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ABSTRACT 

In the oil industry, after the wellbore is drilled into a reservoir, oil and gas will flow into the bore 

hole and can be transported to the earth’s surface through tubing. Multiphase flow will take place 

in the pipe. Flow regime has a significant influence on production. For example, the slug flow will 

cause a huge pressure-drop in the surface system and can even cause a shut-down of the well. 

Therefore, it is important to test two-phase upwards flow in the pipe. 

Different kinds of characteristics are used to distinguish between different kinds of flow patterns. 

I introduce the development of flow pattern and some methods which were applied to select and 

determine essential parameters, such as volume fluxes rate, fluid density, viscosity, and surface 

tension to classify flow regime. The pressure change in the vertical tube is a summation of three 

factors: friction and liquid-gas interface, gravity, acceleration changing. And making an explain 

of the pressure drop in sucker rod pumping systems, friction force due to the movement of the 

plunger and the rod, buoyant force, and gravity force are including in the model. 

In order to test flow regime changing and pressure-drop in two-phase upwards flow. I created a 

two-phase flow loop experiment, and choose to use different diameter tubes to have a comparison. 

The water and air flow velocities range from 0.01 to 20 m/s and 0.05 to 10 m/s, separately. I also 

set up a model in Ansys-Fluent to simulate the pressure drop and flow regime change in the test 

tube. With the comparison of the simulation result and the real experiment. The pressure-drop 

depends on both the diameter changing and water/air inlet superficial velocities, both of the results 

are coincide. 
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CHAPTER  

I. INTRODUCTION 

Two-phase flow in wellbore 

Flow pattern has a significant influence in petroleum industry. Most of the wells 

were thousands of feet away from the surface. Before the oil arrives at the surface, it will 

go through different kinds of pattern which could result in different pressure drops.  

With a large number of experiments, scholars have already concluded four kinds of 

flow regimes which are widely acknowledged: bubble flow, slug flow, churn flow, and 

annular flow. The flow patterns are easily recognized by visual inspection. As the 

technology is developed, many people began to use different parameters to get their own 

flow maps, like volume fluxes rate, fluid density, viscosity, and surface tension. There are 

many kinds of methods to distinguish flow patterns. However, from bubble flow to slug 

flow we still do not know the exact boundary. I introduce the development of flow pattern 

and some methods which were applied to select and determine essential parameters to 

classify flow regime. Some scholars have found when the void fraction between 0.25-0.3, 

bubbles begin to coalesce with each other and Taylor bubble emerges which is the 

prerequisite for the transition from bubble flow to slug flow. In testing the boundary of the 

pattern system from bubble flow to slug flow, the transition from bubble flow to slug flow 

was determined by the progress of bubble agglomeration and coalescence or break up.  I 

follow other experiments in using multiple diameter tubes with air-water system to test the
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boundary of the pattern system from bubble flow to slug flow. The regime become unstable 

when approaching the boundary and this instability finally causes a transition to another 

flow pattern. 

The Development of Flow pattern map 

The Baker’s map (Baker, 1954) [1] is one of the most widely used maps. In Baker 

map, they used the λ and ψ parameters to take into account the properties of different gases 

and liquids. 

X-axes:                                                                                      (1.1) 

Y-axes:                                                                                             (1.2) 

                                                                                                  (1.3) 

                                                                                                 (1.4) 

                                                                                                 (1.5) 

                                                                                                 (1.6) 

where: 

 : Superficial tension of the water 

: The dynamic viscosity of water 

, : Density of gas and liquid respectively  

Golan and Stenning (Golan and Stenning, 1969) [2] presented their vertical 

downward flow map and upward flow map based on an air-water system test tube with the 

length of 3 m and 3.81 cm in diameter. They simply used the superficial velocities as 

coordinates. 
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Shell (Shell Company, 2007) [3] has created a map for transportation of 

combustibles. This map based on the data of gas and liquid Froude number also is 

determine by diameter of the pipe and the fluid velocity. The pipe diameter is 500 mm. 

Gas Froude number:                                         (1.7) 

Liquid Froude number:                                     (1.8) 

Superficial velocity of gas:                                  (1.9) 

Superficial velocity of liquid:                               (1.10) 

where: 

D: The inner diameter of the pipeline 

Oshinowo-Charles (Oshinowo and Charles, 1974) [4] describe the flow patterns 

depend on the volumetric flow rate. The length of test tube they used is 5.273m and the 

diameter is 2.54cm. 

Properties used in the experiment: 

                                                                                                          (1.11) 

                                                                                                          (1.12) 

where: 

: The volumetric flow rate of the gas 

: The volumetric flow rate of the liquid 

 The Froude number of the two phases 

: The gas and liquid superficial velocities respectively 
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Flow pattern definition for vertical flow 

For vertical flow, Hewitt and Robert’s (1969) [5] flow regime map is widely used. 

It bases on momentum flux to classify flow regime. The axes are superficial momentum 

fluxes which calculate by product of phase density and the square of the superficial velocity 

(volumetric flow rate over the tube cross-section area). This map is useful in all water and 

air system over a range of pressures in small diameters. The drawback of this map is when 

in heated tube, it is impossible to know true content of the particular phase and it also has 

some uncertainty near regime boundary because of the precision of calculation. So this 

method could be only used as a general guide rather an exact indication. 

 

Figure 1 Flow regime map (Hewitt and Robert’s (1969)) [5] 
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Figure 2 Vertical Flow regime map of Dukler and Taitel [6] 

 

Figure 3 Flow Pattern in Vertical Upwards Flow (Weisman, J. Two-phase flow patterns) [7] 
 



6 
 

 Bubble flow: In two-phase flow, when there are a lot of small bubbles 

dispersed in a continuum of liquid, the deformable bubbles keep moving 

and complex interactions take place between liquid and bubbles. 

 Slug flow: Slug flow sometimes also is called plug flow. With the bubbles 

moving upwards to a certain height, bubble agglomeration and coalescence 

happened. Once the bubbles diameter is the same with the tube inner-

diameter the large bubbles will separate the liquids. The bubbles shaped like 

a bullet we call it Taylor bubble, when these bubbles appear it means 

reaching the boundary between bubble flow and slug flow. The slug could 

cause pressure oscillation and result in serious problem in the production 

system of oilfield, so slug catcher is always installed to maintain system 

stability before the oil flows into the separator. 

 Churn flow: In large dimeters tube, when the velocity of gas flow increases, 

these Taylor bubbles will twist and break to form an unstable regime in the 

tube, both liquid phase and gas phase would be unstable. However, in a 

small diameters tube, the oscillation will not take place and we could 

observe a smoother transition from slug flow to churn flow. 

 Annular flow: If the gas flow velocity becomes higher the liquid phase will 

flow along with the wall of the tube which like a thin film. And the gas 

phase will flow in the center of the tube. At the same time, there are also 

some liquid drops contained in the gas phase.  
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 Mist flow: With higher flow rates and very high flow velocity, all the liquids 

becomes droplets in the gas core of annular flow. At this time, we call this 

flow regime as mist flow. 

Flow pattern definition for horizontal flow 

For horizontal flows, the classical flow regime map was proposed by Baker. This 

map is a series plots against superficial liquid and gas mass flow rate and then this chart 

was modified by Scott (1963) and Schicht(1969) to have a more accurate result. 

 

Figure 4 Flow Pattern in horizontal Flow (Conference: ASME 2017 International Mechanical Engineering 
Congress and Exposition) [8] 

 

 Stratified flow: Liquid flows at the bottom of the tube and gas flows along 

the top. 

 Wavy flow: With gas velocity gets higher in stratified flow, waves form at 

the boundary of two phase, resulting in more friction. 

 Plug flow: The character of this flow regime is bullet-shaped bubbles 

formed and moving close to the top of the tube. 
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 Slug flow: When the wave is big enough to touch the top of the tube, 

becoming closer to the gas pass and causing the pressure sudden change 

when this path closed. It is the beginning of the slug flow pattern.  

 Annular flow: This flow regime formed in a high gas flow rate, liquid 

droplet is in the core of the gas phase. And because of the influence of the 

gravity the film at the bottom is thicker than the top film. 

 Bubbly flow: Bubbles are dispersed in the cross section. When the gas flow 

rate is low, bubbles tend to flow at the top of the tube and becoming foam 

in a high rate. 

Obtaining flow pattern information 

The flow pattern is always distinguished by the observation of the flow. There are 

several technologies used to identify the necessary parameters. 

Firstly, to distinguish flow-pattern, visualization technique given by Hewitt and 

Hall Taylor (1970) [9]should be applied. High speed photography should be used for high 

velocity flow. However, because of complex light refraction the image we get is difficult 

to interpret. Generally, this problem causes people to search for a more accurate method to 

find out flow pattern. With the help of X-ray which only depends on absorption, people 

could obtain meaningful picture to interpret the fluid regime. 

Then Lopina and Friori (1967) [10]and Bergles (1969) [11] found a new method 

which used a conductance probe to measure the conductance between tip and tube wall. 

Unfortunately, the contact between needles may influence the quantity of the result. 
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Figure 5 Conductance-probe technique for evaluation of flow pattern in two-phase flow (Bergles.1969) 
[11] 

 

Jones and Zuber (1974) developed another technique using high-intensity X-ray 

beam through the flow to get the instantaneous void fraction with a detector. With the 

function of time bubble flow’s density peak appears at a low fraction, for slug flow it will 

have two peaks, for annular flow the peak appears at a high void fraction. [12] 
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Figure 6 X-ray absorption technique for determination of flow pattern (Jones and Zuber 1974) [12] 
 

Methods to detect Void fraction 

Void fraction is the fraction of volume occupied by gas phase. In two-phase flow 

regime, this parameter plays an important role to distinguish different flow patterns, and 

help us know the interfacial transport of the fluid, also effect pressure drop and heat 

transfer. Many scholars had developed a lot of methods to measure it. 

                                                               (1.13) 

                                                               (1.14) 

Mass velocities of gas and liquid phase: 

Gas phase                                                               (1.15) 

Liquid phase                                                               (1.16) 

Average density of the two-phase  
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                                                              (1.17) 

Side-tube method 

This method considered about the gravitational pressure loss and neglect the 

frictional pressure lose, acceleration pressure loss. In the experiment, they use 3.81 cm and 

5.08 cm diameters pipe and water and gas velocities are 0.01 m/s and 0.5 m/s respectively. 

The accuracy of the equation they found would be influenced by frictional force and minor 

losses (flow, pressure, or energy reduction in piping system) in pipe flow. [13] 

 

 

Figure 7 Void fraction measurement by using the side-tube method [13] 
 

                                                         (1.18) 

where 

: Void fraction in side tube 
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 : Void fraction in test tube 

: length of side-tube in vertical 

 : length of the gas phase 

Image analysis technique 

Ugandhar Puli, A.K. Rajvanshi (2012) [14] have tried to analyze the void fraction 

using a high speed camera and processing image by the software. Tomio Okawa (2006) 

[15] also use this measure to test the void fraction and test the influence by four parameters: 

nucleation site density (total number of nucleation sites diving by the total heated area) 

[16], bubble release frequency, bubble lifetime and bubble size.  

With the help of this method, we could get a reliable result and determine the void 

fraction even without the information about the fluid and fluid flow conditions.  

Conductivity probe methods 

The principle of this method is getting local time-averaged interfacial area 

concentration. And record the time interval of an interface pass a local point. Kim S [17] 

used four-sensor conductivity probe in case the bubbles’ shapes significantly vary such as 

bullet shape, and cap. This method could get three interfacial velocities from one point and 

will not limited by the bubbles shape. The limitation of this method is caused by the size 

of probe, it results in more bubbles missing the probe. 

There are also some other equations developed by scholars which is well-known to 

calculate void fraction. 
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Figure 8  Well-known void fraction correlations (Burak dibek, Hakan demir, determination of void fraction 
by image processing) [18] 

 

Liquid Superficial Velocity 

                                                       (1.19) 

Gas Superficial Velocity 

                                                       (1.20) 

Total Superficial Velocity 

                                                       (1.21) 
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 Superficial velocity of liquid 

: Superficial velocity of gas 

 Liquid velocity 

: Gas velocity 

:   Void fraction 

Slip ratio  

                                               (1.22) 

Slip velocity 

                                               (1.23) 



15 
 

CHAPTER 2 

II. PRESSURE DROP ANALYSIS IN VERTICAL PIPELINE 

Measuring the pressure change in borehole is useful to predict the production and 

makes it easier to design the downstream equipment such as separator or electric 

dehydrator.  

The pressure change in the vertical tube is a summation of three factors: friction 

and liquid-gas interface, gravity, and acceleration changing. Average void fraction is 

widely used to predict the gravitation pressure gradient terms. The acceleration term is 

negligible in homogeneous flow model.  

Scholars had already done a large amount of experiments on friction because it was 

one of the important reasons contributing to total pressure-drop. There are two models to 

calculate friction: one is a homogeneous flow model and another is a separated flow model. 

Some of the approaches are introduced  

like Lockhart-Martinelli approach (1949) [19], and Muller-Steinhagen and Heck 

correlation (1986) [20]. With literature review, the existing databases for vertical upward 

flow always use the tube diameter of nearly 25mm and the superficial liquid velocity is 

nearly 4m/s. I choose to use larger diameters tube to have a comparison. The water and air 

flow velocities range from 0.01 to 20 m/s and 0.05 to 10 m/s, separately. With different 

combination of these two phases we could get all kinds of flow regimes described by 

Govier and Aziz (1972) [21], Hewitt (1969) [22], Delhaye (1994) [23]. 

Two phase flow pressure drop is dominated by friction, acceleration and gravity. 
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                           (2.1) 

 

 

 

 

 

 

Figure 9 Force balance on element of pipe 

Single phase  

Single-phase pipe flow in vertical pipe, fluid gravity, and friction between the 

tubing wall and fluid acceleration will cause the pressure drop. For the steady flow in 

horizontal pipe, the gravity term of the pressure gradient is zero because of no change in 

the elevation and the acceleration part is also negligible. 

Momentum balance 

                (2.2) 

 

In Eq. 2.2, P is the pressure,  is the shear stress of the tube, G is . Because the 

continuity of mass, G will not change along the channel. 

After Rearranging  

Pressure force Frictional force Momentum change force Weight force 

PA 

 

Z  
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                                                         (2.3) 

Energy balance 

                        (2.4) 

                                                             (2.5) 

V: the fluid specific volume  

 

                                                   (2.6) 

dF: friction loss 

From 2.3 and 2.6 we know that: 

                                                                         (2.7) 

Two-phase flow 

Fluid behavior in multiphase flow is more complex than the single-phase flow, 

because the different density and different superficial velocity within the phases may 

separate with each other. Different velocities in the pipe could form all kinds of flow 

patterns we discussed before. 

So, understanding the basic definitions of flow regimes as well as the calculations 

of all the flow parameters like void fraction, pressure drop, and fluid velocities play an 

important role in solving multiphase flow problems. 

Two-phase flow momentum and energy balances give: 

-       (2.8) 
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In this equation, we need to know the wall shear stress ( ), surface area (S), and 

cross-sectional area (A) to calculate the frictional part which would be mentioned later and 

obtain the void fraction (  with the methods we talked before to determine the pressure 

gradient. In high flow rate conditions, friction is one of the contributors to the pressure loss. 

On the other hand, the frictional part also depends on different flow pattern in the pipe. 

Wall shear stress 

Wall shear stress is the shear stress in the layer of fluid next to the wall of the tube. 

The most well-known method to define wall shear stress is consistent that with single-

phase studies. 

                                                              (2.9) 

                                                             (2.10) 

                                              (2.11) 

where: 

: Liquid friction factor 

: Gas friction factor  

: Interfacial friction factor 

                                                              (2.10) 

 indicate different phase for laminar flow  and  is widely used, for 

turbulent flow in smooth tubes  and  is widely used. When the fluid 
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flow is between laminar and turbulent flow, friction factor can be calculated with the 

equation , which could eliminate the discontinuity in the transition. 

where: 

Re: Reynolds number given by 

                                                             (2.11) 

: the hydraulic diameter of the tube 

 : the density of the fluid  

: the mean velocity of the fluid 

 : the dynamic viscosity of the fluid 

Models for Pressure drop prediction 

For the two-phase frictional pressure drop modeling approaches, many scholars 

have developed several methods for it. Among all these methods we could divided it into 

two categories: Homogeneous flow model and Separated flow model.  

Homogeneous flow model  

It is always defined as the gas phase superficial velocity is equal to liquid phase 

superficial velocity. Then the mixture will have a certain density and mean properties, it is 

the simplest way to solve some problems.  

The fraction factor in homogeneous flow is a function of the Reynolds number: 

                                         (2.12) 

Reynolds number is defined as: 

                                          (2.13) 
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Different with Eq. 2.11 

 is the mixture viscosity 

There are some well-known equations to calculate mixture viscosity. 

McAdams et al. (1942) [24]    (2.14) 

Dukler et al. (1964) [25]           (2.15) 

Beattie and Whalley (1982) [26]              (2.16) 

 Separated flow model 

 Lockhart-Martinelli approach  

Lockhart and Martinelli (1949) [19] developed a two-phase flow pressure drop model. 

They defined a parameter (frictional multiplier) as a function of Martinelli parameter 

(X): 

Liquid phase frictional multiplier:                                            (2.16) 

Gas phase frictional mulipluer:                                           (2.17) 

 indicate the pressure gradient caused by friction. So ,  

represent the liquid and gas phase flow pressure gradient in the pipe, respectively. And the 

Martinelli parameter (X) is defined as: 

                                        (2.18)  

 Müller-Steinhagen and Heck (1986) [20] approach 
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The frictional pressure drop in two-phase fluid flow is basically known as an empirical 

interpolation and the correlation can also be used under single-phase flow conditions. 

The Müller-Steinhagen and Heck (1986) correlation is given as follows: 

                                                      (2.19) 

where  is 3 and  is given by 

                                                       (2.20) 

                                                                    (2.21) 

                                                                    (2.22) 

,    for   , 1187 

         ,   for   , 1187 

,  



22 
 

CHAPTER 3 

III.  APPLICATION OF PRESSURE DROP ANALYSIS 

In this section we designed a new model to evaluate polished rod load of sucker rod 

pumping system. Sucker rod pumps provide mechanical energy to lift oil from bottom hole 

to surface when oil wells do not have enough energy to produce the oil through natural 

flow. It is efficient, simple, easy to be operated, and can be applied to slim holes, multiple 

completions, and high-temperature and viscous oils. The disadvantages include excessive 

friction in crooked holes, solid-sensitive problems, low efficiency in gassy wells, limited 

depth, and bulky volume. The load on the rod is one of the key factors that dictate the 

maintenance frequency of pumping unit, energy consumed to lift the fluid, and the 

optimization of pumping system operating parameters. The cyclic load applied on the rod 

causes the fatigue and finally the failure of the rod if not designed properly. The rod load 

is a function of friction force, plunger acceleration/deceleration, weights of plunger, fluid 

being lifted, and sucker rods string, and the pressures above and below on plunger. 

Literature review indicates that a model to accurately calculate the load of a pumping cycle 

is highly desired. In this study, we couple the wellbore with reservoir performance to better 

analyze the dynamics of pump system, which yields more accurate results. 

Force balance during the pumping cycle is analyzed. Friction force due to the movement 

of the plunger and the rod, buoyant force, and gravity force are included in the 
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modeling. The effects of acceleration and deceleration of the plunger on rod are considered. 

The sensitivity of pumping speed is investigated. This study proposed a more general 

model comparing with former researches because more factors that affect the load applying 

on rod are included. Including the friction force due to the viscous fluid is critical to rod 

load analysis in pumping heavy oil. 

Polished Rod Load Analysis 

A complete pumping circle consists of upstroke and down-stroke. Polished rod or sucker 

rod is subject to various load in one pumping circle. Forces acting on the polished rod 

change during the upstroke and down-stroke are analyzed separately in this study. 

Basically, forces acting at any given point in sucker rod can be analyzed using similar 

principle. It is noted that the phase of fluid affects the polished rod load. In this research, 

we consider single-phase liquid well. Loads in the upstroke and down-stroke are calculated 

separately. 

In single-phase liquid well 

As shown in Fig. 9, during the upstroke, traveling valve is close while standing valve is 

open. For single phase oil production, during the upstroke forces acting on the polished rod 

include  

 Pressure beneath plunger acting on the cross-section area of the plunger 

 Weight of fluid column above plunger acting on the cross-section area of the 

plunger 

 The drag force caused by liquid slippage downward past the plunger (oil slips along 

the annulus between plunger and working barrel when plunger travels upward.) or 

friction of the plunger when contacting the working barrel. Because we assume 



24 
 

plunger does not touch the working barrel, the friction force on the plunger is 

caused by fluid-plunger friction. 

 Weight of the plunger 

 Weight of the sucker rod  

 Friction of the fluid with the tubing 

 Acceleration of sucker rod  

 Surface pressure (line pressure and restrictions) acting against the plunger during 

the upstroke 

 The upward flow velocity of fluid above plunger is almost the same as that of 

plunger/sucker rod string. Therefore, the frictional force between fluid and sucker 

rod string is negligible. 
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Figure 10 Downhole components of a sucker rod pump and the movement of standing and traveling valves 
 

Force balance in the vertical direction gives  

PR drag, tubing-fluid drag, plunger-fluid acceleration

.. .......................................................................................................................................... (3.1) 

where 

Aplunger = cross-sectional area of plunger 

Facceleration = force needed to accelerate sucker rod 

Fdrag, plunger-fluid = drag force acting on plunger caused by liquid slippage through plunger-

working barrel annulus 

Fdrag, tubing-fluid = frictional force between fluid and tubing 

(a) Plunger 
Upstroke 

(b) Plunger 
downstroke 

Tubing 

Sucker rod 

Working barrel and liner 

Traveling valve 

Plunger 

Standing valve 

Liquid slippage through 
plunger-working barrel 
annulus 

qslip 

p2 

p1 

p4 

p3 
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FPR = polished rod load 

p1 = pressure beneath plunger 

pwh = flowing wellhead pressure  

Wf = weight of fluid column above plunger 

Wp = weight of plunger 

Wr = weight of sucker rod string. 

Weights of fluid, plunger, and rod  

Weight of fluid column above plunger can be calculated by 

.. ...........................................................................................  (3.2) 

Weight of sucker rod can be calculated by 

.. .......................................................................................................................  (3.3) 

where 

Arod = cross-sectional area of sucker rod 

 = length of sucker rod, which is equal to depth to plunger 

gc = constant for unit conversion 

g = gravitational acceleration 

ρf = fluid density 

ρr= sucker rod density. 

Drag force between tubing-fluid and sucker rod-fluid  

The drag forces of the liquid applying on the tubing and sucker rod are the frictional force 

caused by tubing wall and sucker rod wall when plunger travels upward as shown in Fig. 

9. Because the fluid moves almost at the same velocity as sucker rod. The friction force is 
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negligible between sucker rod and fluid. The frictional pressure drop across the tubing-

sucker rod annulus is caused by frictional force between tubing and fluid. Following 

assumptions are made in the frictional force calculation: 

1) The flow in annulus is steady-state flow. 

2) Sucker rod is moving in the center of tubing and does not touch the tubing wall.  

3) The fluid is Newtonian.  

4) Fluid viscosity and density are constant.  

When the sucker rod (and plunger) moves with a velocity, vrod = vplunger, part of fluid 

displaced by plunger flow through wellhead to surface and the rest slips back to working 

barrel. The slippage of fluid results in the drag force on the flank of plunger. According to 

the force equilibrium, we have the following form. 

.. .................................................................................  (3.4) 

where  

= pressure above plunger 

= frictional pressure-drop for fluid production. 

The frictional pressure drop is balanced by the drag force between fluid and tubing wall. 

The calculation of frictional pressure drop depends on the flow regimes: laminar and 

turbulent. When Reynolds number is less than 2100, flow can be considered as laminar; 

otherwise, it is turbulent.  
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3.3.1 Laminar flow  

When plunger moves at a velocity, vplunger, the volume of the fluid displaced by the plunger 

is equal to sum of fluid volume flow through wellhead (or production) and slippage volume.   

.. ...................................................  (3.5) 

Expressing in rate we have 

.. ...................................................  (3.6) 

where  

Vdiaplaced by plunger = fluid volume displaced by plunger 

Vproduction = fluid volume flow through wellhead 

Vslip_upstroke = slippage volume during upstroke  

qdiaplaced by plunger = rate of fluid volume displaced by plunger 

qproduction = production rate  

qslip_upstroke = slippage rate in upstroke. 

Now we calculate the frictional pressure drop for fluid production. It is reasonable to use 

plunger velocity to approximate sucker rod and polished rod velocities. When fluid is lifted 

by the plunger, sucker rod velocity is almost the same as fluid velocity at the sucker rod 

wall. The frictional pressure drop is caused by the drag force between fluid and tubing wall. 

The annulus between sucker rod and tubing can be represented by Fig. 10(a) 
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Figure 11 Representing the annulus as a slot: (a) annulus and (b) equivalent slot 
 

For the case of laminar flow, we assume fluid velocities on tubing wall is zero and reach maximum 

on the wall of sucker rod. Now we consider a control fluid volume in the annulus, which can be 

represented by rectangular slot flow as far as the ratio of sucker rod diameter to tubing diameter 

exceeds 0.3 (Fig. 10 (b)). Now consider a rectangular slot with an area of A and height of h used 

to represent the annular flow (Fig. 11). The area and height can be expressed in diameters, which 

are  

  ....................................................................................................  (3.7) 

where 

.. ...............................................................................................................  (3.8) 

and 

.. ........................................................................................................................  (3.9) 

 

h 

Drod 

W 

Dtubing 

Dtubing 

Drod 

(b) (a) 
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Figure 12 Free body diagram for a controlled fluid volume in a slot representing sucker rod-tubing annulus 

 

We deal with a controlled fluid volume (Fig. 11) with width w and thickness y. Force 

equilibrium in vertical direction gives  

.. ...........................................................................................  (3.10) 

where 

                                                                                                                    

(3.11) 

.. .............................................................................................. ………(3.12) 

.. ......................................................................................  (3.13) 

.. ..............................................................  (3.14) 

and 
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.. ..............................................................................................  (3.15) 

where 

L = length of controlled fluid volume, for fluid above plunger, length of fluid column is 

same as sucker rod length, or the depth to plunger, ∆L=  

Drod= rod diameter  

Dtubing= tubing diameter  

= shear stress  

dL

dp f = frictional pressure gradient in annulus  

dy

d = shear stress gradient in y direction 

Substituting Eqs. 3.11 through 3.15 into Eq.3.10 yields 

.. ...........................................................................  (3.16) 

Expanding and canceling out the same terms on both sides gives 

.. ................................................................................  (3.17) 

Dividing Eq.3 17 by , we have 

.. ....................................................................................................................  (3.18) 
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Because dpf/dL is not a function of y, and τis constant in y-direction. Eq. 18 can be 

expressed in 

.. ...........................................  (3.19) 

Shear stress is a function of viscosity and shear rate 

.. ........................................................................................................  (3.20) 

where shear rate, , is 

.. ....................................................................................................................  (3.21) 

where 

= fluid viscosity  

v = fluid velocity.  

Eq.3.19 becomes 

  

or 

.. ......................................................................  (3.22) 

The flow rate q is the product of velocity v and area A. Integrating the control volume 

flow velocity throughout the interval from 0 to h we obtain total flow rate 

...............................................................................  (3.23) 
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Substituting Eq. 3.22 into 3.23 gives 

.. ...........  (3.24) 

Integrating Eq. 3.24 we have  

at
at .. ...............................................  (3.25) 

Applying the boundary conditions  

at .. ....................................................................................................  (3.26) 

and 

at .. ..........................................................................................................  (3.27) 

We have 

.. .................................................................  (3.28) 

where 

vrod = sucker rod velocity.  

The drag force between tubing wall and fluid can be calculated by 

drag, tubing-fluid

.. .................................................................................  (3.29) 
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3.3.2 Turbulent flow  

If flow in the annulus is turbulent, the drag force on the flank of the piston can be 

analyzed by employing Reynolds number and friction factor.  

 

Figure 13 Schematic of fluid flow through an annulus between sucker rod and tubing 

 

As discussed above, drag force between sucker rod and fluid is negligible. For Fig. 12, 

force balance requires that 

drag, tubing-fluid

.. .......................................................................................  (3.30) 

where 

= shear stress between tubing and fluid. 

Introducing the definition of the Fanning friction factor, f, which is the ratio of the shear 

stress on the tubular wall applied by unit volume of fluid to its kinetic energy.  

.. ..................................................................  (3.31) 

pwh p2 Dtubing Drod 

L 

vfluid 



35 
 

or 

.. .........................................................................................................  (3.32) 

where  

f = Fanning friction factor 

= average fluid velocity. 

Rearranging Eq. 3.32 yields 

.. ......................................................................................  (3.33) 

The friction factor can be calculated by Chen’s (1979) [27] equation: 

 

log log
.. ..........................................................  (3.34) 

  

where NRe is the Reynolds number, which is expressed as: 

.. ........................................................................................................  (3.35) 

where 

eD = equivalent hydraulic diameter 

ε= relative roughness.  
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The equivalent hydraulic diameter De is equal to four times the hydraulic radius, . 

.. ...................................................................................................................  (3.36) 

and the hydraulic radius is defined as the ratio of the cross-sectional area to the wetted 

perimeter of the flow channel. In this case it is 

.. ..................................................................................................  (3.37) 

where 

rH = hydraulic radius.  

Substituting Eq. 3.36 into 3.35, we have 

.. ...................................................................................  (3.38) 

Substituting Eq. 3.38 into 3.34, we have 

log log

.. .....  (3.39) 

Substituting Eq. 3.39 into 3.33, we have 
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log log

 (3.40) 

Thus, the drag force on the wall of the tubing is expressed as 

drag, tubing-fluid

log log

.....................................................................................................................................  (3.41) 

for turbulent flow in sucker rod-tubing annulus. 

Average fluid velocity can be calculated from production rate. 

Drag forces between plunger/working barrel and fluid  

Drag forces applied on plunger/working barrel by fluid flow cause frictional pressure drop 

when fluid slips.  The drag forces between plunger/working barrel and fluid can be 

calculated using equivalent slot concept as shown in Fig. 13. According to mass balance, 

the slippage rate and average slip velocity are.  

.. .....................................................  (3.42) 
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.. ..............................................................  (3.43) 

where 

= plunger diameter 

= working barrel diameter 

= plunger velocity 

= average slip velocity in upstroke. 

3.4.1 Laminar flow  

For laminar flow, following the above steps we can obtain  

.. ..............................................................  (3.44) 

where 

.. ........................................................................  (3.45) 

and 

.. ..........................................................................  (3.46) 

As mentioned above, plunger velocity can be approximated by sucker rod velocity. The 

fluid velocity and shear stress distribution in the annulus can be depicted in Fig. 13. The 

forces applied on a controlled fluid volume are also illustrated in Fig. 13.  
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Figure 14 Free body diagram for a controlled fluid volume in a slot representing plunger-working barrel 
annulus 

 

For a controlled fluid volume (Fig. 13) with width w and thickness y. Force 

equilibrium in vertical direction gives  

.. ...........................................................................................  (3.47) 

where 

.. ...............................................................................................  (3.48) 

.. ...........................................................................................................  (3.49) 

.. ...............................................................................  (3.50) 

.. .......................................................  (3.51) 

and 

.. ........................................................................................  (3.52) 
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where 

L = length of controlled fluid volume, in this case, length of fluid column is the plunger 

length, or ∆L=Lplunger 

= plunger length 

Substituting Eqs. 48 through 52 into Eq. 47 yields 

. .......................................................................  (3.53) 

Expanding and canceling out the same terms on both sides gives 

.. ...................................................................  (3.54) 

Dividing Eq. 54 by , we have 

.. ....................................................................................................................  (3.55) 

Because dpf/dL is not a function of y, Eq. 55 can be integrated with respect to y. 

Separating variables and integrating gives 

.. ...........................................................................................................  (3.56) 

where τ0 is the constant of integration that corresponds to the shear stress at y=0.  From 

the definition of shear rate, , we obtain 

.. ....................................................................................................................  (3.57) 

Combining Eq. 56 with the definition of viscosity for Newtonian fluid gives 
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.. ..................................................................................  (3.58) 

Again, separating variable and integrating yields 

.. ............................................................................................  (3.59) 

where v0 is the second constant of integration that corresponds to the fluid velocity at 

y=0.  Applying the boundary condition  

at .. ..........................................................................................................  (3.60) 

we have 

............................................................................................  (3.61) 

Similarly applying the boundary condition  

at .. ..........................................................................................................  (3.62) 

we have 

.. ............................................................................................  (3.63) 

Therefore, the constants of integration v0 and τ0 are  

.. .......................................................................................................................  (3.64) 

and 

.. ..............................................................................................................  (3.65) 

Substituting Eqs.3.64 and 3.65 into 3.59 gives 
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.. ................................................................................................  (3.66) 

The flow rate q is the product of velocity v and area A. Integrating the control volume 

flow rate throughout the interval from 0 to h we obtain total flow rate 

.. ................................  (3.67) 

Integrating Eq. 3.67 yields 

.. ............................................................................................  (3.68) 

Substituting Eqs. 3.45 and 3.46 into 3.68, we obtain  

.. ................................................................................  (3.69) 

Expressing the slippage rate in terms of the mean flow velocity and solving for the 

frictional pressure gradient gives 

.. ..............  (3.70) 

.. .................................................................................  (3.71) 

Integrating Eq.3.71 we have friction pressure drop along the annulus 

.. ...........................................  (3.72) 

The friction forces between plunger wall/working barrel and fluid can be calculated by 
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drag, plunger-fluid

.. ........................................................  (3.73) 

Average fluid slip velocity can be calculated from the difference between volume displaced 

by plunger and production rate as shown in Eq. 3.43. 

3.4.2 Turbulent flow  

Similar to the derivation of frictional force between tubing and fluid, the drag force 

between plunger/working barrel and fluid can be calculated by 

drag, plunger-fluid  

log log

.....................................................................................................................................  (3.74) 

 

Force on rod caused by acceleration 

In operation no force attributable to fluid acceleration is required. Force needed to 

accelerate the sucker rod and plunger in the upstroke can be calculated by  

acceleration .. ........................................................................................  (3.75) 

where 

a = acceleration factor 
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mp = mass of plunger  

mr = mass of sucker rod 

The acceleration factor can be calculated by (Svinos, 1983) [28] 

.. .....................................................................................................................  (3.76) 

where 

cot cot .. ....................................  (3.77) 

for constant crank angular velocity, which is normal in operation.  

and  can be calculated by 

.. ......................................................................................................  (3.78) 

.. ...........................................................................................................  (3.79) 

.. ......................................................................................  (3.80) 

.. ......................................................................................  (3.81) 

.. ...................................................................................  (3.82) 

.. .........................................................................................  (3.83) 

where 

for
for .. ........................................................................................  (3.84) 

 are the derivative of and  with respect to time. 

where 
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 = crank shaft rotation angle. 

Variables in Eqs. 3.78 through 3.84 are defined by the layout and dimension of sucker rod 

pumping system (conventional unit) as shown in Fig. 14. 

 

 

Figure 15 Geometric diagram of conventional units [29] 

 

Pressure below plunger (upward force acting on rod by fluid) 

When plunger moves up, traveling valve closes and standing valve opens. The void below 

plunger caused by the upward movement of plunger leads to the expansion of fluid and 

flow of reservoir fluid into working barrel. The pressure below plunger, p1, depends on the 

plunger velocity and reservoir capacity to refill the working barrel. The flow rate of 

reservoir fluid from bottomhole into working barrel can be calculated by choke 

performance, where port of working barrel can be treated as a choke 
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 .. ...........................................................................  (3.85) 

where 

C = choke discharge coefficient 

Astanding valve = cross-sectional area of choke (or standing valve) 

gc = unit conversion costant 

pwf = flowing bottomhole pressure 

q = flow rate from bottomhole into working barrel. 

Reservoir fluid flow rate can also be calculated by reservoir inflow performance, which is 

.. .......................................................................................................  (3.86) 

where 

J = productivity index 

pe = reservoir pressure. 

The definition of fluid compressibility gives  

.. ................................................................................................................  (3.87) 

where 

p = pressure 

V = fluid volume 

cf = fluid compressibility. 

The pressure below plunger is related to the change of volume below plunger (or plunger 

velocity) and the expansion of fluid below plunger. Fluid volume in Eq. 3.87 is the fluid 
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volume flow from bottomhole into working barrel during time interval ∆t.  Eq. 3.87 can 

be rewritten into 

.. ...................................................  (3.88) 

At the beginning of upstroke, p1 is equilibrium with flowing bottomhole pressure, or p1 = 

pwf, then Eq. 3.88 can be expressed as 

.. ............................................  (3.89) 

Solving Eqs. 3.85, 3.86, and 3.89 simultaneously one can obtain q, pwf, and p1. 

At this stage, all variables in Eq. 3.1 have been calculated. The polished rod load can be 

estimated for the upstroke. 

Companies may use tapered string to reduce polished rod load and energy consumption to 

operate pumping system. Through the proposed models, engineers can predict the possible 

failure point for rod string by analyzing load along the whole string. The proposed models 

are significant to the cyclic fatigue and failure analysis of rod in sucker rod pumping 

system. They are useful tool to design the tapered rod string to minimize the maximum rod 

load while achieving optimum rod string life.  
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CHAPTER 4 

IV. EXPERIMENT 

Experiment Design  

The two-phase flow experiment could be used to theoretically predict the flow parameters 

such as: flow rate, static pressure, and temperature. It is useful in predicting the shut-in 

pressure and in seeing the flow regime change after we shut the well. As well, the system 

could predict how the flow regime and pressure change when we reopen the valve. In this 

section, we designed an experiment of two-phase flow to study this topic.  

 

Figure 16 Experimental apparatus 
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Figure 17 Experimental apparatus in the lab 

 

Description of experiment equipment 

This experimental design consists several major components: 

 Water supply system 

 Gas supply system 

 A flow loop and test tube 

 General instrumentation 

Water supply system 

The tap water in the laboratory is filtered and then inject into the water tank which is about 

1m3. The filtered water was recirculated in the system. Water pump motor I used can be 
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wired for either 230v or 460v at 60Hz power. The flow rate of this water pump is 9480 

GPH which could make the liquid flow to the maximum of 5 m/s. 

We use the stop valve and ball valve work together to control the inlet velocity of the water. 

After I shut down the water pump in the loop, the water can go back to the water tank 

without going through the pump. The water goes through another pipe that is designed to 

bypass the water pump.  

During the experiment, water would be heated up because of the working pump. To fix 

this problem, we continuously add cold water to the top of the water tank and extract 

heated water from the bottom of the tank. 

The flow rate, inlet pressure and temperature could be monitored by the gauge installed 

on the water supply pump.  

Gas supply system 

Air was provided by a 15 HP 120Gallon two stage air compressor manufactured by 

Ingersoll Rand. The maximum flow rate is 50 CFM which makes the maximum air flow 

rate about 10m/s in the test tube. By integrating different water flow rates, we could get all 

the types of flow patterns. 

The tank to contain the air holds 120 Gallons, and is 83 inches in length and 36 inches in 

width which helps us to smooth out the flow oscillation. When the air exits the tank it 

goes through a ¾ inch pipe and a unit combines air dryer, filter and a pressure regulator. 

With the help of the dryer and filter, the contaminants from the atmosphere get eliminated, 
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and the clean and dry air could help us get a more accurate result from in the flow meter 

insertion probe of the downstream. The data will be collected by the computer over a long 

period of time. 

Test section 

The length of the test section is an important parameter for the two-phase flow 

experiment. The longer test tube means the fluid flow will become fully developed just 

like the vertical well thousands of meters away from the surface. All of the flow pattern we 

introduced before could occur in the wellbore.  

In our experiment, we use different diameters of clear PVC pipes to make the flow pattern 

visible and a 6ft length to make the fluid flow develop the fluid flow. The details of the 

tube can be found in this Table 1. 

Table 1 Test tube 

Pipe size(inch) OD(inch) Design pressure(psi) 

1'' 1.3'' 220 

2'' 2.4'' 140 

3'' 3.5'' 130 

 

There have been a lot of scholars who have performed the two-phase flow experiment to 

test the pressure drop both in horizontal and vertical pipes. 
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Table 2 Previous experimental database for two phase flow analysis 

Author 

Flow 

direction Pipe Diameter(mm) 

Gas 

rate(m/s) 

Liquid 

rate(m/s) 

Huang(1993) [30] Horizontal 50.3 3.74-6.59 3.74-6.598 

Mohamed Limayem Lamari(2001) [31] Horizontal 25.4 0.02-3.4 0.005-4.9 

Bowden and Yang(2016) [32] Horizontal 50.8 3.50-5.42 3.5-5.42 

Shiba and Yamazaki (1967) [33] Vertical 25 0.06-119 0.18-3.66 

Oshhinowo and Charles(1974) [34] Vertical 25.2 0-28.8 0.01-1.98 

Jing Zhou (2013) [35] Vertical 50.8 0.3-10.3 0.15-0.91 

  

In our study, we designed our study to use four different kinds of test tube to compare the 

flow regime and pressure drop differences between them. Also we measured the gas 

superficial velocity ranging from 0.1-9.6 m/s, and water superficial velocity ranging from 

0.1-8.2 m/s. Due to the limitation of the previous database, we have a larger range of gas 

and liquid superficial velocities and various and larger test tubes with diameters of 25.4mm, 

50.8mm, 76.2mm. 

Experiment procedure 

1. Make sure all the equipment and valves in the loop are in good condition. 

2. Run water pump to have single phase flow in the loop. 

3. Turn on air compressor and keep valves fully closed in air supply system until the air 

pressure is high enough. 

4. Open the valves and combine two phases in the mixer. 
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5. Read pressure and flow rate until the number remain steady. 

6. Close the valves in air supply system 

7. Shut down air compressor   

8. Shut down the water pump 

When we run this two-phase flow experiment, there are several points to pay more 

attention.  

[1] Close the valves on the air pipe until the air inlet pressure is higher than the water inlet 

pressure. This is to prevent the water coming into air supply system and causing 

serious problems to the air flow meter. 

[2] Use glove valve to control the flow rate and make ball valve fully opened or closed.  

[3] Open the air dryer right before we run air compressor 

[4] Shut down air compressor first, to prevent the water in the system from coming out 

from the vent on top of the loop. 

Measurements of Flow Parameters 

Air Mass Flow Rates 

The air flow meter we bought could monitor and record flow, pressure, temperature, and 

total air consumption, simultaneously. All the parameters will transfer to computer directly. 

The pressure sensor range is from 0 to 250 psi. And temperature resolution is less than 

0.1˚C.  
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Figure 18 Air flow meter [36] 
 

Water flow rates  

The water flow meter we used tests the flow rate from 20-200 GPM. To get rid of turbulent 

flow influence, we connect a 20 inch straight PVC pipe in the upstream of the turbine and 

a 10 inch straight PVC pipe in the downstream of the turbine. 

 

Figure 19 Water flow meter [37] 
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Static pressure  

 

 

Figure 20 Pressure gauge [38] 
 

The range of this gauge is from 0 to 200 psi. We use this gauge to test the water inlet 

pressure and test tube pressure drop. The display units of this gauge could be psi, bar, 

in.Hg, kpa, kg/cm2. And the resolution would be ¼% first half of range and ½% second 

half of range. The operating temperature is from -15 to 150 degrees Fahrenheit. 
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CHAPTER 5 

V. SIMULATION RESULT AND ANALYSIS 

In this section, we introduce the results from Ansys-Fluent. When combining with different 

air and water superficial velocities, all kinds of flow regimes would take place such as 

bubble flow, slug flow, churn flow, and annular flow. Also, we compare each simulation 

result with the vertical upwards flow pattern map as mentioned before. 

 

Figure 21 Gas superficial velocity 0.05 m/s, Water superficial velocity 1 m/s 
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Figure 22 Gas superficial velocity 0.05 m/s, Water superficial velocity 20 m/s 

 

Figure 23 Gas superficial velocity 0.5 m/s, Water superficial velocity 1m/s 
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Figure 24 Gas superficial velocity 0.5m/s, Water superficial velocity 20m/s 
 

 

Figure 25 Bubble flow  
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Figure 26 Gas superficial velocity 5m/s, Water superficial velocity 0.1m/s 
 

 

Figure 27 Churn flow 
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Figure 28 Gas superficial velocity 5m/s, Water superficial velocity 1m/s 
 

 
Figure 29 Taylor bubble 
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Figure 30 Slug flow 
 

 

Figure 31 Gas superficial velocity 10m/s, Water superficial velocity 0.1m/s 
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Figure 32 Gas superficial velocity 10m/s, Water superficial velocity 0.1m/s 
 

 

Figure 33 Annular flow 
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From Figure 21 to 33, we could see the phase change happening and different kinds of flow 

regime. As we know, there are three critical elements that influence flow pattern: channel 

size, orientation, and phase changing process. After testing different flow regimes by this 

two-phase model in Ansys, we found the flow pattern shown in the software is similar with 

the existing flow. 

When the gas superficial velocity is 0.5m/s, and the liquid phase superficial velocity is 

changed from 0.01 to 20 m/s, flow pattern would be bubble flow and change to dispersed 

bubbly flow with higher liquid flow velocity. Because of increasing continuous liquid 

phase superficial velocity, the bubbles could be smaller and separated with each other. 

When the gas flow rate is 10 m/s, the liquid phase flow rate changing from 0.1 to 20 m/s, 

the flow pattern is changed from churn to annular flow after 30 seconds flow upwards in 

the simulation. 

When the gas flow rate is 5 m/s, and liquid phase flow rate is 0.01~20 m/s, the slug flow 

and churn flow will take place. In this flow pattern large bubbles are separated by the liquid 

phase and the pressure oscillations within pipes happened because of slug flow. For 

example in Figures 34, 35. The pressure drop in bubble flow (gas superficial velocity of 

0.05m/s, water superficial velocity of 10 m/s) and slug flow (gas superficial velocity of 

2m/s, water superficial velocity of 1 m/s) both of these two results are tested in a 3 inch 

pipe. 
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Figure 34 Slug flow pressure drop in the center line of the pipe 

 

Figure 35 Bubble flow pressure drop in the center line of the pipe 
 



65 
 

Also, we would use these models to do further research and test effect factors of pressure 

drop in the test tube such as pipe size, water superficial velocity, gas superficial velocity, 

flow regime.  

In Ansys-fluent, we integrate water-air surface tension and use time step to simulate flow 

regime change in a period of time. 

 

Figure 36 Gas superficial velocity is 0.05 m/s 
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Figure 37 Gas superficial velocity is 0.5 m/s 
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Figure 38 Gas superficial velocity is 1 m/s 
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Figure 39 Gas superficial velocity is 2 m/s 
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Figure 40 Bubble flow pressure drop simulation 

 

Figure 41 Slug flow pressure drop simulation 
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In this section, I use a 6 feet test tube and the diameters are varied: 1 inch, 2 inches, and 3 

inches. Water superficial velocity ranges from 0.01 to 20 m/s and the gas superficial 

velocity is changing from 0.05 to 10 m/s. Both bubble flow and slug flow take place in the 

test tube. From the 2D graph, we known that in a certain gas superficial velocity, the higher 

water superficial velocity will cause a greater pressure-drop in the test tube. And when the 

water superficial velocity increases to 1 m/s, they are not smoothly changed because the 

fluid flow touches the boundary of bubble-slug flow and become unstable. 

It is more clearly seen in the 3D graph that the larger diameter of the tube and the higher 

water superficial velocity result in a higher pressure-drop in the tube. 

To compare the results we get from simulation with the experiment, we keep the water 

flow rate at 12.66 GPM while changing air flow rate from 2.0 to 3.8 SCFM, finding that 

the pressure-drop declined from 4.5 psi to 3 psi. Also, when we keep the air flow rate at 

0.2 SCFM and change the water flow rate from, 8.4 to 0.7 GPM, the pressure-drop changes 

from 3.6 psi to 2.1 psi. The experiment results coincide with the simulation result. 
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CHAPTER 6 

VI. CONCLUSION AND RECOMMENDATIONS 

 

Conclusion 

 

In this study, I introduce the development of flow pattern maps and different approaches 

to calculate pressure-drop in the pipe. Also, I propose a more general model for sucker rod 

pumping system. Including friction force due to the movement of the plunger, the rod, 

buoyant force, and gravity force, viscous fluid in the model. 

With literature reviews and contact with engineers from several companies, I already set 

up the construction of multi-phase flow loop experiment in the laboratory, which could 

generate all kinds of flow regime in the pipe. 

After designing the two-phase flow loop, we compared each result with the vertical 

upwards flow pattern map (Dukler and Taitel [6]) to test the modeling in the software. The 

pressure drop analyzed different flow patterns and found the pressure oscillations take 

place in slug flow and pressure-drop is stable in bubble flow. The pressure-drop increased 

with a larger diameter of the tube, higher water superficial velocity, and lower air 

superficial velocity. Compared with air superficial velocity, the water superficial velocity 

has a dramatic influence on pressure-drop because of the gravity. 
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Recommendations for Future Work 

1. For further development, it is better to add a pressure transmitter to test the pressure-

drop with time. 

2. To get more accurate results, flow meter transmitters are also needed in the system, 

so data could be collected by a computer automatically. 

3. Investigate the proper equipment and new methods to test more fluid properties. 

4. Modify of the Fluent Model to predict the phase change and pressure gradient in the 

test tube. 

5. Heating up the tube to measure temperature influence of the fluid flow. 
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