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ABSTRACT 
Widespread adoption of the Common Core State Standards for Mathematics (NGA & 

CCSSO, 2010) and other career and college readiness standards have prompted changes in 

the pedagogical practices of secondary mathematics teachers in the United States. The 

purpose of this study was to examine factors contributing to a math teacher’s willingness to 

alter pedagogical approaches. Key to the research was development of an instrument for 

measuring openness to change. The survey tool was created based on constructs drawn from 

the literature and was emailed to secondary mathematics teachers in the United States  

(N = 571). The instrument consisted of 65 questions pertaining to demographics, conception 

of mathematics, perceptions of learning mathematics, math mindset, teacher self-efficacy, 

professional identity, ambiguity tolerance, and attitude toward change. Exploratory and 

confirmatory factor analyses showed a six-factor structure to be effective for predicting 

openness to change. Structural equation modeling (SEM) techniques were used to test 

complexities among latent constructs and to support a theoretical model of correlations.  

Results revealed significant differences along demographic lines on the openness-to-

change scale, with females more open to adaptation than males, urban teachers more open 

than rural, and those without a math degree more open than math majors. Since high school 

teachers were much more likely than middle school teachers to hold a math degree—72.2 

percent compared to 27.4 percent—this last result relates to the finding that middle school 

teachers are more change-ready than their high school counterparts. No significant 



 xiv

correlation was found between the change-scale score and age, experience, or years spent 

teaching mathematics.  

The structural equation model tested in this study showed the six latent constructs 

combining in complex ways to explain math teacher willingness to alter teaching strategies. 

The structural equation model developed here serves to illuminate complex issues around 

math teacher change and provides a framework for diagnosing and remedying professional 

development challenges. The model suggests instructional change can be facilitated through 

attention to teachers’ conception of mathematics, perceptions of learning mathematics, math 

mindset, self-efficacy, professional identity, and ambiguity tolerance. 
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CHAPTER I 

INTRODUCTION 

Educational goals for students must reflect the importance of mathematical literacy. 
Toward this end, the K—12 standards articulate five general goals for all students: 
(1) that they learn to value mathematics, (2) that they become confident in their 
ability to do mathematics, (3) that they become mathematical problem solvers, 
(4) that they learn to communicate mathematically, and (5) that they learn to reason 
mathematically. These goals imply that students should be exposed to numerous and 
varied interrelated experiences that encourage them to value the mathematical 
enterprise, to develop mathematical habits of mind, and to understand and appreciate 
the role of mathematics in human affairs; that they should be encouraged to explore, 
to guess, and even to make and correct errors so that they gain confidence in their 
ability to solve complex problems; that they should read, write, and discuss 
mathematics; and that they should conjecture, test, and build arguments about a 
conjecture's validity. (NCTM, 1989, p. 5) 
 

By the time many U.S. students were first tested on the Common Core State 

Standards for Mathematics (CCSSM), it had been more than twenty-five years since the 

National Council of Teachers of Mathematics (NCTM) first suggested reforms very much 

like those now advanced by the Common Core. The 1989 NCTM Curriculum and Evaluation 

Standards, based upon the "assumption" that learning is an "active process," proposed a shift 

away from memorized procedures and rote practice toward deeper understanding, achieved 

through more student problem solving and student communication of strategies and logical 

arguments (NCTM 1989). These reforms have been slow to take root, and U.S. achievement 

data reflect this. While 4th- and 8th-grade students have shown growth on the Trends in 

International Math and Science Study (TIMSS) across the intervening years and have made 

"steady and significant" improvements on the National Assessment of Educational Progress 
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(NAEP), high school scores on these tests have remained stagnant by comparison (Dossey & 

McCrone, 2012). U.S high-school students rank nineteenth in the world on the Program for 

International Student Assessment (PISA) tests of problem solving, lagging far behind 

Singapore, Korea, Japan, and even neighboring Canada (OECD, 2012). Although some 

researchers are critical of international comparisons due to socioeconomic factors that 

disadvantage the U.S. (Carnoy & Rothstein, 2015, Rebell & Wolff, 2012), even when 

socioeconomic variables are accounted for, the U.S. lags behind top performing countries 

Canada, Finland and Korea, with only one-third of the gap closing (Carnoy & Rothstein, 

2015). Petrilli and Wright (2016) use PISA data to point out that “poverty cannot explain 

away America’s lackluster performance” (p. 1). The NAEP scores, of course, do not involve 

international comparisons. One possible explanation for sluggish achievement is that high 

school teachers in the U.S. have been slow to adopt reform shifts in instructional practice. 

Although it is hoped that widespread adoption of the CCSSM and accompanying changes in 

assessment will prompt long-awaited reform in secondary mathematics, unless mathematics 

education leaders address reasons behind teacher reluctance, professional development 

efforts are likely to be unsuccessful. It is one thing to say that teachers support the Common 

Core State Standards (O’Brien, 2014) and another thing altogether to say they are ready to 

shift pedagogical practices accordingly. 

Statement of the Problem 

It has long been understood that teacher practices are tied to teacher beliefs about 

teaching and learning (Stipek, Givvin, Salmon, & MacGyvers, 2001) and, in the case of math 

teachers, to beliefs about mathematics (Hoz & Wesman, 2008; Philipp, 2007; Chapman, 

2002). Consequently, if we want to see a change in practice, we must first motivate a change 
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in beliefs. It is not enough to simply provide teachers with a new curriculum and hope for the 

best. Reform-based textbooks exist, but where teachers’ beliefs do not align with the 

intentions of the curriculum, new books do not guarantee new reform-based instruction 

(Roehrig, 2005). It is also insufficient to simply offer professional development on reform-

based strategies; teachers judge all new learning against currently held beliefs and tend to 

adapt learning to beliefs rather than altering beliefs to accommodate the new learning (Cohen 

& Ball, 1990).  

A shift to a problem solving approach to teaching requires deeper changes. It depends 
fundamentally on the teacher's system of beliefs, and in particular, on the teacher's 
conception of the nature of mathematics and mental models of teaching and learning 
mathematics. Teaching reforms cannot take place unless teachers' deeply held beliefs 
about mathematics and its teaching and learning change. (Ernest, 1989, p. 249) 
 

In order to influence belief systems, we must first understand them, and in order to 

understand them, we must be able to assess them. This study provides a structural model for 

understanding pedagogical change, and through development of an instrument for measuring 

teacher beliefs, takes an essential next step toward instructional reform. 

Theoretical Framework 

Since the publication of the NCTM Standards in 1989, research and practice in 

mathematics education has been greatly influenced by the theory of constructivism. From a 

constructivist perspective, learning mathematics involves “incorporating new perceptions 

into an … existing cognitive structure” through “accommodation and assimilation,” in such a 

way that conceptual frameworks are continually transformed (Schiro, 2008, p.108). This is 

very much in keeping with the student-centered “active learning” described in the 1989 

Standards. Students are to actively construct meaning based on experience and interactions 

with phenomena—including expressions of the teacher's understanding—and make their own 
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sense. The Standards for Mathematical Practice (SMP) of the Common Core likewise 

promote construction of meaning by insisting on student reasoning, argument, and 

perseverance in problem solving (NGA & CCSSO, 2010).  

Although constructivism is a theory of learning and not a theory of teaching (Simon, 

1995), authors sometimes describe as “constructivist” a pedagogy that is consistent with the 

framework. Here is an example: 

The constructivist pedagogy … involve[s] the following characteristics: 
 
1. Attention to the individual and respect for students’ background and developing 

understandings of and beliefs about elements of the domain 
(This could also be described as student-centered); 
 

2. Facilitation of group dialogue that explores an element of the domain with the 
purpose of leading to the creation and shared understanding of a topic; 
 

3. Planned and often unplanned introduction of formal domain knowledge into the 
conversation through direct instruction, reference to text, exploration of a Web 
site, or some other means. 
 

4. Provision of opportunities for students to determine, challenge, change or add to 
existing beliefs and understandings through engagement in tasks that are 
structured for this purpose; and 
 

5. Development of students’ meta-awareness of their own understandings and 
learning processes. (Richardson, 2003, p. 1626) 

 

Traditional teaching of mathematics in the United States runs counter to 

constructivism in that it has tended toward the “transmission” of knowledge, with the teacher 

as expert in control of knowledge flow (Stipek et al., 2001). In a “typical American lesson,” 

the teacher explains a rule or procedure, leads students through examples step by step, and 

only then assigns problems for homework (Stipek et al., 2001), problems that typically bear 

close resemblance to examples seen in class. Math reformists, who favor more constructivist 

approaches, object to this treatment of mathematics as a static collection of rules and 
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procedures. Such practice leaves little room for students to investigate, to conjecture, and to 

deeply process mathematical ideas.  

It must be acknowledged that constructivism has come under attack in recent years 

(Hattie, 2009). Kirschner, Sweller, and Clark (2006), who define learning as “change in long-

term memory” (p. 75), concluded constructivist approaches were less effective than direct 

instruction due to the demands on working memory. Under the broad umbrella of “minimally 

guided techniques,” these researchers aggregated discovery learning, experiential learning, 

problem-based learning, inquiry learning, and constructivist learning, calling them 

“essentially pedagogically equivalent” (p. 75). The current study, however, does not equate 

these techniques (Hmelo-Silver, Duncan, & Chinn, 2007). Nor does it speak of the “straw 

man” version of constructivism (Liu & Matthews, 2005) often referenced by critics. There is 

no intended suggestion that students be left to “discover” mathematics without instruction 

from the teacher. On the contrary, the teacher is to carefully craft student experiences—

including direct instruction—in such a way that students make sense and meaning of what is 

learned. In this way it is hoped students will do more than remember. The goal is also to 

build schemata for future acquisition and to build capacity to think theoretically about 

mathematical items. Dean and Kuhn (2006) have shown that direct instruction along is 

“neither a necessary nor sufficient condition for robust acquisition or for maintenance over 

time” (p. 384). Reform-based curricula with constructivist, student-centered approaches have 

been shown to be more effective than traditional classroom programs (Briars & Resnick, 

2000; Riordan & Noyce, 2001; Schoenfeld, 2002). 
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Purpose of the Study 

The question this study seeks to address is "How can we measure secondary math 

teachers' openness for instructional reform?" Currently no tool for doing so exists although 

Stipek and colleagues (2001) developed an instrument for exploring a related question among 

elementary teachers. Research has well established that beliefs impact teacher performance 

(Stipek et al., 2001) and suggests several factors in particular contribute to math teachers' 

willingness to re-imagine practice: teacher conceptions of mathematics (Sowder, 2007), 

teacher perceptions of how students learn math (Philipp, 2007), teacher perception of 

students' potential, or “math mindset” (Boaler, 2013; Dweck, 2006), teacher professional 

identity (Kelchtermanns, 2009), and teacher self-efficacy (Charalambous & Philippou, 2010). 

If newly proposed approaches are not in harmony with these components of a teacher's belief 

system, no matter the quality of the training, new strategies are likely to be ignored (Borko, 

Mayfield, Marion, Flexer, & Cumbo, 1997; Philipp, 2007). In a more general sense, one’s 

ability to tolerate ambiguity also anticipates openness to change (Merenluoto & Lehtinen, 

2004; Stein & Smith, 2011). All six of these constructs can be measured. What is required is 

a tool that addresses them all, the means to look inside the black box of teacher attitudes. 

With such a tool professional developers could—prior to asking teachers to reflect on new 

strategies—identify and assess the strength of potentially limiting perceptions. The aim of 

this study is to develop such an instrument and to test its validity. 

Research Questions 

1. How can math teacher openness to changing classroom practices be measured?  

2. Which demographic measures predict openness to change?  
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3. How valid are certain constructs (math mindset, self-efficacy, constructivist 

perception of learning, dynamic conception of mathematics, professional identity, 

and ambiguity tolerance) for predicting a math teacher’s receptivity to new 

practices?  

4. How do these factors relate to one another as predictors of openness to reform?  

Importance of the Study 

The widespread adoption of the Common Core State Standards, which include eight 

standards for student habits of mind, has intensified a nationwide focus on teaching practices 

in U.S. math classrooms. In an effort to advance better instructional habits consistent with the 

Common Core, NCTM released Principles to Action (2014), outlining eight Mathematics 

Teaching Practices that support deeper, more student-centered learning. These teaching 

practices should, in effect, engage students in the Common Core mathematical practices. It is 

not realistic, however, to simply present these reform ideas to teachers and expect change to 

follow. We must be able to gauge teacher attitude toward reforms and willingness to embrace 

them.  

This study illuminates relationships among factors impacting change. In order that 

professional development of math teachers be truly transformational, mathematics education 

leaders must deeply understand the complex associations among factors contributing to 

resistance. The structural model developed in this study brings together in graphic style much 

of the literature on math education reform. The model clarifies relationships among 

potentially limiting belief constructs and in doing suggests areas for math teacher training 

that go beyond subject matter and pedagogy. 
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Although much has been written about math education reform and obstacles to 

achieving it, a tool for measuring math teacher openness to change has not been available. 

This research validates such a tool, and in doing so provides districts the means to assess 

attitudes toward change. The survey instrument makes possible local identification of 

roadblocks to reform and allows leaders to gauge the relative strength of hindering beliefs. 

Administering the survey prior to teacher training may assist teacher educators in prioritizing 

attitudes to be addressed. In schools or districts where math teachers all score high in 

“openness to reform,” trainers can potentially forego workshop sessions related to disposition 

and proceed directly to implementation of new pedagogies. In districts where results indicate 

limiting attitudes, use of the instrument will allow not only pre-training diagnostics and 

session roadmaps, but post-training feedback on the effectiveness of training; that is, had 

math-mindset training actually altered teacher mindsets? Had teachers become more 

comfortable with ambiguity? Had the general culture in the district started to shift? 

This study also makes a contribution to the literature on math education reform in that 

it identifies demographic differences in openness to math reform. Differences exist along 

geographic, educational, and gender lines that are worthy of further exploration. The study 

found no support for widely held notions that age and experience are factors. 

Effective professional development based on results of this study will include teacher 

reflection, the opportunity to become aware of and examine one’s own deeply held beliefs. 

Without this metacognitive opportunity, a teacher’s own scholarship goes undeveloped, as 

does “the scholarship of teaching in general” (Kelchtermans, 2009, p. 270). Finally, this 

study is significant in that provides further evidence that reform is a sensitive business; 

change must be implemented with caution due to important psychological factors at play. 
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Delimitations 

 The sample for this study was limited to secondary mathematics teachers working in 

the United States in the spring of 2015 and did not include participants from other countries, 

grade levels or disciplines. Participants were those who responded to an email or Twitter 

invitation to take an online survey. The sample was further limited to those teachers 

connected to math education leaders in the researcher’s professional network. With the 

understanding that problems must be detected before they can be addressed, the study 

focused on identifying and measuring attitudinal impediments to math reform and did not 

deal directly with solutions to those impediments. Constructs analyzed in the study were 

those drawn from the literature on math reform. The study intentionally focused on change 

factors that were internal to the teacher and did not address important factors like adequate 

training, support, time and resources. 

Assumptions 

 Typical of studies with large online surveys, this study assumed participants to be 

members of the target population. It also assumed participants were able to correctly interpret 

the questions and to answer them truthfully, expressing their own beliefs and opinions. 

Further, the study assumes that math teachers receptive to change will be more likely to 

pursue reform strategies. The researcher also believes it will continue to be important to 

foster in secondary students the Mathematical Practices outlined in the Common Core State 

Standards (or habits of mind very much in keeping with those practices should the standards 

themselves be rejected) and that it will therefore also continue to be important to develop 
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Mathematical Teaching Practices in teachers. More generally, since the study builds on a 

constructivist framework, it assumes that constructivist approaches to math instruction will 

continue to be supported by math education research. Since colleges of education have 

promoted constructivism for decades, it is likely to be supported well into the future. 

Researcher’s Background 

The researcher has worked in the field of education for 34 years. In addition to 

teaching secondary mathematics and English for the same public school district for 23 years, 

she has taught university-level courses in English and education and for three years served as 

the curriculum director for the MATHCOUNTS program in Alexandria, VA. She is currently 

an instructional coach for the same district in which she taught for many years. As such, she 

is responsible for curriculum development and teacher professional development for grades 

6-12 mathematics and English. 

As curriculum director for MATHCOUNTS, she found herself in the Washington, 

DC area at the time NCTM’s Curriculum and Evaluation Standards (1989) were first being 

released. It was her responsibility to know the Standards well and to develop alongside 

NCTM-appointed teachers classroom materials that reflected the intent of the Standards. 

When she returned to the Midwest from the DC area to take a math teaching position, she 

incorporated MATHCOUNTS materials into both classroom and after-school curricula and 

saw first-hand how well students learned math when given the opportunity to solve non-

routine problems. 

As a coach at the district level for the past six years, the researcher has led secondary 

math and English teachers in the development of Common Core-based curricula. She has 

also designed professional development sessions for teachers in both disciplines around the 
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incorporation of new pedagogies. In mathematics in particular, she has witnessed the 

reluctance of teachers to prioritize the Mathematical Practices Standards of the Common 

Core and a tendency to cling to the traditional lecture-followed-by-practice approach with 

which they themselves were taught. 

Definitions 

Common Core State Standards Mathematics: A set of K-12 academic standards 

developed for the National Governors Association and the Council of Chief States School 

Officers in an effort to define more coherent and rigorous guidelines for math education for 

any states choosing to adopt them (hence “Common”). “These Standards define what 

students should understand and be able to do in their study of mathematics” NGA & CCSSO, 

2010, p. 4). 

Standards for Mathematical Practice (SMP): A subset of the Common Core State 

Standards that define certain “processes and proficiencies” important to students’ study of 

mathematics: 

•  Make sense of problems and persevere in solving them. 

•  Reason abstractly and quantitatively. 

•  Construct viable arguments and critique the reasoning of others. 

•  Model with mathematics. 

•  Use appropriate tools strategically. 

•  Attend to precision. 

•  Look for and make use of structure. 

•  Look for and express regularity in repeated reasoning. 
 

These were derived from NCTM’s Practice Standards and the National Research Council’s 

strands of mathematical proficiency (NGA & CCSSO, 2010). 
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Mathematics Teaching Practices (MTP): A framework of eight practices for 

“strengthening the teaching and learning of mathematics,” published by NCTM in Principles 

to Action: Ensuring Mathematical Success for All (2014). 

Dynamic conception of mathematics: The extent to which a teacher thinks of 

mathematics as a “dynamic” science of inquiry as opposed to a “static” collection of rules 

and procedures (Hoz & Weisman, 2008). 

Constructivist attitude toward learning mathematics: The extent to which a teacher 

values an “open”/exploratory/social/student-centered approach to teaching mathematics as 

opposed to a “closed” teacher-transmits-student-practices approach (Hoz & Weisman, 2008). 

Mathematical mindset: The term mindset is used in the sense popularized by Carol 

Dweck (2006). The extent to which a teacher feels that math intelligence is malleable, a 

capacity that can be developed in any student. 

Teacher self-efficacy: Teachers’ “judgment of their capabilities to organize and 

execute courses of action required in order to obtain certain types of performances” 

(Bandura, 1986, p. 391). In this study, specifically the extent to which the teachers feel in 

possession of the means to impact student learning.  

Professional identity: The magnitude of the teacher’s identification with the role of 

math teacher (Adams, Hearn, Sturgis, & MacLeod, 2006). The extent to which a teacher 

values and feels pride in the role of math teacher and identifies with other math teachers. 

Ambiguity tolerance: The level of comfort a teacher has with novelty, complexity, 

and uncertainty, the non-routine (Rasche, 2012; Budner, 1962). 

Openness to change: The extent to which a teacher is willing to incorporate new 

pedagogy. 
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Reform: In the context of this paper, “reform” refers not to the current political 

teacher-accountability and high-stakes testing movements in the U.S. but to democratic 

changes in math pedagogy envisioned by the Curriculum and Evaluation Standards for 

School Mathematics (NCTM, 1989), Principles and Standards for School Mathematics 

(NCTM, 2000), and more currently Principals to Action Mathematics (NCTM, 2014). 

Measurement Model: A pictorial model of relationships among latent constructs and 

corresponding measurement items; used in confirmatory factor analysis. 

Structural Model: A pictorial model representing theoretical covariance and 

regression relationships among constructs in a multivariate SEM study. 

Summary 

Why is it that mathematics instruction in today’s secondary classrooms has changed 

so little since 1989 (Stigler & Hiebert, 2009)? NCTM, in Principles to Action (2014), is still 

citing “too much focus on learning procedures without any connection to meaning, 

understanding, or the applications that require these procedures” (p. 3). Given twenty-five 

years of literature inviting math teachers to make learning more interactive, student-centered, 

and conceptually grounded, how is that so little change has occurred? This study seeks to 

understand and measure the foundational beliefs that distinguish two types of teachers: those 

eager to embrace change in math pedagogy and those who are more reluctant. This study has 

been organized into five chapters. Chapter I provides an overview of the problem, along with 

a concise statement of purpose and the research questions. It also furnishes the theoretical 

context, significance, delimitations, and assumptions for the study. Chapter II provides a 

literature review to establish a rationale for measuring attitude toward change and for 

including each of the sub-constructs that comprise the instrument: math mindset, dynamic 
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conception of mathematics, constructivist attitude toward learning mathematics, professional 

identity, self-efficacy, and ambiguity tolerance. Chapter III is devoted to a description of the 

design and methodology of the study. Chapter IV explains the data results and analysis, and 

finally, Chapter V offers a summary, conclusions, discussion, recommendations, and 

reflection on the study. 
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CHAPTER II 

LITERATURE REVIEW 

In 2014 the National Council of Teachers of Mathematics released Principles to 

Actions: Ensuring Mathematical Success for All. One of its goals was to delineate for 

educators “productive and unproductive beliefs” regarding K-12 mathematics. NCTM called 

“unproductive” the belief that the teacher’s role is to transmit mathematics, smoothing over 

problem solving for students by guiding them every step of the way. Also labeled 

“unproductive” was the idea that student work be based on routine procedures, 

memorization, and prescribed methods. Though careful not to brand these beliefs as “bad,” 

NCTM classified them as likely to “hinder the effective implementation of effective 

instructional practices or to limit student access to important mathematics content and 

practices” (NCTM, 2014, p. 11). In line with more productive beliefs were these eight 

Mathematics Teaching Practices (MTP) promoted in Principles to Action: 

•  Establish mathematics goals to focus learning. 

•  Implement tasks that promote reasoning and problem solving. 

•  Use and connect mathematical representations. 

•  Facilitate meaningful mathematical discourse. 

•  Pose purposeful questions. 

•  Build procedural fluency from conceptual understanding. 

•  Support productive struggle in learning mathematics. 

•  Elicit and use evidence of student thinking (NCTM, 2014, p. 10). 
 
The MTP were intended as a framework to enable deeper student learning, the idea being that 

if teachers were to adopt these practices, learners would be better able to meet the eight 
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student Standards for Mathematical Practice (SMP) proposed in the Common Core 

document: 

•  Make sense of problems and persevere in solving them. 

•  Reason abstractly and quantitatively. 

•  Construct viable arguments and critique the reasoning of others. 

•  Model with mathematics. 

•  Use appropriate tools strategically. 

•  Attend to precision. 

•  Look for and make use of structure. 

•  Look for and express regularity in repeated reasoning. 
 

This study deals with challenges associated with moving math teachers toward adoption of 

the MTP so that students might be provided opportunities to experience the SMP. This 

chapter will summarize the literature on math teacher change with the aim of better 

understanding resistance to pedagogical reform. 

Math Teacher Change  

Unfortunately inertia is a powerful force in math education. Stigler and Hiebert 

(2009) point out that while reform movements come and go, “the substantive nature of what 

happens in the classroom stays pretty much the same” (p. 32). For these researchers stasis is a 

clear indication that teaching and teacher learning are cultural activities and therefore 

difficult to impact. In fact, they found that in the four-year period of major math reform 

efforts from 1995 to 1999, although many teachers claimed to be adjusting practices to the 

reforms, no changes were evident (p. 33). 

In their video case studies associated with the Third International Mathematics and 

Science Study (TIMSS), Stigler and Hiebert (2009) drew cultural comparisons between U.S. 

math classrooms and math classrooms in countries that continue to achieve at higher rates. 

They concluded that no particular teaching strategy or model was responsible for higher 
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achievement. Not even the type of math problem given to students explained international 

differences. A close look at video cases showed the important difference to be the way in 

which teachers engaged students with the problems. In higher performing countries, teachers 

engaged students in “active struggle with core mathematics concepts and procedures” 

(Stigler & Hiebert, 2009, pp. 34-35), encouraging them to search for patterns in order to 

develop their own conceptual understanding. In contrast, U.S. teachers involved students in 

practicing arithmetic procedures and recalling information. 

U.S. teachers not only tend to focus on the procedural but they often over-simplify 

processes for students. Colin Foster (2013), a British researcher, refers to this teacher 

tendency to “path-smooth” mathematical tasks for students as “reductionism": 

In a reductionist pedagogical paradigm, the subject is broken down into numerous 
tiny skills and pieces of knowledge, which are then taught separately and 
sequentially. The unstated assumption is that mastering these elements is equivalent 
to (but more manageable than) learning the original structure. Yet it is widely 
lamented that, when taught in this way, students often fail to see the purpose of these 
piecemeal bits of learning, quickly lose the various fragments and struggle to select 
appropriate ones and combine them when called on to solve more substantial 
problems. (p. 564) 
 

Foster advocates for more complex tasks and holistic approaches that treat math learning as 

more than a “linear, unidirectional, ladder-like” endeavor (p. 576). Without these kinds of 

reforms, conversations like the following will persist in U.S. math classrooms: 

Student: I can do it when you’re with me but I can’t do it by myself! 
Teacher: Of course you can! You don’t need me. I wasn’t really doing anything—

you did all the math! 
Student: I only know how to do it if you tell me what to do. (p. 575) 

 

Researchers explain that if students are to remember and make use of the procedures 

they learn in math class, they must be “required to exert some intellectual effort in making 

sense of the procedures, perhaps wrestling with the question of why procedures work” 
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(Emerling, Hiebert & Gallimore, 2015, p. 50; Clark & Bjork, 2014; Hiebert & Grouws, 

2007). There is wide support in the mathematics education research community for 

pedagogical reform in the direction of this deeper conceptualization (Boaler, 2002; Gresalfi 

& Cobb, 2011; Lampert, 2001; Stein, Silver, I Smith, 1998). 

The literature on math teacher change suggests a number of reasons math teachers 

have been slow to move from “teaching as telling” toward implementation of the practices 

outlined in the NCTM standards (1989; 2000) and the more recent Principles to Action 

(NCTM, 2014). This study will propose six psychological constructs impacting a math 

teacher’s openness to change (See Fig. 1). The rest of this chapter will be devoted to 

summarizing the research behind each construct. 

 

Figure 1. Simple Structural Model of Contributors to Change 

Teacher Conceptions of Mathematics 

Differing conceptual models of mathematics and mathematical understanding have 

fueled the “math wars” for decades now (Schoenfeld, 2004, p. 76), and some of the most 

consequential battles have been played out between teachers and staff developers. If all 

educators agreed on what mathematics is, reform would be more manageable. As it stands, 
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educators are divided regarding whether math is an object-to-be-transmitted or an 

experience-to-be-constructed (Chapman, 2002). That division has practical implications. In a 

three-year qualitative study of math teachers’ perceptions of word problems, for example, 

Chapman (2002) found that those who held the object-to-be-transmitted view tended to use a 

traditional “show and tell approach,” while those who held the experience-to-be-constructed 

view were apt to employ “student-centered,” “inquiry-oriented” methods (p. 96). She 

suggests that professional development of math teachers must take into account the way in 

which they view math problems. 

In contrast to Chapman, Schifter (1995) viewed conceptual differences as more 

continuous than dichotomous. In her work on reform’s effect on attitudes, she described a 

progression of conceptions of math among teachers that ranged from highly rote and 

procedural to highly conceptual: 

 1. An ad hoc accumulation of facts, definitions, and computational routines;  

 2. Student centered activity but with little or no systematic inquiry into issues of 
 mathematical structure and validity;  

 3. Student centered activity directed towards systematic inquiry into issues of 
 mathematical structure and validity;  

 4. Systematic mathematical inquiry organized around investigations of big 
 mathematical ideas. (p. 18) 

At one end of the continuum were teachers focused on deriving answers, speaking "almost 

exclusively in the language of numbers and operations." At the other end were teachers 

concerned with the underlying framework of ideas and relationships, whose ultimate goal 

was coherent understanding (Thompson, Philipp, Thompson & Boyd, 1994).  

Beswick (2012), crediting Ernest (1989), categorizes conceptions of math as 

“instrumentalist, Platonist, or problem solving” (p. 129-130). The instrumentalist sees math 
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as an amalgam of unrelated topics, each composed of a series of facts, skills and rules to be 

applied to practical purpose; the Platonist views it more as a connected static body of existing 

knowledge waiting to be discovered; and finally one with the problem solving view holds 

that math is a “dynamic and creative human invention” (p. 129-130). 

The reality is that the mathematics practiced in classrooms is very different than the 

problem solving practice of mathematicians (Beswick, 2012). Math education leaders in this 

country have proposed to remedy this through introduction of standards of mathematical 

practice, and a new wave of math coaches have appeared on the scene to train teachers in 

these practices. Unfortunately when the beliefs of teachers and their trainers clash, "the 

teachers generally either ignore the new ideas or inappropriately assimilate them" (Borko et 

al., 1997, p. 270). In a qualitative study involving 14 third-grade teachers in math workshops, 

Borko et al. (1997) found teachers whose philosophies of math were not well aligned with 

NCTM reforms were not inclined to invest a lot of time in something that “didn’t need 

fixing” (p. 265). Some of these teachers, because they held beliefs that went unchallenged 

during the course of the workshop, continued to embrace strategies inconsistent with the 

goals of the training. 

Likewise with reform curriculum materials: teachers will choose not to use them or 

use them improperly if the materials do not align with their conceptions (Philipp, 2007). In 

their qualitative study of seven elementary teachers, Remillard and Bryans (2004) found that 

a necessary condition of effective implementation of reform curriculum was a reform 

orientation on the part of the teacher.  

 What the reform movement has been hoping to nurture in teachers is an image of 

mathematics as a field of inquiry: 
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We observe an object, or a relationship, or a phenomenon, and we ask: What 
properties must it have? How do we know? Do all objects that look like this have the 
same property? Just what does it mean to “look like this”? Are there different ways to 
understand this? With that mindset, simple objects or observations become the 
starting points for explorations, some of which become unexpectedly rich and 
interesting. (Schoenfeld, 2013, p. 18) 

 
In a quantitative study of 176 Israeli high school math teachers, Hoz and Weizman 

(2008) use the terms “dynamic-changeable” and “static-stable” to distinguish between two 

diametrically opposed conceptions of mathematics. Teachers with a static conception see 

math as an infallible and immutable body of facts and rules held together by almost divine 

logic. Teachers with a dynamic view, on the other hand, conceive of math as a problem-

driven creative endeavor, a social process of inquiry in which the question is as important as 

the answer and uncertainty and fallibility are assumed. The static conception holds math to 

be inherently more difficult than other disciplines, while the dynamic perspective holds that 

cognitive challenges are not unique to mathematics (p. 907).  

 Even among teachers who share a dynamic image of math, classroom lessons may 

reflect a traditional approach since beliefs alone do not account for the differences in teacher 

practices (Sztajn, 2003). Teachers point to other factors such as time, resources, and student 

behaviors to explain why they do not teach the way they believe they should (Raymond 

1997).  Elements as discernible as these, however, are easier to address than perceptions that 

lie beneath the surface. It is crucial that district leaders attend to beliefs in addition to 

pedagogy since teacher attitudes go a long way in determining student perceptions of math 

(Boaler & Greeno, 2000).  
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Teacher Perceptions of Mathematics Learning 

Teachers' beliefs about math carry over to their beliefs about teaching math. 

Chapman’s (2002) work linking math-as-object to show-and-tell approaches is consistent 

with earlier research on teachers' perceptions of knowledge. Teachers who believe that 

"knowing" amounts to representing something that exists outside the mind are likely to 

believe they can teach students simply by presenting information clearly and accurately 

(Cobb, Yackel, & Wood, 1992). Regrettably there are still many secondary mathematics 

teachers who would define "understanding math" as “the memorization and correct execution 

of standard algorithms” (Philipp 2007, p. 288). This is perhaps one of the biggest challenges 

of reform, changing notions of what it means to understand, particularly among high school 

teachers, who are more likely to have drawn their models of pedagogy from the university 

(Ball & Bass, 2002), where teaching is often "telling." It may be particularly difficult to steer 

teachers away from this view because it supports a teacher's sense of efficacy (Philipp 2007), 

perhaps especially in the math classroom:  

The conception of mathematics as a fixed set of facts and procedures restricts the 
content teachers must know; thus they can think that they have mastered the 
necessary content. The notion of teaching-as-telling provides a detailed but attainable 
model that teachers can hope to master. Telling students how to perform procedures 
also supports teachers' senses of efficacy, because the conventional nature of 
procedures is such that students cannot be expected to know them until the teacher 
shows them, and so the students’ successes in mastering the procedures can be 
attributed to the teacher. (p. 281) 

 
Hoz and Weizman (2008), in addition to defining static and dynamic conceptions of 

math held by teachers, describe two opposing attitudes toward teaching math: a “closed-

strict” and an “open-tolerant.” The “closed” attitude aligns with Freire’s (1970) “banking 

model” and prioritizes math content over student development. The role of the teacher, as 
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authority, is to transmit knowledge to the passive student. The “open” attitude, on the other 

hand, aligns with constructivism and is driven by a concern for the student’s development. 

The student is seen as capable of constructing meaning through problem solving 

opportunities, and math ability is viewed as malleable and acquirable. Learning is both 

personal and social. Hoz and Weizman (2008) found the most prevalent combination of math 

conception and teaching approach to be static-closed and the rarest to be dynamic-open (p. 

910). In their study involving 176 Israeli math teachers, however, they found that a full 50% 

of teachers failed to adhere to a particular conception of math or the teaching of math, 

suggesting these attitudes are less polar than the researchers originally imagined.  

Although teacher practices do not always strictly align with beliefs about math, it is 

interesting to note that practices are more likely to be consistent with math beliefs than with 

beliefs about teaching and learning (Raymond, 1997). Accordingly, in a structural equation 

model we would expect “perception of math learning” to be a particularly important 

construct predicting teacher practice. In fact, Gresalfi and Cobb (2011) cite ample research 

evidence that “improving practice involves reconceptualizing what it means to teach 

mathematics” (Cobb, McClain, Lamberg, & Dean, 2003; Chen & Ball, 1990; Franke, 

Carpenter, Levi, & Fennema, 2001; Kazemi & Franke, 2004; Schifter, 2001). 

Mindset: Teacher Perceptions of Student Capabilities 

A real concern on the part of many teachers resulting from the increased rigor of the 

CCSS is that not all students will be up to the challenge. The notion that some students 

cannot do the math is not new with the CCSS. "Sadly," says Rhona Weinstein (2002), "our 

system of education is largely built on beliefs and practices on the negative side—about 

differences in and limits to ability" (p. 1). Often teachers have lower expectations of low-
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income and ELL students in particular and tend to use very basic procedural approaches with 

those students (Boaler, 2002). The more likely teachers are to treat students differently, the 

more likely students are to see themselves as the teacher does (Weinstein, 2002, p. 161). 

 Oddly, a student may be judged capable by one math teacher and incapable by 

another. Butler (2000) found that some teachers were more inclined to judge competency 

based on initial outcomes while others based judgments on subsequent achievement. This 

suggests the need to build consensus among teachers about what we are looking for when 

judging capability and to carefully define assessment criteria so that "what gets constructed 

as competent" ceases to vary (Gresalfi et al., 2009, p. 52).  

Beyond a common description of competence lies the question of whether teachers 

view ability as fixed or malleable. Dweck's research in self-theory (2006) has shown that 

changing student "mindset" regarding this question can make all the difference in 

achievement. In studies, adolescent students who believed they could increase their 

intelligence—those with a growth/incremental mindset—earned significantly higher grades 

than peers with a more fixed/entity mindset (Blackwell, Trzesniewski, & Dweck, 2007; 

Dweck, 2006).  

What impact does the teacher’s mindset have on students? What happens when the 

teacher believes that a student is either born with math talent or is not? Particularly important 

to this study are Butler’s (2000) findings that individuals with a fixed attitude toward the 

capability of others are likely to have a fixed attitude toward their own competence. 

Accordingly, a teacher with a limited view of a student’s capacity might also have a limited 

view of her own ability to learn new instructional methods. Stipek et al. (2001) specifically 

suggest that an entity mindset may “undermine” math reform efforts. They reason that a 
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“shared focus on correctness” links a teacher’s fixed attitude with traditional teaching 

practices. In their study involving 21 fourth- through sixth-grade teachers, they hypothesized 

that “the more teachers embraced traditional beliefs about mathematics teaching and learning 

and the less they embraced inquiry-oriented beliefs, the more they would espouse an entity 

theory of mathematics ability” (p. 215). Although results did not confirm a significant 

association between entity attitude and all traditional practices, they were able to establish an 

association between an entity mindset and a focus on “performance”—good grades and 

correct answers—over a more constructivist focus on understanding (p. 221). 

Dweck (2006) suggests that teacher mindset does play a role in overall achievement; 

in countries that outperform the U.S., educators have a much less fixed mindset about student 

ability and believe that effort is the key to success. Anderson (2007) calls on teachers to 

deemphasize the "nature face" of math identity—the notion that math success is determined 

by innate predispositions out of the control of the student. Teachers should instead focus on 

engaging students in mathematical activities that foster a sense of competence.  

Teacher Self-Efficacy 

It was noted earlier that “teaching as telling”—a more traditional mode—was tied to 

teacher comfort and sense of self-efficacy (Philipp, 2007, p.281). More generally, teacher 

efficacy beliefs have been found to relate positively to attitude toward reforms and to 

openness to new instructional strategies and materials. As far back as Guskey (1988) it was 

observed that “teachers who express a high level of personal efficacy, who like teaching and 

feel confident about their teaching abilities, who are indeed highly effective in the 

classroom—these teachers also appear to be the most receptive to the implementation of new 

instructional practices” (p. 67). Teachers with low self-efficacy, on the other hand, are less 
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comfortable with change. Charalambous and Philippou (2010), studying 151 elementary 

math teachers five years into a district-mandated math curriculum reform, found that teachers 

with low self-efficacy had more concerns about the reform. “Teachers who were more 

comfortable with pre-reform [emphasis added] approaches tended to be more critical of the 

reform, exhibited more intense concerns about their capacity to manage the reform, and were 

more worried about its consequences on student learning” (p. 14).  

Of specific application to the discussion of student-centered learning is the finding 

that "teachers with high efficacy beliefs were more open to student ideas" (Charalambous & 

Philippou, 2010, p. 3). This suggests that current calls for more student-centered, 

constructive approaches are likely to be better received by those who are already secure in 

the quality of their work. For others, it may be necessary to "reconceptualize their senses of 

efficacy” in order to be ready to accept math instructional reform (Philipp, 2007, p. 281). 

This of course is not easily accomplished, especially since the reforms themselves often 

erode teacher self-efficacy. Lasky (2005) points to the “guilt, frustration, and inefficacious 

vulnerability” teachers experience when a call for change characterizes them as “less 

effective” teachers (p. 911). This is exacerbated by the inherent “fishbowl” nature of the 

teaching (Kelchtermans, 2009; Lortie, 1975). It is, after all, a highly public act, observed by 

many, so it follows naturally that a teacher’s self-understanding is heavily “influenced by 

how others see him/her or what others say about him/her as a teacher” (Kelchtermans, 2009, 

p. 259). The social aspect of teaching revolves mostly around interaction with students, but 

the way teachers are viewed by peers also impacts self-understanding. When a teacher’s 

perspective is viewed by another as “outdated” the teacher becomes aware of that perspective 
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and its impact on the way others view him/her. “This awareness triggers…a critical 

examination” of the belief or attitude (p. 261). After all, a sense of belonging is important. 

Professional Identity 

Indeed another aspect of teacher self-understanding that has an impact on receptivity 

to change is strength of identity with the profession. This is due in part to what Lasky (2005) 

describes as an intricate intertwining of professional identity and self-worth. Nias (1989), 

too, notes that for teachers in particular overall self-image is very difficult to separate from 

professional self-image. For math teachers that image has two components, both a math and a 

teaching element. An Australian study of teachers who were identified by peers as strong 

math teachers found that “while the teachers saw themselves primarily as teachers, it was 

clear that they all had a strong mathematical sense of self and that their professional practice 

as mathematics teachers developed from both their pedagogical and discipline-based 

identities” (Grootenboer & Ballantyne, 2010, p. 226). It is essential to take into account this 

dual-natured construct since both aspects of identity are “foundational to teaching practice” 

(Grootenboer & Ballantyne, 2010).  

Changing practice often involves professional-identity realignment. A math teacher 

may need to revise professional self-understanding in the light of math reforms, and such 

reshaping of self-image, as stated earlier, can be psychologically demanding. “When these 

deeply held beliefs are called into question—and the risk that this happens is always 

present—teachers feel that they themselves as a person are called into question” 

(Kelchtermans, 2009, p. 262).  

Wenger (2010) explains that learning—a particular type of change, one that ought to 

occur during times of reform—necessarily shapes identity and may draw a teacher closer to 
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or further from her peers: 

Learning can be viewed as a process of realignment between socially defined 
competence and personal experience—whichever is leading the other. In both cases, 
each moment of learning is a claim to competence, which may or may not be 
embraced by the community. This process can cause identification as well as dis-
identification with the community. In this sense, identification involves modulation: 
one can identify more or less with a community, the need to belong to it, and 
therefore the need to be accountable to its regime of competence. Creating an 
experience of knowledgeability (or lack of knowledgeability) involves a lot of 
identity work. Through this process of identification and the modulation of it, the 
practice, the community, and one’s relationship with it become part of one’s identity. 
Thus identity reflects a complex relationship between the social and the personal. 
Learning is a social becoming. (Wenger, 2010, p. 180) 

 
It may be difficult, then, to predict whether a favorable attitude toward new practices 

will correspond to a stronger or weaker sense of professional identity. It may depend on the 

disposition of the community. Either way, Lasky (2005) tells us professional identity 

develops over time. She suggests the stronger the professional identity the less likely it will 

be eroded in times of institutional reform. The math reform movement “challenges most 

ways the majority of teachers have come to view themselves and their role in the teaching 

and learning process” (Gresalfi & Cobb, 2011, p. 273). A person with a strong connection to 

the role of “math teacher” will feel less threatened by change and so more open to it. 

Ambiguity Tolerance 

The final construct explored in this study, tolerance of ambiguity (TA), relates to a 

person’s risk-taking attitude, which not only contributes significantly to a teacher’s identity 

formation, but also relates directly to his/her feelings about change (Reio, 2005). McLain 

(2009) defines “ambiguity” as “a lack of information beyond risk or uncertainty, which 

requires an awareness of all possible outcomes” (p. 977). He explains that although 

ambiguity may hold attraction when a possible outcome is the improvement of a negative 
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state, often people experience stress in ambiguous situations. “A complex stimulus 

overwhelms the perceiver who must sift through a lot of information in order to understand 

the situation” (p. 977). Possible responses to novelty include avoidance, delay, and denial 

(Budner, 1962).  

Although ambiguity tolerance is closely related to risk-taking attitude (RT), in this 

study the researcher strives to distinguish the two. On the other hand, due to reliance on items 

from Budner (1962), this study does not draw the fine line between TA and tolerance of 

uncertainty (TU) as described by Furnham and Marks (2013). In differentiating between RT 

and TA, the focus is on the probability of outcomes. In an ambiguous situation, the 

probabilities associated with outcomes are unknown and therefore cannot be evaluated. In a 

risk-taking situation, outcomes are known, and chances are taken accordingly (Furnham & 

Marks, 2013). In distinguishing between TA and TU, they focus on context, both locational 

and temporal. While TA is used “primarily in cognitive studies on decision-making, memory 

and perception,” TU is referenced in studies related to anxiety disorders (Furnham & Marks, 

2013, p. 718). TA reflects a response to a current stimulus, with ambiguity an attribute of the 

stimulus itself, whereas TU is future-directed with the uncertainty an emotional response 

attributable to the individual (Furnham & Marks, 2013; Grenie, Barrette, & Ladouceur, 2005; 

Krohne, 1993). The three constructs are inter-related and the differences among them subtle. 

This study, in keeping with the Budner instrument, includes aspects of uncertainty in its 

measurement of ambiguity tolerance. 

For two reasons the ambiguity tolerance variable is important to the study of math 

teacher change. For many teachers the mathematical practices of the CCSS suggest a 

dramatic shift in approach to instruction—to an as-yet unknown way of performing—and 
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Merenluoto and Lehtinen (2004) point out that conceptual change is only possible when a 

person is able to tolerate a high degree of ambiguity. When faced with a new knowledge 

system, the individual needs to trust that conflicts will be resolved or “avoidance behaviors” 

will result (p. 525). It is interesting to note that the secure attitude required to adapt to new 

practice is affected by the new practice itself. Because the ambiguity of educational reforms 

(I don’t know what this looks and feels like) engenders uncertainty among teachers (This 

makes me anxious), capacity for novel behavior may be diminished at the very moment 

teachers need to rely on it (Reio, 2005). The implication is that one needs a fairly high 

tolerance for ambiguity before entering into a reorganization of practice. 

Another reason the capacity to cope with ambiguity is relevant to this study is that a 

math teacher taking a more constructivist approach must be able to cope with the unknown of 

student responses. Since solutions strategies are not generally prescribed for inquiry-based 

tasks, teachers need to be able to think on their feet and let go of the need to know all 

answers ahead of time and to control the direction of thought (Stein & Smith, 2011). A 

teacher’s willingness to take these risks impacts the way students learn math. Reio (2005) 

and Engel (2015), the latter speaking more in the language of risk-taking, suggest a teacher’s 

attitude directly impacts student attitudes. When a teacher discourages uncertainty, students 

become less comfortable with ambiguity, and the discomfort eventually squelches natural 

curiosity (Engel, 2015), a requirement for deep engagement with mathematical ideas. The 

importance of openness to novelty extends beyond the math classroom. In a broader sense, 

risk-taking is a necessity for academic, social and professional success, for adaptation to an 

ever-changing world (Reio, 2005). 
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Tymula, Belmaker, Ruderman, Glimcher, and Levey (2013) found that the risk-taking 

behaviors of adolescents were attributable to their displaying a greater tolerance for 

ambiguity than adults. These findings suggest that perhaps there is a correlation between age 

and ambiguity tolerance. In a later study, however, these same researchers found “young, 

midlife, and older adults statistically indistinguishable in ambiguity attitude” (Tymula et al., 

2012). 

A Word on Career Stage 

The career stage at which teachers find themselves during reform movements may 

play a role in willingness to grow and learn. Day and Sachs (2005) describe five phases of a 

teaching career: launching a career, stabilization, new challenges (experimentation), reaching 

a plateau, and the final phase. Beginning in the plateau phase, teachers stop striving and 

either enjoy or stagnate. It is particularly crucial, then, to identify perceptions among teachers 

in these last two phases that may predispose them toward unnecessary stagnation.  

This is not to say that more experienced teachers are less open to change as some 

have asserted (Hargreaves, 2005). In fact, perhaps change is the very thing to ward off 

stagnation. Meister and Ahrens (2011) noted that plateauing occurs when teachers view their 

career as “void of new challenges” (p. 774). In Gusky’s study (1988) there was no 

association between attitudinal constructs and years of experience. The current study 

confirms Gusky’s findings. 

Summary 

This chapter has served to flesh out the issues surrounding math teacher change, 

focusing on six constructs identified by research as likely to impact a math teacher’s 

openness to new practices. The next chapter explains how these constructs were 
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operationalized in the study in order to examine relationships among them. Chapter III 

describes the survey tool developed to measure constructs, the recruitment of survey 

participants, the procedures used to analyze survey data, and the exploratory and 

confirmatory techniques employed to develop and test a model of math teacher openness to 

change. Chapter IV relates results of the analyses, using statistical inference and a structural 

equation model to answer the research questions. 
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CHAPTER III 

RESEARCH METHODS 

The purpose of this study was to develop a means for identifying and measuring 

attitudes among secondary math teachers that impact their willingness to embrace 

instructional shifts. Another aim was to explain complex relationships among those 

inclinations. The study addressed four research questions:  

1. How can math teacher openness to changing classroom practices be measured?  

2. Which demographic measures predict openness to change?  

3. How valid are certain constructs (math mindset, self-efficacy, constructivist 

perception of learning, dynamic conception of mathematics, professional identity, 

and ambiguity tolerance) for predicting a math teacher’s receptivity to new 

practices?  

4. How do these factors relate to one another as predictors of openness to change?  

This study employed structural equation modeling (SEM) to analyze and represent 

the complex interrelations of six latent variables contributing to openness to change. The 

study was operationalized through the development of a survey instrument sent to secondary 

mathematics teachers around the U.S. Through a description of participants, measures, 

procedures and analysis, this chapter details how the research was carried out. It should be 

noted that a pilot study to develop the survey instrument was conducted in the fall of 2013 as 



34 

part of a final project for EFR 517: Advanced Research Methodologies. Results of that pilot 

study will also be discussed in this chapter.  

Survey Methodology 

 A survey was used to gather data from secondary mathematics teachers. An 

advantage to the survey approach in the case of this study was the protection of participant 

anonymity, which may have helped to ensure honest responses (Rudestam & Newton, 2007). 

Also, the online delivery of the survey provided access to a large number of math teachers 

spread across a broad geographical region, another benefit typical of Internet surveys 

(Rudestam & Newton, 2007). This latter was important since a large sample size was crucial 

to the SEM analyses. Although answers to the first three research questions could have been 

addressed with a smaller sample drawn only from the rural state in which the research was 

first conducted, early analyses showed it would be necessary to reach out to other states in 

order to adequately answer the fourth question with a structural model (Kline, 2005). The 

calculations used to determine appropriate sample size are explained below. 

 Online surveys are known to present problems of both coverage and nonresponse bias. 

In this study, the sample was limited to teachers that could be reached through the 

researcher’s professional network of mathematics education leaders. Although that network 

is far-reaching and enlisted participants from 45 states and D.C., coverage within states was 

not necessarily even. Additionally, as with many online surveys, this one was biased by an 

unknown rate of nonresponse. “Nonresponse error arises through the fact that not all people 

included in the sample are willing or able to complete the survey” (Couper, 2000, p. 473). It 

is possible that participants in this survey had special motivation, perhaps due to an interest 
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in the topic.  To encourage others who may have been more reluctant, an incentive was 

provided in the form a chance to win one of seven $50 Amazon gift cards. 

 Finally, although asked to email the survey link to math teachers directly, one 

colleague in the researcher’s professional network tweeted the link, inviting responses from 

“math teachers grades 7-12.” There is no way of determining how many participants were 

solicited via Twitter this way, but since only 23% of adult Internet users were Twitter users 

as of 2014, some portion of the sample is biased accordingly and might also be expected to 

be biased relative to the age demographic (Duggan, Ellsion, Lampe, Lenhart, & Madden, 

2015). That said, experience data for out-of-state respondents corresponds fairly well to 

national statistics for math teachers as shown in Tables 1 and 2 (IES, 2013, p.136). If  

Table 1. Secondary Math Teachers by Years of Experience. 

Years experience Less than 3 3-9 10-20 Over 20 

U.S. 2011-12 

(Grades 9-12) 

 

12.0% 

 

33.9% 

 

35.0% 

 

19.1% 

Out-of-state  5.7% 19.2% 39.3% 35.8% 

All participants 11.4% 18.2% 35.2% 35.2% 

(IES, 2013, p. 136) 

Table 2. Teachers by Age. 

Age Less than 30 30-39 40-49 50-59 60 or over 

U.S. 2011-12 

(Grades K-12) 

 

15.9% 

 

19.3% 

 

19.2% 

 

20.5% 

 

12.2% 

Out-of-state 8.9% 24.8% 29.6% 23.5% 13.2% 

All participants 14.9% 24.2% 27.8% 23.1% 10.0% 

(IES, 2013, p. 136) 
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anything, the out-of-state data skews in the direction of experience, so Twitter did not have 

the effect of lowering overall experience levels. 

 The study employed a cross-sectional rather than a longitudinal design and thus 

yielded a snapshot of math teachers at a particular point in time. Although a longitudinal 

application of the survey tool could be used to track attitude changes across a period of 

reform, for the purposes of this study—which were to validate the instrument and the 

model—a cross-sectional design was appropriate. 

 The survey was administered using QualtricsTM online data collection software. The 

full version of the survey can be found in Appendix A. Approval to conduct the survey was 

obtained from the Institutional Review Board (IRB) of the University of North Dakota 

(UND) (see Appendix B). For districts within the state of North Dakota, permission to 

contact teachers had been obtained in writing during the pilot, according to the policies of 

individual districts. 

Pilot Study 

In the pilot, conducted during the fall of 2013, the orginal survey tool was distributed 

to secondary mathematics teachers in North Dakota only. District officials signed letters of 

agreement that indicated there would be a follow-up survey within eighteen months.The 

online questionnaire was relayed to teachers through local administrators and regional 

coordinators, thus the number of participants solicited cannot be precisely determined. Given 

an approximate population of 600 and N at 186, the response rate was 31%, with 67 teachers 

from more rural areas responding and 119 from small cities. The sample was comprised of 

106 females and 80 males, 71 middle-school teachers, 83 high-school teachers, and 28 who 
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taught at both levels. The sample reflected a range of teaching experience from a few months 

to 41 years. 84 participants had at least a master’s degree.  

The pilot instrument consisted of 22 items, only 13 of which survived exploratory 

factor analysis. The 13 items (see Appendix C) loaded strongly onto five normally distributed 

constructs, which explained 65.4% of the variance in responses to these items. The five 

constructs explored in the pilot correspond to five of the six to be explored in this study:  

Table 3. Pilot Factor Loadings. 

 
Varimax Rotation Component Matrix 

 

 
CcptMath 

 
.82 

    

CcptMath .84     

LrnMath1  .58    

LrnMath2  .72    

LrnMath3  .73    

LrnMath4  .73    

MndSet1   .75   

MndSet2   .72   

MndSet3   .83   

ProfImg1    .90  

ProfImg2    .91  

Effic1     .80 

Effic2     .80 
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conception of mathematics, perceptions regarding learning math, math mindset, self-efficacy, 

and professional identity (not ambiguity tolerance). Exploratory analysis, however, left three 

of the five constructs with only two strongly loaded variables each (see Table 3). 

Reliability analysis for the subscales in the pilot resulted in Cronbach's alpha ranging 

from .55 to .81, where ratings of .7 to .8 are considered satisfactory for comparing groups 

(Bland & Altman, 1997). Cronbach's for the 13-item "openness to change" total scale was .71 

and would not increase with the deletion of any subscale item. The subscales correlated 

weakly but often significantly with one another (see Table 4), yet each of them correlated 

more strongly and significantly to the sum of the other four (see Table 5), substantiating 

consistency and the hypothesis that the five subscales combine well to measure openness to 

change. 

When subscales were compared to two general questions about change—there was no change 

scale in the pilot—not all subscales correlated with "I am afraid to change the way I teach 

math," but mindset and professional identity did, with a fixed mindset and greater identity 

with profession corresponding to greater fear of change. The total change-openness scale 

correlated with the fear item (r = .28) at the p  < .001 level. All subscales correlated 

significantly (p = .01) with the general item "Changes suggested by the Common Core make 

me want to leave teaching." The total change-openness scale correlated with this item (r 

= .39) at the p < .001 level. The medium-strength correlation between these two change items 

suggested that the tool, when strengthened, could be used to assess possible openness to 

change in math practices. 

Analyses of variance showed no significant difference in "math reform openness" by 

gender, highest degree attained, or school district type. A t-test revealed, however, a 
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difference in mean change openness between middle-school math teachers (53.0) and high-

school math teachers (50.7) (p < .01).  This finding would be confirmed in the larger study. 

The research went beyond inferential statistical analyses during the pilot to an 

application of Structural Equation Modeling (SEM) in order to test hypotheses about causal 

Table 4. Correlations of Subscale Constructs and Measures of Internal Consistency (Pilot). 
 

Construct Subscale Constructs C1. C2. C3. C4. α 

 
C1. 

 
Conception of Mathematics 
 

     
.60 

C2. Perceptions of Learning Math 
 

.15*    .64 

C3. Math Mindset  
 

.18* .30**   .70 

C4. Professional Self-Image  
 

-.18* -.18* -.13  .81 

C5. Self-Efficacy 
  

.07 .14 .22** -.19 .55 

 *Correlation is significant at the .05 level       
**Correlation is significant at the .01 level 
 
 
Table 5. Correlations of Subscales to Partial Sums (Pilot). 
 

Subscale Correlation to Total of Other Subscales 

  
Conception of Mathematics .222** 
Perceptions of Learning Math .334** 
Math Mindset .364** 
Professional Self-Image (R) .269** 
Self-Efficacy .251** 

 

**Correlation is significant at the .01 level 
 
relationships among the sub-constructs. Confirmatory factor analyses were conducted in 

AMOS using the maximum-likelihood estimation method (Myung, 2003).  
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Figure 21 of Appendix D shows the hypothesized measurement model used in the 

pilot for confirmatory factor analysis. It is over-identified, with 58 degrees of freedom, 

indicating there are enough known parameters to estimate the unknowns. Three covariance 

relationships were left out of the model due to low correlations indicated in the SPSS 

correlation matrix. The fit of the model to the data was quite good (�2 = 59.744, df = 58, p 

= .412; SRMR = .0582; RMSEA = .013; CFI = .996; TLI = .994) and so suggested construct 

validity, except that some factor loadings—albeit significant—were weaker than they should 

have been (Lrn2 at .45 and MSet2 at .46). The structural equation model (See Figure 22, 

Appendix D) confirmed weak to medium-strength covariance between most construct pairs, 

but the constructs loaded onto “openness to change” at lower than desirable levels, the 

highest being professional identity at 0.27.  

The pilot yielded several interesting findings. It made clear that current nationwide 

pressures toward instructional change have many math teachers in the state considering other 

careers (29.8% say, “Changes suggested by the Common Core make me want to leave 

teaching.”) It also supported correlations suggested by the literature: change is difficult 

relative to strength of identity with the profession and for those with very fixed ideas about 

what math is and how students learn it. Mindset appeared to play a particularly important 

role.  

Despite the strengths of the pilot, there were deficiencies that indicated a second 

study would be worthwhile. The quality of fit for both the measurement and structural 

models was high, and while there was some satisfaction in this, it has to be acknowledged 

that low correlations and loadings may have in fact explained these results. In evaluating the 

instrument in terms of validity, reliability, and item quality, the greatest concerns that 
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emerged were the set of subscales that failed to load more than two items: “conceptions of 

math,” “professional self-image,” and “math teaching self-efficacy.”  

The goal in the current study was thus to strengthen those subscales through the 

addition of items in order to boost the overall internal consistency of the scale and the 

reliability of the SEM model. Another key enhancement in the current study was the 

strengthening of the change scale. Since it represented the dependent variable, it was 

particularly important that it be valid and reliable. The first measurement model tested in the 

current study, using the enhanced survey tool, was very similar to the pilot model. The 

researcher is not aware of any competing models in the literature.  

Dissertation Study 

Participants 

The population for this study was made up of part-time and full-time secondary 

mathematics teachers—at the outset from North Dakota exclusively but in the end from 

across the United States—whether working in public or private institutions. In early April of 

2015, an email (see Appendix E) was sent to local administrators and regional coordinators 

in North Dakota, reminding them of their ongoing commitment to the research study and 

asking them to forward the new survey link to area math teachers. As in the pilot, the number 

of participants solicited could not be precisely determined, but given an approximate 

population of 600 math teachers in North Dakota and 244 responders, the response rate this 

time was a bit higher at 40.7%.  

A priori determination of sample size is characteristic of structural equation modeling 

since the model itself dictates the number of participants required. There are various rules of 

thumb for minimum sample size and no clear agreement (Westland, 2010). A common rule 
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suggests 10 participants per item (Schreiber, Stage, King, Nora, & Barlow, 2006), yet 

another suggests either 200 or 20 times the number of parameters to be estimated, whichever 

is larger (Kline, 2005, p. 111, 178). With 55 items constituting the latent variables to be 

explored in this study, the need to increase the sample size became apparent.  

Accordingly, the researcher decided to take advantage of membership in several 

national networks of math education leaders in order to reach out to teachers in other states. 

In May 2015, an IRB protocol change was approved (see Appendix B), and a letter (see 

Appendix E) was emailed to colleagues associated with the Council of Presidential Awardees 

in Mathematics, the Rutgers Institute of Discrete Mathematics, the Park City Mathematics 

Institute, and the National Council of Supervisors of Mathematics. Although it was late in the 

school year, the relayed emails resulted in an additional 465 math teachers logging onto the 

survey from May 29 to June 15. 

Out of the combined 709 cases from within and outside North Dakota, 75 were cases 

in which the participant logged on but never actually began the survey; these were eliminated 

immediately. Because AMOS software for SEM is extremely sensitive to missing data, in 

order to address other gaps, rather than resort to imputation of data, the researcher performed 

listwise deletion on 8.4% of the remaining cases, where participants had begun the survey but 

had not progressed far in completing it. At that point there were 10 remaining cases with one 

or two items unanswered; those participants were eliminated as well. Of the 634 who took 

the survey, then, 10% were listwise deleted, resulting in a sample size of 571. 

The sample was 34.7% male and 64.6% female, with one participant choosing “other” 

for gender and three choosing not to identify; this corresponded adequately to national math-

teacher statistics of 42.7% male and 57.3% female (IES, 2013, pp. 134-136). Data on 
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ethnicity showed 91.6% of participants identified as White, compared to a national high 

school math statistic of 83.0% (IES, 2013, p. 139). This difference is no doubt due in large 

part to high participation from North Dakota (36%), whose population is 89.6% White 

compared to 77.7% nationally (U.S. Census Bureau, 2013). In terms of education, 61.1% of 

those surveyed held at least a masters degree, whereas among mathematics teachers 

nationally this figure was only 48.8% in 2012 (IES, 2013, p. 137). The difference is due at 

least in part to the high rate of master’s degrees in North Dakota, which was heavily 

represented. 53.5% of study participants majored in math in college, with the figure at the 

national level at 64.5% among high school math teachers (IES, 2013, p. 139).  The inclusion 

of middle school teachers, especially 6th grade, likely  lowered the number. More high school 

mathematics teachers (58.0%) took the survey than middle school (39.6%). Figures 2 through 

4 show participants’ age and experience.  

 

Figure 2. Histogram of Participants by Age. (Mode = 30; Median = 44) 

0

20

40

60

80

100

120

140

160

180

20's 30's 40's 50's 60's 70's 80's

Age of Math Teachers in Study 



44 

    

Figure 3. Histogram of Participants’ Teaching Experience. (Mode = 3; Median = 16) 

 

Figure 4. Histogram of Participants’ Math Teaching Experience. (Mode = 10; Median = 15) 

It is to be expected that these last two graphs look very much alike since 80.4% of teachers in 

the study had taught math throughout their years of teaching. 
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Again, given that participants were recruited most heavily and most directly from the 

state in which the research was done, it is not surprising to see in Table 6 that a high 

percentage of participants are from North Dakota. Nonetheless, participation from rural 

North Dakota is balanced by the 41% of particpants who teach in cities of population greater 

than 100,000. See Figure 5 for distribution by setting. 

Table 6. Participants by State. 
 

 Frequency Percent  Frequency Percent 

AL 5 .9 NH 3 .5 

AK 1 .2 NJ 12 2.1 

AZ 5 .9 NM 2 .4 

CA 35 6.1 NY 22 3.9 

CT 3 .5 NC 3 .5 

FL 4 .7 ND 207 36.3 

GA 2 .4 OH 8 1.4 

HI 2 .4 OK 5 .9 

ID 38 6.7 OR 1 .2 

IL 39 6.8 PA 8 1.4 

IN 2 .4 RI 18 3.2 

IA 2 .4 SC 3 .5 

KY 3 .5 SD 1 .2 

LA 1 .2 TN 1 .2 

ME 4 .7 TX 7 1.2 

MD 17 3.0 UT 1 .2 

MA 11 1.9 VA 5 .9 

MI 6 1.1 WA 8 1.4 

MN 7 1.2 WV 2 .4 

MS 3 .5 WI 33 5.8 

MO 1 .2 WY 1 .2 

NE 3 .5 DC 2 .4 

NV 2 .4 Total 549  

No participants from AR, CO, DE, KS, MT, or VT 
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Figure 5. Number of Participants by Population of School Setting. 
 
 
 

Procedures 

Data collection took place during April, May and June of 2015. Secondary math 

teachers in North Dakota were invited in April via email to take a ten-minute survey. The 

email contained a link to an online survey and indicated a three-week window for completing 

it. After two weeks, the principal investigator asked North Dakota administrators to forward 

a reminder email to teachers (see Appendix E). The last week of May, after the survey had 

closed to North Dakota teachers, additional math teachers from outside North Dakota were 

invited by colleagues of the researcher to take the survey. Some received the invitation via 

email and some responded to a tweet on Twitter that read “Are u a 7-12 math teacher? Cathy 

Williams needs your help w/ dissertation task. She has ~10 min. anon survey: 

https://und.qualtrics.com/SE/?SID=SV_86ctP4jdsaTyldX … #MTBoS .” The survey closed  

to out-of-state participation on June 15. All survey results were strictly anonymous, with no 

information linking responses to individuals, schools, or districts. 

Measures 

 In development of the instrument the constructs of interest were those identified by 

research. The survey tool (see Appendix A) consisted of ten demographics items and fifty-

230

136
99 96

41.0% 24.2% 17.6% 17.1%
0

50

100

150

200

250

Frequency

Percent



47 

five items measured on a six-point Likert-like scale (1=strongly disagree, 2=disagree, 

3=slightly disagree, 4=slightly agree, 5=agree, 6=strongly agree). The items related to seven 

subscale constructs: conception of mathematics, perceptions of how students learn 

mathematics, mindset regarding mathematics ability, sense of professional identity, self-

efficacy regarding the teaching of mathematics, ambiguity tolerance, and attitude toward 

change. Those that were related to conception of math, perceptions of learning math, math 

mindset, and self-efficacy drew heavily from items in the Stipek et al. study (2001) since that 

instrument was used to assess similar constructs among elementary math teachers.  

In each subscale, roughly half of the items were worded positively and the other half 

negatively. Within all subscales, the challenge was to apply previously established scales to 

the context of teaching secondary mathematics. For this reason established scales were not 

used in their entirety and items were often adapted or supplemented. Specifically, items were 

slightly adapted for secondary mathematics teachers where necessary. For example, “Ability 

is something that remains relatively fixed throughout a person's life” became “Math ability is 

something that remains relatively fixed throughout a person's life.” 

In the conception of math scales, four items were drawn from Stipek and six other 

items were based on Hoz and Weizman (2008). An example item is “Math is mostly about 

finding the answer.” The items were named “mth1-10” in SPSS but were later renamed (see 

below). 

Among the perceptions-of-learning-math items, two were original, four items were 

based on Hoz and Weizman, one was from Stipek, and one item was based on NCTM’s 

Principles to Action (2014). An example is “Math can be applied only after basic skills are 

mastered.” The items were named “lrn1-8” in SPSS but were lated renamed (see below). 
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The math mindset subscale was based on Carol Dweck's (2006) work on entity theory.  

Six items are taken directly from the Stipek inventory and three are adapted for math from 

Dweck’s own inventory For example, “There isn’t much you can do about how much math 

ability you have.” The items were named “mset1-9” in SPSS. 

Three items from the self-efficacy subscale were adapted from a scale by Gibson and 

Dembo (1984). The other five items were taken from Stipek et al. An example is “I 

sometimes doubt my ability to teach math.” The items were named “efc1-8” in. 

Four of the professional identity items were based on a scale from Adams et al. 

(2006). An example is “I feel proud when I tell people I am a math teacher.” The other two 

items in this scale were original. The items were named “pro1-6” in SPSS. 

The ambiguity tolerance subscale consisted of six items drawn from the Multiple 

Stimulus Types Ambiguity Tolerance Scale-II as seen in McLain (2009) and two items 

adapted from the Rydell-Rosen Ambiguity Tolerance Scale (McDonald, 1970). An example 

item is “I try to avoid situations that are uncertain.” The items were named “amb1-8” in 

SPSS. The change items were all original with this study, an example being, “I am quick to 

embrace new methods for teaching math.” The items were named “chg1-8” in SPSS. 

It should be noted here that early in the study, exploratory factor analysis revealed the 

math-conception and perceptions-of-learning-math items to be intermixed. They constituted 

two distinct factors, but not as the researcher had anticipated. Rather, they separated 

according to whether they had been phrased negatively or positively. The two constructs 

were realigned and renamed “dynamic” and “constructivist” in light of the Hoz and Weisman 

research (2008). The dynamic items measured the extent to which the teacher viewed math as 

a field of inquiry as opposed to a fixed body of procedures to be acquired for the purposes of 
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“answer-getting.” Examples included “Math is a set of skills to be learned in sequence” and 

“Students who really understand math will have a solution quickly.” The items were renamed 

“stat1-9” in SPSS. 

The constructivist items measured the extent to which a teacher allowed students the 

opportunity to build their own understanding. Examples of this construct include, “In math, 

the questions are more important than the answers,” and “Students need to construct their 

own understanding of a math concept.” The items were renamed “cnstr1-7” in. 

In the end, the seven subscale constructs were: math mindset, self-efficacy, 

constructivist perception of learning, dynamic conception of mathematics, professional 

identity, ambiguity tolerance, and attitude toward change. For each construct, items were 

summed in SPSS for purposes of correlating these subscales. Construct sums were  named 

statSUM, cnstrSUM, msetSUM, proSUM, efcSUM, ambSUM, and chgSUM. The first six of 

these were then combined in an item called scaleSUM. When the model was simplified to 

include exactly four items per construct (see below), these new sums were labeled statSUM4, 

cnstrSUM4, msetSUM4, proSUM4, efcSUM4, ambSUM4, chgSUM4, and scaleSUM4. 

The survey included ten demographic items, which were placed at the end of the 

survey. These included the individual demographics of gender, age, ethnicity, educational 

attainment, undergraduate major, areas of certification, grade level, years of experience in 

teaching, and years of experience teaching mathematics. One institutional demographic asked 

teachers to categorize the school district on a four-point scale from rural to urban. 

Data Analysis 

 SPSS software was used for the early portions of the data analysis. Negatively 

worded items were reverse coded so that a high score on any item indicated openness to 
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change. To answer the first research question, “How can math teacher openness to changing 

practices be measured?” descriptive analyses were run in SPSS to test the distributional 

properties of each subscale item. SPSS exploratory factor analysis (EFA) was used to assess 

the unidimensionality of each proposed construct and to gauge the construct validity of scales. 

Since most subscales had not been established in their current forms in other studies, these 

analyses were particularly important. Principal axis factoring with oblique rotation was 

applied. 

The internal reliability of each construct was tested in SPSS to confirm a Cronbach’s 

Alpha of .70 or higher. The researcher later used AMOS software for confirmatory factor 

analysis. CFA is discussed in more detail later in this section. 

To answer the second research question, “Which demographic measures associate 

with openness to reform?” t-tests were performed in SPSS as well as analyses of variance to 

determine whether demographic subgroups exhibited significant differences in the “change” 

variable and/or the scaleSUM variable. For example, the researcher examined the roles 

experience, education, and gender played in resistance to new approaches.  

The third research question, “How valid are certain constructs for predicting a math 

teacher’s receptivity to new research-based practices?” was addressed through regression 

analysis of subscale variables. Specifically, the researcher examined correlations between the 

“change” construct and each of the six independent variables (math mindset, self-efficacy, 

constructivist perception of learning, dynamic conception of mathematics, professional 

identity, and ambiguity tolerance) to determine which of the six associated most strongly 

with openness to change. 
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Finally, to answer the question, “How do these constructs relate to one another as 

predictors of openness to change?” the researcher used AMOS software and structural 

equation modeling (SEM) to test a proposed measurement model and a proposed structural 

model of relationships among constructs. SEM is a statistical methodology used to test 

structural theories regarding phenomena. SEM relates hypothesized theoretical models of 

relationships among variables to graphic depictions that clarify understanding of the 

proposed theory (Byrne, 2010). Because SEM is confirmatory in nature, it is important that 

the theoretical structures be grounded in research (Byrne, 2010). CFA assumes that measures 

“have been fully developed and their factor structures validated” (Byrne, 2010, p. 97). 

In this study AMOS software for SEM was used both to confirm the measurement 

model (CFA) and to confirm the structural model. Within a SEM model there are both latent 

variables (not observed) and manifest (measured) variables. The measurement model consists 

of several manifest variables mapped onto each latent variable, and AMOS is used to confirm 

that the manifest items actually measure the latent construct. In the context of structural 

models, SEM also distinguishes between exogenous and endogenous variables. Exogenous 

latent variables—so called because their fluctuations are explained not by the model but by 

external influences—are the independent variables that predict changes in the endogenous or 

dependent variables (Byrne, 2010, p. 5). Both exogenous and endogenous may be latent 

variables (proposed constructs), operationalized through directly measured variables. In the 

structural model for this study, there are three exogenous variables theoretically predicting 

change in three endogenous variables, which in turn predict shifts in the endogenous variable 

“change.” Each of these seven is determined by a number of measured items. Whether for 

CFA or to confirm a structural model, within AMOS software the researcher draws a 
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diagram of proposed relationships, and then the software generates goodness-of-fit indicators 

for that model, assessing how well correlations and covariances represented in the model are 

explained by its components. It does so through comparison of an estimated, model-based 

covariance matrix to the original sample covariance matrix (Fan, 1997). 

Sample size is important to SEM. Since Kline’s rule of thumb had suggested 20 

participants per item, and since with a sample of 571 participation for this study fell short of 

the guideline for 55 items, the researcher elected to simplify the model through elimination 

of items (Kline, 2005). Although Hoyle (2012) makes clear that more complex models are 

often preferred with large samples due to replicability with other samples, he also states that 

simpler models can “provide better approximation to the population” (p. 226). In the case of 

this study the researcher determined 571 to be short of “large,” based both on Kline’s 

recommendation and the results of a test of SEM sample size at an online statistics calculator 

(Soper, 2015). The calculator suggested that for an anticipated effect size of 0.10, a desired 

statistical power of 0.80, and a 0.05 probability level, 28 items mapped onto seven latent 

variables would require a minimum sample size of 579 to detect effects—and 100 to test 

model structure. Accordingly, each subscale in this study was reduced to four items to 

achieve a simpler model. Chapter IV explains how these determinations were made. 

The simple structural model first proposed appears in Figure 1. It shows six factors 

combining to predict the openness-to-change variable. When AMOS analyses revealed room 

for improvement in the model fit, the structural model was respecified. Structural changes 

were made to reflect both the research literature and tests of indirect effects performed in 

SPSS. The researcher postulated that since certain of the six constructs were more internal to 

the teacher and less concretely observable (self-efficacy, ambiguity tolerance, math mindset), 
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these were exogenous variables predicting other latent variables (professional identity, 

constructivist approach, static conception of math) on their way to predicting change. The 

respecified model in Figure 6 reflects this thinking. Figure 6, then, represents a competing 

model hypothesized to do a much better job of explaining how contributing factors predict 

change openness. 

 

 

Figure 6. Complex Structural Model of Contributors to Change 

 

In assessing goodness of fit for all models, care was taken to include at least one each 

of the incremental fit (CFI), parsimonious fit (RMSEA), and absolute fit (Chi-square and 

SRMR) indices to ensure comparison to both the independence and saturated models. The 

Comparative Fit Index (CFI) compares the hypothesized model with the null or independence 

model, which assumes all correlations among variables are zero. The CFI offers a good check 

against misspecification and recognizes values of .95 or higher as indicating goodness of fit 

(Hu & Bentler, 1999).  The Root Mean Square Error of Approximation (RMSEA) test yields 
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a 90% confidence interval for its fit index and penalizes unnecessarily complex models. For 

the RMSEA, .06 or smaller is considered an indication of good fit (Hu & Bentler, 1999). The 

chi-square index, based on sound theory but of limited practical application here due to the 

effect of the large sample size, was used as a traditional first test, but the Standardized Root 

Mean Square Residual (SRMR) was employed as a preferred absolute-fit index, more likely 

to give meaningful output. The SRMR measures the mean absolute correlation residual or the 

average distance between predicted and observed correlations. With the SRMR, Kline (2005) 

recommends a reading of less than .10 for goodness of fit, while Hu and Bentler (1999) 

suggest .08 and Byrne (2010) favors .05. 

Through the application of analyses described above, this is the first study that 

attempts to model the complexity of math teacher resistance to change. Validation of both the 

revised survey instrument and the measurement and structural models offers a clearer picture 

of obstacles to instructional reform and suggests a course of action for removing those 

impediments. Results are outlined in the next chapter. 
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CHAPTER IV 

 

RESULTS 

The dual purpose of this study was to validate a survey instrument for assessing math 

teacher openness to reform practices and to validate a structural model explaining factors 

contributing to that openness. The data analysis was accomplished in five phases. First, 

descriptive analyses of all variables were performed in order to understand characteristics of 

the sample (described in Chapter III) and to determine the suitability of variables for use in 

the model. Second, exploratory factor analyses (EFA) were performed along with tests of 

internal consistency in order to establish for each latent variable the validity and reliability of 

the scale. Third, correlation, regression, and means-difference tests were applied in order to 

explore relationships among variables. Fourth, confirmatory factor analysis (CFA) was 

employed to substantiate validity of the scales, verifying that survey items actually measured 

the latent constructs onto which they had been mapped. Finally, structural equation modeling 

(SEM) was used to test the fit of the hypothesized structural model to the relationships in the 

data. The final two phases involved five steps each. In the final phase there was at least one 

respecification of the model. 

Research Questions 

Across the five phases of research, the study addressed four questions:  

1. How can math teacher openness to changing classroom practices be measured?  

2. Which demographic measures predict openness to change?  
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3. How valid are certain constructs (mindset, self-efficacy, constructivist perception 

of learning, dynamic conception of mathematics, professional identity, and 

ambiguity tolerance) for predicting a math teacher’s receptivity to new practices?  

4. How do these factors relate to one another as predictors of openness to change?  

Phase I: Descriptive Analyses 

In order to establish univariate normality of the data—particularly important to SEM 

analyses since many fitness tests assume normality—skewness and kurtosis checks were run 

in SPSS on all items corresponding to the seven scales. 38 of the original 55 items had 

skewness within one of zero and so could be classified as normally distributed (Lei & Lomax, 

2005). All other items showed skewness absolute values between 1 and 2 and so were 

moderately nonnormal (Lei & Lomax, 2005). The skewness issues occurred primarily in the 

mindset, efficacy and professional identity scales. In the pared down model, four of the 

twenty-four exogenous items had slight skewness issues: mset9 (-1.31), efc2 (-1.26), pro3 (-

1.37), and pro 4(-1.40). Had the sample been smaller, this would have presented a more 

serious concern. Lei and Lomax (2005) reported that “nonnormality conditions had no 

significant effect on the CFI” (p. 13) fit index with sample size of 500. This was especially 

true in applications of the maximum likelihood (ML) method of estimation used in the SEM 

portion of this study (Lei & Lomax, 2005; Shah & Goldstein, 2006).  

Although there is no clear agreement on kurtosis guidelines (Kline, 2005), West et al. 

(1995) suggest a within-seven-of-zero range (i.e., more than -7 and less than 7). In this study, 

some items exhibited potentially problematic kurtosis. This was important to SEM and 

AMOS assumptions of multivariate normality, which cannot exist in the presence of too 

much univariate kurtosis (Byrne, 2010). Table 7 highlights three measurement items for 
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which kurtosis approached the limit for normality: mset7 (6.258), efic4 (5.260), and cnstr6 

(6.324). Fortunately only one of these variables, efc4, would be used in the pared-down 

measurement and structural models later on; for the time being all three items were retained 

with the understanding they would require close monitoring. Table 8 demonstrates normality 

among the numeric demographic items. For purposes of t-tests, it is important to observe 

there are no skewness issues here (Byrne, 2010, p. 103). 

 It must be noted that for the most part the math teachers in the sample tended to 

express agreement with positively framed items and disagreement with items framed in the 

direction of resistance to change, and in that sense, the overall picture was brighter than 

anticipated. The mean response to a change item was 4.68, almost at the “agree” mark, 

suggesting the typical math teacher is not that adverse to change. With all negative items 

reversed coded, the range of responses was from 2.01 (“disagree”) to 5.39 (“agree”) with the 

mean and median response about half way between “slightly agree” and “agree” at 4.49 and 

4.66 respectively. Of the original 47 independent items, only eight had mean responses in the 

“disagree” range (mset1, mset4R, dyn3R, dyn3R, dyn6R, dyn7R, dyn 8R, dyn9R, and amb7), 

the lowest corresponding to the very first item on the survey, mset1: “To be honest, you can’t 

really change how much math talent you have.” Of the six independent variables, mindset 

and dynamic conception of mathematics seemed at the outset important targets for teacher 

training, but overall the picture was brighter than anticipated.  
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Table 7. Descriptive Statistics on Items. 

Item N Mean StD Skewness Kurtosis 

      

mset_1R 571 4.99 0.98 -1.16 1.30 

mset_2R 571 3.86 1.41 0.01 -1.18 

mset_3R 571 5.01 1.00 -1.15 1.12 

mset_4R 571 2.95 1.21 0.46 -0.63 

mset_5R 571 4.57 1.14 -0.91 0.43 

mset_6 571 5.18 0.84 -1.35 2.92 

mset_7 571 5.05 0.83 -1.76 6.26 

mset_8R 571 4.02 1.22 -0.18 -0.75 

mset_9R 571 5.03 0.88 -1.31 2.97 

efc_1 571 5.10 0.84 -1.05 1.58 

efc_2 571 5.12 0.94 -1.26 1.77 

efc_3R 571 5.02 0.87 -1.26 2.56 

efc_4 571 5.14 0.69 -1.21 5.26 

efc_5R 571 3.94 1.21 -0.11 -1.14 

efc_6 571 4.67 0.92 -0.79 1.03 

efc_7R 571 4.60 1.01 -0.69 0.07 

efc_8R 571 4.76 1.16 -0.87 -0.07 

cnstr_1 571 4.24 1.18 -0.46 -0.37 

cnstr_2 571 5.06 0.82 -1.18 3.23 

cnstr_3 571 4.53 1.11 -0.57 -0.19 

cnstr_4 571 4.34 1.00 -0.50 0.36 

cnstr_5 571 4.65 1.04 -0.78 0.60 

cnstr_6 571 5.36 0.73 -1.68 6.32 

cnstr_7 571 4.80 0.92 -0.64 0.65 

dyn_1R 571 4.43 1.27 -0.51 -0.78 

dyn_2R 571 4.29 1.22 -0.51 -0.55 

dyn_3R 571 3.39 1.18 0.21 -0.74 

dyn_4 571 4.73 1.00 -0.66 0.07 

dyn_5R 571 4.41 1.09 -0.45 -0.41 

dyn_6R 571 3.64 1.37 0.00 -0.96 

dyn_7R 571 2.78 1.16 0.64 -0.03 

dyn_8R 571 3.57 1.29 0.13 -0.80 

dyn_9R 571 3.67 1.20 -0.09 -0.58 

pro_1 571 5.39 0.72 -1.10 1.23 

pro_2R 571 4.89 1.28 -1.46 1.66 

pro_3 571 5.33 0.80 -1.37 2.74 
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Table 7 cont. 

      

Item N Mean StD Skewness Kurtosis 

      

pro_4 571 5.09 0.83 -1.40 3.95 

pro_5 571 5.39 0.73 -1.13 1.27 

pro_6R 571 5.08 1.04 -1.30 1.62 

amb_1R 571 4.88 0.91 -0.90 1.07 

amb_2 571 5.00 0.94 -1.05 1.35 

amb_3 571 4.38 1.11 -0.56 -0.01 

amb_4R 571 4.22 1.15 -0.51 -0.33 

amb_5 571 4.14 1.05 -0.38 -0.17 

amb_6R 571 3.83 1.24 -0.04 -0.94 

amb_7 571 3.48 1.01 0.22 -0.24 

amb_8R 571.00 3.96 1.04 -0.12 -0.61 

Chg_1R 571.00 4.32 1.22 -0.32 -0.80 

Chg_2 571 4.88 0.82 -0.99 2.72 

Chg_3R 571 4.51 1.06 -0.63 0.26 

Chg_4 571 4.32 1.05 -0.23 -0.29 

Chg_5R 571 4.67 1.14 -0.85 0.29 

Chg_6 571 4.87 0.87 -0.38 -0.25 

Chg_7R 571 4.71 1.09 -0.70 -0.24 

Chg_8 571 5.13 0.87 -0.91 0.91 

Skewness and kurtosis issues 

Bold items were those retained in final simplified model 

 

Table 8. Descriptive Statistics on Key Demographics. 

  

 
 

Age 
Years 

Teaching 
Teaching 

Math 

     

N Valid 562 554 553 

Missing 9 17 18 

Mean 43.52 17.02 16.03 

Std. Deviation 12.01 10.97 10.84 

Skewness .142 .527 .670 

Kurtosis -.800 -.378 -.167 
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Phase II: Exploration of Constructs 

Initial analyses of internal consistency relative to the more complex model showed 

scales corresponding to all seven constructs from the study to be reliable, with Cronbach’s 

alpha coefficient ranging from 0.720 (mindset) to 0.850 (change). Subscale items were 

summed in SPSS, and correlations among subscale sums were analyzed. Table 9 shows 

significant but not strong correlations among all constructs, a good indication that excess 

collinearity would not be a problem and independent variables might be used well in 

combination to predict change. Hoyle (2012) suggests attention be given to correlations “at 

or near unity” (p. 266), but none of these are close to a value of one. 

To assess the construct validity of the scales, exploratory factor analysis was 

performed on the 55 item scores. Principal axis factoring with oblimin (oblique) rotation was 

used since correlations among items were assumed (Preacher & MacCallum, 2003). Initial 

Table 9. Subscale Correlations and Cronbach’s Alpha. 

Number 
Subscale 
Construct 

C1. C2. C3. C4. C5. C6. α 

         
C1. 
 

Mindset 
 

      .720 

C2. 
 

Efficacy 
 

.267**      .754 

C3. 
 

Prof ID 
 

.282** .409**     .746 

C4. 
 

Static  
 

.526** .221** .240**    .809 

C5. 
 

Construct  
 

.386** .242** .371** .503**   .756 

C6. 
 

Ambiguity .451** .357** .335** .560** .503**  .797 

C7. 
 

Change .321** .266** .444** .303** .443** .393** .850 

**Correlation is significant at the .01 level; N = 571 
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factoring was based on eigenvalues, which identified eleven factors, but subsequent tests 

were based on seven factors as indicated by both the scree plot (see Figure 7) and research 

literature. Preacher and MacCallum (2003) suggest the scree plot is a better indicator than 

eigenvalues themselves. It provides a clear visual of relatively large changes in eigenvalues. 

Table 10 shows initial indications of the need to exclude seven items based on weak 

loadings: mset4, pro2, amb1, amb 2, cnstr3, stat4, and chg1. With these items removed, a 

second EFA model explained 40.7% of the variance among items, with Cronbach’s staying 

about the same or improving so that the lowest was now .741 (mset, .824; efc, .754; 

pro, .815; stat, .801; cnstr, .741; amb, .772).  

Discriminant validity of the subscales was established through comparison in each 

factor pair of the average AVE (average variance extracted) to the R2 statistic corresponding 

to that pair’s correlation (see Table 11). Discriminant validity indicates the within-construct 

correlations are greater than the between-construct correlations (Bollen & Lennox, 1991). 

For every construct pair, the average AVE far exceeded R2, indicating the factors were 

indeed measuring distinct constructs. Collinearity diagnostics in SPSS confirmed there were 

no problems with multicollinearity. All variance inflation factors (VIF) were between 1.205 

and 1.396, well under recommended maximums (O’Brien, 2007). The VIF is the inverse of 

tolerance, which is the percent of unshared variance between two variables (O’Brien, 2007). 

VIF readings between 1.205 and 1.396 indicate between 72% and 83% unshared variance 

between any two subscales, in other words, a good deal of discrimination among factors. 
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Figure 7. Scree Plot A. 

 At this point it was determined that initial findings merited further investigation. Of 

concern was the fact that some items were not loading strongly and would weaken any SEM 

models in AMOS. Parsimony was also a concern: a simpler model would be more effective 

in SEM. In fact, Hoyle (2012) describes several problems that arise in SEM with an overly 

complex model, among them difficulty in explaining and interpreting the model. Since the 

change scale was strong in terms of both internal consistency and content validity—no cross-

loadings—it was removed from further EFA analysis so the researcher could focus on the 

“openness to change” scales, composed of the other 41 remaining items. The goal would be 

to pare down each subscale to approximately four items, taking care to preserve content 

validity, adequate factoring loadings and internal reliability of the constructs.  
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Table 10. Initial Factor Loadings. 

Pattern Matrixa 

 1 2 3 4 5 6 7 

 construct identity efficacy mindset dynamic ambig change 
cnstr_1 .439       
cnstr_2        
cnstr_4 .598       
cnstr_5 .453       
cnstr_6 .410       
cnstr_7 .681       
pro_1  .646      
pro_3  .670      
pro_4  .614      
pro_5  .805      
pro_6R  .586      
efc_1        
efc_2   .436     
efc_3R   .522     
efc_4   .493     
efc_5R   .568     
efc_6        
efc_7R   .414     
efc_8R   .662     
mset_1R    -.732    
mset_2R    -.528    
mset_3R    -.626    
mset_5R    -.656    
mset_6    -.424    
mset_7    -.481    
mset_8R    -.483    
mset_9R    -.701    
dyn_1R      .491  
dyn_2R      .549  
dyn_3R      .451  
dyn_5R      .431  
dyn_6R      .480  
dyn_7R      .531  
dyn_8R      .601  
dyn_9R      .403  
amb_3       -.495 
amb_4R       -.475 
amb_5       -.619 
amb_6R        
amb_7       -.500 
amb_8R       -.699 
Chg_2     .517   
Chg_3R     .421   
Chg_4     .682   
Chg_5R     .497   
Chg_6     .598   
Chg_7R     .498   
Chg_8     .415   

Extraction Method: Principal Axis Factoring.  
a. Rotation converged in 13 iterations. 
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Table 11. Discriminant Validity. 

Statistics Construct Pairs 

      
 mset/dyn pro/efc amb/cnstr dyn/efc dyn/amb 
averAVE 0.765 0.778 0.624 0.313 0.640 

R2 0.176 0.126 0.160 0.018 0.138 
 mset/pro pro/cnstr cnstr/dyn efc/amb  

averAVE 0.907 0.752 0.610 0.649  
R2 0.046 0.078 0.157 0.075  

 mset/cnstr pro/dyn cnstr/efc   
averAVE 0.748 0.768 0.619   

R2 0.087 0.021 0.013   
 mset/amb pro/amb    

averAVE 0.779 0.782    
R2 0.110 0.067    

 mset/efc     
averAVE 0.774     

R2 0.036     

 
Again, principal axis factoring with oblimin rotation was employed, this time with the 

specification that six factors be extracted since the change factor was not in play. The scree 

plot supported the extraction of six factors. EFA resulted in a model that explained 38.4% of 

variance in items, with four items failing to load: efc6, cnstr2, cnstr6, and amb6R. The 

process was repeated with these four items excluded in order to further refine the model. The 

resulting model, featured in Table 12, explains 39.8% of variance. 

At this point the researcher chose for each subscale the four items loading most 

strongly, checking to make sure that Cronbach’s alpha remained above .70. The researcher 

also carefully reexamined the text of each subset of surviving survey items to ensure that 

content validity had not been adversely affected. The only potential concern was the balance 

in efficacy between math efficacy and teaching efficacy, so that results would have to be 

considered accordingly. The resulting model is displayed in Table 13. It explains 45.2% of  
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Table 12. Factor Loadings B. 

  

Pattern Matrixa 

 1 2 3 4 5 6 

       

mset_1R   -.746    

mset_2R   -.522    

mset_3R   -.627    

mset_5R   -.642    

mset_6   -.420    

mset_7   -.486    

mset_8R   -.487    

mset_9R   -.698    

efc_1    .513   

efc_2    .519   

efc_3R    .495   

efc_4    .478   

efc_5R    .473   

efc_7R    .521   

efc_8R    .660   

cnstr_1      .408 

cnstr_4      .650 

cnstr_5      .466 

cnstr_7      .717 

dyn_1R .499      

dyn_2R .549      

dyn_3R .469      

dyn_5R .425      

dyn_6R .506      

dyn_7R .544      

dyn_8R .610      

dyn_9R .433      

pro_1  .651     

pro_3  .703     

pro_4  .613     

pro_5  .807     

pro_6R  .569     

amb_3     -.479  

amb_4R     -.477  

amb_5     -.681  

amb_7     -.525  

amb_8R     -.663  

Extraction Method: Principal Axis Factoring.  

 Rotation Method: Oblimin with Kaiser Normalization. 11 iterations. 
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Table 13. Factor Loadings C (Final) With Cronbach’s Alpha. 
 

Pattern Matrixa 

 1 2 3 4 5 6 α 

        

mset_1R .774       

mset_3R .654      .791 

mset_5R .664       

mset_9R .669       

pro_1  .667      

pro_3  .727     .794 

pro_4  .534      

pro_5  .843      

cnstr_1   -.383     

cnstr_4   -.725    .701 

cnstr_5   -.439     

cnstr_7   -.763     

efc_1    .674    

efc_2    .644   .707 

efc_7R    .625    

efc_8R    .503    

dyn_2R     .450   

dyn_6R     .580  .727 

dyn_7R     .647   

dyn_8R     .675   

amb_3      -.453  

amb_5      -.660 .723 

amb_7      -.569  

amb_8R      -.640  

Extraction Method: Principal Axis Factoring.  

 Rotation Method: Oblimin with Kaiser Normalization. 

 

a. Rotation converged in 10 iterations.  

 

variance among the 24 variables. The scree plots in Figures 8 and 9 shows six factors to be 

appropriate. The steepness of the first segment in the plot reflects mindset’s accounting for 

21% of total variance.  
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A new, simpler scale for the independent variable “change” was also created. Table 

14 shows that the four items chosen, also according to loading and content, loaded strongly 

onto one variable, eigenvalues having suggested one was sufficient. The single-factor model 

explained 51.2% of variance among the four items.  

For each of the other six constructs the researcher also confirmed unidimensionality 

by checking to see that the four items loaded well onto only one construct (Hair, Black, 

Babin, & Anderson, 2010). In each case, eigenvalues indicated exactly one factor, so 

convergent validity was confirmed. 

Among the 28 variables in the new, more parsimonious model, it was noted that 

mset9, pro3, and pro4 scores displayed kurtosis readings of 2.96, 2.74, and 3.95 respectively. 

Although some classify these as indicators of severe nonnormality (Lei & Lomax, 2005), 

Byrne (2010) suggests only kurtosis with a value greater than 7.0 is a concern for  

 

 

Figure 8. Scree Plot B. 
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Figure 9. Scree Plot C. 
 
SEM. Additionally, Lei and Lomax have found the maximum-likelihood method applied in 

this study to be highly robust to kurtosis, except where chi-square is concerned. 

It was recognized that a few factor loadings were not as strong as they might be, in 

particular cnstr1 (-.383), constr5 (-.439), dyn2 (.450), and amb3 (-.453). The guideline for 

desired correlation is at least .50, with above .70 preferred (Hair et al., 2010). It would be 

important to confirm loadings using CFA in AMOS. Most EFA loadings were fairly strong, 

but SEM might demand stronger. 

Table 14. Factor Loadings for Change Variable. 
 

Factor Matrixa 
 1 

 
Chg_2 

 
.642 

Chg_4 .820 
Chg_5R .592 
Chg_6 .783 

 
Extraction Method: Principal Axis Factoring. 
a. 1 factors extracted. 8 iterations required. 
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Phase III: Testing Relationships 

 After development of the parsimonious model, the researcher used SPSS to combine 

the items for each construct into a subscale sum. Skewness and kurotis for each new sum 

were within one of zero, so these variables were all normally distributed. 

Correlations 

Pearson correlations were calculated to measure bivariate linear relationships among 

the constructs. Table 15 displays these correlations. As in the original model, correlations 

were all still significant at the .01 level but were slightly weaker than they had been for the 

full subscales. Worthy of note was the correlation between a growth mindset and a dynamic 

view of mathematics, r(569) = .419, p = .000. A possible explanation for this medium-

strength association is that those who view math as a fixed body of difficult rules do not 

think everyone can learn math. A dynamic view also showed a medium-strength correlation 

with constructivist attitude, r(569) = .396, p = .000, suggesting that perhaps teachers who see 

math as a dynamic science are more likely to offer students the opportunity to interact 

dynamically with it. Both the willingness to allow this interaction, r(569) = .400, p = .000, 

and a dynamic view of math, r(569) = .372, p = .000, were associated with tolerance for 

ambiguity. As was the case in the full-subscale model, the three subscales correlating most 

strongly with change were constructivist attitude, r(569) = .455, p =.000, professional 

identity, r(569) = .457, p = .000, and ambiguity tolerance r(569) = .474, p = .000. In both 

models—as well as in the pilot—the lowest association with change corresponded to the 

efficacy variable. This may seem unusual, but the covariance structural model will provide 

evidence that the relationship between efficacy and change is complex. 
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Table 15. Subscale Correlations for Parsimonious Model. 
 

 
Number 

 
Subscale 
Construct 

 
C1. 

 
C2. 

 
C3. 

 
C4. 

 
C5. 

 
C6. 

 
α 

C1. Mindset4 
 

      .791 

C2. Efficacy4 
 

.190**      .707 

C3. Prof ID4 
 

.215** .355**     .794 

C4. Dynamic4  
 

.419** .135** .145**    .727 

C5. Construct4  
 

.295** .113** .280** .396**   .701 

C6. Ambiguity4 
 

.331** .273** .258** .372** .400**  .723 

C7. Change4 
 

.322** .176** .425** .326** .443** .406** .791 

 
Pearson correlations were also calculated to measure bivariate linear relationships 

among the dependent change variable and various demographic measures. The three 

continuous demographics were age, experience, and math experience. No significant 

correlation was observed between change and experience, r(554) = .018, p =. 674. Likewise 

for math experience, there was virtually no association with change, r(553) = .004, p = .924). 

Nor was there association between change and age, r(562) = .047, p =.263. A scatterplot for 

age is illustrative (see Figure 10). Table 16 shows correlation coefficients for each construct 

with age and experience. These coefficients had been roughly the same in the larger model. 

Where correlations exist at all, they are weak. These findings run counter to widely held 

beliefs that older, more experience teachers are the ones likely to resist change. Whereas 

Tymula et al. (2013) had found differences in ambiguity tolerance to be statistically 

insignificant among age groups 21 to 25, 30 to 50, and 65 to 90, this study revealed a slight 

positive correlation between age and ambiguity tolerance. 

 



71 

Table 16   Construct Correlations with Age and Experience 

 Age Experience 

Mindset .079  .010  

Professional Identity .092* .115** 

Constructivist Attitude -.057 -.026 

Efficacy .100* .143** 

Dynamic Math View .126** .126** 

Ambiguity Tolerance .084* .037 

Change Openness .047 .018 

**Correlation significant at 0.01 level (2-tailed). 

*Correlation significant at 0.05 level (2-tailed). 

 

Regression 

In this study a multiple linear regression was calculated to determine whether the 

change variable could be significantly predicted by the six independent variables: math 

mindset, efficacy, professional identity, dynamic math concept, constructivist approaches, 

and tolerance for ambiguity. Multiple linear regression is employed when several predictor  

 

Figure 10. Scatterplot of Age vs. Change. 
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variables combine to “help obtain more accurate predictions” (Gravetter & Wallnau, 2013, 

p. 572). Often there is overlap in the independent variables, so each added predictor may not 

add much to the overall strength of the correlation. A significant regression equation was 

found in this study for the parsimonious model (F(6, 564) = 66.947, p < .000), with Pearson’s 

R at .645 and R2 at .416, meaning 41.6% of the variability in the change score was explained 

by a combination of the six other constructs. The survey results predicted change equal 

to .222 + .095(mset) – .012(efc) + .305(pro) + .102(dyn) + .203(cnstr) + .248(amb), with 

coefficients standardized. All but the efficacy construct were significant predictors of change. 

Regression analyses suggested perhaps the efficacy construct makes the instrument weaker.  

Tests of Mean Differences 

In the final, more parsimonious model used in this study, attitude toward change was 

measured with four items: 

chg2: I try to adapt my instructional approaches to follow current best practices. 

chg4: I am quick to embrace new methods for teaching math. 

chg5R: Pressure to change my strategies makes me want to leave teaching. 

chg6: I enjoy trying new ways of teaching mathematics. 

This four-item scale had a Cronbach’s alpha coefficient of .791, which would not increase 

with the removal of any item. These items loaded onto the change factor at .642, .820, .592, 

and .783, respectively. Preacher and MacCallum (2003) suggest no arbitrary cut-off be 

applied for loadings, so all of these were treated as acceptable going into SEM analysis. 

51.2% of variance in the scale was explained through the items’ association.  

Independent sample t-tests were performed to test differences in mean change scores 

among demographic groups. All tests were conducted at the .95 confidence level, with each 
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4-item sum scale now having a score range of 0 to 24. The t-tests revealed interesting 

demographic differences in the means of the changeSUM variable. For example, females 

(M = 19.05, SD = 2.90) scored significantly higher on the change scale than males 

(M = 18.19, SD = 3.22; t = -3.24, p = .001), indicating a greater openness to new approaches. 

There was also a slight difference in the means of the changeSUM between whites and 

nonwhites, with nonwhites (M = 19.43, SD = 2.36) being more open to change than whites 

(M = 18.68, SD = 3.07; t = .053, p = .053). Middle school teachers were more open to change 

(M = 19.25, SD = 2.76) than high school teachers (M = 18.37, SD = 3.23; t = -3.476, p 

= .002) although it is interesting to note there was no significant difference between these 

two groups in the professional identity construct (t = .629, p = .529). It is also interesting to 

note that those holding degrees in mathematics were less open to change (M = 18.22, SD = 

3.05) than those with other majors (M =19.32, SD = 3.01; t = -4.29, p = .000). Teachers in 

towns of population greater than 10,000 were slightly more ready to embrace change (M 

= 18.90, SD = 3.11) than their more rural counterparts (M = 18.42, SD = 2.98) (t = 1.76, p 

= .078). On the scaleSUM there was an even more significant difference between urban (M = 

110.29, SD = 11.44) and rural (M = 105.38, SD = 11.50; t = 4.84, p = .000). Of particular 

interest to the researcher is the finding that math teachers in North Dakota were significantly 

less open to change (M = 17.89, SD = 2.86) than those working in other states (M = 19.21, 

SD = 3.08; t = -5.013, p = .000). This difference was seen in the scaleSUM as well, with 

North Dakota teachers (M = 102.73, SD = 9.44) trailing teachers in other states (M = 112.19, 

SD = 11.44); t = -10.491, p = .000). In fact, North Dakota trailed teachers from out of state on 

measures of all constructs. 



74 

Although each of the six categories mentioned above registered a significant 

difference in the change construct, it is important also to examine the relative magnitude of 

these differences. Table 17 below shows ethnicity, gender and grade level registering fairly 

small relative differences. Of these, grade level was of the greatest interest to the researcher 

since high school math scores had been observed to plateau in recent decades. High school 

teachers averaged half way between “slightly agree” and “agree” in response to change-scale 

questions, indicating they could indeed be less than eager to adopt new practices. Middle-

school counterparts averaged closer to “agree” (recall that “neutral” was not an option in the 

Likert-like scale). In fact, middle-school teachers outscored high-school teachers on all four 

change items, with the largest (8% relative difference) and most significant difference (t = -

3.83, p < .0001) coming on the item, “I am quick to embrace new methods for teaching 

mathematics.” Here high school teachers averaged only a “slightly agree,” with only 37.5% 

agreeing or strongly agreeing, compared to 50.9% of middle school teachers did (see 

Figure 11). 

Table 17. Demographic Differences in Change Variable. 
 

 
Demographic 

 
Chg4 Mean (20=agree) 

 
Mean Percent 

 
Relative Difference 

 

    

Nonwhite 19.43 80.96% 3.94% 

White 18.68 77.83%  

    

Female 19.05 79.38% 4.62% 

Male 18.19 75.79%  

    

MS 19.25 80.21% 4.68% 

HS 18.37 76.54%  

    

Not major 19.32 80.50% 5.86% 

Math Major 18.22 75.92%  
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Other 19.21 80.04% 7.12% 

ND 17.89 74.54%  

    

Urban 19.9 82.92% 7.72% 

Rural 18.42 76.75% 
 

 

4=strongly disagree, 8 = disagree, 12 = slightly agree, 16 = slightly agree, 20 = agree, 24 = strongly agree 

 

 It must be pointed out that scale-sum scores (derived from the total of the six 

independent constructs) did not always align with the change-sum in categorical comparisons 

as they did for geographical location. For example, there was no significant difference 

between females and males on the scale-sum score. This is perhaps because females were 

slightly more likely to identify with the profession while males were more tolerant of 

ambiguity. There was also no scale-sum disadvantage for math majors, in part because they 

reported greater efficacy and identification with the profession. Strangely, high school 

teachers scored higher on the scale-sum (M =112.19, SD = 11.44) than middle school 

teachers (M =112.19, SD = 11.44; t = 2.223, p = .027), a directional misalignment with the 

change-sum results. This can be attributed to high school teachers scoring significantly 

higher on half of the subscales: efficacy, dynamic concept, and ambiguity tolerance. 

Conflicting results for scale-sum and change-sum may seem strange in a study aiming 

to show connections between the two. SEM analysis will allow us to explore further the 

complex relationships among the seven constructs and come to a better understanding of this 

apparent incongruity. For now, one explanation is that, as noted earlier, the scale does not 

account for all of the variance in the change-sum. Another is that the subscale constructs do 

not work precisely in an additive manner. In other words, a teacher does not necessarily have 

to be strong in all six components to be open to change. A teacher could compensate for low 
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development in one area with high development in another.  Thus, professional development 

could succeed along multiple paths, and could certainly be differentiated according to teacher 

needs. The next sections will deal with this idea in more detail. 

 

Figure 11. Bar Graph by Level: Embracing New Methods. 

 

Phase IV: Confirmatory Factor Analysis 

 Before SEM can be employed to test relationships among latent constructs, CFA must 

be conducted to ensure the indicators measure the purported constructs. Without CFA, SEM 

would be essentially meaningless because constructs would lack validity (Crockett, 2012). 

The confirmatory factor analysis for this study was performed using structural equation 

modeling (SEM) techniques in AMOS software. Generally speaking, SEM approaches 

involve five steps: model specification, identification, estimation (ML), model assessment, 

and respecification (Bollen & Long, 1993).  

Model specification, the proposal of a graphic model, is based on theory and research, 

which should suggest important latent constructs and the relationships among them (Crockett, 

2012). For this study, research suggested six factors contributing to a teacher’s openness to 

new strategies: math mindset, self-efficacy, strength of identity with the profession, dynamic 

conception of mathematics, constructivist attitude, and tolerance of ambiguity. Confirmatory 
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factor analysis (CFA) retested the construct validity of the latent variables. CFA was 

conducted on two distinct measurement models. The first measurement model represented 

the six independent 4-item constructs and the second included the (dependent) change as a 

seventh construct. The CFA models for math-teacher change are displayed in Figures 11 and 

12 below.  

Step two, model identification, involves certain statistical criteria that must be met in 

order to determine whether the model is capable of producing actual results (Crockett, 2012). 

Specifically, to be termed “identified” the model must yield a set of unique parameters as 

opposed to multiple possible assignments of values. The goal is a model that is 

“overidentified,” meaning there are more known parameters than the number of parameters 

we hope to estimate. This allows for a number of degrees of freedom, which in turns allows 

for the possibility of a scientific rejection of the model (Byrne, 2010). In the case of the two 

measurement models in Figures 12 and 13, both were over-identified with 329 degrees of 

freedom in each (see Table 18).  This large number is due to the 28 survey-item parameters 

and the many known associations among them.  

Model estimation, the third step in SEM, occurs when software—in this case AMOS 

software—is used to determine whether the hypothesized model fits the data (Crockett, 2012). 

The researcher’s goal is to find a model that minimizes the difference between the covariance 

matrix of the hypothesized model and the covariance matrix corresponding to the sample 

data (Byrne, 2010). In the drawing of the model, rectangles are used to represent observed 
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Figure 12. Six-Factor Measurement Model. 

Standardized RMR = .0581 

Standardized RMR = .0434 
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Figure 13. Seven-Factor Measurement Model. 
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Table 18. Identification of Measurement Models.  
 

Seven-Factor Model 

   
Data points = (28 x 29)/2 406 

Factor loadings 21  
Latent variances 7  
Error variances 28  
Covariances 21  
Regressions 0  

Total estimates  77 
Degrees of freedom = 406 - 77 329 

 

 
variables—in the case of this study, survey-item measures—and circles or ellipses are used to 

represent unobserved latent variables—in this case, theoretical constructs contributing to 

change-readiness. Single-headed arrows represent regression relationships, while double-

headed arrows represent correlations or covariances. Readings along the arrows indicate 

standardized measures of association. Fitness indicators appear in small print beneath the 

diagram. 

There are different methods for estimating these unknown parameters and, as 

described in the previous chapter, different tests of goodness of model fit. Functions for 

estimating parameters include the ordinary least squares method (OLS), the generalized least 

squares method (GLS), and the method used most often—including in this study—the 

maximum likelihood method (ML). The ML method of estimation relies on the probability 

distribution that makes the observed data “most likely” (Myung, 2003). This method is 

reliable and efficient with large samples. It estimates all parameters simultaneously and 

assumes multivariate normality (Crockett, 2012), though recall Lei and Lomax (2005) found 

it to be robust to kurtosis. Factors other than normality that affect fit and parameter estimates 
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are sample size (more than adequate in this study), model complexity (the reason for the 

pared-down model), and obviously misspecification of the model (Hoyle, 2012; Byrne, 2010; 

Fan, Thompson & Wang, 1999).   

The fourth step in CFA or SEM is assessment of model fit. In each of the model 

diagrams in this chapter, indications of fit appear in small print below the diagram. For this 

study, the researcher used ML to make comparisons of the proposed model to both the 

independence and saturated models at opposite ends of a spectrum. The highly restrictive 

independence model is one with all correlations equal to zero, so we want distance from this 

model (CFI index expresses this). The unrestricted saturated model, on the other hand, 

computes exactly as many parameters as there are observed data points (no degrees of 

freedom; Byrne, 2010). We want to be close to this model (RMSEA and SRMR express this). 

Recall that desired values for the indices are CFI > .95, RMSEA < .05, SRMR < .05, and for 

�� a low value that registers as nonsignificant, so our first measurement model fits the data 

well. This six-factor measurement model registered good fit on three indices, with CFI = .962, 

RMSEA = .032 (90% CI = .026, .038), SRMR = .043, and chi-square’s indication of poor fit, 

not useful due to sample size effects, at ��(237) = 379.38, p < .001. Lei and Lomax (2005) 

call chi-square the “least robust fit index,” sensitive to both nonnormality and large sample 

size.  

The second measurement model with all seven constructs fit the data fairly well also, 

with CFI = .937, RMSEA = .041 (90% CI = .033, .045), SRMR = .0461, and chi-square 

again affected by sample size: ��(329) = 638.14, p < .001. Only the CFI failed to meet the 

standard, yet it was “close to .95” as Hu and Bentler recommend (1999). Although it is safe 

to disregard the chi-square readings, it is worth noting that Bollen (1989) recommended 
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division of chi-square by its degrees of freedom to reduce the effect of sample size. He 

suggested a quotient of 3.0 or less could indicate good fit. For the measurement models 

described here, the quotients, at 1.60 and 1.99 respectively, satisfy Bollen’s standard. It 

should be noted, however, that a number of standardized residuals within the two 

measurement models were in the range |2.5| - |4.0|, suggesting some deviation from the 

sample covariance matrix (Hair, Black, Babin, & Anderson, 2010). 

In the 6-construct measurement model, all paths were significant at p ≤ .001 except 

for the covariance between efficacy and constructivist (p = .006) and between efficacy and 

dynamic (p = .005). When the change construct was added to the measurement model, all 

paths were significant at the level at p ≤ .001 except the efficacy-constructivist covariance, 

which remained at p = .006. Critical ratios for loadings ranged from 8.8 to 13.8 in the first 

model and from 8.8 to 14.1 in the second, indicating statistically significant loadings. 

The fifth step in CFA SEM analysis is respecification. However, since the 

measurement models were adequate to proceed toward design of a structural model, 

respecification was unnecessary at this point. 

It should be noted that in both measurement models the convergent validity was 

found to be greater than had been indicated by SPSS analyses, with the four troublesome 

items loading more strongly so that three of them were now greater than .50 and dyn2 almost 

there at .49. Nonetheless, loadings greater than .70 would be preferred since an R2 greater 

than .50 would indicate at least half of the variance in the item is explained by the latent 

construct (Hair, Black, Babin, & Anderson, 2010).   
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Phase V: Covariance Structural Modeling 

 Structural equation modeling involves the same five steps used in CFA but now 

applied to a structure that proposes regression relationships among the latent variables. In the 

case of this study, the first model specified, as in the pilot, was a fairly simple covariance 

model in which the six independent factors were regressed onto change (see Figure 14 with 

covariance arrows hidden). The model was over-identified with 329 degrees of freedom (See 

Table 19). Model estimation revealed fit to be fairly good, with CFI = .937, RMSEA = .041 

(90% CI = .036, .045), SRMR = .0461, and chi-square’s indication of poor fit not useful due 

to sample size effects: ��(329) = 638.137, p < .001. All regression and covariance paths were 

significant at the p ≤ .001 level. The model showed, however, rather poor loadings of the 

independent constructs onto change. Especially disappointing were nonsignificant 

regressions of the mindset (p = .148) and dynamic constructs onto change (p  = .452). 

Efficacy regressed onto change at the p = .036 level. Perhaps the structure of associations 

was more complex than this model indicated. Moderate collinearity among constructs had 

suggested this might be the case. 

Important to respecification of the model was examination of indirect effects among 

the latent constructs. The researcher needed to examine to what extent correlations among 

latent variables impacted their relationship with the independent variable change. Since 

efficacy had been deemed important by the literature but was contributing poorly to the 

regression model, the researcher theorized that perhaps it was due to overlap with the 

professional-identity construct. After all, Lasky (2005) had observed of teachers “Their sense 

of self-worth as a person was intricately intertwined with their professional identities” 

(p. 910). 
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Figure 14. Simple Structural Model A.  

  

 

Standardized RMR = .0461 
*** Significant at p < .001 level 
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Table 19. Identification of Structural Model A.  
 

Six-Factor Model 

Data points = (28 x 29)/2 406 
Factor loadings 21  
Latent variances 7  
Error variances 28  
Covariances 15  
Regressions 6  

Total estimates  77 
Degrees of freedom = 406 - 77 329 

 

 
Efficacy and professional identity indeed showed a weak to moderate correlation 

(r = .355) (Dancey & Reidy, 2004), but collinearity was not observed to be an issue. The 

variance inflation factor (VIF) between the two constructs, an indication of how much 

regression variance is increased due to collinearity, was only 1.144, far below rules of thumb 

suggesting 4 or sometimes 10 as an upper limit (O’Brien, 2007). 

Regression tests were run to determine whether professional identity was mediating 

the effect of efficacy. Results showed that the regression of efficacy onto change indeed 

became insignificant when professional identity was taken into account. Note along the 

efficacy-change arrow in the first triangle in Figure 15 the reduction of R from .176 (p 

= .000) to .027 (p = .489) in light of the pro variable. This reflects full mediation by 

professional-identity (Baron & Kenny, 1986). Another way to illustrate this is to note that the 

percent of variance explained by the regression model in EFA does not change with the 

elimination of efficacy but drops from 41.6% to 34.1% without professional identity. 

In addition to this case of full mediation, two cases of partial mediation also led to 

changes in the structural model. Dynamic math conception was found to be partially 

mediated by math mindset, meaning that math mindset still contributed significantly to 
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Figure 15. Indirect Effects 

change with the addition of dynamic but contributed less. The same could be said of 

ambiguity tolerance and constructivist attitude: the first was partially mediated by the second. 

In these cases of partial mediation, the significance level was p = .000 for all loadings, but 

mediation effects caused substantial decreases in R values. Mindset’s regression onto change 

falls from .326 to .232 and ambiguity’s from .406 to .273. 

Sobel tests were conducted to confirm the significance of the indirect effects 

illustrated in Figure 15. Results revealed that efficacy was indeed fully mediated by 

professional identity (p = .000001), dynamic conception was partially mediated by mindset 

(p = 0), and ambiguity tolerance was partially mediated by constructivism attitude (p = 0).  

The Sobel test, however, assumes normality (Hayes, 2009), an issue in this study. 

Since the structural model indicated multivariate nonnormality, the bootstrap method was 

also applied to verify indirect effects. Bootstrapping involves creating a new sampling 

distribution through repeated selection of mini samples from the study’s data set. This  
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Table 20. Moderation Effects. 

 

Coefficientsa 

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

B Std. Error Beta 

1 (Constant) 6.408 1.167  5.489 .000 

proSUM4 .543 .052 .428 10.397 .000 

efcSUM4 .038 .043 .036 .892 .373 

efic_pro_product .024 .013 .070 1.778 .076 

a. Dependent Variable: CHG4_sum 

 

 
sampling is done with replacement. Based on the distribution of samples created, multiple 

estimates of a path coefficient are taken and an inference regarding indirect effect is drawn 

from these (Hayes, 2009). In this study the SPSS bootstrap analysis confirmed statistical 

significance for the patterns observed in the hypothesized model, 95% CI = [.11, .22]. 

There are no doubt other indirect effects due to associations among constructs, but 

those discussed above were the relationships meriting exploration based on the literature.  

Figure 16 shows the more complex structural model drawn to reflect these effects. Table 20 

shows the model in Figure 16 to be over-identified. In this model the loadings were much 

stronger than for the initial, simpler model, and the fit was still good, with CFI = .909, 

RMSEA = .048 (90% CI = .044, .052), SRMR = .0685, and chi-square’s indication of poor 

fit still not useful due to sample size effects: ��(341) = 787.915, p < .001. 

Although less stringent guidelines for the fit of structural models suggested these 

goodness-of-fit readings were adequate, the researcher attempted to improve the fit through 

examination of modification indices. A modification index, provided within AMOS results as 

a user option, is an indication of the change in chi-square that would result if a correlation 
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were recognized by the model. The modification index for the association between error 

variables 21 and 24 was noted at 38.331,well beyond Joreskog and Sorbom’s (1993) 

sufficiency guidelines for linking two variables in a structural model. Accordingly, 

significant improvement was achieved (��(1) = 58.385, p < .0001) through the recognition of 

covariance between errors 21 and 24, errors associated with two highly correlated items 

[ r(571) = .569, p = .000] in the constructivist factor (“In math class, students need to develop 

their own solution strategies,” and “Students need to construct their own understanding of a 

math concept”). Figures for the improved fit (see Figure 17) were CFI = .920, RMSEA 

= .045 (90% CI = .040, .049), SRMR = .0626, and ��(340) = 729.530, p < .001, good 

indicators of fit for a structural model. For RMSEA and SRMR, readings < .05 are 

considered good and < .08 acceptable (Byrne, 2010; Hu & Bentler, 1999); CFI > .95 is good 

and > .90 acceptable (Byrne, 2010). 

Figure 18 displays the final structural model and reflects one last change made for 

theoretical reasons. The researcher transposed the constructs mindset and dynamic 

conception of mathematics, judging it more likely that conception of math determines math 

mindset than other way around. The model was now in keeping with mediation findings. This 

model too was over-identified (see Table 21), and fit indices were almost unchanged from 

the previous model, with CFI = .920, RMSEA = .045 (90% CI = .040, .049), SRMR = .0640, 

and ��(340) = 730.687, p < .001.  

In order to further validate the structural model, the researcher compared it to a model 

in which the twenty-four survey items were regressed directly onto the change construct. As 

Figure 19 shows, the comparison model was a poor fit for the data, with CFI = .251, RMSEA 

= .136 (90% CI = .132, .139), SRMR = .2042, and ��(349) = 4009.178. A test of chi-square  
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Table 21. Structural Model C: Identification. 
 

Six-Factor Model 

   
Data points = (28 x 29)/2 406 
Factor loadings 21  
Latent variances 7  
Error variances 32  
Covariances 4  
Regressions 6  
Total estimates  70 
Degrees of freedom = 406 - 77 336 

 

 

differences revealed the model in Figure 18 to have a significantly better fit (��(9) = 

3278.491, p < .0001). 

In the final complex model, all regression weights were significant at the p < .001 

level, indicating the loading problems registered by the simpler model had been addressed. 

The six regression relationships now had critical ratios ranging from 5.4 to 7.9, suggesting 

the model had something important to tell us.  

The structural equation model in Figure 18 depicts the way openness to math reform 

develops along three pathways. For each path, the final precursor to change is a constructivist 

attitude toward classroom instruction. The upper path shows a prerequisite to constructivist   

methods is the capacity to tolerate ambiguity. The center path shows that a dynamic view of 

mathematics and a growth mindset regarding the learning of math also enable a constructivist 

perspective. Finally, the lower path indicates that a strong sense of self-efficacy, entailed by a 

strong identification with the math teaching profession, also makes possible the constructivist 

attitude necessary to make pedagogical changes called for in recent decades. 
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Summary 

This chapter narrated the development through structural equation modeling of 

measurement models and a complex structural model for math-teacher openness to 

pedagogical change. Along the way, it addressed four research questions, explored through 

five phases of research: (1) descriptive analyses of items and subscales, (2) exploratory factor 

analysis and reliability testing of subscales, (3) tests of association and demographic 

difference in means, (4) confirmatory factor analysis of the measurement model through 

SEM, and (5) covariance structural modeling. The measurement models were shown to be 

sound, and a final complex structural model clarified relationships among factors 

contributing to teacher openness to change. The next chapter will discuss the meaning of 

these results and implications for professional development of mathematics teachers. 
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CHAPTER V:  

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

The purpose of this study was to examine factors contributing to math-teacher 

openness to adopting new instructional practices. The process was two-fold: first, to develop 

and validate a survey instrument for measuring openness to pedagogical change and, second, 

to build and validate a structural equation model for explaining factors contributing to 

openness. A pilot study applying exploratory factor analysis and dimension reduction tests 

had suggested the potential for certain theoretical constructs to combine to impact math 

teacher openness to change. In the pilot, however, the loading of survey items onto latent 

constructs was not sufficiently strong for meaningful application of SEM. The current study 

sought to build on the pilot by strengthening the survey instrument so that subsequent SEM 

investigations could yield more meaningful results.  

This chapter will summarize the work of the previous chapters before delving into 

answers for each of the four research questions, addressing the meaning and implications of 

the research results. In closing, this chapter will discuss the limitations of the work and will 

make recommendations for further study. 

Dissertation Summary 

Chapter I discussed a decades-old call on the part of the National Council of Teachers 

of Mathematics for instructional practices that focus more on depth of student understanding 

than on transmission of information. In recent years, this call was taken up by the Common 
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Core State Standards (CCSS) movement and embodied in the Standards for Mathematical 

Practices (SMPs) (NGA & CCSSO, 2010). Although U.S. math teachers have embraced the 

content of the CCSS, there is no clear indication they are taking up the SMP. Chapter I 

suggested teacher belief systems might have to shift before practices truly begin to change. 

The researcher also discussed the importance to professional development of a tool for 

measuring openness to change and the importance to the research literature of a structural 

model explaining attitudes toward change. A constructivist theoretical framework was 

adopted as a foundation for the research. 

Chapter II reviewed the literature relevant to math teacher change and provided a 

look at the specific shifts NCTM has proposed for mathematics pedagogy. The chapter 

examined through the relevant literature the six constructs this study proposed as contributors 

to change. First, varying conceptions of the nature of mathematics were discussed, with 

emphasis on the difference between dynamic and static views of the discipline (Hoz & 

Weisman, 2008). Then teacher conceptions of the way students learn math were examined, 

focusing on a contrast between active and passive experiences: teacher-transmitted versus 

student-constructed knowledge (Chapman, 2002; Hoz & Weisman, 2008; Philipp, 2007). 

Following that, Carol Dweck’s (2006; 2000) mindset work illuminated the impact of teacher 

perceptions of students’ capacity. Next, an exploration of the math-teacher efficacy literature 

made clear that teachers with a stronger sense of their own capacity were more able to allow 

opportunities for students to construct meaning (Charalambous and Philippou, 2010; Gresalfi 

& Cobb, Lasky, 2005). Closely tied to efficacy was the professional-identity literature, which 

suggested strong association with the identity “math teacher” as a factor that empowered 

math teachers to act with confidence during times of change (Kelchtermans, 2009; Lasky, 
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2005; Wenger, 2010). Finally, the literature on ambiguity tolerance explained how low 

tolerance inclines a teacher to control the flow of knowledge and leads to avoidance 

behaviors among teachers in times of change (Merenluoto and Lehtinen, 2004; Stein & Smith, 

2011). 

Chapter III described the research methods applied in this study. A sample of 571 

math teachers from around the U.S. responded electronically to a survey of 55 Likert-like 

items and 10 demographic questions. Through exploratory factor analysis and dimension 

reduction, the 55 items were whittled down to 24 in order to create a parsimonious six-factor 

model to test in AMOS. Prior to SEM analyses, associations among constructs were explored 

and tests of demographic differences were performed. In AMOS software, structural equation 

modeling techniques were applied: first confirmatory factor analysis to test the validity the 

measurement models, then SEM techniques to test the fitness of possible structural models. 

In Chapter IV the researcher shared results of the study. Along the way, math teacher 

age was shown to have less impact on change than expected, as were teaching experience and 

math teaching experience. Also, females were observed to outscore males on the change 

scale, just as middle-school teachers outscored high-school teachers. Of interest was the 

finding that math majors were less open to change than math teachers holding other degrees. 

Finally, urbanness of school setting was shown to predict change attitude, which perhaps 

explains the finding that North Dakota teachers are less ready for change than teachers in 

other states. These demographic findings were incidental to the development of two SEM 

models for math teacher change openness. A measurement model consisting of seven 

constructs was confirmed, as was a complex structural model that diagrammed associations 

among the seven constructs. Openness to pedagogical reform was shown to depend upon 
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complex interactions among mindset, self-efficacy, perception of learning, conception of 

mathematics, professional identity, and ambiguity tolerance. The next section reviews the 

results of the study in terms of the four research questions. Under each of the four, the 

meaning and implications of the research will be explored. 

Research Questions 

Question 1: How Can Math Teacher Openness to Changing Practices be Measured? 

In earlier work, the principal investigator for this study had sought to determine what 

made some teachers eager to embrace recommended pedagogical reforms while others 

resisted at every turn. Combing the literature in search of a tool for measuring change 

attitudes, the researcher came up empty-handed. Experienced in developing training for math 

teachers, in this study she developed her own “change” items based on qualities she felt 

measured teacher inclination toward learning and applying new strategies. Those eight items 

comprised a construct of good internal consistency (� = .850). Only the chg2 item (“I try to 

adapt my instructional approaches to follow current best practices”) veered from normality 

with skewness of 2.72, perhaps due to the ambiguity inherent in “try to.” Even when pared 

down to four for SEM analyses, the scale held together well with alpha at .791. 

Admittedly, other content experts were not invited to review the change items prior to 

sending the survey to participants. Nonetheless, the scale addressed key issues relative to 

adapting practice to match current research: Is it your intention? Is it your tendency? Are you 

comfortable with change? Do you have a positive disposition toward it? It makes sense that 

since change items incorporate terms such as “new,” “adapt,” and “change” itself, they do 

indeed measure attitude toward change: 

chg2: I try to adapt my instructional approaches to follow current best practices. 
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chg4: I am quick to embrace new methods for teaching math. 

chg5R: Pressure to change my strategies makes me want to leave teaching. 

chg6: I enjoy trying new ways of teaching mathematics. 

Question 2: Which Demographic Measures Predict Openness to Change? 

 Chapter IV reported significant differences in the change variable for six 

demographic categories: ethnicity, gender, college major, school level, state, and 

geographical setting. While the last two registered the most substantial differences, 

differences corresponding to school level were of also of interest to the researcher.  

Teaching level. The introduction to this paper had proposed that stagnant high school 

math scores in the U.S. over the last several decades might be attributable to unwillingness 

among high school teachers to revise instructional practices. Results of this study confirm 

high school math teachers as indeed significantly less open to change than middle school 

teachers, but perhaps not to the degree anticipated. 64.7 % of high school teachers scored less 

than “agree” on the change scale while 53.1% of middle school teachers scored in that range. 

This difference is perhaps attributable to—for the high school teacher—a greater proximity 

to college lecture models (Ball & Bass, 2002) and a stronger focus on the content background 

necessary for college readiness. High school teachers are often concerned about preparing 

students for college admission tests and feel they must prioritize coverage of all rules and 

procedures. More worthy of note than the difference in these groups of teachers was the fact 

that 59.9% of all teachers scored 19 or lower on the change scale (where 4 = “strongly 

disagree,” 4 = “disagree,” 12 = “slightly disagree,” 16 = “slightly agree,” 20 = “agree,” and 

24 = “Strongly agree”), suggesting plenty of teachers at both levels bring some reluctance to 

reform efforts and could benefit from professional development around the need for change. 
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School leaders must be cautious, however, in interpreting all resistance in terms of readiness 

for change. The law of initiative fatigue must also be taken into consideration. This principle 

states that with each new initiative from the district, teachers will have less emotional energy 

to contribute toward change (Reeves, 2010). If change in math pedagogy is promoted in the 

context of many other reforms, it is perhaps overly optimistic to expect results. 

Geography. The differences associated with geographic setting—with the more rural 

teachers less open to change—are perhaps of little surprise. After all, rural schools find 

themselves at a distinct disadvantage in recruiting qualified teachers due to low fiscal 

capacity, poorer working conditions and cultural isolation (Williams, 2003). Isolation in rural 

areas is not just cultural but also professional, with fewer opportunities for collaboration with 

peers and less access to high quality continuing education. Less peer interaction translates to 

less change since even “passive consumers” of professional learning are drawn into new 

practices through association with more change-inclined colleagues (Joyce & Showers, 1995). 

With nearly a third of America’s teachers working in rural areas (Williams, 2003), resistance 

among this group can represent a serious roadblock to math education reform. It is 

particularly important that this group come to in-service training with an open attitude. 

Adequate training related to the six constructs outlined in this study will support them in 

doing so. 

State. North Dakota is a good example of a state trying to meet the needs of rural 

teachers. Among North Dakota schools, 71.2% are classified as rural, accounting for 46% of 

its students. Only South Dakota has higher percentages (77.3% and 46.8%, respectively) 

(Williams, 2003). These data correspond to a national rate of 57% (NCES, 2013). Among 

participants in this study, a full third of ND teachers reported working in areas of population 
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less than 1500, where for out-of-staters this figure was only 7.6%. The rural nature of the 

North Dakota perhaps explains why its teachers scored lower on every construct in the study. 

The challenge in this state is to recruit a professional development team able to support 

learning among teachers spread across a wide geographic area. This can be particularly 

difficult since it involves coaches regularly traversing a 400-mile-wide state in which 71% of 

math teachers scored less than “agree” on the openness-to-change scale. Although North 

Dakota has eight education cooperatives dedicated to professional learning for teachers in 

eight regions in the state, only a few of these employ math specialists. This means that efforts 

must be carefully coordinated in order to ensure proper coaching for all math teachers in the 

state. In the past year, the Department of Public Instruction has formed a math leadership 

team comprised of math specialists from around the state. In beginning their work, this team 

would do well to pay attention to this study’s findings about beliefs and attitudes, as would 

leadership groups from other rural areas. 

Math degree. Results also showed math majors to be less inclined toward change 

than non-math majors. The researcher speculates this may be due in part to an association 

with teaching high school. As was stated in the previous chapter, among high school teachers 

72.2% were math majors compared to 27.4% for middle school teachers. It is interesting to 

note that among math majors, the total score corresponding to the lower-path constructs in 

the structural model is significantly stronger (p < .001) while the upper-path total is weaker 

than for non-math majors (p = .17). This suggests that teachers who identify strongly with the 

subject matter will need more training in math mindset, more time to reflect on the nature of 

mathematics and what it means to learn it, and more support for ambiguity tolerance. Non-
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majors on the other hand will need more opportunities to develop sense of efficacy and 

identification with the role “math teacher.” 

Gender. The structural model is not useful in explaining the greater openness to 

change among female participants. Females (M = 44.26) were significantly older than males 

(M = 42.14, t = -1.997, p = .046) and significantly higher in identification with the profession 

(Mf = 21.33, Mm = 20.94; t = -1.800, p = .07), but males were significantly more tolerant of 

ambiguity (Mf = 15.60, Mm = 16.66; t = 3.907, p = .000). Perhaps the change-attitude gender 

difference is attributable to a psychosocial construct not accounted for in the model. For 

example, there is literature to suggest that males tend to be overconfident, particularly when 

it comes to math (Bengtsson, Persson, & Willenhag, 2005; Jakobsson, Levin, & Kotsadam, 

2013). Female rule-following behavior may also incline them to do as the best-practice 

literature suggests (Villalobos, 2009). 

Ethnicity. In terms of ethnicity, the very low representation among groups other than 

White—with American Indians and Asians accounting for roughly 2% each of total 

participation and African Americans and Hispanics 1.4% each—makes it unrealistic to draw 

conclusions about differences. To have reflected well the ethnic proportions of teachers in 

this country, the last two groups alone would have to have been six times larger. Whites had 

a higher percentage of math majors (54.1%) than nonwhites (40.9%) and were a bit more 

likely to teach at the high school level (58.3% compared to 54.5%), so those associations 

may have contributed to lower change scores. Nonetheless, nonwhites were more urban with 

45.5% working in a population center greater than 100,000 compared to 39.8% for whites. 

Age and experience. Another demographic finding of very real interest was the fact 

that age is at best weakly associated with a reluctance to change. In application of the 4-item 
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scale for change, no significant association was found with age or experience. In fact, there 

was no significant difference in any independent construct scale along age lines.  This 

suggests reformers need to avoid associating age with inertia and realize that even the 

youngest of teachers need to reflect on traditional beliefs and mindsets. It is not only 

experienced math teachers in U.S. classrooms who are clinging to outdated notions about the 

learning of mathematics. 

Question 3: How Valid Are Certain Constructs for Predicting a Math Teacher’s 

Openness to Changing Practices? 

 

The study showed all six proposed constructs to be weak-to-moderate predictors of 

attitude toward change: math mindset, self-efficacy, constructivist perception of learning, 

dynamic conception of math, professional identity, and ambiguity tolerance, with the best 

predictor explaining 19.62% of variance in change. Combining the six factors in a multiple 

regression analysis, however, resulted in explanation of 41.6% of the variance in the change 

score. Discriminant validity was established for all constructs, and each scale exhibited 

internal reliability. In other words, all six of these constructs are worthy of attention when 

considering math teachers’ openness to embracing reform pedagogy.  

The best individual predictors of disposition toward change were constructivist 

attitude in the classroom, sense of professional identity, and tolerance for ambiguity, in that 

order. The constructivist findings are in keeping with the research of Draper (2002). It is 

likely that, given the historical context, a constructivist attitude was the best predictor of 

change-attitude because it measured a predisposition toward the kind of pedagogy advocated 

by the CCSS movement. A teacher who believes it is important for students to interact with 

mathematics and each other in a sense-making way is already philosophically aligned with 
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the Standards for Mathematical Practice (SMP) of the CCSS. The constructivist theoretical 

framework of this study is largely due to the constructivist underpinnings of the SMP. (The 

researcher speculates it would be unlikely, say, in another era, to find teachers with high 

constructivism scores eager to embrace the change advocated by a rigid back-to-basics 

movement.) The fact that constructivist attitude is an important contributor in this study 

emphasizes the need in CCSSM training to revisit the principles of constructivism. 

Another finding that makes good sense—although it runs counter to pilot findings—is 

that identification with the profession is important to change.  Teachers who see their work as 

“more than just a job” are likely to be motivated to invest in their practice. These teachers are 

apt to believe in continuous improvement, which naturally implies change. Perhaps these 

teachers are even more inclined to heed research on math education. It may very well be that 

when the National Council of Teachers of Mathematics says, “Let’s move in this direction,” 

those who identify most strongly with the profession are among the first to move. It would 

have been interesting to ask which participants were member of NCTM and to test 

association of membership with both professional identity and change. The findings related 

to professional identity are in keeping with the research of Gresalfi and Cobb (2011), who 

observed in math teachers motivation to change practice as they came to identify with reform 

teaching practices.  

The finding that ambiguity tolerance is significantly linked to change-openness is in 

keeping with the work of Merenluoto and Lehtinen (2004). Their discussion of conceptual 

change makes clear that teachers need to be given opportunity to resolve conflicts in times of 

reform. Math teachers need to be well supported through ambiguity in order to feel confident 
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in implementing changes. This includes be given ample opportunity to reflect on those 

changes and the nature of any associated discomfort. 

An unexpected finding in this study was that self-efficacy did not correlate more 

strongly with the change scale. Generally speaking, it would seem that self-efficacy gives 

one confidence for risk-taking in any career during times of adaptation. The low correlation 

is best explained through a discussion of the interaction of constructs. 

Question 4: How Do Factors Relate to One Another as Predictors of Openness to 

Change?  

 

Efficacy →→→→ Professional Identity →→→→ Construct Path. This study confirmed Lasky’s 

(2005) claim that professional identity and self-efficacy are tightly interwoven. Although 

only moderately correlated (R = .355), the constructs exhibited indirect effects in their 

relation to change, such that efficacy was fully mediated by professional identity. In other 

words, although “professional identity” did not measure the same construct as “efficacy,” it 

implied its presence and rendered it insignificant in terms of predicting change. The 

noncollinearity in the two constructs is illustrated by the fact that high school teachers (M 

=19.89, SD = 2.78) scored significantly higher than middle school  

(M = 19.11, SD = 3.05; t = 3.143, p = .002) on efficacy—perhaps due to the greater 

percentage of math majors—but virtually the same as middle school teachers on professional 

identity. Although they measure different constructs, it is difficult to talk about one factor 

without discussing the other. It would seem their intersection has to do with a sense of 

security. It is as if one construct entails a kind of motivation to change (“I can identify as this 

kind of math teacher”) and the other the confidence to tackle the new approach (“I can do 

this”). Both provide a kind of defense against vulnerability in time of uncertainty. The 
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regression model from EFA tells us that motivation (proSUM) alone may suffice while 

confidence (efcSUM) alone will not. When we turn to the structural model, however, we see 

that the loadings onto constructivist attitude are a bit stronger when efficacy is included, even 

though the model fit is a bit stronger without it (see Figure 20). The researcher prefers to 

leave efficacy in the model due to its significant correlation with all other constructs, 

particularly professional identity and ambiguity tolerance, two of the best predictors of 

change. The negative association between efficacy and change described in Chapter IV, a 

surprising outcome, perhaps suggests that math teachers will low self-efficacy are just plain 

ready for guidance. 

Clearly math education reform must involve the strengthening of a teacher’s 

professional identity and the entailed sense of self-efficacy. Full implementation of 

professional learning communities (PLC’s) formed around improving practice would help 

fortify a sense of belonging, but to truly strengthen a sense of professional identify it may 

first be necessary to address certain aspects of self-efficacy. PLC’s could also be beneficial 

here, especially for bolstering the efficacy piece associated with pedagogical knowledge 

(efc8R: I sometimes doubt my ability to teach math). In PLC groups teachers plan and 

evaluate lessons together and so learn from one another. For the efficacy piece associated 

with content knowledge (efc1: I think of myself as very good at math; efc 2: I am strong 

enough in math to teach it beyond the level at which I currently teach it), PLC’s may also be 

effective, but teachers with insufficient background will need professional development in 

math content, preferably accompanied by opportunities to experience the SMP. The need for 

content training among non-majors is supported by the finding that math majors scored 

significantly higher on efficacy items related to math background. Math majors did not 
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outscore their counterparts on any of the efficacy items related to effective teaching, however. 

In fact, on item efc6, not included in the parsimonious model (No matter the students, I am  

able to help them improve their math skills), non-majors (M =4.75, SD = .87) outscored math 

majors (M = 4.60, SD = .95) (t = -1.981, p = .048). In other words, the efficacy concerns to 

be addressed vary from teacher to teacher. Math majors may not need as much content 

training, but they will still need help implementing more effective instructional strategies. It 

may seem paradoxical that math majors were slightly less inclined toward change given their 

stronger efficacy, but recall the strength of their change orientation came from the lower path 

of the model: the efficacy and professional-identity constructs. Math majors scored lower in, 

and would require more professional development in, constructs in the upper two paths of the 

model: ambiguity tolerance, dynamic conception of math, and math mindset.  

The regression of efficacy and professional identity onto constructivist attitude 

confirms the claim that math teachers secure in their capacity are more open to student-

centered, inquiry-oriented approaches (Guskey, 1988; Charalambous and Philippou, 2010). 

Recall that Charalambous and Philippou (2010) had suggested efficacious teachers were 

more open to the ideas of students in general. Investing professional development time in 

efficacy- and identity-building activity might lead teachers toward these more constructivist 

attitudes, which in turn could create greater openness to current math reforms. 

Dynamic → mindset → construct path. So how do constructs in the middle path 

lead to change-openness? Figure 15 showed math mindset mediating the impact of dynamic-

math-view on change. In the literature, dynamic conception of mathematics and math 

mindset were linked transitively by their mutual association with constructivist attitude. The 
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literature had suggested teachers with a more static view of math—those who viewed math as 

an object or set of rules—were inclined toward traditional practices (Chapman, 2002; Hoz & 

Weisman, 2008). Likewise, those with a more fixed/entity mindset were observed to adopt 

transmission-style strategies (Stipek, 2001). The structural model in this study confirms these 

findings.  

The model would fit the data equally well if mindset were regressed onto dynamic 

view. The structure in Figure 18 was preferred for theoretical reasons. Dynamic view of math 

is depicted as predicting mindset since one’s view of math determines whom one believes 

can learn it, not the other way around. When a teacher conceives math as a science of inquiry 

and views a problem as accessible through multiple approaches, she is more inclined to a 

growth mindset, to believe every student can grow through mathematical experiences, 

making sense and meaning of underlying concepts through experimentation and productive 

struggle. The teacher who, on the other hand, views math as a fixed set of complex 

procedures to be drilled will naturally think it difficult for many students to acquire math. 

This latter teacher often fails to see that difficulty derives from lack of opportunity to 

understand underlying concepts. 

 It makes sense that a teacher with both a dynamic math view and a 

growth/incremental mindset would have a more open constructivist attitude toward learning. 

One who believes math is a science of inquiry is more likely to believe in the importance of 

questions (cnstr1: In math, the questions are more important than the answers) and to give 

students opportunity to share ideas (cnstr5: It is really important to have students work in 

groups in math class). And one who believes anyone can learn math is more likely to offer 
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social and contextual experiences where students can develop their own solutions (cnstr4) 

and construct their own understanding (cnstr7) through exposure to various pathways. 

 To shift math teachers along the middle track of the structural model, coaches must 

find a way to change perceptions of the discipline of mathematics. One way to accomplish 

this is through interaction with mathematicians in the field, who should be able to convey a 

picture of math as a living breathing science. Alternatively or additionally, coaches could 

provide teachers with opportunities to experience math as something other than a static body 

of rules by engaging them in non-routine problems for which clear solution paths are not 

immediately available. Teachers who have occasion to work collaboratively on such 

problems will learn quickly that multiple approaches are possible and that the best solutions 

do not always come from the colleagues with the strongest content background. These kinds 

of experiences will provide opportunities to reflect on and discuss what it means to construct 

mathematical meaning.  As Linda Flowers (1994) explains:  

Problem solving [involves] intellectual moves that allow people to construct 
meaning—to interpret the situation; to organize, select, and connect information; to 
draw inferences, set goals, get the gist, … draw on past experiences, imagine options, 
and carry out intentions. (p. 24) 
 

After time spent solving problems together, math teachers may benefit from discussing what 

they have learned and how they learned it. 

The structural model in this study suggests math teachers will also benefit from 

studying Carol Dweck’s work on mindset (2006; 2000). As they learn about “helpless” 

versus “mastery-oriented” patterns of behavior and fixed versus growth attitudes toward 

challenges (2002), they will not only see what is possible for students but what is possible for 

themselves. They will come to assess their own mindsets, and perhaps teachers with 
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previously fixed attitudes will begin to hunger for more than a “diet of easy [classroom] 

successes” (Dweck, 2000, p. 7). 

Ambiguity → construct path. The top path of the structural model consists of one 

construct: ambiguity tolerance. Early analyses in this study had shown one of the strongest 

correlations among constructs to be between ambiguity tolerance and constructivist attitude 

(R = .400). The strength of this association was second only to that between mindset and 

dynamic math view (R = .419). The model confirms what research had suggested, that the 

capacity to navigate uncertainty makes it possible for teachers to take more constructivist 

approaches, to release to students some control over outcomes and learning (Smith & Stein, 

2011). A teacher who tolerates ambiguity well will be open to student ideas and the organic 

unfolding of lessons. On the flip side, teachers with low tolerance for ambiguity will exhibit 

avoidance behaviors (Stein & Smith, 2011), cling to the familiar (Furnham & Marks, 2013), 

and stall forward movement (Budner, 1962). Since the ambiguity-intolerant tend toward 

more rigid, black-and-white views (Furnham & Marks, 2013), it is not unexpected to see also 

in the structural model a fairly strong association between ambiguity tolerance and dynamic 

view of math. A view of mathematics as a fixed set of known rules leaves little room for 

uncertainty. 

In order to move teachers along the model’s ambiguity → construct pathway, it may 

be more effective to reduce ambiguity than to try to build tolerance, but there are ways to do 

both. The Japanese lesson study approach, which has been spreading in the United States 

since the release of the first TIMSS Video Study (Doig & Groves, 2011), offers a means to 

decrease the “not knowing” a teacher experiences when adopting a more problem-based, 

student-centered approach. In lesson study, teachers in a PLC group carefully choose a study 
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problem and then anticipate together all the ways a student might solve or attack the problem. 

In lesson study done well, teachers plan together how they will respond to various solution 

strategies. Since teachers have the chance to “experiment with classroom practice and 

analyze it in detail” (Doig & Groves, 2011, p. 79), uncertainty about outcomes should 

naturally decrease.  

Tolerance for the uncertainty can be enhanced by the presence of a math coach as 

lesson-study lessons move into the classroom. The coach’s role would be to support 

improvement of teaching through modeling, co-teaching, and conferencing with the teacher 

about goals for the lesson (Mudzimiri, Burroughs, Luebeck, Sutton, & Yopp, 2014). Over 

time, with gradual release, the teacher should become more comfortable with student-

centered approaches. 

Construct → change. The structural model in this study indicates that if we address 

efficacy and identity, math-view and mindset, and ambiguity tolerance, these in turn will 

influence a teacher to adopt what Hoz and Weisman (2008) called “open” classroom 

practices (investigation of rich questions, social interaction, students actively constructing 

math knowledge). This does not mean, however, that teachers would not also benefit from 

direct training in constructivism and constructivism-based approaches. Teachers need 

opportunities to reflect on the theory that “we construct our knowledge of our world from our 

perceptions and experiences, which are themselves mediated through our previous 

knowledge” (Simon, 1995, p. 115).  With an understanding of constructivist theory and its 

implications, teachers can learn to facilitate lessons more focused on student thinking.  

 The final causal relationship represented in the structural model is the strong 

regression of constructivist attitude onto change openness. Why are teachers with a more 
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open, constructivist conception of teaching mathematics also more open to change? Perhaps 

the operative word here is “open.” The connection may have to do with a general underlying 

openness to experience and to a variety of ways of knowing. Teachers whose practices honor 

multiple pathways for student learning, who believe student knowledge is individually 

constructed through personal and social experience, perhaps also believe their own growth 

depends upon exposure to novel experiences. Put another way, perhaps teachers who believe 

students learn through exploration are also inclined to exploration themselves and therefore 

change. A general open-mindedness, functioning as a lurking variable regressed onto both 

factors, however, does not explain structural relationships depicted in the model. 

 The regression of constructivist attitude onto change may perhaps be better 

understood in a historical context. Constructivist perspectives have been shaping math reform 

in the U.S. since NCTM published its first set of Standards (Simon, 1995; NCTM, 1989), 

and the influence of those perspectives on NCTM’s Practice Standards (NCTM, 2000) is 

reflected still in the SMP of the Common Core (NGA & CCSSO, 2010). In some sense, 

teachers with an open attitude toward constructivist-like practices are well on their way to 

fostering the Standards for Mathematical Practices. (Although no reference to the SMP were 

made in the survey, it is even possible teachers had them in mind when they read terms like 

“change,” “best practices,” and “new methods.”) Classroom staples like small-group 

discussion and personal construction of solution strategies—referenced in the survey’s 

constructivism items—are stepping-stones to Common Core practices of perseverance in 

problem solving, construction and critique of argument, and active use of structure and 

repeated reasoning. It is no surprise, then, that a constructivist attitude anticipates a 

willingness to move in this “new” direction. 
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 In a last note on the structural model, it must be acknowledged that while it goes a 

long way to explain the variance in change-openness, clearly it leaves some elements 

unanalyzed. The researcher speculates there are additional psychological constructs at work, 

as well as outside contributing factors. For example, the Big Five personality trait of 

openness—different from any type of openness discussed here so far—includes an aspect of 

intellectual responsiveness (Kaufman et al., 2015), which may play a part. Recent work on 

curiosity, likely related to this “openness,” suggests it may play a role, though Engel (2015) 

describes it as relatively stable from childhood to adulthood, with some individuals just more 

curious than others. Flexibility of thought is perhaps another contributor, as could be 

attraction to experimentation, preference for complexity, self-esteem, and perceived control 

over the change process. Even disposition toward mathematics and disposition toward 

students may be influences. Additionally, it is well established that math teachers must judge 

a reform to be worthwhile before they will embrace it (Cobb, Yackel, & Wood, 1992). 

Outside factors that no doubt play an important role are time to learn new practices, 

availability of adequate resources to implement them, and availability of support to sustain 

them. School/district culture and morale are also likely to be involved. After all, not all 

roadblocks to change are rooted in the teachers themselves. The goal in this study has not 

been to include all possible contributors to change, but rather to develop a model directly 

related to factors drawn from the literature on math pedagogy change. 

Limitations 

The results of the current study provide insight into the complex issue of instructional 

change in secondary mathematics. Nonetheless, the findings must be evaluated in the light of 

the study’s limitations.  
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First, the study design was cross-sectional as opposed to longitudinal and so captured 

participant perceptions at a particular place and time. As was suggested in Chapter V just 

above, the historical backdrop of Common Core State Standards implementation may have 

had a particular impact in how U. S. math teachers interpreted items related to change. It may 

also have affected general disposition toward mathematics instruction, which in turn may 

have influenced the way teachers responded to certain items. 

Second, the study was based on a sample of convenience (through the colleagues of 

the researcher) rather than on a random sample, so the possibility of sample bias exists, as do 

limitations to the generalizability of findings. More specifically the out-of-state sample was 

broader and less well defined due to less systematic recruiting procedures than used within 

North Dakota. Since out-of-state colleagues of the researcher forwarded the survey, it is 

impossible to determine to whom the survey was sent; it is unlikely it was distributed evenly 

within a state. It should also be noted that in multiple-regression analysis the six independent 

constructs combined to be a better predictor of change outside of North Dakota (R = .625, p 

= .000) than within (R = .512, p = .000), so careful consideration should be given to 

comparisons between these two geographically defined groups. 

Additionally, the latent variables could not be objectively measured and so depended 

on the perceptions of participants and the extent to which they communicated beliefs 

honestly. Teaching methods were not observed, so the study was not able to draw 

connections between what teachers said they believed and the way beliefs manifested 

themselves in classroom practices. 

No latent construct used in the study was measured with a well-established scale. The 

change scale, which functioned as the dependent variable, was wholly original to this study 
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and not validated through content experts, while other scales were adapted from established 

scales—in some cases from more than one scale—to fit the context of teaching mathematics.  

Finally, in the paring down of the model, an attempt was made to maintain a balance 

in the efficacy construct between math efficacy and teaching efficacy. Since the factor played 

a small role in the overall model, one wonders if future investigation might examine more 

closely the content of this variable.  Perhaps to focus on teaching efficacy exclusively would 

yield different results. 

Future Research 

 As implied above, replication of this study with a random stratified sample of 

secondary math teachers from across geographic regions of the country would be beneficial. 

It would also be of value to extend the research by linking beliefs to practices as Stipek et al. 

(2001) did in their study of elementary mathematics teachers. In particular, it would be 

interesting to see whether teachers with high change-openness scores did indeed implement 

newly introduced strategies more quickly than their peers and whether, in a more general 

sense, beliefs aligned with practices.  

In addition to further research suggested by the limitations of this study, it would be 

interesting to expand the structural model to include a construct for uncertainty tolerance, 

described by Furnham and Marks (2013) as distinct from ambiguity tolerance. Then not only 

could we examine attitudes toward the ambiguity inherent in certain changes but also the 

anxiety teachers experience in response. A risk-taking construct might be added as well, and 

yet at some point the number of constructs results in a model that is too complex. Another 

avenue might be to undertake separately a close examination of the three constructs TA, TU, 

and RT and the personality trait intellectual openness, all relative to teacher change. 
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Future studies should also include qualitative research to explain this study’s results 

in greater detail. Interviews with secondary math teachers would bring a dimension of 

understanding not possible without participant voices. A purposeful sampling of participants 

with high or low scores on the change scale—or for that matter, on any of the constructs—

would add significant insight to the findings of this study. 

Finally, an experimental study could be undertaken which tracked scores on the 

change scale before, during and after implementation of an extensive professional 

development program. Ideally the program would include elements like those described 

earlier in this chapter: lesson study in PLC’s, collaborative problem-solving, reflection on 

mindset, constructivism, and the nature of mathematics.  

Conclusion 

 The purpose of this study was to examine factors contributing to a math teacher’s 

openness to changing instructional practices. Central to the research was the development 

and validation of two tools: an instrument for measuring openness to change and a structural 

equation model for explaining how various factors contribute to change-openness.  

The results of the study indicated that six factors contribute to openness to new 

practice: a growth math-mindset, a strong sense of self-efficacy, a dynamic view of 

mathematics, a constructivist perception of learning math, a strong sense of professional 

identity, and a high tolerance for ambiguity. The structural model showed these factors to 

have complex inter-relationships. Other findings were that urban math teachers were found to 

be more open to change than their rural counterparts, and middle school teachers were found 

to be slightly more ready than high school teachers. No association was found between 

attitude toward change and age or experience.  
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This study offers the first tool for assessing math teacher receptivity toward 

instructional reform. Additionally, the structural equation model developed in this work is the 

first to illuminate complex issues around math teacher change. It provides a framework for 

analyzing, diagnosing and remedying professional development challenges and offers rich 

ground for further research in motivation and math teacher education.  



 

APPENDICES 
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Appendix A 
Survey 

 
The purpose of the current survey is to ask teachers about their thoughts and experiences 
regarding the teaching of mathematics. Please try to answer the questions honestly. Your 
identity will be unknown to me and responses will be kept anonymous. If there are 
significant findings from this study, the results may be published in a research journal, but all 
references to place will be anonymized; that is, there will be no references to names of 
persons, schools, or districts. 
 
Thanks for your participation. If you complete all questions, you will be able to link to a 
prize drawing for $50 Amazon gift cards at the end of the survey. 
 
Cathy Williams 
 
 
 
 
For each of the following statements, click the column that indicates your level of agreement: 
1 (strongly disagree) to 6 (strongly agree) [Underlined items were retained in parsimonious 
model.] 
 

Conceptions of Mathematics (Dynamic) 

(Later: Constructivist Attitude* or Dynamic View of Mathematics**) 

1.  Mathematics involves mostly facts and procedures that have to be learned. 
2.  In math, you can be creative and discover things on your own. 
3.  There is usually one best way to solve a math problem. 
4.  Students who really understand math will have a solution quickly. **  
5.  In math, the questions are more important than the answers. * 
6.  Mathematics is a science of inquiry and exploration. 
7.  Math is characterized by certainty.   
8.  Mathematics is continually growing, changing and being revised. 
9.  Math is more about ideas than numbers. 
10. Math is mostly about finding the answer. 
 

Perceptions of Learning Math (Construct) 

(Later: Constructivist Attitude* or Dynamic View of Mathematics**) 

11. Math can be applied only after basic skills are mastered.  ** 
12.  In math class, students need to develop their own solution strategies. * 
13.  It is really important to have students work in groups in math class. * 
14.  Learning math requires receiving clear explanations. **  
15.  When learning math, students benefit from making mistakes.   
16.  Math is a set of skills to be learned in sequence. ** 
17.  Students need to construct their own understanding of a math concept. * 
18.  The best way to understand math is to do lots of problems. 
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Mindset 

19.  To be honest, you can't really change how much math talent you have.  
20.  Some people just have a knack for math and some just don’t. 
21.  Math ability is something that remains relatively fixed throughout a person's life. 
22.  All of my students would be good at math if they worked hard at it. 
23.  I can improve my math skills but I can't change my basic math ability. 
24.  No matter who you are, you can learn math. 
25.  It's possible to change even your basic level of math intelligence. 
26.  In math there will always be some students who simply won't "get it". 
27.  There isn't much you can do about how much math ability you have. 
 

Professional Identity (ProfID) 

27.  Being a member of the math teaching profession is important to me. 
28.  Teaching math is just what I do to earn a living. 
29.  I feel proud when I tell people I am a math teacher. 
30.  I can identify positively with other math teachers. 
31.  Teaching mathematics means more to me than a job. 
32.  I don’t really feel like a member of the math teaching profession.   

 

Self-Efficacy (Efficacy) 
33.  I think of myself as very good at math. 
34.  I am strong enough in math to teach it beyond the level at which I currently teach it. 
35.  When I teach math, I often find it difficult to interpret students' wrong answers. 
36.  I am good at communicating math material to students. 
37.  I don’t always know what to do to help my students learn math better. 
38.  No matter the students, I am able to help them to improve their math skills. 
39.  When my answer to a math problem doesn't match another math teacher's answer, I 
usually assume my answer is wrong. 
40.  I sometimes doubt my ability to teach math. 
 

Ambiguity Tolerance (Ambiguity) 

41.  I try to avoid problems that don’t have one best solution.   
42.  It is more fun to tackle a complicated problem than one that is simple to solve.   
43.  I like to fool around with new ideas even if they turn out to be a waste of time. 
44.  A problem has little attraction for me if I don’t think it has a solution. 
45.  I tolerate ambiguous situations well. 
46.  What we are used to is always preferable to what is unfamiliar.   
47.  I generally prefer novelty over familiarity. 
48.  I try to avoid situations that are uncertain. 
 

Attitude Toward Changing Practice (Change) 

49.  I prefer to teach math the way it was taught to me. 
50.  I try to adapt my instructional approaches to follow current best practices. 
51.  I don’t want to change the way I teach math. 
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52.  I am quick to embrace new methods for teaching math. 
53.  Pressure to change my strategies makes me want to leave teaching. 
54.  I enjoy trying new ways of teaching math.   
55.  I am afraid to change the way I teach math. 
56.  Gaining new knowledge about teaching math is invigorating. 
 
 
Demographics 

56.  Gender What is your gender: 
1) Male 
2) Female 
3) Other 
4) Choose not to identify 

57.  Age What is your age in years? (textbox) 

58.  Ethnicity 1) White/Caucasian 
2) African American/Black 
3) American Indian 
4) Asian American/Asian 
5) Mexican American/Chicano 
6) Puerto Rican American 
7) Other (please specify) 

59.  Education What is your highest level of education? 
1) BA/BS 
2) MA/MS 
3) PhD 

60.  Degree Do you have a degree in mathematics (that is, a full major in math)? 
1) Yes 
2) No (Please specify your undergraduate major field.) (textbox) 

61.  Certification In what areas other than mathematics are you certified to teach? (text box) 

62. Experience How many years of teaching experience do you have? (textbox) 

63.  Math  
       Experience 

How many years of math teaching experience do you have? (textbox) 

64.  Setting In what setting do you teach? 
1) In a city whose population is greater than 10,000 
2) In a large town with population greater than 1500 but less than 10,000 
3) In a rural, small-town, or consolidated district (population is less than 1500) 
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65.  
Level 

At what grade level do you teach mathematics? (Check all that apply.) 
1) 6th 
2) 7th 
3) 8th 
4) 9th 
5) 10th 
6) 11th 
7) 12th 

 
 
Thank you so much for completing the survey. If you would like to be entered in the 
drawing for one of five $50 gift cards, please click on the link below, which will submit 
your responses and then take you to a separate contest site. No one will be able to connect 
your name to the survey you have taken here.  
 
https://und.qualtrics.com/SE/?SID=SV_8k17LVBZpUZgIzr 

 
If you DO NOT wish to enter the drawing, click on the arrow below to submit your 
responses.  

 
 
 

Prize Drawing Survey 
 
 
 
 
If you would like to be entered in the drawing for one of five $50 Amazon gift cards, please 
enter your name, email address, and phone number below. The phone number will only be 
used if you win a prize and we cannot reach you by email. 
 
 
What is your name? Please include first and last name. (text box) 
 
 
What is your email address? (text box) 
 
 
What is your phone number? (text box) 
  
 
Thank you and good luck! Be sure to click the arrow to the right to submit your name to the 
drawing. 
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Appendix B 
IRB Approval 
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Appendix C 
Pilot Items 

 
Openness to Mathematics Education Reform,  

Mean, and Standard Deviation (strongly disagree = 1, strongly agree = 6) 

 
 

 
 

Survey Questions 

 

Agree or 
Strongly 

Agree 
 

 
 

M 

 
 

SD 

 

Conceptions of Mathematics    

1.    Mathematics involves mostly facts and procedures that have to 
be learned. (R) 

35.8 3.8 1.2 

 2.     Students who really understand math will have a solution 
quickly. (R) 

 

44.6 4.1 1.1 

 

Perceptions of Learning Mathematics    

3.  Doing mathematics is a creative process. 66.3 4.7 .9 

4.     It is really important to have students work in groups in math 
class. 

58.0 4.5 1.0 

5.     Students need to construct their own understanding of a math 
concept. 

81.0 5.3 .7 

6.   When learning math, students benefit from making mistakes. 62.6 4.7 .8 
 
Math Mindset 

   

7.    Not everyone can learn to do math. (R) 76.1 5.0 1.2 
8.    To be honest, you can't really change how much math talent you 

have. (R) 
85.0 5.1 .8 

9.    In math classes in school, there will (NOT) always be some 
students who simply won't "get it." (R) 

44.7 4.1 1.3 

 
Professional Self-Image  

   

10.   I feel proud when I tell people I am a math teacher.  89.8 1.7 .7 

11.  Teaching mathematics is more than a job to me.  88.8 1.6 .7 
 
Math Teaching Self-Efficacy 

   

12.  I have enough training to deal with almost any learning 
problem. 

32.4 3.6 1.3 

13.  I am an expert in how students learn mathematics. 19.7 3.3 1.3 
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Appendix D 
Pilot Models 
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Appendix E 
Recruitment Letters 

 
Dear Colleague, 
 
You may recall that in late October of 2013 your district/region agreed to participate in research related my 
dissertation work at UND. At that time you forwarded a survey to math teachers for me, with the understanding 
there would be a follow-up survey in 18 months. This email contains a link to that follow-up survey. 
 
Thank you so much for agreeing to forward the email below. Please send it at your earliest convenience to any 
teacher who teaches math in any grade from 6 through 12.  If you are so inclined, you might add a note (in place 
of this blue one) encouraging them to help out a colleague with her research. Also, I would really appreciate it if 
you could copy me on the email you send. 
 
I am truly grateful for your support! By way of a small thank you, I will send you a report of the findings in 
January. 
 
Thanks again, so much, 
 
Cathy Williams 
 
SUBJECT LINE: Win $50 Gift Card -- Math Teacher Survey Link 
 
Dear North Dakota math teacher, 
 
My name is Cathy Williams. I am a former math teacher, currently employed as an instructional coach in Grand 
Forks, and I am working on my dissertation at the University of North Dakota. In the era of Common Core State 
Standards, I am interested to learn how math teachers view their math teaching experience and hope to gain 
your help in understanding this through a short survey. The anonymous survey contains 64 agreement-scale 
questions and should take approximately 10 minutes to complete. The survey will be available until May 7. 
 
Here are 3 reasons to participate: 
1) To have your name entered into 5 drawings for $50 Amazon gift cards. 
2) To have your district receive a summary of the findings. 
3) To contribute to the research on math teacher education. 
 
Here is the link to the survey:  https://und.qualtrics.com/SE/?SID=SV_dhtc5TGarN2AI4d 
 
I would be so grateful for your input! Thank you for helping me with this assignment. 
 
 
Cathy Williams 
University of North Dakota 
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Hi, ___________, 

 

In October 2013, you signed a letter agreeing to allow _____ math teachers to participate in my dissertation 

survey. I sent the survey to you two weeks ago in hopes that you would forward it to all 6-12 math teachers. In 

case you haven't had the opportunity to do so, I am sending this reminder. If you could send them email below 

and copy me on the mailing, I would be tremendously grateful for your support!  Let me know if you are not the 

person to whom I should be addressing this request. Have a great weekend! ~ Cathy Williams 
 
 
SUBJECT LINE: Win $50 Gift Card -- Math Teacher Survey Link 
 
Dear North Dakota math teacher, 
 
My name is Cathy Williams. I am a former math teacher, currently employed as an instructional coach in Grand 
Forks, and I am working on my dissertation at the University of North Dakota. In the era of Common Core State 
Standards, I am interested to learn how math teachers view their math teaching experience and hope to gain 
your help in understanding this through a short survey. The anonymous survey contains 64 agreement-scale 
questions and should take approximately 10 minutes to complete. The survey will be available until May 7. 
 
Here are 3 reasons to participate: 
1) To have your name entered into 5 drawings for $50 Amazon gift cards. 
2) To have your district receive a summary of the findings. 
3) To contribute to the research on math teacher education. 
 
Here is the link to the survey:    https://und.qualtrics.com/SE/?SID=SV_dhtc5TGarN2AI4d 
 
I would be so grateful for your input! Thank you for helping me with this assignment. 
 
 
Cathy Williams 
University of North Dakota 
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Hi, colleagues, 
 
I am in the midst of my dissertation work and find I need to increase my sample size. I wonder if you could do 
me a favor and send this short note and link to any mathematics teachers of grades 7-12 students in your area. I 
know the school year is drawing to a close, so I would be so grateful if you could send it at your earliest 
convenience.  
 
Thank you so much. I hope you all have a relaxing summer. ~ Cathy Williams 
 
 
SUBJECT: Math Teacher Survey - Win $50 Gift Card 
 
Dear math teacher,  
 
My name is Cathy Williams. I am a former math teacher currently at work on my dissertation at the University 
of North Dakota, and I am wondering if you would do me the huge favor of taking a survey. In the era of 
Common Core State Standards, I am interested to learn how math teachers view their math teaching experience. 
The anonymous survey contains 64 agreement -scale questions and should take approximately 10 minutes to 
complete. The survey will be available until June 15. Here are 3 reasons to participate:  
 
1) To have your name entered into 2 drawings for $50 Visa gift cards.  
2) To have your district receive a summary of the findings.  
3) To contribute to the research on math teacher education.  
 
Here is the link to the survey  
https://und.qualtrics.com/SE/?SID=SV_86ctP4jdsaTyldX  
 
I would be so grateful for your input! Thank you for helping me with this assignment.  
 
 
Cathy Williams  
Graduate Student 
University of North Dakota  
 
 
 
 
 
 
 
 
Friday, June 12, 2015 
 
Thanks to those of you who were able to forward my survey to teachers. For those of you who have not, you 
still have a few more days. I appreciate your support! 
 
Cathy Williams 
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