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ABS TRACT 
 
 

Financial time series are often characterized  by nonlinearity and volatility 

bunching.  Standard regression  analysis  models cannot capture changing  volatilities, 

potentially leading  to erroneous results.  The need to more completely model the 

characteristic  volatilities  inherent  to financial time series eventually led to the creation 

of the GARCH model.  Typical GARCH parameters are (1,1) incorporating  a 1-period 

lag of the regression  residual as well as a 1-period lag of the regression  volatility.   The 

primary question  investigated  in this paper is whether the typical GARCH(1,1) 

parameters are in fact optimal over all time periods and attempts to improve on the 

typical parameters by minimizing  a modified  AIC value using a genetic  algorithm. 
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CHAPTER I 

INTRODUCTION 

 
The desire to understand  the nature and characteristics  of time series data has 

led to the development  of a variety of models.  Models that focus on the character of 

the data, or some derivative  of the data, range from the basic moving average (MA) to 

the more complicated  autoregressive  moving  average (ARMA).  These models attempt 

to understand the nature of the data itself versus some other characteristic  of the data, 

such as volatility.   Other models,  such as the autoregressive  conditional 

heteroskedasticity (ARCH) created by Robert Engle,  do indeed focus on the 

underlying  volatility b y examining the lag structure of the squared residuals.1
 

 
However, ARCH remained  unsatisfactory  because it neglected  to incorporate any 

additional regression term that allowed for the persistence of economic shocks. 

Finally in 1986, Tim Peter Bollerslev  presented the GARCH model for 

Generalized  Autoregressive  Conditional Heteroskedasticity. 2  GARCH represented an 

improvement  over the ARCH model in that where ARCH was only conditioned  on 

lagged  square residuals,  GARCH added the additional component of lagged conditioned 

variances.   Additionally,  the GARCH model allowed for corrections related to time 
 

 
 
 

1 Aut or e g r e s s i v e   Conditional Het e ro s c e d a s t i ci t y   with Es timates of the Variance of United 

Kingdo m Inflation,” Robert F. Engle, Econometrica , Vol. 50, No. 4 (Jul., 1982),  pp. 987-1007. 

 
2 "Genera l i zed Autoregress i ve Condi ti ona l Heteros keda s ti city,” Boll ers lev, Ti m, Journal of 

Econometrics  31 (3): 307–327, 1986. 
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series that exhibited  thick tail distributions  and volatility clustering,  both of which are 

common,  especially in nonlinear financial time series. For example,  the following 

describes the ARCH process in which the current period’s volatility is conditio ned  on 

the regressive sum of the lagged  residuals  up to period t-q: 
 
 
 

 
 

Conversely,  the GARCH model is represented as follows: 

 

 
 

Note the additional conditioning terms representing  lagged period volatilities  up to 

period t-p. These additional conditioning  factors allow for the periodic economic 

shocks to reverberate longer in the data than simply  one period. 

One of the concerns of the GARCH model, or any time series model that uses 

lagged  terms, is the value for q and p.  In other words, how many lags should  be 

included  in the model to best reflect the underlying  character of the data? Typically 

this is a choice made by the modeler and will depend on the model’s forecasting 

abilit y as a GARCH(1,1) process, or perhaps a GARCH(4,4) if working with 

quarterly data.  Once the choice is made, it is then applied to the entire data series 

without  concern for potential inherent  changes in the data over time. 

Therefore,  the purpose of this paper is to present a possible solution  to the 

question of the optimal number of lagged periods for (p,q) in the GARCH model. 

Through  the use of an optimization  tool called a Genetic Algorithm,  or GA, it will be 

shown that the GARCH(1,1) model is not always the best solution  when searching  for 
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the optimal values for (p,q). Furthermore,  it will be shown that the optimal values for 

(p,q) in fact change over time, reflecting  the dynamic,  effervescent  nature of financial 

time series.  The resulting model is hereafter termed as the D-GARCH with the “D” 

representing  “dynamic.” 
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CHAPTER II 
 

 

LITERATURE REVIEW 
 

 
A great deal of literature  has examined  the GARCH model and its parameters as 

well as methods for optimizing  those parameters, includ ing  the use of genetic algorithms 

and neural networks.  These techniq ues  are referred to as “fuzzy,” or artificial  intelligence 

methods for finding  optimal solutions  to problems which  are typically difficult  to solve 

using  classical methods. 

The literature  is divided  into essentially two categories:  the need for better 

modeling  of nonlinear  systems such as the financial markets and possible tools and 

methods with which the models might  be improved.   The literature  devoted to these 

questions is plentiful.   A few noteworthy and relevant  examples are given in this section. 

Regarding the very concept of volatility itself,  Nwogugu noted that volatility  “can 

be modeled as the sum of all preferences of market participants  over time,” indicating  that 

volatility  in market prices is derived from investor  utility.   As such, models such as the 

traditional  GARCH are “structurally  deficient  and static.”3    Nonlinear,  adaptive, fuzzy 

modeling  was needed to adequately capture the dynamics  of financial time series.  Doing 

so required  a search for optimal solutions  in multi-dimensional,  nonlinear  solution  spaces. 

Adanu noted that in any search for optimization,  it is important  to keep in mind  that a 
 
 
 

3 Nwogugu, Michael. 2006.  "Volatility, ris k modeling and utility." Applied Mathematics & 

Computation 182, no. 2: 1749-1754. 
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global optimum must be sought and to take care not to use methods that may be drawn to 

only local optima.   In other words, the researcher should  utilize  methods that are not 

contingent  on a defined  starting  point, such as Newton’s algorithm,  the simplex  method, 

or the conjugate gradient methods.4    Specifically addressing  the GARCH model, Altay- 

Salih,  et al, supported the notion that fuzzy programming,  i.e. nonlinear  programming 

without  artificial  restraints imposed by the modeler,   produced better results than the 

traditional  GARCH model, especially when bivariate  and trivariate  cases are considered.5
 

Given the need for fuzzy  programming  to analyze  the dynamics  of nonlinear time 
 

series, other researchers applied techniques  such as genetic algorithms.   Nair, et al, 

suggested  the use of a genetic algorithm to optimize  a decision tree based on 28 popular 

technical indicators.   It was noted that a genetic algorithm is a “parallel search algorithm” 

which in this case was used to minimize trend prediction  error.6   Li, et al, employed 

genetic algorithm methods to study the scaling  properties of wavelet-based indicators  for 

the Dow Jones Industrial  Average, allowing  for the study of price data at multip le  time 

scales.7   Havandi,  et al, explore integrating  genetic algorithms  and neural networks for 

stock price prediction  in the IT and Airline  sectors with the goal of capitalizing  on the 

 
 
 
 
 
 

4 Adanu, Kwami.  2006.  “Optimizing  the GARCH  Model – An Application of Two Global and 

Two Local Search Methods .” Computational Economics , no.28: 277-290. 

 
5 Altay-Salih, As lihan, Mus tafa C. Pinar, and Sven Leyffer. 2003. "Cons trained Nonlinear 

Programming  for Volatility  Es timation  with GARCH  Models ." SIAM Review 45, no. 3: 485-503. 

 
6 Nair, Binoy B., V. P. Mohandas , and N. R. Sakthivel. 2010.  "A Genetic Algorithm Optimized 

Decis ion Tree- SVM bas ed Stock Market Trend Prediction Sys tem." International Journal On Computer 

Science & Engineering 2981-2988. 

 
7 Jin, Li, Shi Zhu, and Li Xiaoli.  2006.  "Genetic programming  with wavelet-bas ed indicators for 

financial forecas ting." Transactions Of The Institute Of Measurement & Control 28, no. 3: 285-297. 



s eries volatility." Journal Of Intelligent & Fuzzy Systems 23, no. 1: 27-38. 
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strengths  of each method.8
 

 
Other researchers turned their attention  to the GARCH model specifically.   Roh 

compared the performance  of various time series forecasting  models such as GARCH, 

EGARCH and Exponentially Weighted  Moving Average when optimized  using adaptive 

neural networks. Roh’s focus was not on stock price movement,  but rather on the 

direction  and deviation  of the stock’s volatility. 9   Hung also examined  the idea of 

optimizing  the GARCH model as well as more recent innovations  of the model 

(EGARCH, GJR-GARCH,  and Fuzzy GARCH).  Hung’s approach was to use a “particle 

swarm optimization” (PSO) model which  imitates  the movement  of a swarm of gnats or a 

flock of birds.  The PSO method, like the genetic algorithm,  evaluates multip le  possible 

solutions  in the solution  space to quickly  arrive at a global maximum  (or minimum 

depending on the objective).10    Finally,  Luna and Ballini studied the use of an adaptive 

fuzzy interface  system (AdaFIS) to directly evaluate  volatility and value-at-risk  (VAR) in 

an effort to improve on traditio nal measures like GARCH.11
 

The literature  summarized  here is a merely a smattering  of the research done on 

 
the application  of fuzzy programming  to nonlinear  models.  The remainder  of this paper 

will summarize  another possible method with which to optimize the GARCH model. 

 

 
 

8 Hadavandi, Es maeil,  Has s an Shavandi, and Aras h Ghanbari. 2010. "Integration of genetic fuzzy 

s ys tems and artificial neural networks for s tock price forecas ting." Knowledge-Based Systems 23, no. 8: 

800-808. 

 
9 Hyup Roh, Tae. 2007.  "Forecas ting the volatility of s tock price index." Expert Systems With 

Applications 33, no. 4: 916-922. 

 
10 Hung, Jui-Chung. 2011. "Adaptive Fuzzy-GARCH  model applied to forecas ting the volatility of 

s tock markets  us ing particle s warm optimization."  Information Sciences 181, no. 20: 4673-4683. 

 
11 Luna, Ivette, and Ros angela Ballini.  2012.  "Adaptive fuzzy s ys tem to forecas t financial time 
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CHAPTER III 
 

 

METHODOLOGY 
 

 
 

This study utilized  the widely available  daily data for the S&P 500 Index from 

 
1/2/2003 to 12/26/2012, for a total of 2517 observations.   This index was chosen for 

both its liquidity as well as its popularity as a test series.  In order to construct the D- 

GARCH model, the first step was to determine  if the daily price movements  were 

stochastic,  i.e., was there a unit root present in the raw data.  The results of a Dickey- 

Fuller test at the 10% level on all observations failed  to reject the null hypothesis  that no 

unit root was present. 
 
 

 
Test Statistic 1% Critical Value 5% Critical Value 10% Critical Value 

-1.846 -3.430 -2.860 -2.570 

Table 1: Interpolated Dickey-Fuller – raw data 
 

 
 
 

To eliminate  the unit root issues, the percentage change in daily Index closing 

prices was calculated  and the Dickey-Fuller  test was run again with the following  results, 

rejecting  the null hypothesis  that a unit root is present: 
 
 
 
 

Test Statistic 1% Critical Value 5% Critical Value 10% Critical Value 

-56.164 -3.430 -2.860 -2.570 

Table 2: Interpolated Dickey-Fuller – daily percentage change 
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Once the unit root issue had been addressed, an initial  regression was run on a 

1-period lag of the percentage change in closing  price.  The results indicate that the 

previous period’s lagged  percentage change is highly  significant  at the 1% level (t- 

value = -5.70). 

 
 
 

 
 

Coefficient 
 

t-value 
 

P>|t| 

 

One-period lag, % change 
 

-0.1128574 
 

-5.70 
 

0.000 

Table 3: One-period regression on lagged percentage change. 
 

 
 
 

The residuals  from this regression  were collected  and squared.  Then a new 

regression was run on the lagged  squared residuals with the following  highly 

significant  results (t-value = 10.98): 
 
 
 

 
 

Coefficient 
 

t-value 
 

P>|t| 

 

One-period lag, squared residuals 
 

0.2139396 
 

10.98 
 

0.000 

Table 4: One-period regression on lagged squared residuals 
 

 
 
 

A Dickey-Fuller  test was run on the squared residuals  resulting  in a strong 

rejection of the null hypothesis  that a unit root was present (z-value  = -40.330). The test 

for homoskedasticity of the squared residuals  indicated  that the null hypothesis  (that the 

squared residuals are homoskedastic)  can be safely rejected with an F-value of 120.49. 

Therefore,  the squared residuals  exhibit heteroskedasticity.   This result is important 

because heteroskedasticity  indicates a nonlinear  bunching  of volatilities  in the data. 

Without  the facility to account for inconsistent  volatilities,  other analyses will produce 

incorrect results.   The solution  is to run the GARCH model which accounts for varying 
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lagged  volatility as well as lagged  squared residuals. 
 
 

 
 

Coefficient 
 

z-value 
 

P>|z| 

 

One period lag, ARCH component 
 

0.1638675 
 

34.38 
 

0.000 

 

One period lag, GARCH component 
 

0.8870074 
 

437.30 
 

0.000 

Table 5:  GARCH(1,1) regression on one-period lagged residuals 
 

 
 
 

Note that the both the lag of the squared residual (the ARCH component) and 

the lag of the variance (the GARCH component) are highly  significant  (z-values  = 

34.38 and 437.30 respectively). 

 
As the next step in the process, the GARCH residuals  were squared and 

collected  along with the predicted variances.   The squared residuals  and the variances 

from the GARCH regression  were used to create a modified  Akaike Information 

Criteria (AIC) for each according  to the following formula: 

AIC=ln [(s  
2
) + 2m/T] 

 

Where s2 represents the average sum of the residuals  squared, m is the number of 

parameters in the regression  (to be determined),  and T is the number of observations  (also 

to be determined).  A composite  AICc was created using  the sum of the AIC for the 

squared residual component as well as the variance component.   Finally,  an average 

composite AICac  was computed of a fuzzy  number of periods for which the AIC would be 

minimized.   A constant 20-day period was examined  throughout  the total sample size to 

allow for the values of (p,q) to vary with time. 

As mentioned  previously  (see Introduction  above), one of the key components 

in the D-GARCH process is the optimization  of (p,q) using  a genetic algorithm  (GA). 
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In the search for the optimal values of (p,q), the value of the AICac was minimized  by 

allowing  the values for (p,q) to vary independently between 0 and 1000. Therefore, 

there are one million  potential combinatio ns  for (p,q) that must be evaluated.  The GA is 

uniquely  suited to search for the optimal combination  of (p,q) such that the value of AICac  is 

minimized. 

Ge ne tic Algorithms: 

Created by John Holland  of the Universit y  of Michigan  in 1975 and defined in his 
 

landmark  work “Adaptation  and Natural Selection,”  a genetic algorithm mimics  the 

evolutio nary  process of strands of DNA by treating data as “chromosome  strings,” 

evaluating  the “fitness” of the string compared to a pool of its competitors,  then either 

kills  off the contender or allows it to live for another generation.12    The strings are also 

allowed  to “crossover,” meaning  they divide and exchange “genetic  material”  in an effort 
 

to increase fitness.   This creates child  strings which are also evaluated  for fitness  against 

both the parent strings  as well as the other competitors in the pool.  An initial  pool of 

competitors is created, mutation  of the chromosomes  is allowed  with a defined 

probability,  and crossover occurs with a defined probability.   As the GA progresses, the 

program may be thought of as searching  the fitness  landscape for an optimal solution. 

For this study,  the GA used is an MS Excel Add-in called Genehunter.13  The parameters 

were as follows: 

Value to be optimized  (minimized): AICac 
 

 

Adjustable values for optimization: (p,q) 
 

 
 
 
 

12 Holland, J. H. (1975/1992).  Adaptation in Natural and Artificial Sys tems . Cambridge, MA: MIT 

Press . Second edition (1992).  (Firs t edition, Univers ity of Michigan Press , 1975). 

 
13 Available from Ward Sys tems Group at http:/ /www.ward s ystems .com/genehunter.as p. 

http://www.wardsystems.com/genehunter.asp
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Range of possible values for (p,q): 0-1000 
 

Initial population: 100 
 

Probability of crossover: 90% 

Probability of mutation: 1% 

Evolution  cutoff: 100 generations 
 
 
 

The GA was run over non-overlapping  20-day periods.  The initial period was (t, 

t-20), then (t-21, t-40), etc… througho ut  the 2517 observation sample.   In total, 76 20- 

period blocks were evaluated  by the GA.  The optimal (minimized)  AICac, p, and q were 

recorded as well as the AICac with (p,q) = (1,1), or a basic GARCH(1,1) model. 

Optimized  pairs of (p,q) which minimize  AICac, and thus define the optimal GARCH 
 

parameters, could range from (0,0), or no lag terms, to (1000,1000). 

 
Once the optimized  pairs were determined  by the GA, the volatility  was calculated  

according to the GARCH equation in Chapter 1 above.  For comparison purposes, the 

volatility  implied  by the GARCH(1,1) model was also calculated.   The logs of both were 

calculated  and summarized  for further analysis. 
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CHAPTER IV 
 

RESULTS 
 

 

Of the 76 evaluations  of the data by the GA, over 39% of the time the optimal 

 
(p,q) pair which minimized  the AICac  was not the standard (1,1).14    Volatilities  were computed 

using (p,q) = (1,1) and the (p,q) determined by the algorithm.   The discrepancy between the 

GARCH(1,1) model and the D- GARCH optimized  model is illustrated in the graph below.  For 

comparison purposes the log values of the D-GARCH volatilities  were subtracted from the log 

values of the standard GARCH(1,1) volatilities. 

 
 

 
D-GARCH vs. GARCH(1,1) 

Difference in Log Volatilities 
 

7 

6 

5 

4 

3 

2 

1 

0 

-1 

-2 

-3 
 

-4 
 
 

Figure 1:  D-GARCH vs. GARCH(1,1), difference in log volatilities 
 
 
 

 
14 Out of 76 GA runs , 30 times the optimal (p,q) pair was s omething other than (1,1). 
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GARCH(1,1) VOLATILITY VS. D-GARCH VOLATILITY 
 

12 

 
10 

 
8 

 
6 

 
4 

 
2 

 
0 

 
-2 

 
 

D-GARCH GARCH(1,1) 
 

Figure 2:  D-GARCH vs. GARCH(1,1) Log Volatilities 
 

 
 
 

Note in the graph above that the D-GARCH volatilities  tend to emphasize  the 

“frothiness” of the market more than the traditional  GARCH(1,1) model, producing 

higher  peaks.  This is especially evident during  the turbulent  downturn  and subsequent 

recovery of the S&P 500 Index as illustrated  in the following  two graphs: 
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Figure 3: 20-Period S&P 500 Percentage Change 
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The determination  of which combination  of (p,q) was optimal was based strictly 

in minimizing  the modified  AIC as described above.  In doing so, this study was able to 

focus strictly on the information  that could be gleaned  from the data series.  Certainly 

other variables could be introduced  (interest  rates, quarterly GDP, etc…), but the 

univariate  GARCH was used to isolate the optimal (p,q) found through  the GA.  The 

results from using the GA to determine  the optimal (p,q) ranged from (1,1) to 

(1000,1000).  The periods during  which the algorithm found the greater values for (p,q) 

corresponded to periods of higher  volatility,  especially  during the recessionary  period 

from mid-2008 to mid-2009 (see graphs above). 

Additionally,  it should  be noted that other criteria for discriminating 

among potential (p,q) combinations  could be implemented.   Other information  criteria 

such as the Bayesian  Information  Criteria (BIC) could be tested.  Another possibility is 

to generate a test to determine  which (p,q) combination  minimizes  the difference 

between the calculated  volatilities  and the historical  standard deviation  for the same test 

data.  These other possibilities  were not addressed in this study. 
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CHAPTER V 
 

 

FUTURE RESEARCH 
 
 
 

The optimization  of the GARCH parameters through the use of the GA as 

described above may have direct application  to investment  strategy,  particularly to option 

trading.   For example,  the heralded Black-Scholes option valuation  model incorporates a 

volatility factor according  to the following  formula  for the value of a European call 

option15: 

Value of call option: C = SN(d1) – Ke
-rt 

N(d2) 
 

Where: d1 = [ln(S/K) + (r + v/2)T] / (v*T)1/2
 

 
d2 = d1 – (v*T)1/2

 

 
S = current stock or index price 

 
K = strike price 

 
N = cumulative  standard normal distribution 

r = risk-free rate of return 

v = volatility 

 
T = time until option expiration 

 
All of the factors of the Black-Scholes  option valuation  model are explicitly 

known at any period in time except for the volatility  (v).  The computed values for 

 
 

15 Black, Fischer; Myron Scholes (1973).  "The Pricing of Options and Corporate Liabilities ". 

Journal of Political Economy 81 (3): 637–654. 
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ln(h(t))  may be easily used to calculate the theoretical option values and compared with 

the actual option values to identify discrepancies,  and therefore potential trading 

opportunities.   One of the inherent  issues with the Black-Scholes  model is the assumption 

of constant volatility over a given period of time (for example annualized).   Due to the 

dynamic  nature of the D-GARCH process, it may prove to better calculate  true volatility 

and thus more accurately reflect the current theoretical option value. 

This paper addressed the D-GARCH process in discrete 20-day blocks of daily 

closing  data for the S&P 500 Index.   Other additional research possibilities include 

replicating  this study using  weekly, quarterly,  and annual data over other data samples 

and other financial  markets, as well as other criteria for determining  optimality of the 

(p,q) combination. 
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CHAPTER VI 
 

SUMMARY 
 

 

The D-GARCH process utilizes  a modified  Akaike Information  Criteria (AIC) 

optimized  using  a genetic algorithm to identify the optimal parameters for the GARCH 

model of time  series volatility.   The D-GARCH model produced a more optimal solution 

in 39% of the cases sampled while  agreeing  with the traditional  GARCH(1,1) model in 

61% of the cases.  In particular,  when the market under study (S&P 500 Index) becomes 

more “frothy,” the D-GARCH better highlights  the extreme volatility than the 

GARCH(1,1) model.  It remains to be seen if the application  of the volatilities  calculated 

by the D-GARCH process can better calculate  theoretical options prices. 
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