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Abstract

A major mission driver for space exploration is to minimise ground-

based human intervention and hence associated operations costs, thereby

maximising science data return. Future robotic exploration such as the

ESA ExoMars mission will require rovers to be equipped with greater

autonomy.

In line with such a requirement, a new autonomous system named Au-

tonomous Rock Science Analysis System (ARSAS) is proposed in this

thesis for the purpose of identifying and accessing scientific rocks dur-

ing exploration. ARSAS consists of three components: rock detection,

rock science value evaluation and related executive agent.

Three approaches are presented in the rock detection component. A

number of image processing and machine learning techniques have been

employed, including multispectral sampling, fuzzy-rough feature selec-

tion, classification, clustering, thresholding and saliency methods.

The rock science evaluation component is primed by a human planetary

geology expert. Some visual features are selected as the indicators of

some geological attributes and then a fuzzy expert system is used to

convert the rock attributes to corresponding science value. In contrast

with previous works, the proposed science evaluation mechanism is

more autonomous and geology-oriented.

The executive agent mainly consists of a pair of cameras and a robotic

arm, together with a series of algorithms for coordinate transforma-

tion. It serves as a platform to support the previous two components.

Experiments have been conducted on this platform to demonstrate the

usefulness, stability and repeatability of the proposed system.

The details of design, implementation and experimentation of all com-

ponents are elaborated in the thesis.
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Chapter 1

Introduction

Since the first satellite was launched by the Soviet Union in 1957, humans have

carried on space exploration for about 60 years. After the first satellite, a great

number of milestones have been reached, including first human spaceflight in 1961,

the first spacewalk in 1965, and the first Moon human landing in 1969 and first

space station in 1971. After successfully conquering the Moon many times, the

fervour of spacial exploration is shifting to the well-known but mysterious planet

— Mars.

1.1 General background to the research

Mars is the fourth planet from the Sun in the Solar system. It is often described

as the “Red Planet” because of the iron oxide prevalent on its surface. Although

there are many differences between Mars and Earth (A characteristic comparison

is exhibited in Table 1.1), Mars is the planet most similar to Earth in the Solar

system.

In addition, Mars is the second closest planet to Earth. Approximately every

26 months, Mars close approach will happen. In 2003, Mars reached a closest

distance to Earth of about 56 million kilometres. Due to both the environment

similarity and relatively close distance to Earth, Mars becomes the most preferable

planet to be explored.

1
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Table 1.1: Comparison between Mars and Earth

Mars Earth
Distance to Sun
(average)

2.279× 108 km 1.496× 108 km

Radius
(equatorial)

3397 km 6378 km

Volume 1.6318× 1011 km3 1.083× 1012 km3

Mass 6.4185× 1023 kg 5.9722× 1024 kg
Gravity
(surface)

3.711 m/s2 9.807 m/s2

Tilt of Axis 25.2◦ 23.5◦

Atmosphere
(composition)

Carbon dioxide (95.32%)
Nitrogen (2.7%)
Argon (1.6%)
Oxygen (0.13%)

Nitrogen (77%)
Oxygen (21%)
Argon (1%)
Carbon dioxide (0.038%)

Atmosphere
(pressure)

7.5 millibars 1013 millibars

Length of Day 24 hours 37 minutes 23 hours 56 minutes
Length of Year 687 Earth days 365 days
# of Satellites 2 (Phobos and Deimos) 1 (Moon)
Temperature
(average)

-63 ◦C 14 ◦C

1.1.1 Exploration history

The recorded history of Mars observation dates back to the era of the ancient

Egypt in the 2nd millennium BCE. Ancient Babylonian, Chinese, Indian, Greek

astronomers also have recorded the observation and approximate measurement of

Mars. In the 16th century, Johannes Kepler calculated a more accurate elliptic

orbit for Mars based on Nicolaus Kepler’s heliocentric model. The first telescopic

observation of Mars was done by Galileo Galilei in 1610. From then on, with

the improvement of telescopic technology, a series of researches have been done to

acquire Mars information, including refined mapping, approximate surface tem-

perature measurements and atmosphere component estimations.

During the recent decades, the exploration of Mars has entered the age of

spacecrafts. Compared to telescopic instruments, the spacecrafts can observe Mars

closer and in more detail thereby providing more accurate and useful information.

Recently, multiple robotic spacecrafts have been sent to explore Mars from its orbit
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Table 1.2: Chronology of Mars spacecraft exploration

Mission Country Year F O L R S
Marsnik 1 USSR 1960 •
Marsnik 2 USSR 1960 •
Sputnik 22 USSR 1962 •
Mars 1 USSR 1962 •
Sputnik 24 USSR 1962 •
Mariner 3 USA 1964 •
Mariner 4 USSR 1964 •
Zond 2 USSR 1964 •
Mariner 6 USA 1969 •
Mariner 7 USA 1969 •
Mariner 8 USA 1971 •
Kosmos 419 USA 1971 •
Mars 2 USSR 1971 • •
Mars 3 USSR 1971 • •
Mariner 9 USA 1971 •
Mars 4 USSR 1973 •
Mars 5 USSR 1973 •
Mars 6 USSR 1973 • •
Mars 7 USSR 1973 • •
Viking 1 USA 1975 • •
Viking 2 USA 1975 • •
Phobos 1 USSR 1988 • •
Phobos 2 USSR 1988 • •
Mars Observer USA 1992 •
Mars Global Surveyor USA 1996 •
Mars 96 USSR 1996 • •
Mars Pathfinder USA 1996 • •
Nozomi (Planet-B) Japan 1998 •
Mars Climate Orbiter USA 1998 •
Mars Polar Lander USA 1999 •
Mars Odyssey USA 2001 •
Mars Express Europe 2003 •
Beagle 2 UK 2003 •
MER-A Spirit USA 2003 •
MER-B Opportunity USA 2003 •
Mars Reconnaissance Orbiter USA 2005 •
Phoenix USA 2008 •
Fobos-Grunt Russia 2011 • •
Yinghuo-1 China 2011 •
MSL Curiosity USA 2011 •
Mars Orbiter Mission India 2013 •
Successful missions are highlighted in yellow. Mission type: F = Flyby, O = Or-
biter, L = Lander, R = Rover, S = Sample Return.
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to its surface. A timeline of the Mars spacecraft exploration is listed in Table 1.2.

It can be seen that, in the early stages, the spacecraft missions were limited to

flyby missions. Even so, due to the immature launching technology, flyby missions

were often unsuccessful. Before the 21st century, approximately 70% of space-

craft missions failed. Recently, as the technology improved, the success rate of

Mars spacecraft missions has been increasing. The Mars missions in 21st cen-

tury achieve a success rate more than 70%, which arouses worldwide enthusiasms

for Mars exploration. Nowadays, not only USA and Russia, but many countries

such as Europe (Germany, UK, etc.), China and India also have plans to under-

take spacecraft exploration on Mars. Partial future Mars exploration missions are

listed in Table 1.3.

Table 1.3: Future exploration missions (partial)

Mission Country Year F O L R S
InSight USA 2016 •
ExoMars Europe&Russia

2016 • •
2018 • •

Mangalyaan 2 India 2018 • •
Mars 2020 USA 2020 •
Mission type: F = Flyby, O = Orbiter, L = Lander, R = Rover, S = Sample
Return.

1.1.2 Purpose of exploration

There are many questions of the red planet that are still to be answered (some

questions are listed in Table 1.4), which attract exploration of the wild planet. As

can be seen, most questions are of particular relevance to life, which is the key

purpose of Mars exploration.

One way to search for life is to directly search for biosignatures that provide sci-

entific evidence of past or present life. Viking landers had three experiments [Klein,

1978] attempting to detect signs of metabolism. The result of one experiment was

positive but others showed negative results. Recently, reanalysis has been done on

the old data [Bianciardi et al., 2012; Biemann and Bada, 2011; Navarro-Gonzalez

et al., 2010], but the results still remain inconclusive. Currently, organic molecules,

a kind of biosignature, have been found by the Curiosity Rover during the drilling

process [Webster et al., 2015].

The other strategy for searching for life is to “follow the water”, given that



CHAPTER 1. INTRODUCTION 5

Table 1.4: Mars questions

Past

Was Mars suitable for life?
Has life ever existed on Mars?
Was the life on Mars the same as the life on Earth?
Did Earth life come from Mars?
When and why did Mars become a dry desert?
How much liquid water was there in the past?

Present

Is there any liquid water under Mars surface?
Is current Mars environment suitable for life?
Is there life on Mars now?
What is the condition to generate life?
What is the condition to support life?

Future
Is Mars a planet good enough for colonization?
Is there anything that can be done to make the planet more
habitable?

water is a fundamental element of life on Earth. Although the Phoenix rover de-

termined the existence of ice on the north pole of Mars, it is believed that no large

standing bodies of liquid water exist due to the low atmosphere pressure. However

in the past, Mars probably was wetter than today and has been warm enough

to sustain liquid water at the surface for a period of time [Kargel, 2004]. Hence,

the related researches focus on finding evidence of the existence of ancient liquid

water. Currently, the investigation of ancient liquid water mainly refers to geo-

logical concepts, looking for geological signs of past aqueous activity. Compared

with directly searching for biosignatures, the exploration associated with geology

depends less on specialised instruments. For example, only with on-board cam-

eras, the layered structure (see Fig. 1.1) can be captured which implies previous

sedimentary deposit caused by water. Unlike Earth, whose terrains have suffered

reformation and hence look different from their ancient form, Mars, on the other

hand, keeps its form more primitively. Such primitiveness facilitates the geological

exploration of Mars. Furthermore, geological information can provide guides to

the experiment of searching for biosignatures. For example, through geological

analysis, locations with higher possibility to be microbial habitat may be found,

by which the search for biosignatures will perhaps be improved.

The geological exploration refers to several existing missions. The Mars Explo-

ration Rover (MER) mission is the mission particularly designed for the geological

exploration [Squyres et al., 2003], with the scientific objectives as following [NASA,

2015b]:



CHAPTER 1. INTRODUCTION 6

• Search for and characterise a variety of rocks and soils that hold clues to

past water activity. In particular, samples sought will include those that

have minerals deposited by water-related processes such as precipitation,

evaporation, sedimentary cementation, or hydrothermal activity.

• Determine the distribution and composition of minerals, rocks, and soils

surrounding the landing sites.

• Determine what geologic processes have shaped the local terrain and influ-

enced the chemistry. Such processes could include water or wind erosion,

sedimentation, hydrothermal mechanisms, volcanism, and cratering.

• Search for iron-containing minerals, identify and quantify relative amounts

of specific mineral types that contain water or were formed in water, such as

iron-bearing carbonates.

• Characterise the mineralogy and textures of rocks and soils and determine

the processes that created them.

• Search for geological clues to the environmental conditions that existed when

liquid water was present. Assess whether those environments were conducive

to life.

Figure 1.1: Layering structure detected by cameras of Mars rovers. Left is the
image captured by MER Spirit Pancam; Right is the image captured by MSL
MastCam. Images courtesy of NASA/JPL.



CHAPTER 1. INTRODUCTION 7

In addition, the Curiosity Rover also has some geological and geochemical

objectives [NASA, 2015a]:

• Investigate the chemical, isotopic, and mineralogical composition of the Mar-

tian surface and near-surface geological materials.

• Interpret the processes that have formed and modified rocks and soils.

It can be seen that geological information has been regarded as a key theme

of Mars exploration. Many future Mars exploration missions, especially the rover-

based exploration such as ExoMars [Vago, 2010], involve geological exploration.

1.1.3 Rover-based exploration

Recently, with significant technological advancements, Mars exploration missions

with a rover become mainstream. Rovers can carry sophisticated science instru-

ments which can be applied to detect biosignatures. In addition, the close distance

to Mars surface allows them to observe geological features in more detail. Unlike

orbiter units which can only gain geological features such as “volcano”, “canyon”

and “channel”, rovers are subtle observers, capturing more informative features

such as “layered cliff”, “soil pore” or even “meteorite”. Compared with landers

which can only perform exploration surrounding the landing location, rovers can

move around Mars to explore different sites thereby acquiring more comprehensive

information. In addition, as it is similar to a real human exploration, a rover may

discover latent hazards that will be encountered by future human missions.

Generally, a rover consists of a rover body, a computer, wheels, cameras, a

robotic arm, science instruments, antennas, energy units and other auxiliary parts.

The schematic structures of MER and MSL rovers are illustrated in Fig. 1.2.

• A rover body is a “box” with a strong, outer layer which protects the rover

computer, electronics and some science instruments and keep them warm.

• The computer, the rover’s “brain”, processes the commands given by the

Earth control panel, monitoring the status of the rover, controlling and ma-

nipulating the movement of other parts.

• Wheels provide the mobility of the rover. Like the MER and MSL rovers, a

general rover will have six wheels, each with its own individual motor. Such

a design is to support a special suspension system to keep balance.
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Figure 1.2: Drawings of Mars rover structures. Left: Mars Exploration Rover
(MER) [Crisp et al., 2003], Right: Mars Science Laboratory (MSL) [Grotzinger
et al., 2012]. Image courtesy of NASA/JPL.

• Cameras are the “eyes” of the rover. Different cameras have different func-

tions. Commonly, a rover will have panoramic cameras for capturing colour

or multispectral images of interesting science targets, stereo navigation cam-

eras for generating 3D imagery to guide the rover movement and hazard

cameras for avoiding potential hazards. Cameras can be regarded as science

instruments to some extent. Particularly, the Curiosity rover was equipped

with a ChemCam, which can fire a laser and analyse the elemental compo-

sition of vaporised materials.

• The robot arm of a rover holds some science instruments which are used

in a closeup or contact condition. The flexibility of the arm can maneuver

the instruments into specified positions and gestures for accurate analysis.

Moreover, some devices such as drills and grinders for sample preparation

functions will be also mounted on the end of the arm.

• The science instruments play key roles in Mars exploration. It can be said

that a rover’s other parts are for the purpose of supporting and serving

the deployment of science instruments. The various on-board instruments

are designed for different scientific objectives. A well-known instrument is

Alpha particle X-ray spectrometre (APXS) [Rieder et al., 2003], providing

the capability to determine the abundance of specific elements. Another

famous instrument, the Sample Analysis at Mars (SAM) [Mahaffy et al.,
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2013] carried by the Curiosity rover, can investigate the elements related to

life.

• A rover’s antennas serve as both its “mouth” and “ears”, sending the Mars

information to Earth and receiving command update from Earth. Generally,

multiple antennas will be equipped for back-up options.

• Energy units provide the power required by the rover to perform any oper-

ation. Previously, the energy units of rovers were solar arrays, which will

still be adopted by many future missions. However recently, the MSL rover

has carried a radioisotope power system which can provide more persistent,

durable and powerful energy.

Due to good mobility and also carrying sophisticated science instruments, rover

exploration is the most suitable and preferable way to unveil the mysterious planet,

both biologically and geologically. Hence, in this thesis, the main discussion focuses

on rover-based exploration.

1.2 Need for autonomy

Although manned missions to Mars have been under study, they are still debat-

able due to reasons such as unrealisation of return process, requirement of feeding,

warming and recycling, risk of contamination and partly cost. Currently, rovers

have dominated Mars exploration as they can simulate human exploration in many

aspects. However, an essential difference between manned exploration and rover

exploration is that rover cannot “think” as humans can do. A rover cannot au-

tonomously decide which action it should do, and hence needs to receive human’s

commands to perform operations. Without the intervention of human, a rover

can hardly do any exploration. Currently, technology has reached a level where

autonomy is becoming feasible. Thus, the autonomy in rover exploration has been

presented to alleviate the manned dependency and to make the rovers’ action more

similar to that of humans.

Particularly, the European Cooperation for Space Standardisation (ECSS) has

defined robotic autonomy within a planetary exploration context (see Table 1.5).

These levels can also be regarded as a standard to assess autonomous systems for

rover exploration.
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Table 1.5: ECSS autonomy levels for mission nominal operations execution

Level Description Functions
E1 Mission execution under

ground control. Limited
on-board capability for safety
issue.

Real-time control from ground
for nominal operation.
Execution of time-tagged
commands for safety issues.

E2 Execution of pre-planned,
ground-defined, mission
operations on-board.

Capability to store time-based
commands in an on-board
scheduler.

E3 Execution of adaptive mission
operations on-board.

Event-based autonomous
operations. Execution of
on-board operations control
procedures.

E4 Execution of goal-orientated
mission operations on-board.

Goal-oriented mission
replanning.

1.2.1 Why Mars rover exploration needs autonomy

Autonomy, if safe enough, is more desirable in Mars rover exploration than in

normal robotic exploration because of the problems caused by the distance between

Mars and Earth. The long distance generates a large communication delay. Even

if the signals travel at the speed of light between Mars and Earth, the travel time

will take 3–22 minutes. Thus, it is impossible to execute a real-time rover control.

The large transmission time is by no means the only problem of Mars-Earth

communication. A rover mission will also suffer the challenges of limited commu-

nication windows and down-link bandwidth. For example, the MSL rover (Cu-

riosity), currently the most advanced rover, has two communication methods (see

Fig. 1.3): direct-to-Earth and orbiter relay, both of which require the Deep Space

Network (DSN) as the data receiver. The data rate of direct-to-Earth is very lim-

ited, from 500 bits per second to about 30000 bits per second. On the other hand,

the data rate to Mars Reconnaissance Orbiter can be as high as 2 million bits per

second.

In addition, both communication methods will be limited by communication

timing. In the case of orbiter relay communication, the communication only occurs

when the orbiter passes over the rover for about eight minutes at a time per sol. In

that time, between 100 and 250 megabits of data can be uploaded. Such amount

of data will take up to 20 hours through the direct-to-Earth method whose com-

munication time is also limited. The rover can only transmit direct-to-Earth for a
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Mission 
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Figure 1.3: The data transmission ways of the Curiosity rover: to Earth directly
or via three relay satellites in Mars orbit. Both ways need the DSN as the receiver.
Image courtesy of NASA.

few hours a day due to power limitations, conflicts with other planned activities or

uncommunicable orientation of Mars. Thus, even though maximum transmission

is made, only about 250 megabits of data can be transmitted to Earth per sol.

Not only the amount of data, the interval between two communications will

also restrict the rover’s activities. If a rover is fully controlled by an Earth-bound

panel (ground scientists and engineers), the procedure of target analysis is similar

to Fig. 1.4. Images and data recorded by the rover need to be transmitted back to

Earth where scientists perform analysis and upload a new set of commands for the

rover to follow. As can be seen, to gain the final science result of only one analysis,

three days will be spent to guarantee all activities are under supervision in safe

range. The rover can only be at a stand for a sol even though the data required

for the commands is less than the bandwidth. Generally, data can be obtained
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Figure 1.4: Typical communication procedure for a target analysis
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far quicker than it can be successfully transmitted to Earth. Thus, pauses are

introduced inevitably when a command sequence has been completed and the

data must be processed by Earth scientists and engineers before the next move

can be decided. Both the pauses and the delays lead to the inefficiency of Mars

exploration.

With increased autonomy, some Earth-bound decisions could be delegated to

the rover, hence reducing the requirements of communication between the ground

control panel and rovers. If full autonomy (E4 in Table 1.5) in rover exploration

is fulfilled, no input from Earth except the list of goals is necessary and hence

transmission bandwidth can be saved. Also some intermediate data such as work-

flow images need not be down-linked at all. Thus, the limited bandwidth can be

mostly used for transmitting significant data thereby maximising science return.

Even if the autonomy level cannot reach E4, giving a rover some rudimentary

autonomous capabilities can speed up the process of exploration and hence improve

the efficiency of exploration.

Another benefit of autonomy is reducing the degree of dependence on Earth

operators. If autonomous systems are applied, the workload of ground-based staff

such as scientists and engineers would be reduced. They would not need to work

24× 7, waiting for responses from rovers and designing new plans “immediately”

as an autonomous system does. Moreover, in the case of an expeditious rover

driving site to site, scientists cannot perform detailed examination of all terrain

targets and thus may miss some targets with high scientific values. Applying

autonomous systems to detect science targets can reduce the probability of the

failure of capturing those opportunistic objects.

1.2.2 Current stage of rover autonomy

Although full autonomy has not been achieved and cannot be achieved in a short

period, a lot of efforts have been made to develop autonomous systems for rover

exploration. Prior to regular exploration, during the entry, descent and land-

ing (EDL) phase of a rover, some autonomous systems have been applied. In

some periods of the EDL phase, full autonomy is required since the round-trip

time for communications will be much longer than the time between entering the

atmosphere and landing [Maimone et al., 2007]. For example, the Descent Im-

age Motion Estimation System (DIMES) [Cheng et al., 2005] was adopted in the

EDL stage of the MER mission for horizontal velocity estimation during the last
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2000 meters, thereby guaranteeing the safe landing. In the EDL phase of the

MSL rover, the onboard computer executed an autonomous system to perform

all navigation by integrating acceleration and attitude data provide by an Inertial

Measurement Unit (IMU) after the Cruise Stage Separation (CSS) [Prakash et al.,

2008; Way et al., 2007]. Autonomous navigation systems have also been used in

general exploration. As for the MER rovers, the onboard system used the Sum

of Absolute Difference (SAD) metric to generate full 3D measurements of points

from stereo images [Goldberg et al., 2002]. Then from the 3D point cloud, an au-

tonomous system called Grid-based Estimation of Surface Traversability Applied

to Local Terrain (GESTALT) was employed to detect geometric hazards around

the rover. Through the output of GESTALT, the rover can autonomously select

a safe and short path towards the specified target position [Carsten et al., 2007].

Some other technology such as Visual Odometry also facilitates autonomous navi-

gation/driving of the MER rovers [Biesiadecki and Maimone, 2006]. The Curiosity

rover also carried autonomous navigation system similar to the MER’s to allow its

autonomous driving [Webster, 2015].

After autonomous navigation systems paving the way, autonomous science sys-

tems can be used. Autonomous systems for science are another important branch

of autonomy in Mars rover exploration.The objective of an autonomous science

system is to search for interesting targets with high scientific value and collect

scientific information about them. Although there are some autonomous systems

designed for analysing the data gained by other instruments [Gazis and Roush,

2001], most autonomy studies for Mars rovers focus on the image data captured by

onboard cameras, including feature detection (dust devil detection [Castano et al.,

2007a], rock detection [Song, 2008; Thompson and Castano, 2007], layering detec-

tion [Gulick et al., 2001], life detection [Wettergreen et al., 2005]), novelty detec-

tion [Thompson et al., 2006] and feature representation (rock classification [Dun-

lop, 2006; Pedersen, 2000], surface classification [Bekker et al., 2014; Brooks and

Iagnemma, 2007; Shang and Barnes, 2013], geological analysis [Thompson et al.,

2005b]). Specifically, these studies often focus on isolated or float rocks. In addi-

tion, for the sample requirements of the Mars Sample Return project [MEPAG,

2008], rocks are also selected as high-priority targets (see Table. 1.6).

Rocks are obvious targets on Mars surface and hence easy to approach. In

contrast to another widespread feature—regolith, rocks can maintain geological

information with higher science value. Rocks are relatively solid and hence can

keep their structures (shapes) and composition for thousands of years. By inves-
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Table 1.6: Summary of sample types needing to be collected for the sample return
project [MEPAG, 2008]

Note: Priorities are expressed as relative High, Medium, and Low.

tigating the shapes of rocks, the ancient configuration of Mars may be derived.

In addition, more detailed biological and geological information can be obtained

through the deeper analysis of rock composition, especially the composition of

rock interiors. Moreover, unlike soil which is easily spread, rocks can reflect more

local information. Due to the pervasiveness and relatively high science value of

rocks, many autonomous science systems have been built with the emphasis on

rock science evaluation. Hence, four existing autonomous rock science systems are

specifically reviewed in Chapter 2. Morevover, rock science evaluation is also a

key issue discussed in this thesis.

As well as navigation and science, studies have been done about other appli-

cations of autonomous system such as instrument placement [Backes et al., 2005;

Huntsberger et al., 2005; Pedersen et al., 2005], target rock tracking [Kim et al.,

2009; Maimone et al., 1999], graspability analysis [Cadapan, 1997], touchability

analysis [Gui et al., 2013], autonomous drilling [Helmick et al., 2013] and even

system architecture [Volpe et al., 2001].
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1.3 Motivation and objectives

As mentioned above, in the current modality of Mars exploration, geology plays a

vital role and rocks are the most important targets. Onboard cameras and science

instruments mounted on a robotic arm are the main tool to investigate rocks.

Crucially, like the emphasis of other studies, autonomy becomes the key issue in

Mars exploration. Therefore, it is important to build an autonomous system

which links computer vision, geological knowledge and robotics together.

A new system is proposed which has a similar structure to the Autonomous

Science Target Identification and Acquisition (ASTIA) system1. Compared to

ASTIA, the proposed system has better autonomous science capabilities. For

reference, the proposed system is called Autonomous Rock Science Analysis System

(ARSAS). The architecture of ARSAS is illustrated in Fig. 1.5.

Like most classic autonomous systems related to Mars exploration, the pro-

posed system mainly contains three components: rock detection, rock science value

evaluation and executive agent. When all three components have been integrated

together, it can reach E3 autonomy level (see Table 1.5), which allows a rover to

execute an event (i.e. searching for rocks with high science values and accessing

them) autonomously.

1.4 Main contributions

As stated before, the objective of this thesis is to establish an autonomous system

with a higher autonomy level. In following chapters, a number of techniques

have been used for achieving such an objective, which can be regarded as the key

contributions of this thesis. Specifically, three different rock detection methods

have been introduced and a novel rock evaluation mechanism has been proposed

and implemented. Compared to previous systems, the proposed system obtains

better rock detection performance and evaluates rock science value in a more

geology-oriented way.

1Brief descriptions of this system are presented in Section 2.4. More details can be found
in [Barnes et al., 2009].
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Figure 1.5: ARSAS architecture. The rock detection part is discussed in Chapter 3.
The rock science value evaluation issue is discussed in Chapter 4. Camera agent
and arm agent are both included in the executive agent part which discussed in
Chapter 5.

1.5 Thesis outline

Corresponding to the three components of the proposed system, the rock detection,

science value evaluation and execution agent are introduced in different chapters.

In each component, several novel algorithms are presented. Finally, these three

components are integrated together. A simulated experimental environment has

been established in which demonstrating experiments have been conducted to show
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how the integrated system works.

The thesis has been divided into seven chapters, which are organised as follows:

Chapter 2: Autonomous Science System Review This chapter provides an

introduction of four existing autonomous science systems. The content of system

architecture and corresponding algorithms is reviewed.

Chapter 3: Rock Detection This chapter presents three kinds of rock de-

tection approaches. The first approach utilizes a series of machine learning tech-

niques to address the multispectral data. The second approach contains several

two-threshold thresholding methods, separating the relatively brighter and darker

regions of rock from the monotonous background. The third approach applies

some methods in saliency aspects, detecting rocks in a bottom-up way.

Chapter 4: Autonomous Rock Science Evaluation This chapter proposes

a methodology for converting image data to science. This methodology bridges the

gap between analytic geology representation and computerized visual processing.

A number of image processing algorithms such as Canny operator, SIFT corner

and colour space transformation are used for generating visual features from which

some features are chosen as the indicators of geological attributes. Based on the

knowledge and experience of a geologist, a fuzzy expert system is designed to

calculate science values of rocks through their geological attribute values.

Chapter 5: Executive Agent This chapter describes a platform whose struc-

ture is similar to a partial rover. This platform provides the hardware system

as well as corresponding control system to support the rock detection and rock

science value evaluation components.

Chapter 6: Experiments and Demonstrations This chapter integrates the

components described in the preceding three chapters. Experiments have been

done to demonstrate the whole procedure of ARSAS from initial image data ac-

quisition to final arm manipulation.

Chapter 7: Conclusions This chapter summarises the main contributions

made by the thesis, together with a discussion of future research. Both general

issues and immediately achievable tasks are considered.



Chapter 2

Autonomous Science System

Review

In this chapter, four autonomous systems for Mars rover exploration are reviewed

with emphasis on autonomous science of rocks, from which many lessons can be

learnt for developing our system. The four systems are: Onboard Autonomous

Science Investigation System (OASIS), Autonomous Exploration for Gathering In-

creased Science (AEGIS), CREST Autonomous Robotic Scientist and Autonomous

Science Target Identification and Acquisition (ASTIA). In particular, the ASTIA

system is a prototype of the autonomous system proposed in this thesis.

2.1 OASIS

The Onboard Autonomous Science Investigation System (OASIS) [Castano et al.,

2007a,b] has been developed to endow a rover with the capability to identify and

react to serendipitous science opportunities. These science opportunities can in-

clude dust devils and clouds but mainly refer to rocks. The framework of OASIS

is illustrated in Fig. 2.1.

It can be seen that, OASIS mainly consists of three components:

• Feature Extraction: This component concentrates on extracting visual

features from located rocks.

• Data Analysis: This component uses the extracted features to determine

scientific value of rocks and scenes.

19



CHAPTER 2. AUTONOMOUS SCIENCE SYSTEM REVIEW 20

Novelty
Target

Signature
Optimize Repair

Execution

Rock

Detection

Visual

Texture
ShapeAlbedo

Vision Locomotion

Path

Planning
Navigation Estimation

…

Control / Functional Layer
(provided by CLARAty)

Planning / Scheduling / Execution

Rock

Sampling

Data Analysis

Feature Extraction

CommandsRock Features

Data

Science

Alerts

State/Resource

Updates

Science

Goals

 

Figure 2.1: Framework of the Onboard Autonomous Science Investigation System
(OASIS). This diagram shows how the decision-making capabilities interact within
OASIS (yellow boxes) and how OASIS interacts with low-level robotic control
software (gray box). Figure from [Estlin et al., 2007].

• Planning/Scheduling/Execution: This component dynamically modifies

the rover’s plan to accommodate new observations.

The system firstly identifies rocks from collected images of the surrounding

terrain using an algorithm called rockfinder [Thompson and Castano, 2007]. The

position of rocks can be measured and translated into a frame relative to the centre

of the rover. After detection and location, rock features/properties (geological

attributes) are extracted for further analysis. The properties currently estimated

by OASIS include shape, texture and albedo. The albedo of a rock is used as

an indicator of the reflectance which implies the composition of the rock. OASIS

measures albedo by computing the average gray-scale value of the rock pixels

segmented from the rock image. Identified texture information can be used to

gather information about rocks’ history and composition. OASIS utilizes Gabor

filters to represent the visual texture of observed rocks [Castano et al., 1999].

The shapes of rocks may provide knowledge about the provenance (source and

formation of rocks) and about the environmental conditions that rocks have been
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exposed to. The eccentricity of the fit ellipse, as well as the error, is computed to

describe the shape of rocks [Fox et al., 2002].

In the property analysis and prioritisation module, the scientific values of rocks

are assessed using the extracted features. Three different techniques have been

used to prioritise rocks. The first technique, called “key target signature”, tries to

recognise a pre-specified rock signature which has been identified by the science

team as data of high scientific value. There are two ways to set the rock signatures.

In the first method, the importance of specific feature/property values is directly

set by scientists through which the science value of rock can be calculated. In the

second way, the target signature is specified by selecting an identified rock with

interesting properties and hence with high science value. Thus, rocks which resem-

ble this particular rock will be given a high priority. The second technique, novelty

detection, is for identifying the unusual signatures that do not conform to the sta-

tistical norm for the region. Such a technique can detect uncommon rocks (e.g.

meteorites) which may hold extremely high science values. The third technology,

known as representative sampling, prioritises rocks for the aim of understanding

the region where the rover traversed. The representative rocks are selected for

comprehensive analysis of the whole region rather than the rocks themselves. The

prioritisation results generated from all three techniques can be used as the input

of Planning/Scheduling model.

The planning and scheduling module enables dynamic modification of the cur-

rent rover command sequence (or plan) to accommodate new science requests gen-

erated from the data analysis module, the content of which surpasses the subject

of this thesis and hence no more discussion is provided.

The procedure of OASIS is instructive to subsequent researches. It is designed

as a full autonomous system and shows impressive preliminary test results [Castano

et al., 2005]. From many other autonomous systems for rover-based planetary

exploration, the trace of OASIS can be found.

2.2 AEGIS

The Autonomous Exploration for Gathering Increased Science (AEGIS) system

was originally developed as a part of OASIS, providing automated targeting ca-

pability for remote sensing instruments (e.g. Pancam and ChemCam) for Mars

exploration [Estlin et al., 2009]. It has been operated on the MER Opportunity

rover and the MSL Curiosity rover [Estlin et al., 2012, 2014]. Unlike OASIS, which
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tries to build a fully integrated platform, AEGIS concentrates on the acquisition

of interesting rocks by Pancam. The framework of AEGIS is shown in Fig. 2.2. It

can be seen that, as a successor, AEGIS has many components similar to OASIS

such as target detection, feature extraction, and target prioritisation.

Figure 2.2: Framework of AEGIS system. This series of steps has been executed
onboard the MER Opportunity rover. Figure from [Estlin et al., 2009].

In terms of the rock detection component in AEGIS, an algorithm called

ROCKSTER was used. This algorithm firstly identifies raw edge segments us-

ing a procedure similar to Canny edge detection [Canny, 1986]. Then a gap-filling

mechanism is applied to join nearby contour edge fragments. Finally, the edge frag-

ments are regrouped into coherent contours through a background flood method.

Once candidate rocks are identified, their albedo, shape and size features are

extracted. With regards to albedo features, not only the mean of the grayscale

value but also the moments of the pixel intensity distribution including variance,

skewness and kurtosis are included. As to shape feature extraction, identical to

OASIS, the eccentricity of a fitted ellipse as well as fitting error are calculated.

Particularly, AEGIS extracts the size information of rocks while OASIS doesn’t.
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For one rock target, the size is represented by the pixel area, the radius of the

largest inscribed circle and the lengths of major and minor axes of the fitting

ellipse.

For the target prioritisation component, AEGIS applies a strategy similar to

first method of the “target signature” in OASIS: stipulating the importance of

each particular feature by a geological expert. In particular, AEGIS can give

each candidate rock target a score corresponding to a weighted sum of up to two

features. Supposing the two features are x1 and x2, the final score f can be

computed as:

f = α1x1 + βα2x2, αi ∈ {−1, 1}, β ∈ [0, 1] (2.1)

where α1 and α2 are the coefficients to control “absolute” importance of the two

features while β is to describe the comparative importance which can be set as 0

in the case only using one feature.

After the best scoring candidate rock has been determined, AEGIS points

the remote sensing instrument at the target to acquire more detailed data (e.g.

multispectral data).

AEGIS is also a typical autonomous system dedicated to a specified mission.

It is the prototype of many other autonomous targeting systems such as the Au-

tomatic Pointing and Image Capture (APIC) system [Pugh et al., 2010b].

2.3 CREST autonomous robotic scientist

The primary task of the CREST robotic scientist is to demonstrate opportunistic

science in a representative ExoMars [Vago et al., 2006; Van Winnendael et al.,

2005] rover environment. The system attempts to establish an initial scientific

methodology for the autonomous science assessment and planning based on hu-

man terrestrial field practice [Shaw et al., 2007; Woods et al., 2008a,b]. The

prototype framework of the CREST system is shown in Fig. 2.3. As can be seen,

the system mainly consists of three components: Timeline Validation, Control and

Repair (TVCR), Science Assessment and Response Agent (SARA) and Arm Agent

and Perception Interface (AAPI).

TVCR is the autonomous planning component in CREST. Similar to the plan-

ning and scheduling of OASIS, TVCR is developed to support goal-based arbitra-

tion and time line replanning to response to opportunistic science [Woods et al.,
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Figure 2.3: Framework of the CREST system (On-board part). The original image
can be found in [Woods et al., 2008a].

2006]. AAPI is the hardware executive component, manipulating the rover instru-

ments such as camera, pan and tilt unit (PTU), chassis and robotic arm. SARA

is the key component of CREST system which is responsible for the identification

and assessment of science targets and hence more attention is paid to it.

SARA is developed on an underlying scientific scoring framework outlined in

[Pullan, 2006] (also can be found in [Pugh, 2010]). In the framework, a planetary

geology domain expert enumerates some criteria to deconstruct the process of the

rock assessment by humans into relevant attribute analysis. Thus, in contrast to

the science component of OASIS and AEGIS which consider the rock attributes
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in a computer vision view, SARA evaluates the science values of rocks in a more

geology-oriented manner. The expert asserts that the comprehensive assessment

of rocks can be broken down into three geological aspects (see Fig. 2.4): Struc-

ture (macroscopic geometric shape, e.g. bedding type and scale), Texture (surface

characteristic, e.g. luster and relief) and Composition (mineralogy appearance, e.g.

albedo and colour).
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Figure 2.4: Architecture of the SARA module in CREST system. The original
image can be found in [Woods et al., 2008a].

In each aspect, geological attributes/features are defined for analysing the sci-

ence value of rocks. A set of rules [Pugh, 2010] based on expert knowledge is

established, by which the science score of a rock in each geological aspect can be

calculated. Finally, combining the scores of all three aspects of rock features to-

gether, the numerical Science Value Score (SVS) of a rock can be estimated by a
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contextual model [Woods et al., 2009] which can be simply expressed as:

SVS =
(

∑

As +
∑

At +
∑

Ac + Ax

)

·Q · B (2.2)

where
∑

As is the overall structural attribute score,
∑

At is the overall textural

attribute score and
∑

Ac is the overall compositional attribute score. Specifically,

Ax is a composite score which can be given to a composite group of related at-

tributes which shows little value when they are evaluated separately but produce

a desirable target when they are combined together. Q is a quality factor, which

is used to represent the quality of the image or an identified target. This value is

generally smaller than 1 to degrade the science value while acquiring images with

low quality. B is a bias factor for adjusting the value of certain kinds of targets.

For example, if the system has already identified a basalt rock with a very high

priority, the basalt rocks found in future exploration will be given lower scores.

CREST autonomous robotic scientist provides the concept to develop an au-

tonomous science system where the geological knowledge plays a more important

role. However, as that duration and budget for developing the system is limited

and that the domain of geological knowledge is too broad, the system has not been

developed completely. However, the mechanism which analyses rock science value

in an analytic geological way is heuristic. In addition, through the limited results

of the system [Woods et al., 2009], it can be found that such a mechanism is very

promising.

2.4 ASTIA

Autonomous Science Target Identification and Acquisition (ASTIA) [Barnes et al.,

2009] is a system designed for the purpose of autonomous science target (rock)

identification surface and sample acquisition with the framework shown in Fig. 2.5.

The ASTIA framework resembles previous reviewed autonomous systems, espe-

cially the CREST autonomous scientist, consisting of the components of rock iden-

tification (Rock Ident), science assessment (KSTIS) and executive agents (pan/tilt

camera agent, arm agent, etc.). The rock identification component detects rocks

in images using a region growing algorithm. The executive agents build some 3D

models to map the science targets’ positions relative to the rover and calculate

the kinematics of the onboard instruments (camera and arm), allowing them to

access the science targets. Here, we present more details on the science mod-
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Figure 2.5: Schematic diagram of the ASTIA framework. Figure from [Barnes
et al., 2009].

ule Knowledge-based Science Target Identification System (KSTIS) [Barnes et al.,

2009; Pugh et al., 2010a], whose architecture is shown in Fig. 2.6.

It can be seen that the architecture of KSTIS is derived from the SARA system

which classifies rock features/attributes into three categories: Structure, Texture

and Composition. Specifically, unlike SARA which uses a contextual model to

combine the science values of geological attributes, fuzzy logic [Zadeh, 1965] has

been introduced into KSTIS. In other words, a fuzzy expert system has been

established for the assessment of the science values of rocks. The introduction of

the fuzzy concept not only makes the representation of combining features closer to

the way that a real geologist makes a judgement but also reduces the uncertainty
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Figure 2.6: Architecture of KSTIS. Figure from [Pugh et al., 2010a].

encountered during target assessment. In the first version of KSTIS [Barnes et al.,

2009], the inputs of the fuzzy system are albedo, colour, whiteness, roundness,

surface, sphericalness, disk-likeness, rod-type, scale, stratification, curviness and

lenticularity. The membership functions and relative rules have been designed in

collaboration with a geological expert, through which the values of input features

can be transferred to a final numerical science.

However, due to the difficulty of extracting the geological features/attributes

information from images, only four of the twelve input parameters were calcu-

lated automatically (albedo, whiteness, colour and roundness) while the other

eight needed humans to score them. Thus, KSTIS cannot be implemented with-

out human interaction. Such a shortcoming has extended to the later version

of KSTIS [Pugh et al., 2010a]. A tradeoff has been made which maintains the

architecture of the fuzzy expert system (membership functions and rules) but re-

ceives inputs all provided by human being, thereby degrading the original system
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for autonomous planetary exploration to an Earth-based tool for facilitating the

assessment of rocks [Pugh, 2010].

2.5 Summary

This chapter has presented a comprehensive review of four existing autonomous

science systems. A number of techniques1 pertaining to image processing and ma-

chine learning have been involved into these systems, including edge detection,

histogram, fuzzy system, etc. From the systems reviewed, much can be learned

about how to develop an autonomous rock science system. The underlying archi-

tecture of the reviewed systems deeply inspire the framework development of our

proposed system.

On the other hand, the systems presented above also have their shortcomings.

For example, in OASIS and AEGIS, some visual features are arbitrarily specified to

represent geological attributes. To overcome the shortcomings of previous systems,

amelioration has been made in the proposed system whose details are described in

the following chapters.

1More techniques which are used to detect rocks and calculate rock science value but have
not been used in any relatively integrated system are reviewed in Chapters 3 and 4 where they
are relevant.



Chapter 3

Rock Detection

3.1 Introduction

It can be seen that, in many previous autonomous systems for rover-based plan-

etary exploration, rocks are regarded as the most important science target. The

rock detection is always the fundamental step, paving ways for subsequent com-

ponents. Currently, the most common way to detect rocks is to identify rocks in

images. Hence, the rock detection concept discussed in this chapter refers to the

rock detection in images.

Rock detection faces many challenges. Firstly, “rock” is not a clearly defined

object. Rocks were formed under different conditions and by different geological

process. Sedimentary rocks and igneous rocks can be defined as “rocks” although

they may look extremely different in shape, texture and colour. In addition, from

large boulders to small pebbles, even tiny crumbs can be considered as rocks as

well. Such a “vague” definition makes it difficult to label ground truth for rock

detection. Moreover, even a given rock will look different under different light

conditions. Different illuminations and directions of light will cause different shade

and shadow. In addition, rocks will always be covered partially by sand/soil or

occluded by other rocks, increasing the difficulty of rock detection as well.

Although challenges exist, many image processing methods have been proposed

for identifying rocks in images. Here, some rock detection methods are reviewed,

whether for planetary exploration or for non-planetary objectives.

The most straightforward rock detection methods are based on grayscale inten-

sity thresholding [Castano et al., 2004; Crida and De Jager, 1994; Gor et al., 2001;

30
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Mkwelo, 2004]. The distribution of intensity such as variance provides informa-

tion to recognise rocks as well [Thompson et al., 2005b]. RGB colour, which can

be regarded as 3-channel grayscale intensity, provides more information in rock

recognition [Pedersen, 2000; Shaukat et al., 2013; Wagner et al., 2001]. In addi-

tion, derived colour features such as hue and saturation have also been applied for

detecting rocks [Pan et al., 2013; Thompson et al., 2005a].

Edge information is another important part of features for rock detection.

Many rock detection methods regard edges as the key feature to segment rocks [Gui

et al., 2012; Song, 2008], including the detection algorithms in OASIS and AEGIS

systems [Castano et al., 2007a; Estlin et al., 2009]. Unlike intensity information

which describes rocks directly, the edge-based methods attempt to find the bound-

aries between rocks and background. The pixels enveloped by the boundaries will

be labeled as rocks. Generally, the initially detected edges are discontinuous and

hence extra algorithms are needed to link the edge fragments [Estlin et al., 2009;

Gui, 2015].

Texture has also been used to generate the features in rock detection widely. In-

deed, texture can describe rock surface more explicitly. The texture features that

have been used for rock recognition include spatial frequency [Kachanuban and

Udomhunsakul, 2007], Gabor filter features [Castano et al., 1999; Lepistö et al.,

2003a], fractal dimension [Niekum, 2005] and gray-level co-occurrence matrix [Lep-

istö et al., 2003b; Partio et al., 2002; Wang, 1995].

Region-based methods have achieved good performance in rock detection. The

related algorithms involve superpixel [Dunlop et al., 2007; Gong and Liu, 2012],

region growing [Pugh et al., 2010a], and the watershed method [Farfán et al., 2001].

Geometry can be applied to determine the position of rocks in image. For

example, [Gulick et al., 2001] proposed a rock detection method that need not

detect rocks in an image directly but detects the shadows of rocks firstly. Once

the shadows have been identified, they can be used to infer the locations of rock

candidates with the time-of-day information. Another type of algorithm for de-

tecting rocks is to extract 3D information through stereo images. Such method

is especially suitable for searching for relatively large rocks [Di et al., 2013; Gor

et al., 2001; Li et al., 2007; Pedersen, 2002].

Machine learning techniques have played an important role in rock detection,

which can exploit the features mentioned above to generate better detection re-

sults. The machine learning methods used for rock detection include k-nearest

neighbour (KNN) [Lepistö et al., 2006], K-means [Fink et al., 2008; Song and Shan,
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2006], neural network [Gilmore et al., 2000], Bayesian belief network [Niekum,

2005; Pedersen, 2000], fuzzy-rough methods [Shang and Barnes, 2013; Shang et al.,

2009], classifier combination [L. Lepistö et al., 2005] and support vector ma-

chine (SVM) [Shang and Barnes, 2010; Song, 2008; Thompson et al., 2005b].

Taking the previous works as reference, three new methods are proposed for

detecting rocks in different aspects. The first method attempts to classify rocks

and soil using multispectral data. The second method tries to find two adaptive

thresholds by which the rocks can be segmented from the background. The third

method refers to saliency concepts, intending to identify novel objects in images.

Details of the three methods are discussed in Sections 3.2, 3.3 and 3.4 respectively.

3.2 Classification methods using spectral data

Classification methods have been widely used to identify rock regions from images.

The process of classification is analogous to finding the differences between rocks

and background. Generally, for each pixel in an image, a feature vector will be

generated to represent the properties of the pixel. A feature vector can show

obvious differences between rocks and the background and hence can be used to

train a classifier with better classification results. Currently, the features that

have been used for classification include pixel intensities and the relations between

pixels (so-called texture features). Colour information has also been used in some

publication [Shang et al., 2011; Thompson et al., 2005a]. However, to the best of

the author’s knowledge, no research refers to using multispectral features to detect

rocks in a Mars environment.

Multispectral data can be acquired by the multispectral cameras that are

carried by recent Mars rovers (MER Pancam [Bell et al., 2003] and MSL Mast-

Cam [Bell et al., 2012]) and will be carried by some future Mars rovers (e.g. Ex-

oMars PanCam [Griffiths et al., 2006]). In contrast to grayscale and RGB colour

images, multispectral data can provide more information to represent the composi-

tion properties of rocks. Compared to texture or shape properties, composition of

rocks is less affected by the surrounding environment (e.g. wind erosion) and hence

is relatively invariant. Thus, as an indicator of rock composition, the multispectral

data has potential to generate good features to identify rocks. Examples to show

the multispectral differences between rocks and regolith are exhibited in Fig. 3.1.

It can be seen that the spectra of rocks and regolith overlap at some wavelengths.

If only the grey level image of the wavelength where the spectral values of rocks
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and regolith are same or similar is used, it is hard to distinguish them. However,

if multispectral data is introduced, the difference between them will be enlarged

and hence better classification results could be expected.

On the other hand, rocks will often be covered by regolith dust, narrowing the

difference between rocks and background. A rock will show diverse appearances

under different light condition. Shadows or overexposition will also weaken the

relationship between some multispectral features and the essence of a rock. Even

so, it is believed that there exists some multispectral data or derived features that

will always hold the differences between rocks and soil. Hence, a method inspired

by [Shang and Barnes, 2013] is proposed to deal with the multispectral data. The

flowchart of the method is given in Fig. 3.2.

As can be seen, the raw multispectral data is firstly transferred to R∗ data,

normalising the scale of reflection. A group of features are then derived from the

R∗ data. A feature selection method is applied to pick good features which can

reflect the difference between rocks and regolith. The feature vectors of each pixel

are generated using the selected features. Finally, with labeled ground truth, a

classifier is trained, by which the rock regions are segmented from the background.

Details of each process are presented below.

3.2.1 Raw data

The multispectral data used for the classification is captured by the Pancam of

the MER Spirit rover. The raw data is downloaded from the NASA planetary

data system (PDS) in the .img format. The .img file consists of not only spectral

data but also the status information of data acquisition such as exposure time.

Particularly, the downloaded data has been radiometrically-calibrated and hence

no more radiometric correction is necessary.

The Pancam system of the Spirit rover (the same as the Opportunity rover)

contains a pair of stereo cameras. A filter wheel with eight filter slots is mounted in

front of each camera, providing the capability to capture multispectral images. The

filters of left cameras (L1-L8) and right camera (R1-R8) are different. The detailed

wavelength and bandpass of each filter are shown in Table 3.1. Particularly, the

L1 filter slot is left empty to maximise sensitivity during low light. The L8 and R8

filter are designed as “solar” filters. They are used for direct sun imaging rather

than rock/regolith imaging. On the other hand, the filters L2-L7 and R1-R7 are

designed for geological purposes.
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Figure 3.1: Some multispectral curves of rocks and regolith using I/F as the radio-
metric unit, where I is the measured radiance and πF is the incident irradiance of
sunlight at the top of Martian atmosphere. Red curves represent rocks and blue
curves represent soil (regolith). More details can be found in [Bell et al., 2004].
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Figure 3.2: Flow chart of the proposed classification method

While the multispectral data is downloaded, the data of each filter can be

transferred to a 512× 512 image. The image pixel intensities reflect the response

corresponding to the wavelength of the filter.

If the multispectral data of left and right cameras is used, it is necessary to use

image registration techniques. In addition, as can be seen from Fig. 3.1, the curve

portions become flat when the spectral values are greater than 800 nm. Thus, for

convenience, we only choose the geological multispectral data sampled by the left

camera (i.e. spectral data of filters L2 to L7, the spectral range from 432 nm to

753 nm) for experiments.
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Table 3.1: MER Pancam filter characteristics

Left Camera Right Camera
Name Wavelength (nm) Bandpass (nm) Name Wavelength (nm) Bandpass (nm)

L1 739 338 R1 436 37
L2 753 20 R2 754 20
L3 673 16 R3 803 20
L4 601 17 R4 864 17
L5 535 20 R5 904 26
L6 482 30 R6 934 25
L7 432 32 R7 1009 38
L8 440 20 R8 880 20

3.2.2 R∗ data
R∗ (“R-star”) was defined as “the brightness of the surface divided by the bright-

ness of an RT (Radiometric Calibration Target) scaled to its equivalent Lambert

reflectance” [Reid et al., 1999]. It can be calculated as follows:

R∗ = I × Sr +Or (3.1)

where I denotes the multispectral image (the intensities of the image indicate the

spectral values). Sr denotes the radiance scaling factor and Or denotes the radiance

offset. Both Sr and Or parameters have been packaged in the .img file. R∗ data
is useful as that it normalises spectra captured under varied lighting conditions,

allowing for direct comparison between spectra taken at different times of day, and

more straightforward comparison with laboratory spectra [Bell et al., 2006]. Such

an uniformity also enables us to combine the data of images in different scenes

together for the training of classifiers.

3.2.3 Feature generation

In this step, 24 features are extended from the R∗ data. For easy cross-referencing,

the features are labeled as Table 3.2.

As mentioned before, the original data used for the experiments is made up of

the spectra of six wavelengths corresponding to the filters of left camera (L2 to

L7). The R∗ data of these spectra is firstly applied as the features. Specifically, the

features are sorted in the ascending order of spectral wavelength. Thus, the first

to sixth features correspond to the wavelength of 432nm, 482nm, 535nm, 601nm,
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Table 3.2: Feature meaning and reference number

Feature No. Meaning
1 – 6 Original spectral features
7 – 11 Slope features
12 – 13 Mean and variance
14 – 15 PCA features
16 – 18 CIEXYZ
19 – 21 RGB
22 – 24 CIELab

673nm and 753nm, respectively. These six features are called “original spectral

features” since the other 18 features are derived from them.

The simplest derived features are the mean and variance of the original spectral

features. The mean value can represent the overall intensity while the variance

can reflect the fluctuation of spectra.

Spectral slope features are also extracted, denoting the difference between any

two adjacent spectral values. For example, the slope between 432nm and 482nm

is (R ∗482nm −R∗432nm). As only differences between adjacent spectral data are

considered, five slope features can be calculated from six original spectral features.

Principal component analysis (PCA) is a statistical procedure which can con-

vert possibly correlated data into linearly uncorrelated variables (so-called prin-

cipal components). It has been proven as a useful tool for interpreting composi-

tional variation of MER spectral data [Anderson and Bell, 2013]. Hence, it can

also be used to generate features from the original features1. Originally, six origi-

nal features can generate six derived features. However, in most cases in our data,

through PCA, the proportion of the cumulative energy of the first two components

is more than 99%. Accordingly, the last four features’ energy only occupies less

than 1%, meaning that they express very little information. Hence, only the first

two components generated from PCA are regarded as features, being called PCA

features.

In addition, colour information can be used to generate features since all mul-

tispectral data we use are in the range of visible light. Hence, in this way, the

spectral data is mapped to three 3-channel colour spaces: CIEXYZ, CIELab and

RGB. The CIEXYZ space can reflect the light tristimulus values of the human eye.

1The PCA processes in our experiments are performed on a per “image” basis. A so-call
“image” is equivalent to six original spectral features.
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The CIELab space represents lightness and colour information in different chan-

nels. The RGB space is the most popular space to represent colour in computer

vision. The detailed procedure of mapping spectral data to colour space can be

found in [Barnes et al., 2011]. After mapping, the value of each channel of each

colour space is regarded as one feature. Thus, nine features are generated.

The feature generation of each pixel is independent, which means the features

of a pixel are generated from the spectral values of that pixel and no information

of neighbourhood pixels has been involved. After feature generation, a pixel can

produce 24 features values and hence 24 feature maps can be generated from the

original six spectral images. Here, examples of 24 visualised feature maps are

shown in Fig. 3.3, by which the difference between features of rocks and soil can

be observed. The reference numbers of the feature maps correspond to Table 3.2.

 

1 - 6 

 

7 - 12 

 

13 - 18 

 

19 - 24 

Figure 3.3: Examples of all 24 feature maps derived from the original spectral
data. Some feature values are very small, and hence cannot be directly displayed
by images. For illustration, we show here a normalisation of the original maps. The
intensities displayed are therefore not equal but proportional to the real feature
values.

It can be seen that the spectral information is enriched after the feature genera-

tion process. Thus, it is more likely to find features which clearly determine rocks.

On the other hand, although the features are generated through different ways,

some feature maps look very similar (e.g. 12th and 16th feature maps in Fig. 3.3).
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Thus, a feature selection process is necessary for the purpose of selecting good

features which can separate rock and regolith regions efficiently and also removing

redundant features which represent spectral information in similar ways.

3.2.4 Feature selection

Feature selection (FS) [Dash and Liu, 1997; Jensen and Shen, 2008] addresses the

problem of selecting the features that are most informative. It is highly recom-

mended to have a feature selection process before training classifiers. Firstly, it

can find out less informative features which cannot discriminate rocks and back-

ground (e.g. noise). Through removing those bad features, the distance between

foreground (i.e. rocks) and background will be increased and hence the accuracy

of classification may be improved. Moreover, the redundancy of the data can be

decreased through a feature selection process. The complexity of classifiers can

therefore be reduced, increasing the training and prediction efficiency.

In this thesis, a fuzzy-rough feature selection (FRFS) algorithm based on fuzzy

similarity relations is applied for selecting informative features which can facilitate

separating rocks from the background. The reason for using this FS method is

because it has successfully been used for MarsMcMurdo image classification [Shang

and Barnes, 2013]. Details of the method can be found in [Jensen and Shen, 2009].

3.2.5 Classifiers

Four classic classification methods were applied to train the classifier to identify

rocks. These are: K-nearest neighbours (KNN), naive Bayes (Bayes), decision

tree (Dtree) and support vector machine (SVM) with Sequential Minimal Opti-

mization (SMO).

The KNN algorithm is one of the simplest learning methods for constructing

classifiers. The training phase of the algorithm consists only of storing the feature

vectors and class labels of the training samples. During the classification phase,

unlabeled data is classified by assigning the most frequent label among the K train-

ing samples most similar to the unlabeled data. Particularly, in our experiment,

the parameter K is defined as 1 and 5, which will be mentioned as 1NN and 5NN

in the experiment section.

The Naive Bayes classifier is a probabilistic classifier. The posterior probability

of each class is calculated by the prior probabilities based on Bayes’ theorem in
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the training phase. The unlabeled data is then assigned to the class which has the

highest posterior probability (so-called maximum likelihood).

A decision tree-based classifier uses a tree-like model to determine the classes of

unclassified data. The tree model is learnt from training data through an iterative

process of choosing features and splitting them. In this research, the popular J48

algorithm [Mitchell, 1997] is used to generate decision trees.

The support vector machine method firstly maps original training data to a

high-dimensional space and then tries to find a hyperplane which can split the data

with the largest distance between data points and hyperplane. In this research,

the sequential minimal optimisation method [Platt, 1998] is used to optimise the

training of SVM methods.

In addition, the clustering method K-means is also involved in the experiment.

K-means clustering, as an unsupervised method, does not need labeled ground

truth for training. It only partitions the observations (unlabeled data) into K

clusters in which each observation belongs to the cluster with the nearest mean.

In our experiments, two classes of rocks and regolith are required, and hence the

parameter K of clustering is set to two, meaning that only two clusters need to be

created.

3.2.6 Experiments, results and evaluation

Three experiments have been conducted to test the algorithms. The first experi-

ment performed feature selection and classifier training image-independently and

hence is called “local”. Parts of an image were labeled as ground truth for selecting

features and training classifiers. Then the trained classifiers were used to predict

the rock regions in the whole image. The second “global” experiment addressed

the data of several images in a specified scene rather than of a single image. Thus

the trained classifiers could be suitable for predicting the rock regions in the scene.

Finally, in the third experiment, the selected feature numbers were inherited from

the first and second experiments and a 2-means clustering method was used on

unlabeled data to partition them into two clusters corresponding to rocks and

regolith.

The qualitative evaluation of the detection results mainly focused on five mul-

tispectral images. The detection results were illustrated by binary images: rock

regions were represented by white pixels and regolith regions were represented by

black pixels. In terms of quantitative evaluation, the rock regions in images were
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labeled for evaluating corresponding performance. Like general pattern recognition

systems, the Precision/Recall coefficients were used to judge the detection results

quantitatively. Precision refers to the proportion of detections that are actually

true, while Recall denotes the proportion of regions in the image that are detected.

In addition, the F1 score is applied to balance those two evaluative indicators as

well, which is the harmonic mean of Precision and Recall:

F1 = 2 · Precision · Recall
Precision+ Recall

(3.2)

Because the F1 score can comprehensively evaluate the performance of rock

detection, it is regarded as the primary index for evaluating the detection perfor-

mance.

On the other hand, because that parts of rock regions are small and scattered

and that some boundaries between rocks and regolith are vague, the ground truth

was not labeled perfectly. The contours of labeled rock regions may not be the

real rock boundaries and some tiny rocks were discarded. Such imperfect labeled

ground truth would lead to some biases in quantitative evaluation. These biases

could be mainly reflected in the decrease of Precision because that the tiny rocks

which could be detected have not been labeled.

3.2.6.1 Image-based “local” rock detection

This experiment is called “local” as it just addresses rock detection problems

based on single images. It means that, for the rock detection of one image, the

training data (for feature selection and classification) were all extracted from the

image. In terms of the training settings of this experiment, 100 pixel positions

of rock and regolith regions were labeled in each image manually, 50 pixels for

rocks and 50 pixels for regolith. From the pixel position, ground truth feature

vectors were extracted for later feature selection and classifier training. For one

image, the labeled data occupied a proportion less than 0.2% of all data. These

labeled data can indicate the difference of rocks and regolith, by which efficient

features can be selected and classifiers can be trained. After training, the classifiers

were used to predict the classes of unlabeled pixels in the images. Here, some

detection results (predictions) using different classifiers are illustrated in Fig. 3.4.

The corresponding selected feature numbers of each image are also given.

The average quantitative performance of the five classifiers is listed in Table

3.3. It can be seen that, all classifiers generate detection results with high Precision
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Figure 3.4: “Local” selected features and the classification results by these features
using different classification algorithms
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even if the imperfect labeled ground truth may affect the accuracy. In particu-

lar, comprehensively considering the Precision and Recall evaluation (i.e.the F1

measure), the Bayes classifier obtained the best detection performance.

Table 3.3: Quantitative performance comparison between classifiers

Classifier Precision Recall F1

1NN 0.87 0.783 0.824
5NN 0.93 0.767 0.841
Bayes 0.909 0.818 0.862
SMO 0.946 0.743 0.832
J48 0.918 0.695 0.791

Moreover, another experiment has been done to test the efficacy of feature

selection. For simplicity, the Bayes classifier was chosen as the only classifier in this

experiment. The classification results of selected feature sets1, full feature sets2,

original feature sets3 and some random feature sets4 are compared qualitatively

and quantitatively. The comparison is shown in Fig. 3.5.

It can be seen that, compared to using original spectral features directly, the

processes of feature generation and selection can indeed improve the detection

performance, especially the Precision performance. In addition, judged by the

comprehensive measure F1, the classification results using the selected feature sets

generates best performance, even slightly better than classification results using

full features. It proves that, through the feature selection method, we can not only

obtain feature sets with reduced number of features but also feature sets containing

efficient features which can facilitate classifier training. Hence both the speed and

performance of classifiers trained by the selected features could be improved.

3.2.6.2 Scene-based “global” rock detection

In the “local” classification, although having generated competent performance,

the rock detection of an image is based on the image itself. Therefore, an attempt

1i.e. the feature set with selected feature(s).
2A full feature set denotes the feature set containing all generated features (i.e. all 24 features

listed in Table 3.2).
3An original feature set denotes the feature set only containing the six original spectral

features (i.e. the 1-6 features listed in Table 3.2).
4A random feature set denotes a feature set containing random selected features (different to

selected feature set). Specifically, to reflect the efficacy of feature selection, the feature number
of the random feature sets using in the experiment are same to the selected feature set.
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Figure 3.5: Detection results of selected feature subset and other feature sets. All
detections are through Bayes classifiers.



CHAPTER 3. ROCK DETECTION 45

has been made to establish a “global” classifier for a certain scene on Mars. For

such a purpose, we mixed the labeled ground truths of five images in a same

scene together and hence obtained a training set which has 250 rock instances and

250 soil instances. After feature selection, a reduced feature set was generated

which contains eight features: 1, 4, 7, 10, 11, 13, 15 and 23. As the labeled

data was extracted from different images in a scene, the corresponding selected

features could probably reflect the “global” differences between rock pixels and

regolith pixels. A classifier was then trained selected feature vectors through the

Bayes method. The performance of this classifier on the five images which contain

labeled pixels is shown in Fig. 3.6.

Figure 3.6: “Global” classification results of the five images in which ground truth
were labeled

It can be seen that, although only using one classifier, the rock regions in all

five images can be detected properly. The average Precision and Recall of the

“global” detection results were 0.898 and 0.823, hence obtaining an overall F1

measure about 0.859 which was just slightly lower than the “local” results (see

Table 3.3). It proves that, through our method, the “global” classifier can be

generated to identify rocks. In addition, we tested the “global” classifier on some

Mars images which were captured from the same scene as the five training images

but not used in the training stage. An example of the detection result is shown

in Fig. 3.7. The average Precision, Recall and F1 of the detection results on those

non-training images have reached 0.896, 0.808 and 0.849 respectively which are

very closed to the performance of training images. It indicates that a classifier

trained by a part of images in a specified scene can really identify the difference
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between rocks and regolith in the scene and hence can be used to predict rock

regions in the scene.

Figure 3.7: Detection result of a non-training image

3.2.6.3 Cluster results by selected features

Besides the classification approaches, cluster methods can be used to distinguish

rock and regolith regions. A 2-class cluster can perform detection faster than

classification methods because no training phase is needed. Here, the 2-means

(i.e. two cluster K-means) method was applied as the clustering demonstrator.

The clusterings were carried on both “local” and “global” selected feature sets.

In addition, clusterings using full feature sets, original feature sets and random

feature sets have been done as well. The comparison of clustering results using

different feature sets is shown in Fig. 3.8.

It can clearly be seen that the detection results of the feature sets after selection,

whether global or local, have generated better performance. In particular, rocks

in the right column images, although covered by dust, can be clustered into the

rock part using selected features. On the other hand, if feature selection is not

performed, the corresponding clustering was affected severely by the dust coating,

making the detection performance worse. In addition, clustering results using

selected features performed even better than the results of clustering using full

feature sets. It proves that, through feature selection, the features which highlight

the difference between rocks and regolith will be extracted and irrelevant features

will be removed. Using those selected features, better clustering results can be

expected.
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Figure 3.8: Clustering results using different feature sets
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3.2.7 Summary

In this section, a rock detection approach based on multispectral data is proposed.

The concepts of feature extension (generation), feature selection and classification

have been involved in this approach. By visual observation and quantitative evalu-

ation, the method has the potential to deal with the rock detection with relatively

high accuracy. Currently, the spectral data used for the experiments is only cap-

tured by the filters of the left camera of the MER rover. In future work, through

image registration, the spectral information of the right camera can be used to

enrich the original data. In addition, more features can be derived in the feature

generation phase such as band depth and red/blue ratio [Anderson and Bell, 2013].

Thus more optimised feature sets can be expected by which better classification

or clustering performance may be obtained.

3.3 Two-threshold methods

Although multispectral data can provide more information, efforts towards rock

detection are mainly made on grayscale images. Compared to multispectral im-

ages, grayscale images are easier to acquire. Not only the panoramic cameras

(Pancam), the navigation cameras and other cameras on rovers can also be used

to capture gray level images. In addition, although containing less content, by ap-

plying appropriate algorithms, rock detection using grayscale images can probably

gain similar results to the detection using multispectral data in less time thereby

being more suitable for on-board implementations. Thresholding methods, as the

most classic and straightforward image segmentation methods, may be regarded

as the fast methods to deal with the rock detection problem in grayscale images.

A grayscale Mars rock image with its histogram is illustrated in Fig. 3.9. As

can be seen, rocks will be influenced more strongly by sunlight. The surfaces of

rocks are relatively smooth and hence cause direct (specular) reflection rather than

diffuse reflection more frequently. In addition, due to the sizes and shapes of rocks,

sunlight is likely to be blocked thereby generating shadows. Therefore, in contrast

with soil (regolith) regions, the intensities of rock regions will be darker or brighter.

This phenomenon can be reflected in histograms. The regions of rocks are located

in the two sides of the histogram, and the centre region of histogram represents

regolith. Thus, to separate rock and soil regions, traditional thresholding methods

which only use one threshold are not suitable.
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Figure 3.9: Grayscale image of the famous Mars “Heat Shield” rock (meteorite)
and its histogram. The rock region is divided into a dark part and a bright part.

Hence, a series of two-threshold thresholding algorithms are proposed and re-

viewed, which are able to segment the pixels of images into three parts representing

dark rock regions, background regions and bright rock regions respectively. The

pixels with intensity values below the low-threshold or above the high-threshold are

regarded as the rock pixels and the region between the two thresholds represents

the background (regolith) pixels.

3.3.1 Algorithms

The most traditional thresholding method is the Otsu algorithm [Otsu] which origi-

nally aims at bi-level (one threshold) thresholding. From the original one-threshold

Otsu method, the two-threshold Otsu method (TO) has been derived [Liao et al.,

2001]. In addition, six new two-threshold methods are proposed. There are: Re-
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stricted two-threshold Otsu method (RTO1), Restricted two-threshold

Otsu method with new σ2
B (RTO2), Two-fold Otsu method (TFO), Prob-

ability ratio method (PR), Normal distribution method (ND) and Direct

probability method (DP). The details of these methods are described below. In

addition, since some proposed methods are related to the original Otsu method

(Otsu) and the two-threshold Otsu method (TO), the details of those are also

reviewed.

3.3.1.1 Otsu’s method (Otsu)

Since some proposed two-threshold algorithms are derived from the traditional

Otsu algorithm, here we introduce the one-threshold thresholding method firstly.

An image contains N pixels whose gray levels range from 1 to L. Supposing

that the number of pixels with the ith gray level is ni, the probability of the i gray

level, pi, can be defined as:

pi = ni/N (3.3)

To divide the pixels of an image into two classes C1 and C2, a threshold t

is selected. Thus, C1 contains gray levels [1, ..., t] and C2 contains gray levels

[t+ 1, ..., L]. The probabilities of the two class ω1 and ω2 are:

ω1 =
t

∑

i=1

pi (3.4)

ω2 =
L
∑

i=t+1

pi (3.5)

Also, the mean intensities µ1 and µ2 of the two classes are:

µ1 =
t

∑

i=1

i pi/ω1 (3.6)

µ2 =
L
∑

i=t+1

i pi/ω2 (3.7)
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Thus, the mean intensity of the whole image µT can be obtained as:

µT = µ1ω1 + µ2ω2 (3.8)

Otsu defined the between-class variance σ2
B as:

σ2
B = ω1(µ1 − µT )

2 + ω2(µ2 − µT )
2 (3.9)

An alternative function of the bi-level between-class variance is:

σ2
B = ω1ω2(µ2 − µ1)

2 (3.10)

Then, through exhaustive search, the threshold t∗ with maximum σ2
B is chosen.

t∗ = argmax
1≤t<L

σ2
B(t) (3.11)

As the Otsu’s definition, t∗ is the threshold giving the best separation of the classes

in gray levels.

3.3.1.2 Two-threshold Otsu method (TO)

To solve multi-threshold problems, Eqn. (3.9) can be extended. Assuming that

there are M-1 thresholds (t1, ..., tM−1), which divide an image into M classes, the

between-class variance can be rewritten as follows [Liao et al., 2001]:

σ2
B =

M
∑

k=1

ωk(µk − µT )
2 (3.12)

In our case, two thresholds t1 and t2 are required, and hence σ2
B is defined as:

σ2
B = ω1(µ1 − µT )

2 + ω2(µ2 − µT )
2 + ω3(µ3 − µT )

2 (3.13)

Thus, the best threshold set {t∗1, t∗2} should satisfy the condition that the σ2
B in

Eqn. (3.13) reaches the maximum value.

{t∗1, t∗2} = argmax
1≤t1<t2<L

σ2
B (3.14)

To distinguish with other methods derived from the original Otsu method, we
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named this method as two-threshold Otsu method (TO).

3.3.1.3 Restricted two-threshold Otsu method (RTO1)

It can be found that, in most Mars images, soil pixels are in the majority. There-

fore, we make a supposition that the gray level with highest probability pmax is

the gray level which represents background. This gray level is defined as tmost.

As mentioned above, the region between t1 and t2 corresponds to the background

part. Hence, tmost must be in the position between t1 and t2. By adding this re-

striction, it can be ensured that the background part includes the background gray

level tmost thereby avoiding the wrong segmentation in which the two thresholds

are both on the same side. The function to search for the optimal thresholds t∗1
and t∗2 can be expressed as:

{t∗1, t∗2} = argmax
1≤t1<tmost<t2<L

σ2
B (3.15)

in which σ2
B is expressed in Eqn. (3.13). Since this method adds a restriction, we

called it the restricted two-threshold Otsu method (RTO1).

3.3.1.4 Restricted two-threshold Otsu method with new σ2
B (RTO2)

Derived from the Eqn. (3.10) which is for the bi-level situation, a new measure

σ2
B∗ is derived from Eqn. (3.10) for tri-level situation, defined as:

σ2
B∗ = ω1ω2(µ2 − µ1)

2 + ω3ω2(µ3 − µ2)
2 (3.16)

This equation does not contain the mean intensity of the whole image µT ,

only considering the differences between classes. The first term relates to the

between-class variance between dark foreground and background and the second

term relates to the between-class variance of background and light foreground. The

term ω1ω3(µ3−µ1)
2 has been ignored because it is only related to the foreground.

Using σ2
B∗ rather than σ2

B, Eqn. (3.15) can be applied to calculate the optimum

thresholds t∗1 and t∗2. To distinguish with the restricted two-threshold Otsu method

(RTO1), this method is abbreviated as RTO2.
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3.3.1.5 Two-fold Otsu method (TFO)

As supposed above, the gray level tmost must be included into the background.

Using tmost as the boundary, the pixels in an image are segmented into 3 parts:

the dark part with the gray levels [1, ..., tmost − 1], the bright part with the gray

levels [tmost + 1, ..., L] and the part with the gray level tmost. Thus, we can apply

the traditional Otsu algorithm on the dark part and the bright part respectively.

By such an approach, two thresholds can be generated on both sides of tmost. One

threshold t1 divides the dark part into the dark foreground part ([1, ..., t1]) and

the dark background part ([t1 + 1, ..., tmost − 1]). Likewise, the other threshold t2
can divide the light part into the light background part ([tmost + 1, ..., t2]) and the

light foreground part ([t2 + 1, ..., L]). Finally, the background (regolith) region is

composed of the dark background part, the light background part and the tmost part

and hence the gray level range of the background is from t1+1 to t2. Accordingly,

the gray levels ([1, ..., t1]) and ([t2 + 1, ..., L]) represent rock region. Since this

method folds the gray levels and performs twice Otsu operation respectively, it is

named as two-fold Otsu methods (TFO). The schematic diagram of TFO method

is illustrated in Fig. 3.10.

3.3.1.6 Probability ratio method (PR)

Through observing histograms of Mars images (e.g. Fig. 3.11), it can been found

that the shape of the histogram which represents the background is relatively steep

and the shape of the foreground (rock region) histogram is relatively flat. Hence,

a method is proposed to distinguish background (regolith) and foreground (rock)

using the shape of the histogram. Hence, we defined a parameter named as prob-

ability ratio (pr), which denotes the ratio of the probabilities of two adjacent gray

levels. For convenience, pri of the gray level i is calculated in different directions

on the two sides of tmost, defined as:

pri =

{

pi−1/pi if i < tmost

pi+1/pi if i > tmost

(3.17)

The probability ratio pr can reflect the variation degree of the probability of

adjacent gray levels. If pr is far larger than 1, a steep histogram shape is detected.

On the other hand, pr near to 1 means that similar values are detected and hence

indicate that the corresponding region is relatively flat. Thus, a parameter pR was



CHAPTER 3. ROCK DETECTION 54

tmost 

Dark Part Bright Part 

Dark Rock Dark Soil Bright Soil Bright Rock 

Soil Region 

Figure 3.10: Schematic diagram of the two-fold Otsu method

introduced to determine if a gray level is in the flat region. To avoid the gray level

fluctuations near tmost, those gray levels with probabilities higher than the half

of pmax were extracted into a set T . In the set T , the minimum and maximum

gray levels t′1 and t′2 are chosen as the initial gray levels to search for t∗1 and t∗2.

Thus, in the region [1, ..., t′1], the probabilities of the gray levels were approximately

monotonically increasing and conversely approximately monotonically decreasing

in the region of gray level [t′2, ..., L]. Starting from gray level t′1 to 1, if the pr

values of three consecutive gray levels are larger than the parameter pR, it can be

considered that the gray level has entered into a flat region, and thus the optimal

t∗1 was the first gray level in the flat region. Likewise, t∗2 can be found out as the

boundary between the steep part and the flat part in the range of [t′2, ..., L]. Since

the probability ratio was introduced in this method, we named this method the

probability ratio method (PR).
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Figure 3.11: Schematic diagram of the probability ratio method

3.3.1.7 Normal distribution method (ND)

As can be seen in Fig. 3.12, the histogram has a shape similar to that of a normal

distribution. Thus, the normal distribution method (ND) is proposed under the

assumption that the gray levels of the background follow a normal distribution.

Thus, the mean µT and the standard deviation σT of all pixels of an image can be

calculated to describe the shape of the histogram. Hence, inspired by the tolerance

interval concept in statistics, a scale factor r is introduced to scale the impact of

σT , thereby determining the gray level interval of the background. Specifically, the

thresholds t∗1 and t∗2 can be calculated as follows:

t∗1 = µT − r σT (3.18)

t∗2 = µT + r σT (3.19)
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Figure 3.12: Schematic diagram of the normal distribution method

3.3.1.8 Direct probability method (DP)

The direct probability method (DP) distinguishes the rock and the background

based on gray level probability pi directly. It can be seen in Fig. 3.13 that, the

probability of the gray levels included in background are generally larger that the

rocks’. Hence, a parameter pT has been defined as a probability threshold, by

which the rocks and regolith can be differentiated. The gray levels with pi higher

than pT are categorised into the class of background. The gray levels with smaller

pi are regard as foreground. That is:

t ∈
{

foreground if pi ≤ pT

background if pi > pT
(3.20)

In some cases, the darkest gray level (0) and brightest gray level (255) will

have larger probabilities due to the shadow and the overexposure. As mentioned

before, the rock regions in an image, are more likely to be influenced by these
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Figure 3.13: Schematic diagram of the direct probability method

phenomenon. Hence in this method, even if the probabilities of the gray level 0

and 255 are higher than pT , they are defined into the rock region specifically.

3.3.2 Experiments and results

Images from different sources were collected in which the rock regions are labeled

manually. Before going through algorithms, all original images were blurred by a

5×5 Gaussian filter to reduce the influence of noise. Thereafter, the parameters of

the various algorithms (pR, r and pT ) were determined firstly using part of images.

Then, all algorithms were tested on all images and the detection results of the

algorithms are compared.
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3.3.2.1 Image source

The images for evaluating the performance of each algorithm come from two sets.

One set is constituted by the images captured from the Mars Exploration Rover

(MER) Spirit panoramic camera (MER images). The other set consists of rock

specimen images captured by a camera similar to that of the Aberystwyth Uni-

versity Pancam Emulator (AUPE) [Pugh et al., 2012] in a laboratory environment

(laboratory images). For the quantitative evaluation of algorithms, both image

sets were manually labeled1 with ground truth of rock regions. The labeling refers

to the manual identification of each rock pixel. However, due to the complexity

of Mars images, some small rocks were not well-labeled and some typical non-rock

content such as shadows and sedimentary features were labeled as rock regions.

These will cause a small bias in the result evaluation but the labeled region can still

be used as the reference to compare the performance of each algorithm. On the

other hand, the rocks in laboratory images were relatively well-labeled. Examples

of the two kinds of images are shown in Figs. 3.14 and 3.15.

Figure 3.14: Example of a MER Pancam image and corresponding labeled rock
regions. Left: original image; Right: labeled ground truth (rock regions are labeled
in red).

3.3.2.2 Performance evaluation criteria

The same as the multispectral detection experiments, Precision, Recall and F1 are

selected as the criteria to evaluate the performance of each thresholding algorithms.

1The labeling is done by the author.
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Figure 3.15: Example of a laboratory image and the corresponding labeled image.
Left: original image; Right: labeled ground truth (rock regions are labeled in red).

In particular, F1 is regards as the main evaluative indicator as well.

3.3.2.3 Parameter setting

There was no need to configure parameters for the methods related to the original

Otsu method (Otsu, TO, RTO1, RTO2, TFO). However, in the other algorithms,

some parameters are needed to be configured. Those parameters are the pR in

the PR methods, the r in the ND method and the pT in the DP method. With

different parameter settings, the algorithms usually show obvious performance

variations. Here, due to the difference of environments, the parameters of the

MER data and the laboratory data were adjusted separately. Half of the images

from each set were chosen to search for the “optimal” parameter values of each

algorithm. The “optimal” parameter values calculated from partial data were

regarded as the “optimal” parameter values of the algorithms and kept unchanged.

The average performance curves of pR, r and pT of two partial sets are illustrated

in Figs. 3.16, 3.17 and 3.18 respectively. The x-axis denotes the values of the

algorithm parameters and the y-axis denotes the performance evaluative values

with the corresponding parameter settings.

With regard to the PR and ND algorithms, it can be seen that Precision is

approximately monotonically increasing while Recall is approximately monotoni-

cally decreasing. Since the increasing and decreasing speeds are different, the F1

curves are mountain-like. The Precision and Recall variations of the PR algorithm

were relatively little in the range from 0.80 to 0.98, leading to the F1 curves of

this algorithm having relatively flat peaks. On the other hand, as to the ND al-

gorithm, the Recall curves are decreasing stable while the Precision curves reach
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Figure 3.16: Performance of the probability ratio method (PR) with different
values of pR. Left: MER images. Right: Laboratory images.
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Figure 3.17: Performance of the normal distribution method (ND) with different
values of r. Left: MER images. Right: Laboratory images.

their peaks fast. Thus, the peaks of the F1 curves of the ND algorithm are rela-

tively narrow. As to these two algorithms, although the shapes of the F1 curves

have some differences, the peak positions of the F1 curves are almost same while

addressing different image sets (MER and laboratory images). Hence, judged by

the F1 performance, the pR parameter of the PR algorithms was set to 0.9 and

the r parameter of the ND algorithm was set to 1 for both two kinds of data dur-

ing the experiments. However, although the performance curve shapes of the DP
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Figure 3.18: Performance of the method directly based on grey level probability
(DP) with different values of pT . Left: MER images. Right: Laboratory images.

algorithm are similar to those of the ND algorithm, when dealing with different

data sets, the F1 peak positions are different. It may prove that the algorithm

directly depending on the probability is less adaptive. Compared to the ND al-

gorithm, the DP algorithm lacks a scaling parameter such as σT for adapting to

different histogram shapes corresponding to different environments. Thus, dealing

with different environments, the pT parameters should be set to different values for

pursuing “optimal” rock detection performance. Hence, in our experiments, the pT
values for the MER and laboratory data were set to 0.007 and 0.0015 respectively.

3.3.2.4 Performance comparison of each algorithm

After the parameters were determined, all images in both image sets were used to

test all seven two-threshold algorithms (TO, RTO1, RTO2, TFO, PR, ND, DP).

The performance of the traditional Otsu method was also tested for comparison.

Since the one-threshold Otsu method can only separate the pixels of an image

into two classes, it is not clear which class of the segmentation result is a more

appropriate representation of rock regions. Hence, the class which gained a higher

F1 performance was considered as the Otsu result. Here, the performance on the

MER and laboratory data is presented separately. Examples of the rock detection

results of a MER image and a laboratory image are illustrated in Figs. 3.19 and

3.20, where the white pixels represent the detected rock regions.

By visual inspection, compared to the traditional Otsu method, some new two-
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Figure 3.19: Rock detection results of an image captured by MER spirit
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Figure 3.20: Rock detection results of an image captured in the laboratory envi-
ronment
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threshold methods (e.g. PR) can detect more intact rock regions. The quantitative

performance is also presented using the labeled ground truth. Here, the Precision,

Recall and F1 of every image in both sets were averaged in order to reflect the

comprehensive performance of each algorithm. The comparison of the averaged

performance is given in Table 3.4.

Table 3.4: Performance comparison of thresholding algorithms

Method
MER Data Laboratory Data

Precision Recall F1 Precision Recall F1

Otsu 0.731 0.480 0.501 0.997 0.516 0.669
TO 0.558 0.652 0.560 0.041 0.547 0.076
RTO1 0.575 0.654 0.576 0.117 0.581 0.193
RTO2 0.887 0.522 0.652 0.926 0.537 0.671
TFO 0.603 0.748 0.658 0.314 0.682 0.422
PR 0.602 0.749 0.644 0.963 0.794 0.862
ND 0.784 0.612 0.682 0.899 0.778 0.830
DP 0.655 0.726 0.673 0.895 0.827 0.857

The quantitative performance1 shows that, to deal with the MER image data,

the two-threshold methods obtained generally better performance than the tradi-

tional Otsu method. However, some two-threshold methods (the methods based

on the between-class variance) generated bad results when they dealt with labora-

tory images. The PR, ND and DP algorithms achieved adequate performance on

both the MER and laboratory data. Although some parameters need to be con-

figured firstly, the algorithms (especially PR and ND) exhibit good adaptabilities

with fixed parameters.

3.3.3 Summary

In this section, we have explained the rationale for introducing two-threshold meth-

ods into rock detection in Mars images. In contrast with the multispectral methods

mentioned above, two-threshold methods need to process smaller amount of data

and hence run fast.

Seven two-threshold algorithms were presented, in which TO, RTO1, RTO2

and TFO are derived from traditional Otsu thresholding and the PR, ND and DP

methods are based on other histogram information. Two image sets (MER and

1As mentioned, we mainly use F1 as the indicator to evaluate the performance of proposed
algorithms. Hence, the good or bad performance discussed below refers to F1.
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laboratory) were established in order to test the performance of those algorithms.

F1, as a coefficient which combines Precision and Recall, was selected as the

primary coefficient for evaluating the performance of each algorithm.

The PR, ND and DP algorithms rely on an adjustable parameter. These pa-

rameters were firstly determined by the detection performance of part of images

in two different image sets and were kept unchanged in the evaluation experiment.

The optimal parameter values of the DP algorithm are different while process-

ing different data. The ND method was sensitive to the setting of the parameter

r. However, when the parameter r was set as 1, the detection performance of

the MER and laboratory data both approximated to the best values. Other the

other hand, the performance of the PR algorithm was stable over a large range of

parameter value pR thereby making this algorithm more adaptive with a fixed pR.

After the parameters were calculated and fixed, experiments were conducted

on all images in both image sets. The results show that, by applying appropriate

two-threshold methods, better detection results than one-threshold methods can

be obtained. Specifically, the PR and ND algorithms can generate rock detection

results both with high accuracy (judged by F1) and good stability.

3.4 Saliency methods

Both multispectral methods and two-threshold methods detect rocks in a top-down

way. That is to say that these methods give the definitions to describe rocks firstly.

In multispectral methods, classifiers are trained to understand the rocks’ properties

while in two-threshold algorithms, rock pixels are defined as being brighter or

darker than soil pixels. The definitions are then used as the criteria for searching

for rocks. If the conditions of a pixel (or region) satisfy the definitions, the pixel

(or region) will be regarded as a part of a rock. That is so-call top-down. On

the other hand, bottom-up methods also can be applied to “detect” rocks, which

means that no prior knowledge is involved during the “rock detection” process.

Without prior knowledge, rock regions cannot be clearly recognised. Hence, a

tradeoff has been made which is to detect “interesting” regions rather than “rock”

regions. So what is an “interesting” region? Here we propose that the region which

is uncommon (rare) in an image is a region of interest (ROI). The rarity level of a

region can be used to reflect the interest level of the region. Thus, detecting the

ROI of an image is equivalent to finding the regions less frequently appearing in the

image. And in most cases, compared to the soil (regolith) regions, the rock regions
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are relatively uncommon in an image and hence can be detected by such method.

Even if the detected region does not represent rocks, its rarity makes it become a

“novelty” object and hence researchers would probably pay more attention to it.

Interesting Region 

Uncommon Region 

Rock Region Novelty Region 

Figure 3.21: Uncommon region to interesting region to rock region

The concept of detecting uncommon regions is in harmony with some bottom-

up saliency methods which also need no prior knowledge or manual labels. For

convenience, some existing saliency algorithms were tested to validate the idea

that rocks can be detected in a bottom-up way.

3.4.1 Saliency algorithms

Five popular saliency algorithms1 were chosen for the experiment, those are Itti’s

Method (ITTI) [Itti et al., 1998], Graph-based visual saliency (GBVS) [Harel

et al., 2007], Context-aware algorithm (CA) [Goferman et al., 2010], Spectral

residual (SR) [Hou and Zhang, 2007] and Image signature saliency (IS) [Hou

et al., 2012]. Brief introductions to these algorithms follow.

3.4.1.1 Itti’s method (ITTI)

Itti’s saliency method is the most primitive saliency method which establishes a

visual attention model inspired by the behaviour and neuronal architecture of the

human visual system. It firstly extracts features including intense features, colour

features and texture (orientation) features from the original image. These features

are then used to generate initial feature maps based on the center-surround the-

ory. Initially, the feature maps were generated by the subtraction of features in

1The source codes are downloaded from the web sites of corresponding authors or papers.
Small modifications have been made for allowing them to run through our data.
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different scales of a Gaussian pyramid. In later research [Itti and Koch, 2000], a

2-D difference-of-Gaussian algorithm was introduced to optimize the model. Af-

terwards, the feature maps of all features are integrated into three “conspicuity

maps” through across-scale combinations and normalization (activation), which

represent intensity, colour and texture respectively. The summation of these three

conspicuity maps is regarded as the final saliency map.

3.4.1.2 Graph-based visual saliency (GBVS)

Graph-based visual saliency is a saliency model based on graph theory computa-

tion. It supposes that a feature map is a undirected graph in which each pixel is

a node. It defines the weights between two nodes based on the dissimilarity and

distance information between them. Then a random walk is performed between

nodes according to the weights between nodes (as transition probabilities). The

walker is more likely to arrive at the nodes that are highly dissimilar to the nodes

surrounding them. The activation maps are generated by counting the quantity of

visits to each node. The normalisation of activation maps is done using a Markov

chain method to highlight the “salient” regions and thus the final saliency map

can be generated.

3.4.1.3 Context aware (CA)

Context-aware saliency is a saliency method aimed at detecting the image regions

that represent the scene. In this method, the dissimilarity between a pair of pixels

(or patches) is calculated by using the distance of colour and position between

them. The saliency value of a patch can be obtained by the dissimilarity between

the patch and the K most similar patches. Multi-scale information is introduced

into the saliency computation to enhance the contrast of salient and non-salient

regions. The final saliency map is formed through an optimisation process following

the Gestalt laws.

3.4.1.4 Spectral residue (SR)

The spectral residue method is a saliency method in the frequency domain. The

authors found that the spectral residual of an image contains the innovations

which are salient in the image. In this method, the image is firstly transformed

to a frequency spectral map by using the Fourier transform. The amplitude map
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from the Fourier transform is then taken through a logarithmic transformation

to gain the log spectrum. A local average filter is adopted to obtain the average

log spectrum. The spectral residual can be calculated by subtracting the average

log spectrum from the log spectrum. Finally, the saliency map is obtained by the

inverse Fourier transform of the sum of the spectral residual and the phase map

which is preserved during the process.

3.4.1.5 Image signature saliency (IS)

The image signature approach is also a frequency domain method. Unlike the

SR method which uses the Fourier transform, IS method uses the discrete cosine

transform (DCT) to convert images into the frequency domain. In this method,

the image signature which can reflect the saliency level is defined as:

ImageSignature(x) = IDCT(sign(DCT(x))) (3.21)

in which x denotes an image, and sign means an entrywise sign operator. That is

to say that, through an inverse discrete cosine transform (IDCT) on a signed DCT

signal of an image, a reconstructed image highlighting and isolating the salient

regions can be formed. The final saliency map is generated by smoothing the

reconstructed image. As for a colour image, the saliency map of each channel (e.g.

RGB) is calculated independently. The saliency maps of three channels are simply

summed into a final saliency map.

3.4.2 Experiments and results

3.4.2.1 Image source

Since some saliency algorithms used in experiments require colour information,

especially traditional RGB colour information, the images used for the experiments

are all 3-channel RGB colour information. The colour images come from three

different sources. Each type of image contains ten colour images. The first type

of images are colour images generated from the multispectral data captured by

the MER Spirit Pancam. The second type of images are images cropped from the

McMurdo panorama image. The third type of images are colour photos taken in

the Mars yard in the Planetary Analogue Terrain Laboratory (PATLab) [Barnes

et al., 2008] of Aberystwyth University. Fig. 3.22 shows typical images from the
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three sets.

 

Figure 3.22: Three types of images used in saliency experiments, from left to
right: synthesized MER Pancam image (MER image), cropped McMurdo image
(McMurdo), and the image of the PATLab Mars yard (PATLab image).

MER image: As mentioned before, the Pancam of MER rover is able to sample

multispectral data but not traditional RGB data. Hence, in order to gain the

traditional RGB images for saliency processing, the multispectral data within the

range of visible light is transformed into the CIEXYZ space and then to the RGB

space. The transformation processing referred to the eye tristimulus of each band-

width. The related details can be found in [Barnes et al., 2011]. An example of a

synthesized RGB image generated from multispectral data is shown in Fig. 3.23.

Due to the lack of relative spectral power information, the colour of synthesized

images is distorted but is still better than a false colour image directly composed

by three spectral images. Particularly, the synthesized images have the same size

of 512× 512 pixels.

McMurdo image: The 360-degree view McMurdo panorama image was ob-

tained from the panoramic camera (Pancam) on the Spirit rover and was manu-

ally adjusted to approximately true colour. It is constructed from 1449 Pancam

images and is 20480 × 4124 in size. Some rock detection experiments have been

done directly on the McMurdo images [Shang and Barnes, 2013]. However, deal-

ing with such a large image is very time-consuming and a large part of the image

contains no rock but only desert-like land. Therefore we cropped the whole image

into small images (512 × 512) and ensure that there are some “salient” rocks in

each chopped image.
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Figure 3.23: Example of conversion from multispectral data to RGB data

PATLab image: The PATLab aims to perform comprehensive mission opera-

tions emulation experiments. It has a 50m2 terrain region (Mars yard) composed

of Mars Soil Simulant-D where some fully characterised science target rocks are

distributed. Some field tests have been performed in the laboratory [Pugh, 2010;

Woods et al., 2009]. In our experiments, the original PATLab rock photos are

colour images with the size of 2304 × 1704 corresponding the capturing camera.

For uniformity, we cropped the images to a size of 512× 512.

3.4.2.2 Scale parameter configuration

In saliency algorithms, an input image is first rescaled to a small image in order to

accelerate the speed of generating saliency maps. And the final resultant saliency

map is obtained by resizing the small-scale saliency map to the original size. Since

existing codes were used, the images were scaled according to default settings. The

maximum saliency map length of ITTI, GBVS, SR and IS is 64. This means that

if an original image is 1:1, it will be resized to 64 × 64, and if an original image

is 4:3, it will be resized to 64 × 48. For the CA algorithm, the default maximum

length of the saliency map is 250.
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3.4.2.3 Experiment of rock detection

Firstly, we tested the rock detection performance of all five mentioned saliency

methods. Different types of images were tested respectively. Partial results are

shown in Figs. 3.24, 3.25 and 3.26.

Original GBVS ITTI CA SR IS 

Figure 3.24: Saliency rock detection results on MER images

To reflect the performance of each saliency algorithm more comprehensively

and precisely, the results are evaluated quantitatively. Unlike the multispectral

classification and two-threshold thresholding methods, the output of saliency meth-

ods is not binary. Hence it is hard to represent the quantitative performance of

saliency algorithms only by a pair of Precision/Recall as well as one F1 coefficient.

Therefore, the receiver operating characteristic (ROC) curve1 has been used as the

criteria to evaluate the performance of the five saliency methods mentioned above.

The curve is represented by plotting the true positive rate (i.e. Recall) against the

false positive rate2 at various threshold settings3, and hence can address saliency

output. In addition, the curve does not refer to the Precision information, hence

1It is the most popular manner to estimate the performance of saliency methods.
2It can be regarded as the Recall coefficient of background regions (i.e. the proportion of the

background pixels which are correctly identified).
3To every specified threshold setting, the pixels with saliency intensities above the threshold

were regarded as the pixels belonging to rock regions.
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Original GBVS ITTI CA SR IS 

Figure 3.25: Saliency rock detection results on McMurdo images

Original GBVS ITTI CA SR IS 

Figure 3.26: Saliency rock detection results on PATLab images

overcoming the problem that the saliency method may detect some non-rock novel

objects.

We plotted ROC curves for each of the three image types (MER, McMurdo

and PATLab) respectively. For each, 256 thresholds were used and the results
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averaged over the 10 images of the corresponding datasets. The ROC curves are

illustrated in Figs. 3.27, 3.28 and 3.29.
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Figure 3.27: ROC curves of the saliency detection results on MER images

In addition, the area under a ROC curve (AUC) can reflect the performance of

corresponding algorithms more directly. Here, the AUCs are calculated through

trapezoidal approximation. The AUC of each saliency algorithm is listed in Table

3.5. Generally, the larger a ROC area is, the better performance the corresponding

algorithm generates.

Table 3.5: AUCs of saliency algorithms

ITTI GBVS CA SR IS
MER 0.712 0.693 0.773 0.727 0.712
McMurdo 0.868 0.747 0.895 0.901 0.832
PATLab 0.93 0.898 0.969 0.947 0.958
Average 0.837 0.779 0.879 0.858 0.834

It can be seen that, for laboratory images with distinct rock regions and sim-

ple background, the performance of saliency algorithms is generally very good.

It proves that saliency methods can find out the “salient” rocks if these rocks

are indeed “salient” in images. On the other hand, for some real Mars images
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Figure 3.28: ROC curves of the saliency detection results on McMurdo images
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Figure 3.29: ROC curves of the saliency detection results on PATLab images
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(MER and McMurdo images) which contain less distinct rocks and more complex

environment background, saliency algorithms generate relatively worse detection

results. For some detection results1, the detected “salient” regions nearly covered

whole the images and hence cannot highlight the real rock regions.

In terms of the performance comparison of the five saliency algorithms, con-

sidering the average AUC of all three images types, the CA algorithm obtains the

best average AUC (0.879) while the GBVS algorithm generates relatively worse

performance (AUC = 0.779). Specifically, the SR algorithm, as a frequency do-

main algorithm (with relatively fast running speed), obtains good performance,

specially in the detection of McMurdo images.

Compared to top-down methods, since no prior knowledge is given, detecting

rocks in a bottom-up way (saliency methods) is unnecessary to define different

rules to identify different rocks. Rocks with different attributes can all be detected

by one saliency method only if they are salient. Hence, even if a novel rock which

has not been defined as rock target appears in front of a rover, due to its saliency,

it will be recognised as well.

Nevertheless, the saliency methods have their shortcomings. For example, they

are sensitive to edges. Intense edges will often be detected as salient objects be-

cause that edge shape is regarded as special (rare) texture. In addition, saliency

maps may also focus on the region of shadows, because shadows are locally dif-

ferent and often stand out from an image. Therefore, the saliency methods may

perhaps gain an improved performance if the shadows have been removed in a

pre-processing stage. Moreover, the saliency methods do not generate binary map

which can separate rock and regolith regions directly. It needs an extra processing

such as thresholding to convert the saliency output to rock regions. Thus, the

rock regions generated by this way may be less reliable than the regions generated

through top-down algorithms. Hence, in some precise operation, the detection

results of saliency methods might be less useful. However, saliency methods can

be at least used to point out the positions of salient objects and remove redun-

dant background. In addition, saliency methods may be able to be used to reflect

the novelty level of rocks. Except for rocks, other novel objects can be detected

through the bottom-up way as well.

1e.g. The IS detection results of MER images in Fig. 3.24.
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3.4.2.4 Rock novelty level representation

According to the theory of saliency methods, if a rock looks extraordinarily dif-

ferent to other rocks, its saliency will be higher than other normal rocks. On the

other hand, if all rocks in an image have similar properties, less attention will be

paid to them. Thus, the saliency method can be used not only for detecting rocks

but also for representing rocks’ novelty level. In order to test the representing

capability of saliency methods, a meteorite (i.e. the famous “Heat Shield” rock)

which is very uncommon in Mars exploration was pasted into some images contain-

ing only common rocks. The saliency results of the images before and after adding

the meteorite were compared. The comparison examples are shown in Fig. 3.30.

Heat maps have been used to demonstrate the intensity values of saliency maps.

The red regions indicate the region with higher saliency level.

It can be observed that in the original images without the meteorite, the salient

regions are distributed around rocks with emphasis on the rock pile regions. After

the meteorite has been added, the saliency focus is transferred to the meteorite

region. It verifies that the saliency method can reflect the novelty level of rocks

which is also an important attribute to evaluate the rock science value.

3.4.2.5 Novelty detection

As mentioned before, not only rocks but also novelty objects may be detected

through such a bottom-up detection approach. Although currently most research

focuses on rocks, other uncommon objects deserve attention as well. For ex-

ample, if a human or animal-like creature has been found, it may overturn the

present rock-centred exploration mode. Also debris, whether human’s (e.g. Beagle

2 [Amos, 2015]) or alien’s, is extremely scientifically valuable. However, since some

novelty objects are extraordinary rare or even non-existent on Mars, it is impos-

sible to place them into a regular exploration schedule. Nevertheless, the saliency

method may work for identifying them. Interestingly, some imagined images of

Mars that contain novelty objects were processed through the saliency algorithms.

The corresponding results are shown in Figs. 3.31 and 3.32.

In the resultant images, the detected salient regions are in agreement with

what scientists would consider interesting, proving that the saliency methods can

be used for detecting novelty objects even if the objects are not in the schedule.
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The rock added to the 

original image manually 

Saliency results of the original image Saliency results of the image with a meteorite 

The rock added to the 

original image manually 

Saliency results of the original image Saliency results of the image with a meteorite 

Figure 3.30: Saliency result comparison between original images and images with
a meteorite. In each subfigure, from left to right, and top to bottom: original RGB
colour image, ITTI saliency result, GBVS saliency result, CA saliency result, SR
saliency result and IS saliency result.
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Figure 3.31: Saliency methods to detect a cartoon Martian

 

ITTI GBVS 
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Figure 3.32: Saliency methods to detect vehicles on Mars

3.4.3 Summary

In this section, bottom-up concepts have been proposed to identify rock regions

without prior knowledge. Five well-known saliency algorithms were presented to

demonstrate the rock detection process in a bottom-up way. In most cases, rock

regions can be approximately detected and the repetitious background regions can

be removed through using saliency methods. In addition, the saliency methods can

evaluate the rarity of rocks and hence reflect their novelty level, which also can
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be regarded as an important indicator to assess rocks’ scientific values. Besides

rocks, saliency methods can also identify other novelty objects. On the other

hand, saliency methods have shortcomings. They cannot detect rock regions with

clear boundaries. Objects with less science value such as edges and shadows will

probably be highlighted.

Although having some shortcomings, saliency methods which detect rocks in a

bottom-up way can be complementary to the general top-down detection methods

such as thresholding and classification methods. Combining the bottom-up and

top-down methods together, better rock detection abilities could be expected.



Chapter 4

Autonomous Rock Science

Evaluation

4.1 Introduction

Detecting rocks automatically on the planetary surface is significant. It provides

the rover with the abilities to safely travel and avoid dangerous obstacles. De-

tected rocks can also be regarded as science targets. Moreover, by transmitting

these extracted “interesting” regions instead of whole images, the efficiency of data

transmission will be improved and the limited bandwidth can be fully utilized.

On the other hand, rock detection is only the preliminary step in autonomous

exploration. Indeed, the aim of planetary exploration is to discover some objects

(rocks) with desirable science values. Only detecting rock regions is not enough to

accomplish such an aim. The rock regions still need to be sent back to Earth where

scientists perform analysis and evaluate their science value. After analysis and

evaluation, the control centre uploads a new set of instructions depending on the

scientists’ decision for the rover to follow. For example, if scientists are interested in

one particular rock, the uploaded instructions would guide the rover to move to the

rock for close-up observation and further analysis with the onboard instruments.

These data and command exchanges will also cost the limited bandwidth. In

addition, the scientists have to wait for the rover’s information and the rover

needs to wait for the feedback, thereby decreasing the efficiency of exploration. If

the science values of rocks could be assessed onboard automatically, the efficiency

of exploration would be dramatically improved.

80
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There are a number of works related to autonomous rock science represen-

tation. However, many works only focused on extracting features of rocks but

did not mention how to utilise these features [Di et al., 2013; Fink et al., 2008;

Thompson et al., 2005b]. In order to automatically evaluate the science value of

rocks, it is necessary to establish an automatic mechanism to use the extracted

features. In terms of existing autonomous systems, OASIS [Castano et al., 2003,

2007a,b] implemented a method similar to weighted sum for enabling scientists to

efficiently and easily stipulate the importance of each feature, by which the science

priority of rocks can be ranked based on the extracted features and the importance

weights. AEGIS [Estlin et al., 2009, 2012] also applied such a strategy to incor-

porate the information of extracted features. In the CREST Autonomous Robot

Scientist (ARS) system [Woods et al., 2008a], the science evaluation subsystem

SARA [Woods et al., 2009] is based upon the methodology produced by Dr. Derek

Pullan1 from the University of Leicester [Pullan, 2008], attempting to emulate hu-

man field geologists’ thinking: identifying key attributes, scoring them as scientific

values and then combining them together. Compared to OASIS and AEGIS, the

rock science evaluation mechanism in SARA involved more geological concepts,

addressing “geological attributes” rather than only “computer vision features”.

Particularly, geological attributes in this mechanism were divided into three parts:

structure, texture and composition. It is believed that such a mechanism can

generate evaluation results more scientifically and geologically. However, due to

heavy constraints in both time and manpower, the SARA system has not been im-

plemented completely. While in later research, a system named Knowledge-based

Science Target Identification System (KSTIS) has been designed as a feasible rock

science value evaluation model based on SARA’s evaluation mechanism [Pugh,

2010; Pugh et al., 2010a]. Accordingly, KSTIS analysed rock attributes in three

parts. The structure part concerned layering (bedding) information, containing

three attributes: layering presence, layering scale and layering type. In the texture

part, three attributes were selected: surface lustre, surface relief and angularity.

The attributes of the composition part were mainly hue and albedo. Specifically,

fuzzy logic has been introduced into KSTIS. A fuzzy expert system was estab-

lished for converting geological attribute values to science values. In contrast with

the previous systems which use linear methods to integrate the feature/attribute

information, the introduction of a fuzzy system allows KSTIS to analyse rocks’

attributes more similarly to humans. However, due to time constraints, KSTIS

did not achieve full autonomy. The input parameters of the expert system need to

1The ground truth in this chapter is also provided by Dr. Derek Pullan.
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be evaluated by a human, leading the system to being not applicable in real plan-

etary exploration. If automatic input was to be implemented, the system would

become more practicable and efficient.

It can be seen that, although the geology-oriented mechanism was proposed

and applied in the CREST and KSTIS systems, the unsolved problem is how to

automatically generate geological attributes from previously detected rock regions.

Here, in order to fulfill full automation, we propose a new approach (see Fig. 4.1)

of generating rock science value. Derived from the OASIS and AEGIS systems,

the proposed approach (system) extracts visual features from rock regions. And

derived from KSTIS, a fuzzy expert system has been applied for calculating the

science value of rocks through geological attributes. However, there is a gap be-

tween visual features and geological attributes. Visual features are extracted using

computer vision concepts but geological attributes are described using geological

concepts. Hence, a mapping procedure has been introduced to map visual features

to geological attributes.
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Figure 4.1: Procedure comparison between the proposed system and other existed
systems

Since the geological mechanism is inherited from KSTIS, the geological at-

tributes and fuzzy expert system of our proposed system are very similar to those

of KSTIS. KSTIS divides the geological attributes into structure attributes (layer-

ing presence, layering scale and layering type), texture attributes (surface lustre,
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surface relief and angularity) and composition attributes (hue and albedo). Hence,

in our system, the geological attributes are classified in such way.

With regard to the composition part, once the rock regions have been defined, it

can be relatively easy to extract the composition information (i.e. hue and albedo)

directly. It means that the visual features hue and albedo are equivalent to the

geological attributes hue and albedo. Thus, it is unnecessary to have an extra

mapping process. On the other hand, the structure and texture attributes are more

abstract. It is difficult to know which visual feature can be a good representation

of a specified attribute. Thus, the mapping procedure is needed.

Since distance information is lacking from some rock data, the layering scale

attribute cannot be recovered. Moreover, because the attribute layering type is

rather abstract, it is hard to deliver it by a simple computation concept. During

early consultation with a domain expert, it was agreed to use a new attribute

“layering” to represent the distinct level of the layering (bedding) structure. In

addition, lustre is also difficult to determine from images because it relies on di-

rect illumination and specularity of the target surface. Moreover, it is similar to

the composition attribute “albedo”. Hence, as a suggestion from the geological

expert, the lustre attribute was represented by the average gray level intensity

of a rock region. Thus, the attributes that should be mapped are surface relief

(Relief), angularity (Angularity) and layering (Layering). Since the colour of im-

ages is irrelevant to these three attributes, the rock images for experiments were

converted to grayscale. For the sake of simplicity, in each image, only one rock

was regarded as the target that needs to be analysed and its region was labeled

manually. Rough scores of three geological attributes of these rock targets were

provided by a geologist and a series of algorithms were tested on the rock regions

in images to extract the visual features. Correlation between attribute scores and

feature values were calculated in order to find out the best feature to represent

each geological attribute respectively (i.e. mapping process). After the geological

attributes were mapped from corresponding visual features, they were used as the

inputs of the fuzzy expert system to generate the science values of rocks.

The features and corresponding algorithms are given in Section 4.2. Details of

the mapping procedure are shown in Section 4.3. And the fuzzy system is discussed

in Section 4.4.
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4.2 Visual features and corresponding algorithms

In this section, 63 visual features are selected for representing different charac-

teristics of rock regions. One group of features such as Mean and Compactness

have been mentioned in other people’s works. In addition, some new features are

created especially for the purpose of representing specific attributes. For example,

Gabor filters have been used to search parallel edges which seems to have some

connection with the Layering attribute. It is believed that these features or combi-

nations of them could represent geological attributes in a way similar to geologists

and hence can be used for mapping.

4.2.1 Basic grey level statistics algorithms

Statistical measures can be used to create features that reflect pixel intensity

distribution, providing useful information about surface properties of rocks. In

AEGIS [Estlin et al., 2012], the statistical features Mean, Variance, Skewness and

Kurtosis were used. These features can be defined as:

Mean =
1

n

∑

x∈R

x (4.1)

Variance =
1

n

∑

x∈R

(x− x̄)2 (4.2)

Skewness =
1
n

∑

x∈R(x− x̄)3

( 1
n

∑

x∈R(x− x̄)2)3/2
(4.3)

Kurtosis =
1
n

∑

x∈R(x− x̄)4

( 1
n

∑

x∈R(x− x̄)2)2
− 3 (4.4)

in which, R denotes the rock region, n denotes the number of pixels in the rock

region and x denotes the grey level value of each pixel.

Moreover, the coefficient of variation (CV), which is a normalised measure for

integrating theMean and the Variance, is also selected as a feature for the mapping

experiment:

CV =
Variance1/2

Mean
(4.5)
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The entropy of grey level intensity is another statistic feature to reflect the

intensity distribution of rocks [Pedersen, 2000], which can be calculated by:

Entropy = −
∑

i

P (xi) logP (xi) (4.6)

where P (xi) denotes the probability of xi.

An 8-bin grey level histogram was constructed to reduce uncertainty and sim-

plify calculation of Entropy. In order to distinguish grey level entropy from other

entropies, it is called Entgl.

4.2.2 Basic direction statistics algorithms

Additionally to the grey level information, direction information is also signifi-

cant. The Sobel operator, having been applied in some previous science evalua-

tion system such as SARA [Woods et al., 2009], was employed to provide direction

information in our experiments. The operator uses two 3 × 3 kernels which are

convolved with the original images to calculate approximations of the derivatives

(horizontal and vertical gradients). Then, the approximate direction of each pixel

can be calculated through using the two gradients. Unlike the intensity informa-

tion, the direction information is periodic, creating the difficulty in the calculation

of some statistical features such as variance, kurtosis and skewness. Hence, the

entropy became an appropriate feature to represent the dispersion of the direction

distribution. Here, the entropy of direction is named Entdir. Similar to Entgl, the

directions, in the range of [0, 2π), were partitioned into eight equal-sized inter-

vals. Each direction is mapped to its interval thereby forming a histogram which

can facilitate the calculation of the Entdir. The equation of Entdir is the same

as the entropy function of grey level intensity (Eqn. (4.6)) but replaces intensity

information with direction information.

Since the kurtosis of directions cannot be calculated, a new feature entitled

Sharpness is proposed to reflect the “peakedness” of the direction distribution. It

is defined as follows:

Sharpness =
∑

i

Lmin(i)
2 × P (xi) (4.7)

in which P (xi) refers to the probability of xi. Supposing that the peak position

of the maximum P (xi) is imax, Lmin(i) denotes the minimum distance to imax in a
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cycle. A simple way to calculate Lmin(i) is:

Lmin(i) = min(|i− imax|, |i− imax − λ|, |i− imax + λ|) (4.8)

where λ is the wavelength of a cycle. If the original direction information is

applied, λ = 2π. Since a histogram was used, the value of λ equaled the number

of histogram bins1. Examples of Lmin are shown in Fig. 4.2.

By using Entropy and Sharpness, it is feasible to measure the dispersion and

constringency of the distribution of directions. In the statistics of directions dis-

cussed below, the concept of Sharpness will be mentioned many times. Here, the

Entropy and Sharpness of the direction distribution of a whole rock region are

named Entdir and SPdir.

4.2.3 Region shape-based algorithms

Shape-based features focus on the shape characters of rock regions but neglect the

content inside. It can be said that shape-based algorithms only perform processing

on rock templates (labeled rock regions) but not original rock images. The example

of a rock template is demonstrated in Fig. 4.3.

Currently, 15 kinds of features have been selected to represent the shape in-

formation of rocks. They are: Area, Extent, Solidity, Compactness, the ratio of

perimeter Rp, eccentricity of fitted ellipse Eccentricity, the error of fitting Errfit,

Hu moments I1 to I7, and the bending energy BE.

Area indicates the number of pixels in a rock template, representing the size

of the rock. Although it seems to be irrelevant to the geological attributes which

need to be mapped, it is an important feature used in many autonomous systems

and prototypes [Di et al., 2013; Estlin et al., 2009] and can be used to derive other

features.

Extent specifies the ratio of pixels in the rock region to that in its bounding

box, computed as the area of rock divided by the area of its bounding box. An

example of a bounding box is shown in Fig. 4.4 (A).

Solidity, a measure similar to Extent, is the ratio of pixels in the rock region

to that in its convex hull. Generally, the convex hull will express the rock region

envelope more accurately. An example of a convex hull is illustrated in Fig. 4.4 (B).

Compactness is a measure of the similarity of the rock boundary to a circle.

1Thus, λ is set to 8 in all calculation procedures of Sharpness
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Figure 4.2: Examples of Lmin

Compactness has been used to describe the angularity of rocks [Pedersen, 2000],

calculated as:

Compactness =
4× Arearock

Perimeter 2
rock

(4.9)
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Figure 4.3: Example of rock template

A B 

Figure 4.4: Examples of bounding box (A) and convex Hull (B)

The Rp means the ratio of perimeters of the convex hull and the rock region,

describing the bending of rock contours as well.

Another way to describe a rock’s shape is to fit an ellipse to it. The eccen-

tricity and fitting error of the fitted ellipse have been mentioned to represent the

angularity of rocks [Barnes et al., 2009; Castano et al., 2003; Di et al., 2013; Fox

et al., 2002]. Here, a robust ellipse fitting method [Fitzgibbon et al., 1999] was

adopted to fit the pixel point of the contour of rock. The ellipse is represented by
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a general conic function:

F (x, y) = ax2 + bxy + cy2 + dx+ ey + f = 0 (4.10)

with the following constraint:

b2 − 4ac < 0 (4.11)

Examples of the fitted ellipses are illustrated in Fig. 4.5. After the parameters

(a, b, c, d, e, f) of a fitted ellipse are obtained, Eccentricity can be calculated as:

Figure 4.5: Examples of the fitted ellipses

Eccentricity =

√

2
√

(a− c)2 + b2

η(a+ c)2 +
√

(a− c)2 + b2
(4.12)

where η = 1 if the determinant of a 3× 3 matrix:





a b/2 d/2

b/2 c e/2

d/2 e/2 f



 (4.13)

is negative or η = −1 if that determinant is positive. On the other hand, the

fitting error Errfit is represented by the square root of the mean of squares of the
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fitted residual errors:

Errfit =

√

∑n
i=1 F

2(xi, yi)

n
(4.14)

An image moment is a certain particular weighted average of image pixels,

describing the shape of objects. As shape encoders, Hu moments [Hu, 1962],

which are invariant under translation, changes in scale and rotation, have been

used to distinguish between different rock shapes automatically [Fink et al., 2008].

Here, the seven Hu moments are also selected as the features I1, I2, I3, I4, I5, I6
and I7.

Bending energy BE is another feature based on the contours of rocks. It is a

measure to represent the angularity of the boundary [Pedersen, 2000], being analo-

gous to the potential energy of a steel spring wrapped around the rock. Originally,

it can be calculated as:

BE =

∮

|κ(s)|2ds
Perimeter

(4.15)

where κ(s) is the curvature of the directed boundary curve ~x(s). However, because

the boundary of a rock in an image consists of discrete pixels, it is unable to

calculate the curvature directly. Hence, the curvature of the boundary at each

pixel is approximated as the curvature of a polygon fitted to the positions of the

pixel and its neighbour pixels (κ(x)). Thus, the discrete BE can be calculated as

follows:

BE =

∑n
i=1 κ(xi)

n
(4.16)

where n is the number of pixels on the perimeter of the rock’s shape.

4.2.4 Canny-based algorithms

The Canny edge detector [Canny, 1986] is an edge detection operator that uses

a multi-stage algorithm to detect optimal edges in images. In some works, the

Canny detector has been used as an important tool for the recognition of rock

layering [Gulick et al., 2001; Roush, 2004].

The Canny operator can find continuous and smooth edges from rock regions,

but rock attributes cannot be represented directly by these edges. It needs a
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Figure 4.6: Example of edges detected by the Canny operator

statistic analysis of these edges to calculate attribute values. In [Gulick et al.,

2001], a small, square window (59 × 59) is placed on the Canny edge map. Each

edge in the window was examined as a series of pixel chains of a fixed length.

The straight line between the endpoints of the chains was used to calculate the

approximate local orientation (direction) of the edge. Afterwards, a histogram of

directions was built and then the entropy of the directions was calculated to present

the conformity of the layer. In addition, the number of edge pixels in a window

was counted. Finally layer structure was represented by the entropy of direction

histogram and the edge number of Canny edges. Since rock regions have already

been labeled in our experiments, it is not necessary to set an extra window. The

statistical analysis can be directly implemented on the rock region. An example of

the edges detected by the Canny operator in a rock region is illustrated in Fig. 4.6.

However, original Canny edge maps show phenomena such as circular edges and

bifurcated edges (see Fig. 4.7), increasing the difficulty of direction calculation.

The direction near the branch of a bifurcated edge is ambiguous. In addition,

there is no endpoint on a circular edge. Thus, the start point of a circular edge

cannot be defined, making the direction of the edge meaningless. Hence, in order

to perform a statistical analysis of the direction of the edges, some preprocessing

needs to be done to solve the problems. Bifurcated edges can be regarded as a set of

edges with different directions which intersect at some crossing points (connected
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Figure 4.7: Phenomena of circular and bifurcated edges

points). Hence, by breaking these crossing points, except for the circular edges,

all edges becomes simple edges. Each simple edge has two and only two endpoints

and there is no branch between the two endpoints. Thus the edge can be easily

represented as one or several chains, facilitating the calculation of edge direction.

The connected points can be found as the pixels which have more than two edge

points in their eight-connected neighbourhood. The circular edges can be found

by counting the endpoint numbers of edges. If an edge has no endpoint (points

that only have one edge point in their eight-connected neighbourhood), it can be

defined as the circular edge. For convenience, circular edges were removed directly

from the edge map. In addition, it is less important to calculate the edges shorter

than a certain length. For example, the detected edges with only one or two pixels

may be noise. Hence, edges that have less than five pixels were eliminated as

well. After removing connected points, circular edges and short edges, the final

Canny edge map can be obtained. An illustration of the preprocessing is shown

in Fig. 4.8.

Although the connected points and circular edges were removed in our algo-

rithm to gain a simple edge map, they may be useful in other applications. For

example, combined with other attributes, connected points and circular edges can

be applied to detect cross-bedding and graded-bedding (Fig. 4.9) respectively.

After the final Canny edge map has been obtained, the histograms of direction

can be generated. Corresponding to the basic direction statistics algorithms, the
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A B 

C D 

Figure 4.8: Preprocessing for generating the final edge map: (A) original grey
level image, (B) original Canny edge map; (C) removing connected points (red),
circular edges (blue) and short edges (green); (D) final Canny edge map.

histogram is 8-bin with the same interval. There are two ways to represent the

direction directly by using the Canny edge. The first way is similar to [Gulick et al.,

2001], considering that an edge consists of several chains with the same length.

The direction of the edge is an integration of the directions of the chains. Here,

the histogram generated by these directions was named Canny chain direction
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Figure 4.9: Synthetic images of cross-bedding and graded-bedding (from [Pullan,
2008]).

histogram. The other way directly uses each whole edge. Since every edge only has

two endpoints, the direction angle of an edge can be directly calculated from the

endpoints of the edge itself rather than of the chains. The histogram representing

these directions was named Canny edge direction histogram.

Moreover, a method based on Canny edges was proposed which however did

not use the Canny edges directly. This method considered that the pixels detected

by the Canny operator are the pixels describing the real edge in a rock region

appropriately. That is to say, the Canny operator can be regarded as a thresholding

tool to select pixels. Hence the Canny edges were regarded as a set of pixels. The

Sobel operator was employed on the original rock image to get the directions of

the pixels at the Canny detected positions. The histogram representing the Sobel

directions of detected Canny pixels was named Canny pixel direction histogram.

The Entropy and Sharpness of each histogram were calculated as features. The

Entropy and Sharpness of the Canny chain direction histogram, Canny edge direc-

tion histogram, and Canny pixel direction histogram were abbreviated as EntCchain,

SPCchain, EntCedge, SPCedge, EntCpixel and SPCpixel respectively. Furthermore, the

density of the Canny edges (denoted by DenCanny), which means the ratio of the

number of Canny edge pixels and the total pixels in the rock region, was also

selected as a feature.

The Hough transform [Hough, 1962] has been used in autonomous science for

line detection in edge maps [Roush, 2004]. The Hough line transform firstly rep-

resents the lines in polar coordinates, and then measures the edge map’s response
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to each line. Generally, a predefined number of lines having the highest response

will be selected for further analysis. Hence, unlike the features mentioned before

which used histograms to calculate the statistics, the statistics was directly per-

formed on the lines with high responses. Firstly, the line with the highest response

was extracted as the primary line. It is called L0 and its direction is the primary

direction θ0. Then, the next n lines with highest responses were selected as L1

to Ln and their directions are θ1 to θn. A measure was used to indicate the di-

rection similarity between [L1, ..., Ln] and L0. Since this measure is similar to the

Sharpness of direction, it was named SPHough, which can be calculated as:

SPHough =

∑n
i=1 min((θn − θ0 − λ)2, (θn − θ0)

2, (θn − θ0 + λ)2)

n
(4.17)

where λ is the cycle length of direction. As the general direction range of Hough

lines are [−90, 89], λ was set as 180. The number of extracted Hough lines n was

set to 20 in our case. An example of the lines detected by the Hough transform

from the Canny edge map is shown in Fig. 4.10.

Figure 4.10: Hough lines detected from the Canny edges (red). The blue line is
L0, denoting the primary direction.

Consequently, by using the edges generated by the Canny operator, eight fea-

tures can be obtained. They are: EntCchain, SPCchain, EntCedge, SPCedge, EntCpixel,

SPCpixel, DenCanny and SPHough.
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4.2.5 Gabor-based algorithms

Gabor filters are a set of linear filters used for edge detection. The frequency and

orientation representations of Gabor filters are similar to human visual perception,

and they have been found to be particularly appropriate for texture representation

and discrimination. As a tool that can represent not only the orientation infor-

mation but also the scale information of texture, Gabor filters have been already

used to describe and analyse the texture of rocks in some works on planetary

exploration [Castano et al., 1999; Fink et al., 2008].

Generally, a Gabor filter has a real and an imaginary component. Both com-

ponents are defined by a sinusoidal wave multiplied by a Gaussian function. In

the 2D situation, a Gabor filter can be expressed as:

Real:

g(x, y;λ, θ, σ, γ) = exp
(

− x′2 + γ2y′2

2σ2

)

cos
(

2π
x′

λ

)

(4.18)

Imaginary:

g(x, y;λ, θ, σ, γ) = exp
(

− x′2 + γ2y′2

2σ2

)

sin
(

2π
x′

λ

)

(4.19)

where

x′ = x cos θ − y sin θ (4.20)

and

y′ = x sin θ + y cos θ (4.21)

in which λ is the wavelength of the sinusoidal wave, indicating the scale informa-

tion, θ denotes the orientation of parallel stripes of a Gabor function, σ is the

standard deviation of the Gaussian envelope, γ is the aspect ratio, specifying the

ellipticity of a Gabor function. Moreover, because the imaginary component is too

sensitive to edges, for simplicity, only the symmetric real component was applied.

In previous works, one Gabor filter was used to produce one feature. If 40

Gabor filters are applied, 40 features are generated. However each feature only in-

dicates the character of a particular orientation and scale. In order to represent the

rock attributes, it is necessary to summarise the features of different orientations

and scales together to get more abstract features.

Moreover, a problem of the filter expressed by Eqn. (4.18) is that, if an image

is directly convolved by such filters, the results obtained by filters with different σ
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will have different result ranges. In addition, in image processing, data is discrete,

causing another problem that the sum of a Gaussian distribution filter does not

precisely equal to 1, which also introduces some biases of result ranges. Hence,

due to the difference of ranges, the convolution results of different filters cannot

be integrated directly. Therefore, a process of normalisation is required before the

integration of Gabor features at different scales (σ). A normalised real Gabor filter

derived from Eqn. (4.18) can be represented as:

g(x, y;λ, θ, σ, γ) =

1
2πσ2/γ

exp
(

− x′2+γ2y′2

2σ2

)

cos
(

2π x′

λ

)

∑

| g | (4.22)

Through using the Gabor features generated by the normalised filters, direct

statistical analyses can be performed. In our experiments, four wavelengths and

eight orientations were used. These were [2, 4, 8, 16] and [0, π/8, π/4, 3π/8, π/2,

5π/8, 3π/4, 7π/8]. For each filter, σ = 0.5λ, and for all filters, the γ values were

set to 1. Based on the three standard deviations of the filter with the largest σ,

the size of the filter window was set as 49× 49. The images of all 32 Gabor filters

are given in Fig. 4.11.

Figure 4.11: Normalised Gabor filters with four scales and eight directions

Convolved with the 32 normalised Gabor filters, a rock image can generate 32

feature maps. It can be found that a layer structure can produce a larger absolute

response, whether positive or negative. Hence, the absolute value of the feature

maps was used, making the value range of feature maps from 0 to 1. An example

of feature maps of a layered rock image is shown in Fig. 4.12, from which it can
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be seen that the image of a layered rock has an obviously prominent response to

a particular filter (fourth scale and fourth direction).

Figure 4.12: Gabor feature maps of the image of a layered rock (the original image
is the left figure of Fig. 4.6). As the responses of some filters are too small, intensity
of the feature map images are rescaled to [0,1].

After normalisation and making absolute, the feature maps can be used to

calculate abstract features. In our algorithms, the abstraction processing was

started from each pixel. For each pixel in the rock region of the original rock image,

32 features can be obtained from the Gabor filters. Here, they are described by

a feature matrix whose size is related to the number of scales (wavelengths) and

directions (orientations). Because four scales and eight orientations were employed,

the size of the matrix in our experiment is 4 × 8. A matrix can be expressed as

follows:











a11 a12 a13 a14 a15 a16 a17 a18
a21 a22 a23 a24 a25 a26 a27 a28
a31 a32 a33 a34 a35 a36 a37 a38
a41 a42 a43 a44 a45 a46 a47 a48











(4.23)

Each element value of the matrix is the response value of the filters at corre-

sponding scale and direction. For example, the a37 means the response value in

the feature map convolved by the filter of third scale (λ = 8) and seventh direction

(θ = 3π/4). Here, we defined the primary scale and the primary direction by using

the matrix. The primary scale and primary direction of a pixel corresponds to the
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position of maximum value in the matrix. For instance, if a matrix is:











0.130 0.184 0.144 0.233 0.242 0.265 0.243 0.255

0.222 0.027 0.143 0.179 0.344 0.235 0.256 0.278

0.231 0.068 0.046 0.317 0.289 0.004 0.134 0.028

0.538 0.183 0.077 0.132 0.212 0.187 0.158 0.343











(4.24)

The maximum value is 0.538, and thus the primary scale is 4 (λ = 16) and pri-

mary direction is 1 (θ = 0). After determining the primary scales and directions of

all pixels, an 8-bin direction histogram and a 4-bin scale histogram are established,

by which the entropies of them can be calculated to reflect the coherence of the

rock’s texture. Here the entropies are called EntGdir and EntGscale. In addition,

the sharpness of the direction was also calculated, abbreviated as SPGdir.

With respect to abstract features of scale, a new feature called Scale is proposed

to combine the scale and their distribution. This kind of feature is supposed to

be able to reflect the coarseness of rock texture. For example, if a rock image is

sensitive to the Gabor filters with small λ, it probably has fine texture. Two kinds

of Scale called Scalelvl and Scaleλ were used, which refer to the scale level ([1, 2, 3,

4]) and the wavelength ([2, 4, 8, 16]) respectively. They are:

Scalelvl =
4

∑

i=1

i×H(i) (4.25)

Scaleλ =
4

∑

i=1

2i ×H(i) (4.26)

in which H(i) is the value of the i-th bin of the scale histogram, denoting the

probability of different primary scales of all pixels.

The features mentioned above only used the position of maximum value in the

matrix (primary scale and primary direction) but ignored other elements in the

matrix. By analysing the whole matrix, it is possible to find out more compre-

hensive information. For example, the conspicuousness of the primary scale and

direction could be an important character to reflect rocks’ texture. Here, for a

matrix M corresponding to a specified pixel, two measures were generated to re-

flect how “primary” the primary scale and direction are. The first measure is the

standard deviation of the matrix σM . The other measure MaxMeanM is calcu-
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lated from the maximum value (corresponding to the primary scale and direction)

subtracting by the mean of all elements in the matrix. The definitions of these

two measures are as follows:

σM =

√

∑4
i=1

∑8
j=1(aij − µM)2

32
(4.27)

MaxMeanM = max(M)− µM (4.28)

where µM the can be calculated as:

µM =

∑4
i=1

∑8
j=1 aij

32
(4.29)

After the two measures of every matrix of all pixels were obtained, the average

values of the two measures of all pixels were taken to reflect the general situation

of a rock region. These two averages are used as two features as well, named StDG

and MaxMeanG respectively.

Consequently, seven features are generated based on the normalised Gabor

filters: EntGdir, EntGscale, SPGdir, Scalelvl, Scaleλ, StDG and MaxMeanG.

4.2.6 Corner density

As mentioned in Section 4.2.3, some shape-based algorithms were used to generate

features which could be able to represent rock angularity. Those algorithms only

utilised rock template information and ignored the content inside a rock contour.

This may introduce some bias while describing rocks. Hence an attempt has made

to create features related to the angularity of rocks by using not only the rock

template but also the intensity information inside the template. An assumption

was made that an angular rock will have more corners than a round rock per unit

of a rock region. Thus, the density of corners can reflect the rock angularity.

Four kinds of corner detection methods were used for finding corner points in

rock regions. They are Harris corner [Harris and Stephens, 1988], Shi & Tomasi

corner [Shi and Tomasi, 1994], SUSAN corner [Smith and Brady, 1995] and SIFT

corner [Lowe, 2004]. Examples of the corner detection results of an angular rock

and a round rock are shown in Figs. 4.13 and 4.14 respectively.

It can be observed that, for some corner detection methods (e.g. Harris method),
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Shi & Tomasi
SUSAN
SIFT
Harris

Figure 4.13: Corner detection result of the image of an angular rock sample

the corner densities are obviously different when dealing with the angular rock and

the round rock. Here, the density features1 of the four detection methods were

abbreviated as DenHarris, DenShi, DenSUSAN and DenSIFT.

4.2.7 Co-occurrence matrix algorithms

A co-occurrence matrix is a matrix that represents the distribution of co-occurring

values at a given offset in a given image. It was used in [Haralick et al., 1973]

to generate textural features. Mathematically, a co-occurrence matrix C can be

defined over an n×m image, parameterised by an offset [∆x, ∆y], as:

C∆x,∆y(i, j) =
n

∑

p=1

m
∑

q=1

{

1, if I(p, q) = i and I(p+∆x, q +∆y) = j

0, otherwise
(4.30)

1The “density” mentioned here is calculated as: Number of detected corner points
Number of pixels in the rock region

.
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Shi & Tomasi
SUSAN
SIFT
Harris

Figure 4.14: Corner detection result of the image of a round rock sample

Since only rock regions are concerned, the statistical analysis of the regions

outside the rock contours is discarded. Therefore, unlike Eqn. (4.30) which analyses

the whole image, the co-occurrence matrix can be redefined to focus on a rock

region:

C∆x,∆y(i, j) =
n

∑

p=1

m
∑

q=1







1, if
I(p, q) = i, I(p+∆x, q +∆y) = j and

[ p, q ] ∈ R, [ p+∆x, q +∆y ] ∈ R

0, otherwise

(4.31)

where R means the rock region and I represents a property value of the image

at the position. Grey level is the most common property used to construct co-

occurrence matrix but other properties such as direction information and edge

information can also be applied. Here, two kinds of co-occurrence matrices were

used: the traditional grey level co-occurrence matrix (GLCM) and the direction

co-occurrence matrix (DCM).
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4.2.7.1 Grey level co-occurrence matrix algorithms

A GLCM is the co-occurrence matrix represented by the grey level. In our algo-

rithm, the 0− 255 grey intensities are divided into eight grey levels with the same

intervals, and hence, the grey level co-occurrence matrices are of size 8× 8. Four

kinds of the offsets [∆x, ∆y] were used. They are [1, 0], [1, 1], [0, 1] and [-1, 1], rep-

resenting the co-occurring relations of two neighbouring pixels at 0◦, 45◦, 90◦ and

135◦ respectively. Thus, for each rock region, four matrices were generated. For

convenience, every matrix was normalised to present the probability rather than

the number of occurrence. After being normalised, for each matrix, five measures

were calculated, which are Entropy, Energy (angular second moment), Contrast,

Homogeneity (inverse difference moment) and Correlation:

Entropy = −
8

∑

i=1

8
∑

j=1

C(i, j) logC(i, j) (4.32)

Energy =
8

∑

i=1

8
∑

j=1

(C(i, j))2 (4.33)

Contrast =
8

∑

i=1

8
∑

j=1

C(i, j)(i− j)2 (4.34)

Homogeneity =
8

∑

i=1

8
∑

j=1

C(i, j)

1 + (i− j)2
(4.35)

Correlation =

∑8
i=1

∑8
j=1(ij)C(i, j)− µxµy

σxσy

(4.36)

where µx, µy, σx and σy are the means and standard deviations in the x and y

directions.

Finally, the average and standard deviation of each measure generated from

all four matrices were calculated as features, labeled as EntAvgGLCM, EntStdGLCM,

EngAvgGLCM, EngStdGLCM, ConAvgGLCM, ConStdGLCM, HomAvgGLCM, HomStdGLCM,

CorAvgGLCM and CorStdGLCM.
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4.2.7.2 Direction co-occurrence matrix algorithms

A DCM is similar to a GLCM but replaces grey levels with directional information.

The Sobel operator was used to generate the direction of each pixel in the rock

region. The direction range [−π/2, π/2) was then partitioned into eight equal-size

intervals thereby constructing another 8 × 8 matrix. Referring to the measures

of each matrix, the formulas of Entropy and Energy of DCM are for the same as

GLCM. However, because the ways to measure the distance of directions and grey

levels are different (grey level information are linear but direction information is

circular), Contrast and Homogeneity were calculated in slightly different manners:

Contrast =
8

∑

i=1

8
∑

j=1

C(i, j)D(i, j)2 (4.37)

Homogeneity =
8

∑

i=1

8
∑

j=1

C(i, j)

1 +D(i, j)2
(4.38)

in which D(i, j) is the distance between the i-th and j-th directions. This distance

can be calculated as:

D(i, j) = min(|i− j|, |i− j − 8|, |i− j + 8|) (4.39)

Moreover, because it is hard to obtain µ and σ from the direction informa-

tion, the Correlation has not been adopted as a measure of a DCM. The averages

and standard deviations were then calculated to generate the eight DCM fea-

tures: EntAvgDCM, EntStdDCM, EngAvgDCM, EngStdDCM, ConAvgDCM, ConStdDCM,

HomAvgDCM and HomStdDCM.

4.2.8 Taruma texture algorithms

[Tamura et al., 1978] proposed six texture features corresponding to human visual

perception, namely, coarseness, contrast, directionality, linelikeness, regularity and

roughness. Although these features have not been designed specifically for rocks,

they can be used for rock images. Since regularity is a derivative of coarseness,

contrast, directionality and linelikeness, and roughness is the sum of coarseness and

contrast, these two features have not been used in the final experiments. Moreover,

due to the high similarity between the feature linelikeness and the DCM feature
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ConDCM, linelikeness was discarded as well. Thus, three of the six features were

utilised to describe rock geological attributes, labeled as CoarT , ConT and DirT .

4.3 Mapping Procedures

In the previous section, 63 computer vision features have been presented to de-

scribe different characteristics of rocks. This section discusses mapping the features

onto geological concepts. Firstly, rock images from different sources were collected

and labeled with rock regions. From these labeled regions, vision features were

extracted through the algorithms mentioned above and the values of the three

attributes (i.e. Relief, Angularity and Layering) were provided by a geologist. Cor-

relation coefficients were used to reflect the similarity between each feature and

attribute. If a feature has a high similarity to a specific geological attribute, the

feature can probably be used for representing this geological attribute and thus a

good mapping could be expected. In addition, linear combinations of features are

discussed as well.

4.3.1 Rock images

One hundred and three images of rocks were collected for testing the algorithms.

The rock images come from four sources. The first source is the real Mars images

captured by the cameras of real Mars rovers: Mars Exploration Rover (MER)

(Spirit and Opportunity rovers) and Mars Science Laboratory (MSL) (Curiosity

rover). The images contain some famous rocks in Mars exploration such as the

iron meteorite “Heat Shield”. The second source of images is from a series of

rock specimens provided by Northern Geological Supplies. The specimens contain

15 igneous rocks (granite, basalt, etc.), 15 sedimentary rock (sandstone, shale,

etc.) and 10 metamorphic rocks (slate, marble, etc.). The third source is images

of float rocks at Clarach bay where the Planetary Robotics Vision Scout rover

(PRoViScout) [Paar et al., 2012] has done some field experiments. The last kind

of rock source is images of rocks in the Planetary Analogue Terrain Laboratory

(PATLab) [Barnes et al., 2008] which were selected by geologists. Some of the

rocks were used as the science targets of field trials [Woods et al., 2009]. The real

Mars images were captured by different cameras including Pancam and Navcam of

MER, MastCam and MAHLI of MSL. Hence, the resolutions of these images are

different, from 384×384 to 1024×1024. The rock specimen images were captured
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on a white background by an industrial camera with resolution 1024×1024. Since

the sizes of specimens are relatively small, they only occupy small regions in the

center of the original 1024 × 1024 images and other parts of images are blank

background. Hence the images were cropped to 512× 512. The images of Clarach

bay and the PATLab were both captured by a 2304 × 1704 CCD digital camera

and were cropped and resized to 1024×768. Examples of rock images with manual

labeled regions from the four sources are illustrated in Fig. 4.15.

A B 

C D 

Figure 4.15: Rock images from different sources with red labeled rock regions:
(A) MER image (“Heat Shield” meteorite); (B) specimen image (basalt); (C) the
image of a rock at Clarach bay; (D) the image of a rock in PATLab with layering
structure.
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4.3.2 Expert scoring of the geological attributes

As mentioned before, our aim is to try to use the visual features calculated by

computer to represent geological expert’s knowledge. Therefore, an expert is in-

dispensable in the experiment to provide the ground truth of every attribute of

every rock. Altogether, three attributes of all 103 rock samples needed to be eval-

uated. Dr. Derek Pullan, the expert of geology and planetary exploration from

University of Leicester, was invited to score every attribute of all 103 rock samples.

In addition, software was developed to accelerate the process of the evaluation. The

GUI of the software is displayed in Fig. 4.16. Using the software makes it more

efficient to view all of the rock samples. And by sliding the slider, the score of

each attribute of each rock can be rapidly graded. According to the requirement

of the geological expert, the attribute scores were given on a scale from 0 to 10.

For example, if a rock is extremely angular, its angularity score will be 10, and

conversely, the angularity of a very round rock will be scored as 0. The expert

mentioned that there could be some inconsistencies of scores across the data but

they were adequate to be regarded as the ground truth for testing the algorithms

and the visual features.

 

Figure 4.16: Graphic user interface of the rock evaluation software
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4.3.3 Mapping of visual features and geological attributes

After 63 features were generated and three attribute scores were approximately

graded by a geologist, it was time to investigate the relation between visual fea-

ture(s) and attributes. Attempts have been made to search for the visual feature(s)

matching the specified attribute score most precisely. In other words, for each at-

tribute, we try to find a feature (a single original feature or a feature composed

of several original features1) which can represent the expert’s thinking (attribute

score) most appropriately.

4.3.3.1 Single feature mapping

Original features, meaning the features directly generated by the algorithms with-

out any processing such as normalisation, scaling and adding bias, were used for

mapping geological attributes. Correlation measures were employed to calculate

the dependence relation between each attribute and each single original feature.

Two kinds of correlation coefficients were used. These were: Pearson’s product-

moment coefficient reflecting the linear dependence and Spearman’s rank corre-

lation which considers only the order consistency of the rank without requiring

a linear relationship. Both correlation coefficients between all three geological

attributes and all 63 features were computed through all 103 rock samples. The

correlation results are shown in Tables 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 and 4.7, catalogued

by different algorithm types.

Table 4.1: Correlation results of the features generated by basic grey level and
direction statistics algorithms

Feature
Pearson’s Correlation Spearman’s Correlation

Relief Angularity Layering Relief Angularity Layering

Mean -0.115 -0.319 -0.359 -0.126 -0.328 -0.241
Variance -0.242 -0.001 -0.109 -0.342 0.03 0.032
CV -0.184 0.188 0.081 -0.221 0.252 0.211
Skewness 0.138 0.095 -0.024 0.089 0.215 0.051
Kurtosis 0.119 -0.194 -0.146 0.134 -0.053 -0.065
Entgl -0.297 0.121 -0.067 -0.314 0.068 0.028
Entdir -0.076 -0.223 -0.599 -0.015 -0.241 -0.593
SPdir -0.039 -0.277 -0.686 0.025 -0.241 -0.582

1Also called combination feature.
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Table 4.2: Correlation results of the features generated by shape-based algorithms

Feature
Pearson’s Correlation Spearman’s Correlation

Relief Angularity Layering Relief Angularity Layering

Area -0.07 -0.048 0.239 0.048 0.064 0.324
Extent 0.222 -0.375 -0.099 0.252 -0.303 -0.037
Solidity 0.305 -0.267 -0.064 0.384 -0.243 -0.034
Compactness 0.186 -0.391 -0.424 0.232 -0.323 -0.368
Rp 0.467 -0.069 0.108 0.584 -0.079 0.084
Eccentricity 0.183 0.109 0.567 0.212 0.186 0.643
Errfit -0.162 0.165 0.046 -0.23 0.192 0.072
I1 0.166 0.248 0.528 0.134 0.225 0.644
I2 0.164 0.199 0.457 0.185 0.187 0.654
I3 -0.048 0.14 0.085 -0.15 0.111 0.08
I4 -0.003 0.099 0.138 -0.011 0.151 0.468
I5 -0.031 0.082 0.046 0.01 0.041 0.419
I6 0.031 0.065 0.112 0.07 0.118 0.483
I7 0.057 0.107 -0.133 0.121 0.035 0.005
BE -0.13 0.01 -0.099 -0.567 0.109 0.052

Table 4.3: Correlation results of the features generated by Canny-based algorithms

Feature
Pearson’s Correlation Spearman’s Correlation

Relief Angularity Layering Relief Angularity Layering

EntCpixel -0.128 -0.301 -0.648 -0.066 -0.285 -0.632
SPCpixel -0.068 -0.332 -0.738 -0.007 -0.272 -0.625
EntCedge -0.063 -0.207 -0.583 -0.041 -0.209 -0.568
SPCedge 0 -0.315 -0.665 0.045 -0.255 -0.579
EntCchain -0.081 -0.242 -0.649 -0.024 -0.3 -0.626
SPCchain -0.055 -0.312 -0.716 -0.019 -0.246 -0.6
DenCanny -0.481 -0.039 -0.401 -0.501 -0.14 -0.248
SPHough 0.142 -0.356 -0.127 0.016 -0.266 -0.17
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Table 4.4: Correlation results of the features generated by Gabor-based algorithms

Feature
Pearson’s Correlation Spearman’s Correlation

Relief Angularity Layering Relief Angularity Layering

EntGdir 0.044 -0.295 -0.636 0.079 -0.236 -0.543
SPGdir -0.032 -0.215 -0.644 -0.025 -0.256 -0.603
EntGscale -0.188 -0.005 -0.334 -0.162 -0.053 -0.142
Scalelvl 0.146 0.031 0.332 0.23 0.138 0.337
Scaleλ 0.222 0.05 0.349 0.291 0.154 0.333
StDG -0.46 -0.064 -0.234 -0.527 -0.076 -0.151
MaxMeanG -0.428 -0.042 -0.146 -0.521 -0.03 -0.072

Table 4.5: Correlation results of the densities of different corners

Feature
Pearson’s Correlation Spearman’s Correlation

Relief Angularity Layering Relief Angularity Layering

DenHarris -0.417 -0.089 -0.293 -0.425 -0.1 -0.286
DenShi -0.317 -0.056 -0.465 -0.323 -0.133 -0.33
DenSIFT -0.58 -0.041 -0.309 -0.617 -0.092 -0.171
DenSUSAN -0.423 -0.103 -0.25 -0.572 -0.073 -0.222
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Table 4.6: Correlation results of the features generated from the grey level and
direction co-occurrence matrices

Feature
Pearson’s Correlation Spearman’s Correlation

Relief Angularity Layering Relief Angularity Layering

EntAvgGLCM -0.445 0.066 -0.194 -0.45 0.003 -0.071
EntStdGLCM -0.437 0.076 0.164 -0.486 0.043 0.229
EngAvgGLCM 0.438 -0.126 0.163 0.457 0.021 0.211
EngStdGLCM -0.143 0.116 0.319 -0.128 0.109 0.383
ConAvgGLCM -0.437 -0.087 -0.244 -0.576 -0.101 -0.237
ConStdGLCM -0.34 -0.118 -0.09 -0.58 -0.051 -0.068
HomAvgGLCM 0.554 0.032 0.369 0.617 0.135 0.405
HomStdGLCM -0.509 0.001 0.011 -0.586 -0.054 0.072
CorAvgGLCM 0.127 0.081 0.319 0.192 0.111 0.309
CorStdGLCM -0.304 -0.079 -0.173 -0.331 -0.068 -0.018
EntAvgDCM -0.201 -0.079 -0.546 -0.179 -0.066 -0.435
EntStdDCM 0.196 -0.044 0.432 0.221 0.017 0.425
EngAvgDCM 0.176 0.095 0.494 0.178 0.116 0.596
EngStdDCM 0.169 0.073 0.53 0.173 0.064 0.537
ConAvgDCM -0.259 0.033 -0.426 -0.259 -0.02 -0.285
ConStdDCM -0.312 -0.048 -0.059 -0.289 -0.131 0.036
HomAvgDCM 0.253 -0.01 0.438 0.264 0.068 0.447
HomStdDCM -0.06 -0.05 0.368 -0.078 -0.058 0.386

Table 4.7: Correlation result of the Tamura features

Feature
Pearson’s Correlation Spearman’s Correlation

Relief Angularity Layering Relief Angularity Layering

CoarT 0.401 0.154 0.277 0.411 0.263 0.295
ConT -0.213 0.006 -0.07 -0.326 0.059 0.072
DirT 0.465 0.095 0.547 0.523 0.138 0.551
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In terms of the single feature selection by the evaluation of correlation coeffi-

cients, we assumed that, to a specified geological attribute, the higher the absolute

correlation value of a feature is, the better it represents the attribute. The reason

for using absolute correlation value is that if a feature has a high negative corre-

lation value to a geological attribute, a new feature that has a positive correlation

with the same absolute value of the negative correlation can be constructed from

the original feature by performing negation or being subtracted from the maximum

value of the feature. Thus, the feature with the highest correlation to the score

of one attribute will be regarded as the most appropriate feature to describe the

attribute. For each attribute, the feature with highest absolute correlation values

(Pearson’s and Spearman’s) is marked in red in the tables.

According to the Pearson’s correlation, DenSIFT, Compactness and SPCpixel have

the highest correlations to the geological attributes Relief, Angularity and Layering

respectively. Nevertheless, the features with highest Spearman’s correlation per-

formance are HomAvgGLCM, Compactness and I2. There exists an inconsistency

between two correlation coefficients.

As the Pearson’s correlation reflects a linear relationship, a feature with a high

Pearson’s correlation value can be regarded as an indicator of the corresponding

geological attribute directly or only with a linear transformation. However, be-

cause Spearman’s correlation only reflects the order of rank, a feature with a high

Spearman’s correlation value may need a power, root or exponential transforma-

tion before being able to represent the geological attribute. In addition, a feature

that has a high Pearson’s correlation will probably have a high Spearman’s corre-

lation, but not vice versa. Moreover, due to the limited range of the expert score

(0-10, 11 values), identical attribute scores of different rocks were inevitable and

part of the ranks of these attributes will be the same. However, the algorithms

rarely generate identical values, and hence generally the visual features have unique

ranks. Such a difference of ranking may also introduce some uncertainty into the

Spearman’s correlation statistics. Given all that, the Pearson’s correlation coeffi-

cient is preferable to Spearman’s in correlation evaluation. Thus, judged by the

Pearson’s correlation coefficient, the best single representative features of Relief,

Angularity and Layering are DenSIFT, Compactness and SPCpixel respectively.

4.3.3.2 Linear combination feature mapping

Although using original features directly can be able to represent geological at-

tributes, it seems that a better mapping could be generated by combining two
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or more features together. Indeed, the original features could be complementary

while describing an attribute. For example, in terms of angularity, the shape-base

features such as Compactness reflect the sharpness of a rock contour and the corner

density such as DenSIFT reflect the pointedness inside the rock contour. Combin-

ing them together has the potential to make a new feature that represents the

Angularity attribute more closely.

Thus, the feasibility of combination features is discussed in this section. A

combination feature will refer two or more original features generated from the

visual algorithms mentioned above. For clarity, the original features are numbered

as Table 4.8.

Table 4.8: Feature reference number

No. Feature No. Feature No. Feature
1 Mean 22 I7 43 EntAvgGLCM

2 Variance 23 BE 44 EntStdGLCM

3 CV 24 EntCpixel 45 EngAvgGLCM

4 Skewness 25 SPCpixel 46 EngStdGLCM

5 Kurtosis 26 EntCedge 47 ConAvgGLCM

6 Entgl 27 SPCedge 48 ConStdGLCM

7 Entdir 28 EntCchain 49 HomAvgGLCM

8 SPdir 29 SPCchain 50 HomStdGLCM

9 Area 30 DenCanny 51 CorAvgGLCM

10 Extent 31 SPHough 52 CorStdGLCM

11 Solidity 32 EntGdir 53 EntAvgDCM

12 Compactness 33 SPGdir 54 EntStdDCM

13 Rp 34 EntGscale 55 EngAvgDCM

14 Eccentricity 35 Scalelvl 56 EngStdDCM

15 Errfit 36 Scaleλ 57 ConAvgDCM

16 I1 37 StDG 58 ConStdDCM

17 I2 38 MaxMeanG 59 HomAvgDCM

18 I3 39 DenHarris 60 HomStdDCM

19 I4 40 DenShi 61 CoarT
20 I5 41 DenSIFT 62 ConT

21 I6 42 DenSUSAN 63 DirT

Due to the difficulty in finding a specified function to fit the original features,

only linear combination methods are discussed in the current stage. A combination
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feature can be expressed as:

Fcomb = β0 + β1F1 + β2F2 · · ·+ βnFn (4.40)

where Fn denotes the original feature and βn
1 denotes the combined weight of the

relative feature, can be positive or negative. It can also be zero, which means the

feature is not selected to calculate the combination feature. Thus the final problem

is how to decide the weight of each original feature to express the knowledge

of the expert more precisely. Similar to the case of single original features, the

evaluation of matching degree was based on the Pearson’s correlation coefficient. A

high absolute correlation between a combination feature and a specified attribute

can imply that the combination feature can express the attribute more precisely.

Fig. 4.17 shows the correlation values between combination features and a specified

geological attribute. In the example, the combination features were composed

of Compactness and DenSIFT with different combination weight ratios, while the

geological attribute was Angularity.

The ratios denote the ratios of weights applied in feature combinations. For

example, the ratio 1 : 10 can mean combination features such as:

Fcomb = 1× Compactness+ 10× DenSIFT

or Fcomb = 0.1× Compactness+ 1× DenSIFT

or Fcomb = −1× Compactness− 10× DenSIFT

(4.41)

The reason why we used the weight ratios but not the weights for the demon-

stration is that, in the calculation process of the Pearson correlation coefficient,

the data is scaled by its standard deviation. Hence, the correlation value remains

invariant when the combination weights of original features change proportion-

ally. For example, in terms of a specified geological attribute, the three Fcombs in

Eqn. (4.41) will obtain the same correlation value.

If we regard the mapping process between visual features and a specified geolog-

ical attribute as an overdetermined regression, the least square method, a standard

approach to calculate the approximate solutions of overdetermined systems, can

be applied to find the optimised weights β̂ by minimising the sum of the square

1Particularly, β0 is a constant which can facilitate the least square method discussed below.
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Figure 4.17: Correlation between a specified attribute (Angularity) and the com-
bination features (combined by Compactness and DenSIFT) with different combi-
nation ratios. The red point position indicates the ratio of weights generated from
the least square algorithm.

residues (i.e. the difference between combined feature Fβ and attribute score S).

β̂ = argmin
∑

(Fβ − S)2 (4.42)

In addition, we found that the Pearson’s correlation of the combination feature

with the weights generated by the linear least square method almost reaches the

highest value. For example, combining the two original features Compactness and
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DenSIFT, the least square combination feature FLS to represent Angularity is:

FLS = 10.0532− 21.8246× Compactness− 16.7953×DenSIFT (4.43)

The weight ratio of the two features is 21.8246/16.7863 ≈ 1.3. As can be seen in

Fig. 4.17, the least square weight ratio is corresponding to the highest correlation.

Since the least square method can be used to calculate the combination feature

with not only a minimum square residue sum but also a high correlation, it was

applied to generate the combination features with optimised weights. On the other

hand, overfitting is another problem which will occur in a combination process

and will affect the performance of combination features. Generally, overfitting

occurs when a model is excessively complex, such as having too many parameters

relatively to the number of observations. In our case, as the number of observations

(i.e. rock samples) is fixed, increasing the number of features for combination will

also increase the probability of overfitting. Hence a tradeoff must be made between

the correlation performance and the number of features for the combination. Here,

three ways were attempted to find the best linear combination feature which is

composed of a limited number of original features to represent each geological

attribute. These were the enumeration method, a fast greedy method and the

linear regression with L1-constraints (Lasso) method.

A. Enumeration method

This method firstly defines the number of original features for combinations.

All possible sets with the specified number of original features are enumerated and

then the combination features are calculated through the least square method. Par-

ticularly, the calculation of the combination weights of each geological attribute is

independent. That is to say, under each limitation of feature number, three feature

sets will be generated to represent the three geological attributes Relief, Angular-

ity and Layering respectively. The combination feature with the highest absolute

correlation value to each geological attribute is selected as the best combination

feature to represent the corresponding attribute. The feature set which generates

the best combination is therefore called best feature set.

For a n-feature combination,
∏n

i=1(63−i)/n! feature sets need to be calculated.

In the case of 7-feature combination, the set number is 553,270,671. Hence, due

to the huge calculation amount and the aim to restrict the number of original

features, only the feature sets containing two to six original features were consid-
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ered. Table 4.9 shows the feature indices (see Table 4.8) in best feature sets with

different feature numbers, in which a 1-feature set is equivalent to the single origi-

nal feature. Fig. 4.18 illustrates the correlation values of the combination features

generated from those best feature sets.

Table 4.9: Feature reference number(s) in the best feature sets under different
feature number limitations

1 2 3 4 5 6
Relief 41 13, 41 13, 41, 46 13, 41,

46, 63
13, 38,

41, 50, 63
1, 4, 13,
33, 38, 50

Angularity 12 1, 10 1, 5, 10 1, 10, 45,
48

1, 25, 45,
50, 59

1, 10, 25,
45, 50, 59

Layering 25 25, 49 29, 37, 38 25, 26,
33, 37

4, 25, 26,
33, 47

4, 9, 25,
26, 33, 48
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Figure 4.18: Correlation values of the combination features generated from the
best feature sets under different feature number limitation

B. Fast greedy method

It can be seen in Table 4.9, for a specific attribute, a best feature set with more

features tends to contain the elements in the best features with fewer features. For

example, for the attribute Relief, the best 1-feature set ([41]) is a subset of the best
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2-feature set ([13, 41]) and the best 2-feature is a subset of the best 3-feature set

([13, 41, 46]). Hence, a fast greedy algorithm (shown in Fig. 4.19) was proposed

for the purpose of accelerating the calculation of the “best” feature sets.

Fi is the “best” feature set in the i-feature case.
imax is the maximum number of features. It is 63 in our case.
A is a specified attribute.
C(F, A) is the correlation value between the feature set F and the attribute A.

1 F0 ← {}
2 for i = 1 to imax do

3 T ← Fn−1

4 foreach x ∈ (Fall − T )
5 if C(Fn−1 ∪ x,A) > C(T,A)
6 T ← Fn−1 ∪ x

7 Fn ← T

Figure 4.19: Pseudocode of the fast greedy method

This method starts off with an empty set, and then the features will be added

gradually while increasing the number of features. At a time (iteration), only one

feature is added to previous “best” feature set to create the new “best” feature set

with one more feature. The additional feature is the one that causes the greatest

correlation increase to the previous set. The i-feature feature set will definitely

be a subset of (i+1)-feature feature set. Thus, it does not need to enumerate

all possible feature sets thereby reducing the calculation time dramatically. For

generating the best i-feature combination feature set, the number of calculation

will decrease from
∏n

i=1(63− i)/n! to 64− i. Therefore, by applying such a greedy

method, the combination feature calculation will not be limited by the number

of features. On the other hand, although this method will probably not find the

global best feature set, due to the greedy property of this method, the combination

features generated by the “best” feature sets will be relatively high-scoring as well.

As an (i+1)-feature set can be represented by an i-feature set plus an additional

feature, the “best” feature sets of all attributes are presented by corresponding

addition features, which are shown in Table 4.10. The overall correlation results

of the combination features generated by these feature sets are shown in Fig. 4.20.

C. Linear regression with L1-constraints (Lasso)

The Lasso method is a shrinkage and selection method for linear regression [Tib-

shirani, 1996]. It minimises the usual sum of squared residues, with a bound on
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Table 4.10: Additional features of each iteration during the process of the greedy
method

No. Relief Angularity Layering No. Relief Angularity Layering

1 41 12 25 33 35 18 21
2 13 1 49 34 36 62 16
3 46 31 33 35 56 49 20
4 63 40 26 36 7 43 41
5 37 48 4 37 61 36 60
6 40 5 9 38 55 60 54
7 54 10 48 39 53 46 50
8 52 54 11 40 59 52 14
9 11 6 32 41 4 55 57
10 47 25 10 42 27 37 34
11 10 14 27 43 22 41 46
12 51 2 62 44 24 28 52
13 58 50 43 45 60 51 7
14 44 33 45 46 1 34 56
15 33 63 5 47 49 38 1
16 20 47 12 48 6 57 53
17 29 9 17 49 30 45 28
18 16 58 40 50 23 30 8
19 34 20 6 51 2 44 63
20 28 22 42 52 32 56 29
21 42 3 23 53 15 26 35
22 18 39 39 54 45 23 36
23 62 42 61 55 12 8 38
24 39 53 55 56 26 24 37
25 21 35 44 57 14 59 59
26 19 61 3 58 3 4 31
27 17 19 24 59 9 11 47
28 38 16 58 60 50 27 51
29 8 13 2 61 31 7 13
30 5 17 15 62 48 32 19
31 25 21 30 63 57 29 18
32 43 15 22

the sum of the absolute values of the weights (L1-norm). A simple expression of
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Figure 4.20: Correlation results of the combination features with the combination
weights calculated by the fast greedy algorithm

the Lasso method can be written as a least square regression with a L1 penalty.

β̂ = argmin
∑

(Fβ − S)2 + λ‖β‖1 (4.44)

where ‖β‖1 is the L1-norm of the combination weights:

‖β‖1 =
n

∑

i=1

|βi| (4.45)

By increasing the L1 penalty coefficient λ, the combination weights of a com-

bination feature will be driven to zero. Thus, the Lasso method can automatically

deselect some features within the regression process and hence it is not necessary to

predefine the number of original features. The combination features with limited

numbers of original features can be generated directly with a suitable λ. Here we

tested the Lasso method on our data with λ ranging from 0.1 to 1. Table 4.11 lists

the “selected” original feature indices of the Lasso combination features generated

by different λ values. It can be seen that, if λ reaches a certain value, the result is

the same as for single feature selection. Fig. 4.21 shows the correlation results of

the Lasso combination features.
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Table 4.11: Selected features through the Lasso algorithm with different λ

λ Relief Angularity Layering
0.1 1, 4, 9, 10, 13, 14, 16,

31, 36, 40, 41, 46, 57,
63

1, 5, 6, 9, 10, 12, 14,
20, 21, 22, 24, 25, 29,
31, 45, 48, 54, 57

1, 4, 5, 9, 13, 14, 21,
22, 25, 26, 29, 33, 35,

48, 50, 52, 62
0.2 9, 10, 13, 31, 41, 46,

57, 61, 63
1, 5, 10, 12, 25, 29,
31, 45, 48, 54, 57

1, 2, 9, 14, 22, 25, 29,
33, 36, 37, 48, 49, 52

0.3 13, 41, 46, 61, 63 1, 5, 10, 12, 31, 48 1, 9, 14, 25, 29, 33,
36, 42, 49

0.4 13, 41, 46, 50, 61, 63 1, 10, 12, 31 1, 9, 14, 25, 29, 33,
36, 49

0.5 13, 41, 61, 63 1, 10, 12, 31 1, 14, 25, 29, 33, 49
0.6 13, 41, 63 1, 10, 12, 31 1, 14, 25, 29, 33, 49
0.7 13, 41 10, 12, 31 1, 14, 25, 29, 33, 49
0.8 13, 41 12 1, 14, 25, 29, 49
0.9 13, 41 ∅ 14, 25
1 41 ∅ 25

As can be seen in the correlation results, whether the enumeration method,

the greedy method or the Lasso method, the correlation tends to increase along

with the number of original features for combination. It seems that the correla-

tion can reach a certain level as long as the number of original features is enough.

However, as mentioned before, increasing the number of original features will also

increase the possibility of overfitting. Overfitting means that the combination fea-

ture excessively matches the “training” data and hence has poor adaptability and

robustness. The overfitted combination feature will generally have poor predictive

performance on other data.

Here, in order to judge the efficacy of the combination features, a test set of rock

images has been established. The test set contains 30 images of rock samples and

the attribute scores of each rock sample have been evaluated by the same geologist.

Table 4.12 shows the Pearson’s correlation result for every original feature on the

basis of test sets.

Specifically in the table, the highest absolute correlation values to each geolog-

ical attribute is labeled in colour (red for training set, blue for test set, magenta

for both). To distinguish with the test set, the original image set containing 103

samples was called “training set”. It can be found that, for each geological at-

tribute, if the single feature selected by training set is applied for the test set’s
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Figure 4.21: Correlation values of the combination features corresponding to dif-
ferent values of λ. In particular, when λ = 0, the Lasso method is equivalent to
the least square method.

representation, the correlation performance is still good. In addition, the original

single features’ correlation values for the training set and the test set are similar,

implying that a single feature is a relatively stable indicator to represent geological

attributes, whether good or bad.

With regard to the combination features, for testing the adaptability, we did

not recalculate combination weights again but used the weights calculated from

the previous training set. Hence, by using the feature values generated from the

test set and the weights generated from the training set, the combination features

for the test set were constructed. The correlation performance of combination

features with the weights calculated by the enumeration method, the fast greedy

method and the Lasso method are illustrated in Figs. 4.22, 4.23 and 4.24.

It can be seen from the performance results of the test set that, for the geolog-

ical attributes Relief and Layering, applying the combination features composed

of a few (2 or 3) original features can gain a small correlation increase. However,

in terms of the attribute Angularity, using combination features did not obtain

better correlation performance. The single feature produced the best correlation
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Table 4.12: Single original feature’s correlation results of the test set data

No. Relief Angularity Layering No. Relief Angularity Layering

1 -0.099 -0.077 -0.102 33 0.066 -0.151 -0.548
2 -0.237 0.025 -0.116 34 -0.121 -0.308 -0.002
3 -0.135 0.200 -0.066 35 0.138 0.404 0.133
4 0.153 -0.066 -0.204 36 0.251 0.476 0.149
5 0.317 0.015 -0.167 37 -0.500 -0.182 -0.174
6 -0.280 0.012 -0.108 38 -0.476 -0.121 -0.103
7 -0.006 -0.252 -0.707 39 -0.418 -0.348 -0.239
8 0.068 -0.204 -0.605 40 -0.417 -0.234 -0.142
9 -0.344 0.212 0.028 41 -0.585 -0.250 -0.157
10 0.141 -0.112 0.204 42 -0.509 -0.292 -0.215
11 0.218 -0.477 -0.201 43 -0.421 -0.099 -0.121
12 0.217 -0.470 -0.499 44 -0.474 -0.041 0.256
13 0.374 -0.291 -0.038 45 0.343 0.040 -0.011
14 -0.084 0.349 0.500 46 0.001 -0.020 0.499
15 -0.270 0.209 -0.155 47 -0.502 -0.290 -0.201
16 -0.027 0.206 0.507 48 -0.489 -0.204 -0.130
17 -0.016 0.147 0.431 49 0.608 0.345 0.180
18 -0.305 0.121 -0.133 50 -0.539 -0.190 0.181
19 -0.169 0.186 0.146 51 0.115 0.371 0.147
20 -0.143 0.150 0.008 52 -0.239 -0.380 -0.046
21 -0.060 0.163 0.103 53 -0.130 -0.173 -0.287
22 -0.020 -0.139 -0.013 54 -0.018 0.251 0.119
23 0.018 -0.045 -0.098 55 0.108 0.057 0.219
24 -0.103 -0.377 -0.779 56 0.032 0.198 0.287
25 -0.008 -0.287 -0.704 57 -0.167 -0.277 -0.009
26 -0.036 -0.309 -0.763 58 -0.504 -0.279 0.233
27 0.083 -0.237 -0.581 59 0.197 0.261 0.004
28 -0.118 -0.342 -0.810 60 -0.399 0.032 0.335
29 -0.047 -0.202 -0.679 61 0.511 0.431 0.077
30 -0.554 -0.372 -0.171 62 -0.242 0.026 -0.101
31 0.279 -0.268 0.063 63 0.304 0.290 0.456
32 -0.019 -0.235 -0.828

result. The results show that, the linear combination method would not generate

combination features with a considerable correlation improvement. Moreover, lin-

ear combination features could easily suffer from overfitting, especially in the case

that the correlation values of single features are not high.
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Figure 4.22: Correlation results of the combination features calculated by the
enumeration method (test set)
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Figure 4.23: Correlation results of the combination features generated by the fast
greedy algorithm (test set)
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Figure 4.24: Correlation results of the combination features generated by the Lasso
algorithm (test set)

In addition, we shuffled the original training and testing sets to rebuild sev-

eral new training and testing sets. Four-fold cross validation experiments were

conducted on the new sets. The correlation performance curves of the results

generated from the new training and testing sets are similar to previous ones.

However, the features (feature sets) for generating the best combination features

calculated by different training sets showed some uncertainties, particularly in the

cases of the combinations of more features. For instance, in the experiments of

2-feature combinations for Layering representation, for one training set, the fea-

ture elements in the best set for combination were SPCpixel and Eccentricity, but

for another training set, the best features became the combination of SPCpixel and

StDG. Moreover, it can be found that linear combinations have a tendency to pick

a primary feature which has a high correlation and then add other feature(s) to

fine-tune the primary feature, making the values of the combination feature closer

to the expert scores. Primary features were usually the same as the feature with

highest correlation (i.e. best single feature) while the features used for fine-tuning

were varied. Tables 4.9 and 4.11 also reflect such a phenomenon. It indicates

that using single features to represent geologist attributes may obtain a better
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repeatability and robustness than using combination features.

In addition, there are two extra strong points of using single features rather

than combination features. Firstly, a single feature has a clear physical definition.

For example, the feature SPCpixel was defined by the “order within chaos” of the

directions of the strong edges in a rock region. This definition is very similar to

how real geologists analyse the layering structure and hence is easy to make sense

to them. Moreover, a clear definition will help to understand the geologists’ idea,

which is an important evidence to adjust and improve the corresponding feature

algorithm. Nevertheless, it is difficult to explain some combination feature sets

(e.g. Extent plus Mean). Furthermore, the meanings of combination weights are

also not easy to be explained. Secondly, as using a single feature requires only

one feature to be calculated and it need not a combination process, it is faster to

compute.

Although using combination features has potential to improve the performance

of the correlation between features and attributes, currently in our research, only

considering a linear combination using the weights calculated by the least square

method, the correlation performance didn’t gain a remarkable improvement. There-

fore, comprehensively taking the correlation performance, definition clarity and

computative speed into consideration, we prefer to use single features to represent

geological attributes at the preliminary stage.

4.3.4 Summary

In this section, a series of experiments has been described for finding an appropriate

mapping between visual features generated from computer visual algorithms and

the geological attribute evaluation in geologists’ thinking. Pearson’s correlation

coefficient has been used as the most important index to evaluate the mapping

performance. Both single features and combination features have been tested.

Finally, due to stability and repeatability, single features are preferred to represent

geological attributes. Thus, according to correlation values, DenSIFT is chosen to

represent Relief, Compactness is chosen to represent Angularity and SPCpixel is

chosen to represent Layering.
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4.4 Fuzzy expert system

While the geological attributes can be represented by visual features, the next

step is to use those geological attributes to calculate the science value of rocks.

Generally, geologists will use natural language to describe the process of rock

science value evaluation. For example, a geologist would give the following sentence

to analyse the layering structure of a rock:

If the rock has a distinct layered structure, its science value is very high.

It can be seen that geologists will use adjectives (descriptions) such as distinct

and very high. As such descriptions refer to the concept of natural language,

it is illogical to represent them by discrete singleton values (e.g. 1 for layered,

0 for non-layered). In most cases, there is no obvious boundary between two

opposite descriptions of a geological attribute (e.g. layered and unlayered, round

and angular, high science value and medium science value). Hence, approaches

which can express geological knowledge in the way of natural language would be

preferable to represent the geologists’ thinking. Therefore, it is realised that many

science target attributes can be likened to fuzzy linguistic variables and that the

process of rock science evaluation can be likened to fuzzy reasoning (fuzzification,

inference and defuzzification). Like the previous system KSTIS [Pugh, 2010], a

fuzzy expert system has been established for converting the attribute values of a

rock to its science value.

The expert system consists of three components1: Structure, Texture and

Composition, representing the three primary types of geological attributes. Each

component can be regarded as a fuzzy subsystem. The configurations of all three

components’ subsystems are the same, listed in Table 4.13.

Table 4.13: Fuzzy system configuration

Type Mamdani Defuzzification centroid(COG)
AND method min OR method max
Implication min Aggregation max

The Matlab fuzzy logic toolbox was used, whose graphical interface (see Fig. 4.25)

is available to help with membership function and rule design.

1This architecture is the same as the KSTIS 1.0 system [Pugh, 2010], derived from the
knowledge elicitation [Pullan, 2006] of a geologist.
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Figure 4.25: MATLAB fuzzy toolbox interface. This figure shows the example of
the Texture component.

During the design stage (membership functions and rules), discussions were

conducted with a geological expert1.

4.4.1 Membership function

In fuzzy logic, the concept of membership function is closely related to the process

of fuzzification and defuzzification. A membership function represents the degree

of truth as an extension of valuation. Correspondingly, the membership degree

reflects the grade of membership of an element to a set. For instance, if the colour

of a rock is only classified into three colour sets, red, green and blue, a yellow rock

can be represented as: 0.5 belongs to red and 0.5 belongs to green.

The shapes and parameters of the membership functions in our system were

derived from the KSTIS 1.0 system [Pugh, 2010; Pugh et al., 2010a] and have been

reviewed by the geologist mentioned before. The membership functions of the

Structure, Texture and Composition components are introduced separately.

1This geologist is the same as the one who provided the ground truth of attribute values.
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4.4.1.1 Structure

Unlike KSTIS which includes the attributes Layering Type and Layering Scale,

only one attribute (feature) has been selected to reflect the structure information

of rocks. That is:

• The presence of layering : the feature SPCpixel is scaled to [0, 10] to justify if

a rock shows a layering structure.

Hence, the input membership functions (MFs) referring to the structure com-

ponent is only about Layering (Fig. 4.26).

Figure 4.26: Membership functions of Layering (SPCpixel)

The Layering MFs include three parts: noLayered, IndistinctLayering and

DistinctLayering. Triangular and trapezoidal types of memberships are used.

There is a small overlap between noLayered and IndistinctLayering, which can

be used to distinguish if a rock has a layering structure. And the overlap between

IndistinctLayering and DistinctLayering is relatively larger to reflect the distinct

level of the layering structure.

4.4.1.2 Texture

As with KSTIS, three attributes are selected for processing texture:

• Lustre: the average grayscale intensity is used to indicate the surface glossi-

ness of a rock.
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• Relief : the feature DenSIFT is scaled to [0, 10] to indicate the roughness of

a rock.

• Shape (Angularity): the feature Compactness is scaled to [0, 10] to represent

how angular a rock is.

Thus, corresponding to the attributes, the input membership functions are also

expressed respectively, named Lustre (Fig. 4.27), Relief (Fig. 4.28) and Angular-

ity (Fig. 4.29).

Figure 4.27: Membership functions of Lustre (grayscale intensity)

The Lustre MFs provide a measure of the surface glossiness of the observed

target. The two membership functions dull and polished are modelled by two

bell-shaped curves. These curves can help to represent the gentle change when the

polished look of a targets surface, increased or decreased. The input ranges from

0 to 1, where 0 is “perfectly” dull, 1 is “perfectly” polished and 0.5 means “half”

dull and “half” polished.

The Relief MFs represent the level of variations in the elevation of the targets

surface. The two membership functions are rough and smooth, where rough indi-

cates a high amount of elevation variations on the target surface while a smooth

target has low or no variation. Again, these membership functions are expressed

by two bell-shaped curves which can model the slow transition between the two

extremes. The input range is [0, 10], 0 being “perfectly” rough and 10 being

“perfectly” smooth.
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Figure 4.28: Membership functions of Relief (DenSIFT)

Figure 4.29: Membership functions of Angularity (Compactness)

The Angularity MFs capture the angularity (roundness) of a rock. The three

membership functions are very round, round and angular. These three are again

modelled by bell-shaped curves as the attributes gently transitioned as the level

of roundness increases. The input range is [0, 10], 0 being “perfectly” round, 5

being “generally” round and 10 being “very” angular. Specifically, the “round”

membership function is placed in the middle as float rocks are generally round.
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4.4.1.3 Composition

Colour information has been used to reflect the composition of rocks. Specifically,

an assumption has been made that every rock consists of only one material and

hence all pixels in a detected rock region represent the same component. Thus, in

a rock region, the colours (intensities in RGB channels) are first averaged. Then

the average RGB values are transformed into HSV space to reflect the global com-

position of a rock. Accordingly, the three components of HSV space are regarded

as the rock composition attributes. They are:

• Hue: the colour of a rock, which expresses the rock composition information.

• Saturation (Coloured/BW): the saturation of the HSV space has been used

to indicate if a rock is coloured and hence indicate if the hue is determinable.

• Value (Albedo): the value component is used to represent the albedo of a

rock in the situation that the light condition is unknown.

Correspondingly, the input membership functions are also divided into three

parts: Hue (Fig. 4.30), Coloured/BW (Fig. 4.31) and Albedo (Fig. 4.32).

Figure 4.30: Membership functions of Hue

The Hue MFs represent the colour of the identified target. The hue input

ranges from 0 to 360, where 0 denotes pure red, 120 denotes pure green and 240

denotes pure blue. However the membership functions cover from -120 to 480 in
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order to keep the shape intactness of membership functions. There is another

red component at the position 360 due to the circularity of Hue. By adding

such an extra red membership function, the colour mixed by red and blue can

be represented correctly. In addition, although the two “red” components both

indicate the same colour, in real fuzzy operation, they are processed separately.

All Hue membership functions are modelled by triangular curves, according to the

definition of hue.

Figure 4.31: Membership functions of Coloured/BW

The Coloured/BW MFs indicate whether a rock is a coloured rock (e.g. red

rock) or a black-white rock (e.g. gray rock) and hence indicate if the hue of the

target was determinable. Two trapezoidal membership functions, coloured and

blackwhite, are established between which there is a narrow overlap. Since the

input is the saturation component of HSV space, the input range is 0 to 1. Once a

rock is determined as a coloured rock, its composition science value can be defined

by both its hue and albedo. Otherwise, only the albedo attribute plays the role.

The Albedo MFs provide a measure of the reflectivity of the observed target.

Three membership functions are included: low, medium and high. Low and high

are triangular membership functions which represent the steep change in interest

towards the extremes. The central MF which represents medium is trapezoidal,

reflecting the relative smooth science value change over the intermediate albedo

region. The input range is [0, 1], 0 describes a “perfectly” dark rock, 1 describes

a bright rock.



CHAPTER 4. AUTONOMOUS ROCK SCIENCE EVALUATION 134

Figure 4.32: Membership functions of Albedo

4.4.1.4 Output

The outputs of the fuzzy system are the science values of rocks. The science value

of Structure, Texture are Composition calculated independently. However,

as the outputs of the three component will be summed together to produce the

final science value, it is important to ensure that all three outputs are of the same

magnitude and on the same scale. Hence, the output membership functions of all

three components are identical (see Fig. 4.33).

Figure 4.33: Membership functions of the output: the science value of a rock

For each component of the fuzzy system, the 11 membership functions are

set. They are noScore, VeryLow, Low, LowMedium, MediumLow, Medium, Medi-
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umHigh, HighMedium, high, VeryHigh and ExtremeHigh, representing the science

values from low to high. After defuzzification, the outputs of the three compo-

nents can be converted to digital science values, namely SVStructure, SVTexture and

SVComposition respectively. They can be simply added together to create a final

science value as they are of the same magnitude.

4.4.2 Rule base

The rule base is the crucial element in fuzzy systems for the purpose of inference.

Generally, a rule in the rule base has a IF-THEN structure to simulate a process

of human linguistic inference. A rule example is like:

If Lustre is Polished and Relief is Rough then SVTexture is Low

Each rule can be used for analysing rock science value in one aspect. Hence,

through integrating every single rule together, a rule base is capable of providing

comprehensive analyses of rocks. Furthermore, although there is a general science

goal in Mars exploration, the rules are not “set in stone”. Depending on detailed

scientific objectives and also the environment, the rule base could be adjusted.

For example, one day scientists may be focusing on green rocks (e.g. chlorite) and

ignoring layering; another day layered rocks may become the keystone of research

and hence the composition part becomes relatively unimportant.

Here, we applied a rule base simplified from KSTIS system1 as we have a

small number of attributes. These rules can deal with general rock science value

evaluation. As mentioned, they can be tuned to adapt to particular requirements.

Corresponding to the membership functions, the rule base is partitioned into

three parts.

Structure includes 3 rules:

1. If (Layering is noLayered) then (Structure SV is noScore)

2. If (Layering is IndistinctLayering) then (Structure SV is Low)

3. If (Layering is DistinctLayering) then (Structure SV is High)

Texture includes 12 rules:

1The author [Pugh, 2010] stated that the rules were based on the knowledge elicitation of
[Pullan, 2006]. This statement has been reconfirmed.
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1. If (Lustre is Dull) and (Relief is Rough) and (Angularity is VeryRound)

then (Texture SV is VeryLow)

2. If (Lustre is Polished) and (Relief is Rough) and (Angularity is VeryRound)

then (Texture SV is LowMedium)

3. If (Lustre is Dull) and (Relief is Smooth) and (Angularity is VeryRound)

then (Texture SV is LowMedium)

4. If (Lustre is Polished) and (Relief is Smooth) and (Angularity is Very-

Round) then (Texture SV is Medium)

5. If (Lustre is Dull) and (Relief is Rough) and (Angularity is Round) then

(Texture SV is VeryLow)

6. If (Lustre is Polished) and (Relief is Rough) and (Angularity is Round)

then (Texture SV is Low)

7. If (Lustre is Dull) and (Relief is Smooth) and (Angularity is Round) then

(Texture SV is Low)

8. If (Lustre is Polished) and (Relief is Smooth) and (Angularity is Round)

then (Texture SV is MediumLow)

9. If (Lustre is Dull) and (Relief is Rough) and (Angularity is Angular) then

(Texture SV is VeryLow)

10. If (Lustre is Polished) and (Relief is Rough) and (Angularity is Angular)

then (Texture SV is Low)

11. If (Lustre is Dull) and (Relief is Smooth) and (Angularity is Angular) then

(Texture SV is Low)

12. If (Lustre is Polished) and (Relief is Smooth) and (Angularity is Angular)

then (Texture SV is LowMedium)

Composition includes 12 rules1:

1. If (Color/BW is Blackwhite) and (Albedo is Low) then (Composition SV

is Low)

1Practically, there are 15 rules in the inference stage as it has two “red” membership functions.
However, for each “red”, the rules are identical.
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2. If (Color/BW is Blackwhite) and (Albedo is Medium) then (Composition

SV is MediumLow)

3. If (Color/BW is Blackwhite) and (Albedo is High) then (Composition SV

is MediumHigh)

4. If (Hue is Red) and (Color/BW is Colored) and (Albedo is Low) then

(Texture SV is VeryLow)

5. If (Hue is Green) and (Color/BW is Colored) and (Albedo is Low) then

(Texture SV is HighMedium)

6. If (Hue is Blue) and (Color/BW is Colored) and (Albedo is Low) then

(Texture SV is Low)

7. If (Hue is Red) and (Color/BW is Colored) and (Albedo is Medium) then

(Texture SV is Low)

8. If (Hue is Green) and (Color/BW is Colored) and (Albedo is Medium)

then (Texture SV is High)

9. If (Hue is Blue) and (Color/BW is Colored) and (Albedo is Medium) then

(Texture SV is LowMedium)

10. If (Hue is Red) and (Color/BW is Colored) and (Albedo is High) then

(Texture SV is LowMedium)

11. If (Hue is Green) and (Color/BW is Colored) and (Albedo is High) then

(Texture SV is ExtremeHigh)

12. If (Hue is Blue) and (Color/BW is Colored) and (Albedo is High) then

(Texture SV is MediumLow)
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4.5 Examples of science value calculation

In previous sections, details of visual feature generation, mapping from features

to attributes and fuzzy expert system are given. By linking them together, a

whole autonomous science evaluation system can be established. Once the region

of a rock is detected, its rough science value of the rock can be evaluated. Here,

we demonstrate two examples of rock science value calculation (evaluation): one

smooth rock without layering structure and one layered rock. The details of the

two examples1 are shown in Figs. 4.34 and 4.35 respectively.
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Figure 4.34: Example of science value evaluation on a smooth rock
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Figure 4.35: Example of science value evaluation on a layered rock

As can be seen, our science evaluation system can reflect the geological at-

tributes and science values of rocks relatively accurately. The Relief attribute

score of the smooth rock was evaluated relatively higher and the layered rock was

endowed with a high Layering score. Compared to being smooth, having a layer-

ing structure is more science significant. Hence the layering rock was calculated

with more science value. From the examples, it can be found that the proposed

geology-oriented science evaluation mechanism can indeed perform rock science

evaluation in a way similar to human geologists autonomously.

1More examples can be found in Chapter 6, integrated with other parts of the proposed
system.
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4.6 Summary

In this chapter, a mechanism for rock science value evaluation on rock image re-

gions has been presented. This mechanism bridges computer vision techniques

and geological knowledge representation. Firstly, a number of visual features were

extracted. A series of methods have been proposed to map the features (both

single features and combination features) to corresponding geological attributes.

After the mapping process, a fuzzy system was applied to convert attribute values

to science values based on the knowledge elicitation of a geological expert. Specif-

ically, our science value evaluation component is independent to rock detection

and further execution components, meaning that the mechanism can receive the

rock detection results generated from some methods other than the algorithms

mentioned in this thesis. In addition, not only our proposed system, but also the

ranking and planning parts of other Mars exploration systems can benefit from

this mechanism.



Chapter 5

Executive Agent

5.1 Introduction

The executive agent is related to the construction and control of instruments (hard-

ware), providing a platform to support the software system such as rock detection

and rock science value evaluation. For a real rover, the executive agent includes

chassis, camera, arm, communication instruments, science instruments and corre-

sponding control systems. However, due to the limited condition, the executive

agent only consists of two components in our work: a camera agent and an arm

agent. Fig. 5.1 shows the layout of our experimental platform (the hardware of

the executive agent).

It can be seen that, although it has been simplified, the platform is still anal-

ogous to a real rover. The camera agent provides the capability to capture data

remotely (including general image data and multispectral data) and the arm agent

is constituted for placing science instruments (if installed at the end of the arm)

to a position close to a science target. In addition, these simple instruments pro-

vide an environment to integrate and implement partial algorithms mentioned in

previous chapters. The effectiveness of those algorithms can therefore be tested

and demonstrated.

5.2 Camera Agent

The structure of our camera agent is similar to the camera agent in the ASTIA

system [Barnes et al., 2009] and the Aberystwyth University PanCam Emulator

140
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Figure 5.1: Experiment platform (right) containing cameras and an arm. It is
analogous to a real rover such as the Curiosity rover (left).

(AUPE-1) [Pugh et al., 2012]. A pair of monochrome cameras was used in front of

which filter wheels have been installed to endow the cameras with the capability

to capture colour and multispectral data. In addition, a simple tilt unit (no pan

unit currently) has been installed for adjusting the range of camera view. This

camera system plays a role equivalent to the MER Pancam.

5.2.1 Cameras

The cameras used in the platform are two off-the-shelf wide angle cameras (WACs)

manufactured by Imaging Source Ltd. The cameras have 1024 × 768 pixel reso-

lution and panchromatic sensors without built-in infra-red filters. Their spectral

response can be extended into the near infra-red (up to approx. 1000nm) which

makes them ideal for working with filters. The data captured by the cameras is

transferred through IEEE1394 cables. Table 5.1 gives details of the camera and

lens specifications.
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Table 5.1: Camera specifications

Model DMK 31BF03 Image type Y800
Sensor Sony ICX204AL Resolution 1024× 768
Pixel size 4.65 µm Sensor size 4.76× 3.57 mm
Focal length 8 mm Field of view 45◦ × 35◦

Shutter 1/10000 - 30 s Iris f / 1.4

5.2.2 Multispectral Filters

In front of each camera, a filter wheel (see Fig. 5.2) is mounted thereby enabling

the monochrome camera to capture colour and multispectral data. The framework

of the wheels is made from aluminium on which nine filters (glasses) are mounted.

For protection, the filter wheels are housed between carbon fibre sheets.

 

Carbon fibre 

sheeting 

Servo 

Filters 

Gears 

Figure 5.2: Filter wheel structure

On each wheel, three of filters are designed for colour imaging and hence are

broadband (∼100nm) filters. The remaining twelve filters (six on each wheel) are

narrowband interference filters with pass bands of width about 10nm. The details

of the filters are given in Table 5.2.

The broadband red, green and blue filters allow regular colour images to be

taken while the narrowband filters can be used for terrain composition analysis,
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Table 5.2: Filter specifications

Left Filter Wheel Right Filter Wheel 

Filter No. Centre(nm) Width(nm) Filter No. Centre(nm) Width(nm) 

1)  Blue  460 ~100 1)  Blue  460 ~100 

2)  Green 550 ~100 2)  Green 550 ~100 

3)  Red 660 ~100 3)  Red 660 ~100 
      

4)  Geol1 440 10 4)  Geol7 720 10 

5)  Geol2 470 10 5)  Geol8 760 10 

6)  Geol3 510 10 6)  Geol9 830 10 

7)  Geol4 560 10 7)  Geol10 880 10 

8)  Geol5 600 10 8)  Geol11 950 10 

9)  Geol6 660 10 9)  Geol12 1000 10 

rock segmentation or detection of other interesting object. In addition, by using

the visible spectra (390nm–700nm) captured by the narrowband filters on left filter

wheel, true colour images can be generated which can represent the scene more

closely to what would be seen by human eyes.

Each filter is mounted on a stainless steel pivot which is actuated by a servo.

The servos can guarantee the accurate positioning of filters, thereby facilitating

processing such as dark frames and flat field frames [Gunn, 2013].

5.2.3 Camera mount

On a general rover, panoramic cameras are placed behind a robotic arm. One

reason is that the sensing range of cameras is further than the workspace of the

arm. In addition, cameras behind an arm can provide feedback of the arm’s motion,

thereby facilitating the control of the arm. Hence, in our experimental platform,

the cameras were mounted on a mast behind a robotic arm. The mounting of the

cameras is shown in Fig. 5.3.

As can be seen in the figure, the two cameras are fixed on an optical bench. The

bench is installed on a rotation slide platform through a right angle bracket. The

platform is regarded as the tilt unit which can tilt the cameras from 0◦ (horizontally

forward) to 90◦ (vertically downward). There is a laser-engraved scale on the slide

platform, allowing adjustment of the tilt angle every 1◦. Unfortunately, the tilt

unit can only be rotated manually and hence its precision and repeatability are

relatively low.
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Figure 5.3: Camera mounting (without filter wheels)

5.2.4 Coordinate transformation

When an interesting rock has been detected in an image, it is necessary to con-

vert its position in the image (scene) coordinate frame to the position in the world

(camera) coordinate frame. Although stereo technologies [Xu and Zhang, 1996] can

pinpoint rock positions in the real world more accurately, in our system a monoc-

ular method whose process is much simpler has been applied. In this method,

the intrinsic parameters such as camera distortion have been ignored and hence

only extrinsic parameters (dimensions of camera mounting and tilt angle) have

been involved. In addition, an assumption has been made that rocks are placed

on absolutely horizontal floor to simplify the transformation. The tilt angle of the

camera is the only parameter to adjust the field of view of the camera. Here it is

denoted by θt.

The world (camera) coordinate frame is defined as shown in Fig. 5.4. The origin

point O is located on the base of the mast, Z axis is along the mast upwards and

Y axis is parallel to the bench. The direction of X axis can be derived through
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the right-hand rule.

 

Z 

Y 

X O 

Figure 5.4: Camera (World) coordinate frame

Since the algorithm is based on a monocular camera, the right camera is taken

as the example to demonstrate the process of coordinate transformation. Firstly,

the camera position (lens position) is determined by the tilt angle. Thus, the lens

position in world coordinate (Xlens, Ylens, Zlens) can be calculated as:















Xlens = Xoffset × cos(θt) + Zoffset × sin(θt)

Ylens = Yoffset

Zlens = Hmast + Zoffset × cos(θt)−Xoffset × sin(θt)

(5.1)

where Hmast is the height of the mounting mast (in the Z direction), from the floor

to the rotation centre of the tilt unit. Xoffset, Yoffset and Zoffset are the offsets be-

tween positions of the tilt unit rotation centre and the camera lens. An illustration

of the offsets is shown in Fig. 5.5.

The image coordinate system has been defined with the origin point at the
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Hmast 

Zoffset 

Yoffset 
Xoffset 

t 

Figure 5.5: Offsets between camera lens and tilt unit

image centre. Thus, the rock position (represented by its centroid) in an image

can be defined as (Ximg, Yimg), measured in pixels. The corresponding position in

the world coordinate is (Xrock, Yrock, Zrock), measured in millimetres.

As it has been assumed that the rock is on the floor, Zrock is approximated

to 0. For convenience, the Zrock of every rock is always set as 0 in our method,

and thus the (Ximg, Yimg) can be transformed to (Xrock, Yrock) through projective

relations. Fig. 5.6 illustrates the geometric relationships between world coordinates

and image coordinates.

Through geometric relationships shown in the figure, Xrock can be calculated

using αx which is the angle between rock position and the centre of the camera

view in the X direction:

αx = − arctan(Yimg × Spixel/f) (5.2)

in which Spixel denotes the pixel size and f denotes the focal length of the camera
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Figure 5.6: Image coordinate frame to world coordinate frame

(details can be found in Table. 5.1). Then Xrock is calculated as:

Xrock = Xlens + Zlens × tan(π/2− θt + αx) (5.3)

Similarly, Yrock can be calculated as:

Yrock = Ylens −Ximg × Spixel × (
√

(Xrock −Xlens)2 + Z2
lens × cos(αx)

/

f) (5.4)

Thus, rock positions in images are mapped into the real world. A simulation

example of a transformation is shown in Fig. 5.7. If a rock has been detected in the

path of a rover, it is possible to give an alarm to the rover. When an “interesting”

rock has been detected, the rover can know its relative position and manipulate
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science instruments to access and investigate the rock.

Figure 5.7: Simulation of coordinate transformation. Rocks are represented by
ellipses and ellipsoids. The orange trapezoid denotes the view range on the floor,
and the green dashed line denotes the centre view line.

5.3 Arm Agent

As mentioned, a robotic arm has been installed in front of the camera system.

This section introduces the arm agent referring to corresponding kinematics and

control.

5.3.1 Robotic arm

The arm used is an off-the-shelf robotic arm (shown in Fig. 5.8) manufactured by

SCHUNK R©. The arm has seven joints and each joint has one degree of freedom

(DOF), thereby endowing the arm with seven degrees of freedom. Generally, six

DOFs can fulfill the requirement for placing the end effector of an arm to any

position and orientation in the motion space (workspace). An arm with seven

DOFs is more dexterous than a 6-DOF arm. While introducing an extra DOF,

there are infinite solutions (gestures) when the end effector needs to be moved to

a specified position. Thus, if there is an obstacle in the motion space of the arm,

the end effector cannot reach some positions with only six DOFs. However, the

7-DOF arm can generate a solution which is not blocked by the obstacle and hence

guarantees that the target position can be reached.

The joints of the arm are powered by seven Powercube units. The joints are

named as J1 to J7, from the base to the end effector. However, due to the default
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Figure 5.8: Robotic arm at the “0” position

setting of the PowerCube module, the Powercube units are numbered #3 to #9.

Each joint can rotate in a range from -2 rad to 2 rad. The directions of the joints

are illustrated in Fig. 5.9 (“+” and “-” mean the positive and negative directions).

In addition, a 7-DOF gripper has been fitted at the end of the arm. Currently,

in our experiments, it is unnecessary to manipulate the gripper. Hence, the gripper

remains fixed and is assumed to be a science instrument in the experiment.

5.3.2 Kinematic analysis

The kinematic analysis of the arm contains two parts: forward kinematics and in-

verse kinematics. Forward kinematics refers to the use of the kinematic equations

to compute the position of the end-effector from specified values for joint param-

eters while the inverse kinematics is the reverse process of forward kinematics,

denoting the calculation of the joint parameters when the position and orientation

of an end effector are specified.



CHAPTER 5. EXECUTIVE AGENT 150

Figure 5.9: Positive and negative directions of the rotation of the seven joints

5.3.2.1 Forward kinematics

All seven DOFs were used in the forward kinematics. The Denavit-Hartenberg

method (DH) was introduced to simplify the progress. According to the positive

direction of each joint, the DH coordinate frames of all joints can be established

(Fig. 5.10).

Thus, the DH parameters can be obtained. The DH parameters of the joints are

shown in Table 5.3. Specifically, the parameter θ is the variable which represents

the rotation angle of each joint. The d1, d2, d3 and d4 are the link lengths of the

SCHUNK arm.

Table 5.3: DH parameter settings of the arm

a α d θ
J1 0 −90◦ −d1 θ1
J2 0 90◦ 0 θ2
J3 0 −90◦ −d2 θ3
J4 0 90◦ 0 θ4
J5 0 −90◦ −d3 θ5
J6 0 90◦ 0 θ6
J7 0 −90◦ −d4 θ7

On the basis of these DH parameters, the matrices for performing the trans-
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Figure 5.10: Establishment of the DH coordinates
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formation between adjacent DH coordinate frames can be obtained as follows:

0A1 =











c1 0 −s1 0

s1 0 c1 0

0 −1 0 −d1
0 0 0 1











(5.5)

1A2 =











c2 0 s2 0

s2 0 −c2 0

0 1 0 0

0 0 0 1











(5.6)

2A3 =











c3 0 −s3 0

s3 0 c3 0

0 −1 0 −d2
0 0 0 1











(5.7)

3A4 =











c4 0 s4 0

s4 0 −c4 0

0 1 0 0

0 0 0 1











(5.8)

4A5 =











c5 0 −s5 0

s5 0 c5 0

0 −1 0 −d3
0 0 0 1











(5.9)

5A6 =











c6 0 s6 0

s6 0 −c6 0

0 1 0 0

0 0 0 1











(5.10)

6A7 =











c7 0 −s7 0

s7 0 c7 0

0 −1 0 −d7
0 0 0 1











(5.11)

in which ci = cos θi, si = sin θi.
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In addition, because the directions of rotation are clockwise, the direction of

the coordinate axis Z0 is downward, causing the problem that the coordinate frame

X0Z0 is opposite to world coordinate frame XwYwZw
1. To deal with this problem,

another transformation matrix was introduced to convert the position in the X0Z0

coordinate frame to the world coordinate frame. That is:

wA0 =











1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1











(5.12)

Thus, given the rotation angles of all joints, the position of the end effector in

the world coordinate frame (Pw) can be calculated by its coordinate value in X7Z7

(P7) and those transformation matrices:

Pw = wA0
0A1

1A2
2A3

3A4
4A5

5A6
6A7P7 (5.13)

5.3.2.2 Inverse kinematics

As mentioned above, the arm has a redundant DOF, making the inverse kinematics

complicated. However, in the experimental environment, there are no obstacles

in the workspace of the arm and hence the path planning of the end effector

need not to be considered very carefully. Therefore, in the preliminary state of the

experiment, the gesture (orientation) of the end effector should be less complicated.

Thus, not all DOFs are used in the inverse kinematics. Here, joints J3, J5 and J7
are locked (the rotation angles are fixed as 0), reducing the number of the arm’s

DOFs to four. In addition, the orientation of the end effector is set as always

downwards2, which needs another DOF to be ensured. The other three DOFs

are for the purpose of moving the coordinate frame of the end effector to the

target position. Thus the inverse kinematics is simplified remarkably. Unlike the

forward kinematics using DH matrices, a cylindrical coordinate method based on

fundamental geometry is applied to solve the inverse issue.

Suppose that the target point is P (Xp, Yp, Zp) in the world coordinate (shown

1This world coordinate frame is different from the world coordinate of the camera. Its origin
point is at the base of the arm and hence it can also be called the arm coordinate frame. However,
the direction of each axis is the same as the camera coordinate frame.

2Originally, the inverse kinematics was designed for grasping rocks using the gripper fitted at
the end of the arm. Hence, the downwards direction is regarded as the best gesture for grasping.
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in Fig. 5.11), P ’s projective point on the ground plane XOY is Pg (Xp, Yp, 0).

P (Xp, Yp, Zp) 

O 
   X 

Y 

Z 

J4 
J2 

J6 

Pg (Xp, Yp, 0) 

r 

Figure 5.11: Solving procedure of the J1

It can be seen that the rotation angle θ1 of the joint J1 can be simply solved

as:

θ1 = −ω = − tan(Yp/Xp) (5.14)

The rotation angle θ1 of J1 is related to the azimuth while the rotation angles

of the other three joints are used to determine the radius r and height Zp. This is

to say that, the calculation of θ2, θ4 and θ6 is independent to the calculation of θ1.

Here, the three angle are calculated on the plane OJ2J4J6 (Fig. 5.12).

3 

2 

1 

P (r, Zp) 

L4 L1 

L2 
L3 

d 
D  

 

Z 

Figure 5.12: Solving procedure of J2, J4 and J6.
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The r can be calculated by the coordinate value of the target position:

r =
√

X2
p + Y 2

p (5.15)

Here we defined two parameters to represent the computing procedure more

conveniently. These are d, referring to the height difference between J2 and J4,

and D referring to the distance between joints J2 and J4:

d = L1 − L4 − Zp (5.16)

D =
√
d2 + r2 (5.17)

Afterwards, ω2 can be calculated by the cosine theorem:

ω2 = π − acos
(L2

2 + L2
3 −D2

2L2L3

)

(5.18)

Two temporary angles α and β are introduced. These are:

α = acos
(L2

2 +D2 − L2
3

2DL2

)

(5.19)

β = atan2(r, d) (5.20)

ω1 is the supplementary angle of (α + β).

ω1 = π − (α + β) (5.21)

ω3 can be computed by using ω1 and ω2.

ω3 = π − ω1 − ω2 (5.22)

Due to the defined direction of each joint, the rotation angles θ2, θ4 and θ6 are

the inverse angles of ω1, ω2 and ω3.















θ2 = −ω1

θ4 = −ω2

θ6 = −ω3

(5.23)
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In addition, if the position of a target point is out of the workspace, the end

effector cannot reach the target. Under such a situation, it will generate imaginary

number(s) in the procedure of the inverse kinematics. Thus, the appearance of an

imaginary number can be used as an indicator to judge whether the target position

is in the workspace envelope.

5.3.3 Workspace of the arm

The workspace here represents all positions where an end effector (e.g. the gripper)

can reach. One way to obtain the workspace is to record the positions of the end

effector with different settings of joint angles. Generally, a simulation system will

be established to facilitate the calculation of the workspace. Hence, a simulation

system of the Schunk arm with a graphic user interface (GUI) was built using Mat-

lab (shown in Fig. 5.13) to save time for calculating the workspace as it need not

move the real arm. In addition, the graphic interface of the simulation system can

provide a visualisation of the arm by which we can quickly analyse the kinematics.

Figure 5.13: GUI of the kinematic simulation system

A workspace is always limited by some restrictions. In the case of our arm, the

main restrictions are:

• The constraint of the real space

The workspace of the arm is limited by the real physical space where it can
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move. For example, the end effector cannot be in a position beneath the

table supporting the arm (z < 0). Moreover, the x coordinate value of any

part of the arm should not be less than 0, which may lead the arm to hit the

wall behind it.

• The solvability of the kinematics

As mentioned above, there are some situations where no kinematic solution

exists. It means that the arm cannot reach the position under such a kine-

matics condition. Since the number of arm DOFs have been reduced to four,

the arm is more likely to encounter this restriction.

• The range of joint angles

Each joint of the arm has range of rotation (-2 rad to 2 rad) due to the

mechanical or electronic limitations. If any rotation angle is out of its range,

the arm could be damaged.

• The collision of links

The collision of links will also damage the arm, which could occur in the

process of moving. However, due to the limitations added in the inverse

kinematics (the end effector is perpendicular to the ground), the collision

restriction is mostly avoided.

All the target points which satisfy these restricted conditions form the workspace.

The workspace generally consists of an infinite number of points and has an irreg-

ular shape. Here, the workspace is illustrated by a point cloud (see Fig. 5.14). The

blue points are the positions the end effector can reach (within the workspace).

To illustrate the shape of the workspace more precisely, the projections of the

point cloud on the coordinate XOZ, Y OZ and XOY are shown in Fig. 5.15,

corresponding to the side view, the front view and the plan view respectively. By

observing the point cloud, the approximate range and shape of the workspace can

be obtained. It can be seen that the shape of the workspace is similar to a quarter

sphere with 600 mm radius, cut by a cylinder with 250 mm radius.

5.4 Camera to arm

Combining the coordinate transformation and kinematics in the camera agent and

the arm agent together, it is feasible to manipulate the arm (end effector) to access

rocks detected in images. The detailed procedure is listed in Fig. 5.16.
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Figure 5.14: Workspace of the end effector demonstrated by blue point cloud. The
distance between adjacent points is 20 mm.

Since the defined axes of the camera coordinate frame and arm coordinate

frame are in the same direction but the origin points are different, it needs an

extra transformation between them. Suppose the position of a point is (Xc, Yc,

Zc) in the camera coordinate frame and is (Xa, Ya, Za) in the arm coordinate
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(a) Side view of the workspace
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Figure 5.15: Projections of the workspace on the three base coordinate planes

frame. The transformation can be expressed as:





Xa

Ya

Za



 =





Xc

Yc

Zc



+





dx
dy
0



 (5.24)

where dx and dy are the distances between the arm base and camera base in the

x-axis direction and the y-axis directions respectively. A simulation diagram is

given in Fig. 5.17.
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Figure 5.16: Procedure of the transformation between arm and camera

Target 

Figure 5.17: Integration of the camera agent and the arm agent. Firstly, an
interesting rock is detected as the target, and through a series of calculations, the
end effector of the arm accesses the rock.

5.5 Summary

In this chapter, an executive agent designed as the emulator of some parts of a

real rover is discussed. The agent consists of two cameras with the capability of

capturing colour and multispectral images and a 7-DOF robotic arm to perform

manipulations such as accessing rocks. Specifically, the related kinematic calcula-
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tions of the agent are given in detail, including the forward and inverse kinematics

of the robotic arm, the coordinate transformation from captured images to the real

world, and the coordinate transformation between camera coordinates and arm co-

ordinates. The executive agent can be regarded as a good platform to support and

test the algorithms of rock detection and science value evaluation.



Chapter 6

Experiments and Demonstrations

In the previous chapters, the details of rock detection, rock science value evaluation

and executive system have been described separately. In this chapter, the three

parts are integrated together, forming a relatively complete system. Rocks which

hold different geological characteristics have been selected and scattered in front

of the cameras and robotic arm (see Fig. 6.1) to simulate a typical environment

a rover could encounter. However, the experimental environment is different to

a real Mars environment to some degree. The background of rocks is the top of

the table where the robotic arm is installed. On the one hand, compared to the

complex Mars regolith (soil), the background with only a single colour is relatively

simple, facilitating the segmentation of rocks. On the other hand, this background

is inconsistent with some suppositions1 in the rock detection chapter and therefore

the performance of corresponding algorithms may be different. In addition, the

experimental environment is a indoor environment and hence the light source is

not sunlight but fluorescent light which lacks infrared components. Therefore, it is

hard to capture multispectral data in infrared wavelengths. Although restricted,

this environment can be used to carry out preliminary experiments for validating

the algorithms mentioned before and testing the overall performance of whole

system.

A demonstration experiment has been conducted firstly to demonstrate the in-

tegration of final system, linking the instruments and algorithms mentioned before

together. The procedure and corresponding results of each part were exhibited in

1Mainly refer to a supposition in Section 3.3. The supposition is that rock regions will be
darker or brighter than of background regions and hence the intensities of background regions
will be between the intensities of darker rock regions and brighter rock regions. In this case
however, the background regions are always brighter than rock regions.

162
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Figure 6.1: Experimental environment. Rocks with different characteristics are
scattered around the robotic arm.

detail, from capturing images to accessing rocks. Then several experiments have

been done with different rock layouts to evaluate the stability and repeatability of

the system.

6.1 System integration

As described before, the proposed autonomous rock science analysis system mainly

consists of three components: rock detection, science value evaluation and corre-

sponding executive agent. The relation of the three components is exhibited in

Fig. 6.2. The rock detection component addresses the image and multispectral

data captured by the executive agent, generating detected rock regions for the

rock science value evaluation component and rock position calculating (included

in the executive agent). The science evaluation component uses the image and

region information to extract geological attribute information and calculate rough

rock science value which can guide the further motion of executive agent. By
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connecting the three components together, we can establish the final integrated

system which is competent to perform autonomous rock analysis tasks.
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Figure 6.2: Relation between the three components of proposed system

6.1.1 Image capture and preprocessing

The first step of the system is to capture images of rocks. In order to fit in

with the workspace of the arm, the tilt angle is set to 49◦. Since we require only

multispectral data in the range of visible light, and our rock position calculation

algorithm is based on a single camera, only the left camera has been used to

capture rock image data. The broadband red, green and blue filters were used to

capture the images of the RGB channels separately. The RGB data can be used

for rock detection (saliency methods) as well as for rock science value calculation

(composition part). False colour images can also be generated from the RGB data.

An example of the captured RGB images is shown in Fig. 6.3. This instance is

also used for demonstrating other components of the ARSAS system.

The narrowband geological filters whose wavelengths range from 440nm to

660nm were used to capture raw multispectral data. In addition, a ColorCheckerr



CHAPTER 6. EXPERIMENTS AND DEMONSTRATIONS 165

Figure 6.3: Example of an RGB image captured by the camera system. The
images of the R, G and B channels are captured independently and can be used
to generate false colour images. This image was used as an instance (example)
image and experiments have conducted on it to demonstrate whole procedure of
the proposed system.

colour radiation chart (shown in Fig. 6.4) has been used as a calibration target

(CT). Through use of the calibration target, the light condition of the experimental

environment can be measured, by which the raw multispectral data can be trans-

formed to R∗ data. Details of the transformation process can be found in [Barnes

et al., 2011]. Fig. 6.5 illustrates the R∗ data corresponding to the example image,

showing the relative reflectance of rocks under light of different wavelengths.
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Figure 6.4: Calibration target: ColorCheckerr colour radiation chart

440nm 470nm 510nm 

560nm 600nm 660nm 

Figure 6.5: Experimental R∗ data

6.1.2 Rock detection

In Chapter 3, three types of rock detection methods (i.e. multispectral classifi-

cation method, two-threshold thresholding1 method and saliency method) have

been presented and each type of method contains several algorithms. Here, all

those algorithms were tested on the example image captured in the experimen-

tal environment. The parameter settings of those algorithms has been kept the

same as the settings discussed in Chapter 3. Multispectral classification algo-

rithms were tested using the multispectral data (R∗ data). Specifically, trainning
1The result of one-threshold OTSU method is also presented.
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pixels1 were manually labeled for selecting features and training classifiers (clus-

ters). Two-threshold thresholding algorithms were tested on the grayscale image

corresponding to the green filter as this type of algorithms only addresses single-

channel images. Saliency algorithms were tested on the composed RGB image.

The detection results of the three methods are shown in Figs. 6.6, 6.7 and 6.8

respectively.

1NN 

Bayes 

Dtree 

5NN 

SMO 

2-Means 

Figure 6.6: Detection results of multispectral classification algorithms on the ex-
ample image

It can be seen that, even though the experimental environment is unlike the

real Mars environment, the performance of multispectral methods are relatively

better. The contours of detected rock regions are clearer and fewer shadow and

noisy regions are detected. The good performance may benefit from the amount of

data and the training processes with labeled ground truth. Through labeling and

1As with previous settings, the training set contains 100 pixels: 50 pixels denote rock regions
and 50 pixels denote background regions.



CHAPTER 6. EXPERIMENTS AND DEMONSTRATIONS 168

OTSU TO 

RTO2 

PR 

DP ND 

TFO 

RTO1 

Figure 6.7: Detection results of thresholding algorithms on the example image

training, different classifiers can be generated, adapting for different environments.

On the other hand, due to the differences between the experimental and Mars

environments, the supposition that background intensities are higher or lower than

rock intensities is no longer correct. Hence, in the experimental case, the two-

threshold algorithms do not gain better performance than traditional one-threshold

OTSU algorithms. However, in terms of each two-thresholding algorithm, the per-

formance on the example image is similar to the previous performance (see Fig. 3.19

and 3.20). The TO, RTO1 and TFO algorithms still obtain bad rock detection
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Figure 6.8: Detection results of saliency algorithms on the example image

results. The DP algorithm, sensitive to parameter settings, does not obtain a

good detection result since the parameters have not been adjusted for this specific

experimental environment. Nevertheless, the PR and, especially ND algorithms,

have good adaptability. Their detection results are similar to the OTSU method,

implying that these two algorithms can also deal with one-threshold problems. In

contrast with classification algorithms, thresholding methods cannot detect the

shadow region precisely. Hence generally, classification methods will obtain better

performance than thresholding methods.

With regard to saliency algorithms, although rough rock regions were approxi-

mately recognised, the clear contours of rock regions cannot be determined. It can

be seen that the saliency algorithms are very sensitive to rock edges and shadow

regions as discussed before. Hence, although these can be used to point out ap-

proximate rock positions, saliency methods are not suitable for defining precise

rock regions which are important for further rock science value evaluation.
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Although the experimental environment has been simplified, rock regions still

cannot be detected perfectly. This is an inevitable problem and may affect the

rock detection result to some extent.

6.1.3 Attribute extraction and science value calculation

After rock regions have been identified, the next step is to extract the geological

attributes from the rock regions from which the science value of the rocks can be

calculated. Specifically, we used the SMO classification method to generate the

rock regions. For easy reference, the rocks are labelled as shown in Fig. 6.9.

Figure 6.9: Rock labels for the experiment

The geological attributes that need to be extracted are Lustre, Relief, Angularity,

Layering, Hue, Saturation and Value, in which Hue, Saturation and Value are ex-

tracted directly, and Lustre, Relief, Angularity and Layering are scaled from av-

erage graylevel, DenSIFT, Compactness and SPCpixel respectively as in Chapter 4.

The extracted attribute values of the rocks are listed in Table 6.1.
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Table 6.1: Attribute extraction

Rock No. Layering Lustre Relief Angularity Hue Saturation Value
1 0 0.16 6.94 4.03 8.8 0.51 0.32
2 0.03 0.26 6.82 4.67 33.9 0.14 0.28
3 4.66 0.22 6.91 4.62 42.1 0.07 0.22
4 5.23 0.21 6.76 4.92 33.1 0.04 0.19
5 10 0.14 6.86 5.4 229.5 0.1 0.16
6 8.43 0.29 6.86 5.2 28.3 0.19 0.28
7 3.02 0.24 6.66 4.57 16.4 0.38 0.36
8 1.29 0.18 6.89 5.27 33.4 0.21 0.23
9 1.11 0.18 6.78 4.88 21.9 0.25 0.23
10 5.2 0.2 6.43 4.67 32.8 0.23 0.29
11 7.12 0.28 6.87 4.49 27.2 0.11 0.22

Using these geological attribute values as the input of the fuzzy expert system1,

the science value of each rock can be calculated, based on which a rover can plan

what to do next. Table 6.2 lists the science value outputs of the fuzzy expert

system. SVStructure, SVTexture and SVComposition were generated separately and were

added together to calculate the comprehensive science value SVtotal.

Table 6.2: Science value calculation

Rock No. SVStructure SVTexture SVComposition SVtotal

1 3 25.14 18.65 46.79
2 3 25.06 27.53 55.59
3 45.08 24.84 30.54 100.46
4 48.42 24.3 29.59 102.31
5 80 23.37 28.63 132
6 71.85 24.88 21.59 118.33
7 32.91 24.98 20.53 78.41
8 11.59 23.83 18.93 54.35
9 7.74 24.09 17.91 49.74
10 48.27 24.29 20.02 92.57
11 59.98 25.55 29.05 114.58

In the results of attribute extraction and science value calculation, it can be

seen that the science value evaluation system can indeed reflect the geological

1The fuzzy expert system adopted the rule base mentioned in Section 4.4.2. Hence it is for
the purpose of general exploration, preferring rocks with layered structures, smooth surfaces,
green colours, high albedos and so on.
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expert’s thinking. For example, the 5th rock has an obvious layered structure and

therefore it has a very high science value in structure aspect. The 7th rock has a

relatively brighter colour, and hence it gained a slightly higher composition science

value.

6.1.4 End effector manipulation

In the previous parts of the ARSAS system, the transformation from image data

to science value has been done. As with the architectures of other classical au-

tonomous systems, the next stage is the planning phase where commands will be

generated to guide the rover motion. However, in our executive agent, except for

the camera system for capturing rock images, the robotic arm is the only instru-

ment. It means that it is impossible to change the relative position between the

arm and the rocks. Hence, in order to adapt this situation, the planning phase

has been extremely simplified. The planning procedure is as follows:

1. Choose the rock with highest comprehensive science value.

2. Calculate its position in the world coordinate frame.

3. Manipulate the end effector of the arm to access (reach) the rock if it is in

the workspace of the arm1.

The 5th rock had been evaluated as the rock with the highest comprehensive

value in this scene and hence was regarded as the science target with the highest

priority. Through coordinate transformation, it was confirmed that its position

was within the range of the arm. Finally, the arm was controlled automatically to

access the rock (see Fig. 6.10).

6.2 Repeatability experiments

In this section, the rocks were shuffled and eight experiments were conducted

with different rock layouts. The procedures of these experiments were almost the

1In real Mars situations, if a rock with the highest science value has been identified out of
the arm workspace, the rover should be moved to a place where the rock can be assessed by the
end effector (science instruments). However, in our restricted experimental condition, we can
only deal with the rocks in the fixed workspace.
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Figure 6.10: Robotic arm controlled to reach the rock which has highest science
value

same as the procedure of the demonstration experiment. Particularly in the rock

detection part, not all algorithms were performed. The SMO classification method

was selected as the rock detection method since it obtained good performance

in the previous demonstration experiment. The corresponding results of each

experiment are illustrated in Figs. 6.11, 6.12, 6.13, 6.14, 6.15, 6.16, 6.17 and 6.18

respectively. Specifically, the experimental results are shown by four parts. Taking

Fig. 6.11 which represents the results of experiment I for example, the top-left

image is the RGB colour image synthesised by the data captured by the camera

agent. The top-right image shows the rock detection result generated by the SMO

classification algorithm. Specifically, the detected rock regions are marked with

number in order to facilitate rock reference. The bottom-left image is a heat map

representing the calculated science values of detected rocks. The colour closer to

red means that the corresrock has higher science value. The bottom-right image

is the photo demonstrating the status of rock approaching by the arm agent.
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Figure 6.11: Results of experiment I

Figure 6.12: Results of experiment II
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Figure 6.13: Results of experiment III

Figure 6.14: Results of experiment IV
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Figure 6.15: Results of experiment V

Figure 6.16: Results of experiment VI
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Figure 6.17: Results of experiment VII

Figure 6.18: Results of experiment VIII
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In addition, the intermediate outputs of the science value evaluation of these

experiments are listed in Appendix A, indicating the distribution of every attribute

and science value.

Both by inspecting the resultant images and by analysing the quantitative data,

it can be seen that the proposed system is of good stability and repeatability. As

to the rock detection component, all rock regions were extracted appropriately,

although the experiments were conducted in a relatively simple environment. The

component of executive agent also worked well. After a target rock within the

workspace of arm is selected, the end effector can always move to the target position

accurately.

In particular, an extra quantitative analysis has been done to show the perfor-

mance consistency of the science evaluation component. There are 20 rocks which

have been used in the experiments of integrated system, in which 10 rocks were

appeared in more than four experiments. For easy reference, these 10 rocks are

relabelled from “A” to “J”. The mapping between original and new labels can be

seen in Table 6.3, where the experiment 0 denotes the initial experiment described

in Section 6.1.

Table 6.3: Mapping between original and new labels

Exp A B C D E F G H I J
0 1 3 4 5 7 8 9 10 × ×
1 1 3 4 6 5 8 10 7 9 ×
2 1 3 9 7 6 4 10 5 2 ×
3 × × × × × 2 × × × ×
4 1 3 11 × 8 4 9 5 2 7
5 7 × 11 9 8 × 6 5 2 4
6 5 3 8 × 9 12 7 6 × 4
7 × 6 8 × 7 2 3 9 5 4
8 × 4 × 6 × 2 × × 3 5

The original rock labels are depended on images while the new labels are based

on rocks. Through using the new labels, the output of different runs of experi-

ments can be compared more directly. Here, we show the comparison between the

calculated science values of different rocks and experiment runs in Table 6.4.

As can be seen in the table, the performance of science value evaluation is

generally stable, in spite of some fluctuations. The average coefficient of variation

of all experiments is 20.29%. One reason leading to the inconsistency could be the

heterogeneity of rocks. The 2D projection of a 3D rock from different directions is
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different, hence generating different science value evaluation scores. For example,

the “C” rock, placing with different directions, showed layering structure in the 0,

1 and 7 experiment runs but did not show layering structure in the 2, 4, 5 and 6

runs. The output science values were therefore varied.

Table 6.4: Rock science value comparison between different experiment runs

Exp A B C D E F G H I J
0 46.8 100.5 102.3 132.0 78.4 54.4 49.7 92.6
1 45.0 114.4 98.8 108.8 84.7 84.3 44.2 84.3 102.4
2 45.4 111.0 62.3 130.7 78.9 83.9 44.4 78.9 137.0
3 77.4
4 112.3 136.2 49.5 70.2 62.9 45.2 104.1 136.2 63.4
5 112.8 50.0 130.6 73.4 62.8 95.2 136.7 75.9
6 91.2 117.1 53.4 46.6 96.9 45.0 69.6 59.9
7 122.1 96.7 46.8 106.5 66.3 70.3 132.9 48.7
8 130.3 105.4 133.4 53.8

6.3 Summary

In this chapter, the three parts of the proposed system described in previous

chapters were integrated together. In addition, the experimental environment

was established in which experiments have been conducted to demonstrate how

the whole system works. Due to the lack of mobility, this system cannot reach

rocks out of the workspace of the robotic arm. However, the limited experimental

results can also show that the proposed system owns good autonomy, stability

and repeatability. It is relatively reliable to complete autonomous rock analysis

missions.



Chapter 7

Conclusion

This chapter presents a high level summary of the research as detailed in the

preceding chapters. A number of thoughts about the directions for future research

are also presented.

7.1 Summary of the thesis

A major mission driver for space exploration is to minimise ground(Earth)-based

human intervention and hence associated operations costs, thereby maximising sci-

ence data return. In terms of rover-based exploration, greater autonomy becomes

an essential requirement. Previous autonomous systems such as OASIS, AEGIS

and ASTIA, which were discussed in Chapter 1, have clearly exhibited the benefits

of planetary autonomy.

In this thesis, a new autonomous system named Autonomous Rock Science

Analysis System (ARSAS) was derived from ASTIA (an autonomous system for

rock identification and acquisition). Like other classical autonomous systems, AR-

SAS consists of three components: rock detection, rock science value evaluation

and corresponding executive agents. In each component, a number of new tech-

niques have been introduced.

In terms of the rock detection component, three methods were presented. The

first method refers to multispectral data. A fuzzy-rough feature selection method

has been used to select the multispectral features which can reflect the difference

between rocks and regolith (background). Then, classifiers1 were trained using the

1A clustering method was also mentioned.

180



CHAPTER 7. CONCLUSION 181

selected features. Through the trained classifiers, rock regions could be identified

in images. The second method is based on two-threshold thresholding. This

method addresses grayscale images, the most common image type acquired in

real Mars exploration1. Several thresholding algorithms were presented. Some

algorithms were derived from the traditional OTSU method (TO, RTO1, RTO2

and TFO) and some algorithms were based on other information of the shape

of image histograms (PR, ND and DP). All algorithms were tested on real Mars

images and laboratory images, and corresponding detection results were compared

both qualitatively and quantitatively. The third method was inspired by saliency

concepts, trying to detect rock regions in a bottom-up way. Five existing saliency

algorithms were tested on MER, McMurdo and laboratory images, attempting to

point out the conspicuous targets in them.

In terms of the performance evaluation of the presented algorithms, since part

of the image data lacks labeled ground truth, quantitative comparisons have not

been fully provided. However, through inspection, the performance of multispec-

tral classification algorithms is generally good. The rock detection results are less

affected by the soil dust covering the surface of rocks. Shadow regions can be also

detected more correctly. The reason for the better detection performance could be

due to the supervised mechanisms of these algorithms. The labeled ground truth is

used to select efficient features which can increase the distance between rocks and

regolith. Hence good classifiers can be trained using these features, by which the

rock regions can therefore be detected more accurately. As for the two-threshold

thresholding algorithms, although they did not obtain results as good as the mul-

tispectral classification methods, they generally obtained detection results better

than those of traditional one-threshold algorithms when dealing with the Mars im-

ages. Particularly, in the experimental results of the MER data, the F1 coefficient

of the PR algorithm was 0.682 while the traditional OTSU algorithm only attained

0.501. With respect to saliency algorithms, we found that they not only can detect

novel objects but also can reflect the novelty level of detected objects. However, as

a bottom-up method, the detection performance is relatively unstable. Non-rock

regions were often detected. On the one hand, the detected non-rock regions may

represent rare targets which hold extremely high science value. On the other hand,

shadow regions which look locally different were often detected as interesting re-

gions but have lower science values, weakening the overall performance of saliency

algorithms. In addition, the boundaries of the rock regions detected by saliency

1The multispectral data can also be regarded as a series of grayscale images in different
channels.
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algorithms were relatively vague. Hence, the saliency algorithms are more suitable

for alerting to the emergence of novelty (rocks or other novel targets) rather than

providing the precise regions for further analysis.

The component of rock science value evaluation is the kernel of the system.

A methodology has been presented for bridging the gap between computer vision

and geological representation. One hundred and three images were collected and

labeled with rock regions from which 63 image visual features were extracted to

reflect different characteristics of rocks. A geologist was invited to provide the

ground truth of the abstract geological attributes Relief, Angularity and Layering.

Correlation coefficients were used to reflect the consistency between the visual fea-

tures and the geological attributes. For each geological attribute, the feature with

the highest consistency was selected as its indicator. Thus, the density of SIFT cor-

ner DenSIFT, the ratio of a rock’s area to the square of its perimeter Compactness

and the direction histogram sharpness of Canny-detected pixels SPCpixel were se-

lected as the indicators of Relief, Angularity and Layering respectively. We found

that the correlation between SPCpixel and Layering was 0.738, proving that this

visual feature is highly consistent with the geological attribute. However, the cor-

relation between Compactness and Angularity was only 0.391, implying it was not

an ideal mapping. In addition, combination features were tried but did not obtain

repeatable results.

Except for the three attributes mentioned above, the composition attributes of

rocks such as hue and albedo were directly extracted from rock regions according

to the suggestion of the geologist. Afterwards, a fuzzy system was established to

convert the values of those geological attributes to overall rock science values.

Compared to some previous science systems (e.g. OASIS) which use weighted

summation to integrate the features (attributes), using a fuzzy system makes the

science value evaluation more similar to that of real human geologists, especially

in the case that several attributes are synergistic.

The executive agent mainly contains two parts: a camera agent and an arm

agent, for simulating the partial structure of a real rover. In the camera agent, a

pair of monochrome cameras was employed. Through the filters mounted in front

of the cameras, colour images and multispectral data could be acquired. A simple

method was presented to convert the rock positions in images to their positions in

real world. Also, the kinematics of the arm was implemented, allowing the arm to

access rocks. Although restricted, the executive agent can be regarded as a good

platform to support the previous two components and hence can be used to test
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and demonstrate the usefulness of the system.

Finally, demonstrating experiments have been carried out, exhibiting the pro-

cedure of the whole system: capturing images, detecting rock regions, extracting

attributes, calculating science values, choosing the rock target with the highest

science value and finally using the robotic arm to access it. In the experiment,

the system showed good autonomous and automatic capabilities. It is adequate

to execute a mission for identifying and accessing rocks with high science value

adaptively and hence reaches the E3 autonomy level (Table 1.5).

7.2 Thesis contributions

In this thesis, an autonomous rock science analysis system for Mars exploration

has been presented. A number of techniques have been proposed and introduced

in the system, which can be regarded as the original contributions of this thesis.

In particular, the contributions can be reflected in the following three aspects:

1. Presenting three kinds of novel rock detection methods which detect rocks

using different information of rocks.

2. Proposing a geology-oriented mechanism for converting rock region infor-

mation to rock science value. Specifically, a mapping procedure has been

introduced, bridging the gap between visual features and rock attributes.

3. Building a practicable experimental platform and developing corresponding

coordinate transformation algorithms, linking the software and hardware sys-

tems together. Hence, demonstration and more complicated experiments can

be conducted.

7.3 Future work

Although promising, much can be done to further improve the work presented in

this thesis. The following addresses a number of interesting issues whose successful

solution would help strengthen the current research. The issues are divided into

two parts: one part discusses relatively big directions; the other part deals with

detailed problems in specific aspects.
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7.3.1 Macro issues

Architecture of the system: As illustrated in Fig. 1.5, due to instrument lim-

itations, only a pair of cameras and a robotic arm have been involved into our

system. Although it is adequate to demonstrate the process of rock detection and

science value evaluation, the planning and executing parts are very limited. Lack-

ing moving components such as chassis and wheels, the system can only carry on

experiments as a lander but not as a rover. In the future, adding moving mecha-

nisms and other instruments into the executive agent will make the system more

similar to a real rover.

Standard dataset1: In contrast to other mature research domains in computer

science (e.g. medical imaging, face recognition, etc.), developing AI techniques for

Mars exploration is a relatively niche domain. Hence, as far as the author knows,

there is no public standard dataset for rock detection and rock science value eval-

uation. Hence, when someone needs to do related research, it is necessary to

spend a large amount of time to collect data and label ground truth. Especially

in the cases referring to expertise (e.g. geological knowledge), more time is needed

for studying related knowledge or communicating with domain experts. Such a

research procedure is very inefficient. In addition, although working for similar

objectives, different researchers will use different data sets. This inconsistency

leads to another problem that the results of different works cannot be directly

compared. If a performance comparison needs to be done between a new algo-

rithm and a existing algorithm, it is necessary to re-implement the corresponding

algorithm. Even so, the comparison results cannot be generalised to other works.

Such an incomparability makes the conclusions presented in this domain sound

less reliable. Particularly, in this thesis, with respect to the autonomous science

evaluation, a database of geological attributes was presented. Through further

extension and amendment, it could become a standard dataset for rock science

value evaluation. And in the future, we are looking forward to establishing more

standard datasets which can facilitate the research in this domain.

Running speed: The running speed of an algorithm is a very important indicator

to evaluate its performance. Particularly in a real rover environment where the

power and computing ability of an on-board computer are very limited, the speed

1A so-called standard dataset means a dataset especially established for related experiments.
A standard dataset must contain labeled data, providing expert ground truth, which can be used
to objectively compare the performance of various methods.
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of algorithms is extremely important. In the thesis, the speed issue has been

rarely mentioned since most algorithms have not been optimised specifically and

the algorithms were programmed and compiled under different environments (e.g.

C++, Java and Matlab). On the other hand, even if all algorithms had been

optimised, there is a tendency that a more complicated algorithm will have both

better performance and more running time. Hence, how to choose an index1 which

can evaluate the performance and running speed of an algorithm comprehensively

is an issue that deserves to be discussed further.

Experimental environment: The experiments were carried out in a laboratory

environment which is obviously different from a Mars environment2. The differ-

ences mainly rest in the terrain background (red regolith vs gray table surface)

and light source (sun light vs luminescence light). In the future, more reliable re-

sults could be expected if the experiments were carried out in field environments,

especially those sites whose landscapes look like Mars such as Tenerife island and

Atacama desert.

7.3.2 Micro issues

Rock region ground truth: With regard to rock detection, the ground truths of

rock regions are labeled by the author. However, as the boundaries between rock

and regolith regions were relatively vague, the ground truth provided by geologists

would be preferable.

More multispectral features: In this thesis, for convenience, only the multi-

spectral data of the left camera was used. If registration techniques are applied,

the multispectral information of both left and right cameras can be used together

thereby increasing the amount of raw data. In addition, the features used in this

thesis are all based on single pixel position. In future work, introducing more

features from the relations between pixels (e.g. standard deviation of 8-connected

neighborhoods [Shang and Barnes, 2013]) may generate better features to reflect

the difference between rocks and regolith, hence improving the performance of rock

detection.

Other feature selection methods: Only one feature selection method (i.e. the

1A simple example index in rock detection could be Precision
RunningTime

.
2This also leads to the problem that some algorithms work well for Mars rock images but

work badly in the experimental environment.
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fuzzy-rough feature selection method based on fuzzy similarity [Jensen and Shen,

2009]) was mentioned. Although the method achieved a good selection result, other

feature selection methods [Diao, 2014] could provide more efficient selections.

Saliency method improvement: Only five off-the-shelf saliency methods have

been tested and none of them has been optimised for Mars application. It is

supposed that a saliency method specifically developed for the Mars environment

could identify rocks and novelty targets more effectively and efficiently.

Rock detection method combination: As mentioned, rocks can be identified

either top-down or bottom-up. Top-down methods can identify rocks according

to prior knowledge but may overlook some novel rocks. Bottom-up methods can

detect different rocks but may misfocus on wrong targets such as shadows. Com-

bining these two ways together, the shortcomings of each may be overcome, and

hence better rock detection results could be expected.

More geological experts: Geologists play an important role in rock science value

evaluation. In this research, a geologist who has worked on several Mars-related

project was invited to guide the processing of autonomous rock science value eval-

uation. However, although having a lot of experience, a geologist may provide

uncertain information. It is hard to guarantee that all information provided by

a geologist is correct. Hence, if more geologists are involved in the provision of

geological knowledge, the experimental results could be more reliable. On the

other hand, human geological evaluation is relatively subjective. If there is more

than one expert, it is very important to develop some methods to aggregate their

knowledge together, especially in the case where different experts hold conflicting

opinions.

More geological attributes: This thesis used seven basic geological attributes

to assess rock science value. However, the evaluation of rocks could use more

attributes such as layering type and surface fabric. Increasing the number of geo-

logical attributes in the future will allow the system to perform more complicated

evaluation. Correspondingly, the rule base of the fuzzy system would be extended.

More appropriate features for geology: Currently, in terms of the geological

attribute Angularity, the highest correlation attained was only about 0.4, which

means that all the presented visual features cannot represent this attribute very

well. In the future, more visual features (e.g. 3D shape information) could be
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used, hence allowing the possibility of finding features which can express geological

attributes more appropriately.

Nonlinear feature combination method: In this thesis, combination features

didn’t achieve their expected performance. One of the reasons is that only linear

combinations have been considered. It is possible to generate good combination

features1 through using nonlinear combination methods (e.g. neural network).

Geologist reevaluation: The mapping from visual features to geological at-

tributes discussed in this thesis was mainly dependent on the correlation coef-

ficients between the output values of visual algorithms and the attribute scores

provided by a geological expert. However, the attribute scores may contain some

uncertainties, introducing some bias into the performance evaluation of features.

In the future, it is desirable to perform a geologist reevaluation. The reevalua-

tion could judge the performance of visual algorithms more similarly to how the

geologist’s mind would, thereby selecting features which can represent geological

knowledge more appropriately.

More complex kinematics: As mentioned, the robotic arm has seven degrees

of freedom but only four of which have been used in inverse kinematics. In the

future, the other three DOFs can be developed thereby endowing the arm with

the ability to complete more flexible motions. Therefore, the arm would be more

adaptive when encountering uncommon situations.

Rock grasping: The original aim of this thesis was to attempt building a system

which can collect rock samples using a gripper-like actuator. However due to time

limitations, the research of rock grasping has not been completed. Compared

to the current rock acquisition approach—drilling [Zacny et al., 2011], using a

gripper to acquire rock samples has several advantages. Firstly, it can deal with

small rocks, which are hard to sample with a drill. Secondly, a grasping process

need not damage the intactness of a rock. Lastly, if a rock has been held by

the gripper, through moving the robotic arm, the cameras of the corresponding

rover can observe the appearance of the rock from different viewpoints. Such a

process is similar to the way that a real human geologist investigates an isolated

rock. Hence, introducing a grasping mechanism into Mars exploration is a very

promising direction in future research.

1A good combination feature means that it can be generated through a fixed combination
and can always represent a specified attribute accurately.



Appendix A

Science Value Evaluation Output

of Integrated System Experiments

In Chapter 6, the science value output of repeatability experiments is illustrated by

colour maps. To reflect the performance of science value evaluation stage in more

detail, here we show the corresponding intermediate output of each experiment in

Tables A.1 to A.16.

Table A.1: Attribute output of experiment I

Rock No. Layering Lustre Relief Angularity Hue Saturation Value
1 0 0.14 6.94 3.87 11.67 0.54 0.24
2 0 0.21 6.89 5.18 45.01 0.17 0.21
3 7.26 0.17 6.91 4.5 55.59 0.09 0.16
4 5.11 0.16 6.89 4.86 48.98 0.1 0.13
5 4.07 0.2 6.7 4.76 21.62 0.39 0.28
6 6.79 0.16 6.86 5.06 221.29 0.09 0.12
7 3.94 0.19 6.53 4.38 35.47 0.22 0.24
8 4.16 0.17 6.91 4.02 39.15 0.22 0.17
9 5.18 0.23 6.88 4.38 45.12 0.08 0.17
10 0 0.14 6.89 4.89 27.4 0.35 0.17
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Table A.2: Science value output of experiment I

Rock No. SVStructure SVTexture SVComposition SVtotal

1 3 24.93 17.12 45.05
2 3 24.2 22.9 50.1
3 61.05 24.66 28.66 114.37
4 47.75 24.04 27.05 98.84
5 41.35 24.42 18.89 84.66
6 57.73 23.79 27.23 108.75
7 40.43 24.69 19.2 84.32
8 41.97 25.23 18.26 85.46
9 48.16 25.31 28.89 102.36
10 3 23.83 17.37 44.2

Table A.3: Attribute output of experiment II

Rock No. Layering Lustre Relief Angularity Hue Saturation Value
1 0 0.15 6.94 3.9 9.63 0.53 0.25
2 10 0.29 6.85 4.64 34.68 0.05 0.25
3 6.66 0.21 6.91 4.46 42.3 0.07 0.17
4 3.6 0.21 6.91 4.55 29.93 0.18 0.2
5 2.65 0.3 6.79 5.21 30.16 0.16 0.29
6 1.12 0.21 6.68 4.78 16.31 0.37 0.29
7 10 0.14 6.91 5.44 227.02 0.08 0.12
8 0.8 0.17 6.92 4.86 28.37 0.13 0.19
9 1.59 0.16 6.8 4.9 43.58 0.15 0.14
10 0 0.14 6.83 4.53 23.89 0.29 0.17

Table A.4: Science value output of experiment II

Rock No. SVStructure SVTexture SVComposition SVtotal

1 3 25.11 17.24 45.35
2 80 25.43 31.56 136.99
3 56.9 25.05 29.01 110.96
4 37.93 24.91 21.05 83.89
5 29.07 24.88 24.98 78.93
6 8.12 24.47 18.7 51.28
7 80 23.38 27.27 130.65
8 3 24.18 25.62 52.8
9 15.26 23.92 23.07 62.25
10 3 24.31 17.04 44.35
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Table A.5: Attribute output of experiment III

Rock No. Layering Lustre Relief Angularity Hue Saturation Value
1 3.42 0.24 6.91 4.55 47.38 0.15 0.21
2 3.15 0.17 6.91 4.5 41.97 0.22 0.18
3 2.07 0.17 6.93 4.79 9.4 0.35 0.22
4 4.27 0.11 6.91 5.63 44.6 0.13 0.15

Table A.6: Science value output of experiment III

Rock No. SVStructure SVTexture SVComposition SVtotal

1 36.5 25.17 24.61 86.29
2 34.17 24.65 18.61 77.43
3 21.14 24.28 16.51 61.92
4 42.63 22.99 25.12 90.75

Table A.7: Attribute output of experiment IV

Rock No. Layering Lustre Relief Angularity Hue Saturation Value
1 8.28 0.14 6.94 4.17 11.92 0.53 0.25
2 10 0.28 6.92 4.83 67.83 0.05 0.23
3 6.6 0.21 6.9 4.62 55.58 0.07 0.17
4 1.41 0.22 6.9 4.63 43.35 0.14 0.18
5 6.49 0.23 6.67 4.64 42.2 0.17 0.24
6 1.27 0.42 6.83 4.87 35.07 0.21 0.43
7 1.84 0.29 6.65 4.68 32.73 0.22 0.31
8 2.49 0.2 6.81 5.25 21.85 0.43 0.29
9 0.61 0.16 6.65 4.22 26.68 0.26 0.18
10 0.39 0.16 6.92 4.92 40.63 0.13 0.17
11 0.59 0.15 6.8 5.06 49.37 0.16 0.14
12 1.81 0.19 6.74 4.48 3.7 0.09 0.17
13 6.22 0.16 6.94 5.22 56.11 0.04 0.13
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Table A.8: Science value output of experiment IV

Rock No. SVStructure SVTexture SVComposition SVtotal

1 70.14 24.83 17.3 112.27
2 80 25.12 31.08 136.2
3 56.49 24.82 28.96 110.27
4 13.29 24.85 24.72 62.86
5 55.85 24.76 23.5 104.11
6 11.32 26.87 23.28 61.47
7 17.84 25.25 20.31 63.4
8 27.07 23.95 19.14 70.17
9 3 24.81 17.44 45.24
10 3 23.98 25.66 52.63
11 3 23.71 22.77 49.48
12 17.48 24.68 29.12 71.29
13 54.18 23.71 27.6 105.48

Table A.9: Attribute output of experiment V

Rock No. Layering Lustre Relief Angularity Hue Saturation Value
1 3.22 0.16 6.94 4.03 3.4 0.1 0.14
2 10 0.28 6.88 4.48 63.58 0.05 0.23
3 0 0.2 6.89 4.97 55.37 0.08 0.17
4 2.78 0.29 6.78 4.91 32.48 0.23 0.31
5 5.2 0.23 6.67 4.64 40.01 0.18 0.25
6 2.04 0.16 6.83 4.22 23.86 0.25 0.18
7 9.37 0.14 6.89 4.02 9.78 0.51 0.24
8 2.83 0.14 6.76 4.66 19.62 0.39 0.26
9 10 0.16 6.88 5.39 222.96 0.09 0.12
10 10 0.22 6.94 4.06 346.87 0.1 0.19
11 0 0.16 6.84 4.98 52.87 0.15 0.13
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Table A.10: Science value output of experiment V

Rock No. SVStructure SVTexture SVComposition SVtotal

1 34.8 25.11 27.75 87.66
2 80 25.52 31.13 136.65
3 3 24.26 29.06 56.32
4 30.53 25.08 20.32 75.94
5 48.27 24.81 22.16 95.23
6 20.69 24.93 17.21 62.83
7 80 24.88 16.91 121.78
8 31.07 24.07 18.27 73.41
9 80 23.52 27.07 130.59
10 80 25.75 29.6 135.35
11 3 23.86 23.2 50.05

Table A.11: Attribute output of experiment VI

Rock No. Layering Lustre Relief Angularity Hue Saturation Value
1 3.01 0.16 6.94 4.01 6.1 0.1 0.14
2 10 0.16 6.94 4.61 201.93 0.03 0.14
3 7.74 0.18 6.84 5.5 73.23 0.04 0.16
4 1.49 0.29 6.64 4.42 33.27 0.22 0.29
5 5.38 0.15 6.89 4.14 9.7 0.5 0.24
6 1.45 0.29 6.8 4.18 36.18 0.2 0.26
7 0.1 0.17 6.71 4.2 21.06 0.27 0.18
8 0 0.17 6.73 5.21 48.98 0.11 0.14
9 0.67 0.24 6.78 4.94 19.1 0.38 0.29
10 4.88 0.46 6.8 4.89 30.82 0.22 0.42
11 1.72 0.16 6.94 4.71 6.42 0.09 0.15
12 6.2 0.2 6.94 4.9 40.97 0.22 0.17
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Table A.12: Science value output of experiment VI

Rock No. SVStructure SVTexture SVComposition SVtotal

1 32.72 25.12 27.35 85.19
2 80 24.39 27.82 132.21
3 64.89 23.64 28.57 117.11
4 14.21 25.57 20.11 59.89
5 49.31 24.95 16.94 91.19
6 13.79 26.03 19.75 59.58
7 3 25 17.04 45.03
8 3 23.7 26.7 53.4
9 3 24.61 19.01 46.62
10 46.39 27.44 22.95 96.78
11 16.55 24.26 28.32 69.13
12 54.04 24.42 18.46 96.92

Table A.13: Attribute output of experiment VII

Rock No. Layering Lustre Relief Angularity Hue Saturation Value
1 2.99 0.16 6.94 3.95 8.53 0.1 0.13
2 6.82 0.22 6.93 4.57 44.36 0.16 0.19
3 2.24 0.17 6.77 4.09 26.93 0.27 0.18
4 1.01 0.29 6.79 4.96 34.65 0.24 0.29
5 9.21 0.19 6.94 4.59 45.12 0.04 0.15
6 8.27 0.17 6.86 5.45 59 0.02 0.15
7 0.09 0.23 6.78 4.78 19.2 0.38 0.30
8 4.81 0.11 6.85 5.13 51.55 0.1 0.13
9 2.41 0.2 6.79 4.38 35.84 0.23 0.24
10 2.2 0.17 6.94 4.64 9.1 0.09 0.15

Table A.14: Science value output of experiment VII

Rock No. SVStructure SVTexture SVComposition SVtotal

1 32.72 25.15 27.71 85.58
2 57.9 24.94 23.68 106.51
3 23.67 25.1 17.54 66.31
4 3.53 25.04 20.09 48.66
5 80 24.67 28.26 132.94
6 70.05 23.6 28.45 122.1
7 3 24.71 19.06 46.77
8 45.99 23.31 27.4 96.69
9 26.07 25 19.27 70.34
10 23.17 24.47 28.28 75.92
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Table A.15: Attribute output of experiment VIII

Rock No. Layering Lustre Relief Angularity Hue Saturation Value
1 3 0.15 6.94 4.07 11.32 0.1 0.13
2 6.72 0.21 6.93 4.52 47.81 0.17 0.19
3 9.11 0.2 6.94 4.4 80.62 0.06 0.15
4 2.47 0.16 6.91 5.5 52.97 0.15 0.16
5 1.17 0.28 6.76 5.3 37.51 0.24 0.26
6 10 0.14 6.88 5.44 212.45 0.09 0.11
7 7.87 0.16 6.86 4.98 53.32 0.09 0.13
8 3.55 0.12 6.94 4.65 11.2 0.36 0.2
9 0.78 0.17 6.94 4.38 19.2 0.11 0.16

Table A.16: Science value output of experiment VIII

Rock No. SVStructure SVTexture SVComposition SVtotal

1 32.72 25.02 27.39 85.13
2 57.29 24.97 23.1 105.36
3 80 25.02 28.38 133.4
4 26.77 23.46 23.83 74.06
5 9.34 24.64 19.77 53.75
6 80 23.35 26.91 130.26
7 66.04 23.87 27.44 117.35
8 37.56 24.06 16.29 77.9
9 3 24.82 26.76 54.58
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