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ABSTRACT 

The Bakken formation is one of the largest unconventional resources in the world 

with approximately 92 billion barrels of recoverable oil. However, the primary oil recovery 

factor remains as low as less than 10% of the original oil in place (OOIP). Given the vast 

Bakken resources and low primary oil recovery, there is a need and enormous potential for 

the enhanced oil recovery (EOR) in Bakken.  

Two comprehensive numerical compositional models were built for the simulation 

CO2 Huff-n-Puff and cyclic surfactant injection in an actual Middle Bakken horizontal well. 

A good history match of primary production was obtained. Embedded Discrete Fracture 

Model (EDFM) method was used to efficiently handle hydraulic fractures using non-

neighboring connections as a new technique in this simulation study.  

The EDFM method is faster than the traditional local grid refinement method. The 

results of CO2 Huff-n-Puff and cyclic surfactant injection processes are compared and 

discussed. The simulation results show that both enhanced oil recovery processes can 

significantly increase oil recovery. 



 

  

- 1 - 

 

CHAPTER Ⅰ 

INTRODUCTION  

1.1 Statement of the Problem 

The oil production rate declined sharply in a very short of time after the well stars 

producing, resulting in low oil recovery factor in the Bakken Formation. Bakken Formation 

is one of the largest tight oil reservoirs in the U.S, which is typically characterized by low 

porosity (<10%) and low permeability (<0.1 mD) (David et at., 2013). The Bakken is 

among the most significant oil discoveries in the United States in the past 40 years and has 

made North Dakota the second-highest oil-producing state in the U.S. (DuBose, 2012). In 

2008, the technically recoverable oil reported can reach 3.65 billion barrels (Pollastro et 

al., 2008). This number increased to 11.43 billion barrels in 2013 (Gaswirth et al., 2013), 

and 92 billion barrels in 2015 (Government of Saskatchewan Report, 2015). The advanced 

technique of horizontal well development and multi-stage hydraulic fracturing helps to 

increase the number of recoverable oil tremendously during this period. Moreover, the 

average daily oil production growth from 175 bbl/day in 1953 to 1106836 bbl/day in 2018 

(DMR, 2018). However, significant amount of oil is still remaining in the reservoir due to 

low oil recovery. Due to such drastic decline of oil production rate, the ultimate recovery 

factor is around 7% (Sorensen et al., 2014), which is far lower than the oil recovery rate of 

the conventional reservoirs (Jacobs, 2016). Given this massive amount of oil remaining in 

place, it is important to develop some new advanced techniques to enhance the oil recovery 

factor. 
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1.2 Objectives 

In this research, the primary objective was to counter the problem of low oil recovery factor, 

several EOR methods were studied, including chemical flooding and CO2 flooding. The 

software used were CMG-GEM, CMG-STARS, CMG-Winprop, EDFM and Paraview. 

The CMG-Winprop was used to generate the fluid model, and the EDFM can build up the 

fracture model. These two models can be imported to CMG in a nonintrusive way. The 

reservoir model and other properties were built in CMG-GEM and CMG-STARS. 

Different factors were tested in the sensitivity study section by varying the factors within 

their range. Sufficient case studies were conducted in this thesis, to figure out the premium 

EOR for a limited time. 

 

1.3 Organization of the thesis 

A total of six chapters constitutes this thesis. After Chapter 1 of the introduction, a literature 

review of different vital methods used in this research is presented in Chapter 2, which 

concludes the past EOR simulation works. In Chapter 3, the characterization of the Bakken 

core samples is analyzed based on a series of different experiment measurements. In 

Chapter 4, a CO2 Huff-n-Puff study is presented that focuses on history matching and 

sensitivity test. The EDFM method can help to create the most direct and effective fracture 

model. It helps the simulating process in CMG-GEM to run more smoothly and 

successfully. In Chapter 5, a surfactant flooding study is conducted, considering the 

modification of the rock wettability and interfacial tension. A history match and sensitivity 

test are also studied in this study, in order to optimize the surfactant EOR. Finally, Chapter 
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6 summarizes the conclusions in this research and gives some constructive 

recommendations for future study.  
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CHAPTER Ⅱ 

LITERATURE REVIEW  

2.1 Geologic Background of the Bakken Formation 

The Bakken Formation located in the Williston Basin, which the chronostratigraphic unit 

is from the Late Devonian to the Early Mississippian. The Williston Basin extends over 

parts of North Dakota, Montana, and the Canadian Provinces of Saskatchewan and 

Manitoba (Cosima et al., 2013). As shown in Fig. 1, the current boundaries of the active 

Bakken play is shaded in red, and the Williston Basin is contoured by green lines in a large, 

oval shape.  

 

Fig. 1 The boundaries of Bakken Formation in the Williston Basin. The shaded red 

portion indicates the active Bakken play, and the structure contour lines show the 

Williston Basin (Cosima et al., 2013). 



 

  

- 5 - 

 

The Williston Basin is an intracratonic sag basin and precipitated a sediment thickness of 

over 16,000 ft. There is an almost complete stratigraphic record from Cambrian to Tertiary 

time (Carlson et al., 1965; LeFever et al., 1965). 

The Bakken oil reservoir comprised of three formations, which are the Three Forks, 

Bakken, and lower Lodgepole formation from bottom to top, as shown in Fig. 2. The 

Bakken formation can be divided into three layers: the Lower Bakken shale, the Middle 

Bakken and the Upper Bakken shale. The Sanish sand which known as ‘Lower Bakken silt’ 

can also seem like part of the Bakken formation in some paper.  
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Fig. 2 Generalized stratigraphic column for the Bakken petroleum system. FB = False 

Bakken, S = Scallion, UBS = Upper Bakken shale, MB-A through MB-F = Middle 

Bakken, LBS = Lower Bakken shale, PH = Pronghorn, UTF = Upper Three Forks, 

MTF = Middle Three Forks (Stephen et al., 2011). 

 

The Upper Bakken and Lower Bakken are two black shale layers and also source rocks of 

the Bakken oil reservoir. The total organic carbon (TOC) content can reach 11 to 12 weight 

per cent (Schmoker et al., 1983). The Middle Bakken layer is the main oil reservoir in the 

Bakken Formation. It is a very thin, widespread unit as shown in Fig. 3. The maximum 

thickness can only reach 150 ft (Pitman et al., 2001). The source rock maturity line is from 
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west to east across the basin, depending on the geothermal gradients. The Middle Bakken 

layer was deposited in a shallow-water setting following a rapid sea-level drop, leading to 

a regressive event (Meissner et al., 1984; Smith et al., 1996). The mineralogy of the Middle 

Bakken is variable (LeFever., 2007), so the rock type in this unit can be silty dolomite to 

calcareous sandstones in place. The Bakken formation is typically characterized by low 

porosity (<10%) and low permeability (<0.1 mD) in North America (David et al., 2013). 

However, the Hydraulic-fracture stimulation and horizontal drilling significantly improve 

the low porosity and permeability reservoir of the Bakken oil reservoir to be a ‘sweet spots’ 

(Murray., 1968; Meissner., 1978; Cramer., 1986, 1991). 

 

Fig. 3 West to the east diagrammatic cross section of the Bakken petroleum system. 

The maturity line (red line) across the basin depending on the geothermal 

information. The dashed line represents the overpressured interval (Stepthen et al., 

2011). 

 

People thought Bakken shales sourced reservoirs in the Bakken and entire Madison Group 

(Dow., 1974; Williams., 1974; Meissner., 1978). However, Price (1994, 1999) presented 

evidence and claimed that most of the oil generated in the Bakken Formation had not 

immigrated far in the vertical direction. Therefore, it is a big potential to recover oil from 

the Bakken Formation. 

 



 

  

- 8 - 

 

2.2 Past Simulation of CO2 Huff-n-Puff 

Wide interest in the application of Enhanced Oil Recovery (EOR) techniques like CO2 

injection EOR has aroused due to a large amount of oil remaining in place (Alfarge et al, 

2017a). In this case, lots of researchers have paid their efforts for evaluating the CO2 Huff-

n-Puff EOR method, and trying to maximize the oil recovery factor (Yu et al., 2014). 

CO2 Huff-n-Puff or cyclic injection process is an advanced and effective way comparing 

with the current continuous CO2 flooding. There are three steps to operate the CO2 huff-n-

puff process: CO2 injection, CO2 soaking, and Production. The cyclic CO2 injection was 

designed by Monger et al. (1988) to increase the oil recovery in tight oil reservoir as early 

as 1988, and they claimed that it is a feasible and beneficial method. The natural gas Huff-

n-Puff injection in waterflooded cores was conducted using two injection cycles and found 

that approximately 40% of waterflood residual oil can be recovered (Haines et al., 1990). 

The approach of CO2 EOR in tight oil reservoir has received much attention because of the 

low viscosity and large injectivity of CO2 (Kurtoglu et al., 2013; Song and Yang, 2013; 

Adekunle and Hoffman, 2014).  

Moreover, a pilot field test has already been conducted in a low permeability offshore field 

using CO2 Huff-n-Puff process which has shown favorable results (Le et al., 2013). 

Although CO2 EOR has been well investigated in conventional oil reservoirs, it is still a 

new challenging topic in unconventional oil reservoirs (Yu et al., 2018). All logic and 

reasonable steps of research, such as experimental investigations, simulation studies, and 

pilot tests for discovering the feasibility and practicability of different EOR methods have 

just started over the last decade (Alfarge et al., 2017b).  
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Besides, much more efforts have been devoted for simulation studies of CO2 and gas 

injection EOR in the unconventional reservoirs in order to examine the recovery 

mechanisms and feasibility (Shoaib and Hoffman, 2009; Wang et al., 2010; Ren et al., 2011; 

Chen et al., 2014). The effects of heterogeneous reservoir properties on CO2 Huff-n-Puff 

performance was investigated by Chen et al. (2014) used a compositional reservoir 

simulator. Wan et al. (2015) found that matrix/fracture and matrix/matrix diffusion play an 

essential role in the oil recovery process through gas injection in the fractured shale oil 

reservoirs using the dual-permeability simulator. Yu (2014, 2015) built a numerical 

reservoir model with multiple hydraulic fractures for Bakken Formation to simulate CO2 

Huff-n-Puff process and found out that the CO2 molecular diffusion effect is an essential 

factor to improve the oil recovery in the tight oil reservoir. The continuous injection is not 

the best approach to improve the oil recovery due to the long propagation time caused by 

the tight oil reservoir with low porosity and permeability (Sanchez., 2014). The continuous 

CO2 flooding is only favorable for oil recovery in the reservoir with permeability higher 

than 0.1 mD, which in turn that CO2 huff-n-puff can have a high performance with 

permeability lower than 0.01 mD (Zuloaga et al., 2016, 2017). Zhang (2017) found that the 

capillary pressure causes the increase of oil recovery performance in CO2 huff-n-puff, 

according to the investigation of nanopore confinement effect. 

However, there is a large gap of EOR between lab-scale and field-scale that needs to be 

addressed (Atsushi et al., 2018). Alharthy et al. (2017) conducted a comprehensive study 

of CO2 EOR from the laboratory to field scales. The CO2 solvent-soaking-experiments 

using the Bakken cores showed that molecular diffusion significantly contributes to the 



 

  

- 10 - 

 

recovery, but the history-matched field scale model showed little effects of molecular 

diffusion on the incremental oil recovery.  

 

2.3 Past Simulation of Surfactant Flooding 

Surfactant flooding can reduce the IFT between the aqueous and oil phases in Chemical 

Enhanced Oil Recovery (CEOR) (Ngo et al., 2017). The wettability of the rock can also be 

influenced by the surfactant to help in changing the fluid properties, reducing the advanced 

drag, reducing the IFT and lowering the mobility of capillary trapped oil (Cheraghian et 

al., 2014). Also, it can reduce oil-water interfacial tension without changing the wettability 

state, like the capillary desaturation effect, as the surfactant solution is at the critical micelle 

concentration (CMC) (Mohammad et al., 2017). Moreover, some surfactant solutions may 

alter wettability state without a significant changing in fluid pair IFT (Singh et al., 2016). 

Yuan and Lee reviewed the contact angle measurement (basic and advanced) techniques 

for wettability determination of the materials at macro, micro and nanoscale. The contact 

angle is the primary measurement of the wettability. The surfactant which can change the 

wettability effectively also needs to withstand the high temperature and high salinity 

environment at the same time (Sharma et al., 2013). The surfactants affects the interaction 

between the fluid and solid phases by placing themselves at the interface, the continuity 

between the nanoparticles and the base fluid can also be increased (Jung et al., 2018).  

Moreover, numerical efforts have been devoted to simulation studies of surfactant and 

nanoparticle injection CEOR in unconventional reservoirs in order to examine recovery 

mechanisms and feasibility (Datta-Gupta et al., 1986; Mojdeh et al., 1996). A 3-D 

multifunctional compositional numerical simulator of alkali/surfactant/polymer flooding 
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was established, and various mechanisms and parameter effects were tested (Yuan et al., 

1995). Abdulkareem (2012) used the University of Texas Chemical Flooding Simulator: 

UTCHEM (PGE, 2007) simulated surfactant and polymer flooding to find an optimized 

surfactant concentration. Wang et al. (2015) also used the UTCHEM simulator to 

investigate the surfactant and polymer injection based on a reservoir condition. Adibhatla 

et al. (2005) developed a 3-D numerical simulator to model the surfactant flooding EOR 

by lowering the oil-water IFT and by altering the wettability of the matrix block to water-

wet. A three-phase hysteresis model was built to predict the cycle-dependent relative 

permeability curves, and the dynamic Land coefficient was set to each cycle to modify the 

phase saturation (Land, 1971). Beygi et al. (2015) discussed a complete list of two- and 

three-phase hysteresis models. 

 

2.4 Review of Embedded Discrete Fracture Model (EDFM) 

Compositional simulation has been widely used to deal with many EOR problems, such as 

gas flooding and chemical flooding. However, the substantial computational burden makes 

it challenging to conduct the field case model with multiple hydraulic fractures and 

comprehensive well controls (Yu et al., 2014). Some important underlying physics might 

be masked due to the over-simplification of the simulation models (Atsushi et al., 2018), 

like complex fracture geometries which are often created during the hydraulic fracturing 

process (Cipolla and Wallace, 2014; Wu and Olson, 2016) and various hydraulic fracture 

height in different layers (Yue et al., 2018). In order to overcome these issues, a state-of-

the-art embedded discrete fracture model (EDFM) was developed (Moinfar et al., 2014; 

Cavalcante Filho et al., 2015; Shakiba and Sepehrnoori, 2015; Yu et al., 2017). The EDFM 
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method can model complex fractures conveniently (Xu, 2015; Zuloaga-Molero et al., 2016; 

Zhang et al., 2017c; Xu et al., 2017a, 2017b).  

The central principle of the EDFM method is using the finite-element or finite-difference 

method to create discrete-fracture models (DFMs) to describe complex fractures in the 

reservoir (Xu et al., 2017). Unstructured grids can appropriately model the fractures 

(Matthai et al., 2005; Sandve et al., 2012). The EDFM can not only honor the accuracy of 

DFMs, but also keeping the efficiency of structured gridding (Lee at al., 2001; Hajibeygi 

et al., 2011). The EDFM can be used for 3D simulations including slanted fractures, and 

can also simulated the compositional reservoir model (Moinfar et al., 2014). Panfili et al. 

(2014) applied the EDFM to a commercial simulator, and also used it with corner-point 

geometry grids. Jiang et al. (2014) developed the EDFM with dual-continuum and multiple 

interacting continua (MINC) to model the complex fractures in shale reservoirs. 
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CHAPTER Ⅲ 

CHARACTERIZATION OF BAKKEN SAMPLES  

3.1 Scanning Electron Microscope (SEM) 

SEM can provide 2D images at a high level of magnification, which is useful for evaluating 

micritic porosity and other submicron feature (Bonnie et al., 1992). Argon Ion Polishing 

uses wide argon ion beam (<1mm) to polish the rock samples surface and remove the 

damaged layer, so that it can prepare a broad and precise area of electron microanalysis on 

samples for the SEM test (Clelland et al., 1991; Liu et al., 2011). 

The SEM machine we used here is the Helios 650 Focused Ion Beam Scanning Electron 

Microscopy. We tested samples from three actual Bakken wells with the depth of the 

Middle Bakken layer. The lithology of rock samples from Well 1 can be defined as 

carbonaceous calcareous siltstone, as shown in Fig. 4.  

(a) Organic matter content is very low 

(black part), a few micro fractures 

developed. 

(b) A small number of micropores can 

find inside the organic matter 
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(c) Clay minerals distributed in the 

pores between silt particles and calcite 

particles 

(d) Micropores well developed in the 

interlamellar clay minerals 

Fig. 4 Bakken rock sample SEM results of well 1. 

 

According to the SEM results, the fracture is not well developed in this area, because we 

only found a small number of micro-fractures developed. For the sample’s organic 

composition, the organic matter content is very low, these fine organic matter debris 

adhered to the surface of the sample and organic matter pores do not occur. Clay minerals 

distributed in the intergranular pores between silt particles and calcite particles, and the 

micropores of interlamellar clay minerals are well developed. A small number of 

microfractures developed in the silty sand particles. 

The SEM results show that the lithology of the rock in well 2 is silty mudstone. As shown 

in Fig. 5, the content of organic matter is also very low, a little organic matter distributed 

between clay minerals. Some organic matter has a small number of micropores developed. 

The interlamellar micropores of clay minerals are well developed, and it was found that 

some micropores are present in magnesite particles. 
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(a)  Low organic matter content but 

comparably high clay minerals 

(b) Organic matter fills the clay minerals 

(c) Some micropores developed inside 

the organic matter 

(d) A small number of micropores 

develop in magnesite particles 

Fig. 5 SEM results of Bakken rock sample from well 2. 

 

The lithology of rock type in Well 3 is the calcareous siltstone, as shown in Fig. 6. There 

are many clay minerals in the intergranular pores of silt and calcite. The content of organic 

matter is low, and only a few tiny organic matter fragments were found. The pores in the 

organic matter are not well developed. A small number of intracrystalline micropores 

generate in calcite. 
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(a) Clay minerals in the intergranular 

pores of calcareous siltstone, low 

organic content 

(b) Interlamellar micropores well 

developed in clay minerals 

(c) Micropores in organic detritus are 

not well developed 

(d) A small number of micropores 

present in calcite crystals 

Fig. 6 Bakken rock sample SEM results of well 3. 

 

Base on the SEM results of three different wells form Middle Bakken formation, it was 

determined that the lithology of this area is calcareous siltstone or silty mudstone which 

can be characterized as a tight reservoir with low porosity and low permeability. The 

content of organic matter is low, so this layer is a reservoir in Bakken Formation. 

Micropores are not developed well in the organic matter, which in turn fully developed in 

interlamellar clay minerals. The microfractures hardly found in this area. 
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3.2 Computed Tomography (CT) Scans 

CT Scans is an efficient way to test the porosity and structure of the rock sample. It can 

determine the porosity and pore space morphology, therefore to predict the permeability 

and porosity properties of rock samples. Some samples have defects (chipping, fractures), 

which are impossible for standard laboratory tests to be detected, but the CT scans can give 

a better understanding of rock samples. Moreover, also some samples are hard-to-recover 

or fundamental analyses are significantly time-consuming. Those types of samples can be 

easily handled with CT scans. A 3D analysis of porosity, mineral distribution, shape and 

morphometries can be attained after the CT scans. 

The principle of this test is using the recreation of X-ray binary models in three-

dimensional images (Vakhrusheva et al., 2015). The sample is placed inside the scanner, 

and the core holder will rotate with the sample during the X-ray beam scanning, leaving 

the shadow projection (a separate two-dimensional image corresponding to the X-ray 

intensity passing through the sample) on the detector (camera) (Ponomarev et al., 2016). 

The results of the CT scans were used to reconstruct the digital rock sample model, as 

shown in Fig. 7. 

(a) Core section (2mm) (b) Section diagrams in 

three directions 

(c) Three-dimensional 

reconstruction 
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(d) Mineral and pores distribution reconstruction (1000μm*1000 μm *1000 μm) 

after threshold segmentation with pores (red), siliceous or argillaceous (blue), 

calcareous (green) and heavy mineral (yellow). 

Fig. 7 Steps of a 3D model reconstruction for the middle Bakken rock sample 

through CT scans method (from a to d). 

 

According to the phase diagram, the rock model was divided into four models which keep 

the original model size and shape but presented different rock properties such as pores, 

heavy minerals, and pore throats as shown in Fig. 8. 

  

(a) Pore distribution characteristics (b) Heavy minerals distribution 

characteristics 
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(c) Pore throat distribution 

characteristic, the pore is in green and 

pore throat is in pink 

(d) Pore throat distribution 

characteristics, red points represent the 

best connectivity 

Fig. 8 Different rock properties distribution characterization of the Middle 

Bakken rock sample through CT scans. 

 

The data of the Avizo digital core processing results summarized in Fig. 9. Two diagrams 

attached which are pore distribution diagram (left) and pore throat distribution diagram 

(right). These diagrams concluded from 1,000,000 data points analyzed by the Avizo 

digital core processing. Therefore, the results got there based on big data. In this case, we 

believe the data is comparably accurate. 

(a) Pore distribution diagram (b) Pore throat distribution diagram 

Fig. 9 Quantization of the pore distribution and pore throat distribution. 
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According to these two diagrams, it is clear to see that the pore diameter mainly distributed 

in the range from 4 µm to 40 µm. The pore throat diameter is between 0.8~2 µm. We 

compared the data from CT scans using Avizo digital rock processing, and found that the 

porosity is 4%, the porosity is low. Siliceous and argillaceous volume fraction is 64.8%, 

calcareous volume fraction is 30.9%, and heavy minerals volume fraction are 0.3%. The 

minimum pore throat diameter is 1 µm, the maximum pore throat diameter is 11.3 µm, 

average pore throat diameter is 1.02 µm, and average pore throat length is 7.45 µm. The 

pore throat is also low, indicates low permeability in this layer. This Avizo digital rock 

processing confirmed this layer is tight oil reservoir with low permeability, and low 

porosity. The summarization of the CT scans experiments and Avizo digital rock 

processing listed in Table 1. 

 

Table 1. Middle Bakken rock sample analysis by Avizo digital rock processing. 

Parameter Value 
Pore volume (%) 4 

Siliceous, argillaceous (%) 64.8 

Calcareous (%) 30.9 

Heavy minerals (%) 0.3 

Min pore throat diameter (µm) 1 

Max pore throat diameter (µm) 11.3 

Ave pore throat diameter (µm) 1.02 

Ave pore throat length (µm) 7.45 

 

3.3 Thin Section Petrography 

The microscope is widely used in thin section petrography to distinguish the lithology of 

rock from the reservoir. The magnification and accuracy are important for the microscope. 

They are the crucial factors to consider before the microscope examination (Bi et al., 2018). 

The metallurgical microscope has excellent magnification and resolution compared with 
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other microscopes. Various filters are available to use and have a wide range of observation 

(Song et al., 2002). 

Metallurgical microscopes equipped with an incident light source which sends the light 

through the objective onto the reflective surface of the metal. The sample should polished 

to have a perfectly flat surface. The metallurgical microscope system can connect the 

traditional optical microscope to the computer (digital camera) through the photoelectric 

conversion of organic unifies in together. This kind of microscope can not only make the 

microscopic observation on the eyepiece, but also observe the real-time dynamic display 

screen images in the computer (digital camera). It can edit, save and print photos. 

Therefore, IMAGER. A2M metallurgical microscope was used in this study to discover 

the lithological properties of the three rock samples from the Middle Bakken Formation. 

These three rock samples are from the same three wells we mentioned before. These rock 

samples are got from the corresponding well numbers. 

 

 

(a) Thin section photo in the metallurgical microscope 
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(b) The fluorescent light source (c) Polarized light source 

Fig. 10 Metallurgical microscope results of thin section observation under different 

light sources (well 1). 
 

As shown in Fig. 10, the metallurgical microscope results showed that the lithology of this 

rock is micritic marly dolomite contains stucco cloud in grain structure and argillaceous 

structure. The rock is mainly composed of carbonate minerals mixed with argillaceous 

materials, and the silt clastics distributed in star point shape. A small amount of pyrite 

(about 3%) distributed between the crystals in irregular or patch shape. 

Carbonate minerals are mainly powder-micritic dolomite with a few calcites which is 

distributed between the grains in the form of pores. The clay minerals are cryptocrystalline 

and distributed unevenly. Micrite dolomite is poor in the color of black light due to mixed 

with argillaceous. A little powder crystal dolomite has a higher degree of automorphism. 

Silt clastics are mainly quartz and feldspar in the shape of subcircular – prismatic, particle 

size is more extensive than 0.03mm. 

In the rock slice, there were a few sporadically distributed bits of bioclastic particles, some 

of which were larger than others. The grains were recrystallized and composed of calcite 

which was mainly composed of mosses, shell and brachiopods. So the content of this thin 
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section can be presented as dolomite and clay mineral occupied 73 %, calcite occupied 20% 

and silty clastic accounted for 7%. 

 

 

(a) Thin section photo in the metallurgical microscope 

(b) The fluorescent light source (c) Polarized light source 

Fig. 11 Metallurgical microscope results of thin section observation under different 

light sources (well 2). 
 

Fig. 11 shows the images from the metallurgical microscope. This rock two can also be 

defined as micritic marly dolomite containing stucco cloud in grain structure and 

argillaceous structure. The rock is mainly composed of carbonate minerals mixed with 
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argillaceous materials, and the star points of silt clastics distributed in it. A little bit of 

yellow iron (about 6%) was patchy in the intergranular and locally abundant. 

Carbonate minerals are mainly powder-micritic dolomite with a few cubic stones. Micrite 

dolomite mixed with argillaceous shows poor color in black light. A little powder crystal 

dolomite is in high degree of automorphism. Calcite distributed between the grains in the 

form of pores, and some enriched in patch shape. Silt clastics are mainly quartz and feldspar 

with a subcircular – prismatic shape, the particle size is smaller than 0.06mm. 

Flocculent and lumpy particles were more concentrated in the rock slices. It is mainly 

composed of carbonate minerals, which may derived from granular alteration, such as algae. 

The content of the rock can be defined as dolomite and clay mineral is 75%, calcite is 20% 

and silt clastic is 5%. 

 

 

(a) Thin section photo in the metallurgical microscope 
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(b) The fluorescent light source (c) Polarized light source 

Fig. 12 Metallurgical microscope results of thin section observation under different 

light sources (well 3). 
 

Fig. 12 is the results of metallurgical microscope analysis of samples 3. It is a black 

dolomite mudstone in grain structure and argillaceous structure. The rock is mainly 

composed of clay minerals mixed with black minerals and carbonate minerals, and the silt 

clastics distributed in star points. A small amount of pyrite (about 7%) is speckled, irregular, 

curved and banded distributed in intercrystalline form. Clay minerals are cryptocrystalline, 

mostly mixed with black minerals, and distributed in dense clumps. Carbonate minerals 

are mainly powder-micritic dolomite with a few calcite pores unevenly distributed among 

the crystals. Silt clastics are mainly quartz, and feldspar with subcircular - prismatic and 

particle size are smaller than 0.06mm. Shell-like particles are uncommon to see. The 

granular crust is mainly composed of black mineral mixed clay. 

The composition of the rock can be defined as clay mineral, black mineral and dolomite in 

79%, calcite in 15% and silt detritus in 6%. 

According to the metallurgical microscope results, the lithology of this area is mainly 

dolomite and mudstone. The rock is mainly composed of dolomite and clay mineral, a part 
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of calcite and a little silt detritus. Comparably good roundness of the particle and the 

particle size are smaller than 0.06mm but larger than 0.03mm. The structure of the particles 

is mainly grain structure and argillaceous structure. 
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CHAPTER Ⅵ 

RESERVOIR SIMULATION OF FIELD SCALE CO2 HUFF-N-PUFF PROCESS  

4.1 Description of the Simulation Model 

The Peng-Robinson equation of state (PR-EOS) model is the principle method used in 

CMG-GEM compositional simulation for phase equilibrium calculation. CO2 molecular 

diffusion coefficient will directly affect the penetration depth and injection gas saturation 

distribution in the reservoir.  

PR-EOS model is a typically basic model used in petroleum industries. In this case, we 

describe the phase behavior of solvent(s)-CO2 oil systems using this PR-EOS model as the 

equation of state. The PR-EOS model (Peng and Robinson, 1976) can be expressed as: 𝑃 = 𝑅𝑇𝑉−𝑏 − 𝑎𝑉(𝑉+𝑏)+𝑏(𝑉−𝑏)                                                           (1) 𝑎 = 𝑎𝑐𝛼(𝑇𝑟 , 𝜔)                                                                  (2) 

𝑎𝑐 = 0.457235𝑅2𝑇𝑐2𝑃𝑐                                                                 (3) 

and 𝑏 = 0.0777969𝑅𝑇𝑐𝑃𝑐                                                                   (4) 

where α(Tr, ω) is the alpha function that correlates with reduced temperature Tr and 

acentric factor ω, V is molar volume, R is the universal gas constant, Pc is critical pressure 

and Tc is critical temperature. The Soave-type alpha function used in the PR-EOS model 

is given by Peng and Robinson (1976):  
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𝛼 = [1 + (0.37469 + 1.54226𝜔 − 0.26992𝜔2)(1 − 𝑇𝑟0.5)]2                       (5) 

Given the effective range of Middle Bakken reservoir properties, the Middle Bakken 

reservoir model with multi-stage hydraulic fractures was built according to one actual well 

in Middle Bakken formation. The boundary condition in this model is assumed as the no-

flow boundary condition. The specific data of the reservoir and hydraulic fractures are 

listed in Table 2.  

 

Table 2. Field case reservoir model parameters. 

Parameter Value Unit 
Model dimension (x×y×z) 10502×2640.2×50 ft 

Number of gridblocks (x×y×z)  181×42×1 - 

Initial reservoir pressure 7800 psi 

Reservoir temperature  240 oF 

Reservoir permeability  0.02 mD 

Reservoir porosity 5.6% - 

Initial water saturation 40% - 

Total compressibility  1×10-6 psi-1 

Reservoir thickness  50 ft 

Well length 8555 ft 

Number of stages 15 - 

Clusters per stage 2 - 

Cluster spacing 354 ft 

Fracture half-length  92.1 ft 

Fracture height  50 ft 

Fracture width  0.01 ft 

Fracture conductivity  500 md-ft 

 

For the rock-fluid part, the relative permeability curves of water-oil relative permeability 

and liquid-gas relative permeability are shown in Fig. 13. Only one set of relative 

permeability curves were used for all the grid, and the non-Darcy effect is not considered. 
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(a) Water-oil relative permeability curve (b) Liquid-gas relative permeability curve 

Fig. 13 Relative permeability curves used in this study (Yu et al., 2014). 

 

4.2 Fluid Model 

On account of the problem that the detailed fluid characterization data in this Middle 

Bakken well is not available, CMG-Winprop was used to generate the fluid model on the 

basis of crude oil properties in the Middle Bakken reservoir. Seven pseudo-components 

were assumed in this study, i.e., CO2, N2-C1, C2-C4, C5-C7, C8-C12, C13-C19, C20+. The 

corresponding molar fractions are 0.0118, 0.0016, 0.2454, 0.2445, 0.1892, 0.2215 and 

0.086, respectively. More detailed data required for the Peng-Robinson equation-of-state 

are listed in Table 3. Table 4. lists the binary interaction parameters which are used for 

phase behavior calculation. In summary of the fluid property, the bubble point pressure is 

2501.253 psia, API gravity of crude oil is 42°, the gas oil ratio (GOR) is 853.04 scf/stb, 

formation volume factor (FVF) is 1.505 and the minimum miscible pressure (MMP) is 

3260 psia. 

 

 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R
el

a
ti

v
e 

p
er

m
ea

b
il

it
y
, f

ra
ct

io
n

Water saturation, fraction

Krw

Krow

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R
el

a
ti

v
e 

p
er

m
ea

b
il

it
y
, f

ra
ct

io
n

Water saturation, fraction

Krg

Krog



 

  

- 30 - 

 

Table 3. Compositional data for the Middle Bakken formation. 

Component 
Molar  

fraction 

Critical 

pressure 

(atm) 

Critical 

temperature 

(K) 

Critical 

volume 

(L/mol) 

Molar 

weight 

(g/gmol) 

Acentric 

factor 

Parachor 

coefficient 

CO2 0.0118 72.80 304.20 0.0940 44.01 0.2250 78.0 

N2 0.0016 33.50 126.20 0.0895 28.01 0.0400 41.0 

CH4 0.2454 45.40 190.60 0.0990 16.04 0.0080 77.0 

C2HtoNC4 0.2445 41.92 371.46 0.2039 44.79 0.1481 150.5 

IC5toC07 0.1892 33.11 506.94 0.3367 83.87 0.2526 249.7 

C08toC12 0.2215 27.91 709.72 0.4567 120.54 0.3294 345.2 

C13toC30 0.0860 20.73 986.86 0.9700 297.27 0.7532 736.6 

 

Table 4. Binary interaction parameters for Middle Bakken oil. 

 CO2 N2 C1 C2-C4 C5-C7 C8-C12 C13+ 

CO2 0 -0.0200 0.1030 0.1317 0.1420 0.1463 0.1645 

N2 -0.0200 0 0.0310 0.0773 0.1120 0.1200 0.1200 

C1 0.1030 0.0310 0 0 0 0 0 

C2-C4 0.1317 0.0773 0 0 0 0 0 

C5-C7 0.1420 0.1120 0 0 0 0 0 

C8-C12 0.1463 0.1200 0 0 0 0 0 

C13+ 0.1645 0.1200 0 0 0 0 0 

 

4.3 EDFM Validation 

Any complex fractures can be modelled using EDFM method through the structured 

gridding method. It is definitely simple but effective (Moinfar et al., 2014; Xu, 2015). In 

this method, mass transfer can be calculated through some fracture grids which are in 

contact with corresponding matrix grids. According to the matrix-grid boundaries, each 

fracture could be discretized into several fracture segments. Some fluid transport between 

fractures, matrix, and well can be simulated inside the reservoir simulators using non-

neighboring connections (NNCs) and effective wellbore index as: 𝑇𝑁𝑁𝐶 = 𝐾𝑁𝑁𝐶𝐴𝑁𝑁𝐶𝑑𝑁𝑁𝐶                                                            (6) 

where TNNC is the transmissibility factor, KNNC is matrix permeability for the fracture-matrix 

connection and also average fracture permeability for the fracture-fracture connection, 
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ANNC is the contact area between the NNC pair, and dNNC is the average distance between 

the NNC pair. 

For the fracture-well connection, the modified Peaceman’s model is used to calculate the 

wellbore index: 𝑊𝐼𝑓 = 2𝜋𝑘𝑓𝑤𝑓𝑙𝑛(𝑟𝑒/𝑟𝑤)                                                            (7) 

𝑟𝑒 = 0.14√𝐿2 +𝑊2                                                       (8) 

where wf is the fracture width, kf  is the fracture permeability, L is the fracture-segment 

length, and W is the fracture-segment height (Xu et al. 2017a, 2017b).  

EDFM, as shown in Fig. 14(a), only embed fracture into a matrix grid directly. The profit 

of this method is that the refined grid will not require to be created or even calculated 

during the simulation. As a contrast, the LGR method as shown in Fig. 14(b), will 

inevitably create some refined grids near the fractures. In this case, the total amount of 

grids for the EDFM method will be less than the LGR method, so that it will take less CPU 

time to run a simulation. 

  

(a) EDFM method (b) LGR method 

Fig. 14 Comparison of fracture modelling between EDFM and LGR. 
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Given the fact that the EDFM method is a new fracture modelling method, the accuracy of 

this method needs to be verified before conducting any case study. Therefore, we compared 

the EDFM method and the LGR method by running the same case, which we got from the 

real field history data. Under the same circumstances, we can compare the simulation 

results to find out the accuracy of the EDFM method. 

The difference between these two models is only the grid used to create the fractures. One 

of these two models used EDFM method to create the fracture grids. In the other case, the 

LGR method was used to create the fracture grids, where each matrix grid containing 

fracture set as 9×1×1. 

We compared these two simulation results on oil production rate, gas production rate, water 

production rate and bottomhole pressure under the same well constraint condition after 

running the same production time. As shown in Fig. 15, an excellent agreement was 

achieved between EDFM and LGR. Therefore, it was verified that the EDFM method has 

the same accuracy as the LGR method to simulate the reservoir property and predict further 

production. 

(a) Oil flow rate (b) Gas flow rate 
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(c) Water flow rate (d) Bottomhole pressure 

Fig. 15 Comparison of well performance and BHP between LGR and EDFM. 

 

Besides, while the EDFM and LGR have the same accuracy, the EDFM method provides 

significant computational efficiency. The EDFM method can save about 45% CPU time 

comparing with the LGR method. In this case, we used the EDFM method to continue our 

following simulation case studies. 

 

4.4 History Match 

Before conducting the simulation case study of sensitivity factor, it is imperative to verify 

the reliability of the simulation model. An actual well with 451 days’ production data from 

the Middle Bakken was selected to perform history matching (Kurtoglu and Kazemi, 2012).  

A field-scale reservoir model was developed in a commercial simulator combining with 

EDFM software to simulate CO2 Huff-n-Puff experiment. Thirty bi-wing hydraulic 

fractures were set in the model. A horizontal well penetrates all of the fractures in the 

middle position. The model dimension is 10502 ft × 2640.2 ft × 50 ft, which corresponds 

to length, width and height, respectively, as shown in Fig. 16.  

0

50

100

150

200

250

0 100 200 300 400 500

W
a
te

r
 F

lo
w

 R
a
te

 (
b

b
l/

d
a
y
)

Time (day)

LGR

EDFM

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 100 200 300 400 500

B
o

tt
o

m
h

o
le

 P
re

ss
u

re
 (

p
si

) 

Time (day)

LGR

EDFM



 

  

- 34 - 

 

 

Fig. 16 A field-scale reservoir model with one horizontal well penetrated 30 bi-wing 

hydraulic fractures. 

 

In our history matching simulation, the oil rate measured from the field was used as 

constraint, as shown in Fig. 17. Gas rate and bottomhole pressure (BHP) are the target 

parameters for history matching. Fracture half-length, fracture conductivity, and matrix 

permeability were the main the tuning parameters to achieve good match results. 

 

Fig. 17 Oil flow rate comparison between the actual well data and simulation 

results. 

 

As shown in Fig. 18(a) and Fig. 18(b), a great match between the simulation results and 

actual field production data in gas rate and bottomhole pressure was achieved. Based on 

the excellent history match, the fracture conductivity is 500 md-ft, fracture half-length is 

92.1 ft, and matrix permeability is 0.02 md. 
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(a) Gas flow rate (b) Bottomhole pressure 

Fig. 18 Comparison of gas flow rate and bottomhole pressure between real well 

production data and simulation model results. 

 

After running 451 days of actual production date, the simulation results (Fig. 19) showed 

that the pressure drop in grids close to hydraulic fractures were much higher comparing 

with pressure in the grids far away from the hydraulic fractures. This phenomenon indicates 

a reasonable oil recovery process that the oil was produced from the reservoir to the surface, 

through the fractures to the well. 

 

Fig. 19 Pressure distribution at the end of the history match. 
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Given it is time-consuming to continue our case studies in a field case with 30 hydraulic 

fractures, our study chose a small part of the field case model to continue our CO2 Huff-n-

Puff study. As shown in Fig. 20, there is only one stimulation stage with two bi-wing 

hydraulic fractures set in our section model. The detailed parameters input for our model 

as listed in Table 5. The fracture conductivity, fracture half-length, and so on, are the same 

as the field case model. 

 

Fig. 20 A section model with a horizontal well and 2 bi-wing hydraulic fractures. 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

- 37 - 

 

Table 5. Section history matching parameters. 

Parameter Value Unit 

Model dimension (x×y×z) 580×2150×50 ft 
Number of gridblocks (x×y×z)  30×43×1 - 

Initial reservoir pressure 7800 psi 

Reservoir temperature  240 oF 

Reservoir permeability  0.02 mD 

Reservoir porosity 5.6% - 

Initial water saturation 40% - 

Total compressibility  1×10-6 psi-1 

Reservoir thickness  50 ft 

Well length 578.8 ft 

Stage spacing 236 ft 

Fracture half-length  92.1 ft 

Fracture height  50 ft 

Fracture width  0.01 ft 

Fracture conductivity  500 md-ft 

 

The well constraint also set the oil rate according to the actual well production data. Hence, 

the fractures and field dimensions are 15 times smaller than the actual field model. The 

actual well performance will also be divided by 15, as shown in Fig. 21. 

 

Fig. 21 Oil flow rate comparison between actual well data and section model results. 

 

0

10

20

30

40

50

0 100 200 300 400 500

O
il

 F
lo

w
 R

a
te

 (
b

b
l/

d
a

y
)

Time (day)

Field data

Simulation results



 

  

- 38 - 

 

For the gas flow rate and bottomhole pressure parameters, an excellent history match is 

also achieved in this section model, as shown in Fig. 22. The pressure distribution is shown 

in Fig. 23, the same effect as the field model can be found in this figure. 

(a) Gas flow rate (b) Bottomhole pressure 

Fig. 22 Comparison of gas flow rate and bottomhole pressure between modified well 

production data and simulation model results. 
 

 

Fig. 23 Section Model pressure distribution at the end of the history match. 
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4.5 Sensitivity Analysis 

Five scenarios were designed in this study to investigate the Huff-n-Puff effects on CO2 

EOR in the Middle Bakken. There is only one variable parameter in each scenario 

according to the base case. The scope of variable parameters is all in the reasonable range 

based on the literature review. The five variable parameters are CO2 injection rate, CO2 

injection time, soaking time, numbers of CO2 Huff-n-Puff cycle and CO2 diffusion 

coefficient.  

The base case we used in this study has a total of 7000 production days, with three cycles 

of CO2 Huff-n-Puff. After the history matching period, the production well was set to shut-

in at 500th day. At the same time, the injection well will inject CO2 in the rate of 200 

Mscf/day for 50 days, and then close the injection well for a 14 days’ soaking period. The 

minimum bottomhole pressure set at a constant value of 1500 psi as a constraint of the 

production well. It is the first CO2 Huff-n-Puff cycle. The second and the third cycle will 

be conducted at 2500th day and 4500th day, with the same injection rate, injection time 

and soaking time. The CO2 diffusion coefficient used in this base case is 0.005 cm2/s. 

 

Effect of CO2 injection rate.   

Three cases, including the base case, were conducted in this scenario to compare the oil 

recovery factor with the primary production. The CO2 injection rate was modified to 50 

Mscf/day and 350 Mscf/day and other parameters were not changed. As shown in Fig. 24, 

after the history matching period, the cumulative oil production without CO2 injection 

(Primary production) keep the highest cumulative oil recovery, followed by the case with 

a CO2 injection rate of 50 Mscf/day, 200 Mscf/day and 350 Mscf/day in sequence. At the 
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time of 1000th day, which is the middle of the first cycle, the cumulative oil production of 

three cases was going closed and almost at the same level compared with primary 

production. After 1000 days, the case with high CO2 injection rate becomes the highest 

cumulative production oil case, followed by other lower CO2 injection rate in sequence. At 

the end of the simulation, cumulative oil production of the case with 200 Mscf/day CO2 

injection rate is close to that of 350 Mscf/day CO2 injection rate, but much higher than the 

case with 50 Mscf/day CO2 injection rate. The contribution to cumulative oil production 

after 7000 days is about 1.3%, 3.2% and 3.4% for the three CO2 Huff-n-Puff cases with the 

CO2 injection rate of 50, 200 and 350 Mscf/day, respectively. Moreover, all of these cases 

with CO2 injection have a higher cumulative oil production than the primary production. It 

means that CO2 injection is beneficial for EOR, and with more CO2 injected, the effect of 

CO2 Huff-n-Puff will be stronger. 

 

 

Fig. 24 Effect of different CO2 injection rates on CO2 Huff-n-Puff effectiveness. 
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According to the diagrams representing the well BHP and average reservoir pressure, we 

find the higher CO2 injection rate corresponds to higher well BHP pressure and average 

reservoir pressure. The maximum bottomhole pressure was set as same as the initial 

pressure, which is 7800 psi. As the BHP reaches this limit, the injection rate will decrease 

automatically to keep the bottomhole pressure of 7800 psi. The case with higher CO2 

injection rate will reach the threshold much quicker than lower CO2 injection rate one, as 

shown in Fig. 25(a). Also, the higher BHP will transmit to the area nears the wellbore, and 

then transmits to other areas far away from the wellbore. Therefore, it is easier to lift the 

average reservoir pressure, as shown in Fig. 25(b). With the high average reservoir 

pressure, the pressure difference helps accelerate the fluid flow from a high-pressure area 

(the reservoir) to low-pressure area (wellbore) during the production period. 

(a) Bottomhole pressure (b) Average reservoir pressure 

Fig. 25 Effect of different CO2 injection rate on wellbore and reservoir pressure. 
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to 10 days/stage and 100 days/stage. Other parameters were kept as same for three cases. 

The primary oil recovery was set as the control group. As shown in Fig. 26, after the history 

match, the case with 100 days/stage CO2 injection time has the highest cumulative oil 

production compared with other cases. It is followed by 50 days/stage CO2 injection time, 

10 days/stage CO2 injection time and the lowest one is primary production. The 

contribution to cumulative oil production after 7000 days is about 1.6%, 3.2% and 3.9% 

for the three CO2 Huff-n-Puff cases with a CO2 injection time of 10, 50 and 100 days, 

respectively. Comparing these four cases, the cumulative oil production with 100 

days/stage is the lowest one at the beginning of each cycle due to the longer injection time 

without oil production. However, it surpasses other cases soon after the well starts to 

produce oil. The higher oil production rate helps the well production of this case not only 

catch up with other cases but also exceed them. It denotes that higher CO2 injection time 

will lead to higher oil production rate. The difference in cumulative oil production between 

10 days/stage, 50 days/stage and 100 days/stage is similar. Therefore, it is clear that higher 

injection time is beneficial for higher cumulative oil production, and this effect will 

proportionately increase. Meanwhile, in a given number of years, it is crucial to design an 

optimum ratio between injection time and production time according to the net present 

value (NPV) considered by the oil company. 
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Fig. 26 Effect of different CO2 injection time on CO2 Huff-n-Puff effectiveness. 

The essential issue that higher injection time will lead to higher oil production rate. As 

shown in Fig. 27(a), the BHP of the case with 100 days/stage CO2 injection reaches a 

higher level than other case studies. The average pressure for 100 days/stage CO2 injection 

is also higher than others, as shown in Fig. 27(b). 

(a) Bottomhole pressure (b) Average reservoir pressure 

Fig. 27 Effect of different CO2 injection time on wellbore and reservoir pressure. 
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In this scenario, we notice that gas saturation in each case study has a huge difference, as 

shown in Fig. 28. With longer time of CO2 injection, CO2 can better diffuse into the 

reservoir which means higher depth and concentration. As the pressure is higher than MMP, 

CO2 can dissolve into the oil. In turn, the oil with saturated CO2 will swell, and expand. 

That is the primary mechanism to increase the reservoir pressure and lead to higher 

cumulative oil production. 

    

 

    (a) Primary (b) 10 days/stage (c) 50 days/stage (d) 100 days/stage  

Fig. 28 Effect of different CO2 injection time on reservoir CO2 saturation. 

 

Effect of CO2 soaking time.   

In this study, the CO2 soaking time was adjusted from the base case, which is 14 days, to 

7 days and 21 days to study the effect of different CO2 soaking time for cumulative oil 

production. As shown in Fig. 29, the contribution to cumulative oil production after 7000 
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days is about 3.1%, 3.2% and 3.3% for the three CO2 Huff-n-Puff cases with CO2 soaking 

time of 7, 14 and 21 days, respectively. 

 

Fig. 29 Effect of different CO2 soaking time on CO2 Huff-n-Puff effectiveness. 

 

Moreover, we compare the BHP and average reservoir pressure between these case studies, 

as shown in Fig. 30. Only a little difference can be found there. The various surfactant 

soaking time in this study yielded a small difference in cumulative oil production. The 

effect of soaking time may not be estimated accurately in the simulations because the 

mathematical models of multiphase flow generally assume a local thermodynamic 

equilibrium and disregards the reaction kinetics and the necessary interaction time for the 

surfactant to alter the rock wettability (Lotfollahi et al., 2017). 
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(a) Bottomhole pressure (b) Average reservoir pressure 

Fig. 30 Effect of different CO2 soaking time on wellbore and reservoir pressure. 
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Two more case studies were conducted to study the effect of number of CO2 Huff-n-Puff 
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the case with 3 cycles surpass the case with 1 cycles, but still lower than 6 cycles case. The 

contribution to cumulative oil production after 7000 days is about 1.6%, 3.2% and 4.6% 

for the three CO2 Huff-n-Puff cases with cycles of 1, 3 and 6 times, respectively. All of the 

case studies with CO2 Huff-n-Puff process have higher cumulative oil production than 

primary production. It indicates that CO2 Huff-n-Puff is definitely beneficial for EOR. Also, 

with more CO2 Huff-n-Puff cycles, cumulative oil production will be higher with long 

production time. 

 

Fig. 31 Effect of different numbers of CO2 Huff-n-Puff cycles on CO2 Huff-n-Puff 

effectiveness. 
 

With more CO2 Huff-n-Puff cycles, the total volume of CO2 injected increased, resulting 

in a higher oil production rate. 
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Effect of CO2 molecular diffusion.   

In this scenario, CO2 molecular diffusion was studied. The range of CO2 diffusion 

coefficient we considered was between 0.01 cm2/s to 0.001 cm2/s. More discussion about 

the range of molecular diffusion coefficient can be found by Yu et al. (2018). During the 

CO2 Huff-n-Puff simulation, we only considered the CO2 diffusion coefficient in both oil 

and gas phases. The diffusion coefficients of the other components were assumed to be 

zero.  

The molecular diffusion coefficient in the base case was 0.005 cm2/s. In these two case 

studies, the CO2 diffusion coefficient of 0.01 cm2/s and 0.001 cm2/s were assigned to each 

case. As shown in Fig. 32, the cumulative oil production indicates that with the higher CO2 

molecular diffusion coefficient leads to higher cumulative oil production. If the CO2 

molecular diffusion coefficient is extremely low, like the green line, which is 0.001 cm2/s, 

the CO2 Huff-n-Puff leads to a lower oil production than the primary one. The contribution 

to the cumulative oil production after 7000 days is about 3.2% and 5.9% for the two cases 

with CO2 diffusion coefficients of 0.005 and 0.01 cm2/s, respectively. For the case with 

CO2 diffusion coefficients of 0.001 cm2/s, it decreased by about 1.3% compared to the 

primary production. Accordingly, the effect of CO2 molecular diffusion is significant when 

evaluating the CO2 Huff-n-Puff effectiveness in tight oil reservoirs. It is suggested that 

accurate measurements of CO2 diffusion coefficients in the Middle Bakken oil reservoirs 

should be considered. 
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Fig. 32 Effect of different CO2 molecular diffusions on CO2 Huff-n-Puff 

effectiveness. 
 

The effects of different CO2 diffusion coefficients on cumulative CO2 backflow are shown 

in Fig. 33. It clearly illustrates that more considerable amount of CO2 will flow back to 
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in Fig. 34. The CO2 is 0 in the primary production case. However, it goes down with the 

CO2 diffusion coefficient increase. As we mentioned before, with the same CO2 injection, 

CO2 flow back with the larger CO2 coefficient is lower. It means that more CO2 molecules 

can diffuse into the matrix porous with the larger CO2 diffusion coefficient. So we can 
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believe that a better mixture of oil phase and CO2 molecules results in higher cumulative 

oil production. 

 

Fig. 33 Effect of different CO2 molecular diffusions on the cumulative CO2 

backflow. 
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      (a) Primary    (b) 0.001 cm2/s    (c) 0.005 cm2/s     (d) 0.01 cm2/s  

Fig. 34 Comparison of CO2 gas mole fraction distribution after  

7000 days CO2 Huff-n-Puff. 

 

In summary, the impacts of all uncertain parameters on the EOR effectiveness at 7000 days 

of production are shown in the Tornado plot (Fig. 35). It indicates that CO2 diffusivity 

parameter has an extreme effect on EOR, followed by the number of CO2 Huff-n-Puff cycle. 

CO2 soaking time has only a slight effect on EOR, followed by CO2 injection rate. The 

CO2 injection time of each Huff-n-Puff cycle has a moderate effect on EOR. This ranking 

is based on the range of each parameter used in this study. The range for the incremental 

oil recovery factor at the time of 7000 days of production is about -1.3%–5.9%.  
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Fig. 35 Rank of impacts of five uncertain parameters on incremental oil recovery 

factor. 
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CHAPTER Ⅴ 

RESERVOIR SIMULATION OF FIELD SCALE SURFACTANT HUFF-N-PUFF 

PROCESS  

5.1 Description of the Simulation Model 

A homogeneous but anisotropic Middle Bakken simulation models was built up with the 

same reservoir property and hydraulic fractures according to one actual well. No flow 

boundary condition is assumed in these models. The specific data of the reservoir and 

hydraulic fractures are listed in Table 6.  

 

Table 6. Field case reservoir model parameters. 

Parameter Value Unit 
Model dimension (x×y×z) 10502×2640.2×50.4 ft 

Number of gridblocks (x×y×z)  178×43×3 - 

Initial reservoir pressure 7800 psi 

Reservoir temperature  240 oF 

Horizontal permeability  0.03 mD 

Vertical permeability  0.003 mD 

Reservoir porosity 5.6% - 

Initial water saturation 40% - 

Total compressibility  1×10-6 psi-1 

Reservoir thickness  50 ft 

Well length 8555 ft 

Number of stage 15 - 

Clusters per stage 2 - 

Cluster spacing 354 ft 

Fracture half-length  92.1 ft 

Fracture height  50.4 ft 

Fracture width  0.01 ft 

Fracture conductivity  500 md-ft 
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The Compositional data and Binary interaction parameters in this Middle Bakken well can 

be found in Chapter Ⅳ. The bubble point pressure of crude oil was 2501.253 psia, the oil 

API gravity was 42, the gas oil ratio was 853.04 scf/stb, the formation volume factor was 

1.505, and the minimum miscible pressure (MMP) was 3260 psia. The water-oil relative 

permeability and liquid-gas relative permeability in this model were based on the literature 

(Yu et al., 2014b). 

 

5.2 EDFM Validation 

Base on the Middle Bakken simulation model in Chapter 4, a new Middle Bakken 

simulation model was built in EDFM. The difference is that one of these two models used 

an EDFM method to create the fracture grids. The other one used the LGR method to create 

the fracture grids, where each matrix grid containing fracture is set as 9×1×1. 

We operated the same production time with the same constraint conditions for these two 

models and compared the simulation results such as oil production rate, gas production rate, 

water production rate, and bottomhole pressure. An excellent agreement was achieved 

between EDFM and LGR, as shown in Fig. 36. Therefore, we can deem the accuracy of 

the EDFM method that is the same as LGR method in reservoir simulation model on the 

basis of our validation results. We can use the EDFM method to do our production 

prediction study.  
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(a) Oil flow rate (b) Water flow rate 

  

(c) Gas flow rate (d) Bottomhole pressure 

Fig. 36 Comparison of well performance and BHP between LGR and EDFM. 

 

Moreover, we found that the EDFM method provides more significant computational 

efficiency than the LGR method. There is a considerable difference between the LGR and 

the EDFM methods, which is the CPU time needed for simulation running. The LGR 

method used 3909 seconds to run the case. However, the EDFM method only use 2650 

seconds to run the same case. The EDFM method saved about 30% simulation running 

time compared with the LGR method. In this case, we used the EDFM method to continue 

our following simulation case studies. 
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5.3 History Match in Field Case 

The history match of an actual well with 451 days of available production data from Middle 

Bakken is placed in this section (Kurtoglu and Kazemi, 2012).  

A field-scale reservoir model was developed to use the commercial simulator CMG-

STARS in combination with EDFM software to simulate a surfactant flooding experiment. 

Thirty bi-wing hydraulic fractures were inserted into the model, and a horizontal well 

penetrated the middle of all the fractures. The model dimension is 10502 ft × 2640.2 ft × 

50.4 ft, which corresponds to the length, width, and height, respectively, as shown in Fig. 

37.  

 

 
Fig. 37 A field-scale reservoir model with a horizontal well and 30 bi-wing hydraulic 

fractures. 

 

In our history matching simulation, the oil rate measured from the field is used as a 

constraint input, as shown in Fig. 38. Gas rate and bottomhole pressure (BHP) are the 

targets for history matching. Fracture half-length, fracture conductivity, and matrix 

permeability were mainly used as the tuning parameters to achieve good match results. 
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Fig. 38 Oil flow rate comparison between actual Middle Bakken well data and 

model results. 

 

As shown in Fig. 39(a) and Fig. 39(b), a great match between the simulation results and 

actual field production data were achieved for gas rate and bottomhole pressure, 

respectively. Moreover, based on the excellent history match, we found that the fracture 

conductivity is 500 md-ft, fracture half-length is 92.1 ft, and matrix permeability is 0.02 

md. 

 

  

(a) Gas flow rate                     (b) Bottomhole pressure 

Fig. 39 Comparison of gas flow rate and bottomhole pressure between real well 

production data and simulation model results. 
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5.4 History Match in Section Model 

A section model, which has only one stimulation stage (two bi-wing hydraulic fractures), 

was built up as shown in Fig. 40, in order to overcome the computational burden. 

 

 
Fig. 40 A section model with a horizontal well and two bi-wing hydraulic fractures. 

 

We also ran the grid sensitivity analysis with different grid sizes in the Z direction. For 

instance, on account of the used forward-difference approximation to the truncation Darcy 

flow equation (Explicate formulation), and the capacity of our computer is not able to carry 

an infinite number of digits, the solution would differ from the exact solution of the original 

partial differential equation (PDE).  Therefore, the Truncation-Error Analysis needs to be 

placed before the prediction of sensitivity study: 

                                          𝑒𝐿 = [(∆𝑥)212 𝜕4𝑝𝜕𝑥4|𝑖𝑛 − (∆𝑡)2𝐷𝑖 𝜕2𝑝𝜕𝑥2|𝑖𝑛]                                                (9) 

or 

                                                 𝑒𝐿 = 𝑂[(∆𝑥)2] + 𝑂(∆𝑡)                                                 (10) 

 

where eL is the truncation error, Δx is the grid size and Δt is the time step. 
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It was found that the smaller Δx is, the smaller truncation error can achieve (Turgay et al., 

2001). The same results can be got from the backward-difference approximation and 

central-difference approximation. 

In this grid sensitivity analysis, we injected two cycles of 0.2% surfactant in 1000STB/day, 

with 300 days injection and 20 days soaking after the history match period. The surfactant 

adsorption parameter is 1 lbmole/ft3. As we mentioned before, the equation of Truncation-

Error indicates that the smaller grid size will have less Truncation-Error. The assumption 

is that the simulation will be more accurate with the decrease of grid size. Therefore, 

according to the simulation results shown in Fig. 41, the section model with 7, 9 and 11 

layers in the Z direction are relatively accurate. 

 
Fig. 41 Cumulative oil production comparison between different grid layers with 

surfactant flooding case. 
 

Although the accuracy of these three cases is all relatively accurate, the CPU seconds for 

them have huge differences, which are 4888, 9138 and 10787 seconds. Seven layers model 

was selected as the optimal one considering the accuracy and CPU time to continue our 

section model history match. The detailed input parameters for our model are listed in 
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Table 7. All the reservoir characterizations are similar to the field case, for example, the 

fracture conductivity, fracture half-length, and so on. 

 

Table 7. Section model parameters. 

Parameter Value Unit 
Model dimension (x×y×z) 580×2150×50.4 ft 

Number of gridblocks (x×y×z)  30×86×7 - 

Initial reservoir pressure 7800 psi 

Reservoir temperature  240 oF 

Horizontal permeability  0.03 mD 

Vertical permeability  0.003 mD 

Initial water saturation 40% - 

Total compressibility  1×10-6 psi-1 

Reservoir thickness  50.4 ft 

Well length 578.8 ft 

Stage spacing 236 ft 

Fracture half-length  92.1 ft 

Fracture height  50.4 ft 

Fracture width  0.01 ft 

Fracture conductivity  500 md-ft 

 

The oil rates from the actual well production data were set as the well constraint. Because 

the fractures and field dimensions are 15 times smaller than the actual field model, the 

actual well performance was divided by 15, as shown in Fig. 42. 

 
Fig. 42 Oil flow rate comparison between actual well data and section model results.  
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Comparing the gas flow rate and bottomhole pressure, there is also a great history match 

achieved in this model, as shown in Fig. 43. It proves that the section model can be used 

to continue our surfactant flooding studies. 

  

(a) Gas flow rate                    (b) Bottomhole pressure 

Fig. 43 Comparison of gas flow rate and bottomhole pressure between modified well 

production data and simulation model results. 

 

5.5 Wettability Alteration 

Wettability alteration in this model depends on the adsorbed surfactant concentration. It is 

based on a scaling factor averaged linear interpolation scheme. Since the surfactant 

isotherm may reach a plateau at some critical surfactant concentration, which is called the 

Critical Micelle Concentration (CMC), and the injected surfactant concentration is 

normally much higher than the CMC, Langmuir-type isotherm is applied to the adsorption 

process (Stars Menu): 

                                                    𝑎𝑑 = (𝑡𝑎𝑑1+𝑡𝑎𝑑2×𝑥𝑛𝑎𝑐𝑙)×𝑐𝑎(1+𝑡𝑎𝑑3×𝑐𝑎)                                                      (11) 

where ad is the adsorbed moles per unit pore volume, xnacl is the salinity of the brine, ca 

is the mole fraction of surfactant in the oil phase, tad1 is the adsorption parameter, tad2 is 

the adsorption isotherm associated with salt effects, and tad3 is the parameter coefficient. 
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Since the wettability alteration depends on the level of surfactant adsorption, the 

Wettability Alteration Parameter (ω) is used to represent the amount of surfactant adsorbed 

onto the rock surface (Delshad et al., 1996): 

                                                 𝜔 = Ĉ𝑛𝐶𝑛+Ĉ𝑛                                                                      (12) 

where Cn is the total concentration of nanofluids and Ĉn is adsorbed concentration of 

nanofluids. 

Wettability is an important parameter that will influence the EOR. It will not increase the 

oil production directly but affect the fluid saturation and their distribution in the porous 

media. In this study, we used the modification of relative permeability and capillary 

pressure curves to represent the wettability alteration in commercial simulation software 

(CMG-STARS). The rock wettability is gradually altered from oil-wet to water-wet. We 

inputted three different rock types which are oil-wet, mixed-wet and water-wet as shown 

in Fig. 44. Then we used the simulator to interpolate them and get complex dynamic 

relative permeability curves along with the surfactant adsorbed into the reservoir. So did 

the capillary pressure.  The capillary pressure data in the model were based on the literature 

(Masalmeh., 2002; Anderson., 2006), as shown in Fig. 45. 
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(b) Mixed-wet (ω=0.5) (c) Water-wet (ω=1) 

Fig. 44 Three inputted oil-water relative permeability curves for different rock 

wettability conditions. 
 

 
Fig. 45 Three inputted capillary pressure curves for different rock wettability 

conditions (Masalmeh., 2002; Anderson., 2006). 
 

The IFT data were selected from the literature (Yang, 2018), as shown in Table 8. We used 

the Langmuir isotherm coefficients to define the surfactant adsorption, so the surfactant 

adsorption depends on the surfactant concentration in the microemulsion, as shown in Fig. 

46. 

Table 8. Surfactant IFT table. 

Surfactant Concentration 

(wt. %) 

Interfacial Tension (dyn/cm) 

0 23.1 
0.1 0.17 

0.2 0.014 

0.3 0.0047 

0.4 0.0089 

0.5 0.0154 
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Fig. 46 The Langmuir adsorption isotherm curve. 

 

5.6 Surfactant Effectiveness Verification 

As an uncertainty chemical fluid we simulated, the first thing we supposed to do is to verify 

the effectiveness of this surfactant. We compared this surfactant flooding in Huff-n-Puff 

case with the primary production, as shown in Table 9. In the primary production case, the 

production well was producing the oil with a constraint that the minimum BHP was 1500 

psi after the history match period. For the surfactant Huff-n-Puff case, there were two 

cycles of Huff-n-Puff set as the well constraints. In each Huff-n-Puff case, the injection 

well injected the water with 0.2% surfactant for 300 days at the rate of 1000 bbl/day and 

constrained the maximum BHP to 7800 psi. The injection well was shut in for 20 days 

soaking after that. It is one cycle of the surfactant Huff-n-Puff, the production well also 

used the constrained with minimum BHP of 1500 psi. 
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Table 9. Time steps comparison between surfactant flooding and primary 

production. 

Time (days) Primary production Surfactant flooding 

0 History match History match 
450 Produce Surfactant injection 

750 Produce Soaking 

770 Produce Produce 

3775 Produce Surfactant injection 

4005 Produce Soaking 

4025 Produce Produce 

7000 STOP STOP 

 

The comparison of simulation results for cumulative oil production is shown in Fig. 47. 

After the second Huff-n-Puff cycle, the oil recovery factor achieves a much higher value 

than the primary production, about 0.9% oil recovery factor increase. Therefore, the 

surfactant flooding is more efficient than the primary production. 

 
Fig. 47 Oil recovery factor comparison between the primary production and 

surfactant flooding case. 
 

We consider the reason for this increased oil recovery factor is the effect of surfactant. To 

discover the effect of surfactant, the adsorbed surfactant map is shown in Fig. 48 (a), and 
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0

1

2

3

4

5

6

7

8

0 2000 4000 6000 8000

O
il

 R
e
c
o

v
e
ry

 F
a

c
to

r 
(%

)

Time (days)

Primary

Surfactant



 

  

- 66 - 

 

the IFT reduced with the surfactant adsorbed into the rock. With the lower IFT, and the 

rock wettability changed from oil-wet to water-wet, the oil production increased. Therefore, 

we can verify that the surfactant flooding is able to increase oil recovery due to the 

wettability alteration. 

 

 

 

 

(a) Adsorbed Surfactant (lbmole/ft3)                 (b) Interfacial tension (dyne/cm) 

Fig. 48 Adsorbed mole of surfactant and IFT in the end of surfactant flooding. 

 

5.7 Sensitivity Analysis 

In order to discover the Huff-n-Puff effects on surfactant EOR in the Middle Bakken, six 

scenarios were designed in this section. All the parameters studied here are in reasonable 

ranges, and only one parameter is modified in each scenario. The parameters are surfactant 

adsorption, surfactant injection time, soaking time, surfactant injection rate, surfactant 

concentration and the number of surfactant Huff-n-Puff cycles.  
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The maximum BHP was set to be 7800 psi, based on the initial reservoir pressure. The 

minimum BHP was set as 1500 psi, which according to the literature review. Table 10. 

summarizes the value of parameters we used for sensitivity studies. 

 

Table 10. Parameters and their range for surfactant Huff-n-Puff sensitivity analysis. 

 Low Base High 

Adsorption (lbmole/ft3) 0.5 1 1.5 
Days of injection 150 300 450 

Days of soaking 5 20 35 

Number of cycles 1 2 3 

Injection rate (STB/day) 500 1000 1500 

Surfactant concentration 0.0005 0.002 0.005 

 

Effect of Surfactant Adsorption  

In this scenario, the surfactant adsorption parameter (tad) was changed from 1 lbmole/ft3 

to 0.5 lbmole/ft3 and 1.5 lbmole/ft3, the surfactant adsorption curves are shown in Fig. 49.  

 
Fig. 49 The comparison of three different Langmuir adsorption isotherm curves. 
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one, followed by 0.5 lbmole/ft3, 1.0 lbmole/ft3 and 1.5 lbmole/ft3 in sequence. At the time 

of 1700 days which is the middle of the first CO2 Huff-n-Puff cycle, the cumulative oil 

productions are closed to each other and almost at the same level. After 1700 days, the case 

with high surfactant adsorption becomes the highest cumulative production oil case, 

followed by other lower surfactant adsorption in sequence. At the end of the simulation, 

the cumulative oil production with the 1.0 lbmole/ft3 surfactant adsorption is close to the 

case with 0.5 lbmole/ft3 surfactant adsorption, but comparably much lower than the case 

with 1.5 lbmole/ft3 surfactant adsorption. The contribution to cumulative oil production 

after 7000 days is about 14.4%, 16.4% and 20.0% for the three surfactant Huff-n-Puff cases 

with the surfactant adsorption of 0.5 lbmole/ft3, 1.0 lbmole/ft3 and 1.5 lbmole/ft3, 

respectively. The higher adsorption leads to a higher cumulative oil production, which 

indicates that the high surfactant adsorption is beneficial for EOR without considering the 

economic benefits. 

 

 
Fig. 50 Effect of different surfactant adsorption on surfactant Huff-n-Puff 

effectiveness. 
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Effect of Surfactant Injection Time.   

According to the base case, two more case studies conducted in this surfactant injection 

time scenario. The surfactant injection time was modified from the base case, which was 

300 days/stage, to 150 days/stage and 450 days/stage. Other parameters were not changed. 

The base case and primary production were also used as the reference to compare the 

incremental oil production. As shown in Fig. 51, after the history match period, the primary 

production is the highest one. At the time of 1500 days, the case with 150 days/stage 

injection time surpassed the primary production and became the highest oil production. At 

the time of 1800 days, the base case which is 300 days/stage injection time became the 

highest one. The case with 450 days/stage injection time is still the lowest production until 

the time at 2200 days. However, this case has the highest oil production at the end of the 

simulation which is 18.3% higher than primary production. The case with 150 days/stage 

and 450 days/stage were 15.5% and 16.4% higher than the primary production, respectively. 

According to the simulation results with different injection time, the surfactant Huff-n-Puff 

process with longer injection time has higher oil recovery in the end. Moreover, because 

the case with higher injection time had less oil recovery in the beginning, we regard this 

incremental oil recovery as the potential oil recovery. So, it is crucial to design an optimum 

ratio between injection time and production time according to the total working time of the 

well. 
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Fig. 51 Effect of different CO2 injection times on CO2 Huff-n-Puff effectiveness. 

 

Effect of Surfactant Soaking Time.   

In this surfactant soaking time scenario, there were also two more case studies conducted. 

The surfactant soaking time was modified from 20 days/stage to 5 days/stage and 35 

days/stage. After the history match period, the case with 35 days/stage soaking time 

surpassed the primary production at first, at the time of 1700 days, as shown in Fig. 52. 

Then this curve kept lead the cumulative oil production until the end of the simulation, and 

the incremental oil production reached 19.0%. The case with 20 days/stage which is the 

base case and the case with 5 days/stage all behind this case. The cumulative oil production 

for these two cases is 16.4% and 16.0%, respectively. The difference in surfactant soaking 

time in this study showed a little difference in cumulative oil production. 
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Fig. 52 Effect of different CO2 soaking times on CO2 Huff-n-Puff effectiveness. 

 

 

Effect of time on Surfactant Huff-n-Puff Cycles.   

Two more case studies were conducted for the surfactant Huff-n-Puff cycles scenario. The 

time of the surfactant Huff-n-Puff cycles was changed from the base case, which has 3 

cycles, to 1 cycle and 6 cycles. The case study with 1 cycle of surfactant Huff-n-Puff 

process started at the time of 450 days. The case 2 has one more cycle which started at the 

time of 3775 days. Also, a case with 3 cycles started at the time of 450 days, 2650 days 

and 4800 days. As shown in Fig. 53, after the history match period, the primary production 

had the highest cumulative oil production. After the first Huff-n-Puff cycle, all three cases 

surpassed the primary production. Higher oil production attained with more Huff-n-Puff 

case conducted according to three cases. The incremental oil production for these one, two 

and three cycles were 2.7%, 16.4% and 25.2%, respectively. All of the cases with the Huff-

n-Puff process have higher cumulative oil production than the primary production. 

Therefore, the surfactant Huff-n-Puff process is beneficial for EOR. The incremental oil 

production will increase while the number of Huff-n-Puff cycles increase. However, as we 
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can see, with the Huff-n-Puff cycles increase, the degree of incremental oil production is 

decreasing. It means that with more surfactant Huff-n-Puff cycles, like 5 or 6 cycles, the 

incremental oil production may not increase a lot. However, we can still have the 

conclusion that with more surfactant Huff-n-Puff cycles, the higher cumulative oil 

production we will get. 

 
Fig. 53 Effect of different numbers of CO2 Huff-n-Puff cycles on CO2 Huff-n-Puff 

effectiveness. 
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with different surfactant injection rates do not have a significant difference. So, if the 

surfactant injection rate is high enough to reach the maximum bottomhole pressure within 

a short period, the effect of increasing the injection rate is not significant. 

 
Fig. 54 Effect of different surfactant injection rate on CO2 Huff-n-Puff effectiveness. 
 

Effect of Surfactant Concentration.   

In this surfactant concentration scenario, there were two more case studies conducted. The 

range of surfactant concentration varied from 0.05% to 0.5% that would be able to have an 

economic benefit. As shown in Fig. 55, the surfactant concentration of 0.5 % (red line) 

keeps leading the highest cumulative oil production during the whole simulation time 

comparing with the other two case studies. Moreover, this high surfactant concentration 

line is also the first line which surpasses the primary production. Compared with other 
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increase the oil production directly and do not have any hesitate time, like the surfactant 

injection time, soaking time, Huff-n-Puff cycles, and so on. The incremental oil production 

of the surfactant concentration with 0.05%, 0.2% and 0.5% are 1.1%, 16.4% and 19.4%, 
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respectively. It indicates that with the higher surfactant concentration, the cumulative oil 

production should be higher. However, the surfactant cost is high, it also suggested that the 

proper balance between the surfactant concentration and incremental oil production needed 

to be considered. 

 
Fig. 55 Effect of surfactant concentration on surfactant Huff-n-Puff effectiveness. 

 

To evaluate the relative impact of the parameters, the impacts of all uncertain parameters 

on the EOR effectiveness at 7000 days of production are shown in the Tornado plot (Fig. 

56). It is clear that the number of surfactant Huff-n-Puff cycles and the surfactant 

concentration have an extreme effect on EOR. Moreover, it is followed by surfactant 

adsorption, soaking time, injection time and rate in order. This rank is based on the range 

of each parameter used in this study. The range for the incremental oil recovery factor at 

the time of 7000 days of production is about 1.1%-25.2%. 
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Fig. 56 Rank of impacts of six uncertain parameters on incremental oil recovery 

factor. 
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CHAPTER Ⅵ 

CONCLUSIONS AND RECOMMENDATIONS 

Enhanced oil recovery has been a hot topic over the past few decades. Due to the 

uncertainty of the technology and theory, Bakken is still stagnant at the stage of stimulation 

fracturing and has not injected anything to improve the oil recovery. The geology 

background is first investigated in this study. The geological experiments showed the 

porosity is about 4%, and pore diameter mainly distributed in the range from 4 µm to 40 

µm. The pore throat diameter is between 0.8~2 µm. We found that the rock is mainly 

composed of dolomite and clay mineral, a part of calcite and a little silt detritus, it indicates 

lithology of the Middle Bakken formation is mainly dolomite and mudstone which can be 

characterized as a tight reservoir with low porosity and low permeability. The content of 

organic matter is low, it proves that the Middle Bakken layer is the main reservoir in 

Bakken Formation. Micropores are not developed well in organic matter, which in turn 

fully developed in interlamellar clay minerals. The microfractures hardly found in this area. 

The comparably good roundness of the particle and the particle size are smaller than 

0.06mm but larger than 0.03mm. The structures of the particles is mainly grain structure 

and argillaceous structure. 

Chapter Ⅳ presented a numerical compositional model in combination with the EDFM 

method to simulate CO2 Huff-n-Puff in the tight oil reservoir with hydraulic fractures. This 

model is proper to be used in any unconventional tight oil reservoirs, not only Bakken. The 

fluid and gas properties, hydraulic fracture, model size and historical production data are 
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accurately considered. The fluid compositional model is validated through history 

matching with actual Middle Bakken tight oil. The effects of different CO2 Huff-n-Puff 

parameters and CO2 molecular diffusivity on the CO2 Huff-n-Puff effectiveness were 

examined. The following conclusions can be drawn from this study: 

1. The EDFM method has the same accuracy as the traditional LGR method for 

simulating the Middle Bakken tight oil reservoir, but the LGR method will take 

about 1.76 times of running time than the EDFM method.  

2. The model and fluid properties used in this study are similar to the actual field case. 

There is an excellent agreement between historical production data and this 

simulation results. Both field model and section models can match the actual 

historical data. 

3. With each case study, the history matching process was conducted first. With the 

good history match, the reservoir and fluid properties are incredibly close to the 

real case which means that the simulation study can be considered with the actual 

condition. So this study is meaningful for practical purposes to use as reference. 

4. The case with 200 Mscf/day CO2 injection rate, 50 injection days and 14 soaking 

days for each cycle, with three cycles at the 500th day, 2000th day and 4000th day, 

has the highest cumulative oil production that the recovery factor can reach 5.9%. 

The CO2 molecular diffusion for this case is also the highest one which is 0.1 cm2/s. 

5. Each case study with CO2 Huff-n-Puff process has a positive effect on improved 

oil recovery factor, only the case with CO2 molecular diffusion as 0.001 cm2/s has 

a negative effect. This phenomenon means that with the bad solubility, the gas 



 

  

- 78 - 

 

injection will not help to produce more oil. So the gas with lousy solubility will not 

be helpful for EOR process. 

6. In this CO2 Huff-n-Puff study, the contribution of each CO2 Huff-n-Puff parameters 

to cumulative oil production after 7000 days can be ranked as sequence: CO2 

diffusivity (extremely), number of cycle (moderate extremely), CO2 injection time 

(moderate), CO2 injection rate (moderate slight), CO2 soaking time (slight). 

7. A good numerical tool (EDFM) is proposed in this study which can be used for the 

CO2 Huff-n-Puff simulation in the tight oil reservoir with multiple hydraulic 

fractures more effective and faster. 

Chapter Ⅴ investigated the influence of surfactant on EOR. Depending on the amount of 

surfactant adsorbed to the rock surface, the wettability of the rock can be altered to varying 

degrees by changing the relative permeability and capillary pressure. The Langmuir-type 

isotherm curve was used to describe the surfactant adsorption. A numerical chemical 

flooding model (CMG-STARS) in combination with the EDFM method was proposed to 

simulate the surfactant flooding in tight oil reservoirs with hydraulic fractures. This model 

can not only be used in the Middle Bakken formation, but also in other unconventional 

tight oil reservoirs. The surfactant and fluid properties, wettability alteration, optimal 

model size, and historical production data were accurately considered. The fluid 

compositional model was validated through history matching with actual Middle Bakken 

tight oil. The effects of different surfactant Huff-n-Puff parameters and surfactant 

adsorption parameters on the surfactant Huff-n-Puff effectiveness were examined. The 

following conclusions can be made from this study: 
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1. The model and fluid properties used in this study are similar to the actual field case, 

and the grid size is also optimized by a grid sensitivity analysis. An excellent 

agreement achieved between the historical production data and the simulation 

results. Both field model and sector models can match the actual historical data. 

2. The effect of surfactant EOR was simulated by considering the IFT reduction and 

the rock wettability alteration from oil-wet to water-wet according to the Langmuir-

type isotherm curve of the adsorption of the surfactant concentration. 

3. A surfactant effectiveness verification was conducted before the sensitivity studies, 

and an actual production process was conducted at the beginning of each sensitivity 

case study. With the effective surfactant flooding and good history match, the 

reservoir and fluid properties are incredibly close to the real case which means that 

the simulation study can be considered with the actual production process. 

Therefore, this surfactant flooding study is meaningful for practical workers to use 

for reference. 

4. The case with three surfactant Huff-n-Puff cycles has the highest cumulative oil 

production that the percentage of recovery increase over the primary recovery can 

reach 25.2% and also for the case with the highest surfactant concentration which 

can reach 19.4% of the percentage of recovery increase over the primary recovery. 

Both of them have a high surfactant injection. Therefore, the amount of surfactant 

injected into the reservoir is the key to increasing production. 

5. In this surfactant Huff-n-Puff study, the contribution of each surfactant Huff-n-Puff 

parameter to cumulative oil production after 7,000 days can be ranked into two 

groups: 1. The number of surfactant Huff-n-Puff cycles and surfactant 



 

  

- 80 - 

 

concentration. 2. Surfactant adsorption, injection time, soaking time, and injection 

rate. The parameters in the first group have more substantial effect on EOR, and 

the parameters on the other group only have a lighter effect. 

6. EDFM method proposed in this study can simulate the wettability alteration and 

surfactant Huff-n-Puff process in the tight oil reservoirs with multiple hydraulic in 

a more straightforward and fast way. 
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