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Abstract 

Persistent inward current (PIC) is a membrane property critical for increasing gain of motor 

neuron output.  In humans, most estimates of PIC are made from plantarflexor or 

dorsiflexor motor units with the participant in a seated position with the knee flexed.  This 

seated and static posture neglects the task-dependent nature of the monoaminergic drive 

that modulates PIC activation.  Seated estimates may drastically underestimate the amount 

of PIC that occurs in human motor neurons during functional movement.  The current study 

estimated PIC using the conventional paired motor unit technique which uses the difference 

between reference unit firing frequency at test unit recruitment and reference unit firing 

frequency at test unit de-recruitment (∆F) during triangular-shaped, isometric ramps in 

plantarflexion force as an estimate of PIC.  Estimates of PIC were also made during 

standing anterior postural sway, a postural task that elicits a ramped increase and decrease 

in soleus motor unit activation similar to the conventional seated ramp contractions.  For 

each motor unit pair, ∆F estimates of PIC made during conventional isometric ramps in the 

seated posture were compared to those made during standing postural sway.  Baseline 

reciprocal inhibition (RI) was also measured in each posture using the post-stimulus time 

histogram (PSTH) technique.  Hyperpolarizing input has been shown to have a reciprocal 

relationship with PIC in seated posture and RI was measured to examine if the same 

reciprocal relationship holds true during functional PIC estimation.  It was hypothesized 

that an increase in ∆F would be seen during standing compared to sitting due to greater 

neuromodulatory input.  We found that ∆F estimates during standing postural sway were 

equal (2.44 ± 1.17, p=0.44) to those in seated PIC estimates (2.73± 1.20) using the same 

motor unit pair. Reciprocal inhibition was significantly lower when measured in a standing 

posture (0.0031 ± 0.0251, p<0.001) than seated (-0.0378 ± 0.0415). These results may 

indicate a flaw in the translation of the paired motor unit technique from isolated 

plantarflexion ramp contractions to a functional postural sway task even though standing 

recordings satisfied all validation criteria required for PIC estimation using ∆F.  There is 

continued belief that a functional human estimate of PIC is a valuable tool for postural 

control research and efforts to validate a standing paradigm have been advanced by this 

investigation. 
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LIST OF TERMS AND ABBREVIATIONS 
 

MU:  Motor unit.  A single α-motor neuron and the muscle fibers it innervates. 

EMG:  Electromyography.  A technique used for quantifying the electrical activity of a 

muscle; two variations: surface and intramuscular.  

Spike:  A term used to describe a motor unit action potential extracted from raw 

intramuscular EMG recording using a sorting algorithm in Spike2 software.  Spikes are 

identified based on shape and amplitude parameters. 

ISI:  Inter-spike interval.  The period of time between motor unit action potentials or 

spikes. 

PIC:  Persistent inward current. A motor neuron property responsible for a change in gain 

of the motor neuron.  Largely attributed to steady, inward calcium current and facilitated 

by voltage gated channels located on the somatodendritic membrane regions. 

PMU:  Paired motor unit.  Two nearby motor units activated during a voluntary 

contraction, ideally with slightly different recruitment thresholds. 

ePIC:  Estimated persistent inward current.  PIC estimated in a human using the difference 

in firing frequencies as opposed to the direct method of intracellular recording used in 

animals. 

ΔF:  Delta F.  The outcome measure of the paired motor unit technique.  The difference in 

reference unit firing frequency between test unit recruitment and derecruitment. 

SFA:  Spike frequency adaptation.  A motor neuron property that results in a decrease in 

firing rate the longer the motor neuron remains active. 

STA:  Spike threshold accommodation.  A motor neuron property that results in an increase 

in excitatory input needed to generate an action potential, the slower that excitatory input 

is applied to the cell. 

RI:  Reciprocal inhibition.  A spinal reflex pathway acting through 1a afferent activation 

causing inhibition of the α-motor neuron to the antagonist through a 1a inhibitory 

interneuron. 
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OVERVIEW 

Over a century ago, Sir Charles Sherrington referred to the motor neuron as the 

‘final common pathway’ in the neuromuscular system because the motor neuron dendrites 

and soma are the last site of signal integration in the neuromuscular pathway(Burke, 2007).  

Historically, the motor neuron was viewed as a passive summator that responds to the 

signals it receives.  However this notion has recently been rejected in favor of a model 

where the motor neuron is an active integrator; not only receiving input, but amplifying or 

attenuating descending drive in a state-dependent and task-dependent fashion(Hamm, 

Turkin, Bandekar, O’Neill, & Jung, 2010; Heckman, Mottram, Quinlan, Theiss, & 

Schuster, 2009).  Understanding the mechanisms that modulate spinal motor neuron 

excitability under various states and tasks is crucial in understanding neuromuscular 

function and control. 

There are three factors that can influence motor neuron firing rate:  ionotropic 

descending and afferent inputs, descending metabotropic neuromodulation, and intrinsic 

spinal motor neuron properties (Heckman et al., 2009).  With ionotropic input, 

neurotransmitters are released from presynaptic neurons of descending pyramidal tracts 

and ascending sensory pathways.  These neurotransmitters bind to ionotropic receptors 

resulting in brief depolarization or hyperpolarization of the post-synaptic membrane.  The 

result of ionotropic input is a fast change in membrane potential ideal for action initiation 

or reflex loops.  It is unlikely that summed ionotropic inputs are capable of accounting for 

the large range (almost 10 fold) in motor output the body is capable of (Heckman, Binder, 

& Binder, 1993; Heckman et al., 2009).   The accepted explanation is that neuromodulatory 

input is responsible for allowing membrane excitability to vary so greatly (R. H. Lee & 
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Heckman, 1998a).  More specifically, monoamines produced in the brain stem drive 

changes in intrinsic excitability in a highly state-dependent fashion(Hamm et al., 2010; 

Jacobs, Martín-Cora, & Fornal, 2002; Perrier, 2013).  In contrast, metabotropic input acts 

through protein coupled membrane receptors.  The end effect is carried out through a 

cascade of reactions originating with G-protein activation upon binding to the protein-

linked membrane channel(Perrier, 2013).   Metabotropic input can have a similar excitatory 

or inhibitory effect on the membrane as ionotropic input; however because of the metabolic 

cascade by which it functions the effects are longer lasting but slower.  An example of 

metabotropic input to spinal motor neurons is neuromodulatory drive from descending 

neurons of extrapyramidal tracts(Hounsgaard & Hultborn, 1988).  Neuromodulators can 

adjust the gain of the cell making it more or less responsive to direct inputs(Heckmann, 

Gorassini, & Bennett, 2005).  Finally, the effect any ionotropic or metabotropic input has 

on motor neuron membrane potential can be altered by the intrinsic excitability of the 

membrane.  This intrinsic excitability is defined by the state of multiple types of membrane 

ion channels(Powers, Elbasiouny, Rymer, & Heckman, 2012) that account for many of the 

firing behaviors outside simple summation of inputs that is still under investigation in 

humans.   

Several different intrinsic motor neuron properties that help to determine the 

excitability of the cell have been observed in reduced animal preparations.  These 

properties include, but are not limited to:  afterhyperpolarization potential (AHP), 

persistent inward current (PIC), spike frequency adaptation (SFA) and spike threshold 

accommodation (STA).  While STA and SFA are fairly predictable processes (they have 

been well modeled based on animal data using computer simulations), PIC, which is 
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controlled by the highly state and task-dependent neuromodulatory system, is a multi-

factor, compound process with less material knowledge on how it alters firing 

characteristics. 

PURPOSE AND OBJECTIVES 

 

PIC, which a property responsible for altering the gain of a motor neuron, is 

extremely important in the generation of functionally relevant muscle force(Heckman et 

al., 2009; Johnson, Hyngstrom, Manuel, & Heckman, 2012).  Currently, many of the 

human estimates if PIC take place in a seated posture even though it is a state and task-

dependent phenomenon.  This project aims to take the next step in studying motor neuron 

signal integration by capturing human data while standing.  Previous work in our lab has 

validated the paradigm used to estimate persistent inward current, a property responsible 

for adjusting motor neuron gain in humans.  Now that the validity of our measurements is 

confirmed, the focus becomes the influence of descending input.    Active postural control 

during measurement will provide functionally relevant data that is currently unavailable in 

the literature.   
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PERSISTENT INWARD CURRENT 

Persistent inward current (PIC) is a lasting, inward flow of ions increasing a 

neurons excitability(Schwindt & Crill, 1980).  PIC is an intrinsic property of the neuronal 

membrane capable of eliciting large magnitude changes in output.  An important feature of 

PIC is the ability to adjust the gain of a cell, increasing or decreasing the effect of a constant 

ionotropic input.  PIC is the major contributing property responsible for increasing a motor 

neuron’s intrinsic excitability, increasing motor output up to ten-fold(Heckman et al., 

2009).  This is achieved through activation of voltage activated calcium 

(CAV1.3)(Heckman, Johnson, Mottram, & Schuster, 2008) and potassium (not presently 

known) channels in the membrane that open near firing threshold.  With each receptor 

having slightly different properties, PIC has two distinct processes, NaPIC and CaPIC.  

These channels are modulated through metabotropic receptors so their activity is long-

lasting; CaPIC has a slightly slower onset and is longer lasting than NaPIC(David J 

Bennett, Hultborn, Fedirchuk, & Gorassini, 1998).  NaPIC is predominantly active in the 

primary phase and gives way to CaPIC after about two seconds post activation (with 

moderate to low neuromodulation)(Svirskis & Hounsgaard, 1997).  PICs have many 

different characteristics depending on the state of the pathway, arousal level or task; of 

particular interest to this study is the regulation of PIC by monoamines and their high task-

dependency. 

PURPOSE OF PIC IN HUMANS 

Monoamines are small-molecule neuromodulators active in many complex 

physiological processes; they serve an often overlooked but essential role in producing 

functional movement by facilitating PIC in motor neurons(Harvey, Li, Li, & Bennett, 2006; 

Hounsgaard & Hultborn, 1988).  Studies using anesthetics have demonstrated that 



 

 

7 

decreasing or eliminating monoaminergic input greatly reduces motor output(Heckman et 

al., 1993).  Further study showed, contractions forces over 50% MVC are predominately 

driven by the neuromodulatory increase in excitability and not an exponential increase in 

descending ionotropic drive (Figure 2.1) (R. H. Lee & Heckman, 1998a, 1998b).   

 

 

FIGURE 2.1:  NEUROMODULATORY EFFECT ON MUSCLE FORCE OUTPUT.  

Neuromodulatory input is responsible for allowing the high levels of muscle contraction 

force above 50%MVC.  Even high synaptic input, alone with little to no neuromodulation 

(thick black line), is not likely capable of producing functionally relevant movement. At a 

given level of synaptic input (say 20nA for example), addition of max neuromodulatory 

(thin red line) input can increase muscle force from 35% to over 85%.  With even medium 

neuromodulatory drive (thin blue line), and the same synaptic input (20nA), muscle force 

is almost doubled from 35% to 65%.  Figure taken from Heckman et al., 2009. 

Functionally, this is advantageous in standing posture or locomotion; as muscles require 

greater input to maintain equal activation over prolonged time, descending input stays 

relatively similar and PIC is up regulated to compensate(ElBasiouny, Schuster, & 

Heckman, 2010; Heckman et al., 2009; Johnson & Heckman, 2010). 
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MODULATION OF PIC 

Monoamines reach motor neurons via descending neuromodulatory projections 

from the caudal raphe nucleus, responsible for serotonin (5-HT), and the locus coeruleus, 

where norepinepherine (NE) is produced (Heckman et al., 2008, 2009).  Although 

neuromodulation occurs via descending projections there is not preferential activation 

similar to other descending tracts(Johnson & Heckman, 2010).  A general level of motor 

neuron gain is set by state and arousal and each task sculpts the pattern differently(Johnson 

et al., 2012).  

As mentioned previously, high neuromodulation can greatly increase the gain of a 

motorneuron.  While widespread increase in gain is necessary for functional levels of 

muscle excitation, the diffuse increase in excitability occurring via the neuromodulatory 

system is coupled with afferent input as a primary means of generating selective inhibition 

(Figure 2.2)(Nielsen, Crone, & Hultborn, 2007).   
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FIGURE 2.2:  NEUROMODULATORY AND INHIBITORY INPUTS TO SPINAL MOTOR 

NEURON POOLS. Neuromodulatory input to the spinal motor neurons is diffuse and used 

to control excitability in a widespread manner.  This generalized excitability is then shaped 

by selective inhibition to deactivate PIC in certain pools to create functional movement 

patterns.  Taken from (Johnson & Heckman, 2010). 

 

Reciprocal inhibition is one of the pathways preventing excitation from the 

neuromodulatory system from generating constant co-contraction of antagonist muscles at 

multiple limb segments(Johnson & Heckman, 2010; Johnson et al., 2012).  A unique 

characteristic of PIC is that even brief hyperpolarizing stimulus can eliminate the 

depolarizing Ca2+ current, such as ascending 1a afferent reciprocal inhibition(Heckman et 

al., 2009; Johnson & Heckman, 2010).  In this pathway, 1a afferent sensory neuron carries 

the information of muscle stretch spindles to the CNS (Crone & Hultborn, 1987).  This 

pathway results in a direct excitation of the homologus muscle and inhibition of the 

antagonist muscle via the 1a inhibitory interneuron (Kernell, 2006).  The reciprocal 

relationship between inhibition and PIC is important to functional control of 

movement(Johnson & Heckman, 2010; Johnson et al., 2012). 

MEASURING PIC 

Several techniques can be used to measure PIC directly in reduced animal 

preparations.  Early research focused predominantly on the self-sustained firing ability of 

motor neurons(Schwindt & Crill, 1980).  Demonstrated by continued neuronal firing 

following termination of depolarizing ionotropic input, this ability to maintain two steady 

firing states (with and without extrinsic activation) is also referred to as bistability (Svirskis 

& Hounsgaard, 1997).  However, this technique cannot yield direct information on the 

strength of PIC, only presence or absence.  The activation of PIC is also dependent on the 
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membrane voltage at the time of ionotropic input.  Demonstrating the voltage-gated nature 

of channels responsible for PIC (Binder, 2002; Elias, Chaud, & Kohn, 2012), a cell voltage 

clamed in a hyperpolarized state does not initiate a PIC when a depolarizing current is 

introduced, compared to one clamed at a normal resting potential (Figure 2.3).   

 

FIGURE 2.3:  VOLTAGE CLAMP METHOD OF PIC MEASUREMENT.  Under voltage clamp, 

PIC can be seen as a downward deflection in current that is greater than the current from 

synaptic input.  This can be seen by the difference between red and green tracings in panel 

A.  The green tracing is synaptic input under voltage clamp with neuromodulatory drive 

removed.  The red tracing is the inward current in response to the same input with 

neuromodulatory drive intact.  Panel B demonstrates the net amplitude of the PIC generated 

current.  This technique can demonstrate the amount of PIC amplification in nA; a 

measurement not possible in human subjects.  Although PIC cannot generate any cell 

excitation without synaptic input (panel C, green line), PIC creates around threshold 

voltage necessary to have functional cell firing (panel C, red line). A second characteristic 

of a motor neuron with PIC is self-sustained firing; this firing persists long after removal 
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of current and is terminated via inhibitory input to the cell.  Figure taken from Heckman et 

al. 2009. 

Another reduced prep technique used to investigate PIC is the use of frequency 

current relationships (Figure 2.4) that compare firing frequency to the input current into a 

cell.  Distinct phases are seen by sharp changes in slope of the line at a given level of 

monoaminergic input.  The steepest-sloped (secondary phase) segments of the function are 

the result of PIC, allowing the neuron to fire more often at a given ionotropic 

input(Heckman et al., 2009).  

 

FIGURE 2.4:  F-I FUNCTIONS WITH VARYING NEUROMODULATION.  F-I functions are 

created by injecting current into neurons.  These plots can tell us how the neuron translates 

input into firing frequency under strict conditions in animal preparations.  A sharper slope 

indicates that the neuron has increased gain.  Each line denotes a different neuromodulatory 

input; increasing in drive from low (red line) to moderate (blue line) to high (green line).  

P denotes the primary phase or “base state of the F-I function.  S (secondary) is the range 

in which PIC is most active and T (tertiary) is beyond PIC activation.  PIC activation occurs 

vial voltage dependent membrane channels, therefore the more PIC the less current needed 

to initiate firing.  Also, presence of PIC at firing onset means the neuron is in an immediate 
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state of high gain (note the high slope of the S range of the green tracing immediately from 

the onset of firing).  During the primary phase Figure taken from Heckman et al. 2009. 

ESTIMATING PIC IN HUMAN MOTOR NEURONS 

It is clear that making intracellular recordings from human motor neurons to 

investigate PIC is not possible, so other methods such as self-sustained firing(Gorassini, 

Bennett, & Yang, 1998; Heckman et al., 2008; Walton, Kalmar, & Cafarelli, 2002) or 

paired-motor unit recordings are used.  A technique commonly implemented to measure 

PIC in humans is known as the paired-motor unit (PMU) technique.  It garnered attention 

as an isolate measure for PIC in humans and has been used to study various pathologies 

since inception by Gorassini and colleagues(D J Bennett, Li, Harvey, & Gorassini, 2001; 

Gorassini, Yang, Siu, & Bennett, 2002) .  This paradigm compares firing rates at 

recruitment to firing rates at derecruitment to provide an estimate of intrinsic excitability.  

Firing rates are measured during a voluntary isometric torque ramp contraction.  Thus, if 

the motor neuron is a linear summator, or passive integrator, as was once thought, then the 

difference between firing rates at these two time points would be minimal.  However, this 

is not the case; motor unit firing persists below the level of synaptic drive at which it was 

recruited (Heckman et al., 2009).  This difference in firing rate reflects changes in motor 

neuron excitability independent of synaptic input.  Quantifiable difference in firing rate, an 

estimate of the intrinsic excitability of the neuron, is the currently the best measure 

available for PIC study in humans.  The lowest threshold unit to be recruited in the ramp 

contraction is commonly referred to as the ‘reference’ or ‘reporter’ unit.  ∆F, mentioned 

above, is calculated as the difference in control unit firing rate between the time of a second, 

or ‘test’ unit recruitment and derecruitment.  An example of the paired-motor unit 

technique can be seen in Figure 2.5.  
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FIGURE 2.5:  PAIRED MOTOR UNIT TECHNIQUE.  A ramp contraction generated the 

recruitment of multiple units (C).  These units’ firing frequencies are plotted and compared 

to a designated reference unit which is generally the first unit recruited (B).  With only 

synaptic input, hypothetically test unit (A) recruitment and derecruitment would occur at 

the same reference unit firing frequency (an estimate of descending ionotropic input).  

However, observations show a scenario such as  the data shown above, where test unit 

firing persists beyond the firing rate at recruitment.  The difference between the 2 firing 

rates is ∆F, an estimate of PIC in humans. 

To estimate PIC using PMU data the instantaneous firing frequencies of two motor 

units are determined and plotted over time. The reference unit is lowest threshold unit that 

can be isolated with high consistency and the test unit is a unit of higher threshold and with 

a recruitment onset of two seconds post-recruitment of the reference unit. The resulting 
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plot of control unit instantaneous firing frequencies over the ramp usually resembles a 

skewed quadratic curve.  While force output in this technique is essential to recruit the 

appropriate motor units, the plot of reference unit firing frequency is used as the estimate 

of synaptic input from descending drive.   

CAVEATS OF THE PAIRED MOTOR UNIT TECHNIQUE 

 

PHYSIOLOGICAL ASSUMPTIONS MADE TO LEGITIMIZE PIC ESTIMATION USING PMU 

RECORDINGS 

Several assumptions exist in order to interpret paired motor units ∆F values as a 

valid measure of PIC.  In animal models synaptic input can be measured directly(Powers, 

Nardelli, & Cope, 2008), but in human research this is not possible.  Thus, with several 

assumptions to assert the human model is acting in a predictable manner, PIC can be 

estimated using firing patterns from two similar motor units, a pair.  The first assumption 

is that the firing rate of the lowest-threshold (‘reference’) unit recorded in the ramp 

contraction is an accurate estimate of net excitatory synaptic drive (Gorassini et al., 2002; 

Heckmann et al., 2005).   Crucial to demonstrating amplification of synaptic input it to 

have a quantifiable synaptic input to begin with.  The next assumption is that there is PIC 

saturation of the reference unit; meaning the frequency current of that neuron is in a steady 

state where it can be a linear index of synaptic input.  For the second assumption, the 

reference unit must be a sensitive indicator to the adjustments in synaptic input, with firing 

rate fluctuating proportionally to the increase in drive to the motor neuron (Gorassini et al., 

2002).  This is important because only times of test unit recruitment and derecruitment are 

used to determine ∆F.  Finally there is the assumption that the reference unit and the test 

unit share common synaptic drive.  Logically if there is not a common synaptic drive, 
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reference unit firing rates at test recruitment would have nothing to do with the level of 

synaptic input to recruit the test unit.  It is assumed that PIC saturation of the reference unit 

is reached before test unit onset.  Time to PIC saturation is long (up to 2 seconds), and is 

reflective of the non-linear portion of motor unit firing rate when there is not a fixed 

relationship between firing frequency and net input current(Gorassini et al., 2002; Udina, 

D’Amico, Bergquist, & Gorassini, 2010).  Again, before PIC saturation it cannot be 

assumed that reference unit firing rates are a linear indicator of input to the cell.  

VALIDATION CRITERIA EMPLOYED TO ENSURE THE PHYSIOLOGICAL ASSUMPTIONS ARE 

MET 

The work of Stephenson and Maluf to outline criteria for reducing within subject 

variability of ∆F (Stephenson & Maluf, 2011) but also the validity of ∆F, provides this 

investigation with a number of validation tests for standing estimates to meet.  This study 

examined an extremely large amount of single motor unit recording data and analyzed it 

using the paired-motor unit technique to outline specific criteria to reduce variability and 

increase validity.  To satisfy assumptions and obtain the most valid data this study employs 

each of the 5 recommendations for choosing motor unit pairings.  Each recommendation 

is made in order to ensure the physiological assumptions made by the technique explained 

earlier remain intact and ∆F is a valid measure of PIC in humans.  These ‘validation 

criteria’, as they are commonly referred to, are laboratory calculations that exist to verify 

the physiological assumptions based on motor neuron firing rate behaviors under various 

circumstances.  In the same order the physiological assumptions were listed, the criteria to 

validate the technique are as follows 1) A minimum of 1 second be left between recruitment 

of the reference unit and the recruitment of the test unit.  This ensures PIC saturation of the 

reference unit and ∆F is not being calculated during the primary phase of firing. 2) There 
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is a rate-rate correlation coefficient greater than r=0.7.  This ensures the 2 units have similar 

levels of descending drive and satisfies one of the assumptions of the paired-motor unit 

technique(Gorassini et al., 2002).  3) The rate modulation of the reference unit must not be 

within 0.5pps of ∆F.  This is indicative in either a saturation of discharge rate in the 

reference unit or recruitment of the test too close to peak force. 4) Duration of test motor 

unit activity should be kept in a similar range whenever possible.  This reduces the 

contaminating effect spike frequency adaptation can have on ∆F.  5) The rate of firing rate 

modulation should not be above 1pps.  This ensures that firing rate is slow enough to ensure 

PIC saturation before additional units are recruited.  Firing rates increase over 1pps show 

inflated PIC. 

OTHER CONSIDERATIONS FOR VALID PMU TECHNIQUE PIC ESTIMATION 

Even beyond validity criteria for the paired motor unit technique, there are several 

experimental considerations for reliable data collection.  These include accounting for the 

warm-up time of PIC and choosing motor unit pairs with recruitment at similar activation 

levels.  Findings by Bennett & Hultborn (1998) indicate PIC has a prolonged warm-up 

time, beyond the scope of PIC activation.  As described previously, PIC takes several 

seconds to activate once a motor unit has been recruited(David J Bennett et al., 1998; 

Gorassini et al., 2002).  However, there is also a long duration warm-up time that can occur 

as an experiment progresses.  Continued activation of PIC-dependent, slow motor units 

leads to an increase in neuromodulatory drive to the motor neuron pool.  This up regulation 

of PIC serves to alleviate demand from descending cortical drive, allowing the system to 

perpetuate signals, using ascending input to regulate firing rates(Heckman et al., 2009).    

Implications for the current study are likely larger for standing collection as more 

generalized activation is required to maintain balance.  Seated measures will likely have 
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less non-linearity introduced via- warm-up but it is equally important to recognize and 

mitigate the possibility of insufficient PIC warm-up.  Similarly to warm-up considerations, 

investigations how shown that ΔF is positively correlated to the percentage of muscle 

activation at test unit onset (Stephenson & Maluf, 2011).  While this is not part of the 

validity criteria needed to prove satisfaction of PMU technique assumptions, it is a 

necessary consideration in order to provide reliable PIC estimates.  Investigations using 

this technique should only compare motor unit pairs with test unit activation at similar 

activation levels at the point of test unit recruitment. 

OTHER MOTOR NEURON PROPERTIES CONTRIBUTING TO CHANGES IN EXCITABILITY 

Paramount to the discussion of estimated PIC measurement (ePIC) using the PMU 

technique is that ∆F is a function of PIC with very few other contributing factors.  In order 

for this to be true, ∆F should be a good reflector of changes in PIC; and minimally affected 

by changes to other intrinsic motor neuron properties.  However, the validity of the paired-

motor unit analysis has recently been questioned in a simulation study conducted by Revil 

& Fuglevand (2012).  This suggests that a single ramp contraction does not isolate for PIC.  

The longer the rate of rise in the ramp the more susceptible ∆F becomes to contamination 

by spike threshold accommodation (Figure 2.6).   
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FIGURE 2.6:  SPIKE THRESHOLD ACCOMMODATION is the increase in membrane firing 

threshold in response to slowly rising depolarizing currents.  In this example, a current 

input of 2 arbitrary units (top panel, A) does not generate a spike (bottom panel, A) when 

current rises slowly.  When current rises quickly (top panel, B) then the same current (2 

arbitrary units) will generate a spike (bottom panel, B).  Adapted from a lecture by Yaeger, 

L. Neural Networks: Spike Neuron Models, Indiana University 

Additionally the longer the duration of the total ramp time the more susceptible ∆F 

becomes to contamination by spike frequency adaptation (Figure 2.7).   
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FIGURE 2.7:  SPIKE FREQUENCY ADAPTATION is the decline in firing rate of a neuron 

over time in response to a stable current input.  Initial adaptation takes place is the first 1-

6 ISIs.  Early adaptation takes place up to 2 seconds post-recruitment and late adaptation 

is a slow exponential decrease beyond this point for as long as activation occurs.  (Sawczuk, 

A., Powers R. K., 1995) 

The authors suggested the use of a series of ramps using differing rates of rise and 

differing plateaus to clarify what proportion of the ∆F value obtained is truly PIC. For 

example, if a ramp is too short it does not allow for PIC saturation before onset of the test 

unit.  However, if the rate of rise is too slow SFA will inflate ∆F value as a function of 

time.  Moreover, if the total ramp time is too long SFA will increase ∆F also as a function 

of time (Revil & Fuglevand, 2012).  A recent study from this laboratory using the paired 

motor unit technique has found results very similar to the simulation findings of Revil & 

Fuglevand using human PMU recordings(Vandenberk & Kalmar, 2014).  SFA and STA 

both introduce nonlinearities into current estimates of PIC.  However, measuring reciprocal 

inhibition at several joint angles allowed the investigator to conclude that although there 

are confounding variables, shorter ramps, approximately 10s in duration with no plateau 
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still serve as a valid estimate of PIC.  This study will employ the paired-motor unit 

technique as well as reciprocal inhibition while following these new guidelines. 

WHAT TRADITIONAL HUMAN PIC ESTIMATES ARE MISSING 

Currently paired motor unit assessments of PIC occur during isometric contractions with 

the participant seated.  This increases the repeatability of recordings in addition to reducing 

the influence of joint synergists in force production.  This increases signal clarity but 

removes the ability to generalize the findings to human postural control and dynamic 

movement.  Moreover, the highly state dependent nature of intrinsic excitability makes 

generalization between postures difficult.  Locomotor behavior can affect the voltage 

threshold of a neuron (Krawitz et al. 1996) and neuromodulatory input changes with the 

speed of locomotion(Jacobs & Fornal, 1999a; Jacobs et al., 2002).   

Standing posture changes the activity of several pathways that would possibly alter 

PIC in motor neurons.  One that has yet to be discussed in this review is the input of the 

vestibulospinal tract onto the motor neuron.  Movement of the head results in the 

displacement of fluid in the sensory organs (semicircular canals and otoliths); fluid pushing 

on a structure known as the cupula transduces rotation (semicircular canals) and 

acceleration (otoliths) into neural signals though sensory neurons attached to hair cell 

receptors(Day & Fitzpatrick, 2005).  Sensory signals from the hair cells are relayed to 

bilateral cerebellar nuclei(Liang, Bácskai, Watson, & Paxinos, 2014).  Animal studies have 

shown that the direct pathway from vestibulospinal nuclei onto the spinal motor neurons 

work via reflex modulation and serve as the system’s gyroscope, determining the head’s 

relative orientation in space(Ijspeert, 2002).  Descending vestibulospinal input onto 

interneurons that participate in central pattern generators (Sasaki, Asawa, Katsuno, Usami, 
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& Taguchi, 2001)of the spinal cord also becomes more active during standing than 

sitting(Highstein & Holstein, 2012).  The majority of descending vestibular tracts that 

originate in the Dieter’s nucleus project to upper limb motor neurons.  The remaining 

projects to lower limb motor neurons are diffuse  and deliver small depolarizing stimuli, 

EPSPs (Westcott, Powers, Robinson, & Binder, 1995).  However, although synaptic 

potentials appear to remain the same across the motor pool, the effective synaptic current 

has been shown to be larger in F type motor units compared to S type units(Westcott et al., 

1995).   

With the introduction of postural sway to a paired motor unit protocol, 

vestibulospinal input previously absent in the traditional seated paradigm increases the 

synaptic input to the motor neuron. This is not ideal as the PMU technique assumes 

synaptic input is increasing in a linear fashion due to increased descending drive.  However, 

because the units being measured are predominately low threshold, slow motor units, less 

affected by vestibulospinal depolarization, we can cautiously move forward with 

investigation of PIC using a postural sway. 

This project aims to use adapt the conventional seated paradigm to estimate PIC in humans 

to a paradigm that employs a standing posture, something functionally relevant to postural 

control, which has not yet been attempted. 

HYPOTHESES 

1) PMU recordings made during anterior postural sway will meet previously 

published validation criteria used to ensure that the physiological assumptions 

underlying the PMU technique are met.  
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2) ΔF will be larger in the standing condition compared to the seated condition, while 

all validation criteria are satisfied, indicating a valid measure of PIC   
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INTRODUCTION 

Persistent inward current (PIC) is a depolarizing influx of Ca2+ into the 

somatodendritic region of a motor neuron(Heckman et al., 2008).  Although facilitated by 

voltage-gated Ca2+ channels(David J Bennett et al., 1998), the magnitude of this 

depolarizing current is controlled by monoamines via G-protein linked, metabotropic 

membrane receptors(R. Lee & Heckman, 1999).  PIC acts to increase the excitability of a 

motor neuron resulting in a larger output for a given input; analogous to how a gain dial 

on an amplifier increases the outgoing signal(Heckman et al., 2009).  Monoaminergic 

input to motor neurons exists through direct projections originating in brain stem nuclei 

that produce these neuromodulatory monoamines (serotonin (5HT) and norepinephrine 

(NE)).  Thus, these neuromodulatory tracts have the ability to adjust motor neuron gain 

through the differential release of 5HT or NE(Hounsgaard & Hultborn, 1988). 

Many recent investigations have set out with the goal of determining validity for 

paired motor unit estimates of persistent inward current (PIC).  These estimated PIC 

(ePIC) experiments have used interventions and technique variations to outline criteria 

needed to validate assumptions of the paired motor unit technique(Stephenson & Maluf, 

2011; Wienecke, Zhang, & Hultborn, 2009).  Other investigations have made 

recommendations on optimizing the parameters of the ramp contractions performed 

during collection(Revill & Fuglevand, 2011; Vandenberk & Kalmar, 2014).  This 

investigation aimed to further progress persistent inward current research using a new 

variation of the paired motor unit technique. 

Several reviews and articles have cited the likelihood of PIC as a mechanism to 

decrease central drive while maintaining postural muscle activation(Brownstone, 2006; 
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Heckman et al., 2009; Johnson & Heckman, 2010).  This is a logical assertion as slow 

motor units that make up the majority of anti-gravity musculature have the largest 

recorded contribution of PIC to their overall excitability.  Along the same path of 

reasoning, it has been hypothesized that PIC varies in a state and task dependent fashion 

(Heckman et al., 2009; Hyngstrom, Johnson, Miller, & Heckman, 2007) .  Expectedly, 

this change in motor neuron excitability would be driven by differential release of 

monoamine through neuromodulatory tracts during different arousal states.  Previous 

work has indirectly shown this increase in neuromodulation to the motor neuron during 

differential arousal through firing of brain stem neurons where descending 

monoaminergic drive originates (Jacobs et al., 2002).  This indirect measure of PIC 

activation has been shown to vary during sleep states as well as high arousal compared to 

resting levels(Trulson, Jacobs, & Morrison, 1981).  Particularly interesting to the current 

study was the finding indicating variation in neuromodulatory drive with a change in 

task(Veasey & Fornal, 1995), such as sitting to walking and further to running(Jacobs & 

Fornal, 1999b).  These findings provided sufficient evidence to warrant an investigation 

into the task dependency of PIC in human motor neurons. 

Currently, most persistent inward current estimates in human motor neurons come 

via the paired motor unit (PMU) technique.  Over the last decade, the technique has 

evolved to have specific criterions to validate assumptions made when estimating 

excitability from repetitive firing of motor unit action potentials.  Beyond validation, 

several studies have used the PMU technique with interventions to explore the range of 

human motor neuron gain. Some of these findings reflect increased PIC with chronic 

spinal cord injury (Norton, Bennett, Knash, Murray, & Gorassini, 2008; Venugopal, 
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Hamm, Crook, & Jung, 2011) or with drug administration such as amphetamine (Udina et 

al., 2010)or caffeine (Walton et al., 2002) 

Traditionally PMU ePIC measurements of the lower leg postural muscles occur 

with the shank clamped in a plantarflexion dynamometer, or McComas Boot (Figure 3.1).  

This method is quite successful at isolating the soleus from the gastrocnemius by 

mechanical advantage and the best way to obtain controlled voluntary contractions.  

However, in order to best serve the experimental protocol the body is taken out of any 

scenario resembling postural control.  While there remains a multitude of questions to be 

answered by way of seated ePIC measurements, this study set out to provide insight on a 

more functionally relevant estimate of human persistent inward current. 

This investigation aimed to create a novel standing protocol to mirror the way in 

which seated ePIC measures take place.  This involved having a participant standing on a 

custom platform (Figure 3.2) that measured pressure change only in the anterior/posterior 

direction.  Thus, a voluntary forward postural sway was now equivalent to the 

plantarflexion ramp contractions commonly used in PMU studies. 

It was hypothesized that PMU recordings made during anterior postural sway 

would meet previously published validation criteria used to ensure that the physiological 

assumptions underlying the PMU technique are met.  In PMU recordings that satisfied all 

validation criteria, indicating a valid measure of PIC, ΔF would be larger in the standing 

condition compared to the seated condition. 
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METHODS 

PARTICIPANT RECRUITMENT 

A total of 10 participants (6 female) aged 19-25 (mean=22.4 ± 1.64) were 

recruited for this investigation resulting in 15 useable motor unit pairs (n=15; 6 

participants had one useable motor unit pairs, 3 participants had two useable motor unit 

pairs, 1 participant had three useable motor unit pairs).    Prior to participation, 

participants were screened to ensure no prior history of neurological disease, recent leg 

injury (past 6 months), recent concussion (past 6 months) and no chronic use of 

substances that may alter neural excitability such as nicotine, amphetamines or selective 

serotonin re-uptake inhibitors (SSRIs).  This project was approved by the university 

ethics board and conforms to the Declaration of Helsinki.  All participants provided 

written informed consent. 

Prior to study enrollment, prospective participants were completed an orientation 

to familiarize them with the standing postural sway task, seated isometric torque 

plantarflexion and to ensure that they were comfortable with the intramuscular EMG 

electrodes.  The 30-minute orientation served to answer any participant questions and to 

allow them to practice the ramp contractions such that they could perform these ramps 

with accuracy. 

EXPERIMENTAL PROTOCOL & DESIGN 

To investigate state-dependent changes in PIC a novel standing postural sway 

technique was developed and tested along with traditional paired motor unit estimates of 

persistent inward current.   Testing began after recording and stimulation electrode set-up 

with the person in an upright, seated posture (3.3).  The participant slowly rose to a 

standing posture with their right foot on the custom force platform.  Their left foot was 
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positioned on a fixed platform of equal height.  Six inches between the feet allowed for a 

comfortable and stable stance.  The participant performed a series of standing ramp 

contractions followed by standing reciprocal inhibition measurement.  With the help of 

the experimenter, the participant then slowly transitioned (a distance of 1m between 

apparati) to a seated posture and placed their right foot into a McComas boot(Figure 3.3).  

The participant performed seated ramp contractions followed by seated reciprocal 

inhibition collection.  To ensure repeatability of measures and minimal intramuscular 

electrode shift, the participant rose again to perform a single standing ramp contraction. 

APPARATI 

 To estimate persistent inward current during isometric plantarflexion contractions 

in a seated position, the right leg was position in a McComas boot lower leg 

dynamometer (Marsh, Sale, McComas, & Quinlan, 1981) custom built by York 

University Technical Department (York University,  Toronto, Ontario, Canada).  A built-

in transducer measured isometric plantarflexion and dorsiflexion torque.  Isometric 

plantarflexion amplitude was displayed on a computer monitor and participants were 

asked to trace a triangular ramp contraction to 10% MVC. Ramp contractions were a 

constant 5s to peak and 10s in total duration.  Data for the standing protocol was 

collected with the participant positioned with feet five inches apart, hand at their sides 

and looking straight ahead.  A custom-built force platform measured anterior posterior 

sway.  This was achieved using a load cell (S-type load cell, Durham Instruments Inc., 

Pickering, Ontario, Canada) anterior to the toes to reflect an anterior shift in the area of 

the foot bearing weight.  This provided clear of biofeedback for anterior postural sway.  

As the participant leaned forward, and an increase in pressure was placed on the forefoot, 

an increase in force could be seen on the screen (Figure 3.4).  The output of the load cell 
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was zeroed to a resting stance when the participant was asked to maintain a comfortable 

stance without any forward sway.  As a participant leaned forward there was a positive 

deflection in the force, indicating forward sway, which returned to baseline as they 

returned to a resting stance.  Peak force was designated as the most forward leaning 

position the participant could consistently achieve and maintain for three seconds while 

their heels remained in contact with the platform.  This maximum forward lean was used 

as the benchmark for ramp height and as a plantarflexion MVC is not possible during 

standing posture one was not recorded. 

PAIRED MOTOR UNIT TECHNIQUE FOR PIC ESTIMATION 

 The paired motor unit technique used to estimate pic in this investigation requires 

a comparison of the firing rates of two motor units from the ramp contraction.  The first 

unit to be recruited, and lowest threshold in the ramp, is referred to as the ‘reference 

unit’.  A second, higher threshold unit, recruited later in the ramp is used as the ‘test 

unit’.  Instantaneous firing rate was plotted for both units over the duration of the best 

ramp performed.  Plots were fitted with a fourth order polynomial curve to obtain 

smoothed firing frequency for any given time in the ramp.  Estimation of persistent 

inward current was obtained by calculating the difference in reference unit firing 

frequency between points of test unit onset and offset.  This difference in firing 

frequency, known as ΔF, reflects prolonged test unit firing that persists beyond the 

removal of synaptic drive needed to originally activate the unit. 

PSTH TECHNIQUE FOR RECIPROCAL INHIBITION COLLECTION 

Reciprocal inhibition of each reference motor unit was estimated using the post-

stimulus time histogram (PSTH) technique (Aymard, Chia, Katz, Lafitte, & Pénicaud, 

1995).  Electrical stimulation of the common peroneal nerve (CPN) activated the 
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reciprocal inhibitory pathway at the axons of 1a afferent sensory neurons during a 

sustained low-level contraction in which the participant had only one or two active units 

visible on the intramuscular EMG recordings.  Once a constant firing rate of the reference 

soleus motor unit was established a sequencing script was used to elicit soleus spike-

triggered stimulation of the common peroneal nerve approximately.  The sequence was 

set up to deliver pulses to the common peroneal nerve approximately 80ms prior to a 

soleus motor unit firing to optimize reciprocal inhibition of the soleus motor unit (Figure 

3.5).  80 sub-motor threshold stimuli were delivered over four minutes of the constant 

low-level plantarflexion contraction. 

ANALYSES 

 PAIRED MOTOR UNIT RECORDINGS:  Single motor unit recordings were sorted 

online by a spike-sorting algorithm using Spike2 software (version 7.02, CED Limited, 

Cambridge, England).  Spike recordings were recognized based on amplitude and shape 

and fit into templates for each active motor unit (Figure 3.6).  However, several units in 

each ramp had their shape skewed when multiple units fired simultaneously.  In order to 

rectify that the unit of interest had indeed fired manual inspection and sorting of the spike 

data was needed.  Prior to manual sorting, recordings were subjected to an offline hum-

remove filter prior to analysis.  This filter (Figure 3.7) decomposed repetitive sequences 

of oscillating baseline noise to aid manual sorting of motor units missed by online 

sorting.  Once all spikes fired for the motor unit of interest had been identified during a 

ramp instantaneous firing frequencies for both reference and test unit were exported and 

plotted as previously described as per the paired motor unit technique. 
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To assert that ΔF is a dependable estimate of persistent inward current, there are 

several physiological assumptions made by the paired motor unit technique that must be 

accurate.  This is done through the use of validation criteria, which PMU recordings must 

meet in order to be considered as useable data before statistical analyses.  While several 

independent investigations have contributed to the exact criteria needed for validation, it 

was critical for the current investigation to examine all possible points of error in the 

paired motor unit technique before conclusively determining a standing variation to be a 

valid estimation of PIC.  This examination began with an affirming review of the 

assumptions the paired-motor unit technique makes and why.   

 The first major assumption of the technique is that there is a shared, common 

synaptic drive to both the reference and the test unit.  A difference in drive between the 

two units of a pair would be undeniable evidence that any PIC estimation from that data 

is void.  Several studies recommend inspection of motor unit pair rate-rate correlations to 

(Powers et al., 2008)validate the shared drive assumption (Gorassini et al. 2002, 

Stephenson & Maluf, 2011, Udina et al. 2010).  The rate-rate correlation coefficient is 

then a measure of common synaptic modulation between two concurrently active motor 

units.  This coefficient was calculated by plotting averaged instantaneous firing frequency 

(200ms bins(Powers et al., 2008)) for both reference and test unit for the duration of the 

ramp.  Mean firing frequency values were correlated to obtain a Pearson’s r, correlation 

coefficient (Figure 3.8). A minimum value of r = 0.7 or r2 = 0.5 is need to pass the paired 

motor unit technique assumption that there is equally shared synaptic drive to both 

reference and control unit.  For this experiment all motor unit pairs with a r2 < 0.5 were 

excluded from statistical analysis. 
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 Paired motor unit analysis also assumes full activation of the reference unit at the 

time of test unit recruitment.  A corollary to this is that the reference unit is a linear 

indicator of the next excitability of the motor neuron.  PIC is a long lasting 

depolarization, however it is also has a relatively slow activation (Bennett 2001).  

Previous research has shown that it may take up to 2s for full PIC onset, or saturation 

(Udina 2010).  If the test unit is recruited before PIC saturation of the reference unit, 

while the reference unit is in an unstable state of excitability, the assumption is broken.  

However, experimental data has shown that only recruitment intervals below 1s have 

poor validity, likely with shorter durations leading to smaller, and sometimes negative ΔF 

values.  This investigation insured that only motor unit pairs with recruitment intervals 

>1s were analyzed. 

In addition, the paired-motor unit technique assumes that the reference motor unit 

firing rate is sensitive enough to detect changes in the next excitatory input.  Meaning, if 

continually increasing excitation was supplied to the motor neuron, the firing rate would 

increase proportionally.  The index of excitability the reference unit firing rate provides is 

a strong factor in the validity of ∆F.  To eliminate cases where the reference unit firing 

rate was saturated after test unit recruitment, and did not increase sufficiently to satisfy 

the aforementioned assumption, a validation criterion for rate modulation was introduced.  

Rate modulation is calculated as difference between the range of reference unit firing 

range (ffmax – ffmin on Figure 3.9) and ∆F for that motor unit pair.  Motor unit pairs with a 

reference unit rate modulation value within 0.5pps of ∆F do not satisfy the assumption of 

equal and continually increasing excitation to all motor unit in the pool. 



 

 

33 

Similarly to the previously mentioned assumption that reference unit firing frequency can 

only be a linear indicator of excitability once PIC saturation has occurred, ∆F is only 

truly estimated when done so under test unit PIC saturation.  Several studies have 

investigated PIC saturation times yielding somewhat unanimous results. Two seconds of 

test unit activity is required to assert with reasonable certainty that ∆F is an accurate 

estimate of persistent inward current.  As such, only test units with a minimum of 2s of 

consistent firing were included in analysis. 

The idea that human ΔF measures are reflective only of persistent inward current 

is not a traditional assumption like the previous three discussed, but if this were to be 

proven untrue, PMU would prove far less useful for understanding motor neuron 

excitability. First shown in a simulation study (Revil & Fuglevand 2012) and later in 

humans (Vandenberk & Kalmar 2014) other motor neuron properties such as spike 

frequency adaptation and spike threshold accommodation can heavily influence persistent 

inward current if specific ramp parameters are not met.  More specifically, the longer the 

total duration of the ramp, there is an increase in spike frequency adaptation.  Where SFA 

is a time-dependent phenomenon, spike threshold accommodation increases with slower 

rates of rise.  Although the direct contributions of each property (PIC, SFA, & STA) to 

ΔF were quantified in the isolated computer simulations (Revil & Fuglevand 2012), in 

vivo study cannot make the same distinction.  Rather, a novel use of the relationship 

between PIC and reciprocal inhibition at different joint angles was exploited to verify 

results found through the simulations (Vandenberk & Kalmar 2014).  As such, both 

studies recommend limiting rate of rise to ~2%MVC/s and total ramp duration of 10s. 
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Beyond the ramp criteria needed to satisfy assumptions of the paired motor unit 

technique are some other aspects of muscle activation and motor unit firing 

characteristics that could have varied between postures.  It has been shown that ΔF is 

positively correlated with muscle activation at test unit onset (Stephenson and Maluf 

2011). Soleus muscle activation at test unit recruitment was calculated by normalizing 

0.5s (0.25s before and 0.25s after the point of recruitment) of soleus surface EMG during 

the ramp contraction to 0.5s of soleus surface EMG during an MVC.  This data was then 

compared to provide a normalized estimate of muscle activation at both test and reference 

unit recruitments between standing and seated. 

RECIPROCAL INHIBITION: A post-stimulus time histogram was used to quantify 

this difference in firing times for a span of up to 0.4s using 50ms bins.  A difference 

histogram was created from the control PSTH and stimulation PSTH.  A cumulative sum 

of this difference histogram was then plotted with a larger deviation below the x axis 

denoting larger inhibition (Figure 3.10).  Where past investigations have used the peak 

negative value, in the 180ms-305ms range to identify inhibition during the 2nd ISI, this 

investigation used trapezoidal integration (MS Excel 2007) over the same window.  Area 

under the curve was found to be more reflective of total occurring inhibition and resistant 

to large, but brief deflections. 

DATA ACQUISITION 

Data acquisition and analysis were completed using Spike2 software (version 

7.02, CED Limited, Cambridge, England).  Analog-to-digital conversion and sequencing 

of electrical stimuli were carried out through a 64-bit Micro1401-3 unit (CED Limited, 

Cambridge, England).  
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 INTRAMUSCULAR EMG:  Single motor unit recordings were obtained using 50.8-

μm Formvar-insulated stainless steel wires (California Fine Wire Company, Grover 

Beach, CA, USA).  Three wires were inserted into the lateral aspect of the soleus (2 cm 

distal to the inferior border of the gastrocnemius lateral head as determined by muscle 

palpation) on the right leg using a 27-gauge BD PrecisionGlide™ Needle (Becton, 

Dickinson Company, Franklin Lakes, NJ, USA)(Figure 3.11).  The electrode was secured 

using a hooked end on the wires, which provided stability through basic movements but 

was easily removed upon experiment completion.  To complete the electrode set-up, the 

wires were input into a 10x preamplifier (EQ electrodes, Chalfort, PA, USA) secured to 

the leg with an adhesive pad.   

SURFACE EMG:  Ag-AgCl electrodes epoxy-embedded with a x10 preamplifier 

(EQ electrodes, Chalfort, PA, USA) were positioned over the tibialis anterior and lateral 

soleus (Figure 3.11).  Electrodes had recording surfaces of 0.5cm2 and an interelectrode 

distance of 1.2 cm.   Preamplifiers input to a custom-built, variable gain 2nd stage 

amplifier (York University Machine Shop, Toronto, Canada).  A ground was placed on 

the medial tibia.  All skin contacts were cleaned using scrubbing alcohol pads and 

electroconductive gel was applied to contacts to enhance the electrode-skin interface. 

Intramuscular EMG signals were sampled at 20,000 Hz with all other surface EMG 

inputs sampled at 2,000Hz.  Force was sampled at 150Hz from both the force platform 

and the McComas boot.  Online filtering of intramuscular signals was performed using a 

Neurolog System (Amplifier insert: NL106, Filter insert: NL126, Digitimer Inc., 

Hertfordshire, England).  An online band-pass filter was applied to intramuscular 

recordings, attenuating signal outside a 200-3,000 Hz range.  Low-end cut off was altered 
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slightly to optimize signals during each experimental session.  Surface EMG was 

highpass filtered with a corner edge cutoff frequency of 20Hz, as recommended (De Luca 

2010, Winters 1980).  Force data was low-pass filtered online at 50Hz and all data was 

subjected to an online 60Hz notch filter. 

NERVE STIMULATION:  A 2.5cm2 carbonized rubber stimulation electrode was 

positioned over the common peroneal nerve, just lateral to the head of the fibula (Figure 

3.11) to activate the nerve to the antagonist when measuring reciprocal inhibition of the 

soleus. A Digitimer constant current stimulator (model DS7AH, Digitimer Inc., 

Hertfordshire, England) was used to deliver stimuli for reciprocal inhibition 

quantification.  Stimulation to elicit reciprocal inhibition was set at 80% of soleus motor 

threshold (defined as the stimulus intensity needed to elicit a >50μV response tibialis 

anterior Mwave for at least 50% of stimulations).  Threshold was assessed during a 

comfortable standing position. All pulses were 1ms in duration. 

STATISTICAL ANALYSES 

Prior to statistical analyses data were inspected for outliers using an acceptance 

range of ±2 standard deviations.  Identified outliers were replaced using mean 

substitution.  Two-tailed dependent samples t-tests with an alpha level set at 0.05 were 

used to compare means of standing and seated conditions in all variables measured.  All 

statistical tests were carried out using STATISTICA software built in t-test and 

correlation functions (Statsoft Inc., Tulsa, OK, USA).  Finally a correlation between ePIC 

(ΔF) and RI was conducted only for those participants, which demonstrated reciprocal 

inhibition. 
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RESULTS 

ASSUMPTIONS OF THE PAIRED MOTOR UNIT TECHNIQUE 

All motor unit pairs had a test unit activation ≥1 s after reference unit recruitment (2.28 ± 

0.91 s), ensuring complete PIC activation of the reference unit. Pearson correlations for 

each motor unit pair met the r2≥0.5 requirement (r2=0.85 ± 0.13) to ensure that reference 

unit and test unit share a common level of synaptic drive (Table 3.1).  The rate 

modulation (difference between the range of reference unit firing range [ffmax – ffmin] and 

∆F for a motor unit pair) for each ramp was ≥0.5 (2.61 ± 1.38).   Finally, duration of 

ramp rise (5.57 ± 0.64 s) and decline (5.83 ± 0.50 s) corresponded with previously 

recommended duration guidelines to minimize the contributing effects of other intrinsic 

motor neuron properties that could contribute to nonlinear firing (Revill & Fuglevand, 

2011; Vandenberk & Kalmar, 2014).   

PERSISTENT INWARD CURRENT AND RECIPROCAL INHIBITION 

 A two-tailed t-test revealed there was no main effect of posture on estimates of 

spinal excitability.  No difference was found between postures (p=0.442) with mean 

standing ePIC measurements of 2.44 ± 1.17 pps) and seated estimates of 2.73 ± 1.20 pps.  

Mean and individual data can be seen in Figure 3.12 (left).  Figure 3.12 (right) also 

depicts the mean and individual reciprocal inhibition data between postures. A 

standing posture resulted in significantly less (p>0.001) reciprocal inhibition (0.003 ± 

0.025) than in a seated position (-0.038 ±0.042).  There was no relationship between PIC 

and RI for standing or seated posture when ΔF and CumSum area were correlated 

(standing: r=-.224, p=0.421; seated: r=.232, p=0.405).  Pearson analysis of the difference 

in ePIC between in standing compared to seated posture (ΔΔF) and the difference in 
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inhibition between postures (ΔRI) was moderately correlated (r=0.934, p<0.001, *RI data 

with a positive value was excluded for this correlation) (Figure 3.14). 

EFFECT OF POSTURE ON MOTOR UNIT RECRUITMENT AND MUSCLE ACTIVATION 
 

There was no significant (p=0.233) in reference unit firing frequency at 

recruitment between standing and seated as measured with only the first inter-spike 

interval (standing, 5.06 ± 1.16 pps; seated, 5.49 ± 1.12 pps) or using an average from the 

first 3 inter-spike intervals (standing, 6.18 ± 1.49 pps; seated, 6.14 ± 0.85 pps; p=0.094) 

(Table 3.2).  Similarly, test unit firing frequency at recruitment did not differ between 

postures using the first inter-spike interval (standing: 5.25 ±1.51 pps, seated: 4.63 ± 1.69 

pps;  p=0.373) or when estimated using the first three inter-spike interval average 

(standing: 6.06 ±1.35 pps, seated: 6.59 ± 1.32 pps; p=0.300) (Table 3.2). 

Soleus muscle activation at motor unit recruitment was significantly different 

between postures (Table 3.2) for both the reference (standing: 12.70 ± 5.82 %EMGmax, 

seated: 9.38 ± 4.66 %EMGmax, p>.001) and test units (standing: 22.66 ± 7.17 %EMGmax, 

seated: 14.38 ± 6.00 %EMGmax, p>.001).  Finally, there was significantly longer time 

period between reference unit recruitment and test unit recruitment (Table 3.1) in a seated 

posture (2.55 ± 0.87 s) than a standing posture (2.00 ± 0.90 s) (p=.020). 

 

DISCUSSION 

Two possible outcomes were hypothesized when this novel protocol was 

developed to estimate PIC during a standing postural task.  The first hypothesis was 

simply that PMU recordings could be made during standing anterior postural sway that 
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had recruitment patterns and firing rate modulation similar to those made during seated 

isometric plantarflexion contractions . The second hypothesis was that if valid PMU 

recordings could be made during standing anterior postural sway, then , ΔF estimates of 

PIC made from standing PMU recordings will be greater than seated measures due to 

increased raphe spinal drive to motor neurons during a standing postural task (Heckman 

et al., 2009; Jacobs & Fornal, 1999a; Jacobs et al., 2002; Johnson & Heckman, 2010).  

Alternatively, we hypothesized that standing ∆F estimates of PIC would not satisfy 

previously published validation criteria ((Gorassini et al., 2002; Powers et al., 2008; 

Stephenson & Maluf, 2011; Vandenberk & Kalmar, 2014)) due to confounding 

physiological processes (Wienecke et al., 2009) in which case standing PMU recordings 

would not be a viable approach to assessing PIC during a functional postural task. 

It was expected that ePIC during a standing posture would be significantly greater 

than that in the seated measurement.  Furthermore, it was expected that reciprocal 

inhibition would be greater in standing than seated.   As hypothesized, baseline reciprocal 

inhibition was significantly lower  in standing compared to seated posture as indicated by 

more negative cumulative sums of the difference PSTH (standing: 0.003 ± 0.025, seated: 

-0.038 ±0.042, p<0.001).  Unexpectedly however, standing estimates of PIC were no 

different than estimates made during seated isometric contractions (standing ∆F: 2.438 

pps ± 1.169, seated ∆F 2.727 pps ± 1.197).  The investigation was able to capture 

postural sway PMU recordings that closely resemble equivalent seated PIC estimates 

(Figure 3.15). 

The current literature provides ample evidence warranting the hypothesis that 

persistent inward current would increase in the anti-gravity muscles to facilitate standing 
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posture.  PIC plays an important role in motor functionally relevant movement, 

particularly in the anti-gravity musculature (ElBasiouny et al., 2010; Heckman et al., 

2008, 2009; Jacobs et al., 2002; Johnson & Heckman, 2010).  In the present study, mean 

ΔF were nearly identical in standing and seated posture.  It should be noted that there is a 

large range in ΔΔF (the difference between seated and standing ΔF) within participants 

(individual standing ePIC ranged from 1.5% to 515% of seated ePIC), and it is possible 

that we did not have adequate statistical power to detect a difference. The motor unit 

pairs, which exhibited the largest ΔΔF, had much greater ePIC standing than seated, 

exhibiting the hypothesized result of increased PIC with standing posture.  Two motor 

unit pairs obtained from the same participant demonstrated the opposite trend, a drastic 

increase in ePIC when seated (standing ΔΔF 1.5% and 16% respectively).  However, the 

majority motor unit pairs demonstrated little deviation in ePIC between postures.  Even 

with a sample of fifteen motor unit pairs, which provides adequate statistical power in 

other studies, (Udina et al., 2010; Vandenberk & Kalmar, 2014), the possibility of type II 

statistical error cannot be omitted. 

Baseline reciprocal inhibition did change as expected with posture; decreasing 

significantly (p<0.001) in the standing measurement (0.003 ± 0.025) when compared to 

seated measurement (-0.038 ±0.042).  This was expected as there is a slight dorsiflexion 

about the ankle during standing measurements due to the participant initiated, voluntary 

lean required to activate the firing of the measured motor unit.  Whereas, when using the 

PSTH technique for seated measurement of RI the plantarflexion torque produced to 

activate the low threshold unit does not result in movement about the ankle when 

clamped in a McComas boot (Marsh et al., 1981). Furthermore, functional postural 
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stability requires co-contraction not present during seated RI measurement.  Previous 

research supports the notion that with standing posture there is a disinhibition of the α-

motor neuron via presynaptic inhibition (Cattagni, Martin, & Scaglioni, 2014; Nielsen & 

Kagamiharat, 1992) possibly explaining the decrease in reciprocal inhibition measured 

through this investigation.  Disinhibition of the alpha motor neuron promotes co-

contraction advantageous to maintaining tonic activity of antigravity muscle with only 

slight changes in activation for postural sway compensatory movements (Katz & 

Meunier, 1988; Nielsen & Kagamiharat, 1992).  However, because reciprocal inhibition 

and PIC interact in order to create functional movement, the reflex loop is differentially 

modulated when standing vs. during postural sway.  An earlier investigation which 

estimated reciprocal inhibition at rest using conditioned H reflexes instead of  using the 

PSTH technique (which can only be conducted during voluntary contraction) 

demonstrated increased reciprocal in individuals in quiet stance (Kasai, Kawanishi, & 

Yahagi, 1998).  However, when dorsiflexion for a postural sway was initiated, a large 

decrease in RI was measured and hypothesized to promote co-contraction for a more 

stable support structure for the body.  This decrease in RI upon initiation of postural sway 

is in line with the current investigation and may be a limitation to the investigation of 

standing PIC-RI interaction using the PSTH technique. 

There has been past debate over using ΔF as a true estimate of PIC as several 

possible confounding factors have been identified (Revill & Fuglevand, 2011; 

Vandenberk & Kalmar, 2014; Wienecke et al., 2009).  However, over several years, the 

use of the paired motor unit technique has been refined steps taken improve the validity 

of the method (Stephenson & Maluf, 2011; Udina et al., 2010; Vandenberk & Kalmar, 
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2014).  Several recommendations and criteria have been outlined to ensure that ΔF values 

derived from paired motor unit recordings provide valid estimates of PIC in the 

conventional seated posture.  The importance of PIC to functionally relevant movement 

like standing has been previously discussed, but functional PIC estimation has not been 

examined humans.  It is not known if the criteria outlined to ensure the validity of seated 

paired motor unit estimates of PIC in the conventional seated posture would be met if the 

paired motor unit technique was used to assess PIC during a functional and dynamic 

postural sway.  Thus, all validation criteria available to the authors at the time of 

investigation (Gorassini et al., 2002; Stephenson & Maluf, 2011) were employed to 

ensure physiological assumptions of the paired motor unit technique were met for 

standing data.  In brief, we found that 1) control motor units were likely to have saturated 

PICs prior to recruitment of the test motor unit (there was a minimum of 1s between 

control of test unit recruitment), 2) control and test motor units appear to share a common 

motor drive (all but three pairs analyzed had rate-rate correlations >0.7), 3) the control 

motor unit remained a sensitive indicator of changes in synaptic drive (rate modulation of 

the reference unit was always within 0.5pps of ∆F).  Thus, all previously published 

validation criteria were satisfied in both seated and standing postural sway paired motor 

unit estimates of PIC.   

This investigation conducted a rigorous examination of motor unit firing patterns 

for possible differences between standing and seated postures to determine whether a 

standing postural-sway protocol to estimate PIC during functional movement is feasible.  

Although all motor unit pairs met previously published criteria to provide valid estimates 

of PIC, we sought to determine whether the measures of validity differed between 
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postures.  Although rate-rate correlations for both postures exceeded the r2=0.5 threshold 

set by Gorassini et al. (2002) to ensure that control and test motor unit shared a common 

level of synaptic drive, standing had significantly lower mean rate-rate correlation 

coefficient than seated.  Although minimum accepted criteria were met, lower rate-rate 

correlations indicate that standing estimates may have scenarios where synaptic drive 

differs.  Studied have shown that presynaptic inhibition, which is a motor neuron specific 

input (not diffuse throughout the pool such as neuromodulatory input), change with 

posture (Nielsen & Kagamiharat, 1992).  Changes in descending inputs (like presynaptic 

inhibition) which are more active during functional tasks may disrupt the relationship 

between motor unit pairs necessary for valid PIC estimation.  Another validation criterion 

that differed between postures was the time between reference and test unit recruitment.  

Standing recordings showed a significantly shorter recruitment interval (standing: 2.00 s 

± 0.90, seated: 2.55 s ± 0.87, p=0.0204) between reference and test motor units of a pair.  

Although paired motor units met published criteria for ensuring that the PIC of the 

reference unit was fully saturated prior to test unit recruitment (minimum of 1s of 

reference unit firing prior to a test unit onset), it is still possible that the reference motor 

unit PIC was not fully saturated.   This investigation followed recommendations that a 

minimum of 1s should separate recruitment of reference and test units (D J Bennett et al., 

2001; Powers et al., 2008), however other recommendations have called for a separation 

of 2s or more to allow for PIC saturation of the reference unit (Gorassini et al., 2002; 

Stephenson & Maluf, 2011).  One possibility for the lack of PIC difference measured 

between postures could be that standing the (assumed) larger PIC during postural sway 

has a comparably longer time to reach saturation, resulting in an underestimation of 



 

 

44 

standing PIC.  This may also be a consequence of the difference between muscle 

activation across the conditions.  While ramp parameters were similar enough to have the 

same motor unit pairs activated in sequence in both standing and seated postures, a higher 

overall level of activation may have recruited additional MUs to the standing ramp 

contractions.  Standing posture, with known increases in co-contraction to stabilize 

postural sway(Katz & Meunier, 1988; Nielsen & Kagamiharat, 1992),  likely requires 

higher recruitment to overcome antagonist resistance and produce functional movement. 

The methodology used in this study employed a number of constraints to to 

ensure differences between postures could not be attributed to nonlinear rhythmic firing 

properties other than PIC which would contribute to ∆F (such as SFA and STA).  These 

constraints include limiting the duration of the contraction and the rate of force 

production to minimize the contribution of SFA and STA respectively. These constraints 

differ from validation criteria in that failing to meet them does not result in data that 

explicitly violate the physiological assumptions of the paired motor unit technique, but 

rather increase the likelihood that intrinsic properties other than PIC contribute to ∆F.  It 

has been suggested that ramp duration should be no longer than 10s to provide ∆F values 

that reflect predominantly PIC (Revill & Fuglevand, 2011; Vandenberk & Kalmar, 2014).  

Even though participants were instructed to trace ramps with a 5-s rise and 5-s fall, seated 

ramps had a significantly longer duration of ramp rise (standing: 5.24 s ± 0.37, seated: 

5.90 s ± 0.70, p=0.025).  This is a limitation as increased ramp duration has been shown 

to inflate ∆F most likely via spike frequency adaptation (Vandenberk & Kalmar, 2014).  

The ramp contraction is a difficult fine motor skill that takes a large amount of practice to 

perform masterfully and the difference seen is most likely due to the task complexity and 
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participant focus.  However, a difference in duration was not detected for ramp decline, 

and the difference seen in rise duration (0.65s) can be considered negligible when 

observing the magnitude or ramp duration increase needed to significantly confound ∆F 

(Revill & Fuglevand, 2011; Vandenberk & Kalmar, 2014). 

One apparent imbalance in the study design is the performance of MVCs in seated 

posture prior to data collections where no such max efforts predicated standing PIC 

estimation.  This non-counterbalanced design was put in place in an attempt to normalize 

seated ramp contraction forces across participants.  However, it is acknowledged that these 

maximal effort contractions may have introduced additional non-linearities into the paired 

motor unit technique.  Specifically, a muscle potentiated by previous high force 

contractions will more demonstrate greater force output with equivalent 

activation(Hodgson, Docherty, & Robbins, 2005).  Postactivation potentiation (PAP) is the 

result of phosphorylation of myosin regulatory light chain proteins, rendering actin-myosin 

more sensitive to calcium ions in subsequent activation(Hamada, Sale, MacDougall, & 

Tarnopolsky, 2000).  This potentiation does indeed affect the soleus (Miyamoto, Fukunaga, 

& Kawakami, 2009) but is a much more prevalent phenomenon in type II and IIa muscle 

fibers(Hamada et al., 2000).  Increased muscle potentiation may have resulted in the 

overestimation of activation in seated posture based on force output since standing posture 

did not have a maximal warm up compared to seated measurements.  Although this is not 

ideal for paired motor unit recordings to have confounding variables, standing data 

collection did closely mimic a functional task, the goal of the experiment, and the effect of 

potentiation of soleus ∆F should be minimal. 
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With co-contraction known to aid in executing controlled movement, it is possible 

that participants used different strategies to achieve the force ramps.  Some participants 

may have used tibialis anterior activation to moderate fluctuating soleus activation during 

both standing and seated protocols.  The investigators realize that differing levels of co-

contraction between participants may account for differing levels of observed reciprocal 

inhibition and possibly PIC.  If a participant co-contracted to achieve the necessary ramp 

contraction it would decrease the reciprocal inhibition to the alpha motor neuron, 

inflating the estimated PIC value obtained.  However, participants showed a significant 

(p= 0.0147) decrease in TA activation in seated posture (ramp rise: 0.0067 ± 0.0023; 

ramp decline: 0.0067 ± 0.0023) compared to standing (ramp rise: 0.0268 ± 0.0106; ramp 

decline: 0.0218 ± 0.0078).  This indicates that a strategy of increased co-contraction did 

not account for the increase in seated PIC observed in this investigation.  Admittedly, this 

was not a primary analysis planned during experimental design.  As such, there is no 

tibialis anterior MVC available to normalize RMS amplitude of raw TA surface EMG 

with.  This may create disparities in measured TA activation and percentage of maximal 

activation between participants based on electrode placement.  However, the standard 

deviations of each condition range similar to the mean with no outliers.  Once again this 

finding indicates that a strategy of increased co-contraction was not a major contributor 

to the increased PIC observed in the seated posture. 

The current findings indicate PIC estimates via the paired motor unit technique 

have limitations when transferred to a functional postural sway task.  Nonetheless, 

estimates of PIC during a standing posture are still warranted given that PIC is expressed 

to a greater extent in antigravity muscles (ElBasiouny et al., 2010; Heckmann et al., 
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2005; Johnson & Heckman, 2010) and the majority of scenarios where PIC is relevant to 

human movement are during high force output tasks, scenarios when constant input is not 

necessary (i.e standing) and locomotion.  Future directions might be to make paired 

motor unit recordings to estimate PIC during isometric contractions in a standing posture.  

One such apparatus would have the participant performing a standing plantarflexion calf 

raise against an immovable shoulder restraint.  This set-up would mimic the static muscle 

lengths and joint angles seen in the conventional seated posture but require activation of 

all antigravity muscle groups and reflect differences in motor neuron gain expected in a 

standing posture.    Further improvements to a standing protocol may result in a 

functionally relevant variation of the paradigm that would be applicable to many 

populations experiencing postural control deficits (i.e. older adults, mild traumatic brain 

injury, stroke, Parkinson ’s disease).  
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TABLE 3.1:  CRITERIA USED TO DETERMINE WHETHER CONTROL MOTOR UNIT FIRING 

RATES PROVIDE VALID ESTIMATES OF PIC IN THE PAIRED MOTOR UNIT TECHNIQUE. 

All motor unit pairs analyzed in this experiment exceeded the minimum accepted value for 

published validation criteria (Gorassini et al., 2002; Powers et al., 2008; Stephenson & 

Maluf, 2011). However, there were differences between postures. When seated, there was 

a significantly longer time between reference unit and test unit onset.  An asterisk denotes 

significant differences between seated and standing postures.   

 

Posture 

Time Between Reference and Test 

unit Recruitment 

Rate 

Modulation 

Rate-Rate Correlation 

Coefficient 

Minimum 

accepted 

valuea,b,c 

>1sb 

>2sa,c 

Minimum 

difference of 

0.5ppsa,c 

r2 ≥ 0.5 or r ≥ 0.7a,c 

Standing  2.00 ± 0.90* 2.51 ± 1.34 0.79 ± 0.16* 

Seated 2.55 ± 0.87 2.70 ± 1.46 0.90 ± 0.053 

a. Gorassini et al., 2002 

b. Powers et al., 2008 

c. Stephenson and Maluf, 2011 

 

 

 

 

 

 



55 

 

TABLE 3.2:  MUSCLE ACTIVATION AND RAMP CHARACTERISTICS FOR SEATED AND 

STANDING MEASURES.  An asterisk denotes significant differences between seated and 

standing posture.  Particularly interesting is that standing posture consistently showed a 

higher percentage of soleus activation.  However, this was not accompanied by a notable 

increase in the number of active motor units in intramuscular EMG recordings as would be 

expected with such a large disparity in activation.  Instantaneous firing frequencies at 

recruitment of test or reference units were quite low when only the first ISI is isolated.   

                     Posture 

  Standing  Seated 

sEMG at peak of ramp (RMS) 28.92 ± 14.24* 16.55 ± 6.46 

Instantaneous firing frequencyof reference unit at 

recruitment (pps) 
    

  Only first ISI 5.06 ± 1.16 5.49 ± 1.12 

  Average of first 3 ISIs 6.18 ± 1.49 6.14 ± 0.85 

Instantaneous firing frequency of test unit at 

recruitment (pps) 
    

  Only first ISI 5.24 ± 1.51 4.63 ± 1.69 

  Average of first 3 ISIs 6.06 ± 1.35 6.59 ± 1.32 

Duration of ramp rise (s) 5.24 ± 0.37* 5.90 ± 0.70 

Duration of ramp decline (s) 5.83 ± 0.65 5.96 ± 0.62 

muscle activation at reference unit recruitment (% 

maximal sEMG RMS) 
12.70 ± 5.82* 9.38 ± 4.66 

muscle activation at test unit recruitment (% 

maximal sEMG RMS)* 
22.66 ± 7.17* 14.38 ± 6.00 
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FIGURE 3.1:  MCCOMAS BOOT TO MEASURE ISOMETRIC PLANTARFLEXION TORQUE 

DURING SITTING PHASE OF EXPERIMENT.  The leg is clamped from the top of the knee 

(flexed at 90°) to the foot platform.  A resistive transducer is used to capture isometric 

ankle plantarflexion torque.  The ankle joint angle can be adjusted however it was held at 

0° to agree with the standing joint angle. 
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FIGURE 3.2:  CUSTOM FORCE PLATFORM TO MEASURE FORCE DURING ANTERIOR 

POSTERIOR SWAY.  An S-type load cell under front of platform was zeroed to have 

feedback read zero during neutral stance.  A hinge in the rear ensured system sensitivity 

for low force, small adjustments in posture.  Participants had their foot traced onto paper 

to ensure it was in the same spot on the platform in the event of repositioning. 

 

 

 

 



58 

 

 

FIGURE 3.3:  EXPERIMENTAL PROTOCOL.  Participants began in a standing posture.  

Electrodes and intramuscular needle were positioned.  Set-up was a large portion of the 

experiment and always conducted methodically to ensure recording quality.  Participants 

performed warm-up calf raises and slowly transitioned to the postural sway task. 

Participants were given a ramp tracing on a transparency to trace on the screen by leaning 

forward and back.  This was repeated until 3 smooth ramps were collected.  To assess 

reciprocal inhibition,80 stimuli were delivered to the CPN during a very slight forward 

lean.  The participant was then seated with their leg in the McComas boot.  3 Maximal 

plantarflexion contractions were used for MVC.  Participants again performed ramp 

contractions, this time to 10%MVC.  Reciprocal inhibition data was then collected during 

a low level contraction using 80 stimuli to the nerve to the antagonist.  Participants were 

then transitioned back to standing to collect one more ramp to ensure the same motor units 

could be followed through posture transition in both directions. 
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FIGURE 3.4:  INTRAMUSCULAR AND FORCE RECORDINGS DURING POSTURAL SWAY 

RAMP TASK:  Similarly to the isometric plantarflexion ramps in the seated position, 

standing ramp templates were provided over the screen on a transparency for participants.  

Peak ramp force was normalized to the most comfortable anterior lean position that the 

participant could maintain consistent force output.  Participants were instructed to position 

their weight over the heels during the non-sway phase and this value of force output was 

zeroed.  Participants had multiple practice attempts to ensure reliable ramps could be 

produced during the experimental protocol. 
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FIGURE 3.5:  ASSESSING RECIPROCAL INHIBITION.  The common peroneal nerve (CPN) 

was stimulated at motor threshold during light plantarflexion to activate the reciprocal 

inhibitory pathway (A), and inhibit soleus motor neurons (MNs).  This results in a delay in 

soleus motor unit discharge and an increased interspike interval (B).  This is an example 

of the effect of one stimuli of the 80 stimuli used generate the PSTH shown in Figure 15. 
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FIGURE 3.6:  SPIKE SORTING PROTOCOL used to identify control and test motor units. 

Intramuscular recordings (bottom trace) were made via fine wire electrodes inserted into 

the soleus muscle. Spike sorting software (Spike2, Cambridge Electronic Design) was used 

to identify reference (middle trace) and test (top trace) motor units coded according to 

amplitude and shape (top figure).  Templates were made using an algorithm and then 

manually sorted by the investigator to account for sorting errors due to superimposed spikes 

or amplitude changes. 
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FIGURE 3.7:  FILTERING OF THE INTRAMUSCULAR RECORDING.  In addition to a 

bandpass hardware filter, a “Hum Remove” online digital filter (Spike 2 software (version 

7.1.2), Cambridge Electronic Design, Cambridge Inc., United Kingdom) was used to 

remove noise during data collection.  Data was broken into 400 bins and an algorithm 

detected the most predominant resonating frequency in each.  A filter was then applied for 

each epoch, resulting in a marked reduction in oscillating baseline noise.  This improved 

accuracy of manual sorting, especially among low threshold motor units. 
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FIGURE 3.8:  RATE-RATE CORRELATION WAS CONDUCTED TO SATISFY THE PHYSIOLOGICAL ASSUMPTION THAT THE REFERENCE 

AND TEST UNIT SHARE EQUAL SYNAPTIC INPUT DURING THE CONTRACTION.  For this to be true, and the paired motor unit technique 

valid, the firing rates of both motor units must vary in accordance with the other.  This is confirmed by correlating the mean firing rate 

values (200ms bins, mean values of firing rate (pps)) for each motor unit over the duration of the test unit activity. Pearson’s correlation 

coefficient was then calculated from the plotted data (test firing rate vs reference firing rate) 
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FIGURE 3.9:  RATE MODULATION IS CALCULATED AS DIFFERENCE BETWEEN THE 

RANGE OF REFERENCE UNIT FIRING RANGE.  Peak reference unit firing frequency 

(Fmax) to the last calculated firing frequency of the reference unit (Fmin) is quantified and 

compared to the calculated ΔF value (Fstart - Fend) for that motor unit pair.  If ΔF is within 

0.5pps of the rate modulation the pair does not meet the assumption that the reference 

unit is a sensitive indicator of net excitatory input to the motor neuron for the duration of 

the ramp contraction.  
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FIGURE 3.10:  THE CUMULATIVE SUM PSTH TECHNIQUE WAS USED TO QUANTIFY 

RECIPROCAL INHIBITION.  

Stimulation PSTH (A): The CPN was stimulated to activate the reciprocal inhibitory 

pathway.  The number of spikes (count) were plotted in 5-ms bins for 400 ms after each 

stimulus.  

Control PSTH (B):  This PSTH reflects the interspike intervals during soleus motor unit 

activity without stimulation of the nerve to the antagonist (i.e. CPN). 

Difference PSTH  for 2nd ISI (C):  Spike counts from the control PSTH were subtracted 

from the stimulation PSTH to quantify reciprocal inhibition.  A negative value signifies 

inhibition. Cumulative Sum of 2nd ISI (D):  Difference PSTH counts were cumulatively 

added.  This cumulative sum is used to detect changes from the mean and the timing of 

these changes.  A negative deflection indicates inhibition and the amount of inhibition 

was quantified by area under the curve (trapezoidal integration) 
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FIGURE 3.11:  ELECTRODE SETUP FOR STIMULATION TO ASSESS RECIPROCAL 

INHIBITION.  A stimulation electrode for RI placed over the CPN. B surface EMG on the 

TA to measure stimulation threshold for CPN stimulation. C Surface EMG placed on 

electrode to measure overall activity of soleus during contraction. Intramuscular electrode 

wires (D) fed into preamplifier (E) secured to leg. 
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  PIC RI 

Participant MU Pair Standing Sitting Standing Sitting 

A 1 1.788 1.028 0.025 -0.039 

B 2 4.249 4.636 0.030 0.021 

C 3 1.903 2.297 -0.039 -0.035 

D 4 1.273 2.055 -0.011 -0.077 

D 5 2.993 3.101 -0.011 -0.077 

D 6 3.511 3.094 -0.011 -0.077 

E 7 3.076 2.923 -0.013 -0.043 

E 8 2.587 1.148 -0.013 -0.043 

F 9 3.712 3.678 -0.034 -0.089 

G 10 3.231 3.051 -0.004 -0.010 

H 11 2.533 3.300 0.035 -0.069 

H 12 3.085 3.671 0.035 -0.069 

I 13 0.615 3.692 0.028 0.036 

I 14 2.429 3.607 0.028 0.036 

J 15 1.826 1.634 0.001 -0.035 

      

 

FIGURE 3.12:  EPIC AND RI DATA.  Top: Pic and RI values by participant. Bottom: PIC 

values (left) showed no significant difference between standing and seated posture.  This 

trend of comparable ePIC values between postures is reflected by group means (grey bars) 

and by the majority of individual data (solid black lines).  However, two participants 

(dotted lines, 1&2) showed marked increases in ePIC from standing to seated.  Reciprocal 

inhibition did show a significant (p<0.001) difference between postures.  Note that a larger 

negative value denotes increased reciprocal inhibition.  The two individuals who registered 

a large increase in PIC did not have that correlate to a decrease in reciprocal inhibition in 

the seated posture. The # denotes the participant with the single largest changes in ePIC 

between postures; comparing this to their Reciprocal inhibition data indicates this large 

discrepancy was the result of a change in RI in that individual. 
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FIGURE 3.13:  CORRELATION BETWEEN BASELINE EPIC AND RECIPROCAL 

INHIBITION.  A decrease in PIC is expected with increased reciprocal inhibition (more 

negative values).  This investigation found no relationship exists at baseline between 

reciprocal inhibition and estimates of PIC in either standing or seated posture (standing: 

r=-.224, p=0.421;  seated: r=.232, p=0.405). 
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FIGURE 3.14:  CORRELATION BETWEEN ΔΔF AND ΔRI.  Acknowledging that there is a 

slight dorsiflexion of the ankle ΔΔF and ΔRI were correlated to demonstrate which units 

increase in ΔF from seated to standing was accounted for by ΔRI, the reduction in 

reciprocal inhibition.  When the outlying point is removed, no relationship exists, and the 

change in PIC is not accounted for by the change in RI between postures (p<0.001 

including all points). 
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FIGURE 3.15:  PAIRED MOTOR UNIT RECORDINGS DURING SEATED AND STANDING 

TASKS. Conventional paired motor unit recordings are made in a seated posture (traces and 

figure on left).  This has always provided investigators with reliable, repeatable measures, 

but is divergent from what likely happens during upright standing posture.  In order to 

obtain PMU estimates of PIC during standing posture a standing forward sway protocol 

was designed.  In the current study, isometric plantarflexion torque (seated technique) was 

replaced with an anterior postural way.  This force was quantified using a load cell placed 

under the anterior portion of the custom platform where the participants stood.  PMU plots 

for both seated and standing resemble recordings obtained by past investigations.  

Furthermore, standing estimates also meet all PMU technique criteria, further validating 

standing ePIC collection. 
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SUMMARY  

1. Standing paired motor unit recordings met all published validation criteria, 

satisfying the physiological assumptions of the technique and indicating ∆F was a 

valid measure of PIC. 

2. Standing ∆F did not differ from seated ∆F indicating no difference in persistent 

inward current between postures. 

3. Certain validation criteria (rate-rate correlation) and technique constraints (% 

muscle activation at test unit recruitment) significantly differed between seated and 

standing. 

4. Reciprocal inhibition was significantly greater in a seated posture than when 

measured with a standing postural sway. 

CONCLUSION  

 This study provided the first functional estimates of persistent inward current in 

humans, demonstrating that a postural sway ramp contraction could provide paired motor 

unit recordings that meet all published validation criteria for the technique.   While 

operating within other constraints to limit confounding factors influence on ∆F, differences 

between standing and conventional seated PIC estimates indicate further investigation is 

needed before concluding that standing ∆F is a valid index of persistent inward current.  

RECOMMENDATIONS FOR FURTHER STUDY 

The current experiment demonstrated it is possible to obtain ΔF estimates of PIC during a 

functional postural sway, however elimination of the dorsiflexion associated with an 

anterior postural sway may be a better method for standing PIC estimation moving forward.  

Creating an apparatus whereby the participants shoulders could be restrained from superior 
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movement, a standing isometric plantarflexion task could be performed.  This would not 

only allow for a more controlled pace of contraction but regulate the contraction strength 

to anywhere from zero to one hundred percent MVC.  Furthermore, such an apparatus 

could be accommodating of ankle joint angle changes so that the relationship between RI 

and PIC could be investigated while standing, similar to the seated ΔRI-ΔΔF correlations 

of Vandenberk & Kalmar 2014. 
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APPENDIX A:  INFORMED CONSENT 

WILFRID LAURIER UNIVERSITY 

INFORMED CONSENT STATEMENT  

Estimates of persistent inward current in human motor neurons during postural sway 
You are invited to participate in a research study at Wilfrid Laurier University. The purpose of our study is 

to provide further insight into task dependent nature of a motorneuron property known as persistent inward 

current.                                                                                                                           

 

Student Investigator: 
Name:  Ryan Foley 

Institution: Wilfrid Laurier University 

Phone:  (519) 884-0710 ext. 3334 

Email:  fole4370@mylaurier.ca 

 

Supervisor: 
Name:  Dr. Jayne Kalmar (13) 

Institution: Wilfrid Laurier University 

Phone:  (519) 884-0710 ext. 2033 

Email:  jkalmar@wlu.ca 

 

INFORMATION 
 

Ten participants will take part in this research study.  The aim of our study is to investigate the relationship 

between a spinal reflex pathway and a property of spinal motor neurons.  Specifically, we will be studying 

an intrinsic property of spinal neurons that sets their level of excitability during different tasks and states.  

We are also interested in how inhibition acts to adjust the excitability of motor neurons during different 

postures.  To date this has only been investigated in participants free of nervous system pathologies.  We aim 

to identify task dependency of motor neuron excitability using a functionally relevant task.   

 

The experiment will take place in room NC119 of the Northdale Campus at Wilfrid Laurier University, which 

is located on the corner of Hickory Street and Hazel Street (66 Hickory St. W). Upon arrival, you can dial 

the lab extension (x3334) from the outdoor keypad at the main entrance and a member of the laboratory will 

meet you there at the entrance.   

 

We will use electrical nerve stimulation to quantify the degree of reciprocal inhibition at different time 

periods throughout the experiment.  Electrodes will be attached to the skin over a nerve in your leg and when 

stimulated it will cause muscles in your lower-leg to contract.  Intramuscular electrodes that are made out of 

very fine wires will be inserted into your leg to record the electrical activity within the muscle when you 

contract your leg voluntarily.  This will be repeated in a sitting and a standing condition on one experimental 

day.  This electrode will only be used to record electrical responses and never to stimulate the muscle. 

 

These procedures are safe and have been used routinely in research settings for more than 40 years; however, 

some participants may find the sensation unpleasant. If you find these procedures uncomfortable, you may 

withdraw from the study at any time. A 30-minute orientation will take place on the same day as the 

experiment.  The purpose of the orientation is to introduce you to the techniques employed in this study 

(nerve stimulation and intramuscular recordings).   Following this orientation session, we will assess these 

preliminary recordings.  If the recordings meet our criteria, we will continue with the experiment and finish 

that same day.  The experimental protocol will take approximately 2.5 hours.  You be compensated with $30 

for participating. 

 

 

Initials________ 

mailto:fole4370@mylaurier.ca
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RISKS 
 

The electrical stimulation applied to the mixed nerve through a constant current stimulator will cause an 

involuntary muscle “twitch” in the target muscle. You may find this stimulation unpleasant; however, 

constant current stimulation is a noninvasive procedure that does not cause damage to the nerve or other 

tissues. 

The initial insertion of the intramuscular electrodes may be associated with a stinging sensation due to the 

alcohol used to clean your skin.  There is also a remote risk of infection with the insertion of intramuscular 

electrodes. To reduce this risk the needles and electrodes are sterilized using an autoclave and your skin is 

prepared with alcohol. The researcher will also be wearing medical-grade, non-latex gloves during any 

manipulation of the needle or the electrode wires.  Needles, electrodes and razors (used to shave skin around 

electrodes) are never reused. 

Some participants may find the electrode uncomfortable during the initial few contractions after insertion.  

This typically subsides after some muscle use and is mostly unnoticed.   

There occasionally may be localized bruising (<0.5cm diameter) around the site of electrode insertion similar 

to what you might observe following a blood test. This bruising subsides within 48 hours and is not typically 

associated with any discomfort.  

 

BENEFITS 
 

You will not benefit directly from participating in this study.  However, this study will help 

us understand the neural control of muscles in both healthy populations and those with 

concussions.  It will provide valuable insight into the state -dependency of commonly used 

motor unit recording techniques.  

 

CONFIDENTIALITY  
 

All data collected in this study will be stored indefinitely in NC119 and will only be accessible by the 

investigators. All measures will be taken to ensure your privacy and all your data will be coded and identified 

by a participation code. Group results will be submitted for publishing in various research journals. Individual 

results will remain completely confidential and not published to ensure your privacy.   

 

COMPENSATION  
 

You be compensated with $30 for participating in this study. 

 

CONTACT  
 

If you have questions at any time about the study or the procedures you may contact the researcher or 

supervisor. 

This project has been reviewed and approved by the University Research Ethics Board.  If you feel you have 

not been treated according to the descriptions in this form, or your rights as a participant in research have 

been violated during the course of this project, you may contact Dr. Robert Basso, Chair, University Research 

Ethics Board, Wilfrid Laurier University, (519) 884-1970, extension 4994 or rbasso@wlu.ca. 

 

PARTICIPATION 
 

Your participation in this study is voluntary; you may decline to participate without penalty.  If you decide 

to participate, you may withdraw from the study at any time without penalty and without loss of benefits to 

which you are otherwise entitled. 

 

Initials________
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FEEDBACK AND PUBLICATION 
 

The results will be presented for completion of the Graduate Thesis project and at the American College of 

Sports Medicine and Exercise Neuroscience Group conferences. We will also be making submissions to an 

appropriate scientific journal, such as the Journal of Neuroscience or Journal of Neurotrauma.  

 

If you would/ would not like to receive a summary of the results of this study, please indicate below: 

 

          No Feedback              Email   

_____________________________       

 

CONSENT  
 

I have read and understand the above information.  I have received a copy of this form.  I agree to participate 

in this study. 

 

 

Participant's signature_________________________________ Date _________________ 

 

 

Investigator's signature________________________________   Date _________________ 
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APPENDIX B:  PARTICIPANT SCREENING QUESTIONNAIRE 
 

Participant Screening Questionnaire 

 
Name:    _______________________________  For investigator use only                              
Sex (circle one):    Male / Female        Participant Code:  
Date of Birth:   _______________________________    
Phone Number:   (____)__________________________   
 
Email:    ________________________________ 
 
 
Please check the following that apply, or write ‘no’ beside the question: 
 
 

I suffer from an acute or chronic ankle injury. 
 
 I have previously been diagnosed with a neurological disorder. 
 
 I have been diagnosed with a traumatic head injury by a physician in the past year. 
 

I have suffered what I think to have been a concussion in the past year but did not see a 
physician regarding it. 

 
 I am a smoker. 
 
 I am currently taking any prescription medication. 
 If checked for ‘yes’, please list: 
 1)_________________________________ 
 2)_________________________________ 
 3)_________________________________ 
 4)_________________________________ 
 5)_________________________________ 
 
 I am currently taking any herbal or sport supplements. 
 If checked for ‘yes’, please list: 
 1)_________________________________ 
 2)_________________________________ 
 3)_________________________________ 
 4)_________________________________ 
 5)_________________________________ 
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APPENDIX C:  PERMISSION TO USE FIGURES 
 

Figures 2.1, 2.3, 2.4 

 

This is a License Agreement between Ryan CA Foley ("You") and Elsevier ("Elsevier") provided by Copyright Clearance Center ("CCC"). The license 

consists of your order details, the terms and conditions provided by Elsevier, and the payment terms and conditions. 

All payments must be made in full to CCC. For payment instructions, please see information listed at the bottom of this 
form. 

Supplier Elsevier Limited 
The Boulevard,Langford Lane 
Kidlington,Oxford,OX5 1GB,UK 

Registered Company Number 1982084 

Customer name Ryan CA Foley 

Customer address 24 Haliburton Avenue 

  Toronto, ON M9B4Y4 

License number 3497190376636 

License date Oct 27, 2014 

Licensed content publisher Elsevier 

Licensed content publication Clinical Neurophysiology 

Licensed content title Motoneuron excitability: The importance of neuromodulatory inputs 

Licensed content author C.J. Heckman,Carol Mottram,Kathy Quinlan,Renee Theiss,Jenna Schuster 

Licensed content date December 2009 

Licensed content volume number 120 

Licensed content issue number 12 

Number of pages 15 

Start Page 2040 

End Page 2054 

Type of Use reuse in a thesis/dissertation  

Portion figures/tables/illustrations  

Number of figures/tables/illustrations 3  

Format print  

Are you the author of this Elsevier article? No  

Will you be translating? No  

Title of your thesis/dissertation Estimates of persistent inward current in human motor neurons during postural sway  

Expected completion date Dec 2014  

Estimated size (number of pages) 75  

Elsevier VAT number GB 494 6272 12 
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Permissions price 0.00 CAD  

VAT/Local Sales Tax 0.00 CAD / 0.00 GBP 

Total 0.00 CAD   



90 

 

Figure 2.2 

This is a License Agreement between Ryan CA Foley ("You") and John Wiley and Sons ("John Wiley and Sons") provided by Copyright 

Clearance Center ("CCC"). The license consists of your order details, the terms and conditions provided by John Wiley and Sons, and the 

payment terms and conditions. 

All payments must be made in full to CCC. For payment instructions, please see information listed at the bottom 
of this form. 

License Number 3497190801550 

License date Oct 27, 2014 

Licensed content publisher John Wiley and Sons 

Licensed content publication Annals of the New York Academy of Sciences 

Licensed content title Interactions between focused synaptic inputs and diffuse neuromodulation in the spinal 
cord 

Licensed copyright line © 2010 New York Academy of Sciences 

Licensed content author M.D. Johnson,C.J. Heckman 

Licensed content date Jun 10, 2010 

Start page 35 

End page 41 

Type of use Dissertation/Thesis  

Requestor type University/Academic 

Format Print 

Portion Figure/table 

Number of figures/tables 1 

Original Wiley figure/table 
number(s) 

Figure 7 

Will you be translating? No 

Title of your thesis / dissertation Estimates of persistent inward current in human motor neurons during postural sway 

Expected completion date Dec 2014 

Expected size (number of pages) 75 

Total 0.00 CAD  

Terms and Conditions  
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APPENDIX D:  CURRICULUM VITAE 
 

Ryan C.A. Foley, B.Sc. 
 

Graduate Student, Department of Kinesiology & Physical Education 

Faculty of Science, Wilfrid Laurier University 

 

Qualifications Profile: 
 Neural control of human movement 

 Waveform acquisition, processing and analysis 

 Transcranial magnetic stimulation and intramuscular electromyography 

 

Education: 
  

Sept. 2012 - present Master of Science, Kinesiology and Physical Activity 

Wilfrid Laurier University, Department of Kinesiology 

Supervisor: Dr. J. M. Kalmar 

 

Estimates of persistent inward current in human motor 

neurons during postural sway 

 

Advanced Coursework Completed: 

 

Instrumentation and Digital Signal Processing in 

Biophysical Research 

KIN612 – University of Waterloo 

 

Statistical Reasoning & Experimental Analysis 

KP620 – Wilfrid Laurier University 

 

Sept. 2008 - May 2012 Bachelor of Science, Kinesiology & Physical Education 

Wilfrid Laurier University, Department of Kinesiology 

 

Honours degree 

 

Advanced Coursework Completed: 

 

Advanced Biomechanics 

KP451 – Wilfrid Laurier University 

 

Neuromuscular Function in Exercise 

KP425 – Wilfrid Laurier University 
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Research Grants: 
 

   

2011 – 2012 $700.00 FOSSA Research Grant (WLU) 

Training-induced adaptations in Interhemispheric 

Inhibition 

 

Honours and Awards: 
 

Summer 2014 

 

 

Summer 2013 

$5,500.00 

 

 

$6,000.00 

Graduate Studentship (WLU) 

Faculty of Graduate Studies, Wilfrid Laurier 

University 

Graduate Studentship (WLU) 

Faculty of Graduate Studies, Wilfrid Laurier 

University 

 

Sept. 2013 

 

Sept. 2013 

 

 

$3,000.00 

 

$3,750.00 

 

Graduate Scholarship 

 

Graduate Entrance Scholarship 

 

June 2013 

 

 

 

Apr. 2013                             

$300.00 

 

 

 

 

Graduate Travel Assistantship 

Faculty of Graduate Studies, Wilfrid Laurier 

University 

 

MHAD4 Poster Presentation Finalist 

4th Annual Muscle Health Awareness Day, York 

University 

 

Apr. 2012  Dean’s List 

Faculty of Science, Wilfrid Laurier University 

   

Apr. 2010  Dean’s List 

Faculty of Science, Wilfrid Laurier University 

  

June 2008  Senior School Letter 
Michael Power/St. Joseph’s High School 

 

Sept. 2004 – June 2008 

 

 
 

Honour Roll 

Michael Power/St. Joseph’s High School 

 

 

Research Experience:   
 

Graduate Student       Sept. 2012-present 

Wilfrid Laurier University, Waterloo, Ontario, Canada 

 Supervisor: Dr. Jayne Kalmar 
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 Study design, research, instrument design, data collection, analysis and 

manuscript preparation for master’s thesis project investigating a functional 

technique for human persistent inward current estimation 

 Mentorship and training of incoming Masters researcher 

 

Research Assistant          May 2013-Aug 2013 

Wilfrid Laurier University, Waterloo, Ontario, Canada 

 Mentored undergraduate thesis students in data collection (TMS & intramuscular 

EMG) and analysis techniques using Spike2 and Signal software 

 

Undergraduate Research Assistant        May 2012-Aug 2012 

Wilfrid Laurier University, Waterloo, Ontario, Canada 

 Perfected study design and recollected all participants from undergraduate thesis 

work 

 Analyzed MEP activation data for senior graduate student and aided with design 

of a script for normalized mirror activation analysis  

 

Undergraduate Thesis Student     Sept. 2011-Apr. 2012 

Wilfrid Laurier University, Waterloo, Ontario, Canada 

 Supervisor: Dr. Jayne Kalmar 

 Researched the effects of a novel, unimanual training intervention on 

interhemispheric inhibitory signals between motor corticies using transcranial 

magnetic stimulation 

 

 

Manuscripts in preparation: 
 

Foley, R.C.A., & Kalmar, J.M., (in preparation). Estimates of persistent inward current in 

human motor neurons during postural sway. Journal of Neurophysiology, (submission in 

January 2015) 

 

Foley, R.C.A., & Kalmar, J.M., (in preparation). Training-Induced adaptation in 

interhemispheric inhibition. Journal of Applied Physiology, (submission in March 2015) 

 

Invited Presentations: 

 
Estimates of Persistent Inward Current During Standing Posture, Department of 

Kinesiology, Wilfrid Laurier University, January 2013. 1-hour seminar presentation 

 

Reciprocal Inhibition and Persistent Inward Current: Experimental Approach to Motor 

Neuron Excitability, KP425 – Neuromuscular Function in Exercise, Wilfrid Laurier 

University, November 13th, 2013 

 

Reciprocal Inhibition: The importance of inhibitory input on the alpha-motor neuron, 

Department of Kinesiology, Wilfrid Laurier University, January 2013. 1-hour seminar 

presentation 
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A Neuromuscular Approach to Muscle Cramps During Long-Duration Exercise , KP422 – 

Advanced Human Physiology, Wilfrid Laurier University, October 16th, 2012 

 

Non-refereed contributions: 

 
Foley, R.C.A., & Kalmar, J.M., (2014). Estimates of persistent inward current in human 

motor neurons during postural sway (poster presentation at the Society for Neuroscience 

Annual Meeting, Washington, D.C., USA) 

 

Foley, R.C.A. and J.M. Kalmar (2013) Training Induced Adaptation of Interhemispheric 

Inhibition (oral presentation, Exercise Neuroscience Group, Oshawa, ON, June 2013) 

 

Foley, R.C.A. and J.M. Kalmar (2013) Training Induced Adaptation of Interhemispheric 

Inhibition (poster presentation at the American College of Sports Medicine Meeting, 

Indianapolis, IN, USA) 

 

Foley, R.C.A. and J.M. Kalmar (2013) Interhemispheric Inhibition During Bimanual 

Training:  Acute and Chronic Adaptations (poster presentation at the Muscle health 

Awareness Day, Toronto, ON, April 2013) 

 

Other Academic Contributions: 
 

 Neuromuscular Physiology Demonstrator at BrainWorks Day Camp for 

children, Wilfrid Laurier University, August 2013 

 Guest lecturer for Kinesiology Graduate Primer, “TMS: introduction to MEPs 

and Paired-Pulse Research”, August 20, 2012 

 Undergraduate Thesis Poster Presentation Evaluator, April 2, 2013 

 Volunteer tour guide at Kinesiology Graduate Program Open House, March 26, 

2013 

 Volunteer tour guide at Kinesiology Graduate Program Open House, 

November 15, 2012 

 

 

Work Experience: 
 

Kinesiology Lab Technician  (part- time)             Aug. 2014-present 

University of Ontario Institute of Technology, Oshawa, Ontario, Canada 

 Responsible for the daily operation and maintenance of the kinesiology teaching 

lab equipment including metabolic carts, ECG-treadmill stress testing systems, 

cycle ergometers, load cells, digital goniometers and PowerLab compact data 

acquisition systems 

 Assist with the design and production of several apparati for the teaching and 

research labs 

 

Teaching Assistant       Sept. 2012-Apr. 2014 
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Wilfrid Laurier University, Waterloo, Ontario, Canada 

 

Human Physiology (2nd year course)  Jan. 2014-Apr. 2014 

 Assisted with set-up of labs, marking of weekly quizzes and exams 

 

Exercise Physiology Labs (3rd year course)  Sept. 2013-Dec. 2013 

 Ran students through VO2Max, Wingate and strength testing protocols using 

Medisoft metabolic carts and Humac Norm multi-joint dynamometers 

 

Neuromuscular function in Exercise (4th year course)  Sept. 2012-Dec. 2013 

 Provided direction, marked final research topic papers and weekly quizzes 

 

Bio-Dynamics of Physical Activity (1st year course)  Jan. 2013-Apr. 2013 

 Assisted students with the transition to university quality writing and referencing 

techniques as well as organizational and study skills and marked final research 

papers 

 

Advanced Exercise Physiology (4th year course)  Sept. 2012-Dec. 2012 

 Marked weekly quizzes and met with students having trouble with course material 

to explain advanced physiological concepts 

 

Sales Associate (part- time)       Nov. 2009-Sept.2014 

FGL Sports Ltd., SportChek, Waterloo, Ontario, Canada 

 Footwear, hardgoods and softgoods sales associate offering expertise in running 

mechanics, skate sharpening and snowsports apparel. 

 

Inclinometer Monitoring Specialist     May 2010-Sept. 2011 

Monir Precision Monitoring Inc., Mississauga, Ontario, Canada 

 Monitored numerous large-scale excavation sites using MEMS inclinometer 

system and assisted in borehole and pile installation and set-up targets for total 

station monitoring in confined-space TTC subway tunnels 

 

Lifesaving and Swim Instructor     June 2006-Sept.2010 

City of Toronto, Etobicoke, Ontario, Canada 

 Swim Instructor for ages ranging from infant (less than one year) to adults with a 

primary focus on swimming efficiency and survival skills 

 

Sales Associate (part- time)                Sept. 2005-June 2008 

Sporting Life Inc., Etobicoke, Ontario, Canada 

 Footwear sales associate and 2-times representative at the Toronto International 

Bicycle Show 

 

Volunteer service: 
 

 WSIB Student Ergonomist – Occupational Health Clinic 

o Assisted with ergonomic assessments of injured workers 
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o Researched an catalogued new ergonomic products to be used in the 

workplace 

 Student-Kinesiologist – Justine Blainey Wellness Centre 

o Observed chiropractic treatment performed by Dr. Blake Broker 

o Implemented patient stretching and home exercise plans 

 Rehabilitation Assistant – Sun Life Movement Disorders Research and 

Rehabilitation Centre 

o Assisted in implementation of exercise plans aimed at reducing 

Parkinson’s Disease symptoms 

 

Certifications: 
 

 Canadian Society for Exercise Physiology Certified Personal Trainer – August 

2014 to present 

 Standard First Aid/ CPR-C – May 2003 to present 

 Fall Restraint and Fall Arrest Safety Training – May 2010 to Dec. 2011 

 WHIMIS Certificate – Sept. 2004  

 Confined Space Safety Training – May 2010 to Dec. 2011 

 Tri-Council Policy Training in Ethical Conduct for Research Involving 

Humans – Oct. 2011 

 

Professional Development/Courses Taken: 
 CSEP-CEP Workshop (in progress) 

 CSEP-CPT Workshop 

 Statistical Reasoning & Experimental Design (graduate level) 

 Instrumentation & Digital Signal Processing in Biophysical Research (graduate 

level) 

 Neurocognition of Human Movement (graduate level) 

 Advanced Biomechanics 

 Neuromuscular Function in Exercise 

 Advanced Fitness Assessment 

 Endocrinology 

 Biopsychology 

 Sports Medicine 

 Genetics 

 Cell and Molecular Biology 

 Exercise Phsyiology 

 Human Physiology 

 

Extra-Curricular Activities: 

 
Intramural Handball            2013 

Wilfrid Laurier University, Waterloo, ON 

 

Intramural Soccer            2012 

http://www.ethics.gc.ca/pdf/eng/tcps2/TCPS_2_FINAL_Web.pdf
http://www.ethics.gc.ca/pdf/eng/tcps2/TCPS_2_FINAL_Web.pdf
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Wilfrid Laurier University, Waterloo, ON 

 

Intramural Ultimate Frisbee           2012 

Wilfrid Laurier University, Waterloo, ON 

 

Intramural Ice Hockey             2010-2014  

Wilfrid Laurier University, Waterloo, ON 

 

Intramural Ball Hockey             2010-2012 

Wilfrid Laurier University, Waterloo, ON 

 

Intramural Dodgeball             2009-2012 

Wilfrid Laurier University, Waterloo, ON 

 

Ski & Snowboard Club Member           2009-2012 

Wilfrid Laurier University, Waterloo, ON 

 

Kin Games Participant                    2011 & 2012 

Wilfrid Laurier University, Waterloo, ON 

 

Student Council Vice President           2013 

MPSJ, Etobicoke, ON 

 

Grade 9 Orientation Head Executive           2007 

MPSJ, Etobicoke, ON 

 

Grade 9 Orientation Co-Executive           2006 

MPSJ, Etobicoke, ON 

 

Senior Boys Softball Team             2008 

MPSJ, Etobicoke, ON 

 

Cross Country Team                  2004-2007 

MPSJ, Etobicoke, ON 

 

References: 
 

Dr. Jayne Kalmar 

Associate Professor 

Kinesiology, Wilfrid Laurier University 

(519) 884-0710 ext. 2033 

 

Dr. Michael Cinelli 

Associate Professor 

Kinesiology, Wilfrid Laurier University 

(519) 884-0710 ext. 4127 
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