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ABSTRACT 

The common development plan for operators in the Williston Basin has been to initially 

drill and complete one well in order to hold a 1280 acre spacing unit.  Once acreage is secure 

across the asset, operators return to each spacing unit and drill infill wells.  By the time infill 

wells are drilled, reservoir depletion from the original (parent) well can be observed within the 

spacing unit.  Reservoir depletion increases the likelihood of existing wells experiencing inter- 

communication when infill wells are hydraulically fractured.  Such inter-well communication, or 

frac-hits, often have detrimental effects on existing wells.  As such, understanding the effect of 

well timing and spacing on overall spacing unit performance is of critical importance when 

determining an appropriate development plan. 

Rate transient analysis (RTA) is an effective way to quantify the impact of offset frac 

hits, providing changes in reservoir properties such as stimulated rock volume (SRV) and well 

productivity.  This study used pseudo normalized pressure versus material balance square root of 

time plots in order to determine the impact of offset frac hits on existing wells.  The slope of the 

superposition time plot is inversely proportional to 𝐴𝑐√𝑘  , which offers a good metric for early 

time well productivity and completion effectiveness.  Superposition time plots were created, and  

a production lookback was performed on 71 operated wells in northern Divide County, North 

Dakota.  Changes observed in reservoir properties and production performance were used to 

determine appropriate well spacing and infill timing.  
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In addition, this study conducted a look back economic evaluation for 71 wells and 15 

spacing units, using current commodity pricing, to assess the investment efficiencies of each 

project.  Results from rate transient analysis, production analysis, and the economic evolution 

indicate that 5 – 6 wells is the optimal wells spacing per 1280 acre spacing unit within the study 

area.  
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CHAPTER I 

INTRODUCTION 

Background 

Over the last decade, oil and gas operators have moved in earnest to establish lease 

positions in unconventional plays such as the Bakken.  This typically involves drilling and 

completing the minimum number of wells in a spacing unit required to secure leases.  During 

the initial development phase, operators may also wish to delineate their acreage in order to 

assess reservoir characteristics and geologic variability.  Once leases are secure, additional 

wells are drilled and completed, in order to fully develop spacing units.  Depending on acreage 

size and available capital, the initial development phase may span 1 – 3 years.  Infill wells 

generally consist of multi-well pads with high well density.  Tighter well spacing results in 

inter-well interference due to fracture hits (“frac-hits”).  Frac-hits occur when a hydraulic 

connection is established between stimulated rock volumes (SRV) of an existing well and a 

newly completed well.  This event can often be observed on existing wells by: sudden pressure 

spikes, increase in water cut, and loss in production (oil and gas).  Additionally, an increase in 

pump failure rate due to sand has been observed in the study area post offset frac.  Three 

different mechanisms are thought to cause frac-hits: depleted zones, changing stress fields, and 

high permeability lithofacies (Lawal, 2013).  While frac-hits have occasionally been observed 

to have a positive impact (i.e., increase in SRV), the impact is usually negative, as is the case 

for all examples in this study.  In low permeability plays, a high density of development wells is 
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required to effectively drain the resource – which make frac hits an inevitability.  As a 

generality, the industry has identified that tighter spaced wells fractured using more water and 

sand are producing more gross oil, but field data indicates that incremental production per frac 

is decreasing (Rassenfoss, 2017).  Understanding the characteristics and mechanistic behavior 

of offset fracs is vital when optimizing well spacing, development timing, and completion 

design.  

Mukherjee et al. (1995) explained that pore pressure depletion causes changes to stress 

gradients in the drainage area of old producers with higher stresses near the drainage boundary 

and lower stresses around the fracture surface.  This causes fractures from infill wells to 

preferentially extend towards the depleted zone due to reduced closure stress in that direction 

(Mata et al., 2014).  Roussel et al. (2013) discussed the importance of infill timing as it relates 

to stress reversal.  He determined a window of 1.1 years exists, after the initial well is 

completed, before the direction of maximum horizontal stress in the infill region begins to shift 

from the transverse direction.  Beyond this time frame, fractures gradually turn to orient parallel 

to the infill well, which increases the likelihood of longitudinal fractures and lower SRVs.   

Kurtoglu et al. (2015) demonstrated that decline curve analysis can be used to determine 

the impact of frac hits on pre and post frac hit estimated ultimate recovery (EUR).  Rate 

Transient Analysis (RTA) is more robust than decline curve analysis as it provides an 

understanding of the flow regimes and incorporates flowing pressure data, in addition to 

assistance in determining key parameters such as fracture area, fracture half-length, and matrix 

permeability.  Lawal et al. (2014) explained that the main driving force in producing tight 

unconventional formations is the combined parameter of fracture area and square root of 

reservoir permeability (𝐴𝑐√𝐾 ).  Any apparent increase or decrease in this metric can be used to 
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quantify the impact of a frac hit.  

Purpose and Objectives 

The purpose of this study is to determine the impact of infill wells on current producing 

wells as a function of distance, completion design, and timing in the Bakken and Three Forks 

Formations, in northwestern Divide County, North Dakota.  The ultimate goal of this study is to 

provide guidance for optimal spacing unit development, as it applies to SM Energy’s 

undeveloped acreage in Divide County.  The objectives of the study are to: (1) conduct a 

production look back on operated wells in order to quantify changes in pre/post frac EUR, 

water cut, and GOR, (2) model well bottom-hole pressure to develop accurate depletion trends 

and reservoir flow regimes based on well vintage, (3) construct and analyze superposition – 

time plots (rate-transient analysis) in order to determine the impact of offset frac hits, and (4) 

analyze SM Energy spacing unit tests and development timing to determine their economic 

efficiency. 

Area of Study 

SM Energy’s current asset holdings in the Williston Basin are comprised of 120,830 net 

acres across Divide County, in northwestern North Dakota.  The study area spans the northern 

portion of this acreage, internally referred to as “Gooseneck”.  This area covers 21 1280 acre 

spacing units and includes 81 producing wells in northern Divide County, abutting the Canadian 

border.  In 2009, SM Energy acquired acreage in McKenzie County, which included the 

Gooseneck acreage in Divide County. Historically, hydrocarbon production in this region was 

attributed to conventional wells targeting the Duperow Formation.   

Around this time, some operators were beginning to test unconventional, short lateral 

(640 acre) Three Forks wells. The only potential associated with the newly acquired acreage was 
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assumed to be in the Three Forks Formation.  In 2007 operators in the Williston Basin began 

testing multi-stage fracs, which were initially thought to be uneconomic due to longer expected 

hydraulic frac pump times and operating costs.  In response to this issue, service companies 

provided lower cost alternatives for completions, such as sliding sleeves, which eventually 

became the new industry standard.  From 2010 – 2013, SM Energy developed the Three Forks 

Formation by drilling one well per 1280 acre spacing unit (~10,000’ laterals) and applying an 

open-hole, sliding sleeve completion design.  These 10,000’ laterals were double that of other 

companies in the area during this time period (640 acres, ~5,000’ laterals).  In 2013, operators in 

the area tested the Middle Bakken.  Test results showed produced water cuts were much lower 

than SM Energy’s original saturation model predicted at the time.   

 
Figure 1. Gooseneck Study Area. 
 

Based on these observations, in 2014 SM Energy commenced drilling wells targeting the 

Middle Bakken in Divide County.  In addition, Bakken and Three Forks cores were pulled on 
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two wells (one in Gooseneck) in order to create new petrophysical and facies models.  Between 

2014 and 2015, the industry shifted away from the Open Hole Sleeve Multi-Stage System 

(OHMS) to a cemented liner Plug-and-Perf (P-n-P) design, which many operators consider the 

completion standard in the Williston Basin.  

Regional Geologic Overview 

The Williston Basin is a structural and sedimentary basin extending over 51,600 square 

miles over North Dakota, South Dakota, Montana, Saskatchewan, and Manitoba. Sedimentary 

rock thickness is greater than 15,000 feet at basin center and represents every geologic period of 

Phanerozoic time (Dumonceaux, 1982).  Basin development may have been influenced by the 

north-south-trending Precambrian Superior and Churchill geologic province boundary that 

extends through central North Dakota into Manitoba.  This boundary delineated the hinge line 

for the eastern part of the Williston Basin.  

Basin sedimentation is characterized by cyclical transgressions and regressions with the 

repeated deposition of carbonates and clastics.  Paleozoic strata are dominated by carbonates, 

whereas Mesozoic and Cenozoic strata consists mainly of clastic rocks (LeFever et al., 1991). 

During the Early Ordovician, the basin began to subside, causing a major transgressive event 

which was eventually broken during the Devonian by uplift.  This uplift, due to movement 

along the transcontinental Arch, caused the Williston Basin to tilt northward, connecting it to 

the Elk point basin (Gerhard et al., 1982).  During this time, depositional environments were 

predominately shallow marine. Subtitdal and intertidal environments developed in the basin 

center, with sabkha deposits present along the basin margin (Gerhard et al., 1982).  A 

reorientation of the seaways occurred again during the Mississippian when the basin opened to 

the west through the central Montana Trough. Terrestrial, marginal marine, and evaporate 
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sediments are represented by Pennsylvanian through Triassic strata during the Jurassic and 

Cretaceous periods (LeFever et al., 1991).  

 
Figure 2. Arial extent of the Williston Basin (from Pitman et al., 2001). 
 

A major angular unconformity separates the Paleozoic from the Mesozoic, representing 

one or more periods of erosion that occurred from Late Mississippian to Early Jurassic time 

(LeFever et al., 1991).  During this interval, Paleozoic strata in the northeastern part of the basin 

were uplifted and differentially eroded, while strata in the southern portion of the basin were 

relatively unaffected. Successively older Paleozoic strata were progressively truncated toward 

the basin margin (Dumonceaux, 1982).  Deposition resumed during Mesozoic time, when a 

thick sequence of Jurassic and Cretaceous strata were deposited on the eroded Paleozoic surface 

(LeFever et al., 1991).  Within the Paleozoic itself, an unconformity separates Devonian and 

Mississippian strata and represents uplift and erosion, which occurred from Late Devonian to 

Early Mississippian time (Gerhard et al., 1982).  During that interval, Devonian strata were 

uplifted and exposed along the basin margins, while deposition continued in the deeper portions 

of the basin. Mississippian sediments were later deposited on the eroded Devonian surface 

(LeFever et al., 1991).   

Major hydrocarbon reserves exist within the Williston Basin, most notably the Late 

Devonian – Early Mississippian age Bakken Petroleum System.  The Bakken Petroleum System 
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is defined as the oil saturated interval stratigraphically inclusive of and adjacent to the Upper 

and Lower Bakken Shales.  It includes the Lower Lodgepole, Upper Bakken, Middle Bakken, 

Lower Bakken, Pronghorn and Upper Three Forks (LeFever et al., 2011). The North Dakota 

Industrial Commission (NDIC) defines the Bakken Pool producing interval as any strata 50 feet 

above the top of the Upper Bakken Shale and 50 feet below the base of the Lower Bakken 

Shale.  

The Bakken Formation unconformably overlies the Upper Devonian Three Forks 

Formation.  The Devonian – Mississippian boundary is generally placed within the Bakken 

Formation (Peterson and MacCary, 1987).  The Bakken Formation is interpreted as deposits 

representing transgression as the Late Devonian and Early Mississippian seaway advanced 

(Gerhard et al., 1987).  The Bakken Formation is described as an organic rich, mudstone and 

sandstone unit that is continuous through the Williston Basin, with depths from 130 feet at 

basin margin to 12,000 feet at basin center near McKenzie County.  The Bakken Formation is 

comprised of three members: 1) a finely laminated, organic rich, black mudstone Lower 

Member; 2) a gray mudstone/sandstone Middle; 3) a black mudstone Upper Member with 

similar composition to the Lower Member (Smith and Bustin, 1996).  The Upper Bakken is 

overlain conformably by the argillaceous carbonate bed of the basal Lodgepole Limestone 

(Peterson and MacCay, 1987).   

The Three Forks Formation is a late Devonian shale dominated rock package above the 

Birdbear Formation of the Jefferson Group and unconformably below the Lower Bakken Shale. 

The Three Forks is the thickest in the center of the Williston Basin, where it reaches a maximum 

thickness of 270 feet in western Dunn and northeastern Billings Counties, and thins to an 

erosional zero-edge to the east and the southwest (LeFever et al., 2008).  The Three Forks 
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Formation consists of interbedded greenish-grey and reddish-brown micrite and dolomicrite with 

anhydrite nodules scattered throughout and subordinate amounts of biomicrite.  Sedimentary 

structures such as ripple cross laminations, soft sediment deformation and mudcracks suggest 

deposition occurred in a shallowing-upward, sub-tidal, nearshore, subtidal to supra-tidal 

environment (Bottjer et al., 2011).  Dumonceaux (1984) observed five lithofacies in cores from 

the Three Forks Formation in northern North Dakota. He then subdivided these lithofacies into 

three informal members: Lower Three Forks, Middle Three Forks, and Upper Three Forks.  The 

highest oil saturations are found in the upper dolomitic layer, also known as the “first bench”. 

 
Figure 3. Stratigraphic column of the Bakken and Three Forks Formation in North Dakota. 
(modified from Murphy et al., 2009). 
 

The Gooseneck study area lies on the northern margin of the Williston Basin, outside the 

overpressure zone (Figure 4).  A general pinching out of facies occurs in northern Divide 
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County. Middle Bakken thickness averages 59 feet, while the first bench of the Three Forks 

averages 9 feet.  Structurally, the top of the Middle Bakken is ~2,500’ TVD closer to ground 

elevation relative to its depth in McKenzie County. Less overburden and resulting compaction 

can be attributed to better Bakken and Three Forks rock quality in Divide County (i.e., higher 

permeability/porosity facies, lower water saturations from core).  Gooseneck average reservoir 

temperature and pressure are lower relative to basin center due to its shallower depth.  (Figure 4) 

illustrates the change in reservoir parameters between the Gooseneck area and McKenzie 

County.  

 
Figure 4. Reservoir properties from basin center to northern Divide County. (modified from SM 
Energy).  
 

Tmax values, a key indicator of hydrocarbon generation, for the Bakken Shale obtained 

from Rock-Eval pyrolysis support decreasing maturity towards the basin margin (Figure 5).  

Tmax values for the Bakken Shale are generally highest near basin center where overburden 

thickness is greatest.  LeFever et al. (1991) discussed the implication of heat flow anomalies 

which strongly affect the depth at which source rock generation may occur, allowing for kerogen 
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to convert to hydrocarbon at relatively shallower conditions.   

 
Figure 5. Pyrolysis data supports migration theory, as produced oils in Divide County have 
higher maturities than in-situ Lower Bakken Shale (modified from SM Energy). 
 

Completion Design 

The application of horizontal drilling and hydraulic fracturing in unconventional 

reservoirs over the past decade has unlocked vast hydrocarbon resources; spurring rapid 

development in plays such as the Williston Basin.  The extremely low permeability (< 0.1 md) of 

tight reservoirs requires hydraulic fracture treatments to create a conductive pathway from the 

reservoir to the wellbore.   

The first horizontal well targeting the Middle Bakken, rather than the source shale 

(Upper Bakken) was drilled in the Elm Coulee Field of Montana in 2000, applying an open-hole 

single stage completion.  The Elm Coulee development established that large volumes of oil had 

been generated in the Upper and Lower Bakken Shales and expulsed into the Middle Bakken 
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and Three Forks Formations, and that the geomechanical properties of the Middle Bakken are 

more favorable for hydraulic fracture treatment.  The Elm Coulee learnings were applied to the 

Bakken in North Dakota in 2005.  Completion design in these early wells typically involved 

single-staged fracs with 2 million pounds of proppant and 1 million gallons of cross-linked gel. 

(Nordeng et al., 2011).  According to Pearson et al. (2013), the first multi-stage frac was 

completed in the Parshall Field in 2007.  Due to positive well performance, this technology was 

applied by other operators across the basin.  A year later, the average stage count per well had 

reached ~10 stages. The average fluid treatment volumes were typically 20,000 bbls with 100 

lbs/ft of proppant (Pearson et al., 2013).  

Operated wells in Divide County are positioned in a north-south orientation to take 

advantage of induced fracture propagation in the direction of maximum stress, which has a NE 

to SW orientation across much of the basin (Sonnenberg et al., 2013) (Figure 6).  Micro-seismic 

and chemical tracer data collected in 18-19 T163N R99W display a similar trend.  

 
Figure 6. Micro-seismic and chemical tracer data (2) agrees with published data of maximum 
horizontal stress (1) (modified from Sonnenberg et al., 2013). 
 

At the inception of Gooseneck development from 2010 - 2012, SM Energy employed an 

open hole, swell packer and sliding sleeve completion design targeting the first bench of the 

Three Forks.  The sliding sleeve design is run with external packers meant to isolate different 

intervals of the wellbore.  Frac port subs with sliding sleeve tools are run between the swell 

packers.  The sliding sleeves open by dropping specifically sized actuation balls into the system, 



12 

 

which then push the injection ports open, subsequently creating a single-entry point (Figure 7).   

 
Figure 7. Wellbore schematic of open hole sliding sleeve completion design, with one entry 
point per stage. 
 

From 2012 – 2015, SM Energy progressively optimized its completion design by 

increasing the number of stages, while pumping more proppant and fluid per foot (Figure 8) – 

similar to other operators during this time (Wright et al., 2014).  The first Middle Bakken wells 

were drilled in 2014, utilizing the same completion design applied to Three Forks wells.  From 

2015 – 2016, completion design transitioned from an open hole sliding sleeve assembly to a 

cemented liner, plug and perf system.  In this design the 4-1/2” liner is cemented in the wellbore 

(Figure 9).  A perforating gun and pump-down plug are ran on wireline inside the liner. This 

allows for perforations to be shot immediately after the plug is set.  After all stages are complete, 
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coiled tubing is used to drill out the plugs.  The cemented liner, plug and perf design creates  

multiple perforation clusters per stage, resulting in a larger near-wellbore stimulated rock 

volume (SRV).  Several papers discuss the benefit and drawback of sliding sleeve versus plug 

and perf (Pearson et al., 2013; Wright et al., 2014; Rahim et al., 2015; Algadi et al., 2015).  

 

 
Figure 8. Evolution of study well completion design over time. 
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Figure 9. Wellbore schematic of typical cemented liner, plug & perf completion design, with 5 
clusters per stage. 
 

While open hole sliding sleeve and cemented liner plug and perf are the two main 

completion designs SM Energy used, it should be noted that one other design, multi-sleeve 

single ball (MSSB) system, was trialed on 6 wells from 2014 – 2015.  The MSSB system was 

tested in order to achieve the multiple entry point benefit of the plug and perf method, while 

maintaining the efficiency of a ball actuated sleeve conveyance system.  The open-hole design 

contained 17 swell packers ran on 4-1/2” liner with 51 frac port subs (3 frac ports per stage). 

Similar to the plug and perf system, the MSSB was thought to shorten fracture half-length while 

increasing the stimulated area near the wellbore.  Trial candidate wells were selected primarily 

on proximity to existing offset wells.  Performance for wells completed with the MSSB design 

significantly underperformed relative to wells completed with a standard sliding sleeve or plug 

and perf design (Figure 10).  Excluding the MSSB system, this study was unable to associate 
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well performance with a specific completion design since first generation (parent) wells tend to 

perform better than subsequent infill wells. 

 
Figure 10. Comparison of well performance by completion design, normalized to lateral foot.  
 
Table 1. Completion design parameters by generation. 

 
 

Development History 

SM Energy acquired the Gooseneck acreage in northern Divide County in 2009 and 

began drilling the minimum number of wells (one per spacing unit) required to hold acreage.  

Each well targeted the first bench of the Three Forks and held a 1280 acre spacing unit, which 

allowed for ~10,000 foot laterals.  A total of 21 parent or “first generation” wells were drilled 

and completed from late 2009 through 2012, with an average TVD of 8,071 feet.  After fracture 

treatment, the wells were immediately turned over to flowback up the 4-1/2” frac string.  Parent 
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wells typically flowed freely for 1 – 2 months, before being converted to rod lift.  Typical 

downhole production design was 2-7/8” tubing with a 2-1/4” tubing barrel pump.  In accordance 

with the North Dakota Industrial Commission (NDIC) set back requirements of 1220 feet from 

the east/west section line and 200 feet from the north/south section line, most parent wells were 

drilled 1320 feet east of the western section line.   

Starting in 2012, SM Energy began developing its first infill wells, which are referred to 

as “second generation” in this study.  The initial infill development plan called for 3 additional 

Three Forks wells, which totaled 4 Three Forks wells per spacing unit, with an average distance 

of 1,320 feet between each wellbore.  From 2012 to 2013, five units were developed with the 

spacing described above.  For each spacing unit, all 3 infill wells were completed at 

approximately the same time, utilizing an open hole sliding sleeve design.  The number of 

completion stages ranged from 20 – 26 per well, treated with 161 – 244 pounds per foot of 

proppant and 4.7 – 5.25 barrels of fluid per foot.  These wells typically flowed up the 4-1/2” 

casing for ~ 1 month before being cleaned out and converted to rod lift, with initial downhole 

production configurations similar to parent well configuration.   

As discussed in the opening remarks of this study, offset operators began testing the 

Middle Bakken directly adjacent to SME’s acreage.  Production results from the Bonneville 36-

25-163-100H (API: 33-023-00666-0000; Sec 36 T163N R100W) indicated Middle Bakken 

water cut was significantly lower (~31%) than SME’s original saturation model would have 

predicted.  Based on these observations and with the support of high commodity prices, SM 

Energy began targeting Middle Bakken wells in 2014.  In addition, two cores were sampled in 

Sec 19 T163N R100W (Gooseneck) and Sec 1 T161N R100W in order to improve the 

understanding of rock and reservoir properties across Divide County.  Down spacing was 
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applied in order to accommodate and maximize the additional Middle Bakken reserves.  This 

development plan included one Three Forks parent well, 6 infill wells, and two section line wells 

(half in each spacing unit).  Each infill well alternates between Bakken and Three Forks, with 

1320 feet between wells in the same formation, and 660 feet between adjacent wells, totaling 4 

Three Forks and 4 Bakken wells (Figure 11).  

 
Figure 11. Schematic of 8 well development plan with staggered Middle Bakken and upper 
Three Forks wells, and correlative type log.  
 

Three Forks spacing was largely based on production history and from micro-seismic 

and chemical tracer study results indicating an average fracture half-length of 550 feet.  

Appropriate Middle Bakken well spacing was assumed to be similar to that of the Three Forks, 

due to a lack of Bakken production data. Multi-well pads were utilized to reduce costs and add 

efficiency.  Second generation well pads were designed to accommodate 4 wells – two laterals in 

the northern spacing unit and two wells in the southern spacing unit.  

Initial Bakken completions were paired with a Three Forks well separated by ~ 600 feet. 
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Hydraulic fracturing was conducted one immediately after the other, and turned over to 

production at approximately the same time.  Early Middle Bakken results were positive, as 

illustrated in Figure 12. Average 6 month cumulative oil production normalized by lateral length 

was on par with Three Forks wells with similar completion design.  There was little variation 

with respect to target zone, drilling, or completion design over this time.   

 
Figure 12. Initial Middle Bakken well performance compared to Three Forks wells with similar 
completion design. 
 

However, the placement of second generation wells relative to the parent well varied 

widely.  In some spacing units, second generation wells were placed directly offset to the parent, 

while others were placed on the opposite side of the spacing unit.  Minimum distance from 

parent well to infill well ranges from 540 – 2,646 feet and the time between parent well 

completions and second generation completions is 2 – 4 years.  The implication of timing and 

distance will be discussed in detail in subsequent sections of this study.   

In 2015, based on positive results in SME’s McKenzie County acreage, and congruent 

with overall industry trends, a cemented liner, plug and perf completion design was implemented 

in Gooseneck.  The design was trialed on 6 second generation wells, then applied to 25 of 27 

third generation wells from late 2015 through 2016.  In this study, “third generation” refers to 
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wells completed after second generation wells.  These wells are defined as the second set of infill 

wells and represent full spacing unit development.  The placement of these wells within its 

respective spacing unit was dependent on the location of second generation wells relative to the 

parent.  As such, a wide variety of scenarios occurred. In general, third generation wells were 

either hydraulically fractured one immediately after the other, or simultaneously (zipper frac).  

Of the 27 third generation wells, 12 were completed at the same time as the adjacent well.  In 

some spacing units, a single third generation well was completed in between the parent and 

second generation well, while in others, 4 wells were placed between the parent and second 

generation well.  Minimum distance from a second generation well to third generation well 

varies from 460 – 3,440 feet and the time between second generation well completion and third 

generation completion is 1 – 4 years.  The time between end of completion job and when third 

generation wells were brought online varied from 1 – 10 weeks based on operational logistics. 

Third generation wells began producing with rod lift already installed. Initial production flowed 

up 3-1/2” tubing and up the 7” casing - 3-1/2” tubing annulus.  Simultaneous pumping and 

flowing (known as “flumping”) continued until the 2-3/4” tubing barrel pump capacity was 

greater than inflow from the reservoir.   

During infill development, existing wells were protected from potential pressure 

communication by “soft-setting” the rods on the seating nipple and installing a 5,000 psi rod 

BOP at surface.  The installation of rod BOPs was a proactive measure meant to prevent 

blowouts at surface, rather than provide any downhole wellbore protection.  As development 

progressed, it became apparent that the Bakken and Three Forks were communicating, 

essentially acting as one reservoir.  Evidence of communication was be observed in production 

trends on existing wells pre and post offset frac, demonstrating a decrease in EUR and an 



20 

 

increase in water cut.  Brinkerhoff et al. (2015) provided evidence of significant Lower Bakken 

Shale contribution to Three Forks wells in Divide County.  They proposed, based on a calculated 

Fracability Index, that the Lower Bakken Shale has a higher propensity to generate fracture 

surface area than many of the primary target intervals in the underlying Three Forks Formation 

within the Gooseneck area.  In addition, GeoMark conducted an isotopic “time evolution” study. 

Results demonstrate that Three Forks oils from two wells in the Gooseneck area appear to have 

picked up oil from the Middle Bakken, especially after 1 month of production.  Small variation 

in completion design for like-generation wells allows for a well performance analysis based on 

infill timing and distance.  Understanding the impact and interaction between infill wells and 

existing wells has significant implications for field development strategies. 

Methods 

For this study, a production look-back was performed on 81 operated wells in the 

Gooseneck area of northern Divide County.  All well data used in this study was internally 

sourced by SM Energy.  Daily production values were analyzed and quality controlled in order 

to provide a representative performance trend for each individual well.  Operational history was 

considered, which required cataloging various tubing and pump sizes ran, reviewing 

dynamometer reports, completion parameters, and workover job descriptions.  Reservoir data 

was compiled for 21 spacing units based on core data, petrophysical logs, and facies models 

generated by members of SME’s geoscience team.  Two pressure-temperature surveys were used 

to calculate pressure and temperature gradients.  Gas and fluid properties were compiled from 

well specific analyses.  All data was used to create bottom-hole pressure models and 

superposition time plots per well using Fekete HarmonyTM software.  Decline curves were 

applied to historical production trends using AriesTM software.  Economic scenarios were run on 
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71 individual wells and 13 spacing units in order to assess the impact of well spacing and timing. 

Superposition time plots were used to determine initial productivity, effect of offset fracs, flow 

regimes, and completion parameters. Spotfire®  was used to identify correlations and trends. 
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CHAPTER II 

RATE TRANSIENT ANALYSIS 

Applications to Unconventional Reservoirs 

The use of rate transient analysis (RTA) to evaluate well performance, including type 

curve analyses, has been discussed by Fetkovich (1980) and more recently by Blasingame et al. 

(1991) and Agarwal et al. (1999).  In contrast to conventional wells with high permeability, 

unconventional shale reservoirs typically exhibit transient flow for long periods of time.  The 

average time to end of linear flow (telf) for the 21 parent wells in this study is 1 year.  As a 

result, early assessment of reservoir properties can be challenging when using only 

conventional decline curve analysis (DCA).  During early time transient flow, RTA provides 

insight to well characteristics that otherwise might go undetected using DCA.  Transient linear 

flow occurs during the early life of a well, when the reservoir boundaries have not been felt, 

and the reservoir is said to be infinite-acting (Fekete).  The concept of linear transient flow in 

shale oil wells was introduced by Wattenbarger et al. (1998).  Of most importance for this study 

is the parameter 𝐴𝑐√𝐾, which is defined as the contacted surface area multiplied by the square 

root of the effective permeability of the contacted rock.  It can be used to determine early well 

performance and completion design effectiveness, assuming similar landing zones and geology.  

Below is the equation proposed by Wattenbarger to determine 𝐴𝑐√𝐾  under constant flowing 

bottom-hole pressure:  

Eq. 1     𝐴𝑐√𝐾 = 19.927 Bm √ 𝜇∅𝑐𝑡 
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As discussed by Belyadi et al. (2015), a plot of normalized pressure, with 
(𝑝𝑖)−(𝑝𝑤𝑓)q  on 

the y-axis – where q is oil rate, ppi and ppwf are initial pressure and flowing pressure, versus 

square root of time on the x-axis is shown in Figure 13.   

 
Figure 13. Normalized Pressure versus Square Root of Time 
 

Transient flow is characterized by a half-slope on a log-log plot of oil rate versus time 

and as a straight line on the square root-time plot.  The plot can be used to determine m. In 

Equation 1, Ø is the porosity, µ is oil viscosity, ct is total compressibility, B is formation volume 

factor. The slope of the line is inversely proportional to 𝐴𝑐√𝐾 .  As such, as the slope of the line 

increases, 𝐴𝑐√𝐾 decreases.   

It should be noted that the linear flow study outlined above assumes constant rate and/or 

constant pressure. In practice, variable production rate and pressure occur.  Specialized plots are 
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used to analyze linear flow when both rate and pressure vary.  The classic way to deal with 

variable rate is to use superposition time.  As described by Fekete, superposition is a 

mathematical tool that allows use of simple solutions (such as constant rates) to produce 

complex ones (such as variable rates).  So, a rate that changes from q1 at time t to a new rate q2  

is equivalent to q1 continuing forever, superposed, or added on (q1 – q2) starting at time t and 

continuing forever.  To help illustrate this concept, Liang et al. (2013) provided the following 

example:  A well is flowing in a multi-rate situation in Figure 14a.  The total pressure drop (ΔP) 

at time t3 can be expressed as follows:  

ΔP = pressure drop from the well due to q1 throughout the entire flow period (flow time = t3) 

+ pressure drop from the well producing at (q2 – q1), beginning at time t1 (flow time = t3 – t1) 

+ pressure drop from the well producing at (q3 – q2), starting at the time t2 (flow time = t3 – t2) 

 

Figure 14b illustrates that the total pressure drop is given by: 

Eq.2      ΔP = ΔP1 + ΔP2 + ΔP3   

 

 
Figure 14. a) multi-rate flow; b) pressure response due to different rates (from Liang et al., 
2013).  
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In unconventional reservoirs, two superposition time functions are commonly used in 

production analysis: linear superposition time (used for transient linear flow) and material 

balance time (used after pressure transient has reached all reservoir boundaries).  Both 

superposition time functions can effectively convert variable rates to their equivalent constant 

rate solutions.  Therefore, the plot of  
𝑝𝑖−𝑝𝑤𝑓q   versus linear superposition time or square root of 

material balance time results in a straight line, the slope of which (m) can be used to calculate 𝑥𝑓√𝐾 (Fekete), where: 

Eq. 3      4 ∗ ℎ ∗ 𝑥𝑓√𝑘 =  19.927 𝐵𝑚  √ 𝑢∅ 𝑐𝑡   

 

In the equation above, 𝑥𝑓 is fracture half-length and k is the effective permeability. In 

practice only one supposition time plot is used to analyze variable rate data, despite the 

likelihood that more than one flow regime is present during analysis.  

Fekete provides a basic theory behind material balance time.  Type curves published by 

Fetkovich (1980) are applicable to wells that produce at a constant bottom-hole pressure. 

However, nearly all wells experience a decline in bottom-hole pressure during their life.  In 

order to account for this reality, Blasingame et al. (1991) developed a time-function that allows 

for the matching of production rate data on Fetkovich type curves, even when flowing pressure 

is varying. After developing different time functions, they came up with a simple function 

called material time balance.  This function can be applied to wells that experience a smooth 

change in bottom-hole pressure, which is often the case. Blasingame et al. (1991) and Agarwal 

et al. (1999) also demonstrated that using material balance time converts the constant pressure 

solution into the constant rate solution, which is widely used in the field.  Material balance time 
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is defined as the ratio of cumulative production to instantaneous rate: 

Eq. 2       𝑡𝑐 = Qq 

tc represents a corrected time based on cumulative production.  It is the value of time that a well 

would have to flow at the current rate in order to produce the same amount of fluid, conserving 

the material balance principle.  

 
Figure 15. On graph A, at time (𝑡1) the cumulative production is (𝑄1). The rate, (𝑞) at that time 
is used in Graph B and is assumed to be constant.  The time taken in Graph B for the well to 
flow at the constant rate to get the same cumulative production as in Graph A, is (𝑡𝑐1) or 
material balance time.  Graphs C and D demonstrate the same principle, using a different time 
(𝑡2) and the corresponding material balance time (𝑡𝑐2). (from Fekete).  
 

Liang et al. (2011) discussed the drawbacks of each function and concluded that of the 

two, material balance time provides the better interpretation when analyzing multiple flow 

regimes.  They reasoned that material balance time gives a half-slope straight line during 

transient flow, as well as a unit-slope straight line during boundary dominated flow (BDF).  In 
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other words, material balance time keeps the characteristic shapes of both flow regimes.  Using 

normalized pressure versus material balance square root of time plot, 𝐴𝑐√𝑘  is related to 𝑥𝑓√𝑘  

as follows: 

Eq. 4      4 ∗ ℎ ∗ 𝑥𝑓√𝑘 ≈  𝐴𝑐√𝑘       

Since reservoir properties such as drainage area, fracture half-length, and fracture conductivity 

are challenging to estimate before a well reaches BDF, 𝐴𝑐√𝑘  offers a good metric for early 

time well productivity and completion effectiveness.  In addition, this metric aides in 

quantifying the change in SRV before and after a frac hit occurs (Liang, 2017).   

Multi-Stage Horizontal Frac Flow Regimes 

Luo et al. (2010) identified five unique flow regimes for multi-stage fractured horizontal 

wells (MFHW). However, the most commonly observed flow regimes include: early transient 

(unsteady), late transient, and boundary dominated (pseudo steady).  Typically, MFHW 

experience transient linear flow for long periods of time (Al-Ahmadi, 2010).  During periods of 

transient flow, reservoir boundaries have not yet been felt.  The size of the reservoir has no 

effect on well performance, and is essentially infinite-acting (Fekete).  During periods of 

transient flow, 𝐴𝑐√𝑘 , which is inversely proportional to the slope of the straight line, can be 

obtained from the superposition time plot.  Transient flow demonstrates a unit ½ slope on a 

normalized rate versus material balance time log-log plot.  Late liner flow is the period of time 

that separates the transient state from the steady or pseudo-steady state.  This can be interpreted 

as the time when parts of the well drainage radius has reached some parts of the reservoir 

boundaries (Belyadi, 2015).  Boundary dominated flow (BDF), is diagnosed when pressure 

transient has reached all of the boundaries and the static pressure is declining at the boundary, 

although not evenly across the reservoir (Fekete).  BDF is typical of late time flow behavior 
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when the reservoir is in a state of pseudo equilibrium.  It is represented by an upwards departure 

from linear trend, in a curved fashion, on the superposition time plot and can be characterized 

on the log-log plot as a unit slope.  Figure 16 illustrates characteristics of the aforementioned 

flow regimes on the superposition time and log-log plots. 

 
Figure 16. Flow regime identification using the log-log and superposition plots. 
 

Analytical Model 

Stalgorova and Mattar (2012) presented an analytical model to simulate the flow rate 

and pressures of horizontal wells with branch fractures, rather than simplistic bi-wing fractures. 

This model takes into account three linear flow regimes: flow within the fracture itself towards 

the well (early), flow within the stimulated region towards the fracture, and flow within the un-

stimulated region towards the stimulated region (Figure 17).  The enhanced frac region model 

(EFRM) is a rectangular reservoir model consisting of a non-contributing horizontal well and 

transverse fractures.  The model assumes that all the fractures have the same length and 

conductivity, and are spaced uniformly along the horizontal wellbore (Fekete).  It also assumes 

the reservoir is a single layer system that is homogeneous and isotropic with single porosity and 

uniform thickness, and fluid flow in the formation and fracture in laminar.  Each fracture is 
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surrounded by a high permeability region (𝐾1), representing the area of stimulated reservoir 

volume (𝐴𝑆𝑅𝑉) while the remaining reservoir has a lower permeability (𝐾2), representing 

matrix permeability.  The authors state that contribution from the region beyond the fractures is 

negligible.  

 
Figure 17. EFR model with enhanced areas of permeability. (modified from Stalgorova and 
Mattar, 2012). 
 

Reservoir properties were entered into the model, along with parameters determined 

from the superposition time plot.  Only points of calculated pressure were selected, as the 

software runs linear iterations between points. Iterations were run on 𝐾1, 𝐾2, 𝑋𝐼 (distance from 

fracture to permeability boundary).  Reservoir width (𝑌𝑒) was adjusted until original oil in place 

(OOIP) matched the value determined from the flowing material balance plot, and until a 

representative trend was created.  Due to the variability in production rate history across the 

study area, it was not feasible (Figure 18) to apply the analytical EFR model to every well.  

When applicable, the model was used to history match bottom-hole pressure and rates.  
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Resulting model reservoir parameters such as 𝑥𝑓, 𝐴𝑆𝑅𝑉 , and  𝐾𝑚 were compared to values 

obtained from the superposition time plot, in order to ensure accuracy. 

 
Figure 18. Analytical EFR Model history match. Circles denote pressure derived from well 
fluid levels while producing. Red box demonstrates parameters model iterations are run on. 
Inset figure demonstrates the difficulty in history matching wells that have experienced frac 
hits. 
 

Methods for Rate Transient Analysis 

Historical daily production data (oil, water, gas, casing and tubing pressure) was 

gathered for the 81 Gooseneck wells in this study.  For each well, daily history was analyzed 

and any erroneous data such as negative or zero values was removed, in order to provide an 

accurate depiction of well performance over time.  Wellbore profiles were built in Harmony 

using deviation surveys, casing data, tubing data, and perforation interval.  Various tubing sizes, 

tubing depths, and lift methods have implications when attempting to calculate flowing bottom-

hole pressure (FBHP) within the software.  Pressure and temperature gradients were calculated 

from two pressure/ temperature surveys performed in the Gooseneck area and used to determine 
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reservoir conditions unique to each well’s mid-perf total vertical depth (TVD).  Fluid and gas 

properties were gathered from analyses across the field.  Geologic parameters, based on log, 

core, and petrophysical models created in-house, were obtained for each spacing unit. Matrix 

permeability values were taken from a Gooseneck core sample.  Based on the evidence of inter-

formational communication previously discussed in this study, the sum thickness of Upper 

Bakken, Middle Bakken, Lower Bakken, and the first bench of the Three Forks was used as 

reservoir height.  Saturation and effective porosity values were averaged for the Middle Bakken 

and first bench of the Three Forks. 

Table 2. Harmony input parameters.  

 
 

Bottom Hole Pressure Analysis 

Access to accurate bottom-hole pressure data is arguably the most crucial part of 

performing rate transient analysis.  However, while real-time BHP gauges are common in high-

rate conventional reservoirs, they are much less common in onshore unconventional plays.  

Scott et al. (2015) discussed the benefits of using real-time BHP for well interference 

evaluation, artificial lift optimization, and fracture network characterization.  In the absence of 
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real-time BHP gauges, one must rely on surface pressures and multiphase pressure drop 

correlations when attempting to infer downhole conditions.  Numerous multiphase pressure loss 

models have been published, both empirical and mechanistic (Beggs & Brill, 1973; Duns & 

Ross,1963; Aziz  & Govier, 1972; Hagedorn & Brown, 1965), and can provide reasonable 

approximations under naturally flowing well conditions.  This study used the Hagedorn and 

Brown correlation, modified for the bubble flow regime (Economides et al., 1994), for wells 

with flowing conditions.  Ruiz et al. (2014) evaluated the accuracy of 7 multi-phase pressure 

drop correlations by comparing predicted pressure drop to lab measured pressure drop.  Their 

statistical analysis determined that the modified Hagedorn and Brown correlation had the best 

performance in predicting pressure drop.  Generally speaking, this only applies to first 

generation (parent) wells.  The period of free flow for these wells ranges from 1 – 2 months.  

Although this empirical correlation was derived from vertical well tests, Harmony software 

calculates pressure drops for horizontal and inclined flow.  The software uses only the vertical 

depth to calculate pressure loss due to hydrostatic head, and the entire pipe length to calculate 

friction.  If bubble flow exists, the Griffith correlation is used to calculate the in-situ volume 

fraction (Fekete).  

Once artificial lift is installed, the variability of rate, pressure, and fluid column height 

in the annulus make the use of multiphase pressure drop correlations unreliable (Scott et al, 

2015).  Of the 81 wells included in this study, only 8 had downhole gauges at some point in 

their life.  Of these 8 well, only one had pressure gauges ran to mid-perf TVD (actual reservoir 

conditions).  These gauges did not transmit live data, rather the recorded pressure and 

temperature information was only accessible after the tubing was pulled.  However, in a look 

back scenario such as this, these recordings provide invaluable insight into dynamic reservoir 
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conditions.  Figure 19 compares actual BHP gauge data from a Gooseneck well to three multi-

phase pressure drop correlations over the same time period and clearly demonstrates the need 

for an alternative approximation for BHP when utilizing artificial lift. 

 
Figure 19. Comparison of multi-phase pressure drop correlations with recorded BHP for a well 
on artificial lift.  
 

In Gooseneck, acoustic fluid-level measurements are periodically conducted on wells 

utilizing rod lift. In conjunction with dynamometers, these measurements provide insight to 

downhole pump conditions and performance.  Fluid level tests compute downhole pressures in 

wellbores that contain mixtures of gas and liquids.  These calculations are based on 

measurement of surface pressure, determination of the depth to fluid level, and estimation of the 

gradients of the fluid in the wellbore.  From Rowlan et al. (2011), pump intake pressure (PIP) 

can be defined as:  

Eq. 6 Pump intake pressure = casing head pressure + annular gas gradient × gas 

column height + gaseous liquid gradient × height of fluid column above pump 
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Figure 20 provides a simplistic depiction of various factors incorporated in a typical PIP 

calculation.  In normal conditions, the pump intake depth is below liquid level, allowing for gas 

to break out of solution and flow to surface via the tubing/casing annulus while oil/water is 

lifted up the tubing.  This helps prevent pump issues such as gas lock from occurring.  

 
Figure 20. Example of PIP determined from acoustic fluid level measurement. (modified from 
Rowlan et al., 2011). 
 

Based on field observations, it is reasonable to assume that a mixture of oil and water 

occupy the wellbore volume below the pump, with minimal free gas below the pump. 

Therefore, the following equation was used to calculate BHP from PIP data: 

Eq. 7    𝐵𝐻𝑃 = ((((𝑞𝑓𝑙𝑢𝑖𝑑− 𝑞𝑤𝑎𝑡𝑒𝑟)∗𝑆𝐺𝑜𝑖𝑙+ 𝑞𝑤𝑎𝑡𝑒𝑟∗ 𝑆𝐺𝑤𝑎𝑡𝑒𝑟)𝑞𝑓𝑙𝑢𝑖𝑑 ) ∗ 0.433) ∗ 

(𝑚𝑖𝑑 𝑝𝑒𝑟𝑓 𝑑𝑒𝑝𝑡ℎ − 𝑝𝑢𝑚𝑝 𝑑𝑒𝑝𝑡ℎ) + 𝑃𝐼𝑃  
 

The calculation above was applied to each fluid level measurement for each well. A 

thorough investigation of workover history was required, as pump depths varied each time a 
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tubing pull occurred.  All depths and pump intake pressures were verified.  These calculated 

pressures act as reference points over time, by which the software linearly interpolates between.  

It should be stated that the method outlined above is used as a best approximation due to 

insufficient pressure data.  Calculated BHP was plotted against actual gauge data for the one 

instance (well) where both data points were available.  On average, the three calculated BHP 

points underestimate pressure by ~ 17%, but match the overall drawdown trend well (Figure 

21).  This method proves much better than the three phase pressure drop correlations, as 

demonstrated in Figure 19.  

 
Figure 21. BHP calculated from PIP and Oil PI model applied to wells with no free flowing 
period.  
 

For some second generation wells and all third generation wells, there was no initial free 

flowing period.  These wells were generally hydraulically fractured and brought on production 

at the same time.  After laterals were cleaned out, production tubing and rods were run.  When 

initially turned on, wells pumped and flowed (“flump”) simultaneously.  In other words, fluid 

rates were greater than pump capacity, resulting in flow up both the tubing and the annulus.  

During such dynamic conditions, it is not possible to accurately measure a sonic fluid level.  
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For this reasoning, a data gap exists from the time of first production to the time the first fluid 

level was shot, which is typically 2 – 4 months.  This applies to most second generation and all 

third generation wells.  Applying pressure drop correlations under such conditions creates 

unrealistic results.  In Figure 22, the pressure profile generated using a pressure drop correlation 

shows low initial pressure and a large shift in pressure when transitioning to the BHP derived 

from fluid level.  This presented an issue, as accurate initial pressure and periods of early flow 

are crucial when attempting to determine early time well productivity and completion 

efficiency.  In order to develop a model to predict flowing pressures during this early 

“flumping” period, a study area well with downhole pressure gauges installed was evaluated.  

This well was used to develop a proxy for well productivity, initial pressure and rate of decline 

during the early flow time period, in the form of a pseudo well productivity index (Figure 21). 

Productivity index (PI) is given by: 

Eq. 4      𝑃𝐼 = 𝑞(𝑃𝑖 − 𝑃𝑤𝑓) 
For this application, 𝑞 is oil rate (bbl/d), 𝑃𝑖 is the initial pressure recording (≈ reservoir 

pressure) and 𝑃𝑤𝑓 is flowing bottom-hole pressure.  Oil PI was plotted and fit with a (power) 

curve.  This curve expression was then applied to wells with no free flowing period, in order to 

approximate the initial flowing pressure behavior of the wells where no data existed.  For each 

instance, 𝑞 is known and the ending value of  𝑃𝑤𝑓 must equal the BHP calculated from the fluid 

level.  So, the value for 𝑃𝑖 can be adjusted until the ending value for 𝑃𝑤𝑓 is equal to the first 

BHP data point.  Ideally, Oil PI models should be based on and applied to wells with similar 

properties (completion design, rate, formation, vintage, etc.).  However, this study was limited 

to one available model.  Despite its general nature, the model provided significant improvement 

over pressure drop calculations and demonstrated realistic initial pressures and early flow trends 
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as shown below. 

 
Figure 22. Superposition plot and pressure profile before and after applying oil PI model. 
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CHAPTER III 

DECLINE CURVE AND ECONOMIC ANALYSIS 

Effective development strategies require accurate predictions of production rates and 

ultimate recoverable oil.  During initial lease development, predictions for future well 

performance are based on very limited data.  Such assumptions can have significant 

implications when attempting to determine appropriate well spacing and overall project 

profitability.  Often, infill well type curves are based on parent well performance.  In addition, 

overall spacing unit economics generally don’t factor in offset frac hit detriment to current 

producing wells.  This can result in over-optimistic spacing unit performance.   

Three different methods of determining economics were applied in this study in order to 

account for the impact of frac hits.  All economic analyses were performed using Aries 

software.  In all instances, a look-back approach was taken in order to depict actual well 

performance and to assess the economic viability under current market conditions.  First, 

production history for 71 individual wells was fitted with a decline curve.  This required 

matching multiple curves over different decline rates, water cuts, and gas cuts over the life of 

each well.  The individual curves were then combined into one representative curve on a well-

by-well basis.  This allowed for pre and post frac hit analysis by providing changes in water cut, 

GOR, and EUR.  Results were incorporated with changes in 𝐴𝑐√𝑘  to provide a better 

understanding of offset frac interference.  EURs were forecasted based on the curves and used 

to identify performance trends across the study area.  

The method outlined above, while providing important insight at the well level, does not 
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illustrate the overall performance of the spacing unit.  To evaluate the economic performance 

for the full spacing unit development project, production from all wells within the unit were 

combined.  As an example, a spacing unit has 8 wells and three generations of development. 

First a decline curve was applied to the 1st generation well (parent).  Two years later, production 

from 2 – 2nd generation wells was added.  Lastly, 5 – 3rd generation wells were brought online 

two years after the 2nd generation wells.  A curve was assigned to each of the three generations 

and then combined into one overall curve (Figure 23).  A $4MM per well capital investment 

was applied, along with well costs such as LOE/WOE/overhead, at the appropriate start date.  

This method captures the net gain in production by factoring in not only the additional barrels 

from new wells, but also barrels lost due to frac hits on current producing wells.  Finally, in 

order to determine if the net gain in production was worth the capital investment, incremental 

economics were applied (Figure 24).  
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Figure 23. Combined production profile curve for entire spacing unit 
 

 
Figure 24. Incremental production gained as infill wells are added to the spacing unit. 
 

Three primary metrics were used in determining economic performance: net present 

value, rate of return, and profit to investment ratio.  The net present value (NPV) is the 

difference between the present value of cash inflows and the present value of cash outflow.  

The net present value of an investment is calculated by discounting the future net cash flows to 

time zero and summing them (Oil Property Evaluation – Thompson and Wright).  Discount 

rates help to determine the present value of future cash flows.  Discount rates vary by company.  

The risk of a project and the risk profile of a company impact which discount factor is most 

appropriate for determining the present value of future cash flows.  For this study, a discount 

rate of 15% was applied to all economic cases. 

 Rate of return (ROR) can be defined as gain or loss on an investment over a specific 
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period, expressed as percentage increase over the initial investment cost.  Gains on investment 

are considered to be any income received from the security plus real capital gains.  ROR is a 

ratio of yearly income from the investment to the original investment (Oil Property Evaluation 

– Thompson and Wright).   

Discounted profit to investment ratio (DPI) is an economic metric used to determine 

which projects are worthy of capital allocation (i.e., projects that cause the treasury to grow at 

the fastest rate).  DPI is calculated by dividing the sum of the net cash flow from a project and 

the associated investment by the sum of the investment.  A value of 1.0 is a breakeven value 

where the investment is just recovered.  

Eq. 5    𝑈𝑛𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑃𝑟𝑜𝑓𝑖𝑡 𝑡𝑜 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑖𝑜 =  (𝑁𝑒𝑡 𝐶𝑎𝑠ℎ 𝐹𝑙𝑜𝑤 +𝑁𝑒𝑡 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡)𝑁𝑒𝑡 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡  

 

In order to determine the economic performance under current market conditions, all 

cases used a fixed oil price of $60/Bbl and a fixed gas price of $3/Mscf.   

Table 3. Economic input parameters. 

 
 

The original oil in place (OOIP) was calculated for 13 spacing units, with well count per 

spacing unit ranging from 1 to 8.  This provides an overall representation of estimated reserves 

and recovery factors across the field.  Net recovery factors only include pay facies, as 
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determined by SME’s geology/geophysics team.  This excludes both the Upper and Lower 

Bakken shales from pay thickness. Table 4 includes recovered reserves to-date (cumulative), 

and recovery factors based on EURs calculated from decline curves.   

Eq. 6    𝑂𝑂𝐼𝑃 =  7758 
𝑏𝑏𝑙𝑎𝑐𝑟𝑒∙𝑓𝑡×(1−𝑆𝑤)×𝜑×𝐻×𝐴𝑟𝑒𝑎𝐵𝑜  

 

Table 4. OOIP and Recovery Factors 
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CHAPTER IV 

RESULTS AND ANALYSIS 

Multiple metrics illustrate the importance of spacing and timing when developing 

acreage.  (Figure 25) shows significant loss in production performance from 1st generation 

(parent) through 3rd generation infill wells.  The average EUR decreases by 38% from 1st 

generation to 2nd generation wells, and by 30% from 2nd generation to 3rd generation wells.  On 

average, 1st generation wells produced ~2.4 years before 2nd generation wells were brought 

online, while 2nd generation wells produced ~2 years before production from 3rd generation 

wells commenced.   

 
Figure 25. Well performance by well generation for all wells.
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Within the study area, the occurrence of reservoir depletion is demonstrated by a 

decrease in 30 day initial production rate, an increase in water cut, and an increase in GOR.  The 

time until a well reaches the end of linear flow (EOLF) decreases significantly between well 

generations, indicting smaller stimulated rock volumes, consistent with the tighter well spacing 

in the infill programs, and the interactions with the pre-existing parent wells.  The coinciding 

drop in  𝐴𝑐√𝑘   values support this assumption (Figure 26). As mentioned in Chapter 1, 

literature has shown preferential fracture growth towards areas of depletion and re-orientation of 

stress fields, resulting in higher probability of longitudinal fractures and less contacted area open 

to flow from the reservoir, which may explain the decrease in fracture half-length.  The 

overwhelming evidence of offset frac hits in Gooseneck, from Bakken and Three Forks wells, 

indicate overlapping SRVs and competition for the same barrels in most spacing units.  

 
Figure 26. Completion parameters determined from superposition time plots for all wells. 
 

 



45 

 

Another way to illustrate the effects of reservoir depletion on infill wells is to compare 

infill well performance with distance from the parent well.  Figure 27 shows that, in general, the 

performance of both 2nd and 3rd generation wells is strongly tied to their distance from the 1st 

generation well.  

 
Figure 27. Crossplot of 18 month cumulative production per lateral foot versus distance from 
parent well. Top plot is 2nd generation. Bottom plot is 3rd generation. Colored by formation. 
 

A good correlation exists between  𝐴𝑐√𝑘   normalized per lateral foot and 12 month 

cumulative BOE per lateral foot.  Cumulative production was used rather than EUR due to the 

impact of offset frac hits.  In general, 1st generation wells exhibit the highest 𝐴𝑐√𝑘   values and 

EURs, followed by 2nd generation, with 3rd generation representing the lowest values (Figure 

28.)  As expected, when the timing between completions is similar, the impact of an offset frac 

is a function of distance from existing wells.  Figure 29 demonstrates changes in EUR and water 

cut for 1st generation wells relative to distance from offset frac.  Parent wells experience a 

greater loss in EUR and a larger increase in water cut the closer an offset frac occurs.  
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Figure 28. Crossplot of Ac Root K per lateral foot versus 12 month cumulative BOE per lateral 
foot for all wells. 
 

 
Figure 29. Impact of offset frac hits on parent wells. Data excludes wells with laterals cleaned 
out post offset frac. 
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Development History and Impact of Frac Hits 

The previous section demonstrated the impact of timing and distance on infill well 

performance as it relates to reservoir depletion.  The impact of frac hits as a function of distance 

was also noted.  As discussed in Chapter 1, unique spacing unit development histories exist 

across the study area.  One of the main objectives for this study was to determine appropriate 

well spacing in the Gooseneck area.  With a variety of wells per spacing unit completed in 

different sequential order, quantification of offset frac hits and overall development efficiency 

required analysis of each spacing unit and its associated wells.  The following sections describe 

development timing, well spacing and offset frac hits per spacing unit.  Each spacing unit was 

assigned a number – from west to east and north to south (#1-21).  Each well within a spacing 

unit is numbered based on the order it was completed.  While these numbers provide some 

insight into timing, it should be noted that well generation is of more importance, as wells of like 

generation were completed at approximately the same time.  Each well generation was color 

coded with blue representing 1st generation, green being 2nd generation, and red for 3rd 

generation wells as shown in the maps below.  Each map also denotes distance between wells. 

Spacing units with 4 wells (early development plan) have a standard 1,320 foot spacing, while 

spacing units with 8 wells (full development plan) have a standard 660 foot spacing.  The 

distances listed on the maps are the minimum distance between wellbores.  These values were 

calculated in ArcGIS using a gridding process.  Only the actual laterals were considered when 

calculating minimum distances.  The section of wellbore from surface to kick off point was 

excluded.  For consistency, section line wells were assigned to one specific spacing unit. 
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Figure 30. Overview of spacing units studied and associated numbering. 
 

 
Figure 31. Spacing units 1 – 4. 
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Spacing Unit #1 (6-7-163N-100W) 

 Well 1.1 is the only well producing in spacing unit 1. A distance of 4,300 feet 

separates it from well 2.1 to the east. Production decline has remained constant over the life of 

this well, with transient flow lasting over 1 year, and an expected EUR of 410 MBO.  No offset 

interference was noted.   

 
Figure 32. Well 1.1 production performance. 
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Figure 33. Well 1.1 reservoir and completion metrics. 
 

Spacing Unit #2 (5-8-163N-100W) 

Spacing unit 2 has 3 wells, 2 Three Forks and 1 Bakken. A distance of 1,980 feet 

separates 2.1 from 2.2, and 600 feet from 2.2 to 2.3.  Wells 2.2 and 2.3 were completed at the 

same time, ~ 3 years after 2.1.  Despite being a respectable distance apart, offset frac 

communication was observed in spacing unit 2.  Well 2.1 experienced a 20 bbl/d bump in oil 

after the 2nd generation wells were completed.  The production bump lasted ~ 1 year before 

returning to its original trend.  This can be observed in the superposition time plot as the post-

frac slope initially dropping in position (positive pressure re-set), then gradually steepening 

(Figure 37).  Interestingly, well 2.2 (Bakken) has a larger 30 day IP and EUR than well 2.1. 



51 

 

 
Figure 34. Spacing unit 2 well order from west (left) to east (right) and EURs. 
 

 
Figure 35. Spacing unit 2 production performance by well. 
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Figure 36. Spacing unit 2 reservoir and completion metrics. 
 

 
Figure 37. Well 2.1 superposition time plot. 
 

Spacing Unit #3 (4-9-163N-100W) 

 Spacing unit 3 has 6 producing wells and two DUCS, spaced at 660 feet. The 2nd 

generation wells (3.3 and 3.2) were completed ~3.5 years after well 3.1, and were completed 
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directly offset of the parent well.  Wells 2.2 and 2.3 were completed at the same time as 3.2 and 

3.3.  Well 3.1 experienced a 15% loss in EUR, a 14% loss in 𝐴𝑐√𝑘  , and a 79% increase in 

water cut.  Wells 3.4, 3.5, and 3.6 were completed ~1.3 years after the 2nd generation wells ~600 

feet to the east of well 3.2.  Well communication was detected in both 3.2 and 3.3. 

Table 5. Spacing unit 3 frac hit metrics. 

 

 
Figure 38. Spacing unit 3 well order from west (left) to east (right) and EURs. 
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Figure 39. Spacing unit 3 production performance by well. 
 

 
Figure 40. Spacing unit 3 reservoir and completion metrics. 
 

 
Figure 41. Well 3.1 superposition time plot. 
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Figure 42. Well 3.1 production chart. 
 

 
Figure 43. Well 3.2 superposition time plot. 
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Figure 44. Well 3.2 production chart. 
 

 
Figure 45. Well 3.3 superposition time plot. 
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Figure 46. Well 3.3 production chart. 
 

Spacing Unit #4 (3-10-163N-100W) 

Spacing unit 4 contains 8 total wells, with 2 – 2nd generation and 5 – 3rd generation wells. 

The 2nd generation wells were completed ~3 years after the parent and are direct offsets 590 feet 

to the west. 5 – 3rd generation wells were completed 1.5 years after the 2nd generation wells – 

two were direct eastern offsets to the parent well while the other three were placed west of the 

2nd generation wells.  The impact of offset frac 4.5 on well 4.1 is artificial low, as the lateral was 

bailed on 4.1 after the offset frac.  In this instance, change in 𝐴𝑐√𝑘  provides a better metric than 

change in EUR. The lateral was also bailed on well 4.2 post offset frac.  However, this job was 

not as effective relative to the bail job performed on 4.1. 

Table 6. Spacing unit 4 frac hit metrics. 

 



58 

 

 
Figure 47. Spacing unit 4 well order from west (left) to east (right) and EURs. 
 

 
Figure 48. Spacing unit 4 production performance by well. 
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Figure 49. Spacing unit 4 reservoir and completion metrics. 
 

 
Figure 50. Well 4.1 superposition time plot. 
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Figure 51. Well 4.1 production chart. 
 

 
Figure 52. Well 4.2 superposition time plot. 
 

 
Figure 53. Well 4.2 production chart. 
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Figure 54. Well 4.3 superposition time plot. 
 

 
Figure 55. Well 4.3 production chart. 
 

Spacing Unit #5 (2-11-163N-100W) 

Spacing unit 5 has a total of 5 wells.  The first four wells were spaced at 1,320 feet, 

while the last well (5.5) was spaced at 660 feet. The 1st and 2nd generation wells are Three Forks 

and 5.5 is a Bakken well.  All 2nd generation wells were completed 1.4 years after the 1st 

generation well was brought online.  The 3rd generation well was completed 3.3 years later.  The 
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impact of 2nd generation fracs on 1st generation wells is likely artificially high.  Dynamometer 

results show a severely worn pump over this time period. In addition, no increase in water cut 

was observed on the parent well. 

 
Figure 56. Spacing units 5 & 6. 
 
Table 7 Spacing unit 5 frac hit metrics. 

 
 

 
Figure 57. Spacing unit 5 well order from west (left) to east (right) and EURs. 
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Figure 58. Spacing unit 5 production performance by well. 

 
Figure 59. Spacing unit 5 reservoir and completion metrics. 
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Figure 60. Well 5.1 superposition time plot. 
 

 
Figure 61. Well 5.1 production chart. 
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Figure 62. Well 5.2 superposition time plot. 
 

 
Figure 63. Well 5.2 production chart. 
 

Spacing Unit #6 (1-2-163N-100W) 

Spacing unit 6 contains two Three Forks wells completed 4 months apart with a 

minimum distance of 1,320 feet between.  A non-operated well was completed at the same time 

as well 6.2, 1,220 feet to the east.  No change was observed in production trends or in the 

superposition time plot for either offset frac. Spacing unit 6 illustrates the benefit of completing 

wells at or near the same time, when reservoir pressure still near virgin pressure.  The 

comparatively better well performance of 2.1 may be tied to completion design, which had 6 

additional stages, tighter stage spacing, and 12% more proppant per foot. 

 



66 

 

Figure 64. Spacing unit 6 well order from west (left) to east (right) and EURs. 
 

 
Figure 65. Spacing unit 6 production performance by well. 
 

 
Figure 66. Spacing unit 6 reservoir and completion metrics. 
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Spacing Unit #7 (18-19-163N-100W) 

Spacing unit 7 has 4 Three Forks wells spaced at 1,320 feet.  Three 2nd generation wells 

were completed ~2 years after the 1st generation well was brought online.  A minimum distance 

of 1,060 feet separate 7.1 from the closest infill well (7.3).  Infill wells were completed at the 

same time. 30 day IPs increase as distance from the parent well increases.  However, EURs are 

very similar for all infill wells.  Overall, wells in spacing units 7 and 8 perform poorly relative to 

other spacing units with similar spacing, target, and completion design.  Comparing 1st 

generation wells from spacing unit 5 to spacing unit 7, the 30 day IP for well 7.1 was 30% lower 

than 5.1 and the 6 month water cut was 4% higher than 5.1.  Based on these comparisons, 

geology seems to be the main negative production variation driver in spacing unit 7.  When 2nd 

generation wells were completed, well 7.1 experienced a 29% loss in EUR, no change in water 

cut, and a 26% reduction in 𝐴𝑐√𝑘 . 

 
Figure 67. Spacing units 7, 8 & 9. 



68 

 

 
Figure 68. Spacing unit 7 well order from west (left) to east (right) and EURs. 
 

 
Figure 69. Spacing unit 7 production performance by well. 
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Figure 70. Spacing unit 7 reservoir and completion metrics. 
 

 
Figure 71. Well 7.1 superposition time plot. 
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Figure 72. Well 7.1 production chart. 
 

Spacing Unit #8 (17-20-163N-100W) 

Spacing unit 8 development is similar to spacing unit 7. The unit contains 4 Three Forks 

wells spaced at 1,320 feet.  The 1st generation well (8.1) started producing ~2 years before 2nd 

generation wells were added.  Wells 8.2, 8.3, and 8.4 were completed at the same time as wells 

7.2, 7.3, and 7.4.  The minimum distance from the parent to the western 2nd generation wells is 

1,900 feet and 1,080 feet to the eastern wells.  As mentioned above, this area has poor geology 

relative to the rest of the Gooseneck area, as demonstrated by higher initial water cut and lower 

30 day IP.  Three Forks net pay is ~8% lower than in spacing unit 5.  Well performance for 2nd 

generation wells increases away from the parent well, again demonstrating the impacts of 

reservoir depletion.  Well 8.1 experienced an initial bump in production after the infill wells 

were completed.  The lateral was bailed, and minimal sand was encountered.  However, the 

decline rate increased ~6 months after the offset fracs.  The well experienced a 28% decrease in 



71 

 

EUR, a 15% increase in water cut, and a 14% decrease in 𝐴𝑐√𝑘 .  Production performance is 

best in the far eastern well (8.4).  The outperformance of well 8.4 relative to 8.1 demonstrates 

effective enhancement in completion design (assuming geology is the same).  Well 8.4 has 6 

additional stages and tighter stage spacing.  Well 9.2 was completed 2 years after well 8.4, 2,877 

feet to the east. However, no communication was observed. 

 
Figure 73. Spacing unit 8 well order from west (left) to east (right) and EURs. 
 

 
Figure 74. Spacing unit 8 production performance by well. 
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Figure 75. Spacing unit 8 reservoir and completion metrics. 
 

 
Figure 76. Well 8.1 superposition time plot. 
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Figure 77. Well 8.1 production chart. 
 

Spacing Unit #9 (16-21-163N-100W) 

Spacing unit 9 is comprised of 5 producing wells and 3 drilled but not completed (DUC) 

wells. Wells are spaced at 660 feet.  Two 2nd generation wells were placed directly offset of the 

parent well.  These wells were completed ~4 years after the parent, with a minimum distance of 

580 feet between the parent and closest 2nd generation well.  Two 3rd generation wells were 

completed directly offset to the east of the parent well two years after the 2nd generation wells 

were complete.  When wells 9.2 and 9.3 were completed, the parent well experienced a 24% loss 

in EUR, a 45% increase in water cut, and a 40% decrease in 𝐴𝑐√𝑘 .  When the 2nd generation 

wells were completed, the parent well lost 9% EUR, gained 24% in water cut, and lost 33% in 

EUR.  The impact of 3rd generation offset fracs on well 9.2 and 9.3 could not be accurately 

determined. This well was completed using an MSSB design.  As noted earlier, these wells 

perform poorly compared to plug and perf or sliding sleeve designs.  Both 9.2 and 9.3 were shut 

in and drill protected 3 months after initial production.  Infill wells were drilled ~800 feet to the 

west of well 9.2.  When returned to production, both wells experienced a sharp decrease in oil 

production.  These wells have experienced major solids issues and erratic production.  Also, 
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initial fluid levels measurements were not recorded for one year, making superposition time 

plots unreliable.  Of interest is that offset drilling had such a significant impact on 2nd generation 

wells.  This indicates that significant depletion occurred between well 9.1 and 8.4 (2,800 feet). 

 
Figure 78. Spacing unit 9 well order from west (left) to east (right) and EURs. 
 

 
Figure 79. Spacing unit 9 production performance by well. 
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Figure 80. Spacing unit 9 reservoir and completion metrics. 
 

 
Figure 81. Well 9.1 superposition time plot. 
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Figure 82. Well 9.1 production chart. 
 

Spacing Unit #10 (15-22-163N-100W) 

 Spacing unit 10 has 8 wells, 4 Bakken and 4 Three Forks, spaced at 660 feet.  Two 2nd 

generation wells were placed in the middle of the spacing unit, ~ 1,180 feet east of the parent 

well.  Approximately two years later, 5 – 3rd generation wells were completed, with 3 wells 460 

feet (closest) east of well 10.2, 1 well 780 feet west of the parent, and 1 well in between the 

parent and 2nd generation well.  As expected, the 3rd generation well completed between the 

parent and 2nd generation well is the poorest performer, with the highest water cut and GOR, and 

lowest EUR.  An enhanced completion design was tested on well 10.3 (Three Forks).  A total of 

20% more fluid per foot and 130% more proppant per foot were applied, relative to typical 2nd 

generation completion designs.  Interestingly, well 10.3 significantly underperformed its offset 

Bakken counterpart (10.2).  The 30 day IP for well 10.3 was 60% lower than 10.2, its 12 month 

cumulative per lateral foot was 44% lower, and water cut 16% higher.  Although well 10.2 is 

closer to the parent well, these metrics demonstrate that larger fracs don’t always yield more 

reserves.  The higher water cut on 10.3 is likely a combination of fractures extending down into 

the second bench of the Three Forks, and SRV overlap with the parent well.  
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Figure 83. Spacing units 10 – 13. 
 
Table 8. Spacing unit 10 frac hit metrics. 

 

 
Figure 84. Spacing unit 10 well order from west (left) to east (right) and EURs. 
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Figure 85. Spacing unit 10 production performance by well. 
 

 
Figure 86. Spacing unit 10 reservoir and completion metrics. 
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Figure 87. Well 10.1 superposition time plot. 
 

 
Figure 88. Well 10.1 production chart. 
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Figure 89. Well 10.2 superposition time plot. 
 

 
Figure 90. Well 10.2 production chart. 
 

 
Figure 91. Well 10.3 superposition time plot. 
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Figure 92. Well 10.3 production chart. 
 

Spacing Unit #11 (14-23-163N-100W) 

Spacing unit 11 has 8 wells, 4 Bakken and 4 Three Forks, spaced at 660 feet. Two 2nd 

generation wells were completed 3 years after the parent well.  Wells 11.2 and 11.3 were placed 

on the opposite side of the spacing unit, ~3,000 feet east of the parent well.  Approximately one 

year later, 4 – 3rd generation wells were completed in between the western most 2nd generation 

well (11.2) and the parent well.  The last well was completed 6 months later, and placed 640 feet 

west of the parent well.  No communication was detected between the parent and second 

generation wells, indicating pressure depletion had not propagated the eastern portion of the 

spacing unit.  The 30 day IP for well 11.2 was only 12% less than well 11.1.  In contrast, 2nd 

generation wells completed directly offset of a parent well experienced a ~ 50% reduction in 30 

day IP relative to the parent.  During completion operations on well 11.3, the liner parted.  

Complications have resulted in poor well performance.  The lateral was bailed on well 11.2 after 

3rd generation offset fracs.  Wells 11.6 and 11.8 were completed 6 months apart. Since parent 

well production was still erratic from the 11.6 offset frac, the impact of the 11.8 frac hit on 11.1 

was not able to be determined. 
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Table 9. Spacing unit 11 frac hit metrics. 

 
 

 
Figure 93. Spacing unit 11 well order from west (left) to east (right) and EURs. 
 

 
Figure 94. Spacing unit 11 production performance by well. 
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Figure 95. Spacing unit 11 reservoir and completion metrics. 
 

 
Figure 96. Well 11.1 superposition time plot. 
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Figure 97. Well 11.1 production chart. 
 

 
Figure 98. Well 11.2 superposition time plot. 
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Figure 99. Well 11.2 production chart. 
 

Spacing Unit #12 (13-24-163N-100W) 

Spacing unit 12 contains 2 Three Forks wells separated by 3,400 feet.  Well 12.2 lies on 

the eastern section line, and was completed 5.5 years after well 12.1.  No communication was 

observed between the two wells.  The western section line well (11.3) is 1,300 feet away from 

well 12.1, and was completed 3.5 years after the parent well.  A corresponding frac hit was 

observed, with a 7% loss in EUR, a 19% decrease in 𝐴𝑐√𝑘 , and a 35% increase in water cut.  

The parent well received an initial bump in oil rate before eventually returning to normal trend. 

 
Figure 100. Spacing unit 12 well order from west (left) to east (right) and EURs. 
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Figure 101. Spacing unit 12 production performance by well. 
 

 
Figure 102. Spacing unit 12 reservoir and completion metrics. 
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Figure 103. Well 12.1 superposition time plot. 
 

 
Figure 104. Well 12.1 production chart. 
 

Spacing Unit #13 (18-19-163N-99W) 

Spacing unit 13 includes 5 total wells, 4 Three Forks and 1 Bakken.  Wells 13.1, 13.2 

and 13.5 are spaced at 660 feet, while wells 13.4 and 13.4 are spaced at 1,320 feet.  All three 2nd 

generation wells were completed 2 years after the parent well, with the closest offset being 640 

feet east of the parent well.  Well 13.5 was completed 4 years later, directly offset to the parent 

well.  Well 13.5 was completed at the same time as the western section well (12.3). All 3rd 

generation wells show strong well performance.  Well 13.3 had a higher 30 day IP than the 

parent well and a comparable EUR, once again demonstrating the benefits of a larger completion 
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design in areas without reservoir depletion.  Well 13.1 experienced less of a frac hit from well 

13.5 than from 13.2, despite being completed nearly 6 years after the parent.  In addition, well 

13.2 experienced a positive frac hit from well 3.5. 

Table 10. Spacing unit 13 frac hit metrics. 

 
 

 
Figure 105. Spacing unit 13 well order from west (left) to east (right) and EURs. 
 

 
Figure 106. Spacing unit 13 production performance by well. 
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Figure 107. Spacing unit 13 reservoir and completion metrics. 
 

 
Figure 108. Well 13.1 superposition time plot. 
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Figure 109. Well 13.1 production chart. 
 

 
Figure 110. Well 13.2 superposition time plot. 
 

 
Figure 111. Well 13.2 production chart. 
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Spacing Unit #14 (17-20-163N-99W) 

Spacing unit 14 contains just one producing well, and 4 DUCs.  Well 14.1 utilized an 

open hole, 10 stage sleeve completion design.  Production decline has remained consistent over 

the life of this well.  The nearest offset is well 13.3, which is located 2,040 feet to the west. This 

well was completed 2 years after well 14.1.  Despite the distance, minor communication was 

observed between the two wells, with a 6% loss in EUR, a 10% reduction in 𝐴𝑐√𝑘 , and no 

change in water cut.  

 
Figure 112. Spacing units 14 & 15. 
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Figure 113. Spacing unit 14 production performance by well. 
 

 
Figure 114. Spacing unit 14 reservoir and completion metrics. 
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Spacing Unit #15 (16-21-163N-99W) 

Spacing unit 15 consists of 3 producing wells, 2 Three Forks and 1 Bakken, and 5 DUCS. 

The wells are spaced at 660 feet.  The two 2nd generation wells directly offset the parent well to 

the east.  Well 5.3 was completed using an MSSB design.  These wells were completed 3 years 

after the parent well.  Since the offset fracs, the parent well has experienced severe sand issues. 

Wells 15.3 and 15.3 have had heavy sand issues since they were brought online.  Accurate 

assessment of the offset frac was not feasible due to extremely erratic production.  The lateral 

was bailed on well 15.1 after the offset fracs.  The lateral was also bailed on well 15.2, but 

neither job provided any benefit. 

 

Figure 115. Spacing unit 15 well order from west (left) to east (right) and EURs. 
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Figure 116. Spacing unit 15 production performance by well. 
 

 

Figure 117. Spacing unit 15 reservoir and completion metrics. 
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Figure 118. Well 15.1 production chart. 
 

Spacing Unit #16 & 17 (28-33 & 27-34-163N-100W) 

Spacing units 16 and 17 each have one spacing unit.  As such, they have not experienced any 

offset well communication.  Decline curves have remained steady over the duration of their 

production history. 

 
Figure 119.  Spacing units 16 – 18. 
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Figure 120. Well 16.1 production performance. 
 

 
Figure 121. Well 16.1 reservoir and completion metrics. 
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Figure 122. Well 17.1 production performance. 
 

 
Figure 123. Well 17.1 reservoir and completion metrics. 
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Spacing Unit #18 (16-21-163N-100W) 

Spacing unit 18 contains 7 producing wells, 4 Three Forks and 3 Bakken, spaced at 660 

feet.  The parent well is located on the far western side of the spacing unit, and is unbounded to 

the west.  Two 2nd generation wells were added 4 years later, on the far eastern side of the 

spacing unit.  Although separated by 2,650 feet, minor communication was observed on the 

parent well when the 2nd generation wells were completed.  Four 3rd generation wells were 

completed one year after the 2nd generation wells.  These wells were placed between the 1st and 

2nd generation wells.  The 30 day IP of well 18.2 nearly double that of the parent well, and also 

has the highest EUR in the spacing unit.  The well took a big frac hit during 3rd generation 

completions.  The lateral was bailed, but EUR remained 45% lower than its pre frac level.  

Similar to well 10.3 in spacing unit 10, a larger frac design was trialed on well 18.3, using 100% 

more fluid per foot and 170% more proppant per foot relative to normal 2nd generation 

completion design.  Well 18.3 had a 55% lower 30 day IP and 11% higher water cut relative to 

its direct offset (18.2), reaffirming that larger completion designs are not appropriate in 

Gooseneck.  The 3rd generation well directly offset to the parent (18.6) utilized a MSSB 

completion design.  Similar to other wells in the study area, 18.6 is the lowest performing well 

in the spacing unit.  Interestingly, despite being only 780 feet apart, very little detriment was 

observed on well 18.1 when 18.6 was completed.  The well experienced a 53% increase in water 

cut, but only a 2% decrease in EUR. This may be partially attributed to the ineffectiveness of the 

MSSB design. 

Table 11. Spacing unit 18 frac hit metrics. 

 



99 

 

 
Figure 124. Spacing unit 18 well order from west (left) to east (right) and EURs. 
 

 
Figure 125. Spacing unit 18 production performance by well. 
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Figure 126. Spacing unit 18 reservoir and completion metrics. 
 

 
Figure 127. Well 18.1 superposition time plot. 



101 

 

 
Figure 128. Well 18.1 production chart. 
 

 
Figure 129. Well 18.2 superposition time plot. 
 

 
Figure 130. Well 18.2 production chart. 



102 

 

Spacing Unit #19 (30-31-163N-99W) 

Spacing unit 19 contains 3 wells, 2 Three Forks and 1 Bakken, spaced at 660 feet.  The 

parent well produced for 6.5 years before wells 19.2 and 19.3 were completed.  The parent well 

is unbounded to the east and separated from well 19.3 by 520 feet to the west.  Well 8.2 

straddles the western section line, and is 720 feet east of a non-operated Three Forks well 

completed in 2014.  Well 19.1 may have had communication with a non-op offset frac, 1,800 

feet to the west.  The well was experiencing surface and downhole issues during this time, so a 

clear determination was not possible.  But it is likely the area between the non-op well and well 

19.1 was depleted prior to wells 19.2 and 19.2 being completed.  When wells 19.2 and 19.3 were 

completed, well 19.1 experienced a 12% loss in EUR, a 79% initial gain in water cut, and a 35% 

loss in 𝐴𝑐√𝑘 .  The lateral of 19.1 was bailed immediately after the offset fracs occurred, and 

before being returned to production.  Comparing 8.2 to the well directly north (12.2), 8.2 

demonstrates a water cut that is 10% higher and a 55% lower 30 day IP.  The parent well in 

spacing unit 19 had a 30 day IP 42% lower and a water cut 40% higher than the parent well in 

spacing unit 13.  This indicates that the overall lower well performance in spacing unit 19 is 

likely a function of the geology. 

 
Figure 131. Spacing units 19 – 21. 
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Figure 132. Spacing unit 19 well order from west (left) to east (right) and EURs. 
 

 
Figure 133. Spacing unit 19 production performance by well. 
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Figure 134. Spacing unit 19 reservoir and completion metrics. 
 

 
Figure 135. Well 19.1 superposition time plot. 
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Figure 136. Well 19.1 production chart. 
 

Spacing Unit #20 (29-32-163N-99W) 

Spacing unit 20 includes one producing Three Forks well and 4 DUCs 1,800 feet to the 

east. No communication was observed during offset drilling.  Well 20.1 has had a smooth 

decline trend over its life, indicating no offset communication.  The 30 day IP was 55% lower 

and water cut 24% higher than well 14.1, which is directly north.  With similar landing zones 

and completion designs, the difference in performance can be tied to geology.  
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Figure 137. Well 20.1 production performance. 
 

 
Figure 138. Well 20.1 reservoir and completion metrics. 
 

Spacing Unit #21 (28-33-163N-99W) 

Spacing unit 21 includes 3 producing wells, 2 Three Forks and 1 Bakken, and 3 DUCs. 

The wells are spaced at 880 feet.  The 2nd generation wells were completed directly offset east of 

the parent well.  The minimum distance between 21.1 and 21.2 is 760 feet.  Well 21.1 produced 

for three years before the 2nd generation wells were completed.  Well 12.1 experienced a 32% 

loss in EUR, a 34% gain in water cut, and a 43% loss in 𝐴𝑐√𝑘 .   
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Figure 139. Spacing unit 21 well order from west (left) to east (right) and EURs. 
 

 
Figure 140. Spacing unit 21 production performance by well. 
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Figure 141. Spacing unit 21 reservoir and completion metrics. 
 

Development and Frac Hit Discussion 

The analyses above demonstrate that overall well performance is driven by spacing, 

timing, completion design, and reservoir quality.  Across the study area, most spacing units were 

completed with a similar completion design in similar reservoir quality.  As discussed in the 

previous session, examples of relatively poor geology and improper completion design were 

observed in the data set.  Areas of high water cut and low well performance occur in the west-

central and southeast portions of the study area.  Figure 142 illustrates that parent wells utilizing 

similar completions designs and targeting similar intervals have higher water cuts and perform 

below average in these areas.   

As mentioned in Chapter 1, wells with MSSB systems perform significantly lower than 

wells completed using standard sliding sleeves or cemented liner, plug and perf designs.  Wells 

completed with an MSSB system have a 32% lower 12 month oil cumulative per lateral foot and 
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a 50% lower MBOE EUR compared with the two main completion types used in the field 

(Figure 143).  

 
Figure 142. First generation 12 month cumulative BO per lateral foot and 6 month water cut. 
 

 
Figure 143. Completion design performance comparison for 2nd generation wells. 
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As demonstrated in spacing unit 8, well performance enhancement can be achieved via 

completion design, by applying more stages and closer stage spacing.  Wells 8.1 and 8.4 used 

similar proppant and fluid volumes per foot, and were drilled in the same target zone.  Well 8.4 

was completed on the far eastern side of the spacing unit, and is assumed to be outside the extent 

of depletion caused by well 8.1.  Well 8.4 was completed with 26 stages with an average spacing 

of 386 feet per stage.  By comparison, well 8.1 was completed with 20 stages at an average 

spacing of 506 feet per stage.  The enhanced design of 8.4 resulted in a 40% increase in SRV, a 

16% increase in 12 month cumulative oil and a 28% increase in 30 month cumulative oil (Figure 

144).  

 
Figure 144. Completion design performance by generation. 
 

The data indicates that more stages with tighter spacing correlates with enhanced well 

performance.  Research has also shown that more proppant and fluid per lateral foot results in 

better well performance (Pearson et al., 2013).  However, most research done on this subject 

pertains to overpressure environments towards basin center, with thicker target formations.  This 

study demonstrates that in thinner areas of relatively low pressure (Gooseneck) or depletion, high 
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fluid and sand volumes are actually detrimental to well performance.  Figure 145 depicts wells 

completed with a “large frac” compared to the standard 2nd generation design.  All wells in this 

comparison are 2nd generation Three Forks wells completed with the same number of stages.  The 

design was trialed on wells 10.3 and 18.3, with 195% more proppant per foot and 80% more fluid 

per foot relative to standard completion design.  On average, 12 month cumulative oil per lateral 

foot was 19% lower and water cut was 8% higher for wells that were treated with larger volumes.  

These findings demonstrate that more work is needed to optimize completion designs in areas of 

depletion, low pressure, and thin lateral targets.  

 
Figure 145. Proppant and fluid volume compared to well performance for 2nd generation Three 
Forks wells. 
 

The magnitude of frac hits is a function of both time and distance. Ideally, all wells 

within a spacing unit would be completed at the same time, when reservoir pressure is at or 

close to virgin conditions.  The importance of infill timing is exemplified by parent wells 6.1 

and 14.1.  Well 6.1 is seperated from well 6.2 by 1,320 feet.  Well 6.2 was completed 134 days 

after 6.1, with no observable communication between the Three Forks wells.  Well 14.1 was 
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offset by well 13.3 ~2 years after Well 14.1 first produced. The Three Forks wells are seperated 

by 2,040 feet.  Well 14.1 experinced a 6.5% decrease in EUR and a 10% loss in 𝐴𝑐√𝑘   after 

13.3 was completed, despite being further away than well 6.1 relative to its offset (Figure 146).   

 
Figure 146. Comparison of offset well distance and timing. 
 

Generally, completing all wells in a spacing unit simultaneously is not realistic. 

Assuming that well count and timing between infill completion is the same, what implications 

does completion order have on well performance?  Figure 141 compares well performance by 

generation for two different well placement patterns.  Spacing units 4 and 10 were development 

in an inside-out pattern, where 2nd generation wells were completed directly adjacent to the 

parent well, then  3rd generation wells were completed on either side of the existing wells.  

Spacing units 11 and 18 were developed from the outside in, with 2nd generation wells 

completed on the opposite side of the spacing unit relative to the parent, and 3rd generation wells 

filling the gap between the existing wells.  Results show that, 30 day IPs for 2nd generation wells 

developed in an outside-in pattern are 60% higher and EURs are 108% better.  This seems 
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logical given that less depletion occurs further away from the parent well.  The 3rd generation 

wells have varying results, with 30 day IPs being 17% higher, while EURs are 23% lower 

(Figure 147).  By the time 3rd generation wells are added to a spacing unit applying the outside-

in approach, its resonable to assume that signifiacnt depletion has occurred between the parent 

and 2nd generation wells.  When four 3rd generation wells are completed at the same time in a 

low pressure environment its likely a large, interconnected SRV is created, explaining the bigger 

30 day IP.  However, overtime, these fractures can isolate from one another, and/or compete for 

the same reserves.  Whereas 3rd generation wells completed in an inside-out order step out away 

from the area of depletion (existing wells).  With reservoir pressure closer to original conditons, 

fracture growth will have a better chance of proppagating in a transverse manner. 

 
Figure 147. Comparison of spacing unit development order. 
 
 



114 

 

Optimal Well Spacing 

 SM Energy initiated the 8 well per spacing unit development plan at a time when 

commodity prices were high and well performance data limited.  As such, little was understood 

about the interaction between Bakken and Three Forks, the effects of reservoir depletion on 

infill well performance, and the impact of frac hits on existing wells.  Now that sufficient 

production histories exists, an accurate depiction of overall spacing unit performance and 

economic efficiency can be determined.  

 Comparing SME’s current development plan of 8 wells spaced at 660 feet to spacing 

units with 5 wells (4 wells spaced at 1,320 feet; 1 at 660 feet), it is obvious that efficiencies are 

lost by adding more wells.  On average, EURs for 2nd generation wells are 61% higher and the 

area of SRV is 41% larger for spacing units with 5 wells versus spacing units with 8 wells. 

Despite being spaced at 660 feet, 3rd generation wells also exhibit higher EURs (14%) and larger 

SRVs (30%) as shown in Figure 148.  It should be noted that the time between 1st generation and 

2nd generation completion was much shorter for spacing units with 5 wells (~1.5 years) than for 

spacing units with 8 wells (~3 years).  While it is true that more wells equate to higher recovery 

factors (Figure 149), the comparison between these two different spacing methods indicate the 

need for a more thorough analysis. Recovery factor outliers in Figure 149 (3 & 7) can be 

attributed to inefficient completion design or offset frac interference. 
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Figure 148. Comparison of spacing unit well performance by generation, EUR and SRV. 
 

 
Figure 149. Recovery Factor by number of wells in spacing unit. 
 

In low commodity price environments, understanding incremental economics is crucial 

when determining which projects capital should be allocated towards.  For example, when 

evaluating economics for an additional infill well, loss of production due to the offset frac hit 

should be factored into the net gain.  Without such insights, investment metrics may be inflated, 
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resulting in unfavorable real returns relative to prediction.  As mentioned earlier in the chapter, 

all economics were run assuming present day pricing.  A look-back approch was used to account 

for actual well performance, timing, and net gains in production.  Both DPI and present worth 

indicate that the point of diminshing returns occurs after 5 wells per spacing unit.  While all 

spacing units shown in Figure 150 demostrate a DPI greater than 1, these metrics should be 

juxtaposed with well performance histories in order to make the best business and engineering 

decision.  It should be noted that only one spacing unit with 6 wells exists in the data set. Wells 

within the unit are spaced at 660 feet, likely resulting in artificially low metrics. 

 
Figure 150. Top graph is DPI15 and well count by spacing unit. Bottom graph is average 
spacing unit DPI by number of wells in spacing unit. 
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Figure 151. Top graph is Present Worth discounted at 15% and well count by spacing unit. 
Bottom graph is average spacing unit PW15 by number of wells in spacing unit. 
 

Figure 152 provides further support for larger spacing and shorter time duration between 

parent and 2nd generation completions.  The figure shows the incremental production gain when 

adding 2nd generation wells compared to the distance from the parent well.  A general trend can 

be observed for wells spaced at 600 feet – the greater the distance from the parent well, the 

larger the net production gain.  Wells added further away from the parent are not hindered by 

reservoir depletion. In addition, the impact of frac hits on the parent well are diminished.  The 

two outliers on this chart represent spacing units with wells spaced at 1,320 feet, with the time 

between 1st and 2nd generation being much shorter. 
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Figure 152. Incremental production gain from 2nd generation wells by spacing unit and distance 
from parent well. 
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CHAPTER V 

CONCLUSIONS AND RECCOMENDATIONS 

Conclusions derived from this study are as follows: 

1. Frac-hit magnitude is a function of distance and time.  

2. Well interference was observed between wells up to 2,600 feet apart.  

3. Up to 50% loss in EUR has occurred due to frac-hits. 

4. Wells with MSSB completion design have poor performance compared to 

standard sliding sleeve and plug and perf designs.  MSSB wells have more sand 

issues and have higher failure rates compared to field average. 

 
5. More stages and closer stage spacing creates larger SRV and better well 

performance in areas of non-depletion. 

 
6. In the study area, a maximum proppant and fluid volume loading exists, beyond 

which, further increases did not result in incremental well performance gains.  

 

7. A strong correlation exists between early time 𝐴𝑐√𝑘  and well performance. 
 

8. EURs decreased by 38% from 1st to 2nd generation wells, and by 30% from 2nd to 

3rd generation wells. Reservoir depletion is the main driver for this loss in 

productivity. 

 

9. The average time to end of linear flow is: 1st generation = 289 days; 2nd 

generation = 153 days; 3rd generation = 83 days.  

 

10. The average area of stimulated rock volume is = 1st generation = 134 acres; 2nd 

generation = 80 acres; 3rd generation = 43 acres.  

 

11. Three Forks water cut is highest in the west-central and southeast of the study 

area. 
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12. The optimal number of wells per spacing unit in Gooseneck is 5 – 6 with an inter-

well spacing of 1,320 – 880 feet, assuming $60/Bbl, $3/Mscf and $4MM D&C 

investment per well.  

 

 

The following reccomendations are based on observations from this study: 

1. Perform DFIT tests on representative DUC well in area of suspected depletion to 

gather pertinent reservoir data. 

 

2. Data obtained from DFIT tests should be used to optimize future infill 

completion designs. 

 

3. Create look-back frac models and use in conjunction with rate-transient analysis. 

 

4. Perform micro-seismic and tracer study on infill well in order to better 

understand fracture distribution and direction of propagation. This will provide 

insight into the effects of pressure depletion and connectivity between the Bakken 

and Three Forks. 

 

5. Run live downhole pressure recording device on infill well so that data can be 

used for earlier determination of completion efficiency using rate-transient 

analysis. Findings will allow for completion optimization on future wells. 

 

6. Collect PVT recombination sample to ensure oil and gas properties in internal 

models are correct. 
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