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ABSTRACT

AN INVESTIGATION INTO THE ANALYSIS OF TRUNCATED STANDARD
NORMAL DISTRIBUTIONS USING HEURISTIC TECHNIQUES

John Walter Ralis
Old Dominion University, 2014
Director: Dr. C. Ariel Pinto

Standard normal distributions (SND) and truncated standard normal distributions
(TSND) have been widely used and accepted methods to characterize the data sets in
various engineering disciplines, financial industries, medical fields, management, and
other mathematic and scientific applications. For engineering managers, risk managers
and quality practitioners, the use of the standard normal distribution and truncated
standard normal distribution have particular relevance when bounding data sets,
evaluating manufacturing and assembly tolerances, and identifying measures of quality.
In particular, truncated standard normal distributions are used in areas such as component
assemblies to bound upper and lower process specification limits.

This dissertation presents a heuristic approach for the analysis of assembly-level
truncated standard normal distributions. This dissertation utilizes unique properties of a
characteristic function to analyze truncated assemblies. Billingsley (1995) suggests that
én inversion equation aids in converting the characteristic functions for a given truncated
standard normal distribution to its corresponding probability density function. The
heuristic for the inversion characteristics for a single doubly truncated standard normal
distribution uses a known truncated standard normal distribution as a probability density

function baseline. Additionally, a heuristic for the analysis of TSND assemblies building



from the initial inversion heuristic was developed. Three examples are used to further
demonstrate the heuristics developed by this dissertation.

Mathematical formulation, along with correlation and regression analysis results,
support the alternate hypotheses presented by this dissertation. The correlation and
regression analysis provides additional insight into the relationship between the truncated
standard normal distributions analyzed. Heuristic procedures and results from this
dissertation will also serve as a benchmark for future research.

This research contributes to the body of knowledge and provides opportunities for
continued research in the area of truncated distribution analysis. The results and
proposed heuristics can be applied by engineering managers, quality practitioners, and

other decision makers to the area of assembly analysis.
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Note —~ This nomenclature list provides a representative sample of nomenclature used

NOMENCLATURE
Cumulative Distribution Function

Probability Density Function

Standard Score (i.e., z-score) = o

Upper Specification Limit
Lower Specification Limit
Sample Size

Mean

Truncated Mean

Standard Deviation
Truncated Standard Deviation
Variance

Truncated Variance

A Random Variable

Characteristic Function

Infinity

significance level

vii

within this dissertation. The scope of this dissertation is not intended to include general,

referenced, or other nomenclature common to this field. Please refer to applicable
references for nomenclature details beyond the scope of this work.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Engineering, manufacturing, financial analysis, risk management, insurance and
numerous other industries deal with assembly relationships when assessing their specific
areas of interest. Whether that area of interest deals with the assembly of machined parts
having an upper and lower spéciﬂcation, financial and portfolio analysis, or analysis
variables affecting insurance (e.g., weather conditions, location, age, risk factors, etc.),
these areas deal in assessment of truncated standard normal distributions. Numerous
probability distributions have been utilized across these fields to accurdtely describe
phenomena readily seen in typical, everyday occurrences.

Research in truncated standard normal distribution assemblies is lacking. As a
result, heuristics and analysis methods are limited or non-existent, and the practical
application of data or tools in this field is not readily identifiable. The use of the
assembly-level truncated standard normal distributions have particular relevance when
bounding data sets, evaluating tolerances, identifying quality measures, and for decision
makers. Also lacking are assembly-level truncation tables for varying assembled
truncated standard normal distributions for two pair combinations.

While an assembly may have numerous parts, the subassembly portions can
generally be simplified and reduced to a manageable size. In their sim;;lest form
assemblies should be able to be reduced into at least two parts. Therefore, one of the

initial problems addressed by this research is focused on providing decision makers a



heuristic to analyze the assembled truncated standard normal distributions for two parts.

This research question and others are presented in the next section.

1.2 Research Questions

This research is designed to address the following questions:

1. What are the research gaps relative to truncated standard normal distribution
analysis and is there an opportunity to address a portion of these gaps?

2. Does the analysis of two truncated standard normal distribut-ions (ie.,
assemblies) provide a quality indicator and/or an enhanced understanding of
characteristics of truncated distributions with respect to assemblies?

3. To what extent can heuristic techniques be employed to aid in truncated
standard normal distribution analysis? What relationships can be inferred from
the analysis of truncated standard normal distributions?

4. Can qualitative or quantitative data sets be developed to assist decision
makers and/or quality practitioners with an enhanced understanding of
truncated standard normal distributions (single and assemblies)?

5. Will correlations, goodness-of-fit, or other testing methods provide
meaningful data from truncated standard normal distribution (single and/or

assemblies) and other known distributions?



1.3 Research Contributions to the Body of Knowledge

This research addresses important gaps in the body of knowledge including:

A lack of understanding relafed to the distribution characteristics resulting
from the assembly of two truncated standard normal distribution {e.g., final
assembly characteristics between two piece parts for identical TSND).

A lack of heuristics or other methods/frameworks for engineering managers,
quality practitioners and other decision makers.

The characteristics/relationships between assembled parts utilizing truncated
standard normal distributions (e.g., via correlation and regression analysis).
Qualitative or quantitative data often found in quality tables or other _
properties for truncated standard normal distributions (using characteristic

functions).

This research contributes to the body of knowledge by:

Providing a practical heuristic based method for characteristic function
inversion of a single doubly truncated standard normal distribution.
Providing heuristic and mathematical formulations associated with assembly-
fevel truncation between at least two distributions.

Providing an approach to the assembly-leve] truncated standard normal
distribution analysis through the inversion of the distributions assembled
characteristic function. This approach provides an alternative method for
engineering managers, quality and other practitioners to analyze and respond

to process variation decision making.



Expounding on the relationship between truncated standard normal
distributions and their assembly using empirical analysis methods (e.g.,
mathematical formulation, characteristic function evaluations, heuristics, etc.).
Providing decision makers and quality practitioners with qualitative and
quantitative data for analysis of data sets using truncated distribution
assemblies.

Providing observations and evaluations relative to the additive relationship of
truncated distributions (e.g., graphical, by inspection, etc.).

Providing correlation and regression analysis results for a given truncated
standard normally distributed sub-assembly and a truncated final assembly.
These forms of analysis aid in identifying relationships between the analyzed

distributions,



CHAPTER 2

BACKGROUND OF THE STUDY

2.1 Literature Review Overview

An extensive literature review was performed in the following primary areas of
research: truncated distributions, selective assembly, heuristics, and assembly
sequencing. The review is primarily centered on my interest in assembly and design.
Specifically, this research interest included a review of methodologies that could be
utilized by an engineering manager, quality practitioner, or other decision maker. While
researching these topics it became evident that assembly methods and sequencing
spanned multiple interdisciplinary fields with numerous secondary areas of consideration
for this research topic. The primary areas of research that were examined dealt with
applications that were associated with assemblies and decision making.

Secondary areas of literature review included tolerance design, optimal target
setting, extreme value thebry (EVT), storage management systems, inventory
management systems, and a limited review of simulation methods. These secondary
areas of investigation are addressed in limited capacity in this literature review and
provide context and application insight to this research.

Hart (2005) states that research can generally be classified according to its design
features and its intended outcomes. Hart (2005) also identifies that the literature review
is important because without it you will not acquire an understanding of your topic. The
literature review aided in the completion of a comparative review of scholarly works to

assess research gaps and to gain insight into TSNDs and other areas of application.



Hart (2005} described the following research techniques which were utilized as
part of this dissertation:
- Construction of parameters for the review topic (e.g., literature mapping)
e Identification of issues in research design (e.g., research gap analysis)
¢ Identification if an approach for the literature review process
® Presentation of methods, fallacies in arguments, and/or identification of other
aspects for the literature review process.

The literature review for this dissertation began its focus in three main areas with
the purpose of identifying knowledge gaps. The initial focus of my review was on
assembly selection and sequencing techniques. Findings from that review were generally
reduced to two major areas: assembly selection/sequencing/systems (i.e., physical
methods) and applications (i.e., industrial and/or academic application). That review
ideﬁtiﬁed and assisted in bounding the context and scope of this research.

Given the interrelated nature of the literature review the second main area for my
review involved the evaluation of heuristics/frameworks/methods used as part of
assembly selection. The primary reason for this was to identify decision making,
sequencing, or other methods that have been used in various applications and to identify
predominant methods used in assembly assessments.

Finally, the most extensive portion of my review and a significant portion of this
research centered on the analysis of methods associated with assemblies. The primary
focus of this research being with truncated standard normal distribution and their
analysis. Secondary insights revealed numerous other analysis methods such as dynamic

modeling, EVT, simulation, and robust design techniques.



The literature review identified that a knowledge gap exists relative to the
relationship associated with the assembly of truncated portions of standard normal
distributions. It also identified the applied use of the characteristic function as a means to
determine the probability density for a truncated standard normal distribution. Additional
gaps exist relative to comparative analysis of truncations, approximation methods,
heuristics and application methods were also evaluated. The literature review that
follows identifies a breakdown and high-level review of an extensive sample of scholarly
works from this field.

An overview of the literature mapping performed for this dissertation is shown in

Figure . The research method for this work is addressed in Chapter 3.
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2.2 Assembly Selection and Applications
2.2.1 Selective Assembly, Sequencing, Systems and Applications

Work in the area of subassembly design information appears to be very limited.
Selective assembly appears to be the predominant literature available regarding assembly
selection design. Several works initially appeared to be relevant or near relevant to this
field of research, they are:

Whitney (2005) was identified as a scholar in the area of mechanical assemblies.
This work is comprehensive and describes the methods of designing workstations and
systems for assemblies. Whitney’s work provided some insight in subassemblies but
focused primarily on mechanical assemblies, part interrelationships, assembly
sequencing, design for assembly techniques, and product architecture. The utility of this
work in this dissertation came in the form of general assembly insight and enhanced
understanding of mechanical assemblies.

Kannan and Jayabalan (2001) proposed a method for lot partitioning using
selective assembly groups. They also examined an example of three mating parts with
different standard deviations and provided steps for group tolerances of these assembled
parts. This particular work did not address assembled parts or associated truncation
analysis addressed by this work.

Selective Assembly is 2 means by which high-precision assemblies may be
fabricated from relatively low precision components (Pugh, 1986). In Pugh’s conference
preceding on the partitioning of selective assembly he introduces the idea of partitioning
a component population into groups prior to random assembly. Later Pugh discusses

how these selective assemblies can be used to assemble components that could not meet
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specifications if they were not selected in such a fashion. Pugh (1986) indicates that
selective assembly works by dividing component distributions into two or more groups,
randomly choosing components and limiting their group creation by discarding groups
beyond three standard deviations.

Cittolin (1997) used filter and assembly sequencing methods to group and
sequence assembly cdmbination. Review of this literaturé was limited to applications of
methods dealing with the selection of relevant possibilities associated with assembly
sequencing minimization. This study did not address truncations. The paper also
compares its approach with other methods.

Pugh (1992) identifies the use of statistical selective assembly as a means to
ﬁroduce high-precision assemblies from relatively low-precision components. Pugh
(1992} also elaborates on the random selection of components from with a group
assembly as a means to meet speciﬁcation when a group of components has a high
variability. In this paper Pugh discusses the systematical truncation and normal
distributions in addressing component distributions. Other author such as Desmond and
Setty (1961) and Mansoor (1961) have also provided input with regard to selective
assembly. Selective assembly partitioning {e.g., truncation) was identified as a primary
area of consideration within this dissertation.

In 1994, Malakooti’s study identified that one of the problem’s in design of
assembly line balancing (ALB) dealt with the allocation of work elements. This problem
was termed assembly line balancing and specifically documents that the failure of
workstations and other unforeseen circumstances can result in unnecessary idling of the

production line. This particular study addresses aspects of ALB through the use of single
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and multiple decision making criteria which included quantities of stations, buffer size,
cycle time, and total cost of operation. .Assembly line balancing has potential
applications of truncation énalysis with assemblies. In this work Malakooti also provides
several examples with computational experiment results. As a result, it can then be
inferred that an applications of truncation analysis toward this knowledge gap would
support improvements in the area of assembly line buffering.

As a contrast to Malakooti, Lee 1994 presents a method for the automatic
generation of assembly sequencing. Lee’s work states that by adjusting the assembly
coefﬁcienis of subassembly selection indices according to a given assembly environment,
an optimal assembly sequence can be generated. Truncation analysis application in the
area of assembly planning was not identified by Lee.

So and Scott '( 1994} studied a production control model for a product comprised
of matching components (i.e., a heart valve). The study addressed aspects of part
assemblies assuming “N” possible categories. In their study So and Scott identify high
level concepts of assembly but did not include aspects or discussion of truncation, EVT,
or other specific work assembly methods. A greedy heuristic sequencing rule for other
general cases was used by the authors.

Whitney (2006) identifies key characteristics associated with mechanical
assemblies, data flow chains and tolerance analysis. His research focuses on utilizing key
characteristics for conveying design intent. Whitney (2006) focused on complex
assemblies at the design level.

In 2007, Lee and Shin presented a method for the automatic determination of

assembly partial orders from a liaison graph representation. This work identified an
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approach for the extraction of subassemblies. The application of this literature to this
dissertation was limited to knowledge gap identification and insight into industry
assembly and subassembly methods. Additionally, Agard and Kusiak (2004) utilized
data mining algorithms for the selection of subassemblies. Neither of these works
appeared to address the knowledge gap addressed by this dissertation.

Kwon, Kim, and Chandra (1999) identified a selective assembly procedure for
components composed of two mating parts. While this product focuses on product
clearance, the focus of this research dealt with component characteristics of a normal
distribution with equal varfance. This study presented limited application to truncated
portions or assembilies.

De Fazio, Rhee and Whitney (1999) presented an assembly sequence analysis
(ASA) for applications mvolving design-for-assembly (DFA). The paper detailed
subassembly partitioning based on criterion based searches. The paper also identified
genetic algorithm search techniques for us in assembly sequencing.

Al:;e, Murayama, Oba, and Narutaki (1999) reviewed part removal verifications
associated with disassembly sequences related to assembly planning systems. Their
research focused on reducing verification times associated with subassemblies.. As part
of their research, they employed a genetic algorithm and heuristics to aid in the
generation of assembly sequencing. While not specifically focused on truncation
assembly analysis, Abe et al. (1999) provided application insight and documentation of
industry use of heuristics as part of subassembly analysis.

Lee and Saitou (2007) presented a systematic approach to early product design in

order to achieve a cost-effective design. Their work identified that critical dimensions
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were adjusted through subassembly partitioning as part of the assembly process. The
paper also identified that a genetic algorithm was used in selection processes. The
application of this literature to this dissertation was limited to knowledge gap
identification and insight into assembly sequencing. Truncation analysis methods

presented in this work could potentially be applied in this area.

2.3 Assembly Analysis -
2.3.1 Truncated Distributions

W{)rk in the area of truncated distributions continues to progress. Research and
studies in this area aid quality practitioners, engineers, and decision makers in multiple
fields. For example, Johnson and Thomopolous (undated) presented reference tables for
use by works for left-truncated normal distributions. Similarly, Khasawneh, Bowling,
Kaewkuekool, and Cho (2005) presented greater detail on Truncated standard -
distributions for singly truncated and doubly truncated cases in two separate scholarly
works. In another work Johnson and Thomopoulos (undated) provided a slightly
different approach toward addressing an approximation method for doubly-truncated
cases using a computer model. None of these works utilized a distributions characteristic
function or addressed assembly level distribution approaches.

Dhrymes (2005) developed the moments of truncated distributions in dummy
endogenous variable models. An interesting aspect of this study to this research was the
approach to normalization of a truncated distribution used within the study. Dummy

endogenous variables were also used to address the mean and variance of the distribution.
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Finally, the author formulated theoretical equations for determination of the moments of
truncated distributions.

In a study in 2003 Ostermeier examined incremental truncations as a method for
pairing DNA. As part of this literature review a myriad of industries were included for
relevant aspects of truncation and assembly, in this case DNA. A Key point made in this
scholarly work was that the experimental determination of the distributions used would
require extensive, cost-prohibitive, sequencing. Additionally, the author examined the
use of incremental truncation Iibraries and also a uniform distribution of truncation
lengths. The author also provided a comparative review of different truncation_ methods
along with comparison of different DNA truncations.

Horrace (2005) formalized analytical results on the n-dimensional multivariate
truncated normal distributions. His paper focused on one-sided truncations at arbitrary
points and provided results related to linear transformations along with supporting proofs
and mathematical theory. The application of this document was directed toward the field
of economics. The specific application of Horrace (2005) to this research was with

respect to the comparative review and research gap identification support.

2.3.2 Characteristic Functions and Inversion Theorems

A literature review tn the area of Characteristic functions and their inversion was
the result of the EVT study. As part of this review the details related to a distributions
characteristic function were identified. Relevant equations from this review are identified
in Appendix A. Billingsley (1995) provided over-arching support for both characteristic

functions and general inversion principles. S. Sheffield (2011) amplified the work
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provided by Billingsiey (1995). Abadir and Magdalinos (2002) provided specific insight
into the characteristic function of a singly doubly truncated normal distribution and
applications.

Sh;:phard (1992), Kawata (1969}, Bernadic and Candel (2012), and Abate and
Whitt (1991) provided examples for fhc application and inversion of a Characteristic
function. Inversion principles in these references along with inversion formulas
identified by Billingsley (1995) were .utilized in Appendix A and adapted for the
evaluation of assemblies. Billingsley (1995) and S. Sheffield (2011) identify that
characteristic function for the sum of two characteristic functions is the product of their

respective characteristic functions (i.e., similar to moment generating functions).

2.3.3 Extreme Value Theory (EVT) and Value At Risk (VaR)

Castillo, Hadi, Balakrishnan, and Sarabia (2005) provided overarching insight in
the area of Extreme Value Theory. 'Use of this resource with a sampling of journal
articles and other literature enabled knowledge gap identification and served as
grounding for technical fundamentals in the area of truncated distribution analysis (i.e.,
through principles identified in scholarly reviews regarding EVT).

Raschke {2012) examined right truncation exponential distributions and an
estimator for finite sample sizes of truncation points. Raschke also introduced the use of
an inverse mean squared error to evaluate the estimator’s behavior. Raschke comments
on EVT as it relates to truncated distributions as it relates to sample size. Monte Carlo
simulations and examples were used by the author to examine different truncation points

and sample sizes.
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Blanchet and Liu (2012) introduced change of measure techniques for rare-event-
analysis of heavy tailed. Monte Carlo simulations were used by the authors to aid in the
estimation of rare event probabilities and to present a “good” Markovian approximation
of conditional distribution of the rate event being analyzed.

Kuwahara and Mura (2008) used a weighted stochastic simulation algorithm
(SSA) and a Monte Carlo simulation method to analyze rare eveats of biochemical
systems. Case studies are used to analyze the proposed method and effectiveness along
with an explanation of the proposed algorithm using weight (SSA).

Drees et al. (2005) estimated the far tail portions of distributions functions using
EVT as. a framework. The authors developed weighted approximations to the tail of the
distribution and other empirical data.. An Anderson-Darling type test of the null
hypothesis was used to demonstrate that the distribution belongs to an EVT domain of
attraction. |

Using Monte Carlo experiments Stoyanov and Rachev (2007) reviewed the
impacts of tail behavior for varying sample sizes (in addition to value-at-risk). The
effects on the tail distributions were further analyzed along with the convergence rate as
part of their analysis. The authors concluded that a simple tail truncation improves the
convergence rate and that asymptotic distribution reliability improves with large sample
sizes (e.g., S000+) for specific cases.

Peng and Qi (2009) studied maximum likelihood estimates of extreme value
indices between -1 and -1/2. They also generalized irregular cases and cases of an
unknown extreme value index. Peng et al. (2009) in addition to Chavez-Demoulin and

Roerhl (2004) provided a general overview on the understanding and application of EVT.
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Bermudez and Kotz (2009) examined varying methods for the use of the
generalized Pareto distribution (GPD) and their application to estimation methods. This
literature focused on applications to EVT and its approach was to review and identify
options of GPD parameter estimation. The first paper focused on methods such as
maximum likeiihood (ML), method of moments (MOM), aﬁd probability weighted
moments (PWM). The second paper (a continuation) focused on the application of
methods to real world data.

Brazauskas and Kieefeld (2009) proposed a method for fitting generalized Pareto
distribution (GPD) associated with trade-offs between robustness and efficiency. Using a
“trimmed moments” methoﬂ as a basis the authors used simulations and their method to
fit GPD to historical data. Utility was provided following application to areas of risk
measurement and ratemaking. The authors utilized a large sample size to provide a mean
and relative efficiency between various methods.

Carpinteri, Cornetti, and Puzzi (2005) used extreme value theory in the form of a
statistical model to evaluate materials. Prior comparisons using EVT and a Multi-
Fractional Scaling Law (MFSL) are used in their evaluation. A mode] and correlation
between for their area of interest is drawn (e.g., fracture energy and crack surface
parameters). The authors further used experimental data available in literature to confirm
their approach. The utility of this work toward this dissertation was relative to problem
solving and decision making approaches.

Brooks, Clare, Dalle Molle, and Persand (2005) exarmned various EVT models
for VaR. The authors used GPD, ML and a semi-nonparametric methodology in their

reviews. Comparative analysis was performed by the authors including nonparametric
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tail index estimates of GPD threshold levels. The relevance of this literature to this
dissertation was in application and understanding of sample and comparative approaches.
Simulation was further used in data analysis as part of the authors approach.

Debolt, Guillou, and Rached (2005) used a generalized probability weighted
moment method (GPWM) to study the asymptotic behavior of estimation tools presented.
The authors provided proofs and generalized weighted moment estimators. This work
was used in conjunction with Bermudez and Kotz (2009) to better understand research
gaps that exist in assembly methods. An understanding of the extremes was intended to

better support an understanding of TSNDs.

2.3.4 Simulation

Yanoff and Weirich (20190) discuss the philosophical and epistemological
implications of simulation, simulation representation, and policy decisions. The paper
argued that simulation is “an important new tool for the social sciences” and that
simulation “shares features with both models and experiments.” The key purpose of
review of this literature was in expanding my breadth of knowledge in the philosophical
approaches that could be applied to this rescarch.

Bradley and Gupta (2004) analyzed data associated with the sum of “n”
indepeﬁdenl non-identically distributed uniform random variables. In this work the
authors use Fourier theory to derive an explicit formula for this approach by inverting the
characteristic function. This research is one example associated with approaches used in
the summation of a uniform distribution. However, no research has been identified in the

areas of TSND assembly analysis using characteristic function inversion heuristics.
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In a 1999 study Kosfeld and Quinn evaluated storage and retrieval system
strategies to improve production throughput capabilities. The study identified that the
use of simulation models allowed prioritization and performance prediction for different
strategies. From the proceedings of this winter simulation conference, the authors
addressed a method of locating empty bins for storage in order to increase throughput.
Although, this research did not address subassemblies 1t did address storage system
rhodeling and throughput. The study base lined simulations using known parameters to
benchmark their model. The study then performed throughput simulations to estimate
performance improvement from their methods. These approaches were considered when
developing the research approach for this dissertation.

Bates, Buck, Riccomagno, and Wynn (1996) identified experimental design and
modeling as part of optimization and sensitivity analysis of large systems. The study
provides an example for simulation (i.e., emulation) in large system analysis.

Breedis (2001) presented a simplified approach to subassembly design using
Monte Carlo analysis. The primary focus of this review was on the author’s methods and
problem approach. The study identified key variables for evaluation of the simulations

performed.

- 2.3.5 Dynamic Modeling
Dynamic Variation Reduction was developed by R. Musa (2007) as part of a
dissertation relating to strategic and dynamic variation reduction for assembly lines.
Musa (2007) proposed a method to reduce variation for assemblies by developing

inspection plans based on:
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® Historical data for existing products, or simulated data for newly developed

products

e Monte Carlo Simulation and Optimization Search Techniques

* Sought to minimize the cost function for the total of inspection, rework, scrap,

and failure costs

Musa’s research developed methods to utilize data in near real time to
dynamically reduce variation by assigning the inspected subassembly parts together and
he also proposed mating inspected subassembly items through the use of dynamic rolled
yield throughput maximization (DTM). Musa (2007) also proposed heuristics for
inspection based DTM.

Musa, Sturges, and Chen (2006) identified an inspection methodology for
inspection planning using CAD data and simulation. The author proposed a methodology
for out-of-tolerance quality characteristics for subassembly. Monte Carlo stmulation was
used as part of their model development.

Musa and Chen (undated and 2006) presented work on a dynamic throughput
maximization study performed after inspection of a batch of subassemblies. This work
presented the authors’ approach using meta-heuristic algorithms. The study also
compared ant colony heuristics to simulated annealing (SA) algorithms. The primary
focus of this review was toward a review of the heuristic application used in subassembly
design.

‘Musa, Chen, and Ghoniem (undated) extended previous work from Musa et al.

{2006) regarding dynamic variation reduction and throughput via development of a
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mathematical part matching model for vanation reduction. In this study the authors
propose a 3-rule heuristic and another model for throughput maximization.

Huang, Liu, and Musa (2004) proposed a method for process plan evaluation to
provide rapid evaluation for process plan decision making. The authofs approach uses
Monte Carlo simulation to aid in the analysis through analysis of deviations assuming
normal or uniform distributions. This research did not address truncated distributions or
their assembly.

Das and Sarin (1988) used a dynamic programming approach along with a
heuristic procedure to address part arrival dates in a muiti-job stochastic assembly
system. Application of this literature was limited to review of the heuristic approach by
the authors.

Seidmann and Tenenbaum {1994) developed a dynamic part-allocation policies
for a Flexible Manufacturing System (FMSs) having finite storage capacity. The paper
evaluates modeling approaches to evaluate part-routing policies. Additionally, several
closed-loop heuristic policies were proposed and provide near optimal FMS performance
results. This journal article was examtined for application to truncation analysis and part
aliocatjon. |

Gutierrez, Hausman, and Lee (1995) studied a matching problem and dynamic
control rules relative to optimal system performance. The authors propesed a heuristic
and provided examples of performance improvements relative to their proposed heuristic.
The authors identified a computationally infeasible dynamic programming formulation
along with a myopic control procedure for general application to sorting and matching

problems.
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Selection techniques for a dynamic model framework along with alternative
model framework for multistage stochastic programming models were reviewed (Puelz,

2002). The author used empirical test from historical data to benchmark the framework.

2.3.6 Robust Design

Carlson and Doyle (2002) studied aspects of robust design and complexity
dealing with highly optimized tolerance (HOT). This particular study focuses on highly
structured and robust designs. This work also .performed a comparative review by
leveraging examples and model systems.

In a 2001 study by Caleb Li and Chou the optimal process mean and associated
variables were identified to aid in minimizing the expected quality loss for the works
identified parameters. The variables considered by these authors were those quality
characteristics typically associated with quality (e.g., smaller-the-better, nominal-the-
best, etc). The approach examined direct and indirectly measurable quality

characteristics.

2.3.7 Optimal Target Setting

This dissertation reviewed the area of Optimal Target setting for general oversight
and applicability to TSNDs. In general the techniques used in optimal target setting
could have applicability at the application level. The following articles and summaries

expand current knowledge in the area of optimal target setting:
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Bouchard, Elie, and Imbert (2010) studied Markovian optimal stochastic control
problem under stochastic target constraints. The direct approach was merely reviewed
for applicability and bounding of the research gap from this dissertation.

In Yang, Gui, Kong, and WangA(20(}9) the authors present a quality prediction
model for optimal-setting control of a manufacturing process in a metallurgical industry.
Yang et al. (2009) identifies the use of a kind of hierarchical strategy for determination of
an optimal set point for raw material portioning. The authors compare the efficiency
improvement to an example system in an alumina smelting,. |

In 2003, Bai and Kwong studied the use of target setting vajues and heuristics to
develop “inexact” optimal target settings. In this particular approach the authors utilized
a fuzzy optimization model for target value determination and an inexact genetic
algorithm was used to solve the problem. Both heuristics and optimal target setting were
used as part of this work.

Ohtsubo (2004} evaluated risk minimization for Markov decisions with a target
set. Ohtsubo’s study considered the risk associated threshold probability along with the
passage time for a target set. The paper also identified the use of value iteration methods
and presented a policy improvement method (e.g., a heuristic).

Kim, Michekena, and Papalambros (2003) used target cascading to model a multi-
level optimization problem. The authors utilized design targets (cascaded to lower
levels) by partitioning their problem into small sub-problems. The authors then
formulated an optimization model to rrﬁnimize deviations from their propagated targets.
While the authors do not specifically cite the use of heuristics or a specific simulation

technique the authors presented a coordination strategy (e.g., essentially a heuristic) to
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address their problem. The authors took steps toward simplification of their models (e.g.,
smaller model structures) and to reduce their model and analysis complexity.

Krzysztofowicz (1990) presented a critique of a target setting problem with
exponential utility. The framework of this critique was reviewed in consideration as part
of this dissertation. The utility and reason for review was primarily with respect to the
application and decision steps/considerations as part of the problem formulation and
a_na.lysis.

In a 2006 work Cooper, Georgiopoulos, Kim, and Papalambros utilized
“analytical target setting” to perform target setting within the context of an enterprise.
The paper addresses a partitioned decision making process. The paper was reviewed as
part of an introspective approach for the comparative review and heuristic development
for this dissertation.

Huang, Cheung, and Liang (2006) utilized a muiti-agent system to solve for
optimal design using analytical target cascading. This approach and methodology was
cited as having gained more ground as a methodology for an optimal design approach,
The primary use of this literature was to identify other gaps and approaches which may
lend insight into the research gaps from this dissertation.

Li’s (2004) research focused on optimal manufacturing settings to minimize
quality loss for the identified production system. The author’s work found that the use of
smaller tolerances fof both sides or adjustment of the process mean were unsuccessful at
minimizing the quality loss. The author also used a pokayoke procedure and truncated
quadratic loss function to solve the solu.tion when setting the process mean at an optimal

point to minimize the expected quality loss.
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Bisgaard (1997) explored the experimental determination of tolerance limits of
mating components of an assembled product. Bisgaard provided a functional approach
for setting tolerances in assembly when applied to high-volume products. The research
concluded that the application may be reasonable for setting tolerances when the data can
be reasonably amortized or in higher risk applications. It is important to note that while
this study did address tolerance design it did not address the use of truncated distributions
in any aspect of its application.

Ramirez-beltran (1995) demonstrated a real-world application of 2n integer
programming problem. The focus of this study was on finding an optimal solution for a
labor cost probiem. The paper utilized a matrix method for optimization and a branch
and bound heuristic algorithm. The author utilized a numerical example to demonstrate
the utility of the method (and its effectiveness).

Baykasoglu (2001) used mathematical programming tools to model multiple
objective optimization problems. Baykasoglu’s study cites a trend in industry to solve
these types of mathematical problems using heuristic optimization techniques (e.g., Tabu
search, genetic algorithm, and simulated annealing). A multi-objective Tabu search
heuristic was proposed in this study and results presented demonstrate the proposed
heuristics utility.

Nussbaum, Sepiilveda, Singer, and Laval (1998) studied approximation ‘
methodologies for sequencing and resource allocation problems. The authors presented a
declarative problem solving framework for specification and sequencing problem
solving. A focus of this study was on optimization heuristics and procedures and their

parameterization.
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2.3.8 Other Methods and Applications

Mease, Nair, and Sudjuanto (2004) described a statistical formulation for
determination of optimal binning strategies for various loss functions and distributions
and compare the results to heuristics. This research provides direct insight into the
knowledge gap existing among truncated distribution along with binning and quality
applications that could be applied in future expansion of the research presented by this
dissertation.

Moorhead and Wu (1998) addressed parameter design methodology by
developing a model and data-analysis strategy for a general loss function. The authors
presented a methodology that utilized a location-scale model and their study cited
approximation as a form of utility in substantiating their model performance. The authors
also identified that the utility of their method extended the scope of parameter design of
nominal-the-best to include a more general loss function (including subjective
interpretation of improved generality).

Xiaoping and Jingjing (2009) presented a model and algorithm for evaluation
storage bins for a transport problem. Binning applications have relevance to assembly
techniques and the case study presented by this work utilized existing (known) outcomes
to approach the idea of storage bin availability improvement. In Xiaoping and Jingjing
(2009) also studied the control of optimization methodologies related to storage bin
capacity in transport problems. Relevénce of these papers to this dissertation was
primarily. in approaches used for identification and review of the heuristic.

Zhu and Oommen (1997) studied a problem in which a detection function was

used to evaluate an object with “N” locations (bins) for the purpose of maximizing
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resource allocations. One of the main observations from this study is that the target
distribution is assumed to be unobservable, where as prior research focus on known target
distributions. The relevance of this is in understanding prior approaches considered when
attempting to understand evaluations of unknown distributions. Here the authors seek to
obtain “‘good” rather than optimal selection criteria for their process.

Jun, Jacobson, and Swisher (1999) used discrete event simulation to improve
patient flow and for resource allocation. The paper used modeling techniques relative to
discrete-event-simulation. Liu and Cheung (1997) also studied continuous review
inventory models. The focus included feview of exponentially distributed variables along
with other key operating characteristics for the inventory model. The authors utilized
numerical examples to validate their model and provided a level of demonstration of its
effectiveness.

Mazzola and Schantz (1995) developed an optimal allocation model of a single
facility production environment. Branch and bound heuristics along with Tabu Search
heuristics were utilized in their approach. The primary utility of this study was the
understanding and review of definitions employed with heuristics employed in the
author’s research.

Wilson and Roach (2000) identified a methodology for the automatic generation
of computerized solutions to the container stowage problem. The methodology presented
heuristic rules for “good” but not optimal solutions. The primary focus of this literature
review was for application to assembly planning and heuristics. A re-occurring trend in
the application of heuristics in these areas appears to be relative to practical application

(i.e., good solutions versus optimal).
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Pourbabai (1992) utilized a mixed non-Markovian queuing network with infinite
capacity nodes to model an automated assembly system problem. The study focused on
ideatifying the minimum required local storages by using a stochastic optimization model
and a heuristic algorithm to solve for and approximate results for the simulation study.
Pourbabai (1992) also discusses a strategy for the selection of a required amount of local
storages for workstations of a flexible assembly line system. While this research is
relevant to this research topic, it does not specifically address the research gap identified
by this area of research.

Pourbabai (1989) described the design of a finite capacity assembly model and
quality control station that used a Markovian queuing system performance model and an
optimization model to select optimal storage sizes. This study also utilized a Poisson
arrival process as part of the performance model. The paper identifies a simulation
model and focuses on observations noted as part of the simulation results; findings
presented suggest that explicitly considering random variables dependencies makes

performance analyses of a complicated stochastic network difficult.
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2.4 Heuristics, Frameworks, and Other Methodologies
Heuristics techniques can be broadly characterized as exploratory problem

solving techniques. Merriam-Webster.com identiftes the following heuristic definition:

“Involving or serving as an aid to leamning, discovery, or problem-solving by

experimental and especially trial-an-error methods.”

Heuristics is a very broad knowledge base that aids in effective problem solving
and serves as a way to “frame new problems” (Michalewicz and Fogel, 1998). A review
of Michalewicz et al. (1998) uncovered various useful problem-solving heuristics and
approaéh techniques. The development of a heuristic or improving heuristics could
include a variety of technigues found similar to prior heuristic research, such as:

Michalewicz et al. (1998) provided insight in the area of heuristics. This literature
provided insight into heuristics such as simulated annealing, tab search, model
overviews; various search methods, and other algorithms that served as a foundational
basis for numerous aspects of this research. For the purpose of this paper the basis of
numerous heuristic definitions were cited from this source.

Chiang, Kouvelis, and Urban (2002) developed optimal and heuristic solutions
methodologies for evaluation of workflow interference. The paper focused on
application of these methodologies from a facility layout perspective by examining
branch and bound heuristics along witﬁ Tabu search heuristics. While facility
applications are relevant to assembly (i.e., storage of assemblies) the primary utility of

this study dealt with application and heuristics approaches.



30

Lozano, Adenso-Diaz, Eguia, and Onieva (1999} used a Tabu search heuristic in a
cellular manufacturing design. The heuristic proposed systematically explored feasible
machine cell configurations in part family determinations. The heuristic was
benchmarked against two simulated annealing approaches and other heuristics.

A 1997 study by Salhi developed a constructive heuristic for a location problem.
The author tested the proposed heuristic againsi other location problem methods.

‘Cao and Ho (1987) model a production line with limited storage capacity as a
cyclic network with finite buffers. In this analysis Cao and Ho identify a new technique
called “perturbation analysis of discrete event dynamic systems.” The paper identifies
that its main purpose is to investigate perturbation analysis of a closed queuing network
with blocking and its application to the optimization of the system throughput in a
tandem production line with a finite storage capacity. The simulation results identified
that the estimate of the derivative of the throughput and the estimate of the derivative of
the time required to complete a finite number of services is unbiased. Finally, the paper
also utilized Monte Carlo simulation a.s a viable method for this optimization approach.

Rochat and Semet (1994) evaluated a vehicle routing problem using two proposed
heuristics to find a “good” solution. This study was considered to fufther evaluate
heuristics in a similar application and for evaluation techniques used to compare the
heuristic against a baseline configuration.

Naddor (1975) identified heuristic decisions for inventory policy. The heuristic
involved knowledge of the mean, standard deviation of demand along with other
variables for the model. This brief article provides an overview of the heuristic and

limited application.
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Park, Kang, and Park (1996) proposed an algorithm associated with integer
programming formulation of a bandwidth packing problem. A heuristic was proposed
and utilized a column generation technique as part of the algorithm. The authors further
tested the algorithm using random proBIems. Of particular interest is that the authoré

-compare their heuristic to a previously benchmarked method. The authors also provide a
brief discussion of “good” vs. optimal solutions.

Patterson and Roltand (2002) explored network design and presented a heuristic
with a methodology that ﬁtilized an adaptive reasoning technique. The authors also
generalized their formulation and measured its effectiveness. The primary utility of this
study toward this research dealt with the heuristic approach methodology.

Zhang, Wang, Cheok, and Nee (2003) proposed a knowledge-based selection
procedure/rules (e.g., heuristic) to provide a unique name based search mechanism geared
toward component reuse (1.e., reapplication).

Meller and Bozer (1996) presented a heuristic (i.e., simulated annealing) for
facility layout. The significance of this particular study with respect to this dissertation
was the approach method for performance comparison and application utility of the study
toward heuristic and algorithm development. This study primarily focused on production
facilities and achieving a good solutions for a series of 200 plus problem sets and
provided a relatable and practical application and approach for the methods developed by
the authors.

Thakur, Nair, Wen, and Tarasewich (2000) used Beam Search (BS) based
heuristics to identify optimal or near optimal product lines, The authors test their

heuristic on 300 simulated problems with applications. They also compare their search
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technique with a Genetic Algorithm (GA) based heuristic and conclude that their BS
based heuristic is more effective than the GA used in identifying optimal or near optimal
solutions quickly. The authors provide examples to illustrate their heuristic and their
model.

Coverdale and Wharton (1976) identified an improve heuristic for a Nonlinear
Cutting Stock Problem. This particular study focuses on the cutting operations by
constraining material cutting patterns to improve residual scheduling via pattern
enumeration. The results of the paper also compare heuristic performance using different
methods for the analysis.

Rubin (1990) proposed 2 mixed-integer model and suggested heuristics to obtain
a suboptimal but “good” solution to reduce computational cost using linear programming.
A linear programming heuristic based method was the second method used as part of this
review. The results were compared using a Monte Carlo simulation with Gaussian data.

Kulm (1977) identified that the absences of theoretical or empirical hypothesis
raised questions on two different problem-solving heuristics. The critique also raised
questions on understanding a clear or consistent meaning of the term heuristic.

Nair, Thakur, and Wen (1995) ﬁsed beam search heuristics to improve upon prior
heuristics for the product line design and selection. Nair et al. used computations from
over 400 simulations to demonstrate improvement in five defined performance measures.
Their solutions resulted in i.mprove optimality for the design simulation resulting in
“good” solutions.

Barish (1962) examined the present and future scopes of management science,

operations research, and industrial engineering. The framework and approach used to



identify conceptual relations between provided useful backgrounds to the author on
similar comparative approaches used in these fields. Application of this literature review

was primarily from an introspective approach for this dissertation.

2.4.1 S¢arch Methods (Local and Exhaustive)

Exhaustive search methods are those methods that “check each and every solution
in a search space until the best global solution has been found (Michalewicz and Fogel,
1998). Michalewicz et al. also suggest that exhaustive search methods are usually not
practical for real world applications due to the large search areas, potential quantity of
feasible search possibilities, and uncertainty in obtaining knowing whether the best
solution has been found for a given search. They later note that local search
methods/algorithms present a more reasonable alternative to exhaustive search techniques
for providing satisfying results from defining the current solution, transformation and
formulation of a new solution and its merit evaluation, solution exchange or retention,

repetition of technique untit no transformation improves the current solution.
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2.4.2 Algorithm and Optimization Techniques

Michalewicz et al. (1998) identify a Greedy Algorithm as a type of algorithm that
attacks “a problem by constructing complete solutions in a series of steps.” The
simplicity of this type of algorithm lends itself to greater application. They indicate that
Greedy Algorithms perform the following:

* Assign Values for all of the decision variables

» Make the best available decision based on an assumed heuristic and available

information

¢ Shortfalls — local optimum at each step may not result in a global optimum

Aggarwal, Orlin, and Tai (1997) explored applications of genetic algorithms to
demonstrate the utility of knowledge based mechanisms. Application of this study was
limited to understanding the utility of genetic algorithms in a given application and
heuristic co mparisﬁn methods.

A 1994 study by Park and Kim developed a heuristic algorithm to address aspects
of production planning problems for an assembly system. The particular focus of this
study was on assembly systems operating on a make-to-order basis. In particular, this
study utilized packaging examples of automobile subassemblies toward the minimization
of inventory holding costs. This review considered the process and application of
heuristics which were considered to better understand the type and application of specific
heuristics dealing with assembly line systems.

Kannan, Jayabalan and Jeevanantham (2003) utilized genetic algorithms to find

the best combination of the selective assembly groups necessary to minimize assembly
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vafiation. This method focused on linear assembly. The paper itself focuses on
minimizing component tolerances and variation.

Ponnambalam, Aravindan, and Rao (2003) presented a mixed model sequencing
problem using genetic algorithms for assembly lines. Their focus was the investigation
of genetic algorithms and also performed a comparison of exiting vs. proposed GA’s by
consideration of variation at multiple assembly levels (e.g., raw materials, product,
subassembly, etc.). The dissertation application of this study was primarily focused on
the method and heuristic approach by the authors.

Sanderson {1997) used a tolerance model to estimate part configurations based on
maximum likelihood using a filter algorithm. Sanderson then stated that the resulting
configurations could then be used to evaluate the ability to assemble as it relates to
clearance likelihood from the problem constraints. This was also applied to the ability to
assemble of subassemblies.

Kwok, Driessen and Phillips (2002) utilized a matching algorithm to address a
problem associated with multiple-target-multiple-agent scenarios. The study was
primarily focused towards robotics; however, focus was applied to optimal assignment
algorithms. The paper also addresses heuristics on a limited basis. Klincewicz (1990)
solved a freight transportation problem using facility location techniques. Of specific
interest from this review was the method employed by the author in heuristic evaluation.
Since facility location problems are potentially derivative of the large assembly
sequencing or selection process this paper provided relative insight to support the

approach for this dissertation. A flow chart of the basic heuristic model was developed
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and computational efforts were performed to identify the impacts when compared to a

known optimal solution.

2.4.3 Branch and Bound

Branch and Bound is a heuristic that works on the idea of successive partitioning
of the search spacé (Michalewicz et al., 1998). The authors also find that this type of
heuristic eliminates areas of interest by evaluating successive partitions of a search space
and eliminating a bounded region that does is beyond the constraints of the next branch
being compared within the problem. Michalewicz et al. (1998) also note that the
heuristic allows for the search to be minimized without performing a detailed analysis of

a portion of the problem.

2.4.4 Simulated Annealing

Bohachevsky, Johnson and Stein (1986) was reviewed for initial applicability and
potential to this research. Bohachevsky et al. (1986) described generalized simulated
annealing for the “optimization of functions having many local extrema” and methods for
improved optimums of other problenls. This paper identifies simulated annealing as an
optimization derived from “the annealing process of metals in which final crystalline
configurations are possible depending on the rate of the cooling process.”

Ohlemiiller (1997) used simulated annealing for solving a minisum location
problem. Tabu search was utilized in this study. Efficiency of the method was presented
along with results relative to the expected deviation. Finally, the author’s study is

consistent with other approaches of finding “good” solutions (e.g., vs. optimal).
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2.4.5 Tabu Search

Tabu search (TS) is a meta-heuristic that is “based on the premise that problem
solving, in order to qualify as inteligent, must incorporate adaptive memory and
responsive exploration (Glover and Laguna, n.d.).” In Glover and Laguna’s short article
in their 1997 book they indicate that the “adaptive memory feature of TS allows the
implementation of procedures that are capable of searching the solution space
economically and effectively.” It is interesting to note that Tabu search heuristics are not
memory less like some semi-random search processes. Glover and Laguna (n.d.)
identifies that

Fred Glover is generally regarded as the originator of Tabu Search meta-
heuristics. Glover’s search name “Tabu” is aptly named because the memory attributes
“forces the search to explore new areas of the search space (Michalewicz et al, 1998).”

Glover and Laguna (1997) presented one of the earliest comprehensive looks at
Tabu search. Given the re-occurrence of Tabu-search in other literature this work was
reviewed to gain insight into this meta-heuristic approach and its application to problem
solving and decision making.

Glover (1990) examined the characteristics of heuristic procedures used as
frameworks for analyzing difficult optimization problems. While the research included
the review of several types of heuristics the author focused specific attention on Tabu
search heuristics. Glover (1990) discusses four major heuristic methods (e.g., neural
networks, simulated annealing, genetic algorithms, and Tabu search). The author also

discussed target analysis as a method for determining good decision rules as a means to
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improve heuristic effectiveness. Markland (1990) summarized glovers work relative to
these four major areas.

Punnen and Aneja (1995) studied a resource-constrained assignment problem and
developed a Tabu search heuristic. The primary utility of this work to this dissertation
was in expansion of heuristic test method understanding. The authors used
computational results to demonstrate the effectiveness of their method from other
algorithms.

Gendreau, Hertz, Léporte (1996) developed a Tabu search heuristic for a
stochastic vehicle routing problem with random demands and probabilities. Tabu search
heuristics proposed were compared against a known optimal solution. The authors
provided a mode! confidence factor aﬁd a-verage deviation to an optimal solution {e.g.,
“good” vs. optimal). Similarly, Gendreau, Hertz.and Laporte (1994) described a Tabu
search heuristic for vehicle routing problem with various restrictions. The heuristic
utilized a generalized procedure and performed numerical test on a set of benchmark
problems to demonstrate the viability of their heuristic.

Logendran and Sonthinen (1997) developed a Tabu search heuristics and
statistical experimentation to present a ‘‘good” solution for solving a problem within a
flexible manufacturing system. In their work they identify a six part Tabu-search
heuristic. The application of this study to this literature review was primarily focused on
heuristic development and application ove_:rview in the area of flexible manufacturing
systems.

Dell’ Amico (1996} analyzed the performance of lower and upper bounds for a

flow-shop problem with two machines. This study used a Tabu search algorithm and
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proved the effectiveness of the proposed bounds through computational results.
Although this study was focused on machine scheduling the applications relevance was
targeted toward the understanding of knowledge gaps related to assemblies.

Moccellin and Nagano (1998) evaluated the relative performance of Tabu search
procedures. Their focus was in the area of flow shop sequencing (which has application
to assemblies). Moccellin et al. (1998) presented methods to improve heuristics by
obtaining an initial solution using the traveling salesman problem and then Tabu search
methods to improve the initial solution.

Consiglio and Zenios (1999) presented a multimodal Tabu search procedure with

empirical results.

2.4.'}.' Additional Techniques

Finite-Element and Difference Methods were investigated for applicability and
references such as Grieme (2011), Sinipson (2008), and [96] Asvadurov, Druskin,
Guddati and Knizhnerman (2003) were explored for further relevance to this dissertation.

Brown and Spillane (1989) described a knowledge-based design aid for
fabrication of a low-cost boiler component. Of particular interest in this study was that
the design approach they used was a pseudo-random search technique to improve the
design cost (Brown et al, 1989). Application to this research was focused on the
heuristics and their use of “applications” as part of testing their design aid.

Bracker and Pearson (1986) developed a planning process with comparison to a

specified area of interest. The authors used multivariate analysis of variance in their
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determinations. The primary use of this study in this dissertation was relative to gaining
insight into approaches and hypothesis testing examples.

Kozan (2000) developed an analytical framework for the examination of
inventory strategies for an assembly plant'. The model addressed minimization strategy
along with material management efficiency. Kozan (2000) leveraged this work off of
prior work in the area of vehicle routing problems and used a genetic algorithm in its
implementation. Historical data was used to measure the heuristic efficiency.

Phoomboplab and Ceglarek (2007) proposed a design synthesis framework for
dimensional management of a multi-stage assembly system. Applications from this work
included tolerance optimization, fixture layout, and part-to-part joint design. Of note, this
work presented a methodology to illustrate a subassembly design configuration and

framework (e.g., heuristic for part assembly).
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2.5 Research Hypotheses

The null and alternate hypotheses for this research are:

Hy: No relationship/correlation exists to assess the additive relationship of a
truncated standard normal distribution with another identical distribution.

H,: Analysis of the relationships between additive truncated standard normal
distributions and a given truncated standard normal distribution will provide
meaningful correlation data.

H,: Regression analysis between an additive truncated standard normal
distributions and a given truncated standard normal distribution will provide
meaningful data regarding the relationshib between these distributions.

Hs: A heuristic based approach for the analysis of a truncated standard normal

distributions using its characteristic function and inversion factor can produce

z,
results equivalent to f(z)dz = j

7, N2

These hypotheses will be tested in a later chapter along with the establishment of
a heuristic framework/approach for the assembly of truncated normal distributions, and
compilation of a comparative analysis of the subject matter. In addition to these research
hypotheses, a comparative review will be performed to identify the dominant methods

identified in the literature review along with relevant research gaps.
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CHAPTER 3

METHODOLOGY

3.1 Research Method Overview

The research approach for this dissertation employs a literature review,
comparative analysis, truncated standard normal distribution analysis, application
demonstrations, heuristic development and hypotheses testing. An overview of the
process employed for this research is depicted in Figure 2.

In this dissertation the literature review follows the initial development of the
research questions. These reviews aid in the development of the research hypotheses
identified in Chapter 2. Further analysis/comparative reviews aid in the identification of
knowledge gaps to substantiate the research hypotheses. Mathematical formulations,
correlation and regression analysis tests, along with observation and inspection provide
insight into the research questions posed by this dissertation.

This research provides an a}ternative approach and techniques for solving single
doubly truncated standard normal distributions through use of its characteristic function.
Mathematical formulations of this phenomenon lising an inversion factor are presented in
Appendix A. This approach provides new evidence and performs empirical analysis not

previously identified by prior work.
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Figure 2: Research Process Overview
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Eighty-one combinations of a single doubly truncated normal distribution will be
evaluated and a baseline inversion factor will be developed to baseline the analysis
results to methods identified by Khasawneh, et al. (2005). These combinations were
evaluated in 0.1 increments ranging from an USL = 4 to a LSL = -4, Combinations for
the assembly of identical doubly truncated standard normal distributions will use the
same range with an overall assembly USL =8 and LSL = -8 (i.e. two assembled
distributions each with an USL =4 and LSL =-4),

The analysis results are evaluated mathematically and compared against known

TSND baselines using correlation and regression analysis. Mathematical inspection and
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analysis observations provide further quantitative and qualitative data. The results of the
analysis will be documented in Appendix B through H, as applicable.

Testing of the research hypotheses is performed following the data analysis. The
heuristics and data analysis resuits serve to “reject” or “fail to reject” the null hypothesis
of this research. Alternate hypotheses evaluations were also conducted to determine if
there was sufficient or insufficient data to “support” the final conclusions for each
hypothesis.

Specifically, this research investigates analysis methods and heuristics for a
truncated standard normal distributions’ characteristic function and seeks to provide an
approach to test the results. The research hypothesis test approach is addressed further in
Section 3.4.

The research approach employed by this dissertation primarily utilized a
quantitative research along with deductive and inductive modes of reasoning to
investigate TSNDs. Creswell (2003) identifies that elements of a quantitative approach
involve “reduction to specific variables and hypotheses and questions” in addition to
“measurement and observation, and the test of theories.” Creswell (2003) also identifies
the characteristics associated with deductive and inductive modes of reasoning. The
quantitative data analysis techniques utilized in this research include mathematical
formulations and their associated statistical analysis. Example data was also generated
and evaluated as part of this approach using various analysis techniques. Other
evaluations included comparative reviews, data interpretation, and heuristic development.
Refer to Sections 3.2, 3.3 and 3.4 for additional details related to research gap

identification, TSND analysis and hypothesis testing.
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3.2 Comparative Review and Research Gaps

A comparative review was performed of a sample of more than 100 relevant
scholarly works in the areas pertaining to assembly, truncated standard normal
distributions, heuristics, EVT and other applicable subsets of this dissertation. A
comprehensive review of these results is shown in Appendices F and G.

The comparative review aided in classifying and categorizing a representative
sample of scholarly works for the purpose of identify truncation methods, heuristics and
analysis methods relevant to TSND within the body of knowledge. In general the
categorization of comparative review was based on the judgment of the author. Attempts
were made to group and categorize literature as objectively as practical. Appendix E
categorization information aided in the review and comparative analysis of the literature
reviewed. Scholarly works were categorized and grouped based on concepts presented
explicitly and implicitly. For example, in some cases a scholarly work may have
addressed heuristic steps without explicitly sighting a procedure or approach as a
heuristic. As a result, those instances were categorized using good judgment with
objective intentions. A primary focus of this review was to identify research and
knowledge gaps in this engineering management discipline. The following general areas
were analyzed:

» (Comparative Review — Selective Assembly/Heuristics/Truncation with specific
categorization based on data source.
» (Comparative Review Heuristics/Benchmarking/Truncation with specific

categorization based on a benchmarking emphasis.
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Comparative Review — Heuristic Type with specific emphasis toward testing
methods.

Comparative Review — Testing Methods & Truncated Assembly.
Comparative Review — Heuristic Data Sources of Truncated Assembly

The results shown in Figures 3 through 7 and Appendices F and G identify

observations of various data partitions for the review variables evaluated. The following

observations are made from the data:

Heuristic procedures represent a knowledge generation method (28% from
Appendix G, Table G.1) and widely used problem solving/approach techniques
used to expand the body of knowledge. Beyond heuristic procedures,
examples/case studies also serve as a widely used and accepted methods for
knowledge creation. Of the benchmarking methods identified in Appendix G,
Table G.1, 43% were involved heuristics in a broader level of review.
Statistical means to benchmark quantitative and/or gualitative results (e.g.,
correlation), and efficiency improvements all represent examples for testing
problems in this knowledge area.

Appendix G, Tables G.2 and G.4 identify that the majority of testing methods
identified in the literature review was performed using some form of
mathematical computafions/model and/or via comparative analysis. Table G.6
identifies heuristics and models as primary analysis techniques for the research.
Appendix G, Table G.3 reinforces the knowledge gap relative to
truncation/selective assembly and heuristics and although data 1s limited data

sources leveraged “example” data as a means of analysis.
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¢ Simulation, historical data, or example data are also widely used data sources for
analyses (i.c. Appendix G, Table G.5).

A review of Appendices F and G also shows that in the area of truncated standard
normal distribution analysis that there is little data related to heuristics, analysis for
truncation of assemblies, and alternative methods for truncated standard normal
distribution using characteristic functions. Figures 3 through 7 provide results for

comparative review compilations for select areas of focus in this dissertation.



48

Figure 3: Comparative Review — Selective Assembly/Heuristics/Truncation
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Figure 5: Comparative Review — Heuristic Type & Testing Methods
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Figure 7: Comparative Review —~ Heuristic Data Sources of Truncated Assembly
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3.3 Truncated Standard Normal Distribution Analysis

One facet of this dissertation research focuses on the analysis of truncated
standard normal distributions. As part of this research the literature mapping identified a
gap in analytical approaches for the compatation of a truncated distribution using a
distributions characteristic function. Original work presented by this dissertation
provides an empirical basis for the proposed approximation of a truncated standard
normal distribution assembly using an inversion factor. Heuristic procedures are
developed by this research and documented in Appendices I and J. A summary-level of
these heuristics are shown in Figures 8 and 10.

Unique aspects of a distributions characteristic function are leveraged by this
research in the analysis of truncated standard normal distributions. P. Billingsley (1995)
identifies that for a given “characteristic function ¢ uniquely determines the measure of p
it comes from.” Therefore, it can be inferred that an inversion formula can be used to
identify the resuit of two doubly truncated normal distributions. This research uniquely
identifies 2 means to obtain the result of such an inversion of a truncated standard normal
distribution and provides inversion factors for this inversion with a baseline against
known truncated standard normal distributions. This research also proposes an
evaluation method to compute the result of two assembled truncated standard normal
distributions through the use of the inversion of the combination of their respective
characteristic functions and proposes the use of inversion factors established for a given
truncated standard normal distribution upper and lower specification limit.

Appendix I documents a baseline inversion heuristic for a truncated standard

normal distribution from a characteristic function. Appendix J expands Appendix I
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heuristic at the assembly level (for identical distributions). Figure 9 provides a simplified
visual representation of two assemblies with a given upper and lower specification.
Equations and relevant calculations are found in Appendix A. Examples of
computational results are found in Appendix D. Analysis results for single and
assembled TSND parameters are identified in Appendix B. Section 3.4 addresses the
analysis testing (e.g. correlation and regression analysis) that was investigated beyond

observations and inspections from the mathematical results.

Figure 8: Heuristic - Analysis for Truncated Standard Normal Distribution
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Figure 9: Truncation Assembly-level Example (Simplified)
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3.4 Hypothesis Testing

This section outlines the hypothesis testing steps performed as part of this
dissertation for each research hypothesis. Various elements of the analysis of the
truncated standard normal distributions are performed mathematically and serve as a
logical axiom and baseline for this research (i.e., Appendix I heuristic logic). For
example, the analysis testing in Appendix H for truncated standard normal distributions
(single distribution) using inversion techniques for its characteristic function was
established using a known TSND baseline. Logically this method is applied to
assemblies by expanding on the mathcmafical formulations in Appendix A.

This dissertation indentified null and alternative hypotheses to be tested.
Mathematical formulation in addition to the structure hypothesis tests aid in the
investigation into the analysis of truncated standard normal distributions. This
dissertation uses National Institute of Standards and Technology (NIST) 2014 guidance
that identifies “the p-value is the probability of the test statistic being at least as extreme
as the one observed given that the null hypothesis is true.”

Hypothesis tests will be performed for each hypothesis as follows:

1. Hp will be tested by developing identical distributions for combinations of
distributions with specification limits ranging from -4 to 4. Distributions
combinations increments will be analyzed at increments of 0.1 per distributions
(i.e., 81 combinations of two identical distributions). The assembled distributions
will be analyzed in increments of 0.2 for specification limits ranging from -8 to 8.
The Appendix A equations were used to identify the characteristic function and

other equation inputs and results. Correlation analysis (i.e. Pearson’s correlation
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coefficient) and regression analysis will be performed to assess the relationship
and linear relationship between variables. P-values were also analyzed as part of
statistical testing. Statistical testing will be performed with commonly accepted
statistical software (Minitab® et al.). The final assessment of this hypothesis will
be made following evaluation of the alternative hypotheses. In addition the
correlation analysis and regression analysis from those tests would serve to
“reject” or “fail to reject” this null hypothesis.

a. NIST (2014) identifies that “The choice of a is somewhat arbitrary,
although in practice values of 0.1, 0.05, and 0.01 are common.” As a
result, a significance level of a = 0.05 was assumed for the analysis
performed in this dissertation.,

b. Data results will be reviewed against the evaluation criteria in addition to
the results of the alternate hypotheses to evaluate the hypothesis test
results.

H; will be tested by following the generation of identical distributions for
combinations of distributions with specification limits ranging from -4 to 4. The
distributions combination increments will be analyzed at increments of 0.1 per
distributions {i.c., 81 combinations of two identical distributions). Assembled
distributions will be analyzed in increments of 0.2 for specification limits ranging
from -8 to 8. This hypothesis will be tested by generating the distributions for a
TSND (with adjusted standard deviation) and TSND (using Khasawneh et al.

2005 methods) and evaluating these distributions using TSNDs assemblies (using
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characteristic function inversion). These distribations will be compared as
follows: |
a. Direct comparison by correlation between a TSND (e.g., fT(z) - adju
stdev) and TSND assembly based on its characteristic function.
Evaluations will be performed using Pearson’s correlation coefficient,
regression analysis, p-value, and via mathematical formulation and
observation/inspection.
b. Correlations will also be performed between Ratiol and Ratio 2 as shown
in Appendices B and C. Correlations will also be performed between
Ratio 3 and Ratio 4 as shown in Appendices B and C. The ratios represent
ratios between TSND assembly-level truncated distributions (with a
standard deviation of 1 and an alternative which utilizes a standard
deviation of square root of the sum of the squares of each distributions
standard deviation).
c. A significance level of o = 0.05 was assumed based on NIST (2014)
guidance.
d. Data results will be reviewed against the evaluation criteria to evaluate the
hypothesis test results.

3. H; will be tested by following the generation of identical distributions for
combinations of distributions with specification limits ranging from -4 to 4. The
distributions combination increments will be analyzed at increments of 0.1 per
distributions (i.e., 81 combinations of two identical distributions). Assembled

distributions will be analyzed in increments of (1.2 for specification limits ranging
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from -8 to 8. This hypothesis will be tested by generating the distributions for a
TSND (with adjusted standard deviation) and TSND (using Khasawneh et al.
2005 methods) and a evaluating these distributions usiﬁg TSNDs assemblies
(using characteristic function inversion). These distributions wili be evaluated as
follows:

Regression analysis between a TSND (e.g., fT(z} - adju stdev) and TSND

P

(e.g.. fT(z) —assy) assembly based on its characteristic function.

b. Regression analysis between a TSND (e.g., fT(z) - standard) and TSND
(e.g.. fT(z) - assy) assembly based on its characteristic function.

c. A significance level of a = (.05 was assumed based on NIST (2014)
guidance.

d. Data reselts will be reviewed against the evaluation criteria to evaluate the
hypothesis test results,

4. Hi: A heuristic based approach for the analysis of a truncated standard normal

distributions using its characteristic function and inversion factor can produce

Z; I a
. 2] l (___*z—]
results equivalent to f(z)dz = e’ dz.
z-[ N2z

a. This research hypothesis will be verified by demonstrating the results are
equivalent. Correlation and regression analysis will further confirm that
the values have a strong correlation. Regression models will confirm that
the data model equations are equivalent.

b. A significance level of a = 0.05 was assumed based on NIST (2014)

guidance.
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CHAPTER 4

RESULTS

This chapter will discuss the results of the mathematical formulations,

correlations, regression analysis and heuristics developed as part of this research.

4.1 TSND Analysis Results and Heuristics

Appendix A provides a summary of the equations utilized as part of this research
to investigate the analysis of truncated standard normal distributions. Appendices I and J
provide the final heuristics developed as part of this research. Mathematical axioms are
leveraged as part of the formulation applications to truncated standard normatl distribution
assemblies. Correlation analysis and regression analysis identify relationships between
various distributions. These methods of evaluation only aid in identifying distribution
relationships between the alternative analysis formulation presented and other methods

for a single doubly truncated normal distributions.

4.2 Hypothesis Testing Results

Mathematical formulation and observation along with statistical analysis software
(Minitab® et al.) were used to test the research hypotheses of this dissertation.
Correlations were used as a means to compare different distribution results and to gain
insight into any observations between distributions. Regression analysis was used to
provide additional insight the relationship between distribution analysis methods.

Hypothests testing was performed using a significance value of « = 0.05 along in
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conjunction with mathematical formulations, observation, and inspection. While an a =
0.05 was specified for analysis testing the results of this dissertation generally indicate
that the results were significant to the 0.01 level (e.g., p < 0.001).

The testing of each research hypothesis involved data analysis, observation, and
interpretation. Hypothesis testing results are documented in an Appendix C, D, and H.

The research hypotheses were tested as follows:

Hy: No relationship/correlation exists to assess the additive relationship of a
truncated standard normal distribution with another identical distribution.

This null hypothesis is rejected. Mathematical formulation along with correlation
and regression analysis performed as part of alternate hypdthesis analysis generally
indicate a statistically significant and strong positive relationship (p < 0.001) for all
distributions analyzed (where a p-value could be calculated). Additionally, observations
and inspections of mathematical formulations support this conclusion. Regression
analysis provides further insight into the relationship between assembly-level truncation
analysis (using two different methods). R-values ranging from 99.13% to 100% for cubic
line model plots further support this conclusion. Appendices B and C document the

results and other corresponding analysis.

H,: Analysis of the relationships between additive truncated standard normal
distributions and a given truncated standard normal distribution will provide meaningful

correlation data.



Mathematical formulations presented in Appendix A along with correlation
analysis testing results support alternate hypothesis H;. Correlation data generally
indicates a statistically significant and strong positive relationship (p < 0.001) for all
analyzed distributions (where a p-value could be calculated). Meaningful results are
defined as either a statistically significant relationship, positive correlation/relationship,
or any other observed, calculated, or identified parameter which provides data or
indications not previously understood by the body of knowledge. Additionally,
observations and inspections of mathematical formulations support this conclusion.

Appendices B and C document the results and other corresponding analysis.

H;: Regression analysis between additive truncated standard normal distributions
and a given truncated standard normal distribution will provide meaningful data
regarding the relationship between these distributions.

Mathematical formulations presented in Appendix A along with regression
analysis testing results support alternate hypothesis H;. Regression analysis generally
indicates a statistically significant and strong positive relationship (p < 0.001) for all
analyzed distributions (where a p-value could be calculated). Meaningful results are
defined as either a statistically significant relationship, positive correlation/relationship,
or any other observed, calculated, or identified parameter which provides data or
indications not previously understood by the body of knowledge. Additionally,
observations and inspections of mathematical fqrmulations support this conclusion.

Appendices B and C document the results and other corresponding analysis.
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Hj: A heuristic based approach for the analysis of a truncated standard normal

distributions using its characteristic function and inversion factor can produce results

. i)
equivalent to f(z)dz = j € dz ..
ZI.

N2z

Mathematical formulations presented in Appendix A along with Appendix H
analysis support alternate hypothesis H4. Appendix H results confirm that the baseline
mathematical formulations via correlation and regression analysis. Appendix H
regression results confirm that the results of the equations for a given X value are
equivalent. This is confirmed graphically as wé]l as through the examination of the
fitted line plot equation for cubic model from the regression analysis. In addition to these
results the correlation and regression analysis generally indicates a statistically significant
and strong positive relationship (p < 0.001) for the distributions analyzed (i.e., -1 to 1, -2
to 2, -3 to 3, and -4 to 4). Additionally, observations and inspections of mathematical
formulations support this conclusion. Appendix H documents the results and other

corresponding analysis.

4.3 Simulation Examples

Examples of mathematical formulations used in this dissertation were developed
using industry software (i.e., NtRand). This industry software was utilized for the
purpose of gcneratiﬁg three examples of random data sets with a population of 10,000
samples for a given USL., LSL, standard deviation, and mean. These data sets were then
analyzed using mathematical formulations presented in Appendix A and using statistical

software (Minitab® et al.).
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The simulations performed were for sample distributions generated from -4 to 4, -3 to
3, and -2 to 2. Identical truncated standard normal distribution assemblies were used for
each analysis of assemblies. Combination of these assemblies was performed using the
distributions characteristic function. Results of this analysis are found in Appendix D. A

summary of the results is also identified below in Tables D.1-D.9.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

For engineering managers, risk managers and quality practitioners, the use of the
standard normal distribution and truncated standard normal distribution have particular
relevance when bounding data sets, evaluating manufacturing and assembly tolerances,
and identifying measures of quality. In particular, truncated standard normal
distributions are used in areas such as component assemblies to bound upper and lower
process specification limits. This research provided an alternative approach to the
analysis of TSNDs using an inversion factor and applied that insight to address the
relationship of truncated distributions.

Heuristic procedures were developed to characterize the approach of this
dissertation along with mathematical formulation and data analysis. The heuristics,
correlations, regression analysis and other investigations performed provided additional
insight into these distributions. Appendix A also documents the equations that form a
part of the heuristic procedures in Appendices I and J. Additionally, truncation assembly
data was provided in Appendix B to address two pair TSND combinations.

This dissertation presents a heuristic approach for the analysis of assembly-level
truncated standard normal distributions. Specifically, this dissertation utilized the unique
propertics of a distributions characteristic function as method for the analysis of truncated
assemblies. A comparative review was performed to aid in the identification of

traditionally accepted analysis and evaluation methods dealing with part truncation.



In addition to the mathematical formulations for TSND assemblies in this
dissertation practical application of the theory was also presented. Three examples of
varying specification limits for a sample size of n = 10,000 were developed to reinforce
the research framework presented. The analysis results for these examples are presented
in Appendix D.

In general, the mathematical formulations performed in conjunction with the
correlation and regression analysis results support the alternate hypotheses of this
research. The approach presented also provides a framework and baseline for future
efficiency and heuristic improvements along with conceptual expansion toward the

potential application to other distributions.

5.1 Research Question Conclusions
The research questions, literature review, comparative analysis, TSND analysis,
hypothesis testing, and other evaluations assisted with interrogatory review. The

following statements and conclusions are provided:

Research Question 1: What are the research gaps relative to truncated standard
normal distribution analysis and is there an opportunity to address a portion of these
gaps?

e This question poses a contextual question aimed at addressing TSND research
gaps. The question was posed as a means to narrow the focus of this research

(relative to assemblies) and to initiate a framework for future expansion of this

work. The literature review and comparative analysis results confirmed the
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existence of research gaps as compared to the sample population of scholarly

works reviewed.

Research Question 2: Does the analysis of two truncated standard normal
distributions (i.e., assemblies) provide a quality indicator and/or an enhanced
understanding of characteristics of truncated distributions with respect to assemblies?

* This research question focused on the analysis of two truncated standard normal
distributions as a means to gain insight into assemblies. An assembly in its
simplest form contains at least two pieces. This is important to engineering
managers and other decision makers as it serves as the foundation for
understanding more elaborate assemblies. Baseline and assembly level TSND
mathematical formulations along with correlation and regression analysis provide

insight into the relationships analyzed.

Research Question 3: To what extent can heuristic techniques be employed to aid
in truncated standard normal distribution analysis? What relationships can be inferred
from the analysis of truncated standard normal distributions?

¢ As identified earlier in this dissertation a heuristic serves as an aid for learning,
discovery and problem-solving. The use of heuristics was considered as a method
of knowledge generation. Development of a “heuristic” provides a method for
which analysis of truncated standard normal distributions could be performed by

the practitioner. Heuristics provide a method of solving problems.



Understanding the TSND analysis relationships also serves as a benchmark for

future efficiency improvement or expanded evaluations and comparisons.

Research Question 4: Can qualitative or quantitative data sets be developed to
assist decision makers and/or quality practitioners with an enhanced understanding of
truncated standard normal distributions (single and assemblies)?

e This question was initially focused on capturing a framework of assemblies and
single truncated analysis using CF. Qualitative data would come from a
“comparative review” or possible graphs whereas quantitative data is apparent in
the analytical portions of the Appendices in this dissertation. Both of these
approaches provide practical methods of enhancing TSND knowledge by a

practitioner.

Research Question 5: Will correlations, goodness-of-fit or other testing methods
provide meaningful data from truncated standard normal distribution (single and/or
assemblies) and other known distributions?

e Correlation and regression analysis testing was performed in addition to the
mathematical formulations, observations, and data inspections of TSNDs.
Statistically significant strong positive relationships were identified in analyses
performed. Regression analysis and correlation analysis for various ratios of
assembly distributions were also evaluated for normal distributions. The test
methods presented (e.g. regression analysis} aid in identifying relationships

between distributions analyzed. Further evaluations beyond TSND distributions
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were considered outside the scope of this work and provide an avenue for future

research in this area.

5.2 Research Assumptions and Limitations
This research includes various assumptions and limitations that form an integral
part of the research. The following assumptions and/or limitations apply to this research:

* This research focuses on truncated standard normal distributions. While this
phenomenon generaily exists in many engineering, financial and related industries
it is important to also understand that that sample distributions may be normal
even though the population as a whole may be better characterized by another
distribution. This limitation could also be the focus of future research in this
field.

* General statistical analysis tools were utilized in this research (e.g., Minitab®,
NtRand, etc.); however, this software is assumed to be a reliable tool used within
industry that provides consistent and repeatable results.

¢ This research scope was limited to the evaluation of identical doubly truncated
standard normal distributions.

e Sample size evaluations were limited and represent a future research opportunity
to provide additional research fidelity and improved accuracy through focused
sample sizes in specific truncation areas of evaluation (e.g. sample sizes with
increments smaller than 0.1 or 0.2).

o Statistical Significance values assumed an a = 0.05 as a generally accepted

significance level per NIST (2014).
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For the purposes of evaluating “f1(z) - adj. stdev”, aoc = 1[0’,2 + 0’22 = 1.414214
was assumed based on similar guidance by Weisstein, E-W (1994-2014).

The research analysis was limited to mathematical formulation, correlation
analysis, and regression analysis. As a result statistical analysis and significance
(e.g.. p < 0.001) does not imply that x causes y.

It is not the intent of this research to attempt to characterize the population or
variations, permutations or other circumstances that may exist in nature.
Mathematical formulations assumptions were based on mathematical axioms
concerning the baseline inversion of a CF using a typical TSND and its

application.

5.3 Future Research Opportunities

Elements of this dissertation research provide various opportunities for continued

or further research in the area of truncated distribution analysis. While this research

focused on the analysis of truncated standard normal distributions expansion of this work

toward the evaluation of other distributions could be considered. This research could also

be further expanded by:

*

Enhancement and improvement of the heuristics developed by this work.
Refinement of the data as a function of sample size.
Evaluation of the application of normalization concepts to concepts presented.

Investigation into the inversion factors for alternative distributions (e.g.,

Wetbull).
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The research analysis was limited to mathematical formulation, correlation
analysis, and regression analysis. Alternative analysis methods could be
considered to further investigate the analysis of TSNDs.

Expansion to part binning and storage assembly of truncated piece parts.
Further expansion into mathematical inversion of CF beyond the concepts
presented in this research.

Expansion of heuristic approach to include search techniques such as Tabu,
beam, and/or other heuristic techniques.

Expansion of comparative reviews to identify interrelationships between various

methods (e.g. benchmarking, testing, heuristic type, etc).
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APPENDICES
APPENDIX A: EQUATIONS
This appendix documents the\ equations utilized as part of the truncated standard
normél distribution analysis used by the research. This section provides general and
specific equations used for the evaluation of truncated standard normal distributions and
corresponding assemblies. The following equations were generally or specifically applied

in this dissertation and heuristic procedures documented in Appendices I and J.

General Equations:

2
4
()= I—;-i(—)—dz 7p<2<1z, (EQUATION 1)
L

7‘ [If(z)a‘z}

Equation 1 Reference: Khasawneh et al. (2005)

| )
i -t
f(z)=—= e( 2 ] (EQUATION 2)
N27
Equation 2 Reference: Khasawneh et al. (2005)

Ly

f(2)dz= J.T'IZ?L’[_;Z: ]dz

o 1 l_zt,lJ
dz = d
f(2dz Z}:Tzz e z (EQUATION 3)

Equation 3 Reference: Khasawneh et al. (2005)

x—4
= (EQUATION 4)
o
Equation 4 Reference: Khasawneh et al. (2005)
2
M 2)= J-ZfTI(Z)dZ (EQUATION 5)
‘-'Lg
Equation 5 Reference: Khasawneh et al. (2005)
: i _[!ﬂfi]
fop,o)= e’ (EQUATION 6)

V2zo



Equation 6 Reference: Johnson et al.(undated) and Billingsley (1995), adapted

o) =@ (1) = E[e“”‘ ]= We‘“p(dx)

-oo

Equation 7 Reference: Billingsley (1995)

e | = cos(t) +isin(z)
Equation 8 Reference: Sheffield (2011)

1 (
?’y(f)?—'m!fr(“)e du

Equation 9 Reference: Abadir et al. (2002)

Pxiy = 9.9,
Equation 10 Reference: Sheffield (2011} and Billingsley (1995), adapted

22
. [0 0
uT—- —

b
o= 1 ke =

Equation 14 Reference: Srinivasa Varadhan (2000)

CF Inversion Equations:

olz) "-“""“!"-**("')"_Tf( (e )Jo" du

" FB)-Fla

Equation 15 Reference: Adapted from Equation 9 with slight nomenclature change

a2
: ot
r——- .-

A= o @

Equation 16 Reference: By inspection a combination of Equations I and 12

i T —itx
(%) ME:[DC’ plz)dr
Equation 17 Reference: Billingsley (1995}

i

Uz

@

1 —itx €
L= 1w o Fe

— X X

Equation 18 Reference: By inspection the incorporation of Equation 13 into Equation 14
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(EQUATION 7)

(EQUATION 8}

(EQUATION 9)

(EQUATION 10}

(EQUATION 11}

(EQUATION 12}

(EQUATION 13}

(EQUATION 14)

(EQUATION 15)
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1 e 1
= v (' | ——————+—= |, Wh Cre= —
f,(x) 27:( Te Fx(b)—Fx(a) where Cre \/ﬂ (EQUATION 16)

Equation 16 Reference: Solved by the author by setting Equation 1 equal to Equation 15. Crc = Equation
15 results/ Equation 1 results for a given z value. See Equation 17

{EQUATION 7}

j f(Z)
If(z)dz

<L

1
ﬁu)~5;&%.

, where Crc = L

NpY

Equation 17 Reference: Set Equation 16 equal to Equation 1. This baselines this equation by this author
and identifies Cyc

For an Assembly:

Given Equation 14

1 f .
And @, (7)= F)e du | —————— | f. )™ du | @ouamion 18)
~ (F (b)- )j E,,(b)~F,,.(a)! *
Equation 18 Reference: Solved by applying equation 10 and 12 and via inspection. @, = @5+ @y

iu‘t—"-;‘z iu t—ai‘:
Then f,(z) 1 Ie""‘ A ¢ dt (EQUATION 19)
T2z 1 |V EB)-Fla) | | Fb)-E()
di ' 42
Equation 19 Reference: Solved by applying Equations 14 and 21 and via inspection. Where dl is
distribution one and d2 is distribution two.

L

I ~ . im’ﬁ 4T i
f (Z)ass\ _‘( ]Ieﬁ e 2 € 2 f (EQUATION 20)
22 (E B ELa)), - Flal),, ) 1N
Equation 20 Reference: Continuation of Equation 19
R o
Where f(x)= ?72—' Ie‘”’ e ? idt=e 2 (EQUATION 21)

Equation 21 Reference: Applied from Billingsley (1995), Equation 11, and Equation 14. For comparison
o= would result in a inversion of CF similar to Billingsley (1995) Equation 26.21. Adjust for z.
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) =_1_ a1 a2 — 1
o Fl@D gy Zz(cﬁ' FEO—F@), *Fb-F@L. | where Crc Ton (EQUATION 22)

Equation 22 Reference: Solved by this author by applying the Equation 17 approach with Equation 20 and
21. Assumes Cyc remains constant given Equations 10 and 11. Given the values for ¢ =1, u=0 the values
of x and z and therefore are interchangeable in the notation for this example.

Appendix B, Table B.1 identifies the following variables not cited in the Nomenclature
Section of this work. They following calculated variables are identified:
*  “fi(z) Standard” is identified as a truncated standard normal distribution where (6= 1, u=0).
Resutlts in this column reflect calculations using Equations 1-5 in Appendix A.
s “fi(z) ~ ASSY” is identified as a truncated standard normal distribution assembly, where (o= 1, p
=0)

*  “fi(z) - adj. stdev” is identified as a truncated standard normal distribution assembly where (o =

Vo, 40,7 = 1414214, 4=0)

*  “NORMPDFASSY" iy identified as a normal distribution (i.e., Equation 2), where (6 = 1, p = 0).

¢  “PDFASSY” is identified as a normal distribution (i.e., Equation 2),where (6 = f (J't2 + 0'22 =
1.414214, u=0).

e “Ratio 17 is identified as ft(z) - ASSY/NORMPDFASSY

e “Ratio 27 is identified as fT'(z)/NORMPDFASSY

o “Ratio 3" is identified as fT{z)/ft(z) - ASSY

e “Ratio 4” is identified as ft(z) - ASSY/PDFASSY

“Ratio 57 is identified as fT{z)/PDFASSY
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APPENDIX B: TSND ANALYSIS RESULTS
This appendix documents the results summary for TSND analysis performed as
part of this dissertation. The results include mathematical results and also evaluate
various ;atios generated using the equations and research steps from Appendix A.
Tabular results include the combinatorial rang of assemblies for identical truncated
standard normal distribution combinations ranging from specification limits of -4 to 4.

Table B.1 summarizes the TSND results of this research.



Table B.1 — TSND Analysis Resnlts

- DISTRIBUTION 1 DISTRIBCTION 2 ASSY
Range =0, gl Ctc » 0.39094228, j =0, o=1, Ctc = 0.398941228, @ =90, a=1, Ctc = 0.39894228, RATIOS
USLASL {unless otherwise noted) USL/LSL (wnless otherwise nated) USL/LSL Malhcmw
. friz) - adh. ) Ratr ¢ Ratie } .
; X i | pwutm | v nlf ofw uda) | it ¥ | afwpda | SEo | ey O L R PER N N P ﬁrf s H,;;!;fj’
Number ! : fits . ’ : ¢ asst | =0 |vandwa}  assy B NORM ANORMPDFA| TR e T
ot 4142 porassy | ssx : : .
I 4 | 000013383 | 0.00033548 | 000013384 | -4 | 0.00013383 | 000033548 | GODMIIRE | -3 | 1 1255FO7 [ 449508 | 3 1746E-08 | 5.05E-15 | 5.05227E-15 | 3.1746E-08 | 1.12521E-07 | 1.59149E-07 | 1 12521E-07] 1 $9149E-07 | D 999959985
3 136 | 000015606 | 000049799 | 000019867 | -39 | 000AITE6A | D 0004TI00 | G GUOTORGT | T8 | 34TG0E07 [0.ROTI-GR| 6 OOIBELA | 2.45E-14 | 2.45286E-14 | 6 994BE-DR § 2 4T028E-07 | 3.506GBEA7 | 24752BE-07) 3 S0668E-07 | 0.999999985
3 ]38 ] 000029195 | G.00073185 | 000029197 | -1R | 0.00029195 | 0.00073185 | DOOO20I97 | 76 | 5 356F-07 |2 137E-07] 18107607 | 1.14E-13 | 114318E-13 | 15107F-07 15 35467E-07 | 757300607 | 5.35467E-07 | 7 S7361E-07 | 0.999999985
3 | 5.7 | 0.00042478 | 0.00106483 | 600042481 | 3.7 | 000047478 | 0.00100983 | 6.06042481 | 74 | 1.1339EDo 4 S23F-07] 3 1083E-07 | 5.13E-13 | 5 1Z775E-13 | 3 1982E07 | \.13358E-06 | 1.60133E-0a | 1.13158E-00 ] 1 60313E-06 | 0.999999985
5 | 2.6 | v.0006119 | 000153301 | 000061194 | 3.6 | 00006119 | 500153391 | 000061194 | -72 | 2.3579E06 10 3E7E-07] 6 365E-07 | 2 21E12 | 2 20709E-17 | 6 63GSE-DT | 2 15228E-0 | 3 33704E-0 | 2 35378F106 | 3 32704E-06 | 0.999999985
4] -3.5 | 0.00087268 | 0.00218763 [ L 0OV87274 | -3 5 | 0O000BT268 { ONI0218761 | 0 0ONET2T4 -7 4 7357F-06 [1 909E-06| 1.3499F-06 | 9.13F-)12 |0 13472612 ] 1 J999E-06 | 4. TR451E-06 | 6 7671BE-QG | 4.78451E-06 | 6 76718E-06 | 0 999999985
7 | 3.4 | 000123222 | 0.00308891 | 60012325 | 3.4 | 000123222 | 000308891 | 0.0012323 | 68 | 9.5414E-06 |3 B0GEU6| 2 6917606 | 3 6IE-11 |3 63096E-11] 26912606 | 9 SIB9SE-06 | { 34918E-05 |9 53895E-0] I 34918E-05 | 0.099999985
8 | 33| 000172357 | 000431811 | 0.00172268 | 3.3 | 000173357 | DOOATIETE | 000172268 | 6 6 | T864GEDS |7 439F.06] 5 2593E-06 § 1 J9E-10] 1 36668E-10| 5 25936-06 | | BoA14E-05 | 2.63667E-05 | 1864 14F-05 | 2 63662E15 | 0 999999985
5 | -3.2 | 000238409 | 00059764 | 000238424 | -3 2 | 000238409 | 00059769 | 0.00258424 | -6.4 | 3.571TE05 |1 425F-03] 1067405 | 5 USE-10] 5 08814E-10| 1.0074E-05 | 3 STOBIE-05 | 5 05056E-05 | 3 57083EDS | 5 0S0S6E-0S | 0999999985

0 3.1 | 000326682 | DOO8IEORT | 000326703 | -3 | | 000326682 | 0 00BIB922 | 0.00326703 | 4.2 | 6.7063E-05 [2 675E-05| 1.8916E-05 |1 T9E-09{  79378E-00 | 1 8916E-05 16 70463E-05 | 9. 4829BE-05 [ 6.70463E-05 | 9 48208E~)S | 0.999999985

1l -3 | 0.00443185 | 00111097 | 000443213 | -3 } 000443185 | 00111097 | D&M43213 } 6 | 0.00012343 [4.924E.05} 3 4813E-D5 §6.08FE-09 { 6 07TSBSE-091 3.4813E-05 | 0000123394 | 0.000174528 |0 000123394 | 0 000174528 | ¢ $99999985

12 2.9 | 0.00595253 | 001492173 | 000595291 | -29 | 000595283 | 01492173 | D.O0595291 | -5 8 | 0.00022266 |8 BB3E-OS| 6.2803E-05 §1 9RE-08 ] 1.97732E-08 | 6 2801E-05 | 0 000222602 | 0 000314846 [0.000222602 | 0.0003 14846 { 0 590960985

i3 28 | 000791545 | D.01984235 | 000791595 | -28 | 0.00701545 | 0.01984235 | 000791595 | -5 6 | 000039372 [0 0001571 0.00011105 ] 6 18F-OB | 6.18262E-08 | 0.00011105 ]0.000393619 | 0.000550732 [0 000193619 | G 000556712 | 0.999999985

19 2.7 ] 00104209 | 0.02612100 | 001042159 | -27 | 0.01042093 | 002612306 | 0.01042159 | -5.4 | 0.00068241 [0 0002722} 0.00019248 §1 86E-07{ 1. 85736F-07 | 0 00019248 | 0000082242 | 0 0600964958 |0 000082242 | 0 000964958 { 0.999999985

15 -2.6 | 0.01358297 | 0.0140496!1 | 001358383 | -2.6 | 0.01358297 | 0.03404961 | 061358383 | -5.2 | 0.00115938 [0.0004625] ¢.00A32701 |5 36E-07 | 5.36104E-07 | 000032701 |0 001159082 | 0.001639398 |0 001153082 | 0.001639398 | 0.9909G9985

0 =25 | 00175283 | 0.04393972 | 0.01752041 | 2.5 | 0.0175283 | 0.043Q3972 | 0.01752041 | -5 006019307 130007702 €.00054457 | t 49E-G6 | 1 48672E-06 | 0 00053457 | 0 0019302t | 2602730074 { 0.00193021 | 0.002730074 | 0 999993935

V7 -24 | 002239453 | 0.05613832 | 002239595 | -24 | 0.02239453 { 005613832 | 0.02239595 | 48 | 0.003E5151 [0 0012573| 0.00088891 | 3 S6E-06 | 3 9613E-06 | 0 G00SREIL | 0 GDI150712 | 0 004456345 10 0031507121 0 004456145 1 0 999999985

18 ~2.3 | D02BI2T0A | 007100985 § 002832883 | -2 | 0.02832704 | 007100985 | 002832883 | 46 | 00050424 [0.0020) 16| 006142225 | 1 01E-0S | 1 GI409E-05 | 000142225 | 00050411220 007130126 {9.005041122] 0007130126 | 0 999999985

19 =22 | 003547459 | 0.08892725 § 003547084 | -2 2 | 0.03547455 | 0 0¥ES2725 | 0.03547684 | 44 | DOOTIURNG [ 0N31549| 0 00223054 | 2 49E-05 | 2 49425E-05 | G 00223054 {0 007906052 0 011182263 {0.007906052{ 0 11182263 | D 399959985

20 -2 1 F D043983e | 0 11025751 | 004398638 | -2.5 | 00439836 [ 011025751 { 004398638 | 4.2 | 0.01215672 [0.0048498| 0 00342891 | 5.89E-05 | 5 B9431-05 | 000342891 10012153639 (D AI719001R (001215163970 0171900 L8 [0 999909988
21 -2 | 065399097 { 6.13534386 | 005399439 | -2 { 005399007 | 0 13534386 | 005399439 | -4 | 0.01B31796 10 0071078| 000516675 | 0 000134 | 000013383 | 000510675 {0018313319 | 0 025902225 |© G1831331910 025902225 | 999999985
22 -t @ | 006561581 | 0.1644B488 | V06561997 | -19 | 0 0656/581 [ 0 1644B488 | 006561997 | -3 & { 0.02705527 {0 0107935] 0 GO763 119 |6.000292 |0 00029[347 [ 6.00763119 | 402704842 {0.0383570B8 | 0 32704842 | @ B3R2570BE | 0 999909985
21 1.8 | 007895010 | 019791524 | 007895510 | -1.8 | 0.07895010 | 0.19701124 | 0.07895510 | -) & | 0.03916886 {0.0156261] 001104793 |0.000612 |0 000011902] 0.01104793 |0 039158934 { 0.085386111 |0 039158934 01.0553861 11 | 0 999099485
24 -1.7 | 009404508 | 623570101 | 0.09405504 | -1 7 | 0.09404998 | 0.23576141 | 0 D9905504 | -3 4 1 005558325 §0.0221745] 0.01567776 |0 001232 |0 061232219} 0.01567770 | 0055569172 | 0 078550632 10 055509172 | 0.078590632 | 0.999979985
25 b6 | 0.1109208) | 0.2780549) | Q.F1092786 | -1.0 | 0.11092083 | 0.27805491 | 0.11082786 | -3.2 | 007730453 ] 0.030844 | 0.02i80726 |0 002384 [0.002384088 | 0.02180726 | 0077294947 | 0 109325411 |0 077294947 ] 0 19932541 1 | 0 G99990085
26 215 | 6129517 | 032467301 | 0 1295258 | -1 5 | 01295176 | 0.32407303 | 0.1295288 =3 | 0 10591258 0 0320535] 0.02973257 |0 004432 [0.00443)848 | 0.02973257 | 0.105185872 | 8 149657¢1 1 |0.105385872| 0 149057011 | 0 499999985
27 =14 | 014972747 | 0.37533487 | 014973695 | -1 4 | 0.14972747 | 037533487 | 0.14973695 | 2.8 | 0 14087627 #.0562015] 0.03973543 | 0.007915 |0.007915452 ) 0 03973543 | 0 140840577 [ 0 t4920388a 10 140840577| 0.199203886 | 0 999999085
28 <13 [ G FTI36859 | 042958457 | 0 17137945 | -1 3 { 0.17136859 { 0.42958457 | 017137945 | -2.6 | 01845429 {0073622| 0052052 | 0.013583 |0.013582969] 0052052 |0 194496149 | 0 260950009 | 0184496 149] 0 260950009 | 0.999999985
29 -12 | 019418605 | 048678309 | 0 19419836 | -1 2 1 0 19418605 | 0 48678300 | 0 (9419836 | -2.4 | 0.23695778 (00945325 0 06683609 | 0022395 | 002239453 | 0.06683609 | 0.236897744 | 0 335066444 |0 236897744 0135066444 | U. 999999985
30 -1 F P 021785218 | 034610902 | 021786598 | -1 1 { 02{785218 | G 54610902 | 021786598 | -2.2 | 0.29823506 [0 1189786] D0B41199 10033475 |0 035474503 | 00841199 }0.298159504 | 042171463 [0.298150504] (42171463 | 0 999999985
31 =1 [ @24197072 | 060656908 | 0 24198605 | -1 | 024197072 | U 60656908 [ 0.24198605 | -2 | 0.36702605 [6 14678131 0 10377688 {0.053991 |0 053950967 | 0 16377687 | 0.367832838 |0 $20260087 |C.367832838} 0 520260087 | 0.999999985

32 0.9 1 0.26608525 | 0.66701906 | 026610211 | 09 { 026608525 | 06670106 | U 26610211 | -1.8 | 0.44491443 [0 1774952 0 12549235 § 0 07895 |0.078950158 | 0.12545214 10.44480171] | 0.629124301 [0.444801711]0.629124301 | 0 999999985

33 ~0.8 | 8.28969155 | 0.72619504 | 02897099 | 03 | 0.2B969155 | 072619504 | 0.2B%7099 | -1.6 | 0.52735923 [0 2103855] 0 14874645 $0.11092¢10.110920835| 0.14B74645 | 0.527225626 | b 745704086 |0.527225626 | 0 745704086 { 0.999950985

34 <007 | 031225393 | 078275412 | 63122737) | 07 | 031225393 | 0.78275412 | 0.31227371 | ~1.4 | 0.61270401 [02444335] 0 17281872 $0 149727 {0 149727466| 0.17281872 |0 612548786 | 0 366384542 |0 612548786 | G §66384542 | 0 999999985

35 0.6 | 03132240 | 0.83532312 | 033324571 § 0.6 | 03332246 | 0.83532152 | 033324571 | ~1.2 | 0.69776472 [0.2783678| 0 15681086 §0.194180 {0.194186055{ 0.19681086 }0 697587944 | 0.986663307 |0.697587944| 0 986663107 { 0.999999985

lo <05 | 035206531 | 088255281 | 035208763 | 035 | 0.35206533 | 0.B8255281 | 035208763 | -1 | 0.77889945 [0.3107359] 0.21969565 [0.241971[0.241920725 | 0.21966564 |0 778702124 | 1 101390613 |0 778702124) | 101350613 | 0.999999985

37 -0.4 | 0.36827014 | 0.92317482 | 6 36829347 | -0 4 | 036827014 | 092317482 | 0 36826347 | -0.8 | D.85225)75 [0.3300903] 0.24038533 | 0 289692 |0 289691553 | ©.24038532 | 0 8520358191 1 205113285 | D 852035819 ! 205113285 [ 0.999999985

I8 <03 | 0.38138782 [ 0.95605804 | G 38141198 | -03 } 038138782 | 0.05605804 | 0.38141198 | 0.6 [ 0.91404698 |0 Iu4652 | 0.25781523 | 0.331225 |0.333224603 | 5 25781523 | 0 913815408 { 1 292403857 | 0.913815408 | 1 292493857 [ 0.99999998S

15 0.2 | 639104260 | 098020077 | 0 39106747 | 42 | 0.39104269 | 098026077 | 035106747 | D4 | 0.96091117 03833481 02716137 | 0.36827 | 0.36827014 | 0.2710337 ]0%000677251 1 358701434 |0 960667725 | | 3SBT61434 | 0 559959985

L6



40 <01 | 039695255 | 099507551 | 0.39607709 | 0.1 | 639055255 | 0.99507551 | 0.29697762 | -0.2 | 0.99017527 [0 3950213' 027928781 0395043 |0,391042694 | D 2792879 |0 989924413 | 1 460141881 [0 98992411} 1 40014188] | 0 999999985
41 0 0 39R24228 | 1 00006135 | 0 IOBIHTSS 0 0.39804228 [ 1 00006335 | 0 I9RG6TSS 0 10001267 O 39!9913' 02820548 |0 398942 | 0 39894278 | 0.28209479 |0 99987339 |1 414211541 |0 9998733197 1 414211541 | 0 999994985
42 D1 | uI9sus255 | 099507551 { 019697769 | 0.1 | £ 19695255 | 0.99507551 | 0.39697769 | 0.2 | 0.99017527 10 3550228] 027928791 | 0.391043 |0 301342694 | 02792879 |0 989924413 | 1 400141881 }0.989924413F 1 400141881 | 0 999999585
43 02 | 039104260 | 098026077 [ 039106747 | 032 | 039104269 | 098026077 | 039106747 | 0.4 | 096091117 [03833481] 02710337 | 0 36827 | 0 36827014 | D 2710337 |0 96060772571 158761434 }0.960067725 | 1 358761434 | 0 999999985
44 03 | 038138782 | 095605804 | 0 IB141198 | 03 | 038138782 | 095605804 | 0 38141198 | 0.6 | 091404698 | 0.364652 | 025781523 |0.333225 |0 333224603 | 0 25781523 |0 913815408 | 1 202493857 |0 9) 3815408} | 297493857 | 0 999999985
45 04 | 036827014 | 092317482 | 036829347 | 04 | 0.36827014 | 0.92317482 | 0.36820347 | 08 | @ BS225175 [0 3399993| 0 24DIR537 | 0 289692 |0 289651551 | 0 24038532 | 0 852035839 | ) 205412285 |0 B52035819] 1 2051 13285 } U 999999485
46 G5 | Q15206533 | G RBI5528L | 035208763 | OS5 | 035206533 | 088255281 | 035208763 ) © 77889945 [0 3107359] 0.21969565 | 0241971 |0 241970725 ] 0 21969564 | 0 778702424 [ 1 1013906E3 |0.778702124] 1 101390613 | ¢ 999999085
47 0o | 03332240 | 683512312 | 033324571 | 0o | 03332240 | 083532312 | 033324571 | 1.2 | 0.60776472 [0 2783678| 0.19681086 | 0 194186 |0 194186055 | 0 15681086 10 697587944 | 0 986061307 | 0.097587944] 0 986663307 | 0 999499983
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APPENDIX C: CORRELATION AND REGRESSION ANALYSIES
This appendix documents the correlation testing and regression analysis
performed as part of the scope of this dissertation. Tables C.1 through C.5 summarize the
correlation and regression results identified in Figures C.1 through C.120. The results are

as follows.



Table C.1 - Pearsen Correlation for ft{z) - ASSY, fT(z) - standard

o=1 | ¥= 0 Correlations:
B n =8l ft(z) - ASSY, fT(z) - standard
Pearson correlation of
USL | LSL | (/). ASSY and fT(z) - adju stdev P-Value
8 -8 0.968 p < 0.001
7.8 -7.8 0,968 p <0.001
7.6 -1.6 0.968 p <0.001
74 -1.4 0.968 p <0.001
7.2 -7.2 0.968 p < 0.001
7 -7 0.967 p < 0.001
6.8 -6.8 0.967 p < 0.001
6.6 -6.6 0.967 p < 0.001
6.4 -6.4 0.967 p < 0.001
6.2 -6.2 0.967 p < 0.001
6 -6 0.967 p < 0.001
5.8 -5.8 0.968 p < 0.001
5.6 -5.6 0.968 p < 0.001
5.4 -5.4 0.968 p < 0.001
5.2 -5.2 0.968 p < 0.001
5 -5 0.968 p < 0.001
4.8 -4.8 0.968 p < (.00}
4.6 -4.6 0.969 p < 0.00]
4.4 -4.4 0.969 p < 0.001
4.2 -4.2 0.970 p < 0.001
4 -4 0.971 p < 0.001
38 -3.8 0.972 p < 0.001
3.6 -3.6 0.974 p < 0.001
34 -34 0.976 p < 0.001
3.2 -3.2 0.978 p < 0.001
3 -3 0.980 p < 0.001
2.8 -2.8 0.983 p < 0.001
2.6 -2.6 0.985 p < 0.001
2.4 -2.4 0.988 p < 0.001
2.2 -2.2 0.991 p < 0.001
2 -2 0.993 p < 0.001
1.8 -1.8 0.995 p < 0.00]
1.6 -.6 0.997 p <0.001
1.4 -1.4 0.998 o < 0.001
1.2 -1.2 0.999 p < 0.001
1 -1 0.999 p < 0.00]
0.8 -0.8 1.000 p < 0.001
0.6 -0.6 1.000 p < 0.00t
0.4 -0.4 1.000 p < (.001
0.2 -0.2 1.000 Note 1

Note 1: For values referencing this note the p-value could not be calculated
Note 2:" Standard deviation is 1, unless otherwise noted in Appendix B
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Table C.2 - Pearson Correlation for ft(z) - ASSY, fT(z) - adju stdev

s=1 p=0 Correlations:
- n==R81 ft(z) - ASSY, fT(z) - adju stdev
Pearson correlation of
USL LSL fi(z) - ASSY and fT(z) - P-Value
standard
8 -8 1 Note 1
7.8 -7.8 1 Note |
7.6 -1.6 1 Note |
74 -74 1 Note |
7.2 -7.2 ! Note |
7 -7 1 Note |
6.8 -6.8 I Note }
6.6 -6.6 i1 Note }
6.4 -6.4 1 Note |
6.2 -6.2 t Note |
6 -6 1 Note |
5.8 -5.8 1 Note |
5.6 -5.6 1 Note |
5.4 -5.4 1 Note |
5.2 -5.2 1 Note |
5 -5 { Note |
4.8 -4.8 i Note 1
4.6 -4.6 1 Note 1
4.4 4.4 1 Note 1
4.2 -4.2 | Note 1
4 -4 | Note 1
38 -3.8 1 Note 1
3.6 -36 | Note 1
34 -34 1 Note 1
3.2 -3.2 1 Note 1
3 -3 1 Note |
2.8 -2.8 1 Note 1
2.6 -2.6 1 Note |
2.4 2.4 1 Note 1
2.2 -2.2 1 Note 1
2 -2 1 Note 1
1.8 -1.8 1 Note |
1.6 -1.6 1 Note 1
1.4 -1.4 i Note 1
1.2 -1.2 1 Note 1
1 -1 ] Note 1
0.8 -0.8 1 Note 1
0.6 -0.6 1 Note 1
0.4 04 1 Note 1
0.2 -0.2 | Note 1

Note 1: For values referencing this note the p-value could not be calculated
Note 2: Standard deviation is 1, unless otherwise noted in Appendix B
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Table C.3 - Pearson Correlation of Analysis Ratios

o=l M=0 Correlations: Correlations:
n=8§1 RATIO 1, RATIO 2 RATIO 3, RATIO 4
Pearson correlation of P- Pearson correlation of

USL | LSL | pATIO | and RATIO2 | Value | RATIO 3and RATIO4 | F-V2lue
8 -8 1 Note | | Note 1
7.8 -7.8 i Note | 1 Note 1
7.6 -1.6 1 Note | 1 Note 1
7.4 -7.4 1 Note | | Note 1
7.2 7.2 1 Note 1 { Note 1
7 -7 1 Note | { Note 1
6.8 -6.8 1 Note | | Note 1
6.6 -6.6 1 Note 1 1 Note |
6.4 -6.4 | Note | | Note 1
6.2 -6.2 1 Note 1 1 Note |
6 -6 1 Note 1 | Note |
5.8 -5.8 1 Note 1 1 Note 1
5.6 -5.6 1 Note | ] Note 1
5.4 -5.4 1 Note | l Note 1
5.2 -5.2 1 Note | | Note 1
5 -5 1 Note | 1 Note 1
4.8 -4.8 1 Note | 1 Note 1
4.6 -4.6 1 Note | 1 Note 1
44 -4.4 1 Note | 1 Note 1
4.2 4.2 1 Note | 1 Note 1
4 -4 ! Note | ] Note 1
3.8 -3.8 [ Note | I Note 1
3.6 -3.6 1 Note | | Note 1
3.4 -34 1 Note | 1 Note 1
3.2 -3.2 1 Note | 1 Note 1
3 -3 1 Note | ] Note 1
2.8 -2.8 1 Note 1 | Note 1
2.6 2.6 1 Note | 1 Note 1
2.4 -2.4 1 Note | 1 Note 1
2.2 22 1 Note | 1 Note !
2 -2 1 Note 1 l Note |
1.8 -1.8 1 Note | 1 Note 1
1.6 -1.6 i Note | l Note 1
1.4 -1.4 1 Note 1 i Note 1
1.2 -1.2 1 Note ] I Note 1
1 -1 1 Note 1 l Note |
0.8 -0.8 1 Note 1 1 Note |
0.6 0.6 i Note | 1 Note |
0.4 0.4 i Note | | Note |
0.2 -0.2 | Note | 1 Note 1

Note 1: For values referencing this note the p-value could not be caiculated
Note 2: Standard deviation is 1, unless otherwise noted in Appendix B
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Table C.4 — Regression Analysis for fi(z) - ASSY, T(z) - standard

103

o= p=0 Regression for:
Note 2 | n=8l1 ft(z) - ASSY, fT(z) - standard
USL | LsL | g“d:.‘; P-Value Fitted Line Plot Equation for Cubic Model
8 -8 99.14% | p<0.001 [ Y= 0007522 +2.915 X-10.14 X**2 + 13.46 X**3
7.8 -7.8 99.14% p<0.001 | Y= 0007806 +2.908 X~ 10.10 X**2 + 1341 X**3
7.6 -7.6 99.14% | p<0.001 [ Y = 0.008111 +2.901 X- 10.06 X**2 + 13.35 X**3
7.4 -7.4 99.13% p<0001 [ Y= 0008441 + 2.893 X - 10.02 X**2 + 13.29 X**3
7.2 -1.2 99.13% | p<0.001 [ Y = 0.008800 + 2.885 X-9.973 X**2 + 13.22 X**3
7 -7 99.13% | p<0.001 [ Y= 0009190+ 2.876 X-9.923 X**2 + 13.14 X**3
6.8 -6.8 99.13% | p<0.001 [ Y= 0.009616+ 2.865 X-9.869 X**2 + 13.06 X**3
6.6 -6.6 99.13% | p<0.001 [ Y= 0.01008 + 2.854 X-9.810 X**2 + 12.97 X**3
6.4 -6.4 99.13% | p< 0001 | Y= 0.01060 + 2.842 X - 9.744 X**2 + 12.88 X**3
6.2 -6.2 99.13% p<0.001 | Y=001117+2.829X-9.671 X**2 + 12.77 X**3
-6 -6 99.14% | p<0.001 | Y= 0.0180+2.814 X-9.500 X**2 + 12.65 X**3
5.8 -5.8 99.14% p<0.001 | Y= 001251 +2.797 X-9.500 X**2 + 12.51 X**3
5.6 -5.6 99.15% p<0.001 [ Y= 001331 +2.778 X - 9.398 X**2 + 12.36 X**3
54 -5.4 99.16% p<0.001 [ Y= 00142242757 X-9.283 X**2 + 12.19 X*¥*3
5.2 -5.2 99.17% p<0.001 | Y=001525+2732X-9.152 X**2 + 11.99 X**3
5 -5 99.19% | p<0.00F [ Y= 001642 +2.705 X -9.002 X**2 + 11.77 X**3
4.8 -4.8 99.21% | p<0.00l [ Y= 001778+ 2.672 X - 8.830 X**2 + 11.51 X**3
4.6 -4.6 99.24% | p<0.001 | Y= 0.01934+2.635X-8.630 X**2 + 11.21 X**3
4.4 -4.4 99.28% p<0.00] { Y= 0.02116+2.593 X - 8.399 X**2 + 10.87 X**3
4.2 -4.2 99.33% p<0.001 | Y= 002327 + 2,543 X -8.131 X**2 + 10.47 X*¥*3
4 -4 99.39% p<0.001 | Y= 002572+ 2.485 X - 7.820 X**2 + 10.00 X**3
3.8 -3.8 99.46% | p<0.001 | Y= 0.02857 + 2.418 X - 7.460 X**2 + 9.468 X**3
3.6 -3.6 99.54% p<0.001 | Y= 0.03186+2.341 X - 7.048 X**2 4 8.855 X**3
34 -3.4 99.62% p<0.001 | Y= 003564 +2254 X-6.581 X**2 + 8.161 X**3
3.2 -3.2 99.71% | p<0.001 | Y= 0.03994 +2.156 X - 6.061 X**2 4+ 7.390 X**3
3 -3 99.79% p<0.001 | Y= 004478 + 2.048 X - 5.496 X**2 + 6.558 X**3
2.8 -2.8 99.86% p<0.001 | Y= 005017+ 1933 X -4.899 X**2 + 5.685 X**3
2.6 -2.6 99.92% n<0.001 | Y= 005607+ 1.813 X-4.291 X**2 + 4.807 X**3
2.4 -2.4 99.95% p<0.001 | Y= 006244 + 1.692 X - 3.696 X**2 + 3.962 X**3
2.2 -2.2 99.98% | p<0.001 | Y= 006919+ 1.574 X - 3.137 X**2 4+ 3.186 X**3
2 -2 99 99% p<0.001 | Y= 007622+ 1462 X -2.633 X**2 + 2.508 X**3
1.8 -1.8 100.00% | p<0.001 [ Y= 008339+ 1.359 X -2.196 X**2 + 1,942 X**3
1.6 -1.6 100.00% | p<0.001 [ Y= 009056 + 1.266 X - 1.829 X**2 + 1,490 X**3
1.4 -1.4 100.00% | p<0.001 | Y= 009755+ 1.185 X - 1.532 X**2 + 1.142 X**3
1.2 -1.2 100.00% | p<0.001 | Y= 01042+ L.115 X - 1.295 X**2 + (0.8829 X**3
1 -1 J100.00% | p<0.001 | Y= 01103+ 1.057 X - 1.112 X**2 4+ (0.6942 X**3
0.8 -0.8 100.00% | p<0.001 | Y= 0.1157 + 1,009 X - 0.9725 X**2 + 0.5600 X**3
0.6 -0.6 10000% | p<0.001 | Y= 01203 + 0.9714 X - 0.8702 X**2 + 3.4670 X**3
0.4 -0.4 100.00% | p<0.001 | Y= 01471+ 0.7627 X - 0.3293 X**2
0.2 -0.2 100.00% | p<0.001 | Y= 0.1985 + 0.5026 X

Note 1: For values referencing this note the p-value could not be calculated
Note 2: Standard deviation is 1, unless otherwise noted in Appendix B



Table C.5 - Regression Analysis for ft(z) - ASSY, fT(z) — adju stdev

o= u=0 Regression for:
Note 2 | n=8l1 fi(z) - ASSY vs. fT(z) - adju stdev
USL LSL ﬁl-ds_](; P-Value Fitted Line Plot Equation for Cubic Model
8 -8 100.00% Note | Y = - 0.000000 + 1.414 X + 0.000000 X**2
7.8 -7.8 100.00% Note | Y = - 0.000000 + 1.414 X + 0.000000 X**2
7.6 -7.6 100.00% Note I | Y = 0000000 + 1.414 X + 0.000000 X**2
7.4 -7.4 100.00% Note | Y = 0.000000 + 1.414 X + 0.000000 X**2
7.2 -7.2 100.00% Note i Y = -0.000000+ 1414 X
7 -7 100.00% | p<0.001 | Y=-0.000000+1414X
6.8 -6.8 100.00% Note 1 = 0.000000 + 1.414 X - 0.000000 X**2
6.6 -6.6 100.00% Note 1 = 0.000000 + 1.414 X
6.4 -6.4 100.00% Note 1 Y = - 0.000000 + 1.414 X - 0.000000 X**2
6.2 -6.2 100.00% Note 1 = -0.000000 + 1.414 X
6 -6 100.00% Note 1 = 0.000000+ 1.414 X
5.8 -5.8 100.00% | p<0.001 | Y= 0.000000+1414X
5.6 -5.6 100.00% | p<0.001 | Y= 0000000+ 1414X
5.4 -5.4 100.00% | p<0.001 | Y= 0.000000+ 1414 X
5.2 -5.2 100.00% | p<0.001 | Y= 0.000000+ 1414 X
5 -5 100.00% | p<0.001 | Y= -0.000000+1.414 X
4.8 -4.8 100.00% | p<0.001 { Y= 0.000000+ 1414 X
4.6 -4.6 100.00% | p<0.001 { Y= 0.000000+1414X
4.4 -4.4 100.00% | p<0.001 | Y= 0.000000+1414X
4.2 -4.2 100.00% | p<0.001 | Y= 0.000000+1414X
4 -4 100.00% | p<0.001 | Y= 0000000+ 1414X
3.8 -3.8 100.00% | p<0.001 [ Y= 0000000+ 1414X
3.6 -3.6 100.00% | p<0.001 [ Y= Q.000000+1414X
34 -3.4 100.00% | p<Q001 [ Y= 0.000000+1414X
3.2 -3.2 100.00% | p<0.001 [ Y= 0.000000+1414X
3 -3 100.00% | p<0.001 | Y= 0000000+ 1414X
2.8 -2.8 100.00% | p<0.001 | Y= 0.000000+ 1.414%
2.6 -2.6 100.00% | p<0.001 [ Y= 0.000000+ 1.414 X
24 -2.4 100.00% | p<0.001 | Y= 0.000000+ 1414 X
2.2 2.2 100.00% { p<0.001 | Y= 0.000000+ 1.414 X
2 -2 100.00% | p<0.001 { Y= 0.000000+ 1414 X
i.8 -1.8 100.00% { p<0.001 | Y= 0.000000+1414X -
1.6 -1.6 100.00% | p<0.001 { Y= 0.000000+ 1414 X
.4 -1.4 100.00% { p<0.001 | Y= 0.000000+1414X
1.2 -1.2 100.00% | p<0.001 | Y= 0.000000+1414X
1 -1 100.00% | p<0.001 | Y= 0.000000+1.414X
0.8 -0.8 100.00% | p<0.001 [ Y= 0.000000+ 1.414X
0.6 -0.6 100.00% | p<0.001 | Y= 0.000000+ 1.414 X
0.4 -0.4 100.00% | p<G.001 [ Y= 0.000000+ 1.414X
0.2 -0.2 100.00% | p<0.001 | Y= 0.000000+1414X
Note I: For values referencing this note the p-value could ot be caiculated

Note 2: Standard deviation is i, unless otherwise noted in Appendix B
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Figure C.1 - TSND Assembly Comparison (USL = 8, LSL = -8)

s«mﬁotofmz) - ASSY, fT(z) - adju std, fT(z) - standard vs X_2
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Figure C.2 - ft(z)-ASSY vs. fi(z) standard Regression (USL = 8, LSL = -8)

¥: {2} - ASSY
X: £7(2) - tanderd

Is thare 2 reistionshvip between Y and X7

P = 0.000 :
The relsticeabp batwasn &{3) - ASSY and f1{2) -
stantard & staostcaly sgrficant (p < 0.0S).

R (adf) = 99.24%
99.14% of the varistion it R(z} « ASSY cn be .
accountad fer by the regression model

05 03 >0s

Regression for ft{z) - ASSY vs fT(z) - standerd
Summary Report

Pitad Line Mot for Cublc Moddl -
Yo 0007522 +2.918 X - 10,14 X**2 + 1345 X**3

G.45
.-
e *
L e
4 I
§ 0.30 ¥
‘o
A
~ -
B %154 ?
.
.00 (
8.0 01 o2 03 [y
17{2) - standard .
The fited aquation far the cubc model that describes the
reitionship between Y and X &

Y w 0,007522 + 2915 X - 10,14 X**2 4 13.46 X**3
H the model fts the data well, this equation can be used
to predict f(2) - ASSY for 3 vabie of 1(2) - standard, or
find the seitings for 1(2) - standard that comespond to a
desired value or range of vakses for f(z) - ASSY,

A statisticaly significant refationshp does not imoly that X
causes Y.
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Figure C.3 - ft(z)-ASSY vs. fi(z) adju stdev Regression (USL = 8, LSL = -8)

Regression for ft{z) - ASSY ws f1(x) - adju stdav
Summary Report

¥: R(z) - ASSY
X (T{2} - mtjy stdev .
L. - Tttud Live Piot or Quadratic Model -
Y= - 0.000000 + 1414 X + 0000000 X**2
45
1 thara 2 roltinaship babwaas ¥ and X7 O]
0 005 Ot >0S5 ) - -
'“- | Mo i 0.30- o
e .
The pvalie cannat be cakcuisbed. . .
’ -
§ 0,151 .
-
L] - *
ooe|
0.0 0.1 0.3
T(2}~ natju shebow
Commantn

Resqt (o)) = 100.00%

100.00% of the varistion i f(r) - ASSY ¢ be
accouwrtad for by the regressdion model

The fited equation for the quad;

the reationship between Y and X i
¥ = -0.000000 + 1.414 X + 0.000000 X**2

T the madel fits the data wel, this equation tan be used

10 predict ft(2) - ASSY for a vakie of 1T{z) ~ adju siev, or

find the saitings for fT(z) - adju stdev that comespord to a

desired vakue or range of values for fi(z) - ASSY.

mode that decrb

A statstically sgniicant rektionship does not imply that X
causes Y.

Figure C4 - TSND Assembly Comparison (USL = 7.8, LSL = -7.8)

Scatterplot of fi(z) - ASSY, 1(z) - adju std, fT(z) - standard vs X_2
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Figure C. 5 - ft(z}-ASSY vs. fi(2) standard Regression (USL = 7.8, LSL = -7.8)

Y: K{7) - KS5Y
X: 7(2) - standard

Lo tham » relationsiip betwaas ¥ and X7

© Pw0.000 '
The relationshp batwamn ft(z) - ASSY and IT(2} -
standat] ks statisticaly signficant (p < 0L.OS).

% of varistion accowwtasd for by rodel

Resq (aon *99,14%

Regression for f(z) - ASSY vs {T(2) - standmd
Surnmmaty Roport

Fithed Ling Pt for Cubic Model
¥ = 0007806 + 2.900 X~ 10.30 X2 + 1341 X**%

DA%
-

¥ e el
§ 0.30 W
.
§ 015 L
-

ol £

Y 01 02 03 o
£r(z) - skanctard

Commants

The fited aguation for the cublc modedthat descrbes the
relitionship between Y and X &

Y = 0.007806 + 2,908 X - 10.10 X**2 + 13.41 X**3
¥ the model &s the data wel, this aquation can be used
to pradkt R{z) - ASSY for a value of IT(2) - standard, or
find the settings for T(2) - standard that corespond to a
desred value or range of valses for f{2) - ASSY.

¢ for by the regy

95.14% of the varstion i i(z) - ASSY can be

mode

causes Y.

A statistically signicamt reltionship does not imply that X

Figure C.6 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 7.8, LSL = -7.8)

Regression for fi(x) - ASSY vs f1(2) - adju stdev
Stmmary Report

¥:R02) - ASSY
X: 17(2) - 2y Rev

Isthare » restioneitip between ¥ and X7
0 005 g1 . >05

ve I i Na

The p-valse cannot be cakc uisted.

T R fock} > 100.00%
100.0(P% of the vasition it &(z) - ASSY can be
tad for by the ok

#2tast Line 0t for Quadratic Medel
¥= - 0000000 + 1,414 X + 6.000000 =42
-2 3
-
. L
L R J
§ 30 .
.
+ .
.-
g 0,154 .
- [
c".
sl o
0.0 ol 02 03
11(z) - adju stéaw
Comments

The fited equation for the quadrtic model that Omscebes
the relationshp betwesn Y and X k:

Y = -0.000000 + 1.414 X + 0.000000 X**2
¥ the modelfits the dita weld, this equation can be used
to predict, f{z) - ASSY for a vase of IT(2) - adju stdev, or
find the settings for 1T(2) - adju stdev that correspond to 3
desirex vakin or range of valses for i{z) - ASSY.

A statistically sgnificant relationship does not imply that X
causes Y,
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Figure C.7 - TSND Assembly Comparison (USL = 7.6, LSL = -7.6)

Scatterpiot of fi{z) - ASSY, fT(2) - adju std, 7(z) - standard vs X_2

Variable
—~— f{z) - ASSY
—— fT(2) - adju stdev
-4 — fT(z) - standard
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e

>

0.1
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Figure C. 8 - ft{z)-ASSY vs. ft(z) standard Regression (USL = 7.6, LSL = -7.6)

Regression for ft{z) - ASSY vs fT(z) - standard
¥: R(2) « ASSY
b 3 - sandard
Fittad Lina POt for Cublc Mosel
Y = 0,008111 + 2,901 X~ 10,08 X**2 + 13,35 X**3
045 -
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¢ 005 0.1 > 05 . .
P = 0.000 " )
The reltinoship between fi(z) « ASSY and 11z} « . g 0.5 - -
standand & Eatttically sprdicant {p < D.05). o
Y
0.0 0.1 0.2 03 04
17(x) - standurd
Commnts
. The fitedd aquation for the cubic model that descrbes the
S of varintion acosswdal for by moded reltionshp between Y and X
o% : 100% ¥ = G,008111 + 2,903 X - 10.06 X**2 + 1335 X**3
.- s ’ I the moge fis the data well, this equation can be usad
- to predict ft{z) - ASSY for a vakre of (T(2) - stardard, or
: Rag () = 99.19% fnd the sestings for FT(z) - standard that comespond to 3
99.14% of the varitin in 11(Z) - ASSY can be desred vakie or range of values for ft(2) - ASSY.
apcounted for by the regresaion moded
A satetraly Sgnifcart reltionship does not Imply that X
causes Y.




Figure C.9 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 7.6, LSL = -7.6}

Regression for R(z) - ASSY ve 1T(2) - adju stdev
Sumemary Report :

¥: R - ASSY
X M2} - atjs st .
T -2 PRiad Line Plot for Quadvatic Madel
¥ = 0.000000 + 1414 X + 0.000000 X**2
045
I thare s rebtionshly belvnas ¥ amd X7 o

o 005 0.1 >0S «*
ve N L b .

The pvakae Canick be cakculated, .
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*
a®

0.001 _"‘

0.0 ['¥1 2
17(2) + sl stibaw

Comamts

The fitad equation for the quadrate model that descrbes
the relbtionship between Y and X i

Y = 0.000000 + 1.414 X + 0.000000 X**2
If the model fts the data wel, this equation can be used
1o predict f(2) - ASSY for a value of $T(2) - adju stdev, o
find the settings for (1{2} - adju stdev that correspond to 2
desred vakie or range of vakues for fi(z) - ASSY.

A aatigticaly sgoficant relstanship does not imply tha X
cavss Y.

Figure C.10 - TSND Assembly Comparison (USL = -7.4, LSL =-7.4)

Scatterpiot of fi{z) - ASSY, fT(z) - adju std, fT(2) - standard vs X_2
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Figure C.11 - ft{(z)}-ASSY vs. ft(z) standard Regression (USL. = 7.4, LSL = -7.4)
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Summary

Raport
¥Y: R7) - ASSY
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stancard & skatintically sgniicant (p < 0.05). .Q_
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Commnty
The fited equation for the cubic model that describes the
reitionship between Y and X &
100% Y = 0.008441 + 2,893 X - 10.02 X**2 + 13.29 X**3
¥ the model Tis the data wel, this squation can be used
’ ta predict f(2) - ASSY for a vakie of IT(2) - standard, o
R-= (8} = 95.13% find the settings for fT(z) - that comesp ba
'99.13% of the varion i1 {2} - ASSY can be i deshed valie o range of values for ft(2) - ASSY.
xxounted for by the ragression madwl
A statstcally sqnificant reitionship does not Imply tha X
causes Y.

Figure C.12 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 7.4, LSL = -7.4)

Ragression for it(z) - ASSY vs fT(2) - adju stdev
Suammary Report
¥: R{z) - ASSY
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Y = 0.000000 + £.414 X - 0.000000 X**2
0.45
Ts theve n ruistinaship belwaes Y and X7 o
0 005 0.1 >058 o?
- - . ..
ves BN e g
The pvabe carmot be calculsted, - .
¥ ois .t
o
o
om0
0o 04 0.2 03
11(2) - siltfm otalanr
Cammamis
The fiter] squation for the quadratic model that descrbes
9% of vartetion sccountes for by wedd the rebtonship between ¥ and X i
0% 100% ¥ = 0.000000 + 1.414 X - 0.000000 X**2
s - I the model fts the gats wed this equation can be used
to predict t{z) - ASSY for a valbe of IT(2} - adju silev, or
Rewqy (9} = 100.00% fird the seitings for f7(2) - adju ey that correspond to a
100.00% of the varistion in ft(z) - AG5Y can be . desied valse or range of values for R{z2) - ASSY.
wzounted foe by the regresinn maded,
A statstically signiicant reXnship does not mply that X
causes Y,




Figure C.13 - TSND Assembly Comparison (USL = 7.2, LSL = -7.2)

_Scatterplot of fi(z) - ASSY, fT(z) - adju std, ﬂ'(z)l-shndaﬂln.x_z
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Figure C.14 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 7.2, LSL = -7.2)

Regression for fR(x) - ASSY vx 1T(z) - standard
Summary Report

¥: R(2) « ASSY
X: fT(z) ~ sandard -
FRtud Live PRt for Cobic Modw!
Y= 0008500 + 2885 X ~S972 X0%2 + 13,22 X*v2
e . 0.45
o thers » nistisnship Setwenn Y pad X2 - ™
0 005 01 >08 e
| o §o® e
P = 0,000 ’ . -
The restionehi) between f(z) - ASSY and fT(z) - § 0.154 .t
standerd §§ statisticaly sigritcant (p < 0.05) «
0001
0.0 o1 0.2 63 04
17(x) - standurd
Commpnts
The fited equation for the cubk model that descrbes the
% of variation accountet for by model refationship between Y and X is:

0% 100%
R-uq {act]) = 99.13%
99.13% of thee visistion ib R{2} - ASSY a be
axzolskad for by the regresson mogel

Y = 0.008800 + 2.885 X-9.973 X**2 + 13,22 X*+3
¥ the moded s the Gata wel, the equation can be used
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A qtatitialy dgnlant reitiorshp does not imply that X
causes Y.
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Figure C.15 - ft(z)-ASSY vs, fi(z} adju stdev Regression (USL = 7.2, LSL = -7.2)

‘Regression for f(x) ~ ASSY ve fT(z) - adju strev
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A stxsticaly signficamt relstionship does not imply that X
causes Y.

The paskive cormelatinn (. 1.00) ndicates et whin
V() - adju Rokev Crenmes, R12) - ASSY i tnds tn
Increaee. ’

Figure C.16 TSND Assembly Comparison (USL =7, LSL = -7)
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Figure C.17 - ft(z)-ASSY vs. fi(z) standard Regression (USL =7, LSL =-7)
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Figure C.18 -fi(z)-ASSY vs. f(z) adju stdev Regression (USL =7, LSL =-7)
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Figure C.19 - TSND Assembly Comparison (USL = 6.8, LSL = -6.8)

 Scatterplot of ft{z) - ASSY, f1(z) - adju std, fT(z) - standard vs X_2

0.4

0.34

ﬂ 0.24

>

0.1 4

0.0-

Variable
—8— f{z) - ASSY
—— 1(2) - odju stdev
~ 4~ fT(7} - sanderd

£0 -

Figure C.20 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 6.8, LSL = -6.8)
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Figure C.21 - ﬁ(z}-ASSY vs. ft(z) adju stdev Regression (USL = 6.8, LSL. = -6.8)
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causes Y,

Figure C.22 - TSND Assembly Comparison (USL = 6.6, LSL = -6.6)

Scatterplot of ft(z) - ASSY, T(z) - adju std, fT(z) - standard vs X_2
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Figure C.23 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 6.6, LSL = -6.6)
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Figure C.24 - ft(z)-ASSY vs. fi(z) adju stdev Regression (USL = 6.6, LSL = -6.6)

Regression for fi{z) ~ ASSY vs £1(z) - adju stdev

C - Summary Report
¥: A7) - ASSY .
X - RAdav
i Fiitad Line Mot for Lingar Model -
T8 thara 5 rubtionsilp balwesn Y and X7 : Y = 0.000000 + 1414 X
b 005 01 05 0.45+
. ves NN "o L
The p-vate cannck be cakcutsted, . 0.30+ .___,.a-'
+ -
-
g 18 1.3 -
: .-
- -~ hd
-
%dmm@tlvuﬂ .00 /'
O e : ! 0o 01 02 03
T} - adie sk .
: Rewq (o) % 100.00% - o .
100.00% of the varition in f(z) - ASSY can be
accounted for by the regression modal The fited equation for the Ineay mode that descrbes the
reftionship between ¥ and X 5

Y = 0.000000 + 1.414 X
1 the moded s the data well, ths equation can be used
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Figure C.25 - TSND Assembly Comparison (USL = 6.4, LSL = -6.4)

Scatterplot of ft(z) - ASSY, fT(z) - adju std, fT(z) - standard vs X_2
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Figure C.26 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 6.4, LSL = -6.4)

Regression for ft(z) - ASSY vg fT{x) - standerd
_ Summary Report
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causes Y.
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Figure C.27 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 6.4, LSL = -6.4)

Regression 6r ft(z) - ASSY ve IT(x) - adju stdev
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3 : A statisticaly sgnificant rebtonship does not mply that X
causes Y.

Figure C.28 - TSND Assembly Comparison (USL = 6.2, LSL = -6.2)

 Scatterplot of ft(z) - ASSY, fT(z) - adju std, fT(z) - standard vs X_2
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Figure C.29 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 6.2, LSL = -6.2)

Regression for ft(z) - ASSY vs fT(z) - standard
Summary
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Figure C.30 - ft(z)-ASSY vs. fi(z) adju stdev Regression (USL = 6.2, LSL = -6.2)

Regression for fifz) - ASSY vs ¢T(2) - adju stdev
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Figure C.31 - TSND Assembly Comparison (USL = 6, LSL = -6)

Scatterplot of fiz) - ASSY, T(z) - adju std, 7(z) - standard vs X_2
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Figure C.32 - ft(z)-ASSY vs. fi(z) standard Regression (USL = 6, LSL = -6)

Regression for i(x) - ASSY vs 17(z) - standard
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Figure C.33 - ft(z)-ASSY vs. fi(z) adju stdev Regression (USL = 6, LSL = -6)
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Figure C.34 - TSND Assembly Comparison (USL = 5.8, LSL = -5.8)

Scatterpiot of ft(z) - ASSY, fT(z) - adju std, fT(z) - standard vs X_2
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Figure C.35 - fi(z)-ASSY vs. ft(z) standard Regression (USL = 5.8, LSL = -5.8)
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Figure C.36 - f1(z)-ASSY vs. ft(z) adju stdev Regression (USL = 5.8, LSL = -5.8)
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Figure C.37 - TSND Assembly Comparison (USL = 5.6, LSL = -5.6)

Scatterplot of fi(z) - ASSY, IT(z) - adju std, ﬂ'(z)-mrdwx_l
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Figure C.38 - 1t(z)-ASSY vs. fi{z) standard Regression (USL = 5.6, LSL = -5.6)
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Figure C.39 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 5.6, LSL = -5.6)
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Figure C.40 - TSND Assembly Comparison (USL = 5.4, LSL =-54)

Scatterpiot of ft{z) - ASSY, fT(z) - adju std, fT(z) ~ standard vs X_2
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Figure C.41 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 5.4, LSL = -5.4)
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Figure C.42 - ft(z)-ASSY vs. ft(z} adju stdev Regression (USL = 5.4, LSL = -5.4)
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Figure C.43 - TSND Assembly Comparison (USL = 5.2, LSL = -5.2)

Scatterplot of 1{z) - ASSY, fT(2) ~ adju std, T(z) - standard vs X_2
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Figure C.44 - ft(z)-ASSY vs. fi(z) standard Regression (USL = 5.2, LSL = ;5.2)
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Figure C.45 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 5.2, LSL = -5.2)
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Figure C.46 - TSND Assembly Comparison (USL = 5, LSL = -5)

Scatterplot of ft(z) - ASSY, fT(z) - adju std, fT(z) - standard vs X_2
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Figure C.47 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 5, L.SL = -5)
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Figure C.48 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 5, LSL = -5)
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Figure C.49 - TSND Assembly Comparison (USL = 4.8, LSL =-4.8)

Scatterplot of ft(z) - ASSY, T(z) - adju std, fT(z) - standard vs X_2
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Figure C.50 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 4.8, LSL = -4.8)
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Figure C.51 - ft(z)-ASSY vs. ft(z) adjn stdev Regression (USL = 4.8, LSL = -4.8)

Regression for ft{z) ~ ASSY vs fT(z) - adju stdev
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Figure C.52 - TSND Assembly Comparison (USL = 4.6, LSL = -4.6)

Scatterplot of ft{z) - ASSY, fT(z) ~ adju std, f1(z) - standard vs X_2
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Figure C.53 - ft(z)-ASSY vs. fi(z) standard Regression (USL = 4.6, LSL = -4.6)

Regression for fi(x) - ASSY vs IT(z) - standard
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Figure C.54 - f(z)-ASSY vs, ft(z) adju stdev Regression (USL = 4.6, LSL = -4.6)
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Figure C.55 - TSND Assembly Comparison (USL = 4.4, LSL =< -4.4)

Scatterplot of fit(z) - ASSY, fT(z) - adju std, 7(2) - standard vs X_2
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Figure C.56 - ft(z)-ASSY vs. fi(z) standard Regression (USL = 4.4, LSL = -4.4)

Regression for ft(z) - ASSY vs f7(2) ~ standard
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Figure C.57 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 4.4, LSL = -4.4)
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Figure C.58 - TSND Assembly Comparison (USL = 4.2, LSL =-4.2)
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Figure C.59 - t(2)-ASSY vs. ft(z) standard Regression (USL =4.2, LSL = 4.2)
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Figure C.60 - 1t(z)-ASSY vs. ft(z) adju stdev Regression (USL = 4.2, LSL = -4.2)
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Figure C.61 - TSND Assembly Comparison (USL = 4, LSL = -4)

Scatterplot of fit(z) - ASSY, 1(z) - adju std, fT(z) - standard vs X_2
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Figure C.62 - ft{z)-ASSY vs. ft(z) standard Regression (USL = 4, LSL = -4)
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Figure C.63 - f{(z)-ASSY vs. fi(z) adju stdev Regression (USL =4, LSL = -4)
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Summany Report

¥z (1) - MGSY
X: {1{z) -ty stder

1s thara 3 relstionshiy between ¥ and X7
0 095 94 >05

| Mo

P = D000

The lationship between #{z) - ASEY and T{z) - adiu
Rdev b statigically synitcank (> < 0.05%

W of viwistion acconnted for iy model

% 100%
. R-sq (ad]) = £00.00%
100.00% of the virietion in fi{x) - ASSY can e
accourted for try the regremion maodel

The postive conaliton (¢ = 1.00) indates that when
() - adju stdev NCrases, fi{2) - ASSY alen tands to
Incresse.

Pittest Ling Pot Yor 1.inder Hodel

¥ = 0000000 + 1414 X
045
a'.
-
e
§ 030 .
é e
E
015 -
¥ e -
- . *
Dm |’ Y v v
Q.0 0.1 D2 03
0f(2) - mife stimv
Conmps
The fted equation for the inear modelthat describes the
reltionship between Y and X &:

¥ = 0.000000 + 1.414 X
¥ the model fts the data wel, this equition can be used
1o predict t(z) - ASSY for a vake of {T(2) - adju stoev, or
fnd the settings for fT{2) - adju stdev that comespond to 3
desrad vakie or range of vabies for f(z} - ASSY.

A statstically signficart rebtionship does not Imply that X
causes Y.

Figure C.64 - TSND Assembly Comparison (USL = 3.8, LSL = -3.8)
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Figure C.65 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 3.8, LSL = -3.8)

Regression for ft(z) ~ ASSY vs {T(x) - standard
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Figure C.66 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 3.8, LSL = -3.8)
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Figure C.67 - TSND Assembly Comparison (USL = 3.6, LSL = -3.6)

Scatterpiot of fi(z) - ASSY, 1(z) - adju std, TT(z) - standard vs X_2
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Figure C.68 - ft(z)-ASSY vs. {i(z) standard Regression (USL = 3.6, LSL = -3.6)
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Figure C.69 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 3.6, LSL = -3.6)
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Figure C.70 - TSND Assembly Comparison (USL = 34, LSL = -34)
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Figure C.71 - ft(z)-ASSY vs. fi{z) standard Regression (USL = 3.4, LSL = -3.4)
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Figure C.72 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 3.4, LSL = -3.4)
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Figure C.73 TSND Assembly Comparison (USL = 3.2, LSL = -3.2)

Scatterplot of ft(z) - ASSY, f7(z) - adju std, 17(z) - standard vs X_2
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Figure C.74 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 3.2, LSL = -3.2)
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Figure C.75 - ft(z)-ASSY vs. fi(z) adju stdev Regression (USL = 3.2, LSL = -3.2)
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Figure C.76 - TSND Assembly Comparison (USL = 3, LSL = -3)

Scatterplot of ft(z) - ASSY, fT(z) - adju std, fT(z) - standard vs X_2

0.4

0.3+

0.1

Variable
o ft{z) - ASSY
~—&— fT{2) - adju stdev
~ -4~ {T{2) -~ sandard

0.0

142



Figure C.77 - ft(z)-ASSY vs. ft(z) standard Regression (USL =3, LSL = -3)
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Figure C.78 - f1(2)-ASSY vs. ft(z) adju stdev Regression (USL = 3, LSL = .3)
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Figure C.79 - TSND Assembly Comparison (USL = 2.8, LSL = -2.8)

Scatterplot of ft(z) - ASSY; f¥(z) - adju std, fT(z) - standard vs X_2
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Figure C.80 - ft(z)-ASSY vs. fi(z) standard Regression (USL = 2.8, LSL = -2.8)
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Figure C.81 - ft(z)-ASSY vs. fi(z) adju stdev Regression (USL = 2.8, LSL = -2.8)
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Figure C.82 - TSND Assembly Comparison (USL = 2.6, LSL = -2.6)

Scatterplot of fi(z) - ASSY, fT(z) - adju std, fT(z) - standard vs X_2
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Figure C.83 - ft(z)-ASSY vs. fi(z) standard Regression (USL = 2.6, LSL = -2.6)
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Figure C.85 - TSND Assembly Comparison (USL =24, LSL =-24)
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Figure C.86 - ft(z)-ASSY vs. fi(z) standard Regression (USL = 2.4, LSL = -2.4)
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Figure C.87 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 2.4, LSL = -2.4)
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Figure C.88 - TSND Assembly Comparison (USL = 2.2, LSL = -2.2)
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Figure C.89 - fi(z)-ASSY vs. ft(z) standard Regression (USL = 2.2, LSL =-2.2)
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Figure C.90 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 2.2, LSL = -2.2)
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Figure C.91 - TSND Assembly Comparison (USL = 2, LSL = -2)

Scatterpiot of ft(z) - ASSY, fT(z) - adju std, fT(z) - standard vs X_2
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Figure C.92 - ft(z)-ASSY vs. ft(z) standard Regression (USL =2, LSL =-2)

Regression for fi{z) - ASSY vs fT(z) - standard
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Figure C.93 ft(z)-ASSY vs. fi(z) adju stdev Regression (USL = 2, LSL =-2)
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Figure .94 - TSND Assembly Comparison (USL = 1.8, LSL =-1.8)

Scatterplot of fi(z) - ASSY, fT(2) - adju std, f7(2) - standard vs X_2
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Figure C.95 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 1.8, LSL = -1.8)

Ragression for ft(z) ~ ASSY vu T(x) ~ standsrd
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causes Y.

Figure C.96 ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 1.8, LSL = -1.8)
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Figure C.97 - TSND Assembly Comparison (USL = 1.6, LSL = -1.6)

-Scatterplot of fi(x) - ASSY, fT(z) - adju std, fT(z) - standard vs X_2
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Figure C. 98 - fi(2)-ASSY vs. ft(z) standard Regression (USL = 1.6, LSL = -1.6)
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Figure C.99 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 1._6, LSL = -1L.6)
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Figure C.100 - TSND Assembly Comparison (USL = 1.4, LSL, = -1.4)

Scatverplot of fi(z) - ASSY, T(z) - adju std, fT(z) - standard vs X_2
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Figure C.101 - ft(z)-ASSY vs. ft{z) standard Regression (USL = 1.4, LSL = -1.4)
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Figure C.102 - fi(z)-ASSY vs. ft(2) adju stdev Regression (USL = 1.4, LSL = -1.4)
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Figure C.103 - TSND Assembly Comparison (USL = 1.2, LSL = -1.2)

Scatterpiot of ft(z) - ASSY, £T(z) - adju std, 11(z) - standard vs X_2
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Figure C.104 - .ft(z)-ASSY vs. fi(z) standard Regression (USL = 1.2, LSL =.1.2)
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Figure C.105 - f1(z)-ASSY vs. fi{z) adju stdev Regression (USL = 1.2, LSL = -1.2)
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Figure C.106 - TSND Assembly Comparison (USL = 1.0, LSL = -1.0)
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Figure C.107 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 1, LSL = -1)

Regression for fi{z) - ASSY vs fT(z) ~ standard
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Figure C.109 - TSND Assembly Comparison (USL = 0.8, LSL = -0.8)

Scatterpiot of fi{z) - ASSY, fT(z) - adju std, T(z) - standard vs X_2
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Figure C.110 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 0.8, LSL = -0.8)
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Figure C.111 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 0.8, .LSL = +0.8)

Regression for R(z) - ASSY vs T(z) ~ adju stdev
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desred value or range of vabes for ft(2) - ASSY.

A statisticaly significamt refstionship does rat imply that X
causes Y,

Figure C.112 - TSND Assembly Comparison (USL = 0.6, LSL = -0.6)

Scatterplot of ft(z) - ASSY, fT(z) - adju std, fT(2) - standard vs X_2
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Figure C.113 - ft(z)-ASSY vs. fi(z) standard Regression {(USL = 0.6, LSL = -0.6)
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Figure C.114 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 0.6, LSL = -0.6)
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find the settings for 17(2) - adju stdey that correspond to 2
desired value o range of valses for ft{z) - ASSY,

A statiticaly sgniicant refikionship does not inply that X
csses Y.
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Figure C.115 - TSND Assembly Comparison (USL = 0.4, LSL = -0.4)

Scatterplot of ft(z) - ASSY, f1(z) - adju std, 1T(z) - standard vs X_2
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Figure C.116 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 0.4, LSL = -0.4)
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causes Y.
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Figure C.117 - ft(z)-ASSY vs. ft{z) adju stdev Regression (USL = 0.4, LSL = 0.4)
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Figure C.118 - TSND Assembly Comparison {USL = 0.2, LSL = -0.2)

Scatterplot of fi(z) - ASSY, fT(z) - adju std, fT(z) - standard vs X_2

. o Varisble
940 g B ey — —e— (z) - ASSY
N - —8— T(z) - adju sidev
0.38- - 4— T(2) - standard
0.361
>
0.32-
. 0.30-
028 #———————— .——— -
. T T T T Y
-0.2 -0.1 0.0 0.1 0.2

163



Figure C.119 - fi(z)-ASSY vs. ft(z) standard Regression (USL = 0.2, LSL = -0.2)
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Figure C.120 - f1(z)-ASSY vs. ft(z) adju stdev Regression (USL = 0.2, LSL = -0.2)
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APPENDIX D: TSND ANALYSIS EXAMPLES

This appendix documents the analysis results for three simulated truncated
standard normal distribution assemblies, Various examples and their results demonstrate
the application of a truncated standard normal distribution characteristic function
inversion using an inversion factor. This example has been baselined against calculation
methods which employ methods found in References [104] and [105].

The three examples identified use the inversion factor verified from a single
truncated standard normal distribution. Inversion factors for truncated standard normal
distributions will be established for various combinations (i.e., USL = 8 to LSL = -8).
For the purpose of this example, identical combinations will be used due to the multitude
of combinations and to maintain simplicity in the calculations presented within the
framework for this research.

Refer to Section 4 for additional information.



Example 1:
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Simulation Input Parameters: p =0, 6 = 1, LSL =-2, USL = 2, n = 10,000 (sample size)

Table D.1 Truncated Distribution Simulation Range, 10,000 Samples (-2 to 2)

Bin | Frequency Bin Frequency Bin | Freguency Bin Frequency

-4 0 -1.9 120 0.1 313 2.1 0
-3.9 0 -1.8 136 0.2 316 2.2 0
-3.8 0 -1.7 118 0.3 352 2.3 0
-3.7 0 -1.6 150 0.4 340 2.4 0
-3.6 0 -1.5 197 0.5 352 2.5 0
-3.5 0 -1.4 189 0.6 331 2.6 0
-3.4 0 -1.3 202 0.7 328 2.7 0
-3.3 0 -1.2 212 0.8 282 2.8 0
-3.2 0 -1.1 238 0.9 298 2.9 0
-3.1 0 -1 241 1 290 3 0

-3 0 -0.9 256 1.1 261 3.1 0
-2.9 0 -0.8 309 1.2 226 3.2 0
-2.8 0 -0.7 304 1.3 230 3.3 0
-2.7 0 -0.6 300 1.4 223 34 0
-2.6 0 -0.5 277 1.5 169 3.5 0
-2.5 0 -0.4 337 1.6 192 3.6 0
-2.4 0 -0.3 306 1.7 164 3.7 0
-2.3 0 -0.2 340 1.8 160 3.8 0
-2.2 0 -0.1 307 1.9 140 3.9 0

-391E-

2.1 0 15 365 2 129 4 0

-2 0 More 0

Table D.2 - Pearson Correlation of Example 1

TSND RANGE

Pearson correlation of
fi(z) a- ASSY and
ft(z) - standard

Pearson correlation of
fi(z) a- ASSY and
ft(z) — adju stdev

USL=2LSL=-2

973

1

Table D.3 - Regression Analysis of Example }

TSND
(USL =2, LSL = -2)

(adj) P-Value

Fitted Line Plot Equation for Cubic

Model

ft(z) a- ASSY and

ft(z) — standard 99.55% | p < 0.001

Y = 0.03426 + 2,546 X - 7.524

X**2 4+ 9.334 X**3

ft(z) a- ASSY and

ft(z) — adju stdev

100% | p<0.001

Y = 0.000000 + 1.545 X
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Figure D.1 - Truncated Distribution Histogram, 10,000 Samples (-2 to 2)
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Figure D.2 - ft(z)-ASSY vs. ft(z) standard Regression, 10,000 Samples (-2 to 2)

Regression for f&(x) - ASSY_1 vs fT(z) - Standard
Summary Report

e,
Piud Lina Mot for Cobic Modad
¥ = D.03426 + 2.546 X - 7.524 X**2 + 9334 X**3
’ 0451
Is thora & rabkionshis batwass ¥ sl X?
0 005 0. >05 ”
P = 0.000 .
The rdalionehp between Rt(x) - ASSY_1 andt fT(z) - .15
Standard i statisticaly signfcant (p < C05) g "
04001 . v
90 &t 02 0.3 oA
#7{z) - Mandard
[« ]
The Mted equation for the cubic mode that describes the
relstpnship between ¥ and X i

Ry (o} = 99.55%
99.55% of the varistin in R} - ASSY_1 can de
aceounted for by the nagreasion model,

Y = 0.03426 + 2,546 X~ 7,524 X**2 + 9.334 X**3

¥ the moded Nits the data wel th equation can be used
o predict ft{x) - ASSY_1 for a vakue of £1(2) - Standard, or
find the settings for (T{z) - dard that correpond to a
Oresiexd vakie of range of vakies for ft(x) - ASSY_1.

A statstxcaly signfcant reltionship does not imply that X
canses Y.
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Figure D.3 - ft(z)-ASSY vs. fi(z) adju stdev Regression, 10,000 Samples (-2 to 2)
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reitionship between Y and X 5

Y = 0.000000 + 1.545X
¥ the mode! fRs the data wed, this equation tan be used
Lo predict ft(x ) - ASSY_1 for a value of (T{2) - adju
stlev_1, or find the settings for (T(2) - adju stdev_1 that
correspond 1o a desied valie ar iange of vakies for fi(x) -
ASSY_1.

A statitically sgnicaat reltionship does not imply that X
causesY.
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Simulation Input Parameters: p =0, o = 1, LSL = -3, USL = 3, n = 10,000 (sample size)

Table D.4 Truncated Distribution Simulation Range, 10,000 Samples (-3 to 3)

Table D.5 - Pearson Correlation of Example 2

Bin Frequency Bin Frequency Bin Freguency Bin Frequency

-4 0 -1.9 57 0.1 365 2.1 57
-39 0 -1.8 67 0.2 386 2.2 39
-3.8 0 -1.7 60 0.3 401 2.3 37
-3.7 0 -1.6 100 0.4 392 2.4 29
-3.6 0 -1.5 129 0.5 371 2.5 18
-3.5 0 -1.4 156 0.6 365 2.6 14
-34 0 -1.3 153 0.7 315 2.7 18
-3.3 0 -1.2 186 0.8 321 2.8 11
-3.2 0 -1.1 192 0.9 303 2.9 7
-3.1 0 -1 228 | 259 3 6

-3 0 -0.9 242 1.1 221 3.1 0
~2.9 9 -0.8 266 1.2 215 3.2 0
-2.8 6 -0.7 326 1.3 188 33 0
-2.7 10 -0.6 337 1.4 138 3.4 0
-2.6 13 -0.5 338 1.5 156 3.5 0
-2.5 17 -0.4 321 1.6 123 3.6 0
2.4 20 -0.3 374 1.7 106 3.7 0
-2.3 23 -0.2 361 1.8 88 3.8 0
-2.2 36 -0.1 392 1.9 89 39 0
-2.1 31 -9 9E-15 400 2 58 4 0

-2 54 More 0

TSND RANGE

Pearson correlation of
ft(z) a- ASSY and
ft(z) - standard

Pearson correlation of
ft(z) a- ASSY and
ft(z) — adju stdev

USL=3,LSL=-3

972

1

Table D.6 - Regression Analysis of Example 2

TSND R-sq
(USL = 3,LSL =-3) (adj) P-Value Fitted Line Plot Equation for Cubic Model
ft(z) a- ASSY and ft(z) - Y = 0.02832 +2.369 X - 7.014 X**2 4+
standard 99.45% | p<0.001 | 8.675 X**3
fi(z) a- ASSY and ft(z) — adju Y = - 0.000000+1.422 X+0.000000 X**2 -
stdev 100% Note 1 0.000000 X**3

Note 1: For values referencing this note the p-value could not be calculated
Note 2: Standard deviation is 1, unless otherwise noted in Appendix B
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Figure D.4 - Truncated Distribution Histogram, 10,000 Samples (-3 to 3)
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Figure D.5 - ft(z)-ASSY vs. ft(z) standard Regression, 10,000 Samples (-3 to 3)
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A statisticaly signficant refetionship does not Imply that X
causes Y,




171

Figure D.6 - ft(z)-ASSY vs. ft(z) adju stdev Regression, 10,000 Samples (-3 to 3)
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A statiziraly signicant reltonship doas not Imply that X
causes Y.
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Simulation Input Parameters: n =0, 6 = 1, LSL = 4, USL =4, n = 10,000 (sample size),

Table D.7 Truncated Distribution Simulation Range, 10,000 Samples (-4 to 4)

Bin Frequency Bin Frequency Bin §| Freguency Bin Frequency

-4 0 -1.9 57 0.1 369 2.1 52
-3.9 0 -1.8 61 0.2 388 2.2 37
-3.8 0 -1.7 59 0.3 411 2.3 38
-3.7 0 -1.6 90 0.4 398 24 25
-3.6 2 -1.5 123 0.5 372 2.5 14
-3.5 2 -1.4 158 0.6 370 2.6 19
-3.4 0 -1.3 156 0.7 315 2.7 Il
-3.3 3 -1.2 182 0.8 317 2.8 12
-3.2 3 -1.1 191 0.9 301 2.9 6
-3.1 1 -1 221 | 253 3 7

-3 3 -0.9 241 1.1 223 3.1 3
-2.9 6 -0.8 274 1.2 221 3.2 4
-2.8 7 -0.7 326 1.3 188 3.3 3
-2.7 8 -0.6 337 1.4 143 34 2
-2.6 11 -0.5 344 1.5 142 3.5 0
-2.5 14 -0.4 330 1.6 122 3.6 0
-2.4 21 -0.3 371 1.7 10} 3.7 0
-2.3 21 0.2 363 1.8 85 3.8 i
-2.2 36 -0.1 399 1.9 87 3.9 0

-991E-

-2.1 28 15 403 2 56 4 0

-2 52 More 0

Table D.8 - Pearson Correlation of Example 3

TSND RANGE

Pearson correlation of
ft(z) a- ASSY and
ft(z) - standard

Pearson correlation of
ft(z) a- ASSY and
ft(z) - adju stdev

USL =4,LSL=+4

972

1

Table D.9 - Regression Analysis of Example 3

TSND R-sq P-
(USL =4, LSL =-4) (adj) Value Fitted Line Plot Equation for Cubic Model
ft(z) a- ASSY and ft(z) — p< | Y= 002827 +2352 X-6.955 X**2 + 8.593
standard 99.45% | 0.001 | X**3
ft(z) a- ASSY and ft(z) ~ adju Note | Y = 0.000000 + 1.414 X - 0.000000 X**2 +
stdev 100% 1 0.000000 X**3

Note 1: For values referencing this note the p-value could not be calculated
Note 2: Standard deviation is 1, unless otherwise noted in Appendix B



Figure D.7 - Truncated Distribution Histogram, 10,000 Samples (-4 to 4)
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Figure D.8 - ft(2)-ASSY vs. ft(z) standard Regression, 10,000 Samples (-4 to 4)

Regression for ft(x) - ASSY_1 vs 1T(z) - Standard

Summary Report
¥ figx) - ASSY_1
% 1T(z) - Starwlaeet
Pibad Line Piot for Cublc Medel
¥ = 0.02627 + 2352 X - £.955 X**2 + 8593 X**3
0.45+
s thare & ralutiorssislp Sakwenw ¥ and X7
a 905 D2 >05 -
‘Mo 0301
P = 0,000 i
The reltionship between ft{x) - ASSY, 1 wid A2} « 2 0451
Kandand s Katsucaly spnicant { < 0.05). § ¥
0.001
0.0 0.4 02 03 04
1T(2) - Randord
Commmpnts
The fter! suation for the cubk modd that describes the
rebationship between Y and X is:

Y = 0.02827 + 2.352 X~ £.955 X**2 4+ 8.593 X**3
¥ the model fts the data wel, this eguation an be used
to predict fefx) - ASSY_1 for a vabe of {T(2} - Sandand, o
Rty (adf) = 9945% g the settings for ({2} - Randard that comespond to 3
90.45% of tiwe varistion in R{x} - ASSY_1 & be desier vale or range of vales for %(x) - ASSY_1,
ccounted for by the ragression model.

A statiticaly significant relstionship B0¢s GOE imply that X
causes Y,
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Figure D.9 - ft(z)-ASSY vs. {t(z) adju stdev Regression, 10,000 Samples (-4 to 4)

Regragsion for f{x) - ASSY_1 ve fT{3) - adju stdev_1
Summary Report

>05

% of variption accountesd for by moded

o% 100%
R-s1 {adf} = 100.00%
100.00% of the variston in fix) - ASSY_1 can tw
acxountedd for by the regression model

FRtad Line Pt fur Culbic Mol
¥ = 0000000 + 1.414 X - 0.000000 X**2 + 0,000000 X**3

8

1T{x} - ndju stbav_3.
Connpnty

Y] 0.1 02 03

The fitad equation for the cubk modd that descrbes the
reitonship between Y and X 5

Y = 0.000000 + 1.414 X - 0.000000 X=*2 + (.000000
Xex3
I the model fits the data wel, this equation can be used
to predict ftix) ~ ASSY_1 far a value of 1T(2) - adjy
stdev_1, or fing the settings for 1T(2) - adju stdev_1 that
correspand to a desired vale or range of valkses for ft{x) -
ASKY_1.

A statisticaly sgniicant reletionship does not imply that X
causes Y.
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APPENDIX E: CATEGORIZATION INFORMATION

This appendix provides grouping information related to the comparative review
and literature review conducted as part of this research. Categorizations generally
focused on the primary method identified by the research in each field of categorization.
The analysis results for the comparative reviews performed are identified in Appendices
F and G. It is not the intent of this dissertation to define the general concepts presented in
this appendix. Refer to relevant references for insight into that level of evaluation which
is outside the scope of this dissertation. In order to reduce the degree of analysis
subjectivity, the following serves to contextualize the groupings performed in this

research:

Search Heuristics: Search Heuristic generally included beam search, pseudo random

search, and tab search heuristics. Refer to Michalewicz and Fogel (1998) for additional

heuristic summary information outside the scope of this work.

Heuristic Procedure: Heuristic procedures were generally grouped to include explicitly
identified heuristic procedure, knowledge based procedure, Taguchi procedures, and
other step by step instructions that are generally representative of a heuristic as defined

above.

Algorithm: Algorithm groupings generally included the references to assignment
algorithms, greedy algorithms, genetic algorithms, network based algorithms, and other
general reference to mathematical steps and formulations. Refer to Michalewicz and

Fogel (1998) for algorithm information which is outside the scope of this work.
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Optimization:; The grouping and identification of optimization techniques was identified

if any of the following optimization methods were identified:

Any Colony Optimization

Perturbation Techniques

Keifer-Wolfwitz Optimization Procedure

Operations Research

Highly Optimized Tolerance (HOT)

Utility Maximization through Criteria Weighting

Optimization Model
Simplex Method (or variant)
Pattern Enumeration

Mixed Integer Programming
Attribute Level Driven
Linear

Policy Space Procedure
Mathematical formulation
Analytical Target Cascading
Simulated Annealing
Heuristic Based

Weighting

Function
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Benchmarking Methods:

An Example, Case Study, Design Specification, and Case Study Compared to design
specification: This benchmarking method was identified if the literature generally or
specifically involved examples, case studies, or design specifications as part of the
literature evaluations.

Heuristics or Other Methods: This grouping was identified if heuristic performance
or computational experiment comparisons were identified by the literature.

Historical or Collected Data Comparisons

Simulation Data or Study: Results of examples compared with simulation study or
other simulation/study comparison

Mathematical Formulation: Identified if the primary benchmarking method observed
dealt with mathematical formulations and related comparisons.

Inconclusive or Not Performed: No experimental comparisons were performed.

Data Source/Simulation:

Historical: Historical data was generally grouped or identified as data that was used
for analysis based on previously collected or possibly even analyzed data. Historical
data was pre-existing data. In some cases historical data was used to compare an
existing state with a proposed future or improved condition.

Data Generated: Any reference to data that was simulated, generated, randomly
created or proposed as part of a scholarly work. Example of data generation could

include such data as Monte Carlo Simulation or random number generation.
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Empirical data: Empirical data was generally identified as data which may have
involved real time results or other industry related data.

Sampled Data: Sample data groups consisted of those groups pulled from identified
sample data from a given process.

Example Data: Example data was grouped as that data which was used for
demonstration purposes. This field differs from data generation or historical data.

Inconclusive — Identified when the data source was not easily or readily identifiable.

Test Methods: Test methods were generally grouped into one of the following

categories:

Efficiency Improvement: Methods in which tests were performed to show an
improvement in efficiency over a given value, process, heuristic, or other measured
result.

Demonstration of “Good” Solution: This grouping included results which focused
not on optimization but on obtaining reasonably accurate or balanced solutions.
Comparative Analysis: Direct or interpreted tests by comparison

Simulation: A test method in which data may have been generated or developed as a
means to produce a data set or solve a solution.

Correlations: Statistical analysis such a Pearson’s Correlation Coefficient or other
general method of comparing the relationships of one variable to another.
Experiment: Test methods done by physical or theoretical method.

Error Ratto: Regression or other analysis in which error ratios were evaluated
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» Mathematical Model: A test method involving the evaluation or utilization of a
mathematical or analytical model.

e Commentary: Qualitative testing focused on interpretation and judgment

“Meaningful results” are defined as: either a statistically significant relationship, positive
correlation/relationship, or any other observed, calculated, or identified parameter which

provides data or indications not previously understood by the body of knowledge.
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APPENDIX F: LITERATURE REVIEW VARIABLES

This appendix provides variables utilized in the gap analysis of the subject dissertation.
Refer to Chapter 2 for the literature review variables reviewed (e.g., truncation, Selective
assembly, etc.). It should be noted that not all references were utilized in this review. An
“X” denotes that the literature identified an explicit or implied identification of the
literature review variable. Additionally, general calculation references, definitions,
duplicative or other references were excluded from this review. All review variables

analyzed are included in Table F.1. Refer to Chapter 2 for additional information.
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TFable F. 1 - Literature Review Table
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Kaman, SAM. &
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Awadrov, S,
Drnuskein, V.,
Goddsti, M., &
Knishnanumn 1.
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APPENDIX G: CATEGORIZATION AND COMPARATIVE ANALYSIS

This appendix provides a categorization and comparative analysis of the literature
review variables for a sample set of data for the subject dissertation. It should be noted
that not all references were utilized in this review. For example, general calculation
references, definitions, duplicative or other references were excluded from this review.
All review variables analyzed are included in Table G.7. Refer to Chapter 2 and

Appendix E for additional information.
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Table G.1 -~ Comparative Review Results Heuristic Type/Benchmark Method
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Table G. 2 - Comparative Review Results Heuristic Type/Test Method
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TFable G.3 - Comparative Review Results Sel. Assy, Heuristic Type, Data Source
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Table G.4 - Comparative Review Results Test Method

197

Testing Truncation Assy No Truncation Grand
{(Primary Method) / Truncation Assy /Truncation Total
Commentary 0% 2% 2%
Comparative Analysis 5% 22% 27%
Correlations 0% 1% 1%
Demonstration of "Good"” Solution 1% 11% 12%
Efficiency improvement 1% 11% 12%
Empirical 3% 1% 4%
Error Ratio 1% 1% 2%
Experiment 0% 3% 3%
Inconclusive or Not Applicable 2% 6% 8%
Mathematical Model or

Computational Result 9% 16% 25%
Simulation 1% 5% 6%
Grand Total 22% 78% 127

Table G.5 - Comparative Review Truncation and Data Source w/Heuristic

Truncation Heuristic

& Heuristic Type Not Grand
Data Source | Identified Identified Total
Data
Generated 5% 20% 24%
Empirical
Data 1% 8% 9%
Example
Data 7% 27% 34%
Historical 0% 8% 8%
Inconclusive
or Not
Applicable 9% 13% 23%
Sampled
Data 0% 2% 2%
Grand Total 22% 78% 127
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Table G.6 —~ Comparative Review Optimization Techniques

Optimization

Technique Total
Analytical Target Cascading 1%
Analytical Target Setting 1%
Attribute Level Driven 1%
Function 1%
Heuristic Based 11%
Highly Optimized Tolerance

(HOT) 1%
Inconclusive 2%
Keifer-Wolfowitz Optimization
Procedure 1%
Linear 1%
Markovian queuing network

model 1%
Mathematical Formulation 4%
Mixed Integer Programming 1%
Not Applicable 43%
Optimization Model 1%
Optimization Model 23%
Partitioned Decision Making

Model 1%
Pattern Enumeration 2%

Semi-Markovian model
generating such an optimal

{(deterministic) routing scheme 1%
Simplex Method (or variant) 1%
Simulated Annealing

Optimization 1%
Stochastic Model 1%
Target Setting 1%
Utility Maximization through

Criteria Weighting 1%
Value iteration and policy

improvement methods 1%
Weighting 1%
{blank) 19

Grand Total 127
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APPENDIX H: RESEARCH HYPOTHESIS H; TESTING RESULTS

This appendix documents the results of research hypothesis H3 testing. Given
that the CF inversion methods presented in this dissertation were developed using a
single doubly truncated standard normal distribution as a baseline, by logical inference
and inspections the results are identical. However, Tables H.1 and H.2 presented below
further reinforce this logical inference through correlation and regression analysis under
the varying USL and L.SL’s presented (i.e., Ct = 0.39894228, Fx(b) = 0.9997, Fx(a) =
3.16712 E-05, n = 81). A Pearson’s correlation of 1 suggests a statistically significant
strong positive correlation. Regression analysis between the two distributions across
varying x-values identifies an adjusted R-square value of 100% at a p-value of <.001.
The corresponding fitted line plot equation confirms that the values are identical. Table

H.3 contains a summary of the hypothesis test table.

Table H.1 - H3 Hypothesis Pearson Correlation of fT(z) and ft(z) - CF

TSND RANGE Pearson correlation of fT(z) and ft(z) - CF
USL=4,LSL=-4 1
USL =3, LSL =-3 1
USL=2LSL=-2 |
USL=1,LSL =-1 |

Table H.2 - H3 Hypothesis Regression Results of fT(z) and ft(z) - CF

R-sq
TSND RANGE (ad})) P-Value Fitted Line Plot Equation for Cubic Model
USL=4,LSL=-4 100% | p <0.001 Y = 0.000000 + 1.000 X - 0.000000 X**2
USL=3,LSL=-3 100% { p<0.001 Y = 0.000000 + 1.000 X
USL=2,LSL =-2 100% | p<0.001 Y = 0.000000 + 1.000 X
USL =1, ESL =-1I 100% | p<0.001 Y = 0.000000 + 1.000 X




Table H.3 - H3 Hypothesis Test Summary Table

X pdf fT(z) olw/n&a) fi(z) - CF
-4 | 0.00013383 | 0.00013384 [ 0.00033548 { 0.00013384
-3.9 | 0.000198655 | 0.00019867 | 0.000495799 | 0.00019867
3.8 | 0.000291947 | 0.00029197 | 0.00073185 | 0.00029197
3.7 0.00042478 | 0.00042481 | 0.00106483 | 0.00042481
236 | 0.000611902 | 0.00061194 | 0.0015339]1 | 0.00061194
235 [ 0.000872683 | 0.00087274 | 0.00218763 | 0.00087274
-34 1 0001232219 | 0.0012323 | 0.00308891 0.0012323
233 0001722569 | 0.00172268 | 0.00431811 | 0.00172268
.32 1 0.002384088 | 0.00238424 | 0.0059764 | 0.00238424
231 0.003266819 | 0.00326703 | 0.00818922 [ 0.00326703
3| 0.004431848 | 0.00443213 | 0.0111097 [ 0.00443213
-29 0.005952532 0.00595291 0.01492173 0.00595291
2.8 | 0.007915452 [ 0.00791595 | 0.01984235 | 0.00791595
27| 0010420935 | 0.01042159 | 0.02612306 | 0.01042159
26| 0013582969 | 0.01358383 | 0.03404961 | 0.01358383
25 0.0175283 | 0.01752941 | 0.04393972 | 0.01752941
24| 002239453 | 0.02239595 | 0.05613832 | 0.02239595
2.3 | 0028327038 | 0.02832883 | 0.07100985 | 0.02832883
22| 0035474593 | 0.03547684 | 0.08892725 | 0.03547684
2.1 | 0.043983596 | 0.04398638 | 0.11025751 | 0.04398638
2| 0053990967 | 0.05399439 | 0.13534386 | 0.05399439
-1.9| 0065615815 | 0.06561997 | 0.16448488 | 0.06561997
-1.8 | 0.078950158 | 0.07895516 | 0.19791124 | 0.07895516
17| 0094049077 | 0.09405504 | 0.23576101 | 0.09405504
-1.6 | 0.110920835 | 0.11092786 | 0.27805491 | 0.11092786
15| 0.129517596 | 0.1295258 | 0.32467303 | 0.1295258
-14 | 0.149727466 | 0.14973695 | 0.37533487 | 0.14973695
13 0171368592 | 0.17137945 | 0.42958457 | 0.17137945
12| 0.194186055 1 0.19419836 | 0.48678309 | 0.19419836
-1.b | 0217852177 | 0.21786598 | 0.54610902 | 0.21786598
-1 | 0241970725 | 0.24198605 | 0.60656908 { 0.24198605
09| 026608525 | 0.26610211 | 0.66701906 { 0.26610211
.8 0.289691553 0.2897099 0.72619504 (.2897099
0.7 | 0312253933 | 0.31227371 | 0.78275412 | 0.31227371
-0.6 | 0.333224603 | 0.33324571 | 0.83532312 | 0.33324571
0.5 0.352065327 | 0.35208763 | 0.88255281 | 0.35208763
04 036827014 | 0.36829347 | 092317482 [ 0.36829347
-0.3 | 0381387815 | 0.38141198 | 0.95605804 | 0.38141198
02! 0391042694 | 0.39106747 | 0.98026077 | 0.39106747
0.1 | 0.396952547 1 0.39697769 | 0.99507551 | 0.39697769
0| 039894228 | 0.39896755 | 1.00006335 | 0.39896755
0.1 | 0.396952547 | 0.39697769 | 0.99507551 | 0.39697769
0.2 | 0.391042694 { 0.39106747 | 0.98026077 | 0.39106747
0.3 1 0381387815 | 0.38141198 | 0.95605804 | 0.38141198
04| 036827014 | 0.36829347 | 092317482 | 0.36829347
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X pdf fT(z) e(Wp&s) | fi(z) - CF
0.5 | 0.352065327 | 0.35208763 [ 0.88255281 | 0.35208763
0.6 | 0333224603 | 0.33324571 | 0.83532312 | 0.33324571
0.7 ] 0312253933 | 031227371 | 0.78275412 | 0.31227371
0.8 | 0.289691553 | 0.2897099 | 0.72619504 | 0.2897099
0.9 1 0.26608525 | 0.26610211 | 0.66701906 | 0.26610211

1] 0241970725 | 0.24198605 | 0.60656908 | 0.24198605
1.1 | 0217852177 | 0.21786598 | 0.54610902 | 0.21786598
1.2 | 0.194186055 | 0.19419836 | 0.48678309 | 0.19419836
13| 0171368592 | 0.17137945 | 0.42958457 | 0.17137945
14| 0.149727466 | 0.14973695 | 0.37533487 | 0.14973695
1.5 | 0129517596 | 0.1295258 | 0.32467303 | 0.1295258
1.6 | 0.110920835 | 0.11092786 | 0.27805491 | 0.11092786
1.7 | 0094049077 | 0.09405504 | 023576101 | 0.09405504
1.8 | 0078950158 | 0.07895516 | 0.19791124 | 0.07895516
1.9 | 0065615815 | 0.06561997 | 0.16448488 | 0.06561997

2| 0.053990967 | 0.05399439 | 0.13534386 | 0.05399439
2.1 | 0.043983596 | 0.04398638 | 0.11025751 | 0.04398638
22| 0035474593 | 0.03547684 | 0.08892725 | 0.03547684
2.3 | 0.028327038 | 0.02832883 | 0.07100985 | 0.02832883
24| 002239453 | 002239595 | 0.05613832 [ 0.02239595
2.5 0.0175283 | 0.01752941 | 0.04393972 | 0.01752941
2.6 | 0013582969 | 0.01358383 | 0.03404961 | 0.01358383
27| 0010420935 | 0.01042159 | 0.02612306 | 0.01042159
2.8 | 0007915452 | 0.00791595 | 0.01984235 | 0.00791595
2.9 | 0005952532 | 0.00595291 | 0.01492173 | 0.00595291

3| 0004431848 | 0.00443213 | 0.0111097 | 0.00443213
3.1 | 0003266819 | 0.00326703 | 0.00818922 | 0.00326703
32| 0002384088 | 0.00238424 | 0.0059764 | 0.00238424
33| 0001722569 | 0.00172268 | 0.00431811 | 0.00172268
34| 0001232219 0.0012323 | 0.00308891 | 0.0012323
3.5 | 0.000872683 | 0.00087274 | 0.00218763 | 0.00087274
3.6 | 0.000611902 | 0.00061194 | 0.00153391 | 0.00061194
37| 0.00042478 | 0.00042481 | 0.00106483 | 0.00042481
3.8 | 0.000291947 | 0.00029197 | 0.00073185 | 0.00029197
39 | 0.000198655 | 0.00019867 | 0.00049799 | 0.00019867

4| 000013383 | 0.00013384 | 0.00033548 | 0.00013384
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Figure H.1 - TSND Range (-4 to 4)

Scatterplot of fT(2), ft{2) -CF vs X

Rest] (20f) = 100.00%
1400.00% of tha varstion I fT{2) can be sccountad kr

by the regrasion modal

Variable
0.4 —— ()
—=— f(2)-CF
0.34
-
B 02
>
0.1
0.0+
L] L] L] ¥ ¥ L] L] L L) L
-5 -4 -3 -2 -1 0 i 2 3 4
X
Figure H.2 - TSND Regression (-4 to 4)
Regression for T(2) vs ft(2) - CF
Summary Report
Y: ()
X: tz) - CF
#iitwé Lina Pict for Quasiatic Model
¥ = 0.000000 + 1,000 X - 0000000 X**2
045
Ts there b relitionahip batwasn Y and X? o
0 005 0 ®
¥ - 0.30- - d
P = 0,000 g, ...'__.-
The ralation i tekwawy 12 and (2] - CF & 05 -*
statisialy sgo¥cant (p < 0.05). .-.._,.
0.001 /. . .
0.0 0.1 02 03 o4
()~
Commants
The ftted equation for the quadratic model that describes
the refationship between Y and X
Y= 0.000000 + 1,000 X - 0000000 X**2

¥ the model fks the data wel, this equation can be used
to predict T(2) for a vabe of (2} - CF, or find the sertings
for (2} - OF that correspond to a dested value oF PInge
of vakues for fT(z).

Astaiticaly significant rebtionship does not imply that X
cases Y.
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Figure H.3 - TSND Range (-3 to 3)

Scatterplot of fT(2)_1,(z)-CF_1vs X_1
Varizble
0.4+ —o— T}
—a— M2)-CF_1
0.3+
8
4 0.2
o>
0.1 -
0.0+
-3 -2 -1 0 1 2 3
X 1
Figure H.4 - TSND Regression (-3 to 3)
Regression for fI(z)_1 vs fi(z) - CF_1
Summery Report
¥: Ml 3
xha o Fet s Line Plot for Linesr Model
15 thvare ¥ relstionshl) betwaan Y and X7 Y= 0.00000 + 1000X
045
0301 —
The relstionship between fT[2)_1 andt Rz} - CF_1 s Q «*
satisticaly sgaficant (p < 0.05). E'. .
.15 o
..... o
% of varistion acosrtad for iy model 0001 /' ‘ ' ]
O oo 100% 0.0 0.1 02 03 04
iz~ CcF_1
Res {ac) = 100.00% Commeants
100.00% of the variation in 11(2), 1 can be accourted
for by the regression mode. The fited equation for the inear model that descrbes the

That posbive correiation (¢ = 1.00) ndicates that when
R{z) - CF_1 ncresees, fT(z) 1 sito ey to ricrewse.

reltionship betwesn Y and X :
. ¥ = 0.000000 + 1.000 X
¥ the modet fXs the data wed, this equation can be used
to predict f{z)_1 for a vakse of ft{z) - CF_1, or #nd the
settings for fi(2) - CF_1 that correspond ta a desied valie
or range of vabes for fT(z)_1.

A statistically sgaficant reltionshp does not Inply that X
causes Y,
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Figure H.5 - TSND Range (-2 to 2)

Scatterpiot of IT(z)_2, fi{z) ~-CF_ 2vs X_2

The postive comulstion {r = 1.00) ihdicates that whan
Q) - CF 2 hooeses, 1z} 2 ko tends to Increns.

y Variable
0.40 —— 1114 2
—&- f{z)-CF2
0,35
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Figure H.7 - TSND Range (-1 to 1)
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APPENDIX I: HEURISTIC ~ TSND BASELINE USING CF INVERSION
This appendix documents the heuristic procedure developed for the baseline
inversion of a characteristic function to a truncated standard normal distribution. The
general equations are presented in Appendix A. A high-level graphical summary of this

heuristic is found in Figure 8. The details for this heuristic are as follows:

Begin Heuristic:

Step 1: Initiate the General Parameters for the Truncated Standard Normal Distribution
I. Define Parameters o0 =1, y =0, USL, LSL, x, n
Il. Define x as a variable between the USL and LSL
a. For a doubly truncated normal distribution (with CF inversion) per
Appendix A, Equations 1-5.
b. For a probability density function (PDF) refer to Appendix A,
Equation (6).
¢. Calculate Z using Appendix A, Equation (4).

Step 2: Calculate the probability density function (PDF} — (for information)

I. Using Appendix A, Equation (6) from Billingsiey (1995), adapted to notation

herein:
=gl
20

1
f(x;ﬂ,O') = '\/2}0'8

Step 3: Calculate the Truncated Standard Normal Distribution
1. Using the defined parameters from step 1 and Appendix A, Equations (1}, (2),
(3), (4) and (5) from Khasawneh et al. (2005), calculate f(z) as follows:

f‘_r' (Z) = I'_v_f"gz)_*—dz 2L _<,. Z _<, 2y (APPENDIX A, EQUATION 1)
* [ | f(z)dz]
)
Where f(z)= e (APPENDIX A, EQUATION 2)

and
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z, 1,2
l __._tz
f()dz= j 6’[ 2 ]O'Z (APPENDIX A, EQUATION 3)
z, N27
Given that:
xX—H
a z= (APPENDIX A, EQUATION 4)
o
2
b. u(2)= IZfT, (2)dz (APPENDIX A, EQUATION 5)
2y

This establishes the baseline for the CF inversion. Khasawneh et al. (2005}
provides further insight into the calculation of a truncated standard normal
distribution using Appendix A, Equations (1) through (5).
. Calculate F (b} and F{a} using Appendix A, Equation (6).
a. For Fyb) the value of X = USL
b. For F.(a) the value of X = LSL

Step 4: Calculate the CF ¢ for the given distribution (Appendix A, Equations 2 and 11)
x=pF e T
L. Since a normal distribution =——=—=—e¢ % hasa ¢(t) = e ? then

Varo
o0)=[ £l du = ¢ 2

(Note: for a continuous distribution b = +o and a = -

2

II. Therefore for a truncated standard normal distribution (use Appendix A,
Equations 12 and 13)

1

_;b e .__ﬂ____ﬁ__wm_ei”—; =_H£:___
olr)= ADE Fx(a)le( Je'*d Fx(b)wpx(a)[ J F.(b)-F.(a)

2,2
ot

iy - 3
€ 2

1 t —itx - _L i
ur ﬁ(x)—E_‘[ﬁe plz)dr = f,(:)_m_j; e — e ldt

F.(b)-F,(a)
a. Using Appendix A, Equations 11 and 15

Step 5: Calculate the truncated standard normal distribution by inversion of the
characteristic function using the inversion factor.
1. Set the results of Step 3.1 (for a given parameter set) equal to step 4.111. The
difference equates to the equation and inversion factor (Crc) in Step 5.11.



228

>
o"x”

1 5 .
il x)=—\Cy, ) 57— | where Cr¢c = ——=—
10~ 5 ) o @ Cre= 7om
a. Noted as Appendix A, Equation 16
b. Where Crc = is a constant for USL and LSL.
Step 6: Buseline the results against a known truncated standard normal distribution
1. Generate a given distribution for a range of x value for a given sample size. For
the purpose of this dissertation increments of 0.1 were used for a given TSND
{e.g. USL/LSL from 4 to -4)
Il.  Perform mathematical formulation in addition to correlation and regression
analysis. An example is identified in Appendix H.
End Heuristic

Note - Refer to Appendix A for additional information on equations, applications, and
references.
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APPENDIX J: HEURISTIC - TSND ASSEMBLY USING CF INVERSION
This appendix documents the heuristic procedure developed from the baseline
inversion heuristic developed in Appendix B. The general equations utilized by this
heuristic are presented in Appendix A. A high-level graphical summary of this heuristic

is found in Figure 10. The details for this heuristic are as follows:

Begin Heuristic:

Step 1: Define the general parameters for the Truncated Standard Normal Distribution
I Define parameters o =1, u =0, USL, LSL, x, n
I. Define x as a variable between the USL and LSL
d. For a doubly truncated normal distribution (with CF inversion) per
Appendix A, Equations 1-5.
e. For a probability density function (PDF) refer to Appendix A,
Equation (6).
f Calculate Z using Appendix A, Equation (4).

Step 2: Calculate the probability density function (PDF) — (for information)
1. Using Appendix A, Equation (6) from Billingsley (1995), adapted to notation
herein:

1
d f(x,,u,a)— 1[2?0'6

Step 3: Calculate the Truncated Standard Normal Distribution
I. Using the defined parameters from step 1 and Appendix A, Equations (1}, (2),
(3), (4) and (5) from Khasawneh et al. (2005), calculate fi(z) as follows:

f(z)

fr()= jm*“*dz 212252, (APPENDIX A, EQUATION 1)
Z
[ | f(z)a'z}
<

Where f(z2)=

(APPENDIX A, EQUATION 2)

and
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Z,. (L, .
1 (-5
f(Ddz= e - J dz (APPENDIX A, EQUATION 3}
z V2x
Given that:
xX—
c. = (APPENDIX A, EQUATION 4)
g
Zyy
d. Uy (2)= J-fol (z)dz (APPENDIX A, EQUATION 5)

This establishes the baseline for the CF inversion. Khasawneh et al. (2005)
provides further insight into the calculation of a truncated standard normal
distribution using Appendix A, Equations (1) through (5).

Il. Calculate F(b) and F.(a) using Appendix A, Equation (6).
e. For F.(b) the value of X = USL
f. For F{a) the value of X = LSL

Step 4: Calculate the CF ¢ for the given distribution (using Appendix A, Equations 2 and
11):
ST .
1. Since a normal distribution = Tom e 29 hasa @(t) = e
o

2 then

; o
iUt~

b 2
o =[flu)edu = ¢ *

{Note: jor a continuous distribution b = +«: and a = -}

I1. Therefore for a truncated standard normal distribution (Appendix 12 and 13):

b = e

Fb)-F a); - F(b)-F.(a)

. o
nt—

Fo-r@ [

oa

. 1 hod ik 1 —itx
ni. Given that _fr(x) = E_J;E @(Tbt,- then = f,(f) = Ej;:[é'

{Appendix A, Equations 11 and 12)
Step 5: Define the characteristic function for x as: The characteristic function of a
probability measure p is defined for real t by (repeat for two identical distributions):

oo

L (0(! ) =@, (I y=FK [e X ] = Iem ’l[(dx ) {Appendix A, Equation 7)

—o9

a. where [e”x ]= cos(r)+isin(?) (Appendix A, Equation 8)
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b. where Py = Q‘(Dy {Appendix A, Equation 10}

I1. Billingsley (1995) identifies that a Characteristic Function has 3 fundamental
properties as follows:
i.  “If u and u2 have respective characteristic functions ¢ (t) and
(1) then p;*uo has characteristic function ¢ (t)*g)(t).
Billingsley (1995) notes that “although convolution is essential
to the study of sums of independent random variables, it is a
complicated operation, and its often simpler to study the
products of the corresponding characteristic functions.
it. The characteristic function uniquely determines the

distribution. This shows that in studying the products in (i), no
information is lost.

iii. From the pointwise convergence of characteristic functions
follows the weak convergence of the corresponding
distributions. This makes it possible, for example, to
investigate the asymptotic distributions of sums of independent
random variables by means of their characteristic functions.”

Step 6: Calculate the truncated standard normal distribution by inversion of the
characteristic function using the inversion factor.
1. Set the results of Step 3.1 (for a given parameter set) equal to step 4.11l. The
difference equates to the equation and inversion factor (Cyc) in Step 5.11.
%
e 2

n. f{x) “EI;(CT“ W , where Cre = ﬁ (Appendix A, Equation 16)

a. Where Cr¢c = is a constant for USL and LSL

Step 7: Abadir, K., & Magdalinos., T. (2002) define the characteristic function for a
doubly truncated normal distribution as: “the variate where x is doubly truncated to ye
(a.b), where b>a, and iis characteristic function is given by the integral (repeat for two
identical distributions :

b
I tp}, (1') = m:!’fx (u)ei"rdu ’ {Appendix A, Equation 12)

. Then logically the sum of the characteristic functions for two doubly truncated
normal distributions is given Equation 10 and Step 7.11.a (Appendix A,
Equation 18).:

| I [ int I p it
a. ?’;(7)3=(m_!fx(“)e duJ(m‘!.fy(u)e duJ

Step 8: Using an inversion formula the sum of two doubly truncated normal distributions
can be used to determine the resulting probability density function for the combined
distribution. Given the following:
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I. Since f(x) = .._L ‘[e_i‘x@(t)df {Appcndix A, Equation [4)
2z

I1. and Appendix A, Equation 10.

1 —itx
Step 9: Solve for f (x),. .= E—;;__[e

{Appendix A, Equation 19)

L 1 rI [ A Iy R4
L f,(0) 5= E((Fx(b)— F, (a))dl *(Fx(b)— Fx(a))d2 ]:[De [e ll[e ]dz]dr

(Appendix A, Equation 20)

o0 -t ot
. [17 % Sudiaasid R E—
i. Where Ie"“‘ |:e ? :ldt =e °? (Appendix A, Equation 21)

ot o’
e 2 e 2
- 1 d1 d2
L f(x),,=~—(C

by AN (Fx(b)_Fx(a))d[*(Fx(b)_Fr(a))dE

, where Cy¢

1
27

{Appendix A, Equation 22)

Step 10: Baseline the results against a known truncated standard normal distribution

(final state)
I. Generate a given distribution for a range of X value for a given sample size. For
the purpose of this dissertation increments of 0.2 were used for a given TSND
(e.g. USL/LSL from 8 to -8. Two identical distributions with an USL (4) and LSL
(-4) were assembled, See Figure 9.
Il. Perform mathematical formulation in addition 1o correlation and regression
analysis. Assembly results are identified in Appendix D, E, and H.

End Heuristic

Note - Refer to Appendix A for additional information on Equations, Applications and
References.
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