accepted, and provides alternative 

estimation for missing variables such as humidity, wind speed, and sun radiation. By using 

ASCE ET, it allows us to consolidate important agroclimatic variables into one variable to 

reduce the dimensionality of covariates.   

Therefore the study will use daily crop ET based on the  ASCE standardized reference ET 

equation. This model uses other climate variables such as wind speed, solar radiation, air 

humidity, longitude, and latitude because such variables improve the accuracy of the estimates. 

Calculating ET models that include as many variables as possible performs better than 

parsimonious ET models (Dixon et al., 1994 and Maule et al., 2006).  Maule et al.,(2006) 

compared ASCE ET to six alternative ET models in the Canadian Prairies and concluded the 

ASCE-ET or similar models that incorporate temperature, humidity, solar radiation, and wind 

speed perform better than alternative published ET models such as Linacre ET, Hargreaves ET, 

and Baier-Roberston ET. To the best of our knowledge, no study has used the ASCE-ET based to 
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model for crop insurance claims, particularly in Saskatchewan. This may be due to the recency 

of the ASCE-ET model (the full report was released in 2005). Also, conversion of reference ET 

to crop ET requires crop coefficients which are usually obtained through field experiments 

conducted over period of time. Crop coefficients in Saskatchewan are not readily available. Our 

research was based on unpublished crop coefficients obtained from Alberta.  

2.1 Impact of Weather on Crop Yields and Risk 

The majority of literature in crop yield models, particularly in Saskatchewan or Canadian prairie,  

uses raw agroclimatic variable mainly temperature and/or precipitation, at various time periods. 

In attempt to capture the plant growth stage, these variables are grouped by certain periods of 

time such as daily as  in He et al., (2013) and Kutcher et al., (2010); monthly  and in Meng et al., 

(2016);  An and Carew, (2015); Robertson et al., (2013) or the entire growing season as in An 

and Carew, (2015); Robertson et al., (2013) and  Isik & Devados, (2006). Other studies have also 

included variables in an attempt to capture extreme weather events (An and Carew, 2015; 

Robertson et al., 2013; Schlenker & Roberts, 2008). However, these studies usually ignore the 

prevailing environment conditions such as humidity, wind speed and solar radiation, their 

interrelations among the climate variables and the underlying plant physiological process.  

ET based models that attempt to incorporate these limitations are also limited. Few studies have 

used ET based models such as water deficit index (Chipanshi, et al., 2015; Bornn & Zidek, 2012 

and palmer’s z-index Sun et al., 2011; Beach et al., 2010 and Coble et al., 2011)  to estimate the 

impact of agroclimatic variables on crop yields and/or yield risk. ET models require intensive 

data, and their calculation is complex. In addition, most of the ET based models are calculated by 

a third party; therefore, they are not easily customizable to the geographic demarcation of the 
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variable of interest. For instance, the palmer’s z-index is calculated by the census agricultural 

region which is different from the risk zones demarcation of SCIC. 

The impact of agroclimatic variables on the yield and risk of crops depend on the crop type, type 

of agroclimatic variable and timing of the variable (Beach et al., 2010). Generally, there is a 

positive relationship between total precipitation over the growing season and the yields of crop 

yields. Most studies indicate a positive relationship between crop yields and monthly 

precipitation in the growing seasons or over the entire growing season. Whether the relationship 

is significant or not depends on the type month and type of crop.  Precipitation in May and June 

and sometimes in the pre-season is critical in crop yields (An & Carew, 2015; (Kutcher et al, 

2010; Robertson et al., 2013; Van Kooten, 1992 and Deschenes & Greenstone, 2007). However, 

the relationship between yield risk and precipitation could be negative (Meng et al., 2016; Carew 

et al., 2009).  

Temperature has a negative impact on crop yields beyond the critical maximum temperature 

(Deschenes & Greenstone, 2007; Schlenker & Roberts, 2008). For wheat, barley, and canola,  

Robertson et al., (2013) and Meng et al., (2016) report that the critical temperature is generally 

around 30ºC Temperatures beyond these values adversely affect crop yields. A degree increase 

results in a 7 percent loss in canola yields, 5.5 percent for wheat and 3.8 percent for corn (An & 

Carew, 2015 Lobell et al., 2011. However, Isik & Devados,(2006) showed an elastic relationship 

between temperature and wheat and barley yield risk. One percent increase in temperature results 

in 1.22 percent and 1.11 percent decrease in barley and wheat yield risk, respectively. In 

Saskatchewan, Meng et al., (2016), reports that September GDD reduces the yield risk of canola 

and spring wheat while July GDD increases the variability of these crops. June GDD, however, 
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increases the variance of only spring wheat. Similarly, Carew et al., (2009) indicated a negative 

marginal product of precipitation and temperature on spring wheat yield risk.    

The closest research to this study is by Meng et al., (2016)  who studies the impact of monthly 

temperature, precipitation and days of heat stress on yield and risk of canola and spring wheat. 

However, this study differs from their research and other research in the following ways. 

None of these studies have used the water balance that is based on ASCE standardized reference 

ET model. This model uses other climate variables such as wind speed, solar radiation, air 

humidity, elevation, longitude, and latitude to improve the accuracy of estimates Dixon et al., 

(1994). Solar radiation, air temperature, wind speed and humidity affect crop water demand and 

usage.  The effect of these variables on water balance is shown in Table 1. 

Table 1: Impact of Climatic Factors on Crop Water Needs 

Climatic Factor Crop Water Need 

 High Low 

Temperature Hot Cool 

Humidity Low(dry) High (humid) 

Wind speed Windy Little Wind 

Sunshine Sunny(no clouds) Cloudy(no sun) 

Source: FAO, 1986 

Most of these studies used aggregate yield data of voluntary producers as reported by Statistics 

Canada. Such information usually suffers response bias and lack of data validation,;  therefore, 

the final data may not be representative of Saskatchewan producers.  This study, on the other 

hand, uses a unique dataset from crop insurance clients or producers. These producers are 

mandated to report their yields, and field adjusters verify such yields for accuracy and reliability. 

Therefore, the loss cost information is a true reflection of the risk of the majority of 

Saskatchewan producers. 
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Also, most of these studies used standard multiple regression models (Basso et al., (2013) at a 

specified set of predictor variables. For a high dimensional data, model selection and detailed 

examination of regression outputs becomes overwhelming and inefficient. For instance, for over 

40 covariates, the data analyst has to examine carefully     potential models to identify the best 

fit. Common approaches such the subset selections based on adjusted   , Mallow’s    criterion, 

is inefficient and misleading because it penalises models with more covariates. In addition, 

model selection based on Alkaike information criterion (AIC), Bayesian information criterion 

(BIC) or even prediction sum of squares (PRESS) are inefficient; daunting with large number of 

covariates and selects a single “best” model. Similarly, automatic variable selection technique 

such as the “Best” subset algorithms, stepwise regression (forward selection or backward 

elimination) usually result in a single best model; can be tedious and long; can produce 

suboptimal model. As Kutner et al., (2004) noted that “Most important for good model building 

is the recognition that no automated procedure will always find the “best” model, and that, 

indeed, there may exist several regression models whose appropriateness for the purpose at hand 

needs to be investigated.”   Such approach ignores uncertainty in the model choice and can result 

in  model misspecification, over-confident inferences and predictions due to estimation bias, 

(Draper, 1995). In addition, such regression approach could omit important variables that 

theoretically should be included. An example of model selection problem in yield risk modeling 

is apparent in Coble et al., (2011) where indeed the choice of best model indicates statistically 

insignificance of the explanatory variables. Other methods such as principal components analysis 

(PCA) could be used to reduce dimensionality and combine correlated variables. However, 

interpreting such results within the context of the loss cost modeling could be problematic.   
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To address such model uncertainty, we will be using Bayesian modeling average (BMA). BMA 

helps to determine models or set of covariates with a high likelihood of explaining the data 

generating process of the dependent variable. The final “best” model is a posterior probability 

weighted-average of all the models.  BMA uses all the possible models as “best” model instead 

of one single model. Therefore final coefficient of each predictor variable (posterior distribution 

mean) is based on weighted average of all possible models. Also, it provides the posterior 

inclusion probability of each covariate, essentially determining the relative importance of each 

covariate on the dependent variable. Using the inclusion probabilities, BMA helps to determine 

which explanatory variables to include in the model specification. To the best of our knowledge, 

this study is the first to use loss cost information, water balance and BMA technique to estimate 

the impact of weather on yield risk in Saskatchewan. The next chapter describes the sources of 

data and variables used in the loss cost modeling. It also provides a brief description of the 

Saskatchewan and SCIC.  
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CHAPTER 3 

DATA  

2.0 Study Area 

Saskatchewan (Figure 3) is one of the provinces in the Canadian prairies with agriculture as one 

of the primary industries. It consists of 44 percent of agriculture land in Canada. SCIC is a 

provincial Treasury Board Crown Corporation in Saskatchewan, Canada. It was established in 

1961 with the responsibility of developing, managing and offering agricultural risk management 

programs such as production insurance in Saskatchewan, Canada. The production insurance 

provides protection to producers against yield loss emanating from multi-perils. These perils 

include drought, flood, hail, snow, wind, lightning, hurricane, tornado, accidental fire, wildlife 

damage, and insect, rodents and/or plant disease across the province. This Multi-peril Crop 

Insurance Program guarantees producers a minimum yield and quality.  

In 2015, SCIC had a total liability or exposure of $4.8 billion in Canadian dollars, a total 

premium of approximately $489 million, paid approximately $265 million in claims and insured 

approximately 26.2 million acres of agricultural land (2015/2016 Annual Report).  SCIC insures 

approximately 46 crops with canola, HRSW, durum, and barley as the major crops in terms of 

liability and insured acres. In 2016, canola, HRSW, durum and barley consisted of 64 percent of 

the total insured acres. These crops are distributed across the province of Saskatchewan. To ease 

in program administration, SCIC divides the province into 23 homogenous risk areas (Figure 4). 

The implicit assumption is that the risk of producers in a given risk area is similar primarily due 

to similar agroclimatic conditions. Consequently, the loss cost (pure premium) and other 

important insurance variables for each crop are calculated by these risk areas.  
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Figure 3 Map of Saskatchewan 
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Figure 4:  Map of Saskatchewan with 23 Risk Zones 

Source: SCIC, 2016 
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3.0 Dependent Variable Measurement and Data Source 

The loss cost (LC) is defined as the ratio of insurance claims or indemnity to the total exposure 

or risk or liability. It is a measure of the riskiness of a crop. High LC indicates high risk and low 

LC indicates low risk. The claims of each insured are calculated based on his/her actual yield, 

coverage level chosen and their long-term yield or guarantee. For a given year, claims are paid if 

actual yield is below coverage (product coverage level and long-term yield) but no claims if the 

actual yield higher than coverage. Producers have the option to choose their coverage level. 

SCIC offers coverages in 50 percent, 60 percent, 70 percent and 80 percent. For a given 

producer, the claim or indemnity is calculated as 

        (    ̅
  

 ( 
  
               ))   

 
    (1)  

     

Where     is the total indemnity or claims for year t, customer n, in $.   is the base coverage 

level it can be 50, 60, 70 or 80 percent. ̅   is the long-term average annual yield (kg/ac) in year 

for customer, n.    
               in kg/ac. The yield function also depends on agroclimatic 

variables that will be discussed later.    is the price of insured crop in $/kg in year ,t.   is the 

total insured acres at time t and customer i. 

The total exposure or liability per acres is calculated as: 

      ̅             (2) 

Therefore the loss cost ratio for a given crop for all insured in a given risk zone, z. is given 

as      
∑    

 
   

∑    
 
   

     (3)   

 

 



 

19 

 

Data on historical claims were obtained from SCIC database. This database contains customer 

level information on liability, indemnity, premium, insured acres and risk area of the insured 

crop for each crop since 1973. The indemnity and liability were aggregated at the risk zone level 

for each year. The indemnity and liability were then restated to reflect the program changes that 

have occurred for each crop. The historical loss cost is simply the ratio of restated indemnity to 

restated liability as shown in equation 3. In rare occasions where the loss cost exceeds the unity, 

the loss cost is capped at 1. 

3.1 Explanatory Variable Selection and Data 

The explanatory variables required for the study are the agroclimatic variables during the 

growing season. These are: Monthly water balance from May to September;  Monthly risk or 

variability of water balance from May to September;  Monthly growing degree days from May to 

September;  Monthly risk or variability of growing degree days; Number frost days; Number of 

excessive heat days; Year to capture technological trend and Spatial Risk Heterogeneity 

Calculations of these agroclimatic variables require daily weather data on precipitation, 

minimum temperature, maximum temperature, elevation, longitude, latitude among others. These 

weather data were obtained from three main sources: SCIC weather data, Environment Canada 

weather data and Natural Resources Canada (NRC) interpolated data. The NRC used 

ANUSPLIN software to interpolate relevant weather variables. ANUSPLIN uses thin-plate 

smoothing splines that incorporate the spatial and temporally varying dependence on ground 

elevation, to interpolate relevant weather variables Hopkinson et al., (2011). 

 In all there are 545 weather stations where some are defunct, relocated and some still existing. 

For each weather station, the order of data source importance is SCIC supplemented by 
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Environment Canada data and then Natural Resource Canada.  Base on the location of the 

weather, using the latitudes and longitudes, each weather station is assigned to the risk area. 

Weather stations that are not located on arable lands were excluded.  The resulting database is 

the daily precipitation, minimum temperature, maximum temperature from 1960 to 2016 for all 

the weather stations.   

 Calculation of Monthly Water Balance 3.1.1

Water balance is used to measure water availability or unavailability for crop growth and 

development.  Precipitation, site specific  characteristics, and temperature impacts water balance. 

To calculate the water balance for each month in the growing season, we used the following 

methods. 

Calculation of Daily Reference Evapotranspiration: For each weather station, the daily reference 

evapotranspiration based on the American Society of Civil Engineers’ standardized formula as 

indicated in Appendix 1.  

Calculation of Crop Evapotranspiration: The next step is to calculate the crop evapotranspiration 

since evapotranspiration differs by crop. The crop evapotranspiration is calculated as: 

                (4) 

 

Where     is the crop evapotranspiration in mm per day.    is crop co-efficient.      is 

standardized reference evapotranspiration. Crop co-efficient was obtained from Ted Harms, Soil 

and Water Specialist with Alberta Agriculture and Forestry. The crop coefficient is based on the 

field experiment, Ted fitted 5
th

 polynomial model for field evapotranspiration. we adopted the 

same crop co-efficient due to geographical similarities between Saskatchewan and Alberta in 
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terms of agri-climate patterns and soil characteristics rainfall pattern. The co-efficient is shown 

in Table 1. Therefore, the crop evapotranspiration is calculated as 

      ∑       
  

      (5) 

 

Calculation of daily water balance for each weather station: The daily water balance for station 

s and daily d, is calculated as the difference between daily precipitation (P) and crop 

evapotranspiration (ET).  

                     (6) 

 

Calculation of daily water balance by Risk zone: For each risk zone, z, the daily water 

balance (WB) is calculated as the average of the water balance for all weather stations in 

the risk zone, z.  

        ∑        
 
   ∑   

   ⁄  (7) 

 

Where W denotes the number weather stations in a risk zone. With the daily water balance for 

each risk zone,z,.  The next stage is to calculate the aggregate water balance by month. 

Calculation of monthly  water balance by risk zone and year: If N denotes the last day of the 

month, the monthly water balance for risk zone, z, and year, t, then the cumulative water balance 

for month m is calculated as: 

        ∑        
 
      (8) 

We obtain the water balance each for May, June, July, August and September from 1960 to 

2016. 



 

22 

 

 Calculation of Variability of Water Balance 3.1.2

The water balance also has distribution. It is necessary to capture this distribution into the loss 

cost model. In this study, we use the coefficient of variation a measure of the risk or variability 

of the water balance for each risk zone, month and year. The coefficient of variation of the water 

balance in risk zone, z, year, t, and month m is calculated as the ratio of the standard deviation to 

mean water balance: 

          √(               
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

 
       
̅̅ ̅̅ ̅̅ ̅̅ ̅̅⁄    (9) 

 

 Calculation of the monthly GDD 3.1.3

Similar to the monthly water balance calculation, the monthly GDD is calculated first by 

calculating the daily GDD for each weather station. Daily GDD is calculated as 

                 {
                            

                                   
   (10) 

 

Where         is the mean temperature calculated as average between minimum and 

maximum temperature. The daily GDD for risk zone is then calculated as the average of the 

daily GDD for weather stations in the risk zone. The daily GDD is then summed over the number 

of days in the month to get the monthly GDD for each risk zone and year. 

 Calculation of GDD variability  3.1.4

The variability of GDD for each risk zone and year is calculated as the ratio of the standard 

deviation of daily GDD to mean of daily GDD for that risk zone and year. 

           √(                 
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

 
        
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅⁄  (11) 
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 Measurement of Technological Impacts 3.1.5

Technological advancement in farm agronomic practices, varieties and technology in farm 

machinery is expected to impact crop yield risk significantly. As technology improves crop 

yields, we expect a negative impact on loss cost. That is high yielding extreme water and/or heat 

resistant varieties can decrease the loss cost. Technology is captured as linear time trend in the 

model. 

 Measure of Frost 3.1.6

The long stretch of cold in the growing season affects crop insurance claims. We expect a 

positive relationship between frost and loss cost. We included a dummy variable to indicate days 

with temperature below 5° Celsius in the growing season. The total number of frost days or frost 

index is captured in the model as: 

   ∑  {           } 
        (12) 

 

 Measurement of Excessive Heat 3.1.7

Heat stress over a significant period of time affects crop growth and development. Similarly, we 

expect a positive relationship between heat stress and loss cost. We include a dummy variable to 

indicate the number of days of temperature above 30° Celsius in the growing season. The total 

number of heat stress days is captured as: 

   ∑  {           } 
       (13) 

 

 Site specific Characteristics 3.1.8

Producers on the same risk zone are offered the same gross premium (premium before discount 

or surcharge). However, premium offered differ by risk zone. SCIC inherently assumes risk 
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homogeneity for each risk zone. It will therefore be necessary to capture spatial differences (if 

any) in risk as assumed by the insurer. We used a dummy variable for each risk zone to capture 

the potential spatial heterogeneous risk.
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CHAPTER 4 

METHODS AND MODEL 

4.0 Theoretical Framework 

 Crop insurance is usually used to mitigate downside risk. From the insurer perspective, the cost 

of the risk (premium) should reflect the inherent yield risk of the insured.  One measure of the 

cost of risk in standard actuarial literature is the loss cost. Loss cost is the ratio of the indemnity 

or claims to liability or exposure. In this study, the loss cost ratio is used as a proxy for yield risk.  

Woodard, (2014), states the strong positive correlation between expected loss cost and yield risk. 

The loss cost ratio is a function of crop yield distribution which in turn is influenced by 

agroclimatic variables. The nature (frequency and severity) of the loss cost is largely influenced 

by weather and climate and their variability on crop yields and technological progress. The 

expected conditional loss cost ratio therefore can be expressed as: 

         
∫                         
 
 

∫         
 
 

       (14) 

where           is the expected loss cost condition on x covariates.  is the coverage 

level.       is the crop yield function 

Since the expected loss cost is influenced by the distribution of weather variables, technological 

progress, the E (LCR) for given location, t, and location, i ,can estimated empirically as: 

                                                               (15) 

4.1 Empirical Model 

As stated earlier, we used technological improvements, the number of frost days in the growing 

season, the number of excessive heat days and variants of water balance (WB) and growing 
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degree days (GDD) while accounting for site specific characteristics, to model the expected loss 

cost. The full model is   

      

          ∑       
 
    ∑          ∑        

 
    ∑           

 
   

 
   

 ∑  {           } 
      ∑  {          } 

     ∑      
  
           (16) 

where       is the loss cost ratio at  location i,  and year t .      is the water balance at  location 

i,  and year t  for each month m (May=5, June=6, July=7, August=8, September=9).       is 

the coefficient of variation of water balance at  location i,  and year t  for each month m (May=5, 

June=6, July=7, August=8, September=9).       is the growing degree days at  location i,  and 

year t  for each month m (May=5, June=6, July=7, August=8, September=9).        is the 

coefficient of variation of growing degree days at  location i,  and year t  for each month m 

(May=5, June=6, July=7, August=8, September=9). {          } is an indicator variable for 

frost in the growing season (May 1 to September 30) at location i, and year t.  {        

  } is an indicator variable for heat stress in the growing season (May 1 to September 30) at 

location i, and year t .    is the riskzone dummy for site characteristics 

 Bayesian Modeling Averaging (BMA) 4.1.1

A standard linear model with loss cost ratio as dependent variables and X covariates typically 

express as: 

                                (17) 

 

Given the large set of covariates (44 variables), there is uncertainty on the choice of covariates 

that truly reflect the expected loss cost ratio. Typically a stepwise, forward or backward 

regression could be used in the covariate selection. However, such regression approach could 



 

27 

 

result in inefficiency and omit important variables that theoretically should be included. One  

recommended approach to deal with such model of uncertainty is Bayesian modeling averaging 

Steel, (2016). BMA calculates all the combinations of independent variables and construct a 

weighted average of all the models.  

Let us assume that for our dataset D, there are                   potential models 

Following (Hoeting, Madigan, Raftery, & Volinsky, 1999), assuming the loss cost ratio is given 

as LCR, then the posterior distribution of LCR given the dataset D  

            ∑                           
        (18) 

 

              is posterior distribution of the coefficients given the model     

            is the posterior probability that    is the correct model, given that one of the 

models is correct. The BMA posterior distribution of LCR is the weighted average of the 

posterior distribution of the LCR under each of the models, weighted by their posterior model 

probabilities. 

The posterior model probability of    is given by  

            
                

∑                 
 
   

   (19) 

 

      is the prior model probability           is the marginal  likelihood of model   . This 

obtained by integrating over the unknown parameters.  

          ∫                            (20) 
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where   is the vector of parameters of model   .              is the likelihood    under 

model   .          is the prior density of    under model    

The posterior mean and variance is therefore calculated for the model parameter say   : 

          ∑   ̂ 
           

          (21) 

and variance 

            ∑ (   [         ]   ̂ 
 
) 

                        (22) 

where   

 ̂               

BMA averages the parameter estimates over the entire potential models using posterior model 

probability as weights. In addition, the posterior inclusion probabilities shows which covariates 

should be included in the final model. This approach can ensure a good predictive ability than 

standard OLS approach (Hoeting et al., 1999). 

 Empirical Estimation of Loss Cost Model 4.1.2

The BMA model for loss cost ratio was estimated for  HRSW, durum, barley, and canola. The 

“BMA” package version 3.18.6 in R software was used in the estimation process.   

 Equation 16 was transformed into ratio by dividing each variable by their respect overall 

average to allow ease of interpretation and conceptualisation. This approach is consistent 

(Paulson & Hart, 2006) and (Zhang, 2008) where crop yields were related to agroclimatic index 

such as accumulated cooling degree days or precipitation by ratios. In this way, the parameter 

estimates can be interpreted as a percentage change in loss cost above or below the long-term 

loss cost due to 1 percent increase in the agroclimatic index above its long-term average. 

Consequently, the Equation 3 was transformed to  
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̂            ∑       ̂

 
    ∑         

̂  ∑        
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    ∑          
̂   

   
 
   

 ∑  {           } 
      ∑  {          } 

     ∑     
  
           (23) 

 

where      ̂   is the ratio of the loss cost  at riskzone z, and year t to the average loss cost.    ̂ 

is the ratio of water balance to the average water balance at  riskzone z,  and year t  for each 

month m (May=5, June=6, July=7, August=8, September=9).       
̂  is the ratio coefficient of 

variation of water balance at  riskzone z,  and year t  to the average coefficient of variation of  for 

each month m (May=5, June=6, July=7, August=8, September=9) balance.      
̂  is the ratio of 

growing degree days at  riskzone z,  and year t  to average growing degree for each month m 

(May=5, June=6, July=7, August=8, September=9).        
̂  is the ratio of coefficient of 

variation of GDD at  riskzone z,  and year t  to average coefficient of variation of GDD for each 

month m (May=5, June=6, July=7, August=8, September=9) 

The next chapter presents the results and discussion of the study. It starts with descriptive 

statistics of the variables used in the study. It then presents and discusses the result of the  BMA 

analysis. We then compared the predictive ability of BMA model by comparing out-sample 

forecast for BMA and OLS model and determined the premium rate based on probabilities from 

the BMA predicted loss cost. 
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CHAPTER 5 

RESULTS AND ANALYSIS 

4.2 Introduction 

This chapter presents a descriptive statistics of the variables and results of the BMA analysis by 

crop. We also looked at the predictive ability of the BMA model compared to the already 

existing approach for forecasting loss cost for years 2010 to 2015. The BMA results are based on 

R package “BMA” while the prediction is based on R package “BMS” because we encountered a 

challenge of using “BMA” to conduct predictions. A comparison of the posterior mean and 

posterior inclusion probabilities is not significantly different between these two softwares.  

 In addition, we backcasted historical loss cost to 1960 and then assigns weight to the historical 

loss experience in an attempt to improve the premium rate setting process. For each crop we 

looked at the descriptive statistics, BMA model results, develop an index to assign appropriate 

weight to historical loss cost experience and calculated premium rate based on the relative 

probabilities of the predicted loss cost. 

5.1 Exploratory Analysis 

The full descriptive is shown in Appendix 3 to Appendix 6. The average loss cost is 8.8 percent 

for HRSW, 10.1 percent for durum, 12.1 percent for barley and 14.8 percent for canola. The 

average number frost days in a growing season is five days and the average number excessive 

heat days is 11. However, we did not capture when such extreme temperature occurs during the 

growing season.  

The average cumulative water balance, an indication of water availability for crop use, is high in 

June and July, coinciding with heading and flowering stage in the crops development where 
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water use is high. The lower water balance in August and September also coincides with low 

water requirement in the yield formation and ripening stage.  

Figure 5: Average Monthly Water Balance (mm) by Crop 

 

Water balance variability is not significantly different among the crops as indicated in Figure 6. 

Generally, water availability is variable in May, become more stable in June and then variability 

increases in the months July, August, and September. 

The summary of the average GDD and its variability is shown Figure 7. In May, average 

monthly GDD is approximately 191.8º C, then increases to 316.1º C in June, and the highest in 

July of 414.4 ºC and then begins to drop to 380.87 ºC in August and then 210.5 ºC in September. 

The monthly GDD appears to have an inverse relationship with the average monthly GDD. The 

variability remained low in July (where average GDD is high) and high at May and September 

when average GDD is low.   
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Figure 6: Average Monthly Water Balance Variability (Coefficient of Variation) by Crop 

 

The variability of GDD also remained relatively low in June, July, and August, indicating stable 

temperature in these periods of the critical crop growth and development. The high values in the 

May and September variability  is reasonable given the usually fluctuating temperatures from 

transitioning from spring to summer and summer to fall.  

Figure 7: Average Monthly GDD and GDD variability for HRSW, Durum, Barley and Canola 
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5.2 BMA Results and Analysis 

This section analyzes the impact of agroclimatic variables on the loss cost of HRSW, durum, 

barley and canola using BMA.  The full results are in Appendix 8 for hard red spring wheat, 

Appendix 9 for durum, Appendix 10 for barley and Appendix 11 for canola. Each table includes 

the posterior inclusion probability  (PIP) for each covariate, BMA posterior distribution mean for 

each parameter estimates, BMA posterior distribution standard deviation, and the best five 

models based on the BIC which is fairly close the uniform information priors (UIP). Each of the 

models has the number of covariates selected, R
2
, the BIC and the posterior probability of being 

the correct model. The posterior inclusion probability shows the probability that the parameter 

estimate of the covariate is not zero among the possible models.  

A summary of the results as indicated in Table 2 show that the posterior distribution mean of 

covariates with the probability of inclusion greater than or equal 70 percent. The choice of 70 

percent is arbitrary. However, we believe that 70 percent is appropriate given the high 

dimensionality of the covariates. 

Technological improvements such as improved crop varieties, production techniques, and 

management practices decrease the loss cost of barley and canola by 0.02 percent and 0.03 

percent, respectively. In other words, technological improvement increases crop yields and 

decreases risk and therefore lowers the probability of yield claim position. This result is 

consistent with Woodard, (2014) and McCarl et al., (2008) who find that expected loss cost 

(yield risk) decreases with increasing trend.  
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Table 2: Posterior Distribution Mean for Variables (PIP >=0.7) HRSW, Durum, Barley and Canola 

Variable HRSW Durum Barley Canola 

Intercept -6.72 -5.64 34.39 54.82 

Trend 0.00 0.00 -0.02 -0.03 

Water Balance Ratio in June -0.53 -0.64 -0.42 -0.35 

Water Balance Ratio in July 0.00 0.00 -0.22 0.00 

Water Balance Ratio in August 0.31 0.36 0.24 0.30 

Water Balance Variability Ratio in June 0.38 0.00 0.00 0.00 

Water Balance Variability Ratio in July 0.00 0.35 0.49 0.00 

Water Balance Variability Ratio in September 0.66 0.00 0.00 0.00 

GDD Ratio in May 1.68 1.65 1.41 0.75 

GDD Ratio in July 1.65 0.00 1.99 1.85 

GDD Ratio in August -2.25 -1.98 0.00 0.00 

GDD Ratio in September -1.19 -0.70 -1.11 0.00 

GDD Variability in July 0 0 0.82 0 

GDD Variability Ratio in August 0.00 0.00 0.00 0.82 

GDD Variability Ratio in September 0.91 0.00 0.00 0.00 

Number Frost Days 0.13 0.13 0.12 0.07 

Number of Heat Stress Days 0.07 0.06 0.05 0.06 

 

The results indicate that water balance ratio in May and September is not a significant predictor 

of the loss cost of HRSW, durum, barley and canola. This result is inconsistent with Meng et al., 

(2016), who determined that May precipitation decreases the yield risk of both spring wheat and 

canola. However, Cabas et al., (2010) found that May precipitation is not a significant statistical 

predictor of the yield risk of corn, soybean and winter wheat.  Precipitation may be a significant 

predictor of yield variability; however, its impact may be neutralized by the water demand for 

such crop.  Water balance ratio in June (August) decreases (increases) the loss cost of all crops. 

One percent increase in June water balance above its average decreases the loss cost of hard red 

spring wheat, durum, barley and canola by 0.53 percent, 0.64 percent, 0.42 percent and 0.35 

percent, respectively. Alternatively, one percent decrease in June water balance above its average 

increases the loss cost of these crops by such magnitudes. However, one percent increase in 

August water balance above its average increase increases the loss cost by 0.31 percent for 
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HRSW, 0.36 percent for durum, 0.24 percent for barley and 0.30 percent for canola. The result is 

consistent Meng et al., (2016) who found a negative relationship between June precipitation and 

yield risk of HRSW and canola but positive relationship between August precipitation and yield 

risk.  Cabas et al., (2010) found positive relationship August precipitation and corn yield risk. 

Water balance in July only affects barley loss cost. One percent increase in the water balance 

above its average decreases the loss cost by 0.22 percent. The results are expected given that 

June is the critical period of the plant growth, where water use is essential. High water 

availability above the normal ensures the crop gets required water for its growth.  Consequently 

the likelihood of crop loss or lower yield necessary to trigger claims in minimized. McKenzie 

and Woods (2011) noted that water usage is critical in June and July for cereals including barley. 

If moisture is insufficient, crop losses can occur.  In August, however, crop water use is lower at 

the pod development and ripening stage. Thus an increase in water availability above the normal 

can affect the quality of harvested yield. Since SCIC pays for both quantity and quality related 

losses, such a situation can increase insurance claims. 

The impact of water balance variability depends on the month and crop. For instance, June and 

September water balance variability impacts the only loss cost of HRSW and July water balance 

variability impact durum and barley loss cost.  The more variable the water balance the higher 

the loss cost. One percent increase in June water variability above its long-term increases loss 

cost of HRSW by 0.38 percent. Similarly, one percent increase in the July water balance 

variability above its average increases the loss cost of durum and barley by 0.35 percent and 0.49 

percent above their long-term loss cost, respectively. Finally, one percent increase in water 

balance variability in September increase loss cost of HRSW by 0.66 percent. A more variable 

water balance affects the stability and continuous supply of soil moisture necessary for growth 
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and development. These consequently affect crop yield and quality and could lead to high 

claims.  

Temperature affects crop yield and consequently crop loss cost. Temperature effect depends on 

the month and type of crop. In general, the loss cost of all the crops is positively influenced by 

May GDD. A one percent increase in May GDD increases the loss cost by 1.68 percent for 

HRSW, 1.65 percent for durum, 1.41 percent for barley and 0.75 percent for canola. This result 

is inconsistent with Meng et al., (2016) and Cabas et al., (2010) who found a negative 

relationship between May GDD and yield risk of HRSW, canola, corn and soybean. July 

temperature positively influences the loss cost of barley and canola while August temperature 

negatively influences the wheat crops . September GDD negatively affect only the cereals 

(HRSW, durum and barley). July GDD only influences the loss cost of  HRSW, barley and 

canola. A one percent increase in July GDD increases the loss cost of HRSW, barley and canola 

by 1.65 percent, 1.99 percent, and 1.85 percent, respectively. The result is consistent with Meng 

et al., (2016) who determined that May, July and September GDD are significant predictors of 

canola yield risk. On the other hand, a percent increase in August GDD increases the loss cost of 

HRSW and durum by 2.15 percent and 1.98 percent, respectively.  A one percent increase in 

September GDD increases the loss cost of HRSW, durum, and barley by 1.19 percent, 0.7 

percent and 1.11 percent, respectively.  This result reemphasizes that while right amount of 

temperature is critical in seed germination in the early growth stage, it is equally important in the 

latter part of the growing season for crop ripening and harvesting. The relationship between July, 

August and September GDD is consistent with Meng et al., (2016).  

Temperature variability also affects the loss cost of HRSW, barley and canola. One percent 

increase in the variability of the GDD in August increases loss cost of canola by 0.82 percent. 
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Also, a one percent increase in the GDD variability in July increase the loss cost of barley by 

0.82 percent. Similarly, a one percent increase in September GDD variability increases the loss 

cost of HRSW by 0.91 percent. McCarl et al., (2008) found similar relationships between 

variability in temperature and yield risk for corn and sorghum. They reported that a degree 

increase in temperature variability increases the yield risk of corn and sorghum by 0.14 percent 

and 0.026 percent, respectively.  

The number of frost days and heat stress also impact the loss cost. A day of frost (temperature 

below -5 degrees C) increases the loss cost by 0.13 percent for HRSW, 0.13 percent for durum, 

0.12 percent for barley and 0.07 percent for canola. Similarly, a day of heat stress (temperature 

greater 30 degrees) increases loss cost by 0.07 percent for HRSW, 0.06 percent in durum, 0.05 

percent for barley and 0.06 percent for canola. However, the timing of frost or heat stress in the 

growing season is equally important. A frost in the latter stage of the growing season will affect 

crop quality, and increase insurance claims, more than in the early stage of the growing season. 

Similarly, heat stress in the early stage of the growing season will impact crop yield and increase 

insurance claims more than a heat stress in the latter stage of the growing season.  

We find that water balance in June and August impact loss cost of the HRSW, durum, barley and 

canola. Depending on the crop, one percent increase June water balance decrease loss cost 

between 0.35 percent and 0.64 percent while a one percent increase in August water balance 

increases the loss cost between 0.24 percent and 0.36 percent. We also find that the impact water 

balance variability depends on the crop and month.  In general, a one percent increase in water 

balance variability increases the loss cost between 0.35 percent and 0.66 percent. 
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Temperature also affects loss cost, depending on the crop and month. For the early stage of the 

growing season, a percent increase in GDD increases loss cost between 0.75 and 1.99 percent. 

However, at the later stages of the growing season, a one percent increase in GDD decreases loss 

cost between 0.70 percent and 2.25 percent. 

We also find that the number of frost or heat stress days affect loss cost for all the crops. A day 

of frost increases the loss cost between 0.07 percent and 0.13 percent. Similarly, a day of heat 

stress increases the loss cost between 0.05 percent and 0.07 percent. 

5.3 Comparison of Predicted Values between BMA and Regression Techniques 

To validate the efficiency and predictive ability, we compared the predicted values for the BMA 

(Appendix 8 to Appendix 11) to the full model multiple regression (OLS) as shown in Appendix 

7. We calculated the root mean square error (RMSE) (shown in Appendix 12) and mean absolute 

error (MAE) (shown in Appendix 13) for out-of-sample (2010 to 2015) data for each risk zone 

and crop. Lower RMSE or MAE indicate high predictive accuracy. A summary of the results is 

shown in Table 3. 

Table 3: RMSE of OLS and BMA techniques 

 RMSE MAE  

 BMA OLS BMA OLS 

HRSW 6.51% 7.80% 4.62% 5.48% 

Durum 11.51% 11.78% 7.78% 7.95% 

Barley 8.81% 8.97% 6.33% 6.35% 

Canola 7.80% 9.86% 4.41% 5.52% 

 

In general, the BMA consistently performs better than full model OLS in terms of forecasting 

loss cost for both criteria.  However, for some crops and risk zones, OLS outperforms BMA 

using RMSE criteria.  In 12 (11) of 23 risk zones, OLS performs better than BMA for durum 
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(barley). Conversely, BMA performs better than OLS in 20 (21) of the 23 risk zone for HRSW 

(canola).  The result is consistent with Bornn and Zidek (2012), who reported that Bayesian 

methods have lower optimal prediction error than OLS for wheat yield in Canadian Prairies 

using RMSE.  In 18 and 20 risk zones for HRSW and canola, respectively, BMA had a better 

predictive ability when MAE is used. However, for durum and barley, only 13 and 10 risk zones 

show better predictive accuracy for the BMA. The conclusion is than BMA models could be 

most appropriate to forecast lost cost for HRSW and canola. However, for durum and barley lost 

cost modeling, OLS methodology could still compete. Thus, BMA methodology could be 

considered in modeling loss cost in crop insurance and other agricultural risk modeling in further 

understanding of the underlying factors influencing choice decisions. 

5.4 Crop Insurance Risk Pricing using BMA Predicted Values 

The objective premium rate in crop insurance is to reflect the expected value of future costs. 

Consequently, most Crop Insurance Agencies uses a simple average or moving average for the 

aggregate historical loss cost experience. For instance, in the US, the pure premium is calculated 

as the simple average of the historical loss cost experience (Rejesus et al., 2015). However, using 

simple averages implicitly assumes equal weight for each historical loss cost. That is the 

probability of occurrence of the loss cost follows a uniform distribution. Loss cost is largely 

driven by weather events, which may not be uniformly distributed. Using simple average, loss 

cost from exceptional bad year (such as 2002) is given the same weight as the good experience 

such as 2013 crop year. Catastrophic events are infrequent and should be assigned lower weights 

compared than “normal” or typical events. However, to determine the accurate weight of 

catastrophic and rare events, we need a long series of data to capture all possible potential 

weather outcomes. As Rejesus et al., (2015) noted that “information about the probabilities of 
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different weather events will better captured using a very long climate data series.” Moreover, 

using moving averages,  not only assigns equal weight but also suffer year-over-year fluctuations 

especially when an extreme value is removed or included. 

We used the predicted loss cost ratio from the BMA to estimate a weather index distribution to 

aid in risk pricing. The concept is similar to Cobel et al., (2013) and Rejesus et al., (2015) except 

that we used a fixed number of bins instead of variable bins. Using the BMA technique, we 

estimated predicted values for pre-crop insurance years (that is pre-1975) to obtain a 56 (1960-

2015) years of data. We then conducted a histogram for the predicted loss cost for each crop. We 

use the relative probabilities from the histogram to assign weights to the actual historical loss 

cost experience. The estimated probabilities by crop is indicated in Appendix 14. As Coble et al., 

(2013) noted, the histogram approach is simple, straightforward and easy to implement than 

using kernel densities or parametric distributions. We then calculated the premium from 2010 to 

2015 (out-of-sample data) using the weighted probabilities, 10-year moving average, and simple 

average methods. There is a one-year lag for data used. For instance, for 2010 premium rate, we 

use data up to 2009. So for the simple average, we used data from 1975 to 2009; for 10-year 

moving average we used (2000 to 2009) and for weather probability, it is the weighted average 

of loss cost from 1975 to 2009. For each crop, we the calculate the RMSE by risk zone as 

indicated Appendix 15. Table 4 is a simple average of RMSE across risk zones for each crop.  

Table 4: RMSE Comparison of WP, 10 Year Moving Average and Simple Average for HRSW, 

Durum, Barley and Canola 

 WP 10-Year 

MA 

Simple 

Average 

HRSW 5.79% 6.84% 6.75% 

Durum 8.69% 10.42% 10.08% 

Barley 7.31% 7.45% 9.08% 

Canola 7.86% 8.60% 12.18% 
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As shown in Table 4, weather probabilities approach performs better than 10-year moving 

average and simple average. This indicates, on the average, the weather weighted average is an 

accurate predictor of premium rate than the current averaging methodologies employed by most 

crop insurance agencies. However, across risk zones, other simple averaging performs better 

than weather probabilities. Weather probability-based premium rate outweigh other methods in 

14 of 23 risk zones for HRSW, 18 of 23 risk zone for durum, 11 of 23 risk zones for barley and 

13 of the 23 risk zones for canola.  

We agree with Rejesus et al., (2015) that weather probability-based approach is feasible to 

estimate accurate premium rate and should be considered for competing models in crop 

insurance rating methodology in Canada. By incorporating weather into the premium rating 

methodology, the premium rate can adjust and respond the climate variability and change 

particularly when the weights are reviewed periodically. In addition, by using weather weights, it 

provides a scientific justification of assigning weight to historical loss experience, thus removing 

human judgment as such the choice data duration to be used. Moreover, weather weights can 

provide essential information to reduce information asymmetry such as moral hard and adverse 

selection.  

.   
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

 

The study looked at the impact of agroclimatic variables on the yield risk of major crops grown 

in Saskatchewan. The loss cost calculated as the ratio of indemnity to liability, was used as a 

proxy for yield risk. The climatic variables considered are temperature, crop water availability, 

frost days and heat stress days. Crop water availability was developed using ASCE standard 

method for reference evapotranspiration. This approach ensures more climatic variables such as 

sun radiation; wind speed and humidity are included in the loss cost modeling. The temperature 

was measured in growing degree days, a standard measure temperature in crop yield models. The 

distribution of the monthly distribution (average and coefficient of variation) of these variables 

was used in the loss cost models. We also included the number of days of frost and temperature 

in the growing season. 

In general, the impact of these agroclimatic variables depends on the crop, the month and type of 

agroclimatic variable. We find that water balance in June and August impact loss cost of all 

crops. Depending on the crop, one percent increase in June water balance decrease loss cost 

between 0.35 percent and 0.64 percent while a one percent increase in August water balance 

increases the loss cost between 0.24 percent and 0.36 percent. We also find that the impact of 

water balance variability depends on the crop and month.  In general, a one percent increase in 

water balance variability increases the loss cost between 0.35 percent and 0.66 percent.  

 Temperature also affects loss cost, depending on the crop and month. Conversely, high 

temperature (above normal) in the early part of the growing season increases loss cost while in 

the latter part decreases losses. In the early stage of the growing season, a percent increase in 
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GDD increases loss cost between 0.75 and 1.99 percent. However, at the later stages of the 

growing season, a one per increase in GDD decreases loss cost between 0.7 percent and 2.25 

percent.  High temperature could damage the crop in its early stage but such temperature may be 

necessary for ripening and harvesting in the later stage.  

The number of frost days and heat stress in the growing season affected all crops. In general, 

frost impacts  the loss cost more than heat stress. We also find that the number of frost or heat 

stress days affect loss cost for all the crops. A day of frost increases the loss cost between 0.08 

percent and 0.14 percent. Similarly, a day of heat stress increases the loss cost between 0.04 

percent and 0.08 percent. 

The study also looked at the predictive power of the BMA approach used compared to the 

standard and OLS approach using RMSE. The result indicates that BMA has better predictive 

accuracy than full model OLS. However, the performance differs by risk zone and crop. In some 

risk zone, we observed OLS performs better than BMA. The implication is that BMA can be 

considered in the crop yield risk modeling  particularly when agroclimatic variables are used as 

explanatory variables..  

The study also estimated the weight that should be assigned to each year’s loss cost for risk 

pricing and premium rate calculation. By using a longer series of data to estimated weights, the 

study can improve the actuarial credibility and statistical validity of the premium rates. We find 

the weather probabilities perform better than 10 year moving average or simple average. This 

approach presents a more scientific and justifiable approach to assigning weights to historical 

loss cost instead of average (where each loss cost is assigned equal probability of occurrence). 
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The study has implication for climate change and potential impact on the operations of crop 

insurance agency and government efforts to mitigate production risk. By disaggregating data into 

monthly values, it ensured that there quantitative estimates of the impact of critical months on 

crop production losses. In addition the study further buttresses that temperature has a higher 

impact on the loss cost than precipitation or any other agroclimatic variable, consistent with 

Lobell and Burke (2008) and Meng et al., (2016). The results from this study can be used to 

develop appropriate weather-based (temperature, precipiation, solar radiation, or humidity) 

insurance program for crop producers to reduce information asymmetry such as moral hazard 

and adverse selection.  The pricing of crop insurance risk using the weather probabilities ensures 

climatic change and weather variability is reflected in cost of risk transferred to producers.      
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Appendix 1: Calculation of Reference Evapotranspiration 

 

This appendix is based on ASCE-EWRI (2005) calculation of reference evapotranspiration 

     , the data required, equations and process to calculating reference evapotranspiration based 

on the ASCE-Penman-Monteith      . The reference evapotranspiration is requires data on  air 

temperature, humidity, solar radiation and wind speed. Humidity, solar radiation and wind speed 

are based ASCE-EWRI recommendations for missing values. The standardized reference ET is 

calculated as: 

      
              

  
     

         

           
  (24) 

 

where ETref  is tall (ETr) reference crop evapotranspiration [mm day-1].    is the net radiation 

at the crop surface [MJ m-2 day-1]. G is the soil heat flux density at the soil surface [MJ m-2 

day-1]. T is the mean daily air temperature at 1.5 to 2.5-m height [°C].    is the mean daily wind 

speed at 2-m height [m s-1],   is the mean saturation vapor pressure at 1.5 to 2.5-m height 

[kPa]; for daily computation, value is the average of es  at maximum and minimum air 

temperature.    is the mean actual vapor pressure at 1.5 to 2.5-m height [kPa].    slope of the 

vapor pressure-temperature curve [kPa °C-1].  psychrometric constant [kPa °C-1].   is the 

numerator constant for reference type and calculation time step (1700).    is the denominator 

constant for reference type (0.38) . 
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Calculation Psychrometric and Atmospheric Variables used in the equation  

Mean Air Temperature (T): For the standardized method, the mean air temperature, T, for a 

daily time step is preferred as the mean of the daily maximum and daily minimum air 

temperatures rather than as the average of hourly temperature measurements to provide for 

consistency across all data sets. 

      
         

 
  (25) 

 

where:      = daily mean air temperature [°C],     = daily maximum air temperature [°C]. 

    = daily minimum air temperature [°C]. 

Atmospheric Pressure (P): The mean atmospheric pressure at the weather site is predicted 

from site elevation using a simplified formulation of the Universal Gas Law: 

       (
           

   
)
    

 (26) 

where: P = mean atmospheric pressure at station elevation z [kPa].  and z = weather site elevation 

above mean sea level [m]. 

Latent Heat of Vaporization ( ): The value of the latent heat of vaporization,  , varies only 

slightly over the ranges of air temperature that occur in agricultural or hydrologic systems. For 

     , a constant value of   = 2.45 MJ kg-1 is recommended.   The inverse of   = 2.45 MJ 

kg-1 is approximately 0.408 kg MJ-1. 

Psychrometric Constant ( ):The standardized application using    = 2.45 MJ kg-1 results in 

a value for the psychrometric constant, γ, that is proportional to the mean atmospheric pressure: 
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             (27) 

 

where: P has units of kPa and   has units of kPa °C-1. 

Slope of the Saturation Vapor Pressure-Temperature Curve ( ): The slope of the saturation vapor 

pressure-temperature curve,  , is computed as: 

  
                     ⁄  

          
  (28) 

 

where   = slope of the saturation vapor pressure-temperature curve [kPa °C
-1

]. and      = daily 

mean air temperature [°C]. 

Saturation Vapor Pressure (es): The saturation vapor pressure (es) represents the capacity of 

the air to hold water vapor. For calculation of daily ET , es is given by: 

   
                 

 
  (29) 

 

 

where:      = saturation vapor pressure function [kPa]. The function to calculate saturation 

vapor pressure is:              (
      

       
)where:  vapor pressure is in units of kPa and 

temperature is in °C. 

Actual Vapor Pressure (ea ): Actual vapor pressure (ea) is used to represent the water content 

(humidity) of the air at the weather site. The actual vapor pressure is calculated from  calculated 

from measured dew point temperature. 
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                    (
         

          
)  (30) 

 

We assumed dew point temperature (      as daily minimum air temperature (    ). 

Net Radiation (Rn ): Net radiation (Rn) is the net amount of radiant energy available at a 

vegetation or soil surface for evaporating water, heating the air, or heating the surface. Rn 

includes both short and long wave radiation components: 

            (31) 

 

where: Rns = net short-wave radiation, [MJ m-2 d-1] (defined as being positive downwards 

and negative upwards). Rnl = net outgoing long-wave radiation, [MJ m-2 d-1] (defined as 

being positive upwards and negative downwards). Rns and Rnl are generally positive or zero in 

value. 

Net Solar or Net Short-Wave Radiation (Rns ): Net short-wave radiation resulting from the 

balance between incoming and reflected solar radiation is given by: 

             (32) 

where: Rns = net solar or short-wave radiation [MJ m-2 d-1];   = albedo or canopy reflection 

coefficient, is fixed at 0.23; Rs = incoming solar radiation [MJ m-2 d-1]. 

The calculation of ET uses the constant value of 0.23 for albedo for daily and hourly 

periods.  It is recognized that albedo varies somewhat with time of day and with time of 

season and latitude due to change in sun angle. 
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Net Long-Wave Radiation (Rnl): Net long-wave radiation, is the difference between upward 

long-wave radiation from the standardized surface (Rlu) and downward long-wave radiation 

from the sky (Rld), so that Rnl = Rlu – Rld. The following calculation for daily Rnl follows 

the method of Brunt (1932, 1952) of using vapor pressure to predict net emissivity: 

         (         √  ) [
     

       
 

 
]  (33 

 

where:    = net long-wave radiation [MJ m-2 d-1];   = Stefan-Boltzmann constant [4.901 x 10-9 

MJ K-4 m-2 d-1],     = c l o u d i n e s s  function [dimensionless] (limited to 0.05 ≤ fcd ≤ 1.0).    = 

actual vapor pressure [kPa]. TK max = maximum absolute temperature during the 24-hour 

period [K]. (K =°C + 273.16); TK min = minimum absolute temperature during the 24-hour 

period [K]  (K =°C + 273.16). 

For daily timesteps, fcd is calculated as: 

        
  

   
       (34 

 

where: Rs/Rso = r e l a t i v e  solar radiation (limited to 0.3 ≤ Rs/Rso ≤ 1.0). Rs = measured or 

calculated solar radiation [MJ m-2 d-1].  Rso= calculated clear-sky radiation [MJ m-2 d-1]. The 

ratio Rs/Rso represents relative cloudiness and is limited to 0.3 < Rs/Rso≤1.0 so that fcd has limits 

of 0.05 ≤ fcd ≤ 1.0. 

Clear-Sky Solar Radiation (Rso): Clear-sky solar radiation (Rso) is used in the calculation of net 

radiation (Rn). Clear- sky solar radiation is defined as the amount of solar radiation (Rs) that 

would be received at the weather measurement site under conditions of clear-sky (i.e., cloud- 
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free). The ratio of Rs to Rso in the equation for Rn is used to characterize the impact of cloud-

cover on the downward emission of thermal radiation to the earth’s surface. Daily Rso is a 

function of the time of year and latitude. Rso is also impacted by station elevation (affecting 

atmospheric thickness and transmissivity), the amount of precipitable water in the atmosphere 

(affecting the absorption of some short-wave radiation), and the amount of dust or aerosols in 

the air. 

                      (35 

z = station elevation above sea level [m]. 

Extraterrestrial Radiation for 24-Hour Periods (Ra ): Extraterrestrial radiation, Ra, defined as 

the short-wave solar radiation in the absence of an atmosphere, is a well-behaved function of 

the day of the year, time of day, and latitude. It is needed for calculating Rso, which is in turn 

used in calculating Rn. For daily (24-hour) periods, Ra can be estimated from the solar constant, 

the solar declination, and the day of the year: 

   
  

 
     [                                  ]   (36 

 

Ra = extraterrestrial radiation [MJ m-2 d-1], Gsc = solar constant [4.92 MJ m-2 h-1]. dr = inverse 

relative distance factor (squared) for the earth-sun [unitless]    = sunset hour angle [radians];   

= latitude [radians]. and   = solar declination [radians]. 

The latitude, , is positive for the Northern Hemisphere and negative for the Southern Hemisphere. 

The conversion from decimal degrees to radians is given by: 

        
 

   
                   (37) 
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and    and   are calculated as: 

 

             (
  

   
 )  (38) 

 

          (
  

   
      )  (39) 

 

         [              ]   (40) 

 

Soil Heat Flux Density (G):Soil heat flux density is the thermal energy utilized to heat the 

soil. G is positive when the soil is warming and negative when the soil is cooling. The magnitude 

of the daily, weekly or ten-day soil heat flux density, G, beneath a fully vegetated grass or 

alfalfa reference surface is relatively small in comparison with Rn. Therefore, it is ignored so 

that: Gday    = 0. 

Gday = daily soil heat flux density [MJ m-2 d-1]. 

Wind Speed:Wind speed varies with height above the ground surface. For the purposes of this 

analysis, I used a value of        for an agricultural setting. This value is based on an 

average computed from over 2000 weather stations around the globe.  
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Appendix 2: Crop Co-efficient For Selected Crop 
Crop Name               

Hrsw -1.924845167% 0.264100497% 0.000010480% -0.000000223% 0.0000000000357% 

Durum -1.913969450% 0.264007918% 0.000010683% -0.000000223% 0.0000000000298% 

Barley 4.216950033% 0.150838398% 0.000488784% -0.000000869% 0.0000000002491% 

Canola 8.700000000% 0.713000000% -0.001970000% 0.000002300% -0.0000000009630% 

Source: Tim Harms, Alberta Agriculture and Forestry, 2016 
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Appendix 3: Descriptive Statistics of Agroclimatic Variables and Loss Cost for Hard Red Spring 

Wheat 

   Raw Data Transformed Data 

Variable Month 

# of 

Obs Mean Std Dev Min Max Std Dev Min Max 

Cumulative 

Water Balance 

(mm) May 805 195.2 135.2 8.090 976.6 0.693 0.0415 5.004 

 

June 805 288.1 155.2 35.95 993.5 0.539 0.125 3.449 

 

July 805 258.6 159.6 16.38 1,001 0.617 0.0633 3.871 

 

August 805 196.0 133.8 12.69 873.9 0.683 0.0647 4.458 

 

September 805 151.1 111.8 5.162 689.9 0.740 0.0342 4.566 

                 

Water Balance 

Variability May 805 1.974 0.524 1.034 5.525 0.265 0.524 2.798 

 

June 805 1.624 0.396 0.874 3.538 0.244 0.538 2.178 

 

July  805 1.791 0.507 0.864 4.212 0.283 0.482 2.352 

 

August 805 1.933 0.497 1.019 4.120 0.257 0.527 2.131 

 

Sept 805 2.229 0.631 0.875 4.476 0.283 0.392 2.008 

                 

Cumulative GDD May 805 191.8 50.15 75.39 341.9 0.261 0.393 1.783 

 

June 805 316.1 48.08 199.0 545.1 0.152 0.630 1.724 

 

July  805 414.4 47.40 300.8 565.4 0.114 0.726 1.364 

 

August 805 380.8 64.17 216.8 547.1 0.169 0.569 1.437 

 

Sept 805 210.5 51.90 92.05 365.2 0.247 0.437 1.735 

                 

GDD Variability May 805 0.711 0.201 0.346 1.406 0.283 0.486 1.979 

 

June 805 0.334 0.0741 0.150 0.613 0.222 0.450 1.835 

 

July  805 0.218 0.0378 0.127 0.349 0.174 0.583 1.604 

 

August 805 0.276 0.0693 0.116 0.589 0.251 0.420 2.138 

 

Sept 805 0.602 0.175 0.258 1.193 0.290 0.428 1.981 

                 

Lost Cost (%) 

 

805 0.0880 0.142 0 0.965 1.613 0 10.96 

Risk Zone 

 

805 11.88 6.65 1.00 23.00    

Number of Frost 

(<-5) 

 

805 4.026 3.991 0 21    

Number of Excessive Heat 

(>30) 805 10.99 8.620 0 42    

Year  805 1,992 10.11 1,975 2,009    
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Appendix 4: Descriptive Statistics of Agroclimatic Variables and Loss Cost for Durum 

   Raw Data Transformed Data 

Variable Month 
# of 

Obs Mean Std Dev Min Max Std Dev Min Max 

Cumulative 

Water Balance 

(mm) May 805 195.1 135.2 8.087 976.6 0.693 0.0414 5.005 

 

June 805 288.1 155.2 35.95 993.5 0.539 0.125 3.449 

 

July 805 258.6 159.6 16.38 1,001 0.617 0.0633 3.871 

 

August 805 196 133.8 12.69 873.9 0.683 0.0647 4.459 

 

September 805 151.1 111.8 5.159 689.9 0.740 0.0341 4.566 

                 

Water Balance 

Variability May 805 1.974 0.524 1.034 5.527 0.265 0.524 2.799 

 

June 805 1.624 0.396 0.874 3.538 0.244 0.538 2.178 

 

July  805 1.791 0.507 0.864 4.212 0.283 0.482 2.352 

 

August 805 1.933 0.497 1.019 4.121 0.257 0.527 2.132 

 

Sept 805 2.229 0.631 0.875 4.476 0.283 0.392 2.008 

                 

Cumulative 

GDD May 805 191.8 50.15 75.39 341.9 0.261 0.393 1.783 

 

June 805 316.1 48.08 199 545.1 0.152 0.630 1.724 

 

July  805 414.4 47.4 300.8 565.4 0.114 0.726 1.364 

 

August 805 380.8 64.17 216.8 547.1 0.169 0.569 1.437 

 

Sept 805 210.5 51.9 92.05 365.2 0.247 0.437 1.735 

                 

GDD 

Variability May 805 0.712 0.2 0.319 1.403 0.281 0.448 1.970 

 

June 805 0.334 0.0738 0.152 0.558 0.221 0.455 1.674 

 

July  805 0.218 0.0384 0.124 0.352 0.177 0.569 1.620 

 

August 805 0.276 0.0696 0.0971 0.564 0.252 0.352 2.044 

 

Sept 805 0.603 0.178 0.277 1.224 0.296 0.459 2.031 

                 

Lost Cost (%) 

 
781 0.101 0.155 0 1 1.513 0 9.861 

Risk Zone 

 
805 11.88 6.65 1.00 23.00    

Number of 

Frost (<-5) 

 
805 4.026 3.991 0 21    

Number of Excessive Heat 

(>30) 805 10.99 8.62 0 42    

Year  805 1,992 10.11 1,975 2,009    
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Appendix 5: Descriptive Statistics of Agroclimatic Variables and Loss Cost for Barley  

   Raw Data Transformed Data 

Variable Month 
# of 

Obs Mean Std Dev Min Max Std Dev Min Max 

Cumulative 

Water Balance 

(mm) May 805 193.4 135.2 6.355 974.9 0.699 0.0329 5.040 

 

June 805 286.4 155.2 34.30 991.8 0.542 0.120 3.463 

 

July 805 256.9 159.6 14.73 999.4 0.621 0.0573 3.890 

 

August 805 194.3 133.8 11.01 872.1 0.689 0.0567 4.489 

 

September 805 149.4 111.8 3.443 688.2 0.748 0.0231 4.608 

                 

Water Balance 

Variability May 805 2.012 0.557 1.042 6.542 0.277 0.518 3.251 

 

June 805 1.637 0.400 0.888 3.568 0.244 0.542 2.180 

 

July  805 1.810 0.518 0.870 4.259 0.286 0.480 2.353 

 

August 805 1.965 0.518 1.026 4.498 0.264 0.522 2.289 

 

Sept 805 2.287 0.662 0.886 5.109 0.289 0.387 2.234 

                 

Cumulative 

GDD May 805 191.8 50.15 75.39 341.9 0.261 0.393 1.783 

 

June 805 316.1 48.08 199.0 545.1 0.152 0.630 1.724 

 

July  805 414.4 47.40 300.8 565.4 0.114 0.726 1.364 

 

August 805 380.8 64.17 216.8 547.1 0.169 0.569 1.437 

 

Sept 805 210.5 51.90 92.05 365.2 0.247 0.437 1.735 

                 

GDD 

Variability May 805 0.712 0.202 0.327 1.398 0.284 0.460 1.963 

 

June 805 0.334 0.0733 0.140 0.642 0.219 0.418 1.922 

 

July  805 0.218 0.0385 0.119 0.351 0.176 0.547 1.609 

 

August 805 0.276 0.0687 0.120 0.574 0.249 0.435 2.078 

 

Sept 805 0.601 0.176 0.265 1.144 0.292 0.441 1.904 

                 

Lost Cost (%) 

 
805 0.121 0.162 0 0.963 1.338 0 7.945 

Risk Zone 

 
805 11.88 6.65 1.00 23.00    

Number of 

Frost (<-5) 

 
805 4.026 3.991 0 21    

Number of Excessive Heat 

(>30) 805 10.99 8.620 0 42    

Year  805 1994 11.26 1975 2013    
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Appendix 6: Descriptive Statistics of Agroclimatic Variables and Loss Cost for Canola 

   Raw Data Transformed Data 

Variable Month 
# of 

Obs Mean Std Dev Min Max Std Dev Min Max 

Cumulative 

Water Balance 

(mm) May 805 191.2 135.2 4.127 972.8 0.707 0.0216 5.088 

 

June 805 284.2 155.2 32.01 989.6 0.546 0.113 3.483 

 

July 805 254.5 159.7 12.09 997.2 0.627 0.0475 3.918 

 

August 805 192.0 133.9 8.504 870.0 0.697 0.0443 4.531 

 

September 805 147.4 111.8 1.486 686.2 0.758 0.0101 4.655 

                 

Water Balance 

Variability May 805 2.070 0.638 1.048 8.925 0.308 0.506 4.312 

 

June 805 1.656 0.407 0.909 3.611 0.246 0.549 2.181 

 

July  805 1.841 0.539 0.878 4.347 0.293 0.477 2.361 

 

August 805 2.013 0.565 1.034 5.251 0.280 0.514 2.608 

 

Sept 805 2.376 0.783 0.897 8.248 0.329 0.377 3.471 

                 

Cumulative 

GDD May 805 191.8 50.15 75.39 341.9 0.261 0.393 1.783 

 

June 805 316.1 48.08 199.0 545.1 0.152 0.630 1.724 

 

July  805 414.4 47.40 300.8 565.4 0.114 0.726 1.364 

 

August 805 380.8 64.17 216.8 547.1 0.169 0.569 1.437 

 

Sept 805 210.5 51.90 92.05 365.2 0.247 0.437 1.735 

                 

GDD 

Variability May 805 0.710 0.196 0.349 1.295 0.276 0.492 1.824 

 

June 805 0.335 0.0735 0.151 0.581 0.220 0.450 1.736 

 

July  805 0.218 0.0387 0.124 0.345 0.178 0.569 1.583 

 

August 805 0.278 0.0712 0.101 0.567 0.256 0.364 2.040 

 

Sept 805 0.602 0.177 0.287 1.143 0.294 0.476 1.898 

                 

Lost Cost (%) 

 
781 0.148 0.213 0 1 1.424 0 6.752 

Risk Zone 

 
805 11.88 6.65 1.00 23.00    

Number of 

Frost (<-5) 

 
805 4.026 3.991 0 21    

Number of Excessive Heat 

(>30) 805 10.99 8.620 0 42    

Year  805 1,992 10.11 1,975 2,009    
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Appendix 7: Regression Results of Loss Cost Model for hard red spring wheat, durum, barley and canola 
 (1) (2) (3) (4) 

VARIABLES HRSW Durum Barley Canola 

     

Trend 0.00850* 0.00707 -0.0212*** -0.0304*** 

 (0.00485) (0.00469) (0.00376) (0.00500) 

Water Balance Ratio in May -0.00569 0.0119 -0.125** -0.0492 

 (0.0841) (0.0932) (0.0589) (0.0709) 

Water Balance Ratio in June -0.408*** -0.557*** -0.443*** -0.303*** 

 (0.117) (0.114) (0.0933) (0.103) 

Water Balance Ratio in July 0.0377 -0.0412 -0.219*** -0.0458 

 (0.0758) (0.0807) (0.0587) (0.0707) 

Water Balance Ratio in August 0.303*** 0.350*** 0.243*** 0.325*** 

 (0.0903) (0.0842) (0.0676) (0.0817) 

Water Balance Ratio in September -0.128* -0.00778 0.0708 0.00206 

 (0.0692) (0.0638) (0.0497) (0.0700) 

Growing Degree Days Ratio in May 2.306*** 2.356*** 1.680*** 1.305*** 

 (0.314) (0.294) (0.249) (0.326) 

Growing Degree Days Ratio in June 0.992 0.601 0.652* 0.0323 

 (0.676) (0.536) (0.363) (0.533) 

Growing Degree Days Ratio in July 2.863*** 1.952** 2.778*** 2.731*** 

 (0.871) (0.765) (0.605) (0.657) 

Growing Degree Days Ratio in August -1.364** -0.911 0.802* 1.260** 

 (0.615) (0.613) (0.436) (0.565) 

Growing Degree Days Ratio in September -1.136*** -1.219*** -1.150*** -0.707** 

 (0.256) (0.270) (0.211) (0.285) 

Ratio of Water Balance Variability in May -0.0514 0.0742 -0.272* 0.151 

 (0.217) (0.193) (0.157) (0.186) 

Ratio of Water Balance Variability in June 0.583*** 0.420** 0.111 0.420** 

 (0.210) (0.184) (0.146) (0.188) 

Ratio of Water Balance Variability in July 0.497** 0.573*** 0.457*** 0.114 

 (0.225) (0.190) (0.150) (0.191) 

Ratio of Water Balance Variability in August 0.0806 -0.0218 -0.0412 -0.0947 

 (0.207) (0.197) (0.161) (0.219) 

Ratio of Water Balance Variability in September 0.724*** 0.432*** 0.200* 0.0904 

 (0.166) (0.155) (0.119) (0.131) 

Ratio of Growing Degree Days Variability in May 0.805*** 0.610** 0.0730 1.010*** 

 (0.302) (0.301) (0.213) (0.321) 

Ratio of Growing Degree Days Variability in June 0.920*** 0.688** 0.521** 0.740*** 

 (0.307) (0.268) (0.214) (0.267) 
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 (1) (2) (3) (4) 

VARIABLES HRSW Durum Barley Canola 

Ratio of Growing Degree Days Variability in July 0.990*** 0.753*** 0.805*** 0.302 

 (0.315) (0.264) (0.213) (0.249) 

Ratio of Growing Degree Days Variability in August 0.430** 0.171 0.285* 1.045*** 

 (0.208) (0.222) (0.169) (0.213) 

Ratio of Growing Degree Days Variability in September -0.110 -0.682** -0.126 -0.522** 

 (0.243) (0.285) (0.192) (0.214) 

Riskzone 2 Dummy 0.240 0.0571 0.370 0.445 

 (0.295) (0.245) (0.244) (0.332) 

Riskzone 3 Dummy 0.517* 0.205 0.544** 0.518* 

 (0.311) (0.278) (0.226) (0.274) 

Riskzone 4 Dummy 0.547 0.429 0.460* 0.508 

 (0.350) (0.330) (0.261) (0.427) 

Riskzone 5 Dummy 0.434 0.394 0.204 0.326 

 (0.288) (0.250) (0.180) (0.220) 

Riskzone 6 Dummy 0.122 -0.178 0.290 0.465 

 (0.275) (0.238) (0.223) (0.381) 

Riskzone 7 Dummy 0.544* 0.435* 0.483*** 0.565** 

 (0.280) (0.235) (0.180) (0.236) 

Riskzone 8 Dummy 0.280 -0.0938 -1.59e-05 0.317 

 (0.263) (0.220) (0.181) (0.257) 

Riskzone 9 Dummy 0.0290 -0.0813 0.509** 0.0294 

 (0.271) (0.228) (0.219) (0.238) 

Riskzone 10 Dummy 0.152 -0.121 0.187 0.279 

 (0.258) (0.228) (0.213) (0.286) 

Riskzone 11 Dummy 0.687** 0.595** 0.517*** 0.562** 

 (0.293) (0.231) (0.195) (0.255) 

Riskzone 12 Dummy 0.447 0.267 0.718*** 0.431** 

 (0.281) (0.208) (0.199) (0.207) 

Riskzone 13 Dummy 0.399 -0.0782 0.672*** 0.291 

 (0.289) (0.248) (0.216) (0.226) 

Riskzone 14 Dummy 0.694** 0.739** 0.240 0.518** 

 (0.334) (0.326) (0.245) (0.263) 

Riskzone 15 Dummy 0.501* 0.343 0.358** 0.217 

 (0.285) (0.221) (0.178) (0.203) 

Riskzone 16 Dummy 0.432 0.284 0.215 0.392* 

 (0.298) (0.267) (0.192) (0.218) 

Riskzone 17 Dummy 1.144*** 0.703** 0.482** 0.542** 

 (0.335) (0.298) (0.213) (0.248) 
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 (1) (2) (3) (4) 

VARIABLES HRSW Durum Barley Canola 

Riskzone 18 Dummy 0.430 0.358 0.340* 0.145 

 (0.291) (0.276) (0.206) (0.207) 

Riskzone 19 Dummy 0.418 0.476* 0.694*** 0.437** 

 (0.286) (0.268) (0.195) (0.214) 

Riskzone 20 Dummy 0.772** 0.795*** 0.628*** 0.545** 

 (0.316) (0.286) (0.228) (0.243) 

Riskzone 21 Dummy 1.094*** 0.931*** 0.436* 0.541** 

 (0.345) (0.341) (0.231) (0.267) 

Riskzone 22 Dummy 0.743*** 0.962** 0.522** 0.634** 

 (0.283) (0.384) (0.232) (0.252) 

Riskzone 23 Dummy 1.329*** 0.851** 0.927*** 1.022*** 

 (0.380) (0.349) (0.277) (0.299) 

Total Number Frost in Growing Season 0.105*** 0.109*** 0.118*** 0.0477*** 

 (0.0225) (0.0202) (0.0158) (0.0182) 

Total Number Excessive Heat in Growing Season 0.0522*** 0.0532*** 0.0371*** 0.0533*** 

 (0.0152) (0.0149) (0.0110) (0.0144) 

Constant -25.77*** -20.05** 35.61*** 52.61*** 

 (9.871) (9.561) (7.682) (10.01) 

     

Observations 805 805 805 805 

R-squared 0.453 0.436 0.582 0.408 

Adjusted R-squared 0.421 0.403 0.557 0.373 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Appendix 8: Summary of BMA output of Loss Cost Ratio for HRSW 

Variable p!=0 EV SD Model 1 Model 2 Model 3 

Model 

4 Model 5 

Intercept 100 -6.72 9.29 -1.97 -4.55 -4.13 -2.14 -3.53 

Water Balance Ratio in June 100 -0.53 0.11 -0.58 -0.48 -0.49 -0.58 -0.56 

GDD Ratio in May 100 1.68 0.38 1.49 1.44 1.48 1.50 1.94 

GDD Ratio in August 100 -2.25 0.49 -2.32 -1.94 -2.05 -2.33 -2.16 

GDD Ratio in September 100 -1.19 0.29 -1.07 -1.55 -1.60 -1.04 -1.09 

Number Frost Days 100 0.13 0.02 0.14 0.13 0.13 0.14 0.12 

Number Heat Stress Days 100 0.07 0.01 0.07 0.05 0.06 0.07 0.06 

Water Balance Ratio in August 99.8 0.31 0.08 0.31 0.28 0.29 0.31 0.31 

Water Balance Variability Ratio 

in September 99.8 0.66 0.18 0.62 0.64 0.68 0.66 0.64 

GDD Variability Ratio in 

September 89.7 0.91 0.43 1.04 0.97 0.97 1.06 1.16 

GDD Ratio in July 79.5 1.65 1.05 1.60 2.48 2.46 1.62 1.84 

Water Balance Variability Ratio 

in June 70.2 0.38 0.29 0.55 0.49 . 0.59 0.55 

Ratio GDD Variability in June 48.4 0.38 0.46 . 1.04 1.12 . . 

GDD Variability Ratio in May 30.8 0.23 0.39 . . . . 0.69 

Water Balance Ratio in 

September 27.7 -0.05 0.09 . -0.19 -0.19 . . 

GDD Ratio in June 24.3 0.29 0.55 . 1.27 1.31 . . 

Risk zone 17 24.1 0.12 0.24 . . . 0.52 . 

Trend 17.9 0.00 0.00 . . . . . 

Risk zone 23 15.6 0.08 0.20 . . . . . 

Risk zone 21 8.1 0.03 0.13 . . . . . 

Ratio of Water Balance 

Variability in July 5.7 0.02 0.10 . . . . . 

Risk zone 11 0.2 0.00 0.01 . . . . . 

Risk zone 22 0 0.00 0.00 . . . . . 

         nVar 

   

11 14 13 12 12 

r2 

   

0.408 0.422 0.417 0.412 0.412 

BIC 

   

-348.07 -347.32 -347.14 -347.06 -346.93 

post prob 

   

0.041 0.028 0.026 0.025 0.023 

 

 

 

 

 



 

68 

 

Appendix 9: Summary of BMA output of Loss Cost Ratio for Durum 

 p!=0 EV SD Model 1 Model 2 Model 3 Model 4 Model 5 

Intercept 100 -5.64 10.86 0.67 -22.37 0.21 0.55 -0.05 

Water Balance Ratio in 

June 

100 -0.64 0.10 -0.66 -0.63 -0.65 -0.62 -0.65 

Water Balance Ratio in 

August 

100 0.36 0.08 0.36 0.35 0.35 0.38 0.34 

GDD Ratio in May 100 1.65 0.24 1.57 1.72 1.54 1.53 1.62 

GDD Ratio in August 100 -1.98 0.42 -2.08 -2.14 -1.97 -2.01 -1.91 

Frost Days 100 0.13 0.01 0.13 0.13 0.13 0.13 0.13 

Heat Stress Days 100 0.06 0.01 0.06 0.06 0.06 0.07 0.06 

GDD Ratio in 

September 

98.0 -0.70 0.26 -0.61 -0.71 -0.59 -0.64 -0.67 

Water Balance 

Variability Ratio in 

July 

69.5 0.35 0.28 0.51 0.56 0.46 . 0.49 

Water Balance 

Variability Ratio in 

June 

44.1 0.20 0.26 . . 0.43 0.50 . 

GDD Variability Ratio 

in July 

27.4 0.17 0.32 . . . . 0.57 

Trend 26.4 0.00 0.01 . 0.01 . . . 

Water Balance 

Variability Ratio in 

September 

12.8 0.04 0.12 . . . . . 

GDD Variability Ratio 

in September 

9.7 -0.04 0.16 . . . . . 

GDD Ratio in July 7.0 0.09 0.35 . . . . . 

GDD Variability Ratio 

in May 

6.8 0.03 0.15 . . . . . 

Risk zone 22 5.0 0.02 0.09 . . . . . 

Risk zone 21 3.6 0.01 0.07 . . . . . 

Risk zone 11 2.5 0.01 0.06 . . . . . 

Risk zone 20 0.6 0.00 0.02 . . . . . 

GDD Variability Ratio 

in June 

0.5 0.00 0.02 . . . . . 

Risk zone 14 0.5 0.00 0.02 . . . . . 

         

nVar    8 9 9 8 9 

r2    0.38 0.38 0.38 0.38 0.38 

BIC    -328.1 -327.5 -327.3 -327.1 -326.4 

post prob    0.091 0.069 0.06 0.055 0.04 
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Appendix 10: Summary of BMA output of Loss Cost Ratio for Barley 

Variable p!=0 EV SD Model 1 Model 2 Model 3 Model 4 Model 5 

Intercept 100 34.39 7.49 35.22 34.15 33.96 35.11 33.27 

Trend 100 -0.02 0.00 -0.02 -0.02 -0.02 -0.02 -0.02 

Water Balance Ratio in 

June 

100 -0.42 0.07 -0.42 -0.42 -0.42 -0.43 -0.41 

Water Balance Ratio in 

August 

100 0.24 0.05 0.23 0.24 0.24 0.24 0.24 

GDD Ratio in May 100 1.41 0.17 1.38 1.40 1.42 1.40 1.41 

GDD Ratio in July 100 1.99 0.45 1.87 1.92 1.97 1.92 2.04 

GDD Ratio in 

September 

100 -1.11 0.15 -1.13 -1.10 -1.08 -1.11 -1.05 

GDD Variability Ratio 

in July 

100 0.82 0.21 0.84 0.80 0.79 0.83 0.79 

Frost Days 100 0.12 0.01 0.12 0.12 0.12 0.12 0.12 

Heat Stress Days 100 0.05 0.01 0.05 0.05 0.05 0.05 0.05 

Water Balance 

Variability Ratio in July 

99.6 0.49 0.14 0.48 0.51 0.49 0.46 0.53 

Water Balance Ratio in 

July 

99.5 -0.22 0.06 -0.23 -0.22 -0.21 -0.23 -0.20 

Risk Zone 1 51.4 -0.21 0.24 . -0.40 -0.43 . -0.41 

Risk zone 8 40.1 -0.16 0.22 . . -0.40 -0.38 . 

Risk zone 23 35.7 0.14 0.21 . . . . 0.39 

Risk zone 12 21.7 0.07 0.16 . . . . . 

Water Balance 

Variability in 

September 

17.2 0.04 0.11 . . . . . 

Risk zone 13 9.3 0.03 0.10 . . . . . 

Water Balance Ratio in 

May 

6.1 -0.01 0.02 . . . . . 

GDD Variability Ratio 

in June 

3.6 0.01 0.05 . . . . . 

Water Balance Ratio in 

September 

2.3 0.00 0.01 . . . . . 

Risk zone 19 1.5 0.00 0.03 . . . . . 

GDD Variability Ratio 

in August 

1.3 0.00 0.02 . . . . . 

Water Balance 

Variability Ratio in 

May 

0.4 0.00 0.01 . . . . . 

nVar    11 12 13 12 13 

r2    0.548 0.552 0.555 0.551 0.555 

BIC    -565.61 -565.38 -565.37 -564.77 -564.36 

post prob    0.079 0.07 0.07 0.052 0.042 
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Appendix 11: Summary of BMA output of Loss Cost Ratio for Canola 

Variable p!=0 EV SD Model 1 Model 2 Model 3 Model 4 Model 5 

Intercept 100 54.82 9.86 53.73 52.82 50.36 57.57 52.90 

Trend 100 -0.03 0.00 -0.03 -0.03 -0.03 -0.03 -0.03 

Water Balance Ratio in June 100 -0.35 0.09 -0.35 -0.33 -0.38 -0.39 -0.33 

Water Balance Ratio in 

August 
100 0.30 0.07 0.29 0.29 0.31 0.30 0.28 

GDD Variability Ratio in 

August 
100 0.82 0.18 0.83 0.82 0.85 0.81 0.84 

Frost Days 100 0.07 0.02 0.07 0.06 0.07 0.09 0.06 

Heat Stress Days 100 0.06 0.01 0.06 0.06 0.06 0.06 0.06 

GDD Ratio in July 97.1 1.85 0.64 2.06 2.24 1.66 1.87 2.11 

GDD Ratio in May 79.4 0.75 0.48 1.04 1.10 0.99 0.56 1.01 

GDD Variability Ratio in 

May 
66.6 0.53 0.43 0.77 0.84 0.77 . 0.77 

GDD Variability Ratio in 

June 
62.9 0.37 0.33 0.60 0.64 . 0.60 0.55 

Water Balance Variability 

Ratio in June 
23.3 0.09 0.18 . . . . 0.34 

Risk zone 23 21.1 0.10 0.22 . 0.49 . . . 

GDD Ratio in September 12.5 -0.05 0.14 . . . . . 

Risk zone 9 8.2 -0.03 0.12 . . . . . 

Water Balance Ratio in May 8.1 -0.01 0.04 . . . . . 

Risk zone 1 5.7 -0.02 0.10 . . . . . 

Water Balance Variability 

Ratio in May 
5.4 0.01 0.07 . . . . . 

Risk zone 18 0.8 0.00 0.03 . . . . . 

Risk zone 15 0.6 0.00 0.02 . . . . . 

         

nVar    10 11 9 9 11 

r2    0.378 0.383 0.372 0.371 0.381 

BIC    -315.47 -314.58 -313.93 -313.46 -312.87 

post prob    0.12 0.077 0.056 0.044 0.033 
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Appendix 12: RMSE Comparison of the Out-of-Sample Prediction of BMA and OLS by 

crop and risk zone 

 

HRSW Durum Barley Canola 

Risk 

Zone BMA OLS BMA OLS BMA OLS BMA OLS 

1 6.02% 5.84% 10.32% 11.34% 10.18% 9.89% 6.29% 5.63% 

2 7.33% 7.52% 8.96% 8.99% 10.00% 9.94% 11.63% 12.41% 

3 7.58% 8.94% 11.38% 10.35% 9.12% 9.33% 12.77% 13.36% 

4 7.96% 9.57% 9.02% 10.82% 7.54% 8.50% 10.93% 11.49% 

5 4.58% 6.13% 12.69% 13.25% 8.91% 9.38% 6.17% 6.79% 

6 4.58% 4.63% 5.84% 5.12% 6.44% 6.64% 8.84% 7.35% 

7 3.85% 4.67% 13.44% 13.22% 9.78% 9.86% 6.17% 7.63% 

8 4.84% 5.48% 6.21% 5.43% 6.00% 5.42% 7.05% 28.55% 

9 4.27% 3.90% 7.39% 5.90% 4.28% 5.57% 4.32% 6.62% 

10 6.62% 6.53% 8.41% 6.11% 6.93% 5.61% 7.35% 8.27% 

11 4.04% 5.87% 12.01% 11.41% 8.82% 8.79% 3.99% 5.01% 

12 5.42% 6.69% 11.82% 12.95% 6.44% 7.65% 3.03% 4.47% 

13 6.28% 8.01% 6.75% 5.00% 4.47% 5.56% 4.72% 7.76% 

14 5.12% 6.07% 14.68% 14.21% 16.02% 15.89% 8.10% 8.19% 

15 4.13% 5.94% 12.31% 12.93% 7.56% 7.37% 2.90% 3.44% 

16 5.63% 6.02% 6.67% 5.66% 8.38% 7.36% 5.14% 7.40% 

17 8.11% 11.73% 11.44% 11.88% 14.34% 14.39% 6.69% 7.79% 

18 4.93% 5.93% 9.39% 9.18% 6.27% 5.18% 3.35% 3.54% 

19 9.04% 9.21% 12.00% 13.16% 9.51% 10.30% 6.55% 11.01% 

20 5.17% 6.72% 25.99% 25.19% 5.30% 6.32% 3.91% 6.63% 

21 6.88% 9.83% 8.62% 12.17% 7.04% 6.94% 4.47% 4.91% 

22 8.76% 9.46% 8.54% 11.77% 7.40% 6.90% 4.11% 6.04% 

23 11.75% 15.09% 13.50% 15.42% 11.55% 13.08% 6.71% 10.74% 

Average 6.51% 7.80% 11.51% 11.78% 8.81% 8.97% 6.85% 9.86% 
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Appendix 13: MAE Comparison of the Out-of-Sample Prediction of BMA and OLS by 

crop and risk zone 

 HRSW Durum Barley Canola 

Risk 

Zone BMA OLS BMA OLS BMA OLS BMA OLS 

1 5.05% 4.77% 8.79% 9.07% 7.28% 6.58% 4.46% 3.97% 

2 6.56% 6.87% 7.65% 8.00% 8.82% 8.69% 9.03% 10.04% 

3 6.33% 7.06% 9.69% 8.50% 6.58% 7.12% 9.64% 10.20% 

4 6.22% 7.49% 8.20% 9.35% 6.87% 7.57% 8.25% 8.73% 

5 3.34% 4.55% 8.54% 9.52% 7.61% 7.36% 4.42% 5.01% 

6 3.41% 3.31% 5.17% 3.86% 5.50% 5.14% 6.67% 5.39% 

7 2.73% 3.52% 8.35% 8.21% 7.52% 7.43% 4.60% 6.04% 

8 3.79% 4.17% 4.91% 3.95% 4.84% 4.11% 5.22% 15.36% 

9 3.57% 2.77% 6.39% 5.02% 3.78% 5.02% 2.91% 3.75% 

10 4.83% 4.56% 6.85% 4.31% 5.16% 4.12% 4.91% 5.19% 

11 3.27% 4.83% 7.84% 7.04% 6.92% 6.82% 2.91% 3.79% 

12 3.84% 4.07% 7.52% 7.88% 4.71% 5.52% 1.54% 2.18% 

13 4.56% 5.70% 4.50% 3.39% 3.84% 4.33% 3.04% 4.34% 

14 4.14% 5.04% 10.79% 11.70% 11.05% 10.66% 5.33% 5.31% 

15 3.25% 4.04% 7.59% 8.27% 5.45% 5.13% 2.09% 2.60% 

16 4.29% 4.47% 5.34% 4.34% 7.17% 6.05% 3.16% 4.08% 

17 5.64% 9.37% 6.90% 7.98% 9.46% 9.47% 5.15% 5.67% 

18 4.34% 5.09% 6.33% 6.81% 5.82% 4.98% 1.76% 2.17% 

19 5.54% 5.47% 9.47% 9.98% 6.29% 7.17% 3.68% 5.48% 

20 2.45% 3.46% 14.77% 14.02% 3.40% 4.01% 2.34% 3.41% 

21 4.77% 7.11% 6.44% 9.69% 5.13% 5.21% 3.54% 3.80% 

22 5.59% 6.29% 6.67% 10.32% 4.94% 4.65% 2.50% 3.48% 

23 8.70% 12.09% 10.35% 11.73% 7.49% 8.83% 4.36% 7.07% 

Average 4.62% 5.48% 7.78% 7.95% 6.33% 6.35% 4.41% 5.52% 
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Appendix 14: Weather Probabilities of Loss Cost by Crop 

Loss Cost HRSW Durum Barley Canola 

0.000% 0.13817 0.11145 0.11977 0.14858 

1.116% 0.03969 0.02844 0.02733 0.01920 

2.232% 0.04962 0.03613 0.02974 0.01753 

3.348% 0.06031 0.04535 0.02331 0.02003 

4.465% 0.05191 0.04689 0.04260 0.03339 

5.581% 0.04809 0.05995 0.03617 0.03088 

6.697% 0.05038 0.05227 0.03859 0.03422 

7.813% 0.03969 0.03920 0.05627 0.04007 

8.929% 0.04962 0.05304 0.04662 0.02671 

10.045% 0.05038 0.05380 0.03457 0.03339 

11.161% 0.04351 0.06149 0.04502 0.03255 

12.277% 0.05267 0.05457 0.03617 0.03422 

13.394% 0.03511 0.03766 0.04421 0.03255 

14.510% 0.03664 0.04151 0.04260 0.03589 

15.626% 0.03130 0.03305 0.03055 0.02922 

16.742% 0.03053 0.02921 0.02974 0.03088 

17.858% 0.02901 0.02998 0.02894 0.03088 

18.974% 0.01832 0.02229 0.03215 0.03422 

20.090% 0.02061 0.02921 0.01688 0.02922 

21.207% 0.01374 0.01998 0.01367 0.02504 

22.323% 0.02137 0.01460 0.02251 0.02337 

23.439% 0.00763 0.01076 0.01125 0.02337 

24.555% 0.00840 0.01153 0.01849 0.01836 

25.671% 0.01069 0.00922 0.02170 0.02003 

26.787% 0.00687 0.00769 0.01608 0.02087 

27.903% 0.00992 0.01076 0.02331 0.02504 

29.019% 0.00458 0.00461 0.00804 0.02170 

30.136% 0.00611 0.00538 0.01768 0.02003 

31.252% 0.00534 0.00538 0.01367 0.02170 

32.368% 0.00458 0.00538 0.01286 0.01503 

33.484% 0.00382 0.00846 0.01206 0.01169 

34.600% 0.00534 0.00615 0.01367 0.01586 

35.716% 0.00763 0.00615 0.01125 0.01503 

36.832% 0.00153 0.00461 0.00804 0.01169 

37.949% 0.00534 0.00154 0.00804 0.00835 

>39.065% 0.00153 0.00231 0.00643 0.00918 
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Appendix 15: RMSE of Weighted Probabilities (WP), 10-Year Moving Average and Simple Average by Crop and Risk Zone 

 
HRSW Durum Barley Canola 

 
WP 

10 

Year 

Moving 

Simple 

Average WP 

10 

Year 

Moving 

Simple 

Average WP 

10 Year 

Moving 

Simple 

Average WP 

10 Year 

Moving 

Simple 

Average 

1 5.85% 4.13% 4.83% 8.92% 9.18% 9.09% 7.56% 7.86% 8.23% 7.01% 3.67% 10.25% 

2 4.29% 5.62% 6.51% 7.04% 7.05% 8.64% 4.90% 4.53% 11.16% 8.59% 7.70% 19.27% 

3 6.40% 6.11% 6.75% 6.08% 5.50% 6.39% 9.16% 9.50% 11.12% 11.57% 14.06% 15.10% 

4 4.52% 5.03% 7.60% 5.03% 5.66% 8.98% 9.52% 10.21% 11.58% 8.06% 12.44% 16.81% 

5 6.05% 6.03% 6.35% 12.05% 12.53% 13.06% 6.04% 6.51% 7.80% 7.35% 4.21% 12.27% 

6 4.31% 3.93% 4.74% 4.58% 3.62% 5.08% 7.18% 7.02% 9.51% 7.39% 7.85% 17.48% 

7 6.34% 4.65% 5.93% 12.63% 13.13% 13.10% 6.73% 6.08% 8.27% 7.67% 4.35% 12.56% 

8 6.34% 6.48% 5.94% 8.97% 10.17% 9.32% 5.45% 4.22% 7.26% 7.87% 6.18% 14.79% 

9 4.70% 4.86% 5.97% 5.18% 5.38% 7.00% 6.60% 5.50% 9.90% 6.59% 9.75% 11.67% 

10 4.28% 3.89% 5.14% 3.16% 4.16% 5.14% 5.20% 4.08% 8.38% 7.25% 8.17% 15.01% 

11 5.70% 5.91% 6.69% 11.86% 13.90% 12.77% 6.37% 5.36% 6.78% 7.52% 4.54% 11.62% 

12 5.27% 5.97% 6.38% 11.18% 12.79% 11.64% 7.65% 6.29% 12.33% 8.15% 8.10% 13.34% 

13 4.16% 6.32% 7.97% 4.66% 4.01% 6.90% 6.49% 8.30% 11.69% 6.94% 11.20% 13.39% 

14 6.06% 4.50% 5.91% 13.35% 14.96% 13.61% 10.60% 11.34% 10.66% 7.32% 5.50% 8.95% 

15 5.17% 6.65% 5.80% 10.60% 12.01% 10.94% 5.84% 5.26% 7.22% 6.44% 4.02% 7.71% 

16 4.87% 8.32% 6.39% 4.42% 8.82% 6.94% 4.76% 6.96% 7.19% 8.51% 12.25% 13.10% 

17 5.91% 8.29% 8.96% 10.31% 13.05% 11.57% 9.57% 9.32% 9.59% 7.72% 5.61% 8.89% 

18 5.80% 8.25% 6.66% 9.49% 11.90% 9.96% 6.74% 7.44% 7.94% 7.37% 8.29% 8.34% 

19 5.95% 10.07% 7.06% 7.87% 9.94% 7.57% 8.67% 9.20% 8.99% 8.28% 12.36% 9.89% 

20 6.09% 9.91% 6.61% 21.98% 21.04% 22.06% 7.00% 9.68% 8.19% 6.93% 12.50% 8.40% 

21 6.71% 11.57% 8.58% 5.80% 13.52% 11.74% 6.53% 6.96% 5.59% 6.50% 9.90% 8.37% 

22 8.33% 8.58% 7.27% 8.32% 14.35% 10.83% 8.86% 8.92% 7.83% 9.32% 12.27% 10.40% 

23 10.03% 12.13% 11.24% 6.32% 12.94% 9.58% 10.78% 10.84% 11.74% 10.48% 12.79% 12.55% 

 
5.79% 6.84% 6.75% 8.69% 10.42% 10.08% 7.31% 7.45% 9.08% 7.86% 8.60% 12.18% 

 


	University of North Dakota
	UND Scholarly Commons
	January 2017

	The Impact Of Agroclimatic Variables On Crop Insurance Claims In Saskatchewan
	Patrick Frimpong Manso
	Recommended Citation


	tmp.1559243509.pdf.tULsO

