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ABSTRACT 

 
Equipment financing is a trillion dollar industry that covers small and medium sized 

businesses across the entire spectrum of business categories.  These transactions are 

typically scored utilizing the owners’ personal credit, with business credit adding 

additional information to the credit decision.  For this paper, the portfolio performance of 

a publically traded company that finances small ticket equipment leases and loans will be 

examined.  Utilizing data points gathered from thousands of leases and loans over a four-

year period, transactions were run through three different econometric models and 

forecasted for a subsequent two-month period.  Macroeconomic variables were then 

introduced to the econometric model to determine whether or not they increase the 

accuracy of this prediction, and by how much they either increase or decrease said 

forecasts.



1	  
	  

CHAPTER 1 

INTRODUCTION 

Equipment finance is a relatively unknown but nevertheless extremely important part of 

the US economy.  Equipment leasing and financing contributes to U.S. economic growth, 

manufacturing, and jobs in addition to a businesses’ success.  According to the 

Equipment Financing and Leasing Association (2014) seventy-two percent of U.S. 

companies use some sort of financing when acquiring new collateral – including loans, 

leases, and lines of credit (excluding credit cards).  Firms invest in nearly $1.5 trillion in 

plant, equipment, and software annually, and finance almost two-thirds (62%) of these 

equipment purchases.  Equipment finance companies also finance the export of U.S. 

manufactured products abroad (EFLA, 2014). 

 

In this paper we focus on so called small ticket equipment leasing and financing, 

generally considered to be transactions between $5,000 and $150,000.  As expected, a 

business’ commercial credit is utilized when approving or declining these transactions.  

However the business owners’ personal credit also play an important role in the credit 

adjudication process.  In fact, based on my fifteen plus years in the equipment finance 

industry as both an equipment finance broker and lender, the attributes displayed in the 

owners’ personal credit report compose the majority of the information used in the credit 

decision. 
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It goes without saying that the performance of these transactions is of vital concern to the 

small ticket lenders in the U.S.  As in other areas of finance, the smaller players usually 

have a higher cost of funds than larger ticket or captive lenders; and in fact many of these 

lenders were forced out of business during the last recession (Menkin, 2013).  Since the 

majority of the businesses financed are closely held, usually only one or two owners, the 

personal and business credit of each transaction is used to categorize the risk of each 

potential lessee or borrower.  This risk or pricing factor is then used to determine how the 

portfolio of leases and loans will be expected to perform. 

 

But what else can be used to forecast or predict the performance of these leases and 

loans?  What about macroeconomic data?  Since the majority of these businesses are 

smaller “main street” business that cater to consumers (as opposed to larger B2B 

enterprises), how do macroeconomic factors, particularly those related to overall 

consumer credit profiles (mortgage delinquency, credit card debt, credit card 

delinquency), affect these portfolios?  Will adding one or more of these variables 

improve the accuracy of our forecasts? 

 

I create three different econometric models, determine which one is most accurate, and 

then add a set of these macroeconomic factors and determine how the addition affects our 

results.   
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CHAPTER II 

LITERATURE REVIEW 

A great deal of literature has been written examining loan portfolios and the impact of 

various economic variables on these portfolios.  Periodicals such as the Journal of 

Banking & Finance, the Journal of Applied Finance and Banking, and the Journal of 

Banking Regulation are just a few of the publications devoting pages to this topic 

recently.  The majority of these articles dealt the portfolio performance of various 

compositions from commercial and consumer mortgages, to agricultural lending, to credit 

cards.  However, regardless of the type of portfolio being discussed, the literature usually 

revolved around one of two main categories: individual risk vs. portfolio list.    

 

There was a lot of information on individual risk profiles, i.e. the initial credit-granting 

process, and also how to create an effective credit-scoring model.  These models covered 

not only general personal and commercial loans, but also equipment financing 

scorecards. In addition, there was information covering loan portfolio risk factors, such as 

macroeconomic conditions and political conditions which could affect a loan portfolio’s 

performance.   

 

Somewhat surprising perhaps, given the aforementioned size and impact of the 

equipment finance industry, there was not a lot of information dealing with the 

performance of equipment lease and loan portfolios.  Accordingly then, there was not a 
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lot of information on how external factors, such as macroeconomic variables, will impact 

these portfolios – and any forecast created to predict the performance.  The majority of 

papers discussing portfolio returns tended to address the performance of commercial 

bank loans, commercial real estate loans, commercial property leases, and consumer 

mortgages. Even though commercial equipment financing accounts for around $1trillion 

in new equipment annually (EFLA, 2014); this number pales in comparison to the over 

$9 trillion in outstanding home mortgages in the fourth quarter of 2014, and is less than 

one-third of the $3.3 trillion in outstanding consumer credit at the end of Q4 2014 

(United States, 2015).  

 

As mentioned previously, asset backed lending, or equipment leases and loans tied 

specifically to collateral, was not adequately addressed.  However reviewing the literature 

for models and information than could be applied to equipment financing portfolios did 

yield positive results.  Gambera (2000) in Simple Forecasts of Bank Loan Quality stated 

that there is, “Little empirical evidence about the effects of macroeconomic factors on 

bank assets” (p 2).  Bellotti and Crook reviewed default models incorporating 

macroeconomic variables for credit cards (2012).  They focused on modeling and 

forecasting using both account variables and macroeconomic variables.  They stated both 

business conditions and macroeconomic variables at the time of default, “with possibly 

either a lag or lead on the date of default” can help predict the performance of the 

portfolio being modeled (p 172).  They created four “model structures based on including 

different explanatory variables” (p 173) one of them being account and macroeconomic 

variables. 
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Gambera (2000) indicated that a linear model is a very easy forecasting tool.  He stated 

that, “Vector-Autoregressive models are systems of linear equations and therefore quite 

easy to estimate.  They have the advantage over the single-equation linear models to 

better consider the interactions between variables.  VARs model a more complete 

dynamics” (p 4). 

 

In their article Stock and Watson (1996) undertook a “forecasting comparison of 49 

univariate forecasting models, plus various forecast pooling procedures” (p 1).  They 

posed the question do “nonlinear time series models produce forecasts that improve upon 

linear models in real time” (p 1).  They studied 49 different forecasting methods that fell 

into four main classes: autoregressions (AR), exponential smooth, artificial neural 

networks (ANN), and logistic smooth transition autoregressions (LSTAR).   The end 

result of their work was that “Overall, AR methods have lower average loss than the 

LSTAR or ANN methods…” (p 30).   In their opinion the best overall performance of a 

single method is achieved by autoregressions with unit root pretests and that, “AR models 

with lag lengths selected by AIC generally worked well (p 31). 

 

The amount of information available on loan portfolios and their performance is 

extensive.  While little of this relates specifically to business equipment leasing and 

financing, the treatment of information regarding portfolio performance and forecasting 

was generic enough to apply to the econometric model developed in this paper.   
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CHAPTER III 

DATA AND METHODOLOGY 

For this paper, I collected data from over 7,500 funded equipment lease and loan 

transactions funded between January 2011 and December 2014 by a small ticket 

equipment lease and loan company located in the Mountain Region of the United States 

(hereafter “the Company”). 

 

27 different monthly variables from the Company’s portfolio were collected, and the data 

then cleaned to identify and correct incomplete and inaccurate data.  These variables were 

both specific variables of the owners’ consumer credit report, as well as matrix values 

created by the Company’s scorecard.  These matrix values are numerical values between 

-3 and +5 that provide both a simple score and weight to the scorecard.  For example, a 

credit score of 650 might result in 0 matrix value, while a 750 might result in a matrix 

value of +5.  Matrix values are calculated for each variable utilized in the Company’s 

scorecard, and the resulting sum determines approval/decline, and if the transaction si 

approved where the approval will fall on the risk-based pricing spectrum.   Additionally, 

macroeconomic variables including consumer credit card debt and mortgage delinquency 

were included in later models. 
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Table 1: List and Description of Variables Utilized 
Variable Name Description Mean Standard 

Deviation 

Charge_Off Dollar amount charged off portfolio 
per month. $209,188 $123,244 

Overall_Aging 
Overall delinquency of portfolio 
(amount past due 1+ days / gross lease 
receivable) 

2.4731% 0.8781% 

One_To_Thirty_Aging Percent of portfolio that is past due 
between one and thirty days 1.3115% 0.4636% 

Thirty_One_Plus_Aging Percent of portfolio that is past due 
over thirty-one days 1.1617% 0.4858% 

New_Non_Accrual 

Dollar amount of transactions that 
were put on nonaccrual list (i.e. they 
are not expected to accrue any more 
income) that month 

$359,704 $186,197 

Total_Non_Accural Total amount of leases/loans on non 
accrual.   $838,253 $534,023 

Per_Port_on_Non_Accrual 
Dollar amount of portfolio on 
nonaccrual divided by total gross lease 
receivable 

0.8697% 0.3780% 

Total_Dollar_Approved Total amount approved, all programs, 
per month $8,434,700 $1,730,455 

Total_Number_Approved Total number of transactions 
approved, all programs, per month. 403.9792 74.89950 

Average_Approval Average transaction size approved per 
month $20,855 $1,340 

Recovery Amount recovered from previously 
charged off leases $42,477 $40,160 

Avg_Funded_BNI 
Average BNI (bankruptcy predictive 
score) of all transactions funded in a 
particular month. 

273.3333 17.4567 

Avg_Funded_Beacon 
Average Beacon personal credit score 
of all transactions funded in a 
particular month. 

685.4738 11.4016 

Average_Matrix Average of each transaction’s overall 
credit score funded in a given month. 11.7938 2.2811 

Total_Dollar_Funded Total amount of equipment leases and 
loans funded in a given month $3,545,690 $777,320 

Total_Number_Funded Total number of transactions funded 
in a given month. 169.2708 29.6589 

Average_Funded Average size of all transactions 
funded in a given month. $20,862 $1,724 

Fourteen_Funded 
Total dollar amount of transactions 
with 14% buy rate funded in a given 
month. 

$381,678 $172,603 

Sixteen_Funded 
Total dollar amount of transactions 
with 16% buy rate funded in a given 
month. 

$399,203 $218,437 

Eighteen_Funded 
Total dollar amount of transactions 
with 18% buy rate funded in a given 
month. 

$595,090 $260,370 

Twenty_Funded 
Total dollar amount of transactions 
with 20% buy rate funded in a given 
month. 

$666,578 $174,316 

Twentytwo_Funded 
Total dollar amount of transactions 
with 22% buy rate funded in a given 
month. 

$582,507 $140,483 

Twentyfour_Funded 
Total dollar amount of transactions 
with 24% buy rate funded in a given 
month. 

$253,489 $109,511 
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Table 1. cont.    

Twentysix_Funded 
Total dollar amount of transactions 
with 26% buy rate funded in a given 
month. 

$348,305 $123,677 

Twentyeight_Funded 
Total dollar amount of transactions 
with 28% buy rate funded in a given 
month. 

$227,467 $81,114 

Thirty_Funded 
Total dollar amount of transactions 
with 30% buy rate funded in a given 
month. 

$115,336 $65,333 

TOTALNS 
Total Consumer Credit Owned and 
Securitized, Outstanding, Billions of 
Dollars, in a given month. 

$2,919 $203 

MORTDQ Total Conventional Single-Family 
Delinquency Rates, 3 or more months 
past due, in a given month. 

3.1196% 0.8156% 

 
 

Given the success Gambera (2000) had with vector-autoregressive models in forecasting 

(p 4), I decided to utilize the same model for creating an econometric model and 

forecasting the performance of The Company’s portfolio.  

 

According to Lüetkepohl, VAR models are natural tools for forecasting (2011, p 1).  The 

basic format of a VAR model is when past values of the involved variables partly explain 

the current values of a variable set.  Because they describe the joint generation 

mechanism of the variables involved, they often are successfully used for economic 

analysis.  Lüetkepohl (2011) commented that, “Structural VAR analysis attempts to 

investigate structural economic analysis with the help of VAR models.  Since reduced 

form VAR models represent the conditional mean of a stochastic process, they lend 

themselves for forecasting” (p 13).    

 

 The first order of business was to test the variables for stationarity, as I had to have the 

data in stationary form for regression analysis.  A time series is said to be stationary if its 

statistical properties such as mean, variance, etc. are all constant over time.  Once the 
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time series is stationary, it is easy to predict, I just make the assumption that its statistical 

properties will be the same in the future as they have been in the past.   

 

Upon initial review, I noticed all of the Company’s variables had a distinct upward trend, 

as can be seen below, displaying non-stationary properties. 

 

Figure I: Time Series Trend Line of Overall Portfolio Aging 

 
 
 
 

Simply taking the difference usually subtracts the trend from the variables, and 

fortunately this is the case with our variables.  I confirmed this by both reviewing a trend 

line of the variables and ensuring no upward or downward trend over time, and in 

addition running a Dickey-Fuller test.  As can be seen in Table 2, the test statistic for the 

Dickey-Fuller test for overall aging is less than the critical values, indicating no unit root 

is present.  
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Figure 2: Time Series Trend Line of 1st Difference of Overall Aging 

 
 

 
Table 2: Dickey-Fuller Test of Unit Root 

 
 

After reviewing the Dickey-Fuller tests for all of the variables listed above, it was 

apparent to me that unit roots were a problem for all variables, and in an attempt to 

rectify this situation, the difference of each variable was taken.  A revised variable list 

with first order differencing was created with some of the variables being the difference 

of the natural log of the variable and some the difference of the variable itself; depending 

on the value of the test statistic and the 1% critical value, with the larger the difference 

the better.   

. 

MacKinnon approximate p-value for Z(t) = 0.0000
                                                                              
 Z(t)             -8.708            -3.607            -2.941            -2.605
                                                                              
               Statistic           Value             Value             Value
                  Test         1% Critical       5% Critical      10% Critical
                                          Interpolated Dickey-Fuller          

Dickey-Fuller test for unit root                   Number of obs   =        46
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Given the success that Stock & Watson (1996) had with utilizing the Akaike Information 

Criteria to select the associated lags; I chose to run the varsoc command to determine the 

most predictive number of lags associated with each variable.   

 

Table 3: Variable Lag Determination using Akaike Information Criteria 

 
 

The next issue to be addressed was variable selection; a regression run with so many 

variables will undoubtedly run into correlation and over-fitting, due primarily due to the 

lack of degrees of freedom.  I undertook several different approaches to select the 

appropriate variables, with the first being running a stepwise regression.    

 

I chose to utilize stepwise regressions because the combination of forward and backward 

selection techniques allows me, based on the t-statistics of their estimated coefficients, to 

selectively add or remove variables.  Stepwise regression is a modification of forward 

selection so that after each step in which a variable was added, all candidate variables in 

    Exogenous:  _cons
   Endogenous:  D.LNCharge_Off D.LNOverall_Aging
                                                                               
     6    45.2684  4.4701    4  0.346  .001401  -.939923  -.544223   .146732   
     5    43.0334  10.044*   4  0.040  .001262  -1.02602  -.691195  -.106541   
     4    38.0116  4.9733    4  0.290   .00131  -.976174  -.702227  -.223874   
     3    35.5249  8.2362    4  0.083  .001208*    -1.05* -.836926  -.464873   
     2    31.4068  11.165    4  0.025   .00121  -1.04423  -.892041* -.626289   
     1    25.8241  13.627    4  0.009  .001304  -.967031  -.875716  -.716265   
     0    19.0106                      .001495  -.829784  -.799345  -.746195*  
                                                                               
   lag      LL      LR      df    p      FPE       AIC      HQIC      SBIC     
                                                                               
   Sample:  2011m8 - 2014m12                    Number of obs      =        41
   Selection-order criteria
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the model are checked to see if their significance has been reduced below the specified 

tolerance level. If a non-significant variable is found, it is removed from the model.  

 

Stepwise regression requires two significance levels: one for adding variables and 

another for removing variables. The cutoff probability for adding variables should be less 

than the cutoff probability for removing variables so that the procedure does not get into 

an infinite loop.  In this case, I utilized a probability of .10 for adding variables and .11 

for removing variables.  The results of the regression can be seen below in Table 4.   

 
Table 4: Using Stepwise Regression  

 
 
 

The next variable list was created by running a correlation analysis and utilizing all 

variables with a correlation coefficient better than .10.  This resulted in the following 

variables being selected: 

                                                                                       
                _cons     12.85525   .0643848   199.66   0.000     12.72172    12.98877
     LDAvg_Funded_BNI    -.0145155   .0079492    -1.83   0.081    -.0310012    .0019702
LDLNTWENTYFOUR_FUNDED    -.4507999   .0975582    -4.62   0.000    -.6531233   -.2484765
 LDTWENTYEIGHT_FUNDED     1.20e-06   4.92e-07     2.43   0.024     1.77e-07    2.22e-06
    LDLNTWENTY_FUNDED     .4528959   .1470905     3.08   0.005     .1478489    .7579429
LDTOTAL_DOLLAR_APPR~D    -1.21e-07   3.41e-08    -3.55   0.002    -1.91e-07   -5.02e-08
LDLNPer_Port_on_Non~l     17.84636   1.962518     9.09   0.000     13.77634    21.91637
LDLNTotal_Non_Accrual    -17.93307   1.929652    -9.29   0.000    -21.93492   -13.93122
  LDLNNew_Non_Accrual     .2525183   .0930206     2.71   0.013     .0596053    .4454313
LDLNThirty_One_Plus~g    -.7884607   .3172838    -2.49   0.021    -1.446467   -.1304544
  LDLNEIGHTEEN_FUNDED    -.3069771   .0959776    -3.20   0.004    -.5060225   -.1079317
  LDAvg_Funded_BEACON     .0434216   .0110256     3.94   0.001      .020556    .0662872
                                                                                       
         LNCharge_Off        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                                       

       Total    7.55522815    33  .228946308           Root MSE      =  .23329
                                                       Adj R-squared =  0.7623
    Residual    1.19729726    22  .054422603           R-squared     =  0.8415
       Model    6.35793089    11  .577993717           Prob > F      =  0.0000
                                                       F( 11,    22) =   10.62
      Source         SS       df       MS              Number of obs =      34
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Table 5: Variables Selected Using Stepwise Regression 

LNCharge_Off  LDLNOne_To_Thirty_Aging  
LDLNNew_Non_Accrual  LDLNRecovery  

LDAvg_Funded_BNI  LDAvg_Funded_BEACON  
LDLNFOURTEEN_FUNDED  

 

Finally, a Classification And Regression Tree (CART) analysis was run to select a third 

variable list for testing.  This methodology is known as binary recursive partitioning; 

binary because parent nodes are always split into exactly two child notes and recursive 

because the process can be repeated by treating each child node as a parent.   

 

The three key elements of a CART analysis are the set of rules for splitting each node in a 

tree, deciding when each tree is complete, and assigning each terminal node to a class 

outcome (or predicted value for regression).  The variables ultimately selected after the 

analysis are listed below in Table 6. 

 

Table 6: Variable Selection Using CART Analysis 

LNCharge_Off DLNThirty_One_Plus_Aging 
DAVERAGE_APPROVAL DLNPer_Port_on_Non_Accrual 

 

The Vector-Autoregressive model is especially useful for describing the dynamic 

behavior of time series and for forecasting; they are quite flexible because they can be 

made conditional on the future paths of specified variables in the model 

A VAR model describes the evolution of a set of k endogenous variables over the same 

sample period (t = 1, ..., T) as a linear function of only their past values. These variables 

are collected in a k × 1 vector yt, which has as the i th element, yi,t, the observation at time 

http://en.wikipedia.org/wiki/Sample_(statistics)
http://en.wikipedia.org/wiki/Linear
http://en.wikipedia.org/wiki/Vector_space
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"t" of the i th variable.  

 

A j-th order VAR, denoted VAR (j), is: 

 

𝑦! = 𝐴!𝑦!!! +   𝐴!𝑦!!! +⋯+ 𝐴!𝑦!!! + 𝑒! 

 

These three different VAR models were run, and the eigenvalue stability condition of the 

models was examined to ensure the variables are covariance stationary.  All three models 

satisfied the stability condition, that is the Eigenvalue was less than one, and as such 

could be compared for accuracy.   

 
Table 7: Eigenvalue Stability Test 

 
 
 

After these models were run, these same models were again run with the aforementioned 

macroeconomic variables: the amount of consumer revolving debt and the percentage of 

serious consumer mortgage delinquency.

   VAR satisfies stability condition.
   All the eigenvalues lie inside the unit circle.
                                            
      .1644959                   .164496    
      .4043897                    .40439    
     -.3165654 -  .3267152i      .454925    
     -.3165654 +  .3267152i      .454925    
     -.2051058 -  .5762456i       .61166    
     -.2051058 +  .5762456i       .61166    
     -.6618995                     .6619    
      .2422966 -   .671892i      .714245    
      .2422966 +   .671892i      .714245    
     -.4947761 -  .5805096i      .762755    
     -.4947761 +  .5805096i      .762755    
      .9223402                    .92234    
                                            
           Eigenvalue            Modulus    
                                            
   Eigenvalue stability condition
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CHAPTER IV 

RESULTS 

Contrary to my initial belief, adding the two macroeconomic variables to our models did 

not clearly and significantly increase the accuracy of my forecasts.  Taking a look at the 

first three econometric models, those without the addition of macroeconomic variables, 

one can see that the model utilizing variables obtained through the correlation analysis 

had the smallest predictive error when compared to actual charge-off values for January 

2015, however it was not nearly as accurate in the second month as the model which 

obtained variables through the stepwise regression.  Overall, the vector-autoregression 

run with variables selected through a stepwise regression was the most accurate over the 

forecast period. 

 
However when looking at the model that incorporates the aforementioned 

macroeconomic variables, it is clear that there is not an across the board improvement in 

forecast accuracy.  While incorporating the mortgage delinquency variable into the 

econometric model obtained from the stepwise regression increases the accuracy of the 

January forecast, it was one of the worst models for forecasting the subsequent month’s 

forecast.  And the model with variables obtained through a correlation analysis, while 

initially one of the most accurate, is almost useless in its forecasting ability due to such 

large forecast errors.   
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Table 8: Regression Results and Comparison to Actual Charge Off Values 
Jan-‐15 Feb-‐15

Actual	  Portfolio	  Charge	  Offs 499,252.00$	  	  	   466,824.00$	  	  	  

Jan-‐15 Feb-‐15
SW	  Regression	  Variables	  (M1) 572,077.64$	  	  	   413,453.36$	  	  	  
Correlation	  Variables	  (M2) 545,173.84$	  	  	   294,598.89$	  	  	  
CART	  Variables	  (M3) 376,822.68$	  	  	   396,285.42$	  	  	  

Difference	  M1 72,825.64$	  	  	  	  	   53,370.64-‐$	  	  	  	  	  
14.6% -‐11.4%

Difference	  M2 45,921.84$	  	  	  	  	   172,225.11-‐$	  	  	  
9.2% -‐36.9%

Difference	  M3 122,429.32-‐$	  	  	   70,538.58-‐$	  	  	  	  	  
-‐24.5% -‐15.1%

Jan-‐15 Feb-‐15
SW	  Regression	  Variables	  &	  Revolving	  Debt	  (M4) 567,133.50$	  	  	   328,966.10$	  	  	  
Correlation	  Variables	  &	  Revolving	  Debt	  (M5) 412,408.65$	  	  	   501,079.47$	  	  	  
CART	  Variables	  &	  Revolving	  Debt	  (M6) 371,182.82$	  	  	   421,683.37$	  	  	  

Difference	  M4 67,881.50$	  	  	  	  	   (137,857.90)$	  	  
13.6% -‐29.5%

Difference	  M5 (86,843.35)$	  	  	  	   34,255.47$	  	  	  	  	  
-‐17.4% 7.3%

Difference	  M6 (128,069.18)$	  	   (45,140.63)$	  	  	  	  
-‐25.7% -‐9.7%

Jan-‐15 Feb-‐15
SW	  Regression	  Variables	  &	  Mortgage	  Delinquency	  (M7) 481,297.09$	  	  	   214,087.48$	  	  	  
Correlation	  Variables	  &	  Mortgage	  Delinquency	  (M8) 212,088.73$	  	  	   284,221.74$	  	  	  
CART	  Variables	  &	  Mortgage	  Delinquency	  (M9) 344,862.13$	  	  	   405,736.82$	  	  	  

Difference	  M7 17,954.91-‐$	  	  	  	  	   252,736.52-‐$	  	  	  
-‐3.6% -‐54.1%

Difference	  M8 287,163.27-‐$	  	  	   182,602.26-‐$	  	  	  
-‐157.5% -‐139.1%

Difference	  M9 154,389.87-‐$	  	  	   61,087.18-‐$	  	  	  	  	  
-‐30.9% -‐13.1%
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Figure 3: Actual Values vs Initial Model Values 

 
 
 
 
 

Figure 4: Actual Values vs Model with FRED Credit Card Variable 
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Figure 5: Actual Values vs Model with Mortgage DQ Variable 

 
 

 
 

The VAR model utilizing variables obtained by a stepwise regression had the most 

accurate prediction over the two month time frame.  A forecasting error of less than 15% 

for both periods is much better than the models utilizing variables obtained either through 

CART or correlation analysis.  However, looking just one month ahead the VAR using 

variables selected through correlation analysis was the most accurate, only missing the 

predicted charge offs vales by 9.2%.   

 

Adding the consumer revolving debt variable into the equation actually reversed the 

above results.  Over the two month time frame the equation utilizing variables from the 

correlation analysis was more accurate, but the VAR using stepwise regression model 

selection was more accurate forecasting just one month ahead.   
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Finally incorporating the consumer mortgage delinquency variable into the model yield 

the most accurate prediction of all, the stepwise regression variable VAR was only off 

3.6% of the first month’s charge off values.  However in general, all three econometric 

models incorporating consumer mortgage delinquency were not nearly as accurate as the 

models with consumer revolving debt and the model utilizing information from the 

Company’s scorecard only.  



20	  
	  

CHAPTER V 
 

FURTHER RESEARCH 
 
Such a complicated process as forecasting portfolio performance would certainly benefit 

from additional research and modeling.  First, while Gambera (2000) did indicate that 

VAR models “a more complete dynamic” (p 4); forecasting charged off values with other 

models would be useful for comparison.  Autoregressive and Moving Average models, 

logistic regressions, and autoregressive conditional heteroskedasticity models might yield 

different results – would they be more or less accurate?  Additionally, would a model 

utilizing simultaneous equations be more predictive? 

 

Furthermore, there are numerous additional macroeconomic variables available that could 

potentially improve the accuracy of my model.  For example, integrating consumer 

revolving credit delinquency rates (as opposed to debt levels) might be more closely 

correlated with portfolio delinquency levels.  What about consumer confidence levels?  

Low consumer confidence might translate into poor sales for many of these businesses, 

thus probably resulting in decreased portfolio performance.  Finally, utilizing geographic 

data to assist in modeling might yield more accurate forecasts.  Landscapers in Minnesota 

will have a much different seasonal business model then landscape companies in 

California.    
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CHAPTER VI 
 

SUMMARY 
 

Equipment financing is a multiple billion-dollar industry, and being able to predict the 

performance of portfolios would be invaluable.  Although a fair amount of research was 

completed on creating lending scorecards and the performance of commercial loan and 

consumer mortgage portfolios, I was unable to find a lot of information on equipment 

lease and loan portfolio performance.   

 

27 variables from a small-ticket equipment finance company were collected; and 

econometric models created using stepwise regression, correlation analysis, and CART 

analysis for variable selection.  Vector-autoregressions were run for each of the three 

aforementioned econometric models, and for each model I created forecasts for the next 

two time periods.  Comparing these forecasts to the actual values indicated that the model 

utilizing stepwise regression for variable selection was the most accurate over the two 

periods forecasted, whereas the VAR utilizing variables obtained through a correlation 

analysis was more accurate looking ahead just one month. 

 

Additionally two macroeconomic variables, consumer revolving debt levels and 

consumer mortgage delinquency were incorporated into my models with mixed results.  

While adding consumer revolving debt did increase the accuracy model of the VAR 

model that utilized correlation analysis for variable selection, I found that adding 
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mortgage delinquency generally resulted in poorer forecast performance across all three 

models. 
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