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Abstract 

Using the properties of an image for the purpose of camera fixation is a difficult task in robotics. 

In this research, the selection of pixels for use in a minimization process is discussed and 

compared against other possible strategies. The Slice Selection Process (SSP) which uses pixel 

displacement graphs to select the most suitable image region for camera fixation purposes has 

also been introduced. Choosing which slice to use is based on counting every graph peak and 

selecting the slice with the fewest peaks for camera fixation. We also present hierarchical search 

strategies that aim to perform as well as an exhaustive search with an enormous reduction in pixel 

processing. The performance of both the hierarchical search and SSP methods will be assessed in 

both laboratory and real world environments. Moreover, the difference in performance of various 

lenses with different angle views was tested to observe the effect of the large field of view on the 

ultimate outcome. The laboratory experiments were performed by hanging the platform over 

printed images to observe the system performance on various views. Nevertheless, to escape the 

constant environmental conditions in the laboratory environment (i.e. light/wind), real world 

experiments were performed to test the system performance under varying conditions. Some 

investigations were also carried out to study the influential factors (i.e. edges, regions, colours) 

on the ultimate results. 
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Chapter 1 

Introduction 
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Systems which permit camera stabilisation on platforms that are subject to cyclic motion is a 

difficult task in robotics. Using the visual input is highly dependent on the image’s properties. 

For instance, stabilisation in an area which contains various visual similarities introduces issues 

with aliasing which may prevent successful re-stabilisation after a displacement of the 

camera/robot system.  

Our research problem is to ask whether it’s possible to use camera images to stabilise a moving 

platform in real time. 

However, the research question that we wish to answer is: 

Can appropriate regions for image-based stabilisation be selected empirically using pixel-wise 

comparison and simulated platform motion? 

This would address the problems that are inherent in the visual stabilisation on those platforms 

which suffer from cyclic motions. 

Research experiments were applied in kite flying and boat scenarios. In the flying scenario, the 

platform was suspended beneath a kite in order to take aerial photographs, whereas in the boat 

state the platform is attached vertically to the boat’s side, pointing the camera towards the 

horizon level. 

Figure 1.1 demonstrates the directions of the two cyclic motions where 1.1.a refers to a scenario 

of an attached platform to the boat’s side and 1b refers to the cyclic motion direction of the kite 

flying state.  
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Figure 1.1 

The designed platform uses a low computational overhead image processing technique to 

stabilise the camera in order to take accurately targeted images of the site being examined. 

The ultimate design requires a wireless connection between the designed platform and the user’s 

PC. To make the platform’s design simple and light weight, we have built the platform with a 

Nano ITX PC which uses a lithium battery to operate.  

The platform uses the camera images themselves as the only input to provide information about 

how the platform is moving with respect to the ground area being photographed. The aim is to 

keep the camera stabilised over a certain view and keep the user(s) updated with frequent 

stabilised images. The original view is determined after the appearance comparison technique is 

applied and is based on the result that the camera will be pointed back to the original view using 

the attached servos. We use a camera to provide us with our input data: frames extracted from the 

continuous image stream using a machine vision camera. The basic strategy takes two 

consecutive images and attempts to calculate the distance in terms of the number of pixels 

moved, and passes the output to the control system in order to adjust the platform's actuators to 

move the camera's centre of view back to its original location. The goal is to stabilise the camera 

to a single location, regardless of how far we move the camera (within the bounds of the actuator 
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system and the field of view of the camera). This project is designed to reduce the need for 

external hardware such as gyros and high computational overhead techniques such as distortion 

removal by using low overhead techniques and processing at relatively high frame rates. In this 

research, we examine the properties of images and the error surfaces that they generate and their 

interaction with control systems with a view to stabilising the platform under examination as a 

test case for a more general solution to the stabilisation and orientation determination of actively 

controlled camera-bearing platforms. Related techniques will be reviewed to assist us in defining 

an acceptable technique to achieve our goals [93].  

This methodology is divided into five major steps which start by capturing the reference image 

and storing it in the memory which then starts capturing images to process the appearance 

comparison against the stored reference. As a consequence of this, the result of the applied 

comparison will be passed for calibration and ultimately to the platform’s servos to stabilise the 

camera back to origin. Figure 1.2 presents the complete steps which are followed within the 

designed methodology.  
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Figure 1.2 – Loop process 

 

Step 1 (Reference Image) is applied once as the initial step but steps 2 to 5 are processed 

continuously within a closed loop.  

The following chapters will explain the presented steps in more technical detail. Chapter 2 refers 

to the background and related studies within a similar area. Related studies will provide strong 

base on what image processing techniques are used and which ones are related to our question. In 

Chapter 3 we discuss the appearance comparison methods and compare the best technique 

amongst them all. It examines the different pixel selection methodologies to be used within our 

ultimate design. Chapter 3 will define the right method for selecting the appropriate regions for 

image-based stabilisation. 

Chapter 4 presents the designed methods which will be used in our upcoming experiments. This 

examines how well the designed method answers the main research question.   
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Chapter 5 demonstrates the experimental results in the laboratory environment and in chapter 6 

we illustrate the performance of the used stabilisation method in real world environments. The 

platform is tested in three different environments (Indoor, Outdoor and Sea) to show how it has 

challenged different factors to show its workability under various conditions. In Chapter 7 we 

present the conclusion and discuss the contribution of this research alongside the related 

literature. We also show that, it is possible to stabilise a platform using images and the developed 

SSP method allows this to be automated. 

The two main contributions of this thesis are: 

1) The use of pixel displacement graphs to choose image regions for active fixation. Pixel 

displacement graphs were used to help developed the Slice Selection Process (or SSP) 

which was tested in laboratory and real world conditions and shown to perform 

effectively under most circumstances.  

2) The development of a hierarchical search technique which uses the selected image region 

to find the best matching position with minimal pixel processing. This was also tested 

under a range of conditions and was shown to be appropriate for real-time active fixation.  
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Chapter 2 

Background and Related work 
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2.1 Preface 

As explained in Chapter 1, the aim is is to address the problems that are inherent in the visual 

stabilisation on platforms suffering from cyclic motions, therefore some research on these major 

factors that are related to the visual stabilisation needs to be investigated. 

The aim of this chapter is to address those related factors which are influential on the visual 

stabilisation technique. These factors are investigated from the input, tools and methods point of 

view, therefore, broadly speaking, we have categorised this chapter into two major divisions 

(“Input” and “Tools & Methods”). Most of the investigations in this chapter are targeting the 

robust visual tracking methods to track object(s) within the scene to achieve the most acceptable 

visual stabilisation possible [3], [19], [50], [104] and [116]. Those methodologies differ in terms 

of their design, prerequisites, outcome or the speed. 

2.2 Input 

The “Input” section was subcategorised as “Cameras” and “Colour Spaces”. The listed 

tools/methods in each subcategory share the similar input scheme used in their work. 

2.2.1 Cameras 

The use of cameras for a range of purposes is intuitively attractive from an engineering 

perspective as they can provide apparently unambiguous signatures for many physical locations 

and can be used for the wide range of activities that robots undertake. The choice of camera to be 

used is dependent upon what the application is required to achieve. There are many cameras with 

various methods of performance but which to choose is the concern of any platform designer, as 

they will need to observe the internal functionality and the output of each to know which camera 

is the best to select. Broadly speaking, for machine vision, we need to use two types of cameras: 

the Progressive Area Scan or the Line Scan cameras [131]. Unlike the Interlaced cameras, with 
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progressive area scan cameras, the whole picture is painted at once, which significantly decreases 

the flickering people perceive when watching TV.  They repeat this process every sixteenth of a 

second, which makes it easier to cope with the speed of the human’s vision or even faster than the 

eye can see [131]. The way that the “Interlaced” cameras operate is that they read the two 

discrete fields within the time interval in-between where the odd lines are first captured followed 

by the even lines. Ultimately, the process of merging will take place to put them together, 

producing a complete frame. In the case of a moving object or when the camera is on a moving 

conveyer, the possibility of receiving a blurred image increases. However, with interlaced 

scanning, the blurring issue is dealt with by outputting the frame as a doubled line, which will 

decrease this blurred view. Due to the ability of capturing the whole image at once, the industrial 

applications are using the Progressive Area Scan cameras more than before. The Progressive 

Area Scan is widely used in LCD computer monitors and in most HDTVs. The Line Scan 

Camera is another technology which is designed to capture a single line of pixels continuously. It 

is used to cover a 2D space, but as it captures a single line of pixels, the second dimension is 

obtained when the object is in motion or the camera does a manoeuvre on the object. One of the 

major advantages that the Line Scan has over the Area Scan is the ability to rotate around a 

cylindrical object and output all the surroundings as a 2D image space [131]. Choosing the type 

of output and the accessories that come with the camera is also as important as choosing which 

technology is to be used. In addition to that, capturing image from cameras with a wide-angle 

view solves many issues for applications that require capturing a large-angle view. Rotating 

imaging systems, fish-eye lenses [47] and the use of omnidirectional cameras [43] are three well-

known approaches for the purpose of capturing a wide-angle view. Figure 2.1 demonstrates an 

example of a panoramic image from the garden’s view. It clearly shows the captured 360 degree 

panoramic image, where position 0 is a randomly chosen position and the 360 refers to the 
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complete 360 degree rotation back to position 0. This type of image enables the 

tracking/localisation to be much more reliable.  

 

Figure 2.1 – 360 Degree Panoramic image. Position 0 refers to a randomly chosen position and 360 refers to the complete 360 

rotation back to position 0. 

Applications using omni-directional cameras to gain the best possible view, reap benefits in terms 

of disambiguation and local continuity of image variation, thus a larger angle of view is definitely 

a big advantage [43]. There are projects using panaoramic images for the purpose of 

tracking/localisation, however they mainly use similar technical methods to apply the image 

analysis process. That said, they differ in the way their ultimate goal is designed, for example, in 

[43], [47], [55], [72] and [87] the authors designed a method which uses panoramic images as 

input to estimate the robot’s heading where the results will be compared against the results gained 

from the magnetic compass. In [43], the author used the Euclidean distance [34] method to define 

the minimal point and it seems that the whole images are interpreted with no extra sophisticated 

techniques (i.e. feature extractions). The way it operates is by regularly capturing panoramic 

images while the platform moves. Afterwards, every image is compared against the previously 

captured image which is achieved by unrotating both images and defining the lowest distance in 

the image’s space. The author has carried out his experiments in both indoor and outdoor 

environments. Both of these environments were tested using both the visual and the magnetic 

compasses. The author has described that the data collected from the outdoor environment was 

not stable, which is mainly because of the uneven terrain that the robot was driving over. 

Therefore, it shows that the visual compass has performed acceptably according to the author’s 
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experiments, but it also suffers from possible repetitive colouring which the view may contain. 

The colouring repetitiveness decreases the possibility of capturing disctinctive features which 

would help in the tracking/localisation process. [30], [41], [108] and [111] demonstrate how the 

author has used the panoramic images as an input to apply a visual homing procedure. The term 

“Visual Homing” refers to the technique that the application uses to visually define its path to the 

original (or home) location. This process requires the application to have a reference image of the 

original (or home) location then compares the upcoming images with the stored reference.  

In [111], the author used the Sony Aibo robot dog to play soccer fully autonomously, where it 

uses the panoramic images as an input and uses the SLAM [46] and [74] to extract the image’s 

features and build a map of an unknown environment. Work in [30] and [108] have quite similar 

approaches. The author in [108] has used the Manhatan distance to define the distance between 

the images and that is achieved by comparing the initial image with the upcoming images, where 

the defined distance is mapped to the robot motion. However, as in most scenarios, the first stage 

is to unwrap the image and apply the appearance based method to determine the distance. Unlike 

the features extraction methods where we normally require prior knowledge of the features that 

we need to look for, the appearance based methods are independent of any prerequisites which 

make them more robust and reliable against any environmental changes. In [105], the author has 

shown that the insects navigate using only a retino-centric representation of the surrounding 

environment and no feature extractions are performed. The author has also applied the 

experiments using two different coloured spaces (RGB and CIE L*a*b*) and compared the 

results, which showed that there was a better rotation performance when using the CIE L*a*b* 

colour space. This encouraged the author to use the CIE L*a*b* for the whole experiment. 

However, the author argues that while the robot was driving towards the target, the accuracy of 

the robot’s manouver towards the target decreases which indicates that this method is not a good 
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solution for a “docking” station. In the previously listed papers {[43], [47], [55], [72] and [87]}, 

the panoramic imaging was used to track the position to either localise or stabilise the platform. 

The author of [71] has used two different methods for mobile tracking; one that uses the 

omnidirectional camera to retrieve panoramic images as the major input and the laser range-

finder to estimate the range to the centroid of motion in the camera image. The second method 

uses the laser range-finder as a primary option and the omnidirectional camera as the secondary. 

The author has applied the experiments in dynamic and cluttered outdoor environments. The 

advantage of the laser can be the extraction of the 3D relative position of the blobs which may 

originate from the person, but it can only provide the range in a single plane. The system was 

built using the segway RMP platform, which is a good platform to use when a fast and stabilised 

condition is required. In [71], the author has used the Lukas Tomasi Kanade (KLT) [21] and 

[129] to track the features and compensate the egomotion by computing the bilinear pixel 

transformation between consecutive images. However, in order to start this process, the author 

split the raw omnidirectional image into a set of consecutive images with 45 degree spacing. The 

egomotion compensation and frame differencing is then applied to each prior image and the 

combined result is passed to a particle filter [36]. The author has used the EM clustering 

algorithm [96] to detect the peaks in the particle motion distribution. However, the way to detect 

the moving object is achieved by comparing the colour distribution histograms so when the 

correlation is found between two histograms, the matching between two images is determined. 

The author has argued that the visual input was only used to track the objects and the laser range-

finder was just used to find the range of the moving objects. The author has also stated that the 

issues with the first used detection method in [71] was because the egomotion compensation did 

not take into account the actual environmental structure, when the nearby objects do affect the 

frame differencing. However, from the visual image processing point of view, the affect of 



20 

 

having sudden obstacles on frame differencing differs depending on the object’s size and the 

platform’s moving speed. 

2.2.2 Colour Spaces 

Object tracking using the colours’ properties is a current subject of research in many literatures 

and different colour spaces were used to retrieve different types of information for varying kinds 

of application. Each colour space is an abstract mathematical model which describes how the 

colours are represented as elements. The colour spaces of colour models are a way of 

representing the colours or reading the colour elements in different ways.  

For instance, RGB and L*a*b* are two different colour spaces however, the RGB is one of the 

major colour spaces which some colour spaces are instantiated from. The RGB colour space is 

made up of three colour components (Red, Green and Blue). Unlike the RGB, the L*a*b* is made 

of two colour components (a* and b*) and the L* is used to specify the illumination of each 

colour.   

These models are used by different applications and each model has some advantages and 

disadvantages, which makes them useable or non-useable for different sorts of purposes. For 

example, RGB is a widely used and well-known colour space which also enables the system to 

have a large variation on colour selections, but it suffers from the illumination issues because the 

colour’s value may change if the surrounding light increases or decreases. However, this issue is 

resolved when there is another colour model such as L*a*b*, where the L* channel specifies the 

illumination of each colour. 

These applications require either real time or non-real time processing and they were designed to 

process a specific methodology on the captured images or apply some manipulations to an 

image’s properties. However, we will discuss the differences in the properties of different colour 

spaces in more detail. In RGB, each of the three channels has an assigned number that varies 
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from 0 to 255 and a variation of these three makes a colour produced from the RGB Model. The 

RGB is the most common colour space which is used by a number of applications, or at least has 

been used amongst different colour spaces in many applications. The I1I2I3 [132] is one of the 

colour spaces that correspond to the conversion of the RGB colouring space. The I1 indicates the 

level of the grey tone axle of the RGB and the I2 plus indicates the I3 elements containing the 

colour information. The LSLM [132] colour space is also another linear transformation from the 

RGB colour space. Unlike the RGB, it is a mixture of four colours rather than three. The CMYK 

[132] colour model is also used in many colour printers and stands for cyan, magenta, yellow, 

and key (black). The K (or Key) in the four printing colours aligns the cyan, magenta and yellow 

printing plates with the key of the black plate. Unlike the additive colour models (i.e. RGB), in 

the CMYK model, the unsaturated case is when the white is dominating and fully saturated in the 

black. In such other models like RGB, the black is a demonstration of an absolute zero saturated 

situation with no colouring being added and the white is a case where the Red, Green and Blue 

are fully saturated. Like the RGB, the CMYK is a device dependant model. However, the 

conversion process from one model to another may not be an easy process and also may not 

result in an absolute accurate outcome. XYZ colour space was created by the International 

Commission on Illumination (CIE) in 1931. The quality of the colours is derived from the x and y 

and the Y is to measure the illumination of the specified colour. 

The relative intensities of the primary colours (i.e. Red, Green and Blue in the RGB Colour 

space) are the tristimulus values. The X, Y and Z in the XYZ [132] model are its tristimulus 

values. 

In the L*a*b*, the L* channel is to specify the illumination of the colour which in many cases 

helps to determine the actual colouring, i.e., whether the lighting had an influence on increasing 

or decreasing its brightness. The a* and b* channels are to specify the colour’s properties where 
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the a* specifies it as a Green or Magenta hue and the b* identifies the colour as a Blue or Yellow 

hue. It is one of these colour spaces that are normally used to distinguish the illumination from 

the colouring. 

HSL is another colour space which also splits the colours’ properties from the illumination. It 

stands for Hue, Saturation and Luminance. Luminance refers to brightness, where the Hue and 

the Saturation are related to the colours’ properties. The HSL and HSV [132] are a transformation 

process from the RGB colour space and the actual H and S are related to the sort of RGB space 

they belong to. HSI (Hue, Saturation and Intensity) is another colour space which is widely used 

in the computer vision applications. It is a well-known colour model from the image processing 

point of view, as it represents the colours in the same way that the human eye can see them. To 

find the values for all HSL, HSV and HSI colour spaces, there is a well-defined process of how to 

convert RGB to one of these colour spaces. Y'UV [132] is another colour space which was 

created from the RGB source. There are many other colour spaces which also have similar 

properties as the Y'UV, which takes human’s perceptions into account when image processing 

techniques are involved. However, the reason for using this colour space is to cope with the 

analogue or digital televisions and the photography equipment of those that are implemented 

using the Y'UV standards. Y' is for the luma which is used as a standalone component in black 

and white televisions. The U and V are for the colour components but they are added separately 

to allow the black and white televisions to receive colour pictures, but still display them in the 

black and white format. However, there are some other colour spaces which are based on the way 

the humans react to the colours. For instance, the YIQ [132] uses the knowledge of the colour 

response characteristic in the human eye. The human’s perception is intended to be more reactive 

to the changes in the orange to blue range and less in the purple to green range. This colour space 

considers these two cases and divides them into two components, where the I refers to the 
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changes for the orange to blue range and the Q refers to the changes for the green to purple. As 

the human perception is more reactive to the “I”, more bandwidth will be required than for the 

“Q” component. Different applications are used to demonstrate the difference in outcome when 

different colour spaces are used. The “Visual Homing: a purely appearance-based approach” 

[108] is one of those approaches which compares the difference in performance. For the homing 

approach visual analysis is employed when different colour spaces are used. It uses panoramic 

images that are processed and the result is to be sent as feedback to the robot’s controller part. 

Usually, the comparison is made between two types of colour spaces. One is the most ordinary 

colour spaces, such as RGB and the other model applies more intelligent algorithms. For 

instance, in the “Visual Homing”, the comparison of the process was between the RGB and the 

CIE L*a*b* colour spaces. The comparison must always be made between the same image using 

a similar distance function and other facilities. In the “Visual Homing” approach, the robot’s 

rotation was achieved more accurately when the CIE L*a*b* colour space was used. The main 

reason for this was because the colours are eliminated from the brightness, which is caused by the 

surrounding lights. For instance, if we have a red ball next to an orange wall, then increasing the 

environment’s light could decrease the saturation of the ball’s colour, which may result in having 

the ball closer to the wall from the colour point of view. These sorts of issues are usually dealt 

with by using these colour spaces, which eliminate the brightness from the colours’ components. 

The colour Histogram demonstrates the colour distribution across the whole of the image’s space. 

In digital images, the image’s histogram can be a fixed list of a range of certain pixel values or 

even an individual pixel. Therefore, by iterating through the pixel values, we would then be able 

to locate each of the pixels on a specific range value. In [128] and [98] authors demonstrated how 

the use of colour histograms is useful within the tracking scenarios. Some systems, such as [98], 

are not designed for tracking purposes but they have used similar techniques to assist the driver 
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with detecting moving objects while the person is driving the vehicle. In [128], the colour 

histogram beside the gradient orientation histogram was used to provide the colour and the 

contour representation of the objects. The system [128] was designed to detect the objects with 

high discriminative properties to be used for the tracking purpose and also to be more robust 

against the conditional changes (i.e. light). The author of [128] has used HC in RGB and HOG on 

gray image data to develop the combined feature set, which was named HOGC. To make the 

system more robust to the rotation and deformation, the author has used the RGB colour space. 

The SIFT in techniques [78] and [84] was also used to make the system robust against the 

possible scaling. The object tracking was performed with an exhaustive search method in the 

candidate area [128]. However, the candidate area was defined by the use of the Particle filter 

[36] technique, which is widely used to represent the posterior state of an object’s movement 

using a set of random variables. 
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2.3 Tools & Methods 

As earlier explained, the aim is to address the problems that are inherent in the visual stabilisation 

on a platform suffering from cyclic motion. As a consequence of this, several related research 

studies have investigated relevant tools and methods. To present some of the most used tools and 

methods which were used for the tracking purpose, we have subcategorised this section into 

Probability Distribution, Edges and Segmentations, Contours, Features, and Adaptive Methods & 

Filters, although, the listed tools/methods in each subcategory share the similar methodology 

used in their tracking systems. 

2.3.1 Probability distribution 

Several literture studies like [15], [16], [17], [18], [42], [51], [59], [60], [73] and [103] have used 

the probability distribution techniques for tracking purposes. The content of the “Probability 

distribution” section is subcategoriesd as Gaussian Distribution, Condensation Tracking, Mean-

shift, Covariance Tracker and Markov Chain Monte Carlo. However, each subcategory refers to 

one or more tools or methods used for tracking purposes. 

2.3.1.1 Gaussian Distribution 

The Normal distribution has been used in several literature studies on tracking methods, such as 

{[51] and [103]}. The Normal distribution was first discovered by Abraham De Moivre [51]. 

Normal distribution is also called Laplacian or Gaussian distribution. The Normal or Gaussian 

distribution is a probability distribution method that is used to gather data around a single mean 

value. It is completely characterised by the mean and the standard deviation and so, if we do have 

these two values, we will be able to define the proportional distribution values of the Gaussian 

distribution. Knowing the mean and standard deviation then means that we do not require the 

values of the individual pieces. To understand the Gaussian distribution by imagining that we 



26 

 

have a vertically standing stick and dropping a ball on top of it, then we should assume there is a 

50% equal chance of having the ball being directed to either the left or right of the stick. If we 

make a big triangle out of these sticks (see Figure 2.2) and drop many balls from the top, then the 

way the balls are distributed around the bottom part of the triangle is called a Normal (or 

Gaussian) distribution. Certainly, there is a higher possibility of dropping balls within the closest 

area from the middle of the stick or the mean value in the real case scenarios. Nevertheless, if the 

situation suits the normality where the values would need to be within a certain area then this 

method works well [51]. 

 

Figure 2.2 – Gaussian distribution [51] 

Gaussians are generated by one of the many available techniques (i.e. particle filter), which 

would then be used for the tracking purpose. 

In [103], the author has modelled each pixel as a mixture of Gaussians and the models are 

updated frequently. However, these models are evaluated to determine whether each location of 

the image is part of the background’s model or not. Pixels which do not fit the background model 

are considered to be part of the foreground objects but, there is also a possibility that one 

Gaussian may include them when proper evidence is provided. These foreground pixels are 

grouped using connected components. With this procedure, the author could design a method to 

segment the background and recognise the moving objects within the scene. As the models are 

updated frequently, this system is capable of dealing with the long-time background or the 
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lighting changes. Most researchers have stopped working with long-time tracking because there 

is no need for a frequent model updating process. However, when a new pixel is considered as 

part of the background’s model, it will not destroy the existing model, but instead the existing 

model updates the currently used background’s model. The initiation of messages of connected 

components between consequent captured frames is achieved with the linearly predictive multiple 

hypotheses tracking method, which fits in both position and size. 

2.3.1.2 Condensation 

The condensation algorithm (Conditional Density Propagation) is a well-known probabilistic 

algorithm that is used for detecting, localising and tracking the object’s contour within a cluttered 

environment. This means that not every pixel is being processed but instead, pixels are chosen 

randomly which results in a huge reduction in the processing time. With condensation, we are 

able to define which parts or pixels make up the object’s contour. The algorithm was described in 

detail by Michael Isard and Andrew Blake in [16]. More papers like [15], [17], [18], [42], [59], 

[60] and [73] were involved in using the Condensation algorithm for tracking purposes. However, 

the Condensation algorithm originated from the Particle Filter which uses a set of samples (or 

particles) to represent the propagation of arbitrary probability densities over time [42]. However, 

the author of [16] argues that the Condensation algorithm benefits from the ability to manage 

multiple hypotheses and provides a more general probability representation, making it a suitable 

algorithm to deal with the non-linear and non-Gaussian distribution. As tracking the “curve” is a 

big challenge with the available methodologies, the author of [16] demonstrated how the 

Condensation algorithm was used for curve tracking. However, to detect the curve’s shape, the 

author used a well-known B-Spline curve detector method which is widely used in different 

literatures for the curve detection technique [80]. The procedure was to detect those curvy shape 

foreground objects. Nevertheless, as in many scenarios, the challenging part is to disallow some 
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of the background scenes to be added to the foreground’s contour, due to their shape or colour 

similarities. The accuracy of the object’s detection will have a major effect on the tracking 

process in the subsequent frames. In the Condensation algorithm, the propagation process is to 

detect the foreground achieved within a time discrete “t”, where two sets of values are known to 

the algorithm. 

2.3.1.3 Mean-shift 

Mean-Shift is a non-parametric feature space analysis technique which was first presented by 

Fukunaga and Hostetler in 1975 [45]. It is also called the Mode Seeking [124] algorithm. The 

“Mode” in statistics is the value which occurs most frequently. Mean shift counts the feature 

space as an empirical probability density function. In image processing scenarios, the input is a 

set of points (or pixels) where the mean shift algorithm will consider them as a set of samples 

from the underlying probability density function. If the dense region(s) do exist, they would 

correspond to the local maxima of the probability density function. Mean-Shift defines a window 

around each of the data points and computes the mean of that point. The method is designed to 

shift the window’s central to the mean and repeats the process until it converges. Therefore, the 

Mean-Shift is considered as a Gradient Ascent method where the window is always heading 

towards the mean value. In [7], [29], [49], [54] and [88], authors have used the Mean-Shift 

algorithm for the purpose of the tracking procedure. In [54], the author has presented the 

development process of an aerial tracking system, where a helicopter is used to lift a platform 

which uses a camera to track the ground’s target. The scenario begins by flying the platform over 

the target’s region and then the operator on the ground station selects the target using the live 

broadcast. The tracking part was designed to use a modified version of the original Mean-Shift 

algorithm where the image’s gradient is used for the purpose of target tracking. Like many 

similar applications, of the possible issues that the author has discussed in [54], the camera passes 
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over a view too quickly which results in reacquiring different targets. In [29], tracking was 

achieved from a moving camera, which is a much harder procedure than being on a fixed camera. 

The author used the Mean-Shift algorithm as its central computation module and used the 

Bhattacharyya coefficient metric [64] to determine the dissimilarities between the model and the 

candidate. The similarities are measured by taking into account the probability of the 

classification error where it is directly related to the similarities of the two distributions, meaning 

the larger the probability error is, the more similar the two distributions are. Therefore, based on 

Mean-Shift iterations, the new target location is determined. As in many scenarios, the detected 

objects on the initial captured frame will be frequently updated for any possible changes in its 

colour’s attributes. To achieve a better strength against the scale changes, the author modifies the 

kernel’s radius by ±10% to increase the tracking robustness. In [49] the author has demonstrated 

the use of an optimised version of the SSD-Like measure using the Newton-Style iteration for the 

Mean-Shift tracking algorithm. The Newton-Style method was designed to find a better 

approximation to the root. Therefore, it can make fewer assumptions than the technique that is 

usually used in a Mean-Shift iteration, which makes it a much faster process. However, as the 

author of [49] also argues, one of the major disadvantages of using kernels is the rotation 

possibility and so if we wish to recover from any problems which may arise from this issue, we 

need to think about designing rotating kernels that check for any rotation possibilities. In [49], 

multiple kernels were used to increase the measurement space and the author has argued that the 

SSD measure extends naturally to multiple kernels. The scenario in [7] differs slightly in the way 

the objects are recognised, where the author has introduced the use of classifiers for the purpose 

of distinguishing between the objects and the background. The author has used an ensemble of 

weak classifiers into a strong classifier using the AdaBoost algorithm, which is an adaptive 

method used beside other learning algorithms to improve their performance. In [7], the strong 
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classifier will be used to label the pixels and to classify each pixel as either belonging to an object 

or a background. This process is achieved by designing a feature vector for every pixel that 

belongs to the background. The iteration process will provide a confidence map which signifies 

peaks over those objects that do not belong to any of the background feature’s vector(s). The 

Mean-Shift algorithm will then be used to find those peaks. The Ensemble Tracking in [7] will 

work continuously to update the stored classifiers in order to separate the foreground from the 

background and find peaks on the map believed to be the locations of the objects. 

Work in [88] also used the Mean-Shift technique to track the target(s) however, the coarse-to-fine 

search was implemented in the simultaneous localization and mapping (SLAM) system [46] and 

[74]. Nevertheless, as it is well-known, the larger patch is much more residual to the motion blur 

but more expensive to compute but the smaller patches are faster to compute but they are not as 

residual to the motion blur as the larger patches are. The coarse-to-fine search implements a 

hierarchy of the strategy of searching from large size to small size patches and that is achieved by 

first searching for the large features with a large search radius and then searching for small size 

features using a small search radius. This makes the coarse-to-fine approach fast and robust to 

many possible changes. In [88], the author has presented how the coarse-to-fine approach was 

used to track the part-based model by employing spring systems to set the relationship amongst 

the parts. However, every part in the targeted scene has multiple features, where each of those 

features is assigned with an independent tracker and the features within every part are connected 

using a spring system. Figure 2.3 demonstrates how the multiple trackers are connected using a 

spring system and 4(c) presents how the coarse-to-fine process operates like a pyramid searching 

procedure by looking for a large feature and then starting its search for small features to enhance 

the accuracy level even further. For the tracking procedure, the Mean-Shift technique is used to 

associate the features between consecutive frames [88].   
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Figure 2.3 - Spring system connects multiple trackers [88] 

Camshift [1] (or Continuously Adaptive Mean Shift) is another popular way of using the Mean-

Shift technique, but it has the ability to change the window’s size when it arrives to convergence. 

The Camshift technique is intended to be used for head and face tracking for a perceptual user 

interface. The main difference between the Mean-Shift and the Camshift algorithms is that the 

Camshift continuously uses adaptive probability distributions, while the Mean-Shift only uses the 

static distributions, which restricts it from being updated unless a significant change occurs in the 

colour or the shape of the object(s) [1]. However, as the Camshift does not update the static 

distributions, it will use the spatial moments to track the distribution’s Mode. Camshift uses a one 

dimensional colour histogram with the use of a HSV channel. In [1], the author has extended the 

use of this technique to be able to track in an arbitrary number and type of feature space. To 

increase the speed of performance, in [1], the author only used the “hue” channel but difficulties 

arise when in some scenarios the hue alone cannot easily distinguish the foreground from the 

background. 

2.3.1.4 Covariance Tracker 

The use of the covariance matrix of image features for the purpose of object tracking has been 

widely used in recent research [5], [40], [63] and [121]. The methodology works by extracting 

various features (e.g. location, intensity, colour, gradient) and the features are represented by the 

covariance matrix in that region. The similarity between two covariances is measured on 

Reimannian manifolds [121]. To estimate the new object’s location on the new frame, the new 
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covariance is compared against the reference covariance. To improve the tracker’s quality instead 

of having a full scan of all possible locations, for example in [5], the author has proposed the use 

of different techniques like Local Search (LS), Mean Shift Optimisation (MS-C) or Gradient 

Descent Optimisation (GD) to speed up the tracking process. However, as the author also argues, 

the computational efficiency of a tracking algorithm is as important as its performance. Figure 

2.4 from [40] presents the flow diagram of the covariance tracker, where it starts by extracting 

the features from the input frames then constructs the covariance matrix. Consequently, the 

covariances will be compared to define the ones with a minimum distance in between them to 

determine the new object’s location. 

 

Figure 2.4 - Covariance tracker flow diagram [40] 

2.3.1.5 Markov Chain Monte Carlo 

Within the used tracking techniques, Markov also used the eye tracking procedure in [10] and 

[58] where the eye is detected and tracked using the human’s face colour and geometrical 

features. The skin is detected using the skin colour detector. Eye tracking was used for many 

purposes, for example, in [10] the author decided to use the Markov based method which first 

decides whether the eye is closed or open and then uses the Markov chain to model the temporal 

evolution to determine the subject’s gaze. However, in many scenarios, before processing the 
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temporal evolution (using the Markov chain) some pre-processes are required to allocate the eye 

position. In [10], the author has used four points on the nostrils and eyebrows to detect and track 

the eye’s location where the tracking operator was made robust to scaling and transalation which 

makes the eyes trackable, even when the face makes a fast movement. However, it is still 

possible for the system to lose the track due to speed or an occlusion. The tracking methods based 

on the Markov chain were also used for multi camera’s monitoring projects [58]. The use of non-

overlapping cameras is much more challenging, as the object can disappear from one camera and 

re-appear in another one with a different appearance. In [58], people’s movements are monitored, 

the path from one camera is monitored in a probabistic manner (Markov Chain Monte Carlo 

(MCMC)) and the maximum posterior is determined using the schotastic transition model. For 

the detection process, the author of [58] used the background subtraction and a simple blob to 

detect the walking human’s body. The paths and the movement objects are classified according to 

their depature and arrival locations within the entire topological map of the connected cameras 

[58]. However, MCMC is a probabilistic algorithm which was designed based on the Markov 

Chain. The Monte Carlo technique was created after the paper [20]. The technique started to 

grow with the development of computing performance which is now widely used in many 

literatures [109]. It is also important to know that, the more steps the function takes, the more 

improvement there will be to the quality of the samples but, we also have to recognise that it is a 

difficult process to determine the number of required steps to reach the desired range with an 

acceptable error. More papers such as [33], [67] and [68] have used the MCMC technique for 

different purposes, for example, in [33] the author used the MCMC technique to represent the 

uncertainty of localising the robot platform. However, in [67] and [68], the scenario is specially 

designed for the tracking purpose. The author of [68] introduces a modified particle filter method 

which use the Markov Chain Monte Carlo (MCMC) algorithm called hybrid Monte Carlo 
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(HMC), which is designed to determine the posterior in a high dimensional state space. With 

HMC, each particle produces a Markov Chain which follows the gradient of the posterior to the 

large distance, making it much faster than the conventional used particle filter [68]. More 

strategies, such as the Annealing Technique, are also used to allow MCMC to move between 

multiple peaks. However, as the author also argues, with Basyan methods where the samples are 

distributed randomly, care must be taken as some locations may get higher samples (or particles) 

during the distributions process than others which can lead to a poor performance. However, the 

HMC samples are generated and distributed in the best possible way according to the posterior, 

so when the algorithm follows the gradient to the posterior, it follows a path based on an effective 

distribution. As in [67], scenarios where the tracking is based on non-linear or non-Gaussian 

estimation [48] and [53], the sequential Monte Carlo will be an acceptable solution. We should 

also be aware that the more targets we track the more computational load increases, especially if 

the number of targets is unknown which also means the distribution of particles varies during the 

tracking procedure. Therefore, as the author of [67] also argues, we would need to minimize the 

number of particles to keep the speed of performance reliable and to allow the system to increase 

or decrease the particles whenever the number of targets contrasts. 

2.3.2 Edges and Segmentations 

Research studies such as [11], [23], [24], [35], [52], [56], [57], [90] and [101] have used the edge 

detection or the segmentation techniques for tracking purposes. The content of this section is 

subcategorised as Edge Tracking, Egomotion Compensation, Graph Cut, Background 

Segmentation and Template Matching. However, each subcategory refers to one or more tools or 

methods used for tracking purposes. 
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2.3.2.1 Edge Tracking 

The process of identifying the ultimate point of the continuation of an object, feature, and colour 

on the image is declared as the Edge Identification process. Some research studies such as [11], 

[23], [24], [35], [52], [56], [57], [90] and [101], have carried out some investigations on the edge 

detection technique, while other research studies such as [91], [102] and [105] have focused their 

investigations more into edge tracking for the purpose of the navigation process. Edges are the 

major changes in the intensities and more variation means more edges occur. However, these 

changes are either sudden or caused by smooth variations. Also, it is either a step change to a 

different intensity level or a temporary change to a different value which returns to the original 

value after a short distance. The first case is referred to as “step discontinues” and the second is 

“line discontinues”.  However, because of the smoothing process that is applied by the sensing 

devices, these two edges are rarely possible which means that the “step” becomes “ramp” and 

“roof” will replace the “line” edges. Figure 2.5 is a graph representation of these changes to the 

intensity level. 

 

Figure 2.5 – Changes to the intensity level 

The importance of the edges and its intensity variations may also indicate a sign of an object or 

feature detection. Sometimes, the edges do not have a step change in their intensity level but they 

will gradually change from one value to another. The operators also need to be designed for these 

sorts of cases and a shadow around an object is a good example of these types of edges. Real 
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edges do have a high noise level and how the operator is programmed will detect whether this 

noise is an edge or something like a shadow of an object. The operators are designed to work 

over the 2D surfaces and identify the edges using the pre-programmed techniques and 

methodologies. Not every operator will suit all samples; this depends on the structure of the 

image. The edge orientation is how the operator was designed to be sensitive to a certain 

direction on the image. Some are designed to look for edges on the vertical, horizontal or 

diagonal edges. 

2.3.2.2 Egomotion Compensation 

In [47], [70] and [106], the authors have used the egomotion compensation methodology to detect 

the moving object from a mobile robot. Egomotion compensation is the technique that is used to 

determine the object’s motion from two or more images using image processing techniques 

[106]. Nevertheless, in all mobile tracking applications, there are two sorts of motions that need 

to be counted. The first is the object’s motions that need to be tracked and the second is the 

camera’s motion which is mostly placed on a mobile robot. These two motions are technically 

merged, making a single complete motion from the camera’s point of view. These sort of 

applications are different in the way they process the consecutive images to distinguish the two 

motions to determine either the main camera’s motion or the tracked object(s) motion(s). In [106] 

the author has used two different methods to distinguish between the two motions. For the object 

tracking, the author has used the probabilistic approach where the Adaptive Particle Filter [36] 

and EM algorithm [96] were used. The author of [106] has applied the test of the algorithm on 

three different platforms (robotic helicopter, Segway RMP and Pioneer2 AT). Using the camera 

over these three different platforms gives three different problems that need to be solved. The 

Forward/Backward motion is the camera’s only activities when it is mounted over a mobile robot. 

However, the camera’s motion on the robotic helicopter is the pan/tilt movement which creates a 
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different difficulty to be resolved than the scenario with the mobile robot (i.e. Pioneer2 AT). 

Since the Segway RMP uses two wheels and stabilizes using special techniques, which makes it 

act like an inverted pendulum, it differs from the Pioneer2 AT platform where the pan/tilt 

movement also needs to be activated beside the Forward/Backward manouver. The author of 

[106] has studied three different models (affine model, bilinear model and pseudo-perspective 

models). The affine model is mainly suitable for a linear transformation which can mostly be 

useful when the platform makes a slow motion. However, if the camera’s movement is fast then 

we will encounter a high non-linear transformation where the centre of the image moves slower 

than those in the image’s boundaries [106]. Therefore, the author has used the bilinear model 

which is more robust to the non-linear transformation. 

2.3.2.3 Graph Cut 

In early vision, researchers attempt to assign labels based on different expressions such as 

intensity, disparity, segmentation regions etc. and to assign labels to the pixels based on noisy 

measurements. This labelling will be based upon the calculated energy. The route of finding the 

best labelling is seen as an optimisation problem. Graph Cut is a method that is used to minimise 

the energy and it is one of the most used techniques for visual tracking scenarios where the 

targetted problems can naturally be expressed in terms of energy minimisation [28], [61], [81], 

[86], [89] and [119]. In the last few years, the minimum cut/maximum network flow algorithms 

have emerged to introduce an elegant and useful method to minimise energy. We will mainly be 

considering how this technique was used in the tracking techniques. However, the energy  

minimisation was also used to solve the stereo, motion or image restoration issues in the image 

processing circumstances. Markov Random Fields [28] is one of the generative models that is 

widely used in solving the labelling problems. For each variable to get assigned with a label, it 

would then need to pass through the Markov property which declares that the state of each 
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variable highly depends on the state of its neighbours [28]. After assigning the labels, a model 

such as the Potts Interaction Energy Model and the Linear Interation Energy Model were widely 

used to determine the energy’s function [28]. The graph’s edges are a major part in this process 

where they make the contours and obviously, if we have a graph with more contours (or edges), 

this means the graph may include more detail. However, before we go more into the min-

cut/max-flow details, we would first need to know how the flow networks in the context of 

energy minimisation operates. Figure 2.6 demonstrates a graph with few nodes (or pixels) and 

shows how the nodes are connected to the neighbouring nodes and to the top and bottom 

terminals (terminals are special nodes which are called “source” and “sink” in the energy 

minimisation method(s)). 
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Figure 2.6 – Nodes connecting source to sink 

The graph in Figure 2.6 shows two types of edges. The horizontal ones connect the nodes to their 

neighbour(s) (n-links) and the other type of edges connect each node to the source and sink of the 

graph (t-links). Horizontal (or n-links) edges correspond to the penalty of discontinuity between 

the pixels and the vertical edges (or t-links) refer to the penalty for assigning the label to the 

pixels. The fundemental network flow problem is the minimum cost flow problem, which means 

that we would need to define the route with the maximum flow with a minimum cost from a 
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specified source to the node [28]. The minimum cut of a flow network is a cut whose capacity 

will be found to be the lowest amongst all the cuts of the network. In the Graph Cut method, the 

segmentation process can be the ultimate process and this is achieved by grouping the image’s 

pixels into logical groups. In [28] the author has used the Pott Energy Function to group the 

pixels, which would result in the segmentation process. Work in [89] also demonstrates a 

technique for how to segment the different parts of an image using the graph cut methodology. In 

[119] the author has used the Graph Cut based active contours (GCBAC), as the advantage of 

using the GCBAC is that it does not require any prior global shape model. Also, unlike other 

active contours, it does not get stuck in local minima [119] therefore, it is not sensitive to the 

initial conditions. It is worth mentioning that the GCBAC was first proposed in [89]. In [119], it 

describes the way the GCBAC method works, where it starts by widening the current boundary 

into an area of interest with an inner and outer boundary. It will then start to represent the data 

within the two boundaries as a connected graph and divide the nodes into two groups, where the 

nodes on the inner boundary will be delared as a single source and the nodes on the outer 

boundary will be declared as a single sink. Figure 2.7 was taken from [119] and it visually 

demonstrates how the process is achieved where it computes the s-t minimum cut to identify the 

new boundary, which is clearly shown by the most right side image in Figure 2.7, resulting in the 

seperation of the inner from the outer boundary. 
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Figure 2.7 – Extract sinks and sources (s-t minimum cut) [119] 

This method is useful when it is applied to an image with an object on a simple background and 

the initial contour is much larger than the object’s contour [119]. 

Different papers have proposed different information retrieval to track the object’s contour. For 

example, in [119] the author has proposed to incorporate both the image’s intensity and the 

difference between the current frame and the previous one to track the object’s contour. The way 

the object’s contour is tracked is by applying the GCBAC on the difference data and then by 

applying the GCBAC again to the current frame to get the final result [119]. 

Tracking with the Graph Cut technique was used for many purposes. However, as the Graph Cut 

technique is a robust method used for global image segmentation, papers like [61] proposed the 

use of this technique to track multiple objects within the area of interest. The standard Graph Cut 

will capture all the objects within the area of interest; however, the way the post processing and 

filtering algorithms [92] are followed will detect the specified objects amongst other available 

objects within the same area of interest. With most of these applications there are some 

prerequisites which the user(s) are required to have before tracking takes place. For example, in 

[61] a user is required to mark the object that needs to be tracked in the first frame for the 

initialisation purpose. 
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2.3.2.4 Background Segmentation 

Identifing the moving object(s) by applying the background segmentation is a technique that is 

used in many available research studies such as [13], [22], [39], [65], [107], [113], [114] and 

[123]. Being robust against the illumination, avoiding a non-stationary background such as 

swinging leaves, rain, snow as being part of the moving objects and finally the background model 

being able to react quickly to the changes in its background (i.e. car moved from the parking 

space) and update itself are all big challenges for many applications which are involved in the 

background segmentation process [65]. The colour similarities between the background and the 

foreground objects and also the increases in the foreground object’s size are further challenges 

which are discussed in [107]. The process is mainly followed by introducing those pixels which 

highly differ from the background model’s pixels as foreground pixels which are then to be dealt 

with as moving objects. Segementation and defining the moving objects’ techniques vary from 

being as simple as frames differencing, adaptive median filtering or a more sophisticated 

approach such as probabilistic modeling techniques [65]. However, as the author of [65] also 

argues, most of the existing background subtraction algorithms in the available literature follow 

the steps shown by the diagram in Figure 2.8 from [65]. 



43 

 

 

Figure 2.8 – Background subtraction steps 

Following the steps from the diagram shown in Figure 2.8, the pre-processing step is used to 

reduce and manage the frame’s rate and size to reduce the data processing rate. As is also shown 

in the above diagram, the background modeling is the heart of any background segmentation 

process. The authors in [65] have classified the background modeling process into recursive and 

non-recursive categories which are each divided into different sorts of techniques. For non-

recursive, the author has introduced Frame Differencing, Median Filter, Linear Predictive Filter 

and Non-Parametric model as four different background modeling non-recursive techniques. In 

addition, the Approximate Median Filter, Kalman Filter and Mixture of Gaussians were 

introduced as three different recursive background modeling techniques. As the author has 

argued, the non-recursive uses a sliding windows approach for background estimation which 

means it stores a number of previous frames and analyses the background features based on 

temporal variations of the available pixels. Median Filtering is one of the most commonly used 

techniques for the background segmentation process where the background estimate is defined to 

be the median at each pixel location of the stored frames in the buffer [65]. The Kalman Filter 

and Mixture of Gaussians (MoG) techniques are widely used within the recursive background 
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segmentation’s literatures but these two techniques differ slightly, as the Kalman Filter tracks the 

development of a single Gaussian, whereas the MoG is used to track multiple Gaussians at once. 

Using any of the recursive or non-recursive techniques for the background segmentation process 

supplies us with an outcome which should enable us to compare it against the input frame and 

define the Foreground pixels. After the Foregound detection, the Data Validation process is put in 

place, where it starts to analyse and improve the found foregrounds based on the information 

gained from outside the background model. Three limitations are faced in Data Validation; it 

does not ignore the corerelation between neighbouring pixels, the rate of adaption may not cope 

with the foreground objects’ motion speed and ultimately, detecting the non-stationary pixels and 

removing them from being catagorised as a moving object is also a challenging process [65]. In 

[114], the author has introduced a methodology for multiple object tracking using both 

background subtraction and connected component analysis, where it applies the connected 

component analysis after the foreground mask to determine the continuous regions of pixels or 

blobs which results in extracting features from the found blobs. The same paper introduces a 

technique called Lazy Background Subtraction and Connected Components Analysis (LBSCCA) 

which performs this segmentation by analysing the connected pixels related to the foreground 

blobs. In [114] the author has used the state prediction process to determine the position of the 

blobs in the next frames. The Joint Probability Data Association (JPDA), together with the 

Kalman Filter, achieve this purpose. The JPDA was used to predict and direct the attention to the 

area of interest and the Kalman Filter was used to define the region of interest, which will then 

lead to computational cost reduction. Kalman Filtering uses the current state based on the 

previous blobs’ states and then uses the current state to feed the prediction of the next states. In 

[114], besides the segmentation and the foreground detection process, the author has used the 

instance based regression algorithm [26] to determine the contact point between the blob features 
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and that is to distinguish between the real body and its silhouette. With the scenario in [107], the 

author implemented some additional sophisticated processes, where they used the Spatial Color 

Gaussian Mixture Models (SCGMM) to model the foreground and background models. The 

author has built those models into the Markov Random Field (MRF) energy function to get it 

minimized and segmented using the Graph Cut technique. The advantage of SCGMM over many 

existing approaches is that the proposed SCGMM focuses on tracking both the foreground and 

background models, rather than only the foreground objects, as the foreground and the 

background models will compete to grap the related pixels within the frame. Also, unlike the 

ordinary EM algorithms where the algorithm looks at the models for the updating process, in 

[107], the author has used the EM algorithm to update the spatial parameters of the SCGMM 

models which would also result in speeding up the entire performance.  

2.3.2.5 Template Matching 

The statistical models [112] of specific feature(s) (i.e. skin) are widely used to make use of their 

colour and shape as an appearance based template for the subsequent tracking process [57], [75] 

and [120]. The overall template matching algorithm starts by template initialisation then 

determination of the searching region and ultimately, template matching and the update process 

[75]. In template matching, the background subtraction is used as part of the initialisation 

process. In [75], the author has used the template matching technique to detect and track human 

faces where it starts to use the skin colour and the maximum likelihood estimation (MLE) to 

detect the faces and use them as an appearance based template for subsequent tracking. The 

template matching is processed by applying the sum of squared difference (SSD) [49] to measure 

the difference between the target and the reference templates. However, the colour information 

can detect faces and some other body parts such as the hands. Therefore, in Template Matching 

techniques, most authors (i.e. [57] and [75]) also use shape filtering to distinguish between the 
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similar parts. In [57], the author has relied on the contour edge detection to retrieve the shape 

model. Nevertheless, in most of the Template Matching techniques, the initialisation process 

would require a proper background definition and that is achieved by projecting the camera onto 

the environmental scene with no human bodies or any constant motion which would then enable 

the system to easily distinguish between the background and the human models.  

The scenario in [120] is a bit different where the author used trivial templates to find targets in a 

new frame. The sparsity achieved using the �1 regularized least squares problem and in order to 

improve the robustness of the sparse representation, the author has introduced non-negativity 

constraints. 

 

Figure 2.9 - Positive and negative trivial templates 

Neverthless, as Figure 2.9 demonstrates, those constraints are implemented, as in both positive 

and negative trivial templates the aim is to eliminate those clutters that are similar to the target 

templates. This process will increase the robustness of both detection and target tracking. 

However, the author has used the particle filter technique to estimate the posterior state. 

2.3.3 Contours 

Contour based tracking is one of the fastest and most robust used techniques in detecting the 

moving object(s) [4], [83] and [125]. Motion-based and Segmentation-based energy are two types 

of useable counter based tracking techniques which are widely used in some applied research 
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studies [83] and [125]. Snakes [83] is a widely used contour based method in research works. The 

Snakes method is an energy minimisation method which is highly influenced by both external 

and internal constraints. 

Internal constraints are the image’s properties that pull the Snakes toward the features (i.e. Edges, 

Lines). Snakes are used to resolve many visual problems including edge detection, lines, motion 

tracking and stereo matching [83]. The external constraints are the user interactions which force 

the Snakes to be near the feature of interest. In [83], the author has proposed to address finding 

the salient image contours (i.e. edges, lines) and to track them in subsequent frames. However, 

during the tracking process, the high level influences (i.e. user interaction) can still be used to 

push the contour model towards the appropriate local minimum. Therefore, Snakes does not 

resolve the entire problem of finding the salient image’s contour, but they highly depend on the 

high level influences such as user interactions. Also, if we require a good outcome, we should 

place the Snakes close to the required target because the Snakes deform themselves to be 

consistent with the nearest surrounding contour. Nevertheless, the high level of interaction can be 

more intelligently designed to be automatic attention mechanisms or high level interpretations 

[83]. The authors in [83] have proposed Line Functional, Edge Functional and Scale space to be 

three different energy functions to attract the Snake. Line Function has used the image’s intensity 

where the Edge Function used the features’ edge properties and finally, the Scale space monitors 

the whole Snake, where if parts of the Snake get mislead then the neighbouring parts will pull 

that part towards the possible continuation parts of the feature. Most of the contour based 

designed tracking methods are fast and robust, as they mainly target the feature’s edges rather 

than the whole region [125]. In [125], authors have proposed a method which defines the 

contours by detecting the edges based on the optical flow. Authors have used the Canny Edge 

Detector [24] to extract the required features. The way the contour extractions are processed in 
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[125] can differ slightly from the way they are followed in [83]. In [83] we had the internal and 

external powers influences detect and track the contours using the image’s intensities. The 

authors of [125] have proposed a few steps to extract the contour and they start by restoring the 

lines and subtract the background then cluster those lines by the nearest neighbouring in respect 

to their distance and velocity. Ultimately, the contours of the clustered lines are extracted using 

the Snakes method. The way those features are then tracked is by defining the similarities 

between an object in a previous frame with the one in the current frame using the estimated 

positions of lines by optical flow [125]. The [27], [83], [95], [110] and [125] papers are good 

examples which demonstrate how the contour based or the Snake model were used for the 

object’s detection and how they are tracked in subsequent frames. As explained earlier, the 

original Snake model does not get attracted to the feature if it is not close enough to the feature’s 

edges. However, in [27], the author used the Balloons technique that enables the model to act like 

a balloon which is inflated by the additional forces. It passes over the edges and is stopped when 

it encounters a strong edge. In [125], the author has demonstrated a good addition to the Snake 

option. The author has designed a methodology to track the objects’ state as being as occluded, 

reappeared, merged or separated. The author argues that if the object (or contour) disappears 

without reaching the frame’s border, it will then be considered as occluded and if the contour 

suddenly appears inside the frame which matches with one of the currently available contours, it 

will then be counted as reappeared. However, the author has also argued that if the detected 

object inside the frame is found to have the lines of two different objects, then it will be counted 

as merged. But, if two or more objects are found to have similar lines it will then be considered as 

separated. More research was applied on using the object(s) contours besides the use of Level 

Set, such as [4], [6], [25], [38], [76] and [99]. In Level Set, the object’s contour is defined by the 

intersection directional curves referring to each region [4]. Figure 2.10 from [4] demonstrates the 
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object’s band with light grey in Figure 2.10.a and background band with dark grey around the 

object’s contour that is demonstrated by a white ellipse. Sub-regions around the object’s contour 

are represented by rectangles (see Figure 2.10.b). 

 

Figure 2.10 – Representing the sub-regions around the contours using the level set procedure [4] 

The author of [4] has used the strategy of using a band around the boundary rather than the entire 

region. The advantage of using a band is a reduction in the searching space in the contour which 

results in a speedup of the performance and reduces the noise and possible holes in the object(s). 

Other advantages are the generalisation of the boundary and region based energy function into 

one framework and ultimately, it can adapt more to the local changes around the object and 

allows better reliability of the object tracking when a mobile camera is used. 

2.3.4 Features 

Several literatures [94], [97], [102] and [122] have used feature extraction methods for tracking 

purposes. The content of the “Features” section is subcategoriesd as Saliency Tracking, SIFT and 

KLT (Kanade–Lucas–Tomasi). However, each subcategory refers to one or more tools or 

methods used for tracking intention. 

2.3.4.1 Saliency Tracking 

Salient features are those features which are mostly noteable within the feature space, amongst 

others. For example, the salient feature of a flying bird is its wings and the salient features of the 

sky are the clouds. Salient points are also called the interest points which are obvious to the 
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human eye and can be extracted initially to be tracked in subsequent frames [94]. Traditional 

approaches used the edges and corners to detect the most salient point {i.e. [97] and [102]}. 

Tracking those salient features will decrease the time consumption by a good factor as we save 

up a huge amount by processing the static views on every iteration. The authors of [44] and [94] 

have designed their tracking system based on the use of the salient regions. In [44], the author 

designed a tracking approach from a mobile platform where it learns the trackable features from 

the first captured frame based on the most salient points and then computes a feature vector 

which describes those features. The detected features from the first frame will be supervised 

using the attention system VOCUS (Visual Object detection with a CompUtational attention 

System) which was designed based on the human’s visual system and detects the most salient 

features [44], unlike many bottom-up searches where no pre-knowledge information is required. 

But, in VOCUS, the top-down search is followed where the pre-knowledge of the tracking 

objects is mandatory. As the top-down search requires some pre-knowledge about the objects, in 

[44] the user selects the object by manually drawing a rectangular box around it. For the feature 

matching, it is not necessary to do feature matching between the regions of the reference and the 

region of the current frames since the top-down search (by VOCUS) will guarantee the similarity. 

The author of [44] has compared the Most Salient Tracker (MSR) against the Camshift [1] 

algorithm which demonstrated a better performance of MSR. Camshift achieved an average 

performance of 45% and the MSR achieved 88%, indicating clearly how much better the MSR 

performed. In [94], the author has focused on views with large traffic intersections, which would 

be expected to achieve a high volume of salient points. The author has used the Lowe keypoints 

and Scale-Saliency algorithms to detect the salient points, which in this case are mostly the 

vehicles. The output of these two algorithms are a set of features which correspond to the most 

salient features found on the scene. Those features will be tracked to observe the moving objects 
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[94]. The author has then used the graph matching approach to determine the similarities between 

the set of features. 

2.3.4.2 Scale-invariant feature transform (SIFT) 

Scale-invariant feature transform (SIFT) was published by David Lowe in 1999 [78]. The method 

was designed to detect and describe the local features from the captured training images. SIFT 

was implemented to extract the highly distinctive features from the image. After capturing a few 

frames to be used as training images, the next step is to build a scale-space pyramid where the 

captured frames are filtered and down sampled. The features will be stored in a local database 

where the operator will compare the found features in the new image to the stored database based 

on its location, position and scale and its appearance based on the Euclidean Distance metric. In 

literatures, the use of SIFT will guarantee to remove the difficulties of extra computation for 

possible illumination changes. The feature’s descriptions are the absorbing details which can then 

be used later to search for and locate the objects in subsequent frames. SIFT would be interested 

in the static features which have relative positioning in between. If any of the selected features 

changes their positions, they would be declared as an error. But, SIFT usually selects a huge 

number of features within the image and if only a few of these become an error, it would not have 

an effect on the ultimate outcome. In [12], [69] and [77], the authors have used their tracking 

methods based on the use of the SIFT technique. The goal is to recognize, determine the spatial 

state and the relationship between the objects’ positions to enable the systems operates the same 

way the human visual system works. Therefore, in [77], the author designed a tracking system 

based on the IVSEE system design which tries to initiate the early functionalities of the human 

visual system. However, as the author of [77] also argues, the systems which are based on SIFT 

can operate faster than those which are based on the segmentation techniques, but the systems 

with segmentation techniques provide much more precise information about the extent of the 
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objects [77]. As in [69], the tracking procedure is achieved by letting the user select the target and 

both the SIFT and the Kalman Filter use the chosen target to perform the tracking process. When 

the user selects the object(s), the SIFT features within the objects location are stored. Figure 2.11 

was taken from [69] and demonstrates how the procedure of an algorithm starts by letting the 

user select the target. Next will be when the Kalman Filter starts its interaction process with the 

stored SIFT features. However, as the author of [69] also argues, in order to use the Kalman 

Filter and gain the best possible performance, we should expect a constant motion of the object 

(s) through the whole frames’ sequence. This interaction allows the Kalman Filter to predict the 

next object’s position. 

 

Figure 2.11. Features extraction using the SIFT technique [69] 

As the SIFT keeps the Kalman Filter frequently updated, a single mistake may result in further 

wrong predictions in subsequent frames. More literature like [12] also used the SIFT technique in 

different scenarios, such as recorded video where the technique is used to determine the inter-

frame motion through consecutive frames in the sequence. 
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2.3.4.3 Kanade–Lucas–Tomasi (KLT) 

The Kanade–Lucas–Tomasi feature tracker (KLT) is a method of extracting features from the 

image’s space. It is widely used as a differential method for estimating the optical flow and it was 

first developed by Bruce D. Lucas and Takeo Kanade. However, in the scientific terminology, the 

optical flows are the noticeable motions, surfaces and features’ edges within the scene. For 

example, as we drive across the motorway, trees, buildings and signs are counted as optical flow. 

As a consequence, the KLT algorithm assumes a constant flow of pixels in the local 

neighbourhood which solves optical flow equations using the least squares criterion [14] by 

combining several details from nearby pixels. Studies [66] and [79] provide more specific KLT 

algorithm details where [62], [126] and [129] use the KLT algorithm for tracking purposes. In 

[130], the author has used the implemented version of KLT algorithm in the OpenCV platform. 

As the author explains, the method starts by converting the reference and the current images into 

black and white images then determining the useful features. The “useful” terminology here 

means more distinctive, for example, choosing corners is more important to tracking than inner 

pixels so it will start by tracking them from one frame to another. Another usage of the KLT 

algorithm was demonstrated by [126] where the author has designed a greenhouse sprayer 

navigation robot which uses the KLT to detect the features for its visual odometry. The visual 

odometer was designed to estimate the vehicle’s position and orientation within the world’s co-

ordinates by selecting a few features on the ground then allocating the boxes of KLT features 

within a larger box to enable each KLT box to search its neighbour pixels, with the aim of 

determining the similarity within the subsequent frames. The author of [126] designed the KLT 

boxes as 7×7 pixels and the search boxes as 25×25 pixels. If the platform loses the KLT features 

for any possible reason then it will start to search for another useful KLT feature which can 

replace the lost one. However, as the author has also explained, we would only need 3 feature 
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locations to determine the position and the possible rotation of the platform. However, the author 

has used 5 feature locations to increase the process accuracy. The big advantage of using these 

sorts of systems is related to human’s health and safety procedures where people would not be 

exposed to dangerous chemicals. Also, the system is able to operate 24 hours a day with the same 

accuracy that it started with.   

2.3.5 Adaptive Methods & Filters 

In the previous sections, we have seen how some methods were designed to adapt themselves in 

order to keep the their models frequently updated [1]. In [19], [85] and [118], the authors have 

introduced more specialised adaptive techniques for tracking purposes. The author of [85] argues 

that it is most of the current tracking methods using predefined distance metrics which are likely 

to guarantee the exact match in all cases. If we encounter some strong features which are highly 

discriminative, then using distance metrics, such like Euclidean Distance, would still provide an 

acceptable outcome. But in cases where the features are hardly distinguishable from its 

background, the Euclidean Distance metric may not be the correct selection. Therefore, the 

selection process of appropriate distance metrics for robust visual tracking was then initiated. The 

author has taken the supervised and unsupervised approaches as the two main categories of 

general distance metrics learning. The unsupervised distance metrics are those where the 

relationships among the observed data are preserved. PCA [82] is a good example of 

unsupervised distance metric learning. The case with the supervised metrics is different as the 

method is fed by a pair of similar and dissimilar data for a better discrimination process. The 

author of [85] has used the supervised scenario of distance metric learning where both positive 

and negative data are provided. These two sets of data are specified when the feature of interest is 

specified. Then the feature vector will be extracted and labelled as positive data, whereas the 

regions far away from that feature will be labelled as negative data. Ultimately, for the tracking 
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purpose, the learned metric will be used to measure the distance between the target and the 

candidates. This measurement process is achieved by the use of a gradient-based method rather 

than an exhaustive search, which would certainly decrease the processing time. Adapting the 

correlation methods is another used procedure for object tracking. The filter based trackers do get 

trained on a number of example images and correlation filters, where the target(s) are initially 

selected using a tracking window centred on the object in the first frame [19]. The author 

explains that in order to speed up the tracking process, the correlations are computed using the 

Fast Fourier Transform (FFT) algorithm. The Bolme [19] is an adaptive method which was 

designed to adapt the correlation filters. The author argues that the correlation filters are able to 

track complex objects through rotation, occlusions and other distractions over 20 times the rate of 

current state-of-the-art techniques [19]. As in [85], the filters would also need to be trained from 

a single frame and kept updated for any possible object’s appearance changes. The author of [19] 

introduced a new correlation filer called Minimum Output Sum of Squared Error (MOSSE) filter. 

The author also argues that the trackers which are based on the MOSSE filter are robust to 

possible changes in lighting, scale, pose and a few other types of changes. MOSSE is an 

algorithm which produces ASEF-like filters [32] but with much less training images, which 

would make it a faster process. The author also argues that the tracker which is based on the 

MOSSE filter can operate up to 669 frames per second, whereas trackers like Incremental Visual 

Tracking [31], Robust Fragments-based Tracking (FragTracker) [100], Graph Based 

Discriminative Learning (GBDL) [117] and Multiple Instance Learning (MILTrack) [9], in 

addition to their complexities, may hardly perform up to 20-30 frames per second. To measure 

the correlation, a measurement of peak strength called Peak to Sidelobe Ratio (PSR) is used. 
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2.4 Conclusion 

The content of this chapter was divided into two major divisions (“Input” and “Tools & 

Methods”).  The “Input” section discusses various cameras and colour spaces used within the 

tracking systems. The second section (“Tools & Methods”) was subcategorised as Probability 

distribution, Contours, Features, Edges & Segmentations and Adaptive Methods & Filters, 

though the listed tools/methods in each subcategory share the similar methodology used in their 

tracking systems. However, we would need to test or study the strengths and weaknesses of the 

presented methods to assist us with designing the ultimate tracking algorithm. For example, with 

probability distribution methods, the risk of non-gaussian (or non-linear) distribution is always 

expected. Though, methods such as Mixture of Gaussians [65] were designed to resolve the 

single gaussian issues, it might introduce a further computational cost. Feature tracking is another 

widely used low cost technique but its complexity appears with the feature extraction procedure 

beforehand. 

Contour based techniques are also broadly used tracking method that uses the edge tracking 

technique to identify the object’s contour. This clarifies the likeness between the contour based 

and the edge tracking methods. However, a major issue emerges if the fast displacement misses 

the possible correlation which can guide us back to the target. Though, few methods (i.e. 

“Snakes”) were developed to enhance the contour based tracking procedure. Segmentation (i.e. 

background segmentation) is another technique used for tracking purposes but depending on 

which method to use, this technique can turn out to be expensive or undependable. We have also 

presented various adaptive techniques that are used within the tracking algorithms. This 

adaptation helps to enhance the system performance on the runtime period. 

This review shows a wealth of techniques that have been developed but also shows that there is a 

need for a lightweight real-time algorithm for motion compensation of platforms. The research 
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question stated in chapter 1 requires us to examine image-based stabilisation that can be selected 

empirically using pixel-wise comparison. In order to address this we must now examine 

appearance comparison techniques which the next chapter will concentrate on. 
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Chapter 3 

Appearance Comparison 
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3.1 Preface 

This chapter aims to illustrate the various investigations made into the appearance comparison 

techniques that might be useful to test the research question asked in chapter 1. The chapter will 

demonstrate the strengths and weaknesses of some of the most widely used appearance 

comparison techniques. However, one technique will be chosen for use in the real time 

experiments.  

Figure 3.1 shows an image which visually demonstrates that both the camera and the human 

being are looking at the same view. By nature the human’s brain is clever enough to determine 

the angle that the human’s eyes are required to rotate in but the computer must be programmed to 

track using the precise details of what to look for and where. In order to achieve this, computers 

demand that some strategies should be followed and more cleverly designed strategies will help 

to achieve better tracking. The common point between the human and the computers is the fact 

that both are needed to store an initial view and keep comparing the new views with the one 

stored in the memory. On the computer’s side, the initial view is the captured and stored sections 

which can be part of or the entire captured image. We call these captured sections “Patches”, 

where the patch from the reference image with the one captured from every current image is to be 

compared to determine the distance between the two images. 
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Figure 3.1 – Tracking the original location 

Selecting how and where to locate the patches is an essential procedure which needs to be 

followed carefully. We start to explain this procedure by using simple designed artificial images 

which will provide us with a good base to understand how the Error Surfaces will be generated 

over the real world images. In section 3.2, we will use various artificial or real world images to 

generate a range of error surfaces to help us with classifying a variety of reasons affecting how 

the error surfaces are shaped.   

3.2 Error Surface 

We begin by describing how the Error Surfaces are technically generated by duplicating similar 

artificial image and call one the “Reference” and the other “Current” (see Figure 3.3).  
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Figure 3.3 – Comparing similar images 

The first step is to capture and store a patch from the most central location of the reference image. 

The left hand image of Figure 3.4 demonstrates how this process was carried out. However, the 

right hand image presents how the reference patch is located and shifted over every possible 

location of the current image. 

 

Figure 3.4 – Reference patch shifting on the current image 

The comparison compares every pixel from the reference patch with every corresponding pixel 

on the current patch. Figure 3.5 shows two captured patches which demonstrates an example of 

how they can be completely matching or completely mismatched. The left hand side patches are 

two patches of black and white which shows a situation when the central patch from the reference 

image is applied over the complete disparity areas such as the top left hand corner of the current 

image (Figure 3.4).  
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Figure 3.5 – Representation of both set of patches 

There are many potential strategies for the determination of the distance between pairs of images 

and there are few papers which directly address this [2]. For the purposes of this work, we have 

used the computationally low complexity Euclidean Distance to calculate the distances. All work 

presented here uses the RGB colour space, although we are aware that other colour spaces may 

have different and possible beneficial properties. Other colour spaces such as CIE L*a*b* [134] 

are more specialised in excluding the illumination from the original colours which may help in 

scenarios where the colours’ properties are changed due to a change in the surrounded lighting 

level. For example, in a real world environment, if the lighting level increases, the red can 

become orange or pink which would differ from the properties of the original colours, but these 

issues are resolved with other colour spaces such as CIE L*a*b*. However, because we intend to 

apply the experiments in real world environments, the use of RGB colour space will further 

introduce the affect of external issues (i.e. lighting levels) to the work’s performance. A 

calculation of the Euclidean Distance between a patch of an image of size h × w is performed 

using the following formula; 
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Where h and w are the patch’s height and width and k represents the current pixel. The Ij(k, l) and 

Ii(k, l) are the lth colour component of the kth pixel of images Ij and Ii respectively [11]. 

We simply apply this formula repeatedly to the patch and image whilst displacing the patch with 

respect to the image before each comparison and recording the result for each location. This 

process generates a distance for each tested position of the patch in the image. These distances 
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can then be used to populate an Error Surface where the displacements in the image represent the 

x and y dimensions and the distance is used as the z dimension (height). 

Figure 3.6 presents an example of the Error Surface that is generated by running the Appearance 

Comparison method using the Reference and the Current images in Figure 3.4. Arrows 

demonstrate where the patches’ locations match on the Error Surface. The minimal point should 

represent the most possible matching between the two reference and current patches. 



 

Figure 3.6 – Error surfa

Gathering the most informatio

applications that require some 

are clustered by having a larg

patch’s size and its initial locat

surface generated as a consequence of appearance compariso

ation possible is the main issue that is usuall

e feedback from the image processing side. In

arger patch and the first issue that requires ou

cation which would have an effect on the ultima
64 

 

arison process  

ally considered in most 

 In our case, more details 

 our investigation is the 

imate outcome. 



65 

 

3.2.1 Patch Positioning Strategies 

We begin by conducting some experiments on how the patch size and location affects the shape 

of the Error Surface. The shape of the Error Surface is a major part as it introduces the possible 

navigation process to find the minimum on the surface and this is an indication of the best 

position for the patch to be located. We begin to use artificial and real world images to describe 

how the Error Surfaces are generated and how their shapes are so important for the ultimate 

outcome. 

As Figure 3.7 shows, we start with two artificial images to present the various shapes of the error 

surfaces. Figure 3.7.a presents an image with a black box that is larger than the captured patch 

located in the central position. Figure 3.7.b presents an image with a vertical line crossing the 

most central position from the top to the bottom of the image. The two images are made up of 

black and white colours only. However, to assign pure black or white colours, we wrote a code to 

assign every pixel with either (0, 0, 0) or (255, 255, 255) as RGB values represent the black and 

white colours. For example, in Figure 3.7.a, we assign every pixel with (255, 255, 255) except the 

surrounding square area from (50, 50) up to (250, 250) in the X and Y position, making a square 

shape larger than the captured patch. On the other side, for Figure 3.7.b we assign every pixel as 

(255, 255, 255), except the surrounding rectangular area from (140, 0) up to (160, 299) in pixel 

position which will be assigned as (0, 0, 0).  

In both images, the surrounding square area from (100, 100) to (200, 200) were captured and kept 

as reference patches. In both images, the captured reference patches suffer from a high similarity 

across the same image. This has caused an indistinct global minimum that leads to ambiguity in 

finding the optimal camera location. 
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Figure 3.7.a – Error surface generated using an image with large black box in the central position 
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Figure 3.7.b – Error surface generated using an image with vertical black line in the central position 

The above comparisons were produced based on some artificial images, but is this the same in 

real images? The above comparisons of artificial images clearly show that the final outcome 

depends on the patches we target as well as the image that we process. In real images small patch 
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movements may cause large changes in the image’s characteristics and may result in dramatic 

changes in error value and therefore very steep error surfaces. The challenge is therefore to find a 

sampling strategy that minimises this tendency whilst maximising the likelihood of generating a 

well-defined and unambiguous global minimum. Thus, establishing what regions to target when 

dealing with real world images will be the key to generating well-behaved error surfaces. In order 

to test these ideas we have applied these techniques to some real world images. Repeating colour 

patterns, large regions of constant colour and complex textures are all features which need to be 

assessed and thus images containing these features have been selected for testing (see Figure 3.8). 

 

Figure 3.8 - Three different testing images: (a) Garden, (b) Door, (c) Flower 

What and where to target on the image is the current focus of our work. We have tested various 

techniques for patch sizes and patch positioning. 

3.2.1.1 Fixed Locations 

We begin by investigating the “Fixed Locations” strategy which starts by allocating patches in 

certain locations. By locating patches in various locations, we will examine the possible 

difference that error surfaces are presented. 

This strategy has been tested using three different layout patterns: Central, Individuals and 

Merge. Each was used to identify the patches’ locations.  Each technique has different numbers 

of patches, patch sizes and patch locations.  The patches’ properties will help us categorise the 

effect on the shape of the error surfaces. 
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Applying different techniques to the same image will result in different error surfaces because 

different strategies capture different views and perform the calculation process based on different 

pixel selections. 

 

Figure 3.9.a – Patch’s location in the central strategy 

 

Figure 3.9.b – Patches’ location in the individuals’ strategy 

 

Figure 3.9.c - Patches’ location in the merge strategy 

Figures 33.a, 33.b and 33.c visually show where each strategy is targeting and what pixel samples 

it includes when applying them to images. For the appearance comparison process, patch(s) will 

be equality shifted to the most top left hand position iterating throughout the image’s pixels down 

to the most bottom right hand position. However, every strategy has a different range of freedoms 

to iterate throughout the image, for example, in the central strategy, the captured patch is 100 × 

100 in the most central position of the 300 × 300 image and therefore the patch can be shifted by 
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(-100, -100) up to (+100, +100). Unlike the central strategy, the individual strategy contains four 

50 × 50 patches where the top left hand patch is located on position (50, 50) and the bottom right 

hand patch is located on (200, 200). This means to iterate all four patches jointly throughout the 

possible pixel positions, we will need to shift all patches by (-50, -50) up to (+50, +50). The 

merge strategy is quite similar to how individuals are designed and performed, except that we 

have five patches of 40 × 40 where the top left hand patch is located on position (40, 40) and the 

bottom right hand patch is on (220, 220), which means to iterate all four patches jointly, we will 

shift all five patches by (-40, -40) up to (+40, +40).      

Examining Figure 3.9.a, the central strategy shows when applying the central strategy to the 

garden image (Figure 3.8.a) that the grass will occupy most of the patch.  By looking back at the 

artificial images we can see that large single colour regions such as the big black square can lead 

to a lot of similarity and can have many close minimal points.  The grass is thus a poor region to 

target as the garden image includes a lot of grass and is likely to yield a wide ambiguous global 

minimum. The situation is somewhat similar when applying the central strategy to the door image 

but rather better when applied to the flower image.  The central patch in the door image also 

contains little variation in colour and there is the possibility that the error surface will be very flat 

in this region.  This strategy worked best on the flower image, primarily because of the variety of 

colours captured by the central strategy in the flower image.  In Figure 3.9.b, the individuals’ 

strategy, the central box is divided into four equal sized parts and distributed around the 

diagonals.  In the garden image this distribution is beneficial because it leads to collecting more 

variation and results in a smoother error surface with a well-defined minimum.  Edges are 

important in terms of these sorts of variation and by examining the regions of the images 

captured by the individuals’ boxes (Figure 3.9.b), we can see that for these images we tend to 
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gather more varieties of colour than with the central strategy.  This variety helps with producing 

error surfaces which descend more reliably towards the global minimum. 

Figure 3.9.c shows that the situation with the merge strategy is quite similar to the individuals’ 

strategy except that we decreased the four patches size and included an extra patch in the central 

position.  The extra patch we added in the centre still only contains grass for the Garden case, but 

the other patches sample other colours and offset this effect. 

Figures 3.10, 3.11 and 3.12 show a comparison of some representative regions of the error 

surfaces for all three strategies for all three images.  Each figure contains three overlapping 

surfaces representing the Central, Individuals and Merge strategies. 

Figure 3.10 shows the error surfaces for all three strategies when applied to the Garden image.  It 

shows that the Individuals and Merge strategies have a larger gradient descending area than the 

surface which was generated using the Central strategy.  They both have better surfaces than the 

Central one (which is the lowest, flattest surface) because of the larger slope they produced.  This 

is because the Central patch mainly covers grass areas, which is homogeneous in colour and is 

widespread.  The situation differs from one image to another and the shape of the error surfaces 

differs according to the image characteristics.   



 

Figure 3.10 - Visual comparison for dif
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Figure 3.8.b shows an image of a door with a brick wall surrounding it.  It has a repeating pattern 

in the brickwork and a contiguous region of colour in the door itself: two features that we expect 

to cause problems.  Local minima are likely to be generated by the brickwork and flat regions by 

the contiguous colour regions.  Figure 3.11 shows the error surfaces when applying all three 

strategies to this image. The Central plot is less smooth than the other two (and shows some 

ripples and local minima), but the Merge and Individuals’ error surfaces are more smooth and 

have a larger descending area.  The door has repeating brickwork patterns (causing the ripples) 

and targeting anywhere within the (contiguously coloured) door may reduce the slope.  The 

Merge and the Individuals’ patches happen to be located mostly in the corners where we have 

some colour variety: moving the patches in these areas generates a better error surface. 
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Figure 1.11 - Visual comparison for different error surfaces when applying different strategies to the Door image (top is 

Central strategy, middle is Individuals, bottom is Merge). Gradient descending area is shown by dashed blue lines. 
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Figure 3.12 shows the error surfaces when applying all three strategies to the Flower image. As in 

the previous two scenarios, the Individuals and Merge strategies have a larger gradient 

descending area than the error surface which was generated using the Central strategy.   



 

Figure 3.12 - Visual comparison for dif
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Figures 3.10, 3.11 and 3.12 have demonstrated the use of Individuals and Merge strategies as 

being more useful by generating error surfaces with a wider gradient decent towards the minimal 

point. This shows the significant reason for having various regions captured in the appearance 

comparison process. Region varieties will provide a better chance of getting fewer region 

repetitions which results in an enhanced appearance comparison outcome. 

3.2.1.2 Edges 

Edges (such as those in the brickwork in the door image) play an important role which can have a 

significant effect on the shape of the generated error surface.  There are many ways of defining 

edges and we define them as places where there is a sudden variation in brightness because that 

variation might be helpful in identifying the minima on the error surface.  There are numerous 

algorithms to identify edges and they vary significantly in terms of their performance, speed and 

accuracy.  These techniques have been used for different purposes such as object tracking [2] and 

image comparison.  There are also many applications to track moving objects such as vehicles 

which were based on these techniques [133].  Sobel [4], Moravec [6] and Robert [7] are examples 

of these widely used techniques which we have tested and applied to the images to see if any 

algorithm will help to detect patches that are suitable for generating error surfaces for 

minimisation and stabilisation. 

For simplicity we converted the images to binary before applying the edge detection algorithm. 

This will identify the edges more accurately and produce less noise [8].  Figure 3.13 shows the 

results of the process: the grey areas in Figure 3.13.c are the edges that are detected. 
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Figure 3.13 - Converting the image (a) into binary (b) then detecting the edges (c) 

The next step is to identify the “best” patch and in our case we chose areas with the largest 

number of edges.  The patch selected is shown in Figure 3.14.a and the resultant error surface in 

Figure 3.14.b. 
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Figure 3.14 - Patch located on region containing the most edges (a) and used as a target to draw the error surface (b) 

The gradient descending slope in the error surface in Figure 3.14.b looks narrower than some 

previously shown examples (see Figures 3.10, 3.11 and 3.12). This will cause problems with 

defining the global minimal point from the majority of the surface’s locations. 
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3.2.1.3 Clear and Fuzzy 

Edges are an important feature in generating the shape of error surfaces. Clear images usually 

have hard edges, whereas fuzzy ones contain soft edges. 

3.2.1.3.1 Artificial Images 

Images with a clear resolution will usually have sharp edges and we expect sharp variations on 

the surface, as patches used for generating error surfaces pass through such image regions.  In 

non-fuzzy images we expect error surface slopes to be steeper than those images with a smoother 

variation. Figure 3.15 shows a visual comparison between two error surfaces which were 

generated from clear and fuzzy circles. It shows how the use of sharp edges (i.e. Figure 3.15.a) 

also generates a surface with a sharp slope. Moreover, the blue dashed boxes in Figure 37 are 

demonstrating the gradient descend areas for both error surfaces. It shows the located dashed box 

below the fuzzy image’s error surface (see Figure 3.15.b) to be wider than the clear image’s error 

surface. However, to be more precise, we are able to manoeuvre towards the minimal point from 

any point shown in the Figure 3.15.b error surface but this ability gets restricted in Figure 3.15.a.  
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Figure 3.15 - Error surface (a) was generated from image with a sharp edged circle, whereas error surface (b) was generated 

over an image with a fuzzy circle. Gradient descending areas are shown by dashed blue lines 
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Both surfaces in Figure 3.15 have well-defined global minima and the minima could be found 

effectively using simple control systems such as PID.  The surface generated from the clear 

image is steeper than the smoother surface generated by the fuzzy image.  Fuzzy images will 

have more gradual changes which makes them a better choice if we need a smooth error surface 

for the control system to work on. 

3.2.1.3.2 Real World Images 

Section 3.2.1.2 represents an experiment on locating the patch over the highest number of 

clustered edges within the image’s space. The aim here is to follow what has been applied in 

section 3.2.1.3.1 but now on real world images. The process is to blur the image and observe the 

difference in how error surfaces are generated when the same image is to be blurred and sharp 

edges are decreased. Figure 3.16.a shows the patch is located over the location which holds the 

largest number of edges, then the same image is blurred (see 3.16.b) and the same position is 

used to generate two different error surfaces. The idea here is to observe the difference that it can 

make to the error surface when the image is blurred.  

 

Figure 3.16 - Area with highest number of edges (a) applied over the fuzzy image (b) 

Figure 3.17 shows a comparison between the two surfaces obtained with the two images using 

the patch indicated. 
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Figure 3.17 - Error surface (a) was generated from garden image with sharp edges, whereas error surface (b) was generated 

over the fuzzed garden image. Gradient descending areas are shown by dashed blue lines 



84 

 

As in Figure 3.15, in Figure 3.17 the smoothening process over the garden image has also 

broadened the gradient descending area (shown by the blue dashed box), therefore, we are now 

aware that the smoothening technique helps to increase the potential gradient descending area on 

error surfaces. 

3.2.1.4 Artificial Shapes 

A further experiment examined what artificial shapes produce the best error surface shapes.  We 

use fuzzy blobs of different sizes that gradually change colour from the centre towards the 

circle’s edge.  The patch used captures the entire fuzzy blob and some white space surrounding it. 

The purpose is to investigate which of those blobs produce the best error surface for 

minimisation.  We then use that artificial patch to iterate through the real world image to find the 

best match between real world features and the artificial shape.  This best match patch is then 

used as the target in the hope that the error surface will be close to what was produced in the 

artificial examples (Figure 3.15).  Figure 3.18 shows the shaded circle in the centre which will be 

used to find the best error surface shape that can be used for the comparison process.  We tested 

varying sizes for the fuzzy blobs, such as (30 × 30), (60 × 60), (90 × 90), (120 × 120) and (150 

× 150) pixels in diameter. The main reason is to capture a patch which includes a dark blob in the 

middle with some white space surrounding it. Figure 3.18 demonstrates those patches with red 

boxes inside an image space. However, different patch sizes correspond to different blob sizes 

which will produce different error surfaces with different slopes. 
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Figure 3.18 - Error surfaces (b) corresponding to different blob sizes (a) 

The flattest surface corresponds to the smallest patch with a blob size of 30 × 30 pixels.  The 

other surfaces were produced with blobs of sizes (60 × 60), (90 × 90), (120 × 120) and (150 × 

150) pixels.  Figure 3.18 clearly shows that increasing the blob size also increases the gradient 

descending area for the generated surface. Such artificial patches can be used to find similar 

features in images such as the three test images (Garden, Door and Flower). The experiment was 

only based on one of the RGB colour channels (informal experiments showed no noticeable 

difference in performance between them).  We arbitrarily chose the green channel for later 
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experiments.  The boxes indicated in Figure 3.19(a-c) show the patches selected for each colour 

channel and after applying the comparison process between the artificial patch and the real image 

over the different channels. 

 

Figure 3.19 - The green channel patch in (a) is located in the top-most left hand box and in (b) it is in the middle between the 

other two boxes. The green channel box in (c) is located in the top right hand corner where the blue and green patches are 

overlapping. 

 

The surfaces generated are shown in Figure 3.20 (a-c). These results used the smallest patch size 

(30 × 30). 
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Figure 3.20 - Applying the 30 × 30 artificial patches over the three images. The blue dashed circles show the global minimal 

point on each surface, whereas the green dashed circles are for existing local minimal points on each surface. (a: Garden, b: 

Door, c: Flower) 
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Looking at Figure 3.20, we can observe the global minimal point on each surface which is shown 

using a blue dashed circle. However, looking at each of the three surfaces, we can still observe a 

few local minimal points which can mislead the controller to a different location. It is obvious 

that none of the error surfaces in Figure 3.20 are useful.  We also see visually that the green 

channel patches in all three images were captured in very “bland” areas with little variation which 

can cause the error surface to have many local minima.  We now take the experiment a step 

further where we repeat the same procedures but with different artificial patch sizes.  The green 

channel boxes drawn in Figures 3.21.a, 3.21.b and 3.21.c indicate the best patch found after 

applying the comparison between the artificial patch with the real image over that channel only. 

We have used an artificial patch size of 150 × 150 pixels to find the best patch possible. 

 

Figure 3.21 - The green and the blue channel boxes in (a) and (b) are mostly overlapping; in (a) it is the left-most box 

and in (b) it is the top-most box.  The green channel box in (c) is overlapping with the red channel box and is the top-most box 

in the image. 

We now apply the comparison with different artificial patch sizes to see how the error surface can 

differ when capturing a bigger patch and apply the process using a large patch size (see Figure 

3.22). 
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Figure 3.22 - Applying the 150 × 150 artificial patches over the three images. The blue dashed boxes are demonstrating the 

most gradient descending area for each surface (a: Garden, b: Door, c: Flower). 
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The difference between the patch sizes is clear and dramatic.  For instance, if we compare the 

Door error surface (Figure 3.20.b) generated by the 30 × 30 patch with the error surface generated 

by the 150 × 150 patch (Figure 3.22.b), we can see how the large patch removed a lot of noise on 

the surface and made it much smoother and easier for the controller to navigate.  A similar 

evaluation also applies for the other two error surfaces where the patch’s enlargement made a 

significant difference for both the Garden and Flower images. 
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3.2.1.5 Whole Image Sampling Strategies 

We cannot in general predict what image properties we will encounter and where to apply which 

strategy to capture the best patch possible.  We therefore applied some “whole image strategies” 

which ensure that no matter what features and what colours the image includes, we still target the 

entire image and use the entire image as a patch.  Using all the pixels requires a prohibitively 

large amount of processing time and therefore, we applied different ways of capturing a limited 

but distributed number of pixels around the image.  There are two ways to distribute the pixels in 

the image, one is static positioning and the other is random positioning. 

3.2.1.5.1 Static Positioning 

This strategy uses most of the image space to capture a variety of pixels from the entire image.  

The static positioning method uses a fixed grid to select which pixels are targeted.  There are 

many ways of targeting the pixels but we attempted to define a layout to ensure that on all 

translations some sampled pixels will overlap.  Selecting based on a regular grid does not achieve 

this: if we sample every npixels we will not get any overlap if we displace the image by (n-1) 

pixels. 

We resolved this issue by defining a simple way to guarantee some overlap on every movement 

and therefore we made the selection process take place every 10, then 9, then 8, etc., down to a 

spacing of 1.  This process of selecting the pixels is repeated right across the image.  Figure 3.23 

shows the selected pixels in the Static Positioning strategy.  We will be using the above indicated 

locations as our patch for the comparison process. 
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Figure 3.23 - Locations of the Static Positioning strategy 

Figures 3.24, 3.25 and 3.26 are demonstrating the comparison process for each colour channel 

separately. The drawn blue dashed box below the gradient descending area of each surface shows 

that there is no such difference in the performance of each of the three colour channels over any 

of the three images (Garden, Door and Flower images). As a consequence, we then decided to use 

only a single colour channel for the comparison process; therefore, we chose a green channel for 

no particular reason.   
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Figure 3.24 - Three error surfaces for the garden image were generated to represent the Red, Green and Blue channels 

separately. The blue dashed boxes are demonstrating the most gradient descending area for each surface (a: Garden, b: Door, 

c: Flower). 
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Figure 3.25 - Three error surfaces for Door image were generated to represent the Red, Green and Blue channels separately. 

The blue dashed boxes are demonstrating the most gradient descending area for each surface (a: Garden, b: Door, c: Flower). 
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Figure 3.26 - Three error surfaces for the flower image were generated to represent the Red, Green and Blue channels 

separately. The blue dashed boxes are demonstrating the most gradient descending area for each surface (a: Garden, b: Door, 

c: Flower). 
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Figure 3.27 shows error surfaces for the Garden, Door and Flower images using static positioning 
over the green channel only. 

 

Figure 3.27 - Error surfaces for different images after applying the Static Positioning strategy. The blue dashed boxes are 

demonstrating the most gradient descending area for each surface (a: Garden, b: Door, c: Flower). 
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It is clear that all three error surfaces have a smooth slope down towards their minimum and the 

noise and local minimal are almost completely eliminated (although local minima due to the 

brickwork texture are apparent in Figure 3.27.b, which is potentially valuable from the 

controller’s point of view. 

3.2.1.5.2 Random Positioning 

Random Positioning of pixels is another technique which we used to target the entire image 

rather than positioning a patch(s). Figure 3.28 shows the uniform random distribution of locations 

used in this strategy. To implement this randomness, we have designed a class in C++ language. 

The implementation of the Random class is based on Donald E. Knuth's subtractive random 

number generator algorithm [134]. 

 

Figure 3.28 - Distributions of the pixel locations using the Random Positioning 

In this approach we also ran the comparison process over each of the colour’s channels separately 

to see if there was any difference amongst any of the produced surfaces. As in previous cases, we 

have chosen the green channel to base our experiments on as there was no noticeable difference. 
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Figure 3.29 - Error surfaces for different images after applying the Random Positioning strategy. The blue dashed boxes are 

demonstrating the most gradient descending area for each surface (a: Garden, b: Door, c: Flower). 
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Figure 3.29 shows the error surfaces generated using the random positioning strategy based on 

the green channel only.  The large gradient descending areas are represented by the drawn blue 

dashed boxes below the gradient descending areas of the Static and Random surfaces (see Figures 

3.27 and 3.29).  

Now, seeing how well the Error Surfaces were generated using both methods in the Whole 

Sampling, we now need to make the final decision about which one of the two methods are best 

to be used (Static or Random).  To achieve this, we would run a simple control algorithm to 

simulate the tracking process and see which one of the designed methods will be performing 

better. 

In order to meaningfully assess the utility of the error surfaces we need a control system that can 

use them to find the minimum.  There are a variety of control algorithms that can be used to 

control systems such as that presented here. PID (Proportional, Integral, and Derivative) [3] is 

one of the simplest and best understood and a slightly modified proportional controller will be 

used in this work. 

Our “P” algorithm enhances the controller movement by increasing the P gain iteratively when 

the control system fails to generate a movement.  Figure 3.30 shows the two scenarios of when 

the P value needs to be increased or not. The increase of the P value is a simple low-overhead 

heuristic to avoid getting stuck on the flat regions of the error surface.  The P gain is reset to 1 

after each movement.  This algorithm is not intended to be used in a final control system, but is 

simply used to assess the error surfaces generated in this work. 
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Figure 3.30 – Representation of two scenarios where one uses a fixed P value and the other increases the P value gradually to 

overcome the large distance between the error contours’ levels 

The next stage is to test how well the controller navigates over those generated surfaces using 

both the Static and Random Methods. We first start to run the P controller over the three 

generated Error Surfaces using the Static Method. Figure 3.27 demonstrates the three generated 

Error Surfaces which will be used to testify the controller’s performance. Running the control 

algorithm described above from all starting points on each error surface will give us the ultimate 

result which verifies from what parts of the surface we can reach the target and get ourselves 
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back to the original location.  Figure 3.31 is produced from the Garden’s green channel error 

surface.  Figure 3.31.a shows a number of dots on the contour map which indicate the locations 

from which the minimal point was successfully reached using the simple control algorithm.  

Figure 3.31.b shows the distribution of the number of steps required (Y axis) to reach the global 

minimum from all the successfully minimised starting locations (X axis). 

 

Figure 3.31 - Successful areas on the contour map for the Garden image 

P controller will use all available locations on the surface as a starting point towards the minimal 

point. However, if P controller reaches the minimal point, its starting location will be considered 

as a successful location. For example, in Figure 3.31, P controller could reach the minimal point 

from 77% of starting locations; therefore here we consider that the success rate in Figure 3.31 is 

77%. Figure 3.32 shows the number and locations of the successful starting points on the error 

surface for the Flower image. It shows that 73% of the entire image’s locations were successful. 
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Figure 3.32 - Successful areas on the contour map for the Flower image 

Figure 3.33 shows the same data for the Door image, for which 20% of the starting locations 

succeeded. 

 

Figure 3.33 - Successful areas on the contour map for the Door image 

This poor success of the Door image is due to the homogeneous areas and repeating patterns in 

the image. 

Now, the same procedures will be followed using the Error Surfaces generated by the Random 

Method. Starting with the Garden Image’s Error Surface, Figure 3.34.a is a contour map for the 
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Garden image with the indication of the successful points and Figure 3.34.b is a graph showing 

how many points took how many steps in order to achieve the process. 

 

Figure 3.34 - Successful areas on the contour map over the Garden image 

In this case, using only the green channel, 59% of the starting locations succeeded using the 

Random Positioning strategy.  Figure 3.35.a shows the contour map for the Flower image with 

the indicated points showing the successful area, which is 52% of the image locations. 

 

Figure 3.35 - Successful areas on the contour map for the Flower image 

Finally we apply the same technique to the Door image. Figure 3.36.a shows the successful area 

covering 24% of the image: a slight improvement over the Static Positioning. 
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Figure 3.36 - Successful areas on the contour map for the Door image 

3.3 Conclusion 

The purpose of choosing different strategies was to implement a solution for the best patch found 

within the image.  The fixed locations strategies only perform well if the patches happen to 

capture some good features in order to build the error surface but this is unacceptably dependent 

on the properties of each individual image. The patch size is also a major consideration in the 

shapes of the error surfaces: larger patches tend to produce better error surfaces and the effects of 

“noise” decrease.  The strategies using edge detection and artificial patches also performed 

unreliably in general. 

There is a dramatic change in performance between patch positioning and whole image sampling 

strategies.  For example, Figure 3.37.a was generated by applying the 60×60 Artificial Patch to 

find the best positioning before applying the comparison process and the surface in Figure 3.37.b 

was generated by applying the Random Positioning strategy. The random strategy uses fewer 

pixels for the comparison process and the difference between the two is clear: the random surface 

is smooth, evenly sloping and has a well-defined single global minimum, whereas the artificial 
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patch surface is noisy and has multiple local minima. Both static and random positioning 

strategies perform well and quite similarly by targeting pixels distributed over the entire image. 
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Figure 3.37 - Patch positioning (a) and Random positioning (b) surfaces. The blue dashed boxes are demonstrating the most 

gradient descending area for each surface. 
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Both whole image sampling strategies are effective, although in these experiments more pixels 

were sampled in the static sampling strategy.  Despite the large number of pixels, the error 

surface contains a number of regions from which our simple controller was unable to minimise.  

This may be partly due to the simplistic nature of the controller, but in general the randomly 

positioned pixels yield steeper and deeper global minima: compare Figures 3.38.a and 3.38.b. 

In general the Random Positioning strategy does not suffer from regions in which our controller 

was unable to minimize and therefore seems to be a better solution. 

 

Figure 3.38 - Successful areas on Static (a) and Random Positioning (b) 

The minimisation method used on the surfaces generated by this work was essentially a P 

controller moving the target location iteratively across the surface. The controller only used 

information from the local slope of the error surface which was assessed using three points to 

obtain the direction of the slope; this minimises the computational load by only requiring the 

sample pixels to be compared three times between each movement of the actuators.  A summary 

of the numbers of pixels sampled to generate some error surfaces can be seen in Table 3.1. 
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Table 3.1 - Number of pixels sampled for various surfaces 

Figure   

3.9 (a,b,c) 10,000 (Central + Individuals) 10,580 (Merge) 

3.14 (a) 10,000 (edge detection) 

3.15 10,000 (artificial patches) 

3.19 900 (small artificial patches) 

3.21 22,500 (large artificial patches) 

3.23 14,600 (static sampling) 

3.28 2,500 (random sampling) 

 

Other than strategies, there are few properties such as surface’s roughness and depth of the hole 

in centre can have major affect on the controller’s navigation process. This means, we may have 

large descending area but if the surface’s roughness is high, it results to create many local minima 

around the global minima which would interfere on the controller’s navigation process and may 

lead it to stuck in one of the local minima rather than navigate towards the global minima.  

However, the shape of the hole in centre can also affect the ultimate process. For example, if the 

hole has a sharp ascending and descending then, it would be difficult for the controller to settle 

on the global minima. On the other hand, if the hole has a smooth ascending and descending then, 

the controller may also get unsettled condition by move back and forth around the global minima. 

It’s difficult to setup a technique which can quantify the graph but instead, we used many 

appearance comparison strategies to compare the generated graphs visually by drawing rectangle 

around the most ascending and descending area. The drawn rectangle should also consider the 

roughness of the surface as well. This would visually demonstrate the range of potentiality each 

graph can have when compared against some other generated graphs. 
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The ultimate conclusion behind all the patch positioning strategies and the applied experiments is 

that wider distributions of pixels will capture more of the variation in real images and therefore 

will produce better error surfaces and less noise.  In order to achieve this some form of whole 

image sampling is the best technique.  This leads to successful navigation on the error surface 

generated by the entire image and does not depend on a specific feature, shape, colour, etc.  To 

design a successful visual stabilisation control system for our Intelligent Kite Aerial Photography 

Platform (iKAPP) system we need a strategy which reliably generates a good error surface where 

the controller will have the opportunity to get us back to our target from most positions in most 

images.  In addition, the processing load is important as the platform uses a fairly low 

specification: 1GHz processor with 512Mb of RAM.  Fast processing will allow us to process 

images at a higher frequency and therefore move the actuators at a higher frequency which will 

improve the stabilisation performance.  Every error surface has a certain region within which the 

controller can succeed and if the kite system encounters a lot of turbulence then more images and 

faster processing will help to keep the camera within this region.  

Table 3.2 presents a comparison between Static and Random strategies. It clearly shows how 

Static strategy has achieved higher success rates over two images (Garden and Flower) but 

achieved less over the Door image. However, success rate of Random strategy in Garden and 

Flower images is over 50%.  

Table 3.2 – Success rate comparison between Static and Random strategies 

Image Strategy Sampled Pixels Success Rate 
Garden Static 14,600 77% 

Random 2,500 59% 
Flower Static 14,600 73% 

Random 2,500 52% 
Door Static 14,600 20% 

Random 2,500 24% 
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When this success rate is balanced against the sampled pixels in each strategy then, Random 

strategy seems to have more potential from the processing speed point of view over forthcoming 

experiments.  

When we refer back to our question in chapter 1, Random is a good strategy to be used for having 

a fast processing method to identify the appropriate regions for image-based stabilisation. 

However, the next chapter will use this strategy in real time process. 
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Chapter 4 

Design Methodologies 
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4.1 Preface 

After seeing how the random strategy was chosen to be our best methodology for pixel selection, 

we now need to know how to choose the size and the location of our patch.  

Patch Size Selection (PSS) and Slice Selection Process (SSP) are the two main sections included 

here which both describe the entire Patch Selection Process (PSP). However, beforehand, we will 

be applying some calibration processes before proceeding to further stages on PSS and SSP. 

4.2 Calibration Process 

We will first need to set up the platform in the laboratory to act as it will act in the real world 

environment. Figure 4.1 demonstrates how the platform was hung using four strong threads 

which are used to attach the platform to the laboratory’s ceiling. However, the ground distance 

from the ceiling is measured to be 4.5 metres and the platform was kept at a 1 metre distance 

from ground level which left a 3.5 metre distance from the platform to the top of the ceiling. It is 

worth mentioning that it is not important how far we keep the platform from the ground level, 

what is important is to keep that distance as a convention for the rest of our experiments. 

We will also push the platform to force it to act as a pendulum. The system is asked to capture a 

reference patch in the first stage and keep that patch to apply the appearance comparison over the 

upcoming patches in the subsequent frames. However, as we explained earlier, the distance 

between the reference and the current images can be achieved by generating the Error Surface 

and finding the distance between the two frames and defining the lowest local minima in the 

surface.  
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Figure 4.1 – Hanging platform over printed images  

Passing the actual defined distance introduces further issues as the distance was defined in pixels, 

but the servos only understands the language of degrees. Therefore, we need to calibrate how 

many pixels make one degree or vice versa, in order to send the request to the platform. 

The calibration process is required to enable the system to send the correct distance to the servos 

for it to move the camera by a correct distance. For our further experiments, we will use the lens 

with a 3.5mm angle view, in addition to using the 6mm lens to demonstrate how the larger 

angle's view affects the final outcome.  

Figure 4.2 demonstrates our calibration scenario. Calibration begins by capturing the reference 

image, moving the servo(s) within certain distance then capture the second image to compare it 

against the stored referenced one and define the pixel displacement between the two images.    

The next stage is to divide the servo's movement by the defined pixel displacement (D). The 

defined result of dividing the servo's movement by the defined pixel displacement is our defined 

calibrated number (C). After completion of the calibration loop, we will then use the calibrated 

number for our tracking system. The servo's movement is a straightforward process which is 

achieved after passing the calibrated values to the platform's servos. The values will move one or 

both servos to stabilise the camera. Figure 4.2 (right hand side image) demonstrates visually how 
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the servos tries to re-stabilise the camera over the required location using the appearance 

comparison technique. 

 

Figure 4.2 – Calibration loop 

Table 4.1 demonstrates the defined servo movements which we specified to go from -100 to 

+100, with a difference movement of 10. This process is repeated five times. Five pixel 

displacements for each movement were gained (e.g. D1...D5) and five calibrated numbers for 

each movement were also identified (e.g. C1...C5). In addition to this, as Table 4.1 also shows, 

the median for the calibrated numbers for all five trials were calculated and will be used for the 

next upcoming experiments. This calibration was made using the 3.5mm lens.  
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Table 4.1 – Servo movements for the calibration purpose 

Servo Move D1 C1 D2 C2 D3 C3 D4 C4 D5 C5 

-100 -94 1.041667 -94 1.06383 -90 1.06383 -90 1.111111 -96 1.111111 

-90 -84 1.046512 -86 1.071429 -80 1.046512 -86 1.125 -86 1.046512 

-80 -74 1.025641 -76 1.081081 -76 1.052632 -76 1.052632 -78 1.052632 

-70 -66 1.129032 -64 1.060606 -64 1.09375 -64 1.09375 -62 1.09375 

-60 -56 1.111111 -54 1.071429 -54 1.111111 -56 1.111111 -54 1.071429 

-50 -46 1 -50 1.086957 -50 1 -50 1 -50 1 

-40 -38 1 -40 1.052632 -40 1 -40 1 -40 1 

-30 -28 0.9375 -30 1.071429 -32 1 -30 0.9375 -32 1 

-20 -24 0.909091 -22 0.833333 -22 0.909091 -22 0.909091 -22 0.909091 

-10 -16 0.714286 -14 0.625 -12 0.714286 -14 0.833333 -14 0.714286 

0 -4 0 -4 0 -4 0 -4 0 -4 0 

10 6 2.5 6 1.666667 4 1.666667 6 2.5 4 1.666667 

20 14 1.666667 14 1.428571 14 1.428571 14 1.428571 12 1.428571 

30 22 1.666667 22 1.363636 18 1.363636 18 1.666667 18 1.666667 

40 28 1.538462 30 1.428571 28 1.333333 26 1.428571 26 1.538462 

50 36 1.470588 36 1.388889 36 1.388889 36 1.388889 34 1.388889 

60 44 1.363636 46 1.363636 44 1.304348 44 1.363636 44 1.363636 

70 52 1.346154 54 1.346154 52 1.296296 52 1.346154 52 1.346154 

80 58 1.428571 62 1.37931 62 1.290323 58 1.290323 56 1.37931 

90 66 1.363636 66 1.363636 66 1.363636 64 1.363636 66 1.40625 

100 74 1.351351 74 1.351351 74 1.351351 74 1.351351 74 1.351351 

Median (C1, C2, C3, C4, C5) = 1.11 

 

For further set up procedures, we are aware of useable mechanical solutions within the Kite 

projects (i.e. Picavet). Mechanisms like the Picavet are well-known solutions to get the platform 

vertically stable. It is achieved by attaching the camera to the kite line and not the kite itself. The 

angle of the line to the kite is constantly changing. The camera cradle hangs beneath the Picavet 

cross from a bolt that is fastened through a hole at the centre of the cross. The Picavet cross 

provides a level platform for the camera cradle [2]. However, Picavet will keep the camera’s head 
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vertically downwards, whereas our solution tends to always keep the camera’s head pointing 

towards the original location. 

4.3 Patch Size Selection (PSS) 

Looking at the Appearance Comparison chapter (Chapter 3), it was clear that the large patch has 

removed a lot of noise from the surface and made it much smoother and easier for such 

controllers demanding a gradient to navigate and reach the minimal. The penalty is the dramatic 

increase in the computational cost. However, the issue of computational cost was sorted by 

designing the random distribution patches, which required less pixel processing but covered a 

larger area. In addition to the computational cost of the large size patches, the ability to catch up 

with the movement speed is less possible with a large size image, as opposed to a smaller size 

one.  

In order to select our right patch size, we would need to process this selection by first looking at 

which patch size is the best to be tracked. Figures 4.3, 4.4 and 4.5 are used to show the possible 

coverage of some patch sizes over the tracking process.  

Best practice is to run experiment multi times and make sure that random variations are 

accounted for. However time consuming, nature of our working environment (consistent 

condition) and condition of our lighting resulted to have the decision to run single experiment. 

Figure 4.3.a shows the entire image was captured by a large patch size and 4.3.b shows the 

shifting procedure towards the left where it is now impossible to get the entire reference patch 

matching within the current image's space. This makes the comparison process between the 

reference and the current patches incomplete, where a large original image's view was outside of 

the boundary. This means that only part of the two patches is correlating within the image's space 

and a faster movement may decrease the amount of similarities. 
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Figure 4.3 – Patch covering the whole image space 

However, as Chapter 3 explained, the larger patches capture larger image’s space which 

decreases the possibility of having more than one minimal point which would then reflect to have 

a smoother error surface with a clear single minimal distance. Yet, on the other hand, from the 

image processing point of view, covering larger image’s space usually means processing a larger 

number of pixels unless some clever technical methods are used to get a great potential gradient 

with less pixel processing. Consequently, a balance between choosing the right patch size and the 

possible increase of pixel processing is mandatory. 

 

Figure 4.4 - Patch covering half of the image space 

Figures 4.3, 4.4 and 4.5 demonstrate how the patch sizes of 300 × 300, 150 × 150 and 100 × 100 

were relocated back to the original location, after the camera was shifted. It demonstrates how the 

patch size of 100 × 100 was relocated with none of its borders outside of the margin. Therefore, 

we can take this as a basic argument for using the 100 × 100 patch size to handle the camera’s 

shifting procedure better than the larger sizes (300 × 300 and 150 × 150). However, referring 

back to Chapter 3, we did use a patch size of 250 × 250 to generate a good error surface with a 
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large area of potential gradient that the controller can use, but the question remains, which patch 

size is best for real time experiments? 

 

Figure 4.5 - Patch covering a third of the image space 

Figure 4.6 shows the generated Error Surfaces using both 100 × 100 and 250 × 250 patches. The 

dotted rectangles in both 4.6.a and 4.6.b show the gradient descending ranges. Visually speaking, 

4.6.b has a much larger dotted box than the one in 4.6.a. This means that the gradient descending 

range on the generated surface with the 250 × 250 patch has covered a larger image’s space and 

therefore it has provided a better chance of finding the original target. However, we should be 

aware that these two surfaces were generated offline and we would need an online methodology 

to determine the trade-off between enlarging the patch size and handling the movement speed.  
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Figure 4.6 - Gradient comparison between two error surfaces generated from two different patch sizes. Two dotted 

rectangles demonstrate the range of the gradient on each Error Surface 
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To begin the online analysis, we first disable the platform’s servos and allow the platform to 

move along the line for a short period of time. Meanwhile, the platform captures images 

continuously and calculates the pixel displacement between every two consecutive images. 

Figure 4.7 shows two states where the platform is either pointing vertically downwards or 

pointing to the side. The two states differ from the swing’s speed point of view, where the highest 

speed is when the platform is pointing fully downwards (i.e. central position) and gets to its 

lowest speed when it reaches the side. Hence, we are comparing every two consecutive images. 

We should expect the displacement to be higher when the platform is in the central position and 

lower when the platform reaches the sides. Figure 4.7 shows this as displacements are going from 

lowest to low to high and to highest, then vice versa. 
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Figure 4.7 – Pixel displacement graphs are made to represent the platform’s possible position within the pendulum’s cycle – 

E.g. Graph “a” showing the platform reached the central part of the pendulum where the pixel displacement between the 

two captured consecutive images is to be 60 pixels, but on the other hand, graph “b” shows how the pixel displacement 

between the two consecutive images is now only 5 pixels due to the high decrease in the swing’s speed when the pendulum 

reaches one of its ends and the platform points towards the side. 

In theory, if we plot the entire retrieved displacement numbers, the peaks should represent the 

time when the platform was in central position with the highest speed and the zero crossing 

represents the time that it reached the side with the lowest speed. Figure 4.7 shows an example of 

how the displacement is found to be 5 pixels on sides and raised to 60 pixels when the platform 

reached the central position. For future referencing, we will call the retrieved plot a “Pixel 

Displacement Graph” and the peaks “Direction Changes” (see Figure 4.8). 
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Figure 4.8 – Direction changes on the graph displacement graph 

The Graph with the least found Direction Changes (DCs) is expected to be the smoothest, with 

accurate retrieved displacement numbers. 

The hypothesis is that, the slice that generates plot with the fewer direction changes gives the 

better input stabilisation.  

Previous figures (4.3, 4.4 and 4.5) have demonstrated the usability of having the patch size of 

(100 × 100) from the tracking point of view, but this may not be true in real world practice 

therefore, a new experiment aims to retrieve the pixel displacement graphs of three different 

patch sizes over three different images. The goal is to define which patch size {(50 × 50), (100 × 

100), (150 × 150)} has introduced graphs with fewer DC values. This will indicate the usability 

of that patch size over real time tracking.   

Figure 4.9 demonstrates the three images which will be printed and placed below the hanging 

platform (see Figure 4.1) to simulate the real time scenario. 
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Figure 4.9 – Flower, Door and Garden images 

Figure 4.10 presents the results of applying three different patch sizes over the Flower image. As 

mentioned earlier, the graph with the least Direction Changes is expected to represent better data 

quality, which in our case would be a better patch size to use. The first set of pixel displacement 

graphs are for the Flower image, as shown by Figure 4.10. 
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Figure 4.10 - Retrieved Pixel Displacement Graphs using three different patch sizes of 50 × 50, 100 × 100 and 150 × 150 over 

the Flower image 
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As we are aiming to find the graph with the least number of Direction Changes (DCs), we will 

need to measure how many DCs are in each graph. 

Table 4.2 shows the retrieved DC when three different patch sizes were used over the Flower 

image. It presents how the small patch (50 × 50) had the largest DC value (289 DCs) and that is 

mostly because the small patches can capture smaller areas, which tend to have a higher number 

of similarities across the image. However, getting more identical (or closed) values can redirect 

the navigation process to a different patch and draw the graph with many overshoots and noises 

(see Figure 4.10). On the other hand, when we had the largest patch size (150 × 150), we 

achieved much better data quality and reduced the DCs by a large number. Yet, referring back to 

Figures 4.3 and 4.4, it will become less possible to track the larger patch size in the subsequent 

frames. Therefore, running a smaller patch size (100 × 100) but one that is bigger than the first, 

(50 × 50) can be a good test to apply and obtain the required balance for the patch size. 

Table 4.2 shows the results obtained from the patch size of (100 × 100) to be 123 DCs, which is 

less than both previous patches. This means that for this Flower image, the patch size of (100 × 

100) was the best choice from all three sizes. Referring back, Figures 4.3, 4.4 and 4.5 will support 

the patch size selection and its track ability even further. However, due to having stable 

laboratory conditions, Table 4.2 demonstrates the results from a single run experiment. 

Table 4.2 – Different patch sizes over flower image gaining different DC values 

Flower 

Patch Size Strategy Direction Changes (DC) 

50 289 

100 123 

150 149 
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The second trial was done using the same patch size but over the Door image. We repeated the 

procedure and ascertained that the conditions were kept the same; for example, the surrounding 

illuminations would need to be similar as well as the distance that we pull or push the platform to 

simulate the pendulum. Figure 4.11 presents the pixel displacement graphs using the three patch 

sizes over the Door image. 
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Figure 4.11 - Retrieved Pixel Displacement Graphs using three different patch sizes of 50 × 50, 100 × 100 and 150 × 150 over 

the Door image 
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As Table 4.3 demonstrates, the ultimate outcome is quite similar to what we achieved with the 

Flower image. Also, similar to the scenario with Table 4.3, due to having a stable condition, the 

results were gained from a single applied experiment. 

Table 4.3 - Different patch sizes over door image gaining different DC values 

Door 

Patch Size Strategy Direction Changes (DCs) 

50 248 

100 116 

150 128 

 

The final experiment was applied over the Garden image, and again, we used all three patch sizes 

and tried our best to keep the surrounding conditions similar as when the first and second 

experiments were applied. Figure 4.12 shows the three pixel displacement graphs using the three 

patch sizes. 
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Figure 4.12 - Retrieved Pixel Displacement Graphs using three different patch sizes of 50 × 50, 100 × 100 and 150 × 150 over 

the Garden image 
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Table 4.4 presents a slightly different outcome than the experiments over both the Flower and 

Door images. In this case, we still have the (50 × 50) patch size with the highest DCs (260 DCs) 

but the lowest DCs have now changed from being (100 × 100), as it was in previous cases, to a 

patch size of (150 × 150). The (100 × 100) patch size gained where the (150 × 150) had 121 

DCs, making it the graph representing the best patch size for this scenario. As in previous cases, 

the represented numbers in Table 4.4 were gained from a single experiment. 

Table 4.4 - Different patch sizes over garden image gaining different DC values 

Garden 

Patch Size Strategy Direction Changes (DCs) 

50 260 

100 183 

150 121 

 

When the platform is moving short distances at the end of the test, the patch is moving almost 

entirely on a uniform area of green in the image. Thus, poor matches are likely. The larger patch 

captures more variation. Consequently, Figure 4.13 demonstrates how the (150 × 150) patch 

could capture more variations than the (100 × 100) patch size. Part of the chair, door and the sky 

are examples of further variations the (150 × 150) patch included in its context. 

However, after the theoretical discussion about Figures 4.3, 4.4 and 4.5, the real time experiments 

have shown the patch size of 100 × 100 to be a good size for handling the camera’s frequent 

movement. Nevertheless, due to having quite well stabilised laboratory conditions, we then 

thought to have a single run for each patch size over each image. Therefore, each patch size was 

tested once on each of three different images, and the 100 × 100 patch size had quite a good 

outcome. In light of this decision the results that were obtained should be considered with respect 

to the small number of samples obtained. 
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Moreover, as we discussed earlier, more variations result in retrieving more accurate pixel 

displacements and higher accuracy means a smoother Graph with fewer Direction Changes 

(DCs). For this part of the experiment, the (150 × 150) patch generated fewer DCs which made it 

a better patch size than (100 × 100) and (50 × 50) patches (see Table 4.4).  
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Figure 4.13 – Larger patch size reflects on generating smoother pixel displacement graph 
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With the results of the applied experiments on the three images using three different patches, the 

(100 × 100) patch size generated lower DC values in 2 out of 3 experiments. However, as we use 

the DC value as our core success criteria, the (100 × 100) patch size with the lowest DC values 

showed great potential of getting tracked in high speed motion, therefore, we can now declare the 

patch size of (100 × 100) to be an ideal patch size in all our further experiments.  

4.4 Pixel Processing Reduction 

An exhaustive search is expensive and we may still achieve a high quality outcome by iterating 

over the central X and Y axis only (see Figure 4.14). This will generate two useful curvy lines 

from the controller’s point of view. 
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Figure 4.14 – Two curvy lines generated from patch iteration over the central X and Y axis only 

In contrast to the X direction (pendulum direction), we require a different solution to resolve the 

non-stabilisation over the Y direction (see Figure 4.15). However, in contrast to a laboratory 
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scenario, we can encounter much more non-stabilised conditions over the Y axis in the real world 

environment. 

 

Figure 4.15 – Image’s axes against the corresponding servos 

Picavet solves some of the stabilisation issues for our Y axis but it certainly would not solve the 

entire concern related to the stabilisation on that axis. By implementing the Picavet on the Y axis, 

we are allowing the platform to resolve some of the stabilisation issues using a mechanical 

solution. 

Having the pendulum on the X axis lets the patch to iterate through the X axis only. This 

generates a single curvy line that illustrates the local found minimum on the central X axis, which 

is still useable (see Figure 4.16). 



136 

 

 

Figure 4.16 - Single curvy line generated from patch iteration over the central X only 

Therefore, by taking into account that images are 300 × 300 pixels, we have reduced our search 

from 400,000,000 down to 2,000,000 pixel processing. This is equivalent to a 99.5% reduction 

and we will refer to it as “all” for future references (see Figure 4.17). 
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Figure 4.17 – Reduction from 400,000,000 down to 2,000,000 pixel processing 
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4.5 Hierarchical Search Strategies 

Looking again at Figure 4.17 and specifically at the “all” strategy (where the entire central X axis 

was searched in order to find the minimal point) we now need to design methods for how to find 

the local point with less pixel search processing. We have designed hierarchal search strategies 

which supposedly substitute the exhaustive search, in the hope of achieving a similar 

performance. The strategies are titled “23”, “21”, “19”, “17” and “15”. Every strategy was named 

according to the number of steps it processes in every cycle. For instance, strategy “23” visits 23 

locations and strategy “21” visit 21 locations and so on. To understand how they perform, we 

start describing the first Hierarchical search “23” which will also provide a clear view on how the 

others work. The methodology starts by locating the patch in the most central part of the X axis 

and then begins to shift the patch by the following displacements: 

{-100, -80, -60, -40, -20, 0, 20, 40, 60, 80, 99} 

Figure 4.18.b demonstrates this process on how the patch was shifted along the central X axis and 

also presents how this shifting generated an error curve to wholly exhibit the distance of the 

shifted patch from the central reference patch (see Figure 4.18.c). Arrows 2, 3 and 4 in Figure 

4.18 show the relation between the patch shifting process and the generated error curve which 

would then be used to help us distribute the new shifting locations around the found minimal 

distance. 
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  Figure 4.18 – First shifting iteration set 

Figure 4.19.b now demonstrates the new patch shifting displacement {-15, -10, -5, 0, 5, 10, 15} 

around the found minimal point in Figure 4.18. 
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Figure 4.19 - Second shifting iteration set 

The next step is to define the new shifting order from the new starting point {-4, -2, 0, 2, 4} (see 

Figure 4.20). 

 

Figure 4.20 - Third shifting iteration set 
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In the last part, as Figure 4.21 shows, the minimal point will be defined amongst the ultimate 

shifting numbers (or positions) and will move the patch to the new specified point.  

 

Figure 4.21 – Moving the patch to the best matching point  

Eventually, we calculate the total distance that we moved the patch, from the beginning to the 

final point. The distance will be passed through to the servos to stabilise the camera and let it 

point to its original view. 

We named the above hierarchical search as strategy “23” and that is due to the fact that we 

located the patch on 23 different locations over the entire axis, as a hierarchical structure to 

define the global minimal point. Table 4.5 shows the entire shifting steps for strategies “23”, 

“21”, “19”, “17” and “15”.  

The way the rest of the strategies perform is exactly that same as how the “23” was designed, but 

they will be located over fewer and sometimes different locations. 
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Table 4.5 – Shifting steps for the hierarchical search strategies 

23 -100 -80 -60 -40 -20 0 20 40 60 80 99 -15 -10 -5 0 5 10 15 -4 -2 0 2 4 

21 X -80 -60 -40 -20 0 20 40 60 80 X -15 -10 -5 0 5 10 15 -4 -2 0 2 4 

19 X -80 -60 -40 -20 0 20 40 60 80 X -15 -10 -5 0 5 10 15 -4 -2 X 2 X 

17 X -75 -50 -25 0 25 50 74 X X X -15 -8 -1 X 6 X 13 -7 -4 -1 2 5 

15 X -75 -45 -15 X 15 45 74 X X X  -30 -20 -10 0 X X X -6 -3 0 3 6 

 

The hierarchical searching levels are indicated with various colours, where Table 4.6 shows the 

first hierarchical search level for the “23” strategy. When the patch is located on the most central 

position of the X axis, these numbers are then used to shift the patch along the X axis. It starts 

from -100 up to +99 (see Table 4.6). The number “0” is always the central position where no 

shifting process occurs. 

Table 4.6 

-100 -80 -60 -40 -20 0 20 40 60 80 99 

 

We now have 11 results representing 11 Euclidean distances retrieved from applying 11 shifting 

numbers shown in Table 4.6. The least found distance will become our new central position (or 

“0” position). Table 4.7 is now showing new shifting numbers around the new “0” position. The 

2nd hierarchical search level starts from -15 up to +15 (see Table 4.7).    

Table 4.7 

-15 -10 -5 0 5 10 15 

 

Ultimately, Table 4.8 shows the final shifting numbers which are now around the new found least 

Euclidean distance.   
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Table 4.8 

-4 -2 0 2 4 

 

After clarifying how strategy “23” performs, we can now determine the way other strategies in 

Table 4.5 are executed. 

However, since we have designed new searching techniques, the significant part is to estimate the 

saving made. Figure 4.22 demonstrates the number of pixels processed for the hierarchical and 

the “all” strategies. 

 

Figure 4.22 – Pixel processing for all six strategies  

Figure 4.22 presents how the “all” strategy had 2,000,000 pixel processing. Also, the searching 

number was brought down to 230,000 pixels processing on strategy “23” and more savings were 

made over the rest of the strategies (i.e. Strategy “15” made 150,000 pixel processing).  

In order to reduce the computational overhead associated with our current patches, the search was 

made over a single colour channel but some down sampling is also required. Once again, the use 

of complex techniques to combine pixels etc. is not appropriate for reasons of computational 

overhead. The use of a random (but fixed) distribution of pixels within the patch (see Chapter 3) 

rather than all the pixels was selected. This process of random distribution is applied to both the 

reference and current patches, which will reduce the number of pixels being processed 

enormously. Figure 4.23 shows an example distribution which captures 10 percent of the pixels 
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for the comparison process, making a massive reduction over the pixel processing. For example, 

the “all” was decreased from 2,000,000 pixels processed down to 200,000 and “23” went down to 

23,000 from 230,000 pixels being processed previously. 

 

Figure 4.23 – Random distribution will process 10% of the entire pixels 

The implemented hierarchical searches are slightly different to many existing methods like 

Gradient decent, Newton's Method and many similar minimisation methods which were designed 

to look for the local minima. Our hierarchical searches were designed to look for the global 

minimal point. Figure 4.24 is a good example of such an error curve which does have many 

minima. Methods like the gradient descent are fast enough to always be within the required local 

minimal but any fast manoeuvre can lead to shifting the localisation or the tracking process to a 

totally different direction. For example, if we use the error curve that is shown below for our 

tracking process, the gradient descent and such other similar methods can be shifted to any of the 

shown local minimal points (green circles). However, the hierarchical searches were designed to 

act like an exhaustive searching process but with much less pixel processing and a similar 

outcome. 

Choosing the right patch size, using the SSP technique for the allocation process and employing 

the hierarchical searches can address the problems to resolve the stabilisation issues of using 

visual analysis. 
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Figure 4.24 – Similar regions reflect on having more local minima 

Figure 4.25 shows the five images which used to be located below the platform to allow the 

platform to stabilise over. 

 

Figure 4.25 – Garden, Door, Flower, City and Street images to be printed and placed below the hanging platform 

As Figure 4.25 demonstrates, the stabilisation results of strategies “all”, “23”, “21”, “19”, “17” 

and “15” are a, b, c, d, e and f using box and whisker plotting. Five runs were applied for each 

strategy then the results were compared to see if the designed strategies have a similar 

performance over each of the five images (see Figure 4.25). The comparison process has used the 

statistical P value. To retrieve the P value, we have used the Kruskal-Wallis [135] technique 

which is a non-parametric stat supplied by the MINITAB [136] software. If the gained P value is 
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over 0.05, it means the correlation amongst our datasets is high enough and there is no difference 

amongst the performance of all 6 strategies over the used images. As a consequence of our 

comparison outcome, Figure 4.26 shows the P value on the Flower image failed to exceed the 

0.05 margin. So, this means that, the hypothesis set out at the beginning of the chapter is not 

practical for all type of images. Many of the experiments seem to show good performance of the 

algorithm, but in cases where the image is either relatively featureless, or contains repeating 

patterns the algorithm is more likely to fail to maintain good stabilisation. The existence of very 

bland image regions in images such as the Flower image or repeating features such as the 

brickwork in the Door image are natural features of the world, and it seems inevitable that some 

images will not be effectively tackled using this technique alone. 
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Figure 4.26 – Using box and whisker plotting to present the gained data  
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4.6 Slice Selection Process (SSP) 

After describing how the process of Error Surfaces (or Error Curves) generation is achieved and 

how to use them to navigate over the target, we now need to take one step backwards and think of 

how to select our reference patch. The reference patch is the most essential part, as unlike the 

continuously captured images, the reference image will be used during the entire process to be 

compared against the upcoming frames. Therefore, it is highly important to determine how to 

choose the reference and is essential to verify if it is best to use the capture patch from the central 

part.  

Figure 4.27 demonstrates an image where the black box is now located on the top central part 

rather than the most central, as in previous examples. If we now capture two patches, one to be 

from the most central (as in previous examples) and the other to be from the centre of the top, the 

generated error curve from the top layer (or slice) is more descending towards the minimal point. 

This means the controller has more opportunity to define the target when using the error curve 

with a smoother curve descending towards the minimal found error. The problem that we 

encountered with the central layer was because when we captured the central patch from the 

middle, the comparison process did not identify any difference between the captured reference 

patch and any other captured patch over the same axis. Yet, the scenario is different when the 

captured reference is applied over the most central location of the top layer. Here, the comparison 

process will find a large difference between the reference and any captured patch throughout the 

same axis. As a consequence of this, Figure 4.27 can present quite a high difference between the 

two generated error curves when the comparison ran over both layers, where the difference is 

descending and is visually quite well observable. 
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Figure 4.27 – Patch position reflects over the error curve shape 

Knowing where to locate the reference patch is the foundation of the entire route, which provides 

the base of either having a strong or weak stabilisation. The requirement of knowing where best 

to locate the reference is a major prerequisite process.  

 

Figure 4.28 – Choosing where to locate the patch is an important step in the initialisation procedure 

As for PSS, we start by letting the platform move along the line and keeping the servos disabled. 

The distance between the consecutive images is calculated while the platform keeps swinging but 

no physical stabilisation action is processed. The platform will move along the line for a short 
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period of time while it captures images continuously. The image is divided into multiple 

horizontal sections. We call each of these sections a “Slice”. A Slice is a rectangular piece taken 

from the image view, where the height is only a small part of the entire height but the width is the 

actual image's width. Figure 4.29 demonstrates how the image is divided into multiple slices and 

the horizontal piece below the actual image is an example of what a single slice looks like. 

 

Figure 4.29 – Image divided into 9 slices 

As with PSS, where the appearance comparison was processed over the central slice, we now 

apply the same process over the 9 slice divisions. Hence, we apply the process over 9 slices and 

expect 9 Pixel Displacement Graphs (see Figure 4.29) to be generated. The one with the lowest 

number of Direction Changes is expected to be the best slice for the platform to select the 

reference patch from. Figure 4.30 presents the SSP steps, which also indicates the need to set a 

deadline for the SSP method and terminate it. 

If the graph has fewer Direction Changes, it means the colour variations within that slice are 

clearer to the platform's camera and the appearance comparison between the patches generates 

better Error Surfaces (or Error Curves). Ultimately, this means the patches within that slice are 

more useful.   
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Figure 4.30 – SSP steps 

Figure 4.31 shows the best and worst slices from the applied SSP test over the Flower image. As 

the number of Direction Changes helps to know which slice is best to stabilise on, the example in 

this Figure shows slice 6 to have the highest number of Direction Changes with 309, and slice 4 

having the lowest with 87 DC. 
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Figure 4.31 – Example of two pixel displacement graphs over two different slices 
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The next stage is to enable the servos and locate the reference patch over the best found slice 

(Slice 4). Figure 4.32 demonstrates how the reference patch was located over the best and worst 

slices. The same Figure presents the P value as 0.001, which is an indication of the difference 

between the two data sets (a & b). Dataset “a” refers to the outcome of the stabilisation technique 

over the best slice (slice 4) and “b” refers to the results of the applied stabilisation over the worst 

slice (slice 6). To determine which result shows a better outcome, we look at the dataset with 

smaller values. As the practice was the stabilisation procedure, the results are the distance 

between the reference and the current patch. Therefore, by looking at the presented analysis in 

this Figure, we can see that the dataset “a” was shifted more to the left, indicating less errors. 

This signifies that the stabilisation technique over slice 4 performed better than the applied 

technique over slice 6. 

 

Figure 4.32 – Statistic Stabilisation comparison between slice 4 and slice 6 
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4.7 Conclusion 

Having good knowledge about the image's properties is the main prerequisite which leads to 

knowing where is best to locate the reference patch. As earlier discussed, being able to locate the 

patch in the right position will help to generate a good error surface or error curve, which would 

help to track the right position. A strategy to use the generated surfaces (or curves) is needed to 

reduce the time consumption and increase the system's performance.  

Our work targeted those issues by discussing why a larger patch is better in generating better 

error surfaces (or curves) and on the other hand, why a too large patch can sometimes be a 

disadvantage. This is because it will lose the ability to track the patch in a high speed manoeuvre 

(see Chapter 4). Therefore, choosing the (100 × 100) patch's size was the outcome of this 

compromise. Also, being able to track the view means the reference patch can still be found 

within the image space and locating the patch in the central part gives equal opportunities for the 

patch to be found on either the negative or positive directions of the X axis. Figure 4.33 

demonstrates the difference in possible iterations that the patch can have on both sides of the 

central X axis. During the view tracking process, the left side image, where the patch was 

captured from the most central part, will have the opportunity to move and track the reference 

patch to both sides of the X axis equally. However, as the right side image demonstrates, if the 

patch is located to be somewhere other than the central part then we will face less possibilities of 

tracking on one side and more on the other side, hence giving advantages on one side and 

disadvantages on the other. Therefore, to give both sides equal opportunities, we decided to 

locate the patch on the central part of the X axis.  
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Figure 4.33 – Locating the patch in the most central position gives equal tracking opportunity to both sides 

After deciding to locate the patch in the most central part of the X axis we needed a methodology 

which tells us where is best to locate our patch over the Y axis. This is a highly important process 

as the result will affect the ultimate outcome (Stabilisation). The Slice Selection Process (SSP) 

was designed to analyse the image's view and provides us with the answer to where is best to 

locate our patch over the Y axis. SSP is the major contribution in this work and experiments 

show how it can have an influence over the stabilisation process.  

Therefore, as our question in chapter 1 requires, SSP would resolve the problem of defining the 

appropriate regions for image-based stabilisation using pixel-wise comparison. 

Next two chapters discuss the experiments in both the laboratory and real world environments to 

increase the credibility of our designed SSP method in real time practice. 
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Chapter 5 

Laboratory Experiments  
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5.1 Preface 

This chapter combines the approaches from the previous chapters and tests them in a laboratory 

environment. The SSP is used in combination with the hierarchical search described in Chapter 4. 

5.2 Experimental Images 

 

To start applying the tests, we have added five extra images to those shown in Figure 4.25 (see 

Chapter 4) in order to introduce more variations and to improve the quality of the results. 

Choosing these images was based on the different characteristic each image has which means 

each image has satisfactory different properties compared to the other nine images. For instance, 

the Garden image was used to test the performance over the green areas where the Door and 

Building images use the highly repetitive feature alongside the image. Therefore, each image was 

used to test the platform’s performance over different attributes. However, we could design 

artificial images for the same purpose, but using real world images would allow us to observe the 

platform’s performance much closer to its real world performance. The purpose of this 

experiment is to examine the relations between the SSP and the stabilisation technique. The slice 

with the lowest DC is most likely to indicate the best slice and the highest will be the worst to use 

for stabilisation. The lowest number of DCs amongst the whole slices in the same image is most 

likely to be the best or one of the best slices on which to stabilise the camera. However, as with 

Patch Slice Selecion (PSS) process (see 4.3), because of the time consuming, nature of our 

working environment (consistent condition) and condition of our lighting resulted to have the 

decision to run single experiment on the slice selection process but, the stabilisation technique is 

repeated five times over the best and worst images’ slices. Figure 5.1 includes all 10 images 

[115]. 
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Figure 5.1 – Flower, Beach, River Street, Garden, City, Door, Building, Duck and Lake images to be printed and placed below 

the hanging platform 

5.3 SSP Analysis 

As applied earlier, we re-apply the process with the above images by hanging the platform to be 

pointed downwards to the printed version of the above images and apply the SSP method to 

determine the best slice for each of the images shown. Table 5.1 shows the results from the SSP 

over the 10 images. Due to having quite stable environmental conditions, the best and worst 

slices shown in Table 5.1 were only retrived from one run experiment. 

Table 5.1 – Best and worst slices of the ten images 

Image Flower City Garden River Door Beach Lake Building Street Duck 

Best Slice 4 4 1 6 6 6 3 4 3 5 

Best DC 87 82 138 87 188 75 74 129 88 76 

Worst Slice 6 9 6 1 3 9 9 1 9 9 

Worst DC 309 548 344 606 412 562 526 312 243 436 

 

Figure 5.2 shows the long vertical patch which will be divided into 9 parts for the purpose of 

processing the SSP method. A few images have gained more than one slice with low DC which 
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shares an equivalent value. Therefore, we will be using one of the slices with a low DC number 

by random selection (i.e. Building image). However, slices with a low DC are titled “a” and those 

with a high DC are titled “b”. 

 

Figure 5.2 – DC values for all 10 images slices 

Figures 5.3 to 5.12 show the best and worst slices besides their Pixel Displacement Graphs 

retrieved from applying the SSP technique over the 10 images. We will show how the best and 

worst slices differ in smoothness by visually showing how the best slices have fewer noises than 

the worst slices. From the SSP point of view, it means the method was more successful in gaining 
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more precise values over the best slice. We will also explain the visual appearance differences 

between every two slices (best and worst) on each image which were the effective factors in 

shaping the pixel displacement graphs. Though, all the best slices are titled “a” and the worst “b”.    

Starting with the Beach best and worst slices (see Figure 5.3), the SSP method gained quite a low 

DC over the best slice. The visual differences between the two slices are obvious where the wide 

variety of features (i.e. buildings, trees, sky and etc…) on slice “a” is observable but the water 

has dominated most of the view on slice “b”. This water domination made large colour constancy 

across the entire slice and forced the SSP to generate a high DC pixel displacement graph.   
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Figure 5.3 - Best and worst Pixel Displacement Graphs for the Beach image 

On the City image, it shows the water has dominated the majority of the slice “b” view. This 

caused the appearance comparison between consecutive images to introduce numerous 
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similarities which caused a high DC value on the retrieved displacement graph. The scenario 

differs with slice “a”, where different features (i.e. buildings, sky and green leaves) caused high 

colours/regions variations. These variations give the SSP method the opportunity to retrieve more 

precise displacement values and generate a displacement graph with a lower DC value (see 

Figure 5.4). 
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Figure 5.4 - Best and worst Pixel Displacement Graphs for the City image 

The region uniqueness in Figure 5.5 (Door best and worst slices) is significantly missing, 

therefore the difference between the best and worst slice is the door’s handle and some side 
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features only. However, even the door handle is not a highly distinctive feature and we cannot 

rely on it to expect a good SSP outcome. Although, due to gaining 188 DC over slice “a”, the 

best slice may still not be good enough from the stabilisation technique point of view. The brown 

colour is highly dominating across the image where the door is painted dark brown and the bricks 

are light brown. They are still two different colours but any blurriness will increase the 

similarities between the two colours levelling (dark and light brown). Though the white lamp and 

the green leaves are highly distinctive features appearing on the left and right hand sides of slice 

“a”, as mentioned earlier, the pendulum’s speed is higher in the central and the reference patch is 

captured from the central region. Therefore, having the region uniqueness on the sides may not be 

highly valuable. 
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Figure 5.5 - Best and worst Pixel Displacement Graphs for the Door image 

Figure 5.6 shows the displacement graphs and the best and worst slices for the flower image. It 

shows that the green colour on slice “b” was highly dominating, but the scenario differs with slice 
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“a”, where the yellow flower in the central location introduced more region uniqueness. 

However, we may miss this region uniqueness if a smaller patch size was used (i.e. 50 × 50). The 

spatial positioning is highly important in determining the uniqueness of the captured patch, for 

example moving the yellow flower from left to right or vice versa makes the two patches differ 

highly, therefore the region’s uniqueness amongst the neighbouring regions gives us large 

potentiality from the stabilisation scenario point of view. The scenario with slice “b” slightly 

differs where some region similarities appear across the slice. This similarity can be notified by 

having the two pink flowers with surrounding green leaves in two locations of the same slice. 

This makes the region uniqueness less possible and increases the overshoots during the slice 

selection procedure. 
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Figure 5.6 - Best and worst Pixel Displacement Graphs for the Flower image 
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Figure 5.7 shows how the best and worst slices differ in the way their colour contents are 

distributed. The central region of slice “a” is highly distinctive by capturing a red leafed tree 

within the central region and the sky’s views on both neighbouring sides. Both sides of slice “a” 

are dominating with green leaves but they differ in how these leaves are distributed. These 

differences will have a significant influence on the SSP method. The right hand side leaves are 

more saturated than the left hand side green leaves. Moreover, in contrast to the right hand side, 

the left hand side leaves are more clustered where no sky views are visible through some of the 

parts. In slice “b”, the green grass is the dominating view within the central and the left hand side 

regions. However, as the pendulum’s speed is higher in the central than in anywhere else, this 

domination will increase the over shoots of the SSP displacement graphs. It would also give us a 

clear understanding of why the overshoots appear more in graph “b” than in “a”. 
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Figure 5.7 - Best and worst Pixel Displacement Graphs for the Garden image 

Looking at Figure 5.8, the single colour domination has also appeared on the Building image, 

where grey is the dominating colour in the central chunk of both best and worst slices. Also, the 

sky’s view conquered a large part of both slices which introduced further colour constancy across 
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the slice. Slice “a” has a larger sky view than slice “b” but slice “b” looks quite similar to the 

Garden slice “a” scenario where the central region is a unique triangle shape surrounded by white 

sky’s views in both neighbouring regions. Moreover, the contrast comes with having the 

building’s peak as the only variation seen to the slice but in the Garden image, few variations 

were on the sides that had an influence on the ultimate SSP outcome. Also, the features on the 

Garden “a” slice had more saturated colours (i.e. red and green), but in the Building scenario the 

building’s peak was grey and any blurriness can increase the similarities between the Building 

and the background sky view (white colour). Also, slice “a” on the Building image contains 

further feature variations to the sides which caused the SSP method to gain a lower DC value. 
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Figure 5.8 - Best and worst Pixel Displacement Graphs for the Building image 

Slice “b” on the River image shows the sky’s view and the light blue colour is highly dominating. 

We do have a few white clouds which may break this colour constancy, but encountering little 
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blurriness may introduce further similarities and cause degrading on the tracking performance. 

Slice “b” contains good colours/features variations, while if we divide the slice into chunks, the 

left chunk is a grass view and the right is a wall with grey colour bricks. However, the grass 

colour constancy was also ceased by a large shadow. The central region of this slice includes 

good feature variation (i.e. canal, side roads, trees and etc…). All these variations, from the sides 

to the central regions, made this slice to be highly useable from the SSP method point of view. 

The constancy on slice “b” and the variations on slice “a” were reflected in how the pixel 

displacement graphs were generated (see Figure 5.9 (River)). 
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Figure 5.9 - Best and worst Pixel Displacement Graphs for the River image 

As with previous examples (i.e. River, Beach), slice “b” on the Duck image (see Figure 5.10) 

includes high colour repetition. This repetition is caused by the domination of the water’s view 

along the slice. In contrast, slice “a” includes highly saturated colours where the ducks and few 
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dark patches are located across the slice. This encouraged the SSP to determine many precise 

displacement values over this slice. 
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Figure 5.10 - Best and worst Pixel Displacement Graphs for the Duck image 

Similar to Duck slice “b”, Lake slice “b” was also dominated by the water’s view, therefore, 

getting a high DC value is highly expected. Nevertheless, despite the colour constancy, the 
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water’s view can have many colour variations compared to the sky’s view. In contrast to the 

sky’s view, the colour variations on the water surface are mostly due to the water’s reflection 

ability. We can observe some of those reflections over Lake slice “b” but due to the blurriness, 

those reflections are indistinct which made the SSP method fail to retrieve the precise 

displacement values. In contrast to slice “b”, slice “a” includes massive colour variations on 

various tree leaves. Usually, leaves initiate vast repetitions, but in this scenario the clustered 

leaves introduced significant region variations across the slice. 
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Figure 5.11 - Best and worst Pixel Displacement Graphs for the Lake image 
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Figure 5.12 shows the best and worst slices beside their pixel displacement graphs for the Street 

image. Slice “a” on the Street image shows large variations with a good region distinction. The 

white colour domination in the centre, gray on left and brown on the right has created a great 

region uniqueness across the slice. The region uniqueness on slice “b” is much less and capturing 

the central region as a reference causes large overshooting from the SSP method point of view. 

This makes the generated displacement graph gain a high DC value which indicated the non-

potentiality of that slice from a stabilisation point of view. 
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Figure 5.12 - Best and worst Pixel Displacement Graphs for the Street image 

 



180 

 

5.4 Stabilisation Techniques Using SSP Analysis 

The next stage is to run the stabilisation technique over the selected slices (see Table 5.1) using 

one of the successful hierarchical strategies (i.e. strategy “23”), in combination with the SSP 

method. To evaluate the performance results, a statistical outcome (P value) was used to 

demonstrate the difference in performance between the best and worst slices on each image. To 

retrieve the P value, we have used the Kruskal-Wallis [135] technique which is a non-parametric 

stat supplied by the MINITAB [136] software. Also, Figures 5.13, 5.14 and 5.15 are showing the 

box and whisker plots of the gained data for the used images. For each image we have two 

separate datasets (“a” and “b”) representing the stabilisation outcome over the best and the worst 

slices. As in Chapter 4 (see Figure 4.26), we test the 95% confidence outcome but in contrast to 

previous results, the success is to verify the unlikeness by getting the P value below 0.05. If the 

applied stabilisation on both the best and worst slices was found to be different, then it means the 

relationship between the SSP and the Stabilisation technique over the chosen image was 

successful. This success is shown by retrieving 0.009 as a P value over all 10 images. 
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Figure 5.13 - Using box and whisker plotting to present the gained data with the retrieved P value for Beach, Building and City 

images 
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Figure 5.14 - Using box and whisker plotting to present the gained data with the retrieved P value for Door, Duck and Flower 

images 
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Figure 5.15 - Using box and whisker plotting to present the gained data with the retrieved P value for Garden, Lake, River and 

Street 

 

5.5 Error Curves of the Selected Slices 

Running the appearance comparison between the central patch and every patch across the slice 

provides us with a distance curve that the controller can use to navigate back to the origin. 

Figures 5.16, 5.17, 5.18, 5.19 and 5.20 demonstrate the defined distance curves for every best and 

worst slice over the 10 images. For example, the relation between the distance curve shape and 
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the obtaining of low DCs over the Garden best slice (“a”) in Figure 5.17.a (Garden) is highly 

observable. In the Garden best slice, the region uniqueness is observed. The distance curve shape 

also demonstrates how a large descending area indicates the uniqueness of the central region 

against the whole slice. However, due to the colour repetition of the central region, the distance 

curve over the Garden worst slice (“b”) looks like it has less potential (see Figure 5.17.b 

(Garden)). Defining the distance curve for every best and worst slice shows a great relationship 

between every generated distance curve in corresponding to the generated pixel displacement 

graph over the same slice. 
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Figure 2.16 - Error curves generated over the best and worst slices of Beach and Flower images 
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Figure 5.17 - Error curves generated over the best and worst slices of Garden and City images 
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Figure 5.18 - Error curves generated over the best and worst slices of Duck and Lake images 
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Figure 5.19 - Error curves generated over the best and worst slices of Street and Door images 
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Figure 5.20 - Error curves generated over the best and worst slices of River and Building images 
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5.6 Edges Distribution 

The Error Curves shown in Figures 5.16 to 5.20 are related to how the edges are distributed. We 

have used the Sobel Edge Detection algorithm [56] (see Chapter 2) with a mask of 3 × 3 pixels to 

allocate the edges. More edges will cause more gradients on the Error Curves (or more local 

minimal). Figure 5.21 shows the edge distribution over the ten images. As an example, if we 

observe the edges distribution over the Garden’s image and look back at the Error Curves in 

Figure 5.17 (Garden), we can see how the edges are clustered around the central feature (red 

leaved tree). This clustering caused a large descending area on the Error Curve. The sixth slice 

(“b”) seems to have more edges on the right hand side than on the left. This was reflected on the 

left hand side of the Error Curve, where it shows a highly flattened surface. Having a flat surface 

is an indication of an area with invariant colouring and with no segmenting edges. 

 

Figure 5.21 – Edges distribution over the 10 images 

The Duck, Beach and Flower images have their edges clustered centrally, which reflected on 

getting the best slices around the central location. For example, the best Duck slice are the fifth 

and central slices. Slice 6 on the Beach image and 4 on the Flower image were the best slices, 

where they still counted as central slices. On the other hand, we can observe the lack of edges 

over the worst slices of the three images. This provides further evidence for the possible 
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relationship between the designed SSP method and the edge distributions. As with the “Beach” 

example, features like water, buildings and sky are also appearing in the River image and many 

variant features are clustered in the central position. This clustering reflected on how the error 

curve was generated over the central slice(s), showing a potential descending curve around the 

minimal point. However, the generated error curve over the worst slice (River high DCs slice) 

looks to have a large gradient descending bow around the minimal. However, due to the sharp 

descending on its right hand side, its potentiality decreases from the controller’s point of view. 

The sharpness of the gradient may force the controller to be suddenly misled in its direction. The 

City image shares the same features as in the Beach and River examples (water, buildings and 

sky) but the difference is in the way those features are distributed. This distribution causes a 

different edges allocation than what we had in the previous examples. In all three examples 

(Beach, River and City) edges are clustered around the central slice(s) but in this example (City 

image), due to having the buildings’ view larger on the right hand side, edges are more assembled 

to the right than on the left. However, as this assembly is still within the horizontal line, the SSP 

and the error curves would still show them as potential slice(s). 

Every surface has one global minimal but can have several local minima. Most of the retrieved 

local minimal are a result of running the appearance comparison repetitive regions (i.e. bricks). 

Figure 5.22 shows how the repetitive regions in the central slice (best slice) affected the ultimate 

outcome. It shows how the surface suffers from zigzagging points (local points) surrounding the 

global minimal. However, the global minimal is still identifiable and repositioning to the origin is 

still possible with one of our Hierarchical Search Algorithms (see Chapter 4). Nevertheless, the 

risk of getting the Search Algorithm redirected around different local minima still exists, but as 

explained earlier, the possibility of being recovered on the next run is quite high. 
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Figure 5.22 – Surface suffers from a large flattened area 

The door image suffered highly from region repetitions (bricks and door) which caused a 

breakdown in relating the SSP to the stabilisation technique (see Figure 5.15). Also, the generated 

error curves over both the best and worst slices don’t appear to have high potentiality where 

curve “a” (see Figure 5.19 (“Door”)) shows a flattened surface on the left which may mislead the 

navigation in the wrong direction. Curve “b” which was retrieved over the best slice also suffers 

from a flattened area to the right, which is not as large as the one on slice “a” but still causes 

issues with defining the global minimal. However, the failure on the Door image was due to 

having the colour repetition over the central region, meaning the reference patch will encounter 

many repetitions. Due to having few cars over the Street’s best slice, the colour variations on that 

slice are higher than on some other slices and that may have influenced the wider gradient 

descending angle which may reduce the possibility of overshoots or losing the global minimal 

from the controller’s point of view. In contrast to the best slice, the worst slice did not include 

such colour variations (i.e., Cars) therefore, obtaining cars’ features is an indication of more 

variant featuring within the street’s view. However, in the printed images, features are static. Yet, 
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in the real world environment, the moving cars are counted as dynamic features and running the 

SSP over these objects is not a recommended action. Both the Garden and Lake Images are quite 

similar from the feature repetition point of view, but in contrast to the Garden scenario the Lake 

image has more colourful clustered leaves which provide more region variety across the slice. 

However, the generated error curve over the Lake best slice looks to be quite overshooting with 

many local minimal, but the performance did match the criterion of linking the SSP with the 

stabilisation performance. More region repetition is shown by the Building image. Figure 5.23 

shows the generated error curves over the best and worst slices over the Building image. Both 

descending areas look quite similar with the difference in their peaks’ height (local minima 

peaks). Therefore, due to having larger peaks around the local minima points, the error curve of 

the Building best slice looks to have more potential from the stabilisation point of view (see 

Figure 5.23.b). 
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Figure 5.23 – Region similarities leads to few local minimal points 
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5.7 FFT Analysis 

Fast Fourier Transform (FFT) is a widely used signal analysis method [129]. However, it can be 

used as an alternative technique to analyse the best retrieved pixel displacement graph. To begin 

with the analysis, we would need to generate a FFT graph for every pixel displacement graph 

processed over the ten images. Figure 5.24 shows the two retrieved FFT graphs over the best and 

worst pixel displacement graphs of the Flower image. It shows how the use of the best pixel 

displacement graph has generated FFT with less signals (or shorter peaks). 
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Figure 5.24 - FFT outcomes from the generated displacement graphs over the best and worst Flower image 
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Here, we get the impression that the generated FFT from the worst pixel displacement graphs 

would produce higher signal peaks. This introduces the possibility of calculating the total heights 

of each FFT graph to define the slice with fewer noises. However, the aim is to compare the 

retrieved DC numbers against the corresponding FFT analysis. 

As a consequence of the possible connection between the amount of noises on the signal and the 

peaks’ height, Table 5.2 presents the sum of the peaks’ heights for every slice on all ten images 

besides the corresponding DC values. To make the comparison easier, we divide all retrieved 

FFT analysis by 1000 and keep them to 1 or 2 decimal places only. 
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Table 5.2 – DC and FFT analysis numbers for each image’s slices 

Images 

 Flower Beach River Street Garden City Door Building Duck Lake 

Slice 

1 

DCs 101 414 606 118 138 285 299 312 328 175 

FFT 42.44 92.42 107.82 38.01 41.98 75.07 65.96 79.77 54.69 77.05 

Slice 

2 

DCs 91 508 427 229 181 156 374 292 303 84 

FFT 28.81 161.47 111.24 72.20 43.94 85.10 124.82 123.58 76.10 31.18 

Slice 

3 

DCs 87 487 204 88 176 108 412 177 257 74 

FFT 28.43 160.87 57.18 25.41 51.19 42.18 150.40 106.71 54.39 29.82 

Slice 

4 

DCs 87 362 95 94 173 82 337 129 124 74 

FFT 28.40 143.17 15.51 24.93 57.37 36.62 164.66 41.91 32.32 30.69 

Slice 

5 

DCs 169 90 109 91 324 109 228 147 76 78 

FFT 46.35 41.22 20.23 26.44 73.92 46.58 55.74 90.24 18.76 30.37 

Slice 

6 

DCs 309 75 87 114 344 205 188 263 102 101 

FFT 122.93 38.40 14.95 34.51 109.72 126.79 69.04 96.05 18.95 32.47 

Slice 

7 

DCs 147 113 159 152 320 452 229 129 117 120 

FFT 36.37 41.56 33.80 44.23 116.43 103.89 85.53 42.80 24.06 36.38 

Slice 

8 

DCs 141 254 143 195 161 419 255 220 251 283 

FFT 49.62 80.86 28.04 41.19 112.84 103.96 82.74 97.00 81.18 81.80 

Slice 

9 

DCs 213 562 291 243 144 548 369 135 436 526 

FFT 37.83 159.64 40.77 45.72 47.41 129.38 160.01 53.27 96.58 152.43 

 

Comparing the FFT results against the retrieved DCs in Table 5.2 shows some matching between 

the two data sets (FFT vs. DCs). The matching should also be applied to all the images’ slices but 

our major concern here is to identify the lowest FFT and DCs numbers in every image’s slices. 

The goal is to examine if the FFT analysis could still define the pixel displacement graph with the 

lowest frequencies. 

Except for the door and street images, all the lowest FFT outcomes were found to be over the 

lowest DCs displacement graphs (see Table 5.2). The door image initially failed to match the 

DCs number against the FFT values. The highest DCs number was found on the third slice, while 
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the greatest FFT value was on the fourth slice. The slice with the lowest DCs number was found 

over the sixth slice, where the lowest FFT value was referring to the fifth slice. However, the 

third and fourth slices are both known as slices with high DCs numbers. Therefore, selecting any 

of the two slices would lead to selecting a useless slice from the stabilisation point of view. On 

the other side, the lowest FFT was 55.74 over the fifth slice with 228 DCs, while the lowest DCs 

number was on slice 6 with 188 DCs and 69.04 FFT value. This shows no match between the two 

slices but it is highly notable that both of these slices have low DCs/FFT values in comparison to 

the rest of the image’s slices’ values. Even with this situation, choosing any of the two slices 

would still give us a useful slice from the low DCs/FFT values point of view. 

The collected FFT data for the Street’s image is highly likely to be a partial matching than 

entirely no match. The lowest found FFT was on the fourth slice with the value of 24.93 but the 

slice with the lowest DCs number (slice 3) has gained a 25.41 FFT value. The difference between 

the two FFT numbers is quite small. However, due to some possible peaks’ overshoot, we may 

have gained a higher FFT value over the fourth slice. Moreover, the DCs numbers for both the 

third and fourth slices are considered to be low across all the image’s slices. Therefore, choosing 

any of the two still provides us with a potential slice from the low DCs/FFT value point of view. 

Table 5.2 now shows that those displacement graphs with a higher number of peaks are also seen 

to be graphs with many noisy signals from the FFT point of view, therefore, we can use this 

argument to scientifically back the DC technique even further. 

However, as Table 5.2 shows, the majority of our FFT analysis fully matched with the DC 

measure using the pixel displacement graphs. Though the use of FFT may well be used as a 

substitute for the DC measurement, the question is which analysis looks more accurate within our 

project scope. 
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Figure 5.25 shows two graphs, where the right hand side one (red graph) refers to a scenario that 

has a constant swing with invariant changes to the image space coverage, but the left hand side 

displacement graph (blue graph) presents a state where the platform’s swing started from 

covering a large area, down to small area, then back to coverage of a large area.   

 

Figure 5.25 – Two displacement graphs with equal DC value 

Figure 5.25 shows that both graphs have equal DC numbers but they differ in how the platform’s 

pendulum was performed. Though from the FFT analysis point of view these two graphs may 

differ, they both have an equal DC number. However, due to not having any overshoots, we can 

clarify that both pixel displacement graphs were retrieved precisely. Therefore, if the FFT process 

shows a different analysis on both graphs, this will be an indication that the FFT process has 

failed to manage the graph analysis. As a consequence of this the DC measurement is a safer way 

to analyse our pixel displacement graphs.  
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5.8 Conclusion 

From the above analysis, we clarify the possible effect of the edges’ cluster on the ultimate 

SSP/Stabilisation outcome. However, this edges’ clustering is also required to have large colour 

variations in the captured region. For instance, we found a large number of edges on the best slice 

of the Lake image but due to the colour variations, it introduced a great region variation across 

the slice. If this edges clustering had low colour variations (i.e. a tree with leaves of a single 

colour), it may introduce large region similarities over the monitored slice (i.e. the Garden’s 

worst slice (tree leaves)). Figure 5.26 shows an example of two slices, where the bottom slice 

suffers from colour variations and introduced high region similarities.  

 

Figure 5.26 - Top is the best Lake slice and bottom is the worst Garden slice 

This shows how the edges distribution can become an advantage or disadvantage depending on 

the region colour variations, therefore, from our tracking point of view, the region variations is 

more important than how the edges are distributed. Nevertheless, the size and position of both 

regions need to be considered, while the region’s size should not be larger than the captured 

patch. Having the targeted region larger than the patch size will introduce local minima around 

the global minima and results in misguiding the tracking process. Moreover, referring back to 

Design Methodologies chapter (Chapter 4), it is preferable for the position of this region to be as 

centralised as possible to allow the most promising patch iteration steps on both horizontal sides. 

Beside the use of the DC (Direction Changes) as a major measure, we have also used the Fast 

Fourier Transform (FFT) analysis to support the usability of our SSP outcome with a well- 

known used analysis function and also support. 
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As the applied experiments’ results were quite promising, the next chapter will concentrate on 

applying the implemented Slice Selection Process (SSP) and the hierarchical search algorithm in 

real world environments.    
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Chapter 6 

Real World Experiments 
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6.1 Preface 

In the real world experiments, we aim to repeat the testing operation that was achieved in the 

laboratory in real world environments and therefore, we will assess the credibility of our 

laboratory experiments a bit further. The main concern is to have sufficiently variable 

illuminations and wind speed to force the platform to swing or capture images differently. 

The purpose of these experiments is to see how the designed system performs in real world 

scenarios. As is well known, there are many issues that are faced when moving from the 

laboratory to real world projects. Many of the world’s projects were designed to work in the 

laboratory but they never succeeded in the outside world. In our laboratory experiments, many 

environmental conditions (i.e. lighting) were static and we also had good control over the 

platform’s ground distance, which allowed us to set the camera’s lens in the best possible way. 

The real world scenario differs according to changes in the lighting level and winding conditions 

etc. Therefore, the lens’ setting requires manual changes from time to time. However, wind is 

counted as a major issue as its speed variation will reflect over our swing acts. We did not 

encounter this issue in the laboratory environment where we used to push/pull the platform by a 

pre-specified measured distance for a pre-specified period. Although, we are aware of the fact 

that in the laboratory experiments our first push gave the swing the highest power and that the 

power decreases as the time increases, which would cause the platform to cover less image 

distance. Therefore, in contrast to the laboratory where the swing speed can be pre-specified, the 

real world environment can force the swing to obtain sudden changes and act randomly 

throughout the timing period. 

In our laboratory work, if the platform’s camera loses the origin, it would be our influence that 

will help the platform to get redirected back. However, in the real world scenario, the winding 

condition is the only influential command that can help the tracking direction to either lose or fix 
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its wrong tracking path. Lighting is the next major issue that needs to be dealt with as much as 

possible. As we are aware, the lighting can cause the object’s colour to differ according to the 

lighting level. As explained in the literature review chapter (see Chapter 2), the RGB colour 

component does not take the illumination into account. This can cause the possibility of the 

colour of one or few objects changing during the tracking period, which may redirect the 

performance from best to worst. In the laboratory, we had a constant lighting condition which 

eliminated the risk of the illumination changes. This lighting level constancy enabled us to adjust 

the camera lens and set the gain and exposure variables only once. However, due to the constant 

change in the sun’s position, this lighting constancy will become impossible and we may need to 

apply those settings more than once. Moreover, some external lighting can have a significant 

affect on the surrounding lights; for instance, in Figure 6.1 (Outdoor) an electrical light is located 

on the top of the wall (below the windows) and goes on and off frequently. The effect of this on 

and off is greater when the sun light becomes weaker, which is highly reflected over the entire 

stabilisation procedure. 

However, having the electric light on the top and pointing towards the targeted area made the 

colour changing highly reflected by the change of lighting conditions. As mentioned earlier, we 

changed the gain and exposure variables more than once in the real world experiments, but 

defining the best setting was achieved by running the camera’s program (uEye) with live image 

broadcasting and manually changing those settings to look visually clear from any possible 

blurriness. However, human visual systems are quite good at judging this blurriness level. Our 

aim is to supervise the entire experiment during their operation. This supervision allows us to 

visually judge the system performance and have our own influence whenever it is needed (i.e. 

redirection to a wrong location), but we have chosen three different locations to apply our testing 

on. The first was inside the garage to give variable lighting levels without the windy conditions. 
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The second experiment is in an outside area where both light and wind are variant. Finally, the 

third is the sea experiment where we used a boat to apply the testing. Figure 6.1 shows the three 

images of the three experimental environments, with the arrows indicating the direction of the 

platform’s motion in each scenario. 

 

Figure 6.1 – Indoor, Outdoor and Sea environments 

The three test locations were selected for ease of deployment and the possible variation in both 

light and wind conditions. The Indoor image in Figure 6.1 shows relatively dim lighting and is 

slightly affected by the passage of clouds; the loading area (middle image) is exposed to wind 

and the open sky above it so is much brighter and affected to a large degree by the clouds’ 

passage and the sun. Ultimately, the sea environment was used to test the reliability of the system 

performance in a different scenario. 

In sea experiments, the central slice would mainly hold the majority of the region variations and 

therefore we would exclude the use of SSP and employ the most central image region as a 

reference to stabilise the vertical axis. However, as we are excluding the SSP method, we will 
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start our real world experiments on the sea environment first to test the credibility of our 

searching algorithms when used in the outside world. 

6.2 Sea Experiments 

6.2.1 The Aim 

As the aim of this research is to address the problems that are inherent in the visual stabilisation 

on those platforms which suffer from cyclic motions, we need to examine this platform on 

different scenarios. As a consequence of this, we have decided to affix this platform on the boat 

to see how it would resolve the stabilisation issues caused by the boat’s cyclic motions. However, 

the two scenarios differ in the way the searching direction operates (see Figure 6.1 (Arrows)), 

whereby in the Kite scenario, the searching algorithm operated over the horizontal axis, whereas 

in the sea experiment, the method was designed to operate over the vertical axis.  

The experiment here aims to show that the technique developed for stabilisation of the kite 

platform will function effectively for platforms which suffer from cycle motion. 

However, the region variations in the boat scenario are meant to be more unpredictable than in 

the Kite scenario. This unpredictability is due to that fact that when the boat moves we encounter 

a view change frequently. Moreover, as explained earlier, the colour constancy is more possible 

in the sea experiment, where the water view is on the bottom slices, the top slices are dominated 

by the sky/clouds view and the middle slices benefit from the region variations. However, unlike 

the kite’s scenario, the region/colour constancy over the sea experiments is an advantage. This 

advantage is due to the fact that having the region variations in the middle slices encourages us to 

exclude the use of SSP. We can still encounter small or large boat movements, but as we try to 

keep the boat more stable we should still keep the view or part of the original view existent 

within the frames. Nevertheless, if we intend to let the boat move along, then stabilisation is 
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required by running the appearance comparison between every two consecutive images rather 

than the consecutive frames with the stored reference. 

6.2.2 Reasons for choosing boat 

Boats suffer from continuous tilt angle changes which introduces a continuous cyclic motion. The 

platform is meant to resolve the stabilisation issues caused by this cyclic motion. 

6.2.3 Process Plan 

The boat was equipped with a fixed platform to one of the Boat’s sides connected to the PC with 

a 240V charger. We commence by choosing a few views (at least 5) and allow the camera to 

point horizontally towards those chosen views on each one of the experiments. To increase the 

repeatability of the results, each experiment was applied five times. Views were selected 

according to their region and colour variances, which then provide an overview of how well this 

method can operate within the sea environment. 

6.2.4 Issues & Difficulties 

Power supply and the weather conditions were the greatest issues that we encountered during our 

sea experiments. The charger had to be charged after 2-3 hours of usage and charging time was 

also 2-3 hours. In most cases we charged the battery overnight and performed the experiment the 

day after. More time wastage was incurred during the boat parking; uninstalling the platform, 

packing all the equipment, driving back to the lab then recharging the battery and returning to the 

same place to repeat the same steps to install the system back into the boat. 
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6.2.5 Applying the Process 

Due to being able to use the SSP technique, we have designed the code to capture 10 images over 

the experimental period. However, we will align the images jointly and draw a line from the first 

to the tenth to determine the platform’s stability over the vertical axis. This definition is achieved 

by identifying a common region across the whole images’ sequence (if applicable). We then 

calculate the pixel displacement of each labelled region from the drawn line to determine the 

margin of their position variance across the sequence. 

Below shows five experiments from five different views, where each experiment was repeated at 

least 5 times. We demonstrated all the gained results using tables but for each experiment we 

have selected two out of the five tests to present their ten captured frames visually.  

6.2.5.1 First Experiment 

Figure 6.2 shows the entire view of which the first experiment is to be applied on. The image 

shows the sky and water has dominated most of the shown space.  

 

Figure 6.2 – Area view for the first experiment 

We can visually judge that the central slice is highly distinctive and its tracking should be very 

reliable from the searching algorithm point of view. Figure 6.3 shows the 10 captured frames for 

one of the applied tests. These images were captured based on a fixed timing period from the 

attached camera to the boat’s side. As explained earlier, we start by selecting the most common 

region within the whole frames’ sequence (or the majority). We try to show if the selected 
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common regions are still located around the same position in all frames throughout the sequence. 

The common region position in all frames will be shown by their pixel positioning, therefore, a 

good stabilisation performance is expected to be within the same area from the pixel positioning 

point of view. In Figure 6.4, we have selected the boat’s bottom part as a common region. We 

have drawn a line below the boat’s base over the frames’ sequence. We also indicated a common 

region (below the boat) with a black dot over the common area in all frames. Observing the pixel 

displacement variance of the dot from the drawn line will specify how well the camera was 

stabilised over this view. However, due to the fact that every frame is unique amongst all 

captured frames from the blurriness and the lightness point of view, it then makes every frame 

differ from the RGB colour space from all captured frames within the sequence. These 

differences make the process of common region selection using software based power more 

difficult, therefore, all our region selection techniques are made using eye control only, but to 

determine the common region’s locations we use the Photoshop program to specify the exact 

pixel positioning of the indicated common regions.   

The indicated dot on the frames’ sequence (see Figure 6.4) shows a little pixel displacement 

variance from the first to the fourth frame. However, the common region disappears on the fifth 

frame, appears back in view on the sixth frame but disappears again on the seventh frame. 

Ultimately, it recovers well on the very last two frames. Frequently loss and recover are caused 

by either the environmental conditions (i.e. wind) or the water’s current. The water’s current 

causes significant changes in the boat’s tilt angle but in most scenarios it is our influence that 

changes the title angle by the push and pull of the boat’s sides to cause more non-stabilised 

conditions. This gives our stabilisation technique more credibility in much worse windy 

conditions. This push and pull caused the camera to completely lose the view (i.e. Figure 6.3 

(Frame 8)), but the searching algorithm was able to recover the stabilisation quite well. 
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Figure 6.3 - Stabilisation process in the first test of the first experiment 

Figure 6.4 shows another test in the same experiment. As in Figure 6.4, dots were also located 

below the boat’s surface, but in this test the images’ brightness looks higher. However, the only 

loss on track was in the fifth frame but this could be recovered in consecutive frames. 

 

Figure 6.4 - Stabilisation process in the second test of the first experiment 

Stabilisation succeeded in both scenarios (Figures 6.4 & 6.5) and in addition to the weather 

conditions, it was our influence that gave the boat a more non-stabilised condition. Therefore, the 

region variance on the central slices (Figure 6.3) has shown to be more stabilised from the 

tracking point of view. 

Table 6.1 demonstrates how the pixel displacements gained from the five repeated tests over the 

first experiment. The standard deviation of each test and their average is also presented. The 

standard deviation would provide us with the range of variations in our pixel displacement data. 

However, we have gained negative values over the second, third and fourth tests where they 

represent the camera’s overshoot during the tracking period.  
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Table 6.1 – Pixel displacement values of the first sea experiment 

Experiment 1 Test 1 Test 2 Test 3 Test 4 Test 5 

Pixel Displacement 30 7 4 23 28 

11 5 15 11 33 

27 -10 48 -15 42 

5 10 59 12 45 

59 -15 26 7 30 

22 2 -5 10 56 

12 10 14 2 46 

28 13 15 21 48 

15 19 27 -5 56 

18 15 21 3 52 

Standard Deviation 15.14 10.77 19.14 11.40 10.26 

Average 13.34 

 

However, as the standard deviation is meant to show the variance of the gained data, to retrieve 

the variance of the retrieved pixel positions to the target, the standard deviation is an ideal 

method to use. Moreover, from the camera’s stabilisation point of view, having negative pixel 

positions should increase the variance to a higher value but using different methods such as the 

Median could decrease this variance and make it look like a more stabilised condition. 

Table 6.2 shows an example of how the standard deviation was more realistic than the Median 

value. Table shows a non-stabilised scenario where we move from position -15 to 15 in every 

step. The standard deviation is shown to be high, whereas the Median was calculated to be 0, 

therefore, to observe how well the platform was stabilised the standard deviation is a more 

realistic outcome. 
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Table 6.2 

Position -15 

Position 15 

Position -15 

Position 15 

Position -15 

Position 15 

Position -15 

Position 15 

Standard 
Deviation 

16.035 

Median 0 

  

6.2.5.2 Second Experiment 

Figure 6.5 shows the view of the second sea experiment. As with the first experiment, to increase 

the repeatability, the test was applied five times. However, comparing this view with the view on 

the first experiment, the region variances are less but their colourings are more saturated. The 

saturation in the central slice is caused mostly by having a large red boat but the sky and water 

dominations in the top and bottom slices are highly obvious. This distinction between the top and 

bottom slices is caused by the central slice and can significantly help to keep the camera 

stabilised over the middle view. 
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Figure 6.5 - Area view for the second experiment 

Figure 6.6 shows the 10 frame sequence captured during the tracking period of the second 

experiment. Figure 6.6 shows the indicated common regions are quite close to the drawn line 

throughout the whole frames sequence. This is a good indication that the camera had some sort of 

stabilisation over the vertical axis. In contrast to the first experiment, the lighting strength looks 

lower. This light weakness could be due to the sun’s position as this experiment is almost 180 

degrees opposite the view of the first experiment. Nevertheless, we are still able to change the 

lens or the camera setting to enhance the handling of the lighting condition but we decided to 

allow the platform to encounter all possibilities with a similar setup. However, the capturing of a 

good image is highly dependent upon the lighting circumstances; meaning, low lighting level 

increases the darkness and causes some features to disappear from the visual point of view. On 

the other hand, the high brightness decreases the saturation and increases the similarities amongst 

the features. 

 

Figure 6.6 - Stabilisation process in the first test of the second experiment 
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The next test in the same experiment shows a slight increase in the environmental lighting. This 

light boost still kept the red as a highly saturated colour within the scene. By observing the 

indicated dots on the images’ sequence, we can notify how well the stabilisation was achieved. 

However, our push and pull gave a non-stabilised condition which can be noticed from the 

second to the sixth frame but the system could recover back on subsequent frames. The 

stabilisation mainly occurred over the first, seventh, eighth, ninth and tenth frames in Figure 6.7. 

On the other hand, due to having a large redness across the central slice, when the camera is 

shifted to the right or left, it will cause a change in the redness amount/position within the view 

which would reflect over the stabilisation performance dramatically. 

 

Figure 6.7 - Stabilisation process in the second test of the second experiment 

Table 6.3 demonstrates the gained pixel displacements for all five tests over the second 

experiment. The gained standard deviations of the second experiment looks to be lower when 

compared against the first experiment numbers. However, this reduction indicates a better 

stabilisation in the second experiment. 
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Table 6.3 - Pixel displacement values of the second sea experiment 

Experiment 2 Test 1 Test 2 Test 3 Test 4 Test 5 

Pixel Displacement 39 48 55 37 48 

40 51 56 37 43 

42 50 55 38 42 

35 45 50 59 44 

36 38 46 45 42 

35 43 49 47 43 

39 43 49 49 40 

42 51 43 44 42 

33 45 49 38 40 

35 51 54 29 41 

Standard Deviation 3.20 4.42 4.42 8.34 2.32 

Average 4.51 

 

As Figure 6.8 shows, the domination of the sky and water’s view is less in experiment 2 than in 

experiment 1. However, as image 1 (Figure 6.8) demonstrates, the first experiment is closer to 

usual real sea scenarios than in the second experiment where the boat’s body was the main target 

to be tracked. This shows how the domination of one colour can force the system to perform 

differently. Image 1 on Figure 6.8 is much closer to being a horizon tracker, whereas the second 

experiment seems to be more of an object tracker (or boat tracker) in the sea environment. 

 

Figure 6.8 – Frames from the first and second experiments 

As a consequence of the comparison between the first and second experiments’ outcomes, where 

the camera in the second experiment was more stabilised, here we have learnt that due to having 
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the sky and water as the primary views in sea experiments, having high saturated colour (i.e. red) 

on the horizon level would help to create a more stabilised scenario.  

6.2.5.3 Third Experiment 

Figure 6.9 shows the view of the third sea experiment. As in first experiment, the sky and water 

have dominated the top and bottom slices. However, the central slice benefits from the 

region/colour variation which provides a great distinction between the top and bottom slices. A 

few boats, a white building and a mountain in the background were behind the region variation of 

the central slice. 

 

Figure 6.9 - Area view for the third experiment 

The frames’ sequence in Figure 6.10 demonstrates one of the five tests over the third experiment. 

The black dots are located below the boat’s surface and it indicates how well the stabilisation 

technique was achieved. 

 

Figure 6.10 - Stabilisation process in the first test of the third experiment 

In contrast to the second experiment, the third experiment tracked a larger view with wider region 

variations. However, as Figure 6.11 shows, the camera shift in the second experiment caused a 
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more non-stabilised condition in comparison to the third experiment scenario. In the third 

experiment, the camera was shifted to the right but the central slice was still the same distinction 

level between the top and bottom slices. In the second experiment, the boat surface dominated a 

large part of the view and therefore the camera’s shift caused the system to act more as an object 

tracker than a stabilisation process. 

 

Figure 6.11 - Frames’ sequences from the second and third experiments 

In addition to what we learnt from the comparison between the first and second experiments, we 

have also learnt that the more object variations we have, the more independent that we are from 

stabilising over a single object. 

Figure 6.12 shows another frames’ sequence of a test over the third experiment. We push and pull 

of the boat’s sides to make further instability. The indicated black dot completely disappeared 

from the second, third and fourth frames but came back to the scene in consecutive frames. This 

demonstrates the system’s ability to recover when it encounters a large instability condition. 

 

Figure 6.12 - Stabilisation process in the second test of the third experiment 

Table 6.4 presents the retrieved pixel displacements, standard deviations and their average value 

of the applied tests over the third experiment. The displayed negative numbers are due to the 
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physical camera’s overshoots, which mainly appeared during the fourth and fifth tests. However, 

the gained average value is less than the gained average on the first experiment but it is larger 

than the retrieved value over the second experiment. This experiment was applied when the 

weather was too cloudy and there was less sun. This caused the whole environmental view to 

appear darker and decreased the saturation of some of the saturated colours we had in the 

observed view. This darkness caused significant colour similarity between the hill in the 

background and the water’s view (see Figure 6.12) which caused the camera to point to a 

different view. Therefore, we have learnt that dependency on the colour saturation highly 

decreases when the sun light decreases and this may cause an instability scenario.  
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Table 6.4 - Pixel displacement values of the third sea experiment 

Experiment 3 Test 1 Test 2 Test 3 Test 4 Test 5 

Pixel Displacement 16 21 20 14 22 

14 22 19 -45 19 

17 22 17 -32 19 

18 19 18 -43 21 

15 24 18 18 22 

17 21 18 -32 -32 

16 17 19 17 -35 

14 19 19 17 -20 

18 18 17 14 20 

17 21 17 18 21 

Standard Deviation 1.47 2.11 1.03 28.37 24.25 

Average 11.45 

 

6.2.5.4 Fourth Experiment 

Figure 6.13 shows the fourth sea experiment’s view. In this view, the colour variance and the way 

they are distributed is quite similar to the first and third scenario. Water, sky, building, bridge, 

boat and mountain are the dominating features in Figure 6.13. 

 

Figure 6.13 - Area view for the fourth experiment 

Figure 6.14 shows the frames’ sequence of the applied test on the fourth experiment. Water, boat, 

bridge and buildings’ view in the background are the main features shown on this frames’ 

sequence. The black dots were located on the front part of the boat’s body. As with the first and 
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third experiment, this test has shown a great stabilisation performance when the camera is left or 

shifted right. However, some instability occured over the eighth frame but the system could 

recover itself in the consecutive frames. The boat and bridge were the main distinctive objects 

which caused the tracking algorithm to perform well over the central slice(s). Also, the bridge is a 

highly textured feature which can have a great influence over the tracking process. Having 

distinct objects (boat and bridge) crossing the central slice gives high reliability over the tracking 

procedure, even when the left or right shift occurs. 

 

Figure 6.14 - Stabilisation process in the first test of the fourth experiment 

Figure 6.15 shows a frames’ sequence of another test over the same experiment (experiment 4). 

Boat, buildings and hills in the background were the main features within the scene. Also, the 

bridge in Figure 6.14 dominated the majority of the central slice button, in Figure 6.15 the boats 

and buildings are less visible and the bridge was the dominating feature. However, having fewer 

visible features was caused by having a larger distance between those features and our camera. 

This distance enlargement was decreased by the water’s current, which pushed our boat more 

towards the features. Therefore, the features in the last frames seem to be more visible. The 

camera remained stable but we did encounter some instability if the boat was getting closer to the 

targets, therefore we have learnt that during periods of darkness, the more distance we have from 

the target, the more possible instability we may encounter. 



222 

 

 

Figure 6.15 - Stabilisation process in the second test of the fourth experiment 

Table 6.5 shows the pixel displacements, standard deviations and their average values for the five 

tests of the fourth experiment. Our only overshoots in this experiment appeared to be over Test 4, 

which increased the standard deviation to 18.50. However, the gained average is now 7.19, which 

is less than the first and third experiments but higher than the second experiment’s average. 

Table 6.5 - Pixel displacement values of the fourth sea experiment 

Experiment 4 Test 1 Test 2 Test 3 Test 4 Test 5 

Pixel Displacement 20 18 12 -32 19 

21 39 11 11 11 

21 16 15 11 21 

21 18 17 14 23 

22 20 17 10 21 

24 16 18 13 17 

23 16 17 17 16 

24 14 15 13 25 

24 17 15 12 32 

20 29 12 -30 21 

Standard Deviation 1.63 7.76 2.46 18.50 5.62 

Average 7.19 

 

Nevertheless, as Table 6.6 shows, if we exclude the standard deviation of the fourth Test, the new 

average becomes 2.84 and that is less than any gained average of the previous experiments. This 

demonstrates how overshoots can have a significant affect on the ultimate outcome. 
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Table 6.6 – Excluding one standard deviation value from the fourth experiment and calculate the new average 

Standard Deviation 1.63 7.76 2.46 5.62 

Average 2.84 

 

6.2.5.5 Fifth Experiment 

Figure 6.16 shows the view of the fifth sea experiment. As in most of the previous examples, the 

top and bottom slices are dominated by the sky and water’s view. Having the white building and 

stones’ wall on the right hand side gives a large region repetition over the central slice; however, 

it also helps to create a highly distinct region between the top and bottom slices.    

 

Figure 6.16 - Area view for the fifth experiment 

Figure 6.17 shows the frames’ sequence of the stabilisation process over the fifth experiment. A 

few boats and buildings in the background are the main features within this frames’ sequence. 

However, the boats and buildings are white colour features which can introduce high colour 

repetition over the central slice of the frames’ sequence. This may not differ from the human’s 

visual system point of view but it is a highly considerable point from the image processing side. 

This means that the mismatch during the tracking period is still possible but the region below the 

buildings and on top of the white boat has a great colour variance, which can make a difference 

and mean the stabilisation is successful. The black dot on the frames’ sequence is located below 

the white boat which demonstrates how well stabilisation was achieved. Moreover, the water’s 
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view can help to distinguish the colour variance of the central region and facilitate the tracker to 

define more precise pixel displacement. 

 

Figure 6.17 - Stabilisation process in the first test of the fifth experiment 

Figure 6.18 shows the frames’ sequence of another applied test over the fifth experiment, but a 

higher lighting level has illuminated the regions. However, as mentioned earlier, higher 

illumination reflects in decreasing the colour saturation and increases the similarities between 

some represented colours (i.e. red and orange). The lighting variance is also observed over 

different parts of the water’s view. Nevertheless, this illumination variance over the water’s 

region may have an effect on partitioning the central slice from the bottom slices. However, as 

long as we are using the RGB colour space, the illumination variance can always cause a risk of 

colour changes. To resolve this we need to use different colour spaces which take the 

illumination changes into account (i.e. L*a*b*). It is important to note that the increase in 

illumination does not necessarily decrease the potentiality of having a good stabilisation. 

However, the lighting level needs to remain the same during the whole tracking period and any 

changes in the lighting level can cause the tracking to perform differently. The indicated black 

dot on the frames’ sequence shows a stable performance but it was less accurate than the 

performance in the previous test (see Figure 6.17). Nevertheless, as mentioned earlier, this 

inferior performance could be due to the increase in the surrounding illumination and decrease of 

colours’ saturation. This was highly reflected over the second, fourth, sixth, eighth and tenth 

frames where they all look to have a darker illumination. Due to having a low illumination, the 
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black dot shows a low stabilisation performance over these frames. This also indicates that the 

captured reference could be an illuminated frame. 

 

Figure 6.18 - Stabilisation process in the second test of the fifth experiment 

Table 6.7 presents the pixel displacements, standard deviations and their average value over the 5 

tests of the fifth experiment. In contrast to some previous examples, this experiment was free 

from any negative values. The gained average is 5.18 which is a close number to the second 

experiment’s average number (4.51). Figure 6.18 shows some variance on the lighting level over 

the captured frames. However, the gained average value is less than the retrieved average 

numbers over the first, third and fourth experiments, which makes it the second best applied 

experiment. However, we have learnt that it is not necessarily true that when the lighting level 

varies, the stabilisation also becomes misled. Figure 6.18 shows some of the captured frames that 

are too lightened and a few others are more darken but the stabilisation over all frames performed 

similarly. 

  



226 

 

Table 6.7 - Pixel displacement values of the fifth sea experiment 

Experiment 5 Test 1 Test 2 Test 3 Test 4 Test 5 

Pixel Displacement 28 17 11 34 47 

24 20 15 14 33 

19 13 9 34 37 

30 19 16 24 30 

31 23 25 35 32 

24 15 23 28 30 

24 17 14 34 35 

26 18 24 29 31 

24 21 22 37 34 

24 15 14 22 47 

Standard Deviation 3.50 3.04 5.73 7.26 6.39 

Average 5.18 
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6.3 Kite Experiments 

After excluding the SSP over the sea experiments, we now bring the SSP method back to test the 

entire system in a real world environment. As explained earlier, the Kite’s experiments are 

applied in Indoor and Outdoor environments. Each of these environments can present different 

environmental issues to demonstrate how well the system is able to resist those environmental 

influences over the kite’s performance. However, as in the laboratory experiments, here we use 

the SSP technique to determine its ability to perform in a real world environment. In contrast to 

the laboratory experiments, we are aware of the possible colour variations which can occur 

during the tracking period. Moreover, in the laboratory environment, the precision of swinging 

over a specific slice is much more than in a real world scenario, for example, our SSP may 

choose a specific slice but due to the windy conditions, we may end up stabilising over a different 

slice. To make the comparison more reliable, we still need to use the same PC specifications for 

the kite’s experiment. As is well known, if any of the technical specifications change, then the 

calibration process needs to be reconfigured. This reconfiguration reflects on the patch size 

selection and the SSP performance. Figure 6.19 shows the two monitored areas for both Indoor 

and Outdoor environments, however, the Indoor environment looks more illuminated. This high 

illumination is not always constant, as it is related to the main door status. For example, if the 

main door is open, we obtain more sun light which reflects on having a more illuminated 

environment and the opposite door’s status causes less illumination. By having the main garage’s 

door in constant use, the risk of a lighting variation during the tracking period is always possible 

as long as the RGB colour space is used. However, the effect of the sun light variance becomes 

less towards the evening and electrical lights will be used to light the surrounding area. The main 

purpose is to assess the system in the real world environment with variations in light and wind 

conditions. Therefore, the day time period would be our most preferred time to examine the 
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system against the inconsistency. The experiments in the outdoor environment aimed to resist 

both lighting and wind variations. As Figure 6.19 shows, the Outdoor area is surrounded by two 

walls which can increase the region similarities over the top slices. The aim is to let the system 

choose the best slice and run the stabilisation after locating various colourful objects with various 

positioning over the central region. However, the surrounding features such as the drain and the 

black spots can have a significant influence on the appearance comparison technique. Unlike 

sea’s experiments, the time consumption and the difficulties of the working environment led to 

decide on running single experiment over each view. 

 

Figure 6.19 - Indoor (left) and Outdoor (right) environments are monitored from the platform’s camera 

6.3.1 Image Distance Coverage 

To start the experiments, we would need to have a visual overview of the region’s size that the 

platform’s swing will cover. However, to examine this covering, we allow the platform to swing 

without enabling the stabilisation process. Figure 6.20 demonstrates the region’s size covered 

during the platform’s swing in the Indoor experiment. The size of cover can visually be observed 

by comparing the captured snap shot (left hand side image) with the frames’ sequence. For 

instance, looking at the third frame (sequence counted from top left to bottom right), the drain is 

located in the top left hand position, but it completely disappeared over the seventh frame. The 

first snap shot (Figure 6.20 – left hand side image) shows that the yellow object is located on the 

left, the drain on the right and therefore, when the yellow object appears mostly on the right hand 
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side of the seventh frame, it means the drain was far away from the right hand side image’s 

boundary. This shows how large the region’s size was that was covered by the platform’s swing. 

However, the region’s size coverage depends on both the pendulum’s length and our first push. 

Consequently, we can increase the pendulum’s size if the region’s size needs to be increased. 

Figure 6.20 shows 11 captured frames, where one is captured while the platform was still and the 

other ten frames were captured while the platform started to swing without making any servos 

movement. The purpose of capturing these frames is to visually observe the camera’s coverage 

that we have by the platform’s swing. Nevertheless, the covered region’s size shown by the 

frames’ sequence of Figure 6.20 looks good enough to start the experiments with. Figure 6.20 

shows three colourful substances and a drain in the central part, which are highly distinct from 

the background.  

 

Figure 6.20 - The left hand side shows the first captured image before the platform’s swing and the right hand side frames’ 

sequence shows the region size covered in the Indoor environment 

The process of defining the region’s size coverage was also repeated over the Outdoor 

environment. Figure 6.21 demonstrates this region’s size cover by the captured frames’ sequence. 

However, the substances are appearing in some frames and completely disappearing in others. 

Also, the position of some substances changes dramatically, for instance, comparing the sixth and 

the seventh together, the position of the yellow substance changes from the top right in the sixth 

frame to the bottom left of the seventh frame. This indicates the large sized region the platform’s 

swing has covered. 
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Figure 6.21 - The left hand side shows the first captured image before the platform’s swing and the right hand side frames’ 

sequence shows the region size covered in the Indoor environment 

We will be applying three different experiments for both the Indoor and Outdoor environments. 

As earlier explained, the difference between the experiments is in the way objects are selected 

and positioned.  

6.3.2 Indoor Experiments 

6.3.2.1 First Experiment 

Figure 6.22 shows the view of our first experiment in an Indoor environment. The used objects 

are the yellow, blue and red plastic substances plus the drain, which makes them four clustered 

substances in the central region. 

 

Figure 6.22 - Area view for the first Indoor experiment 

We start by running the SSP over the current view. Table 6.8 shows the gained SSP results where 

it presents the sixth slice with the lowest and the second is the highest retrieved SSP. 

Table 6.8 – Indoor first experiment DC values 

Slice 1 2 3 4 5 6 7 8 9 

DC 401 461 312 120 106 94 256 331 344 
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We now use both the second and sixth slices to observe the difference in performance between 

the two scenarios. The visual overview shows the fourth slice having all the colourful substances 

clustered in the central region and therefore, we will run the stabilisation over the fourth slice to 

compare its stabilisation potentialities against the sixth slice.  

Figure 6.23 shows the frames’ sequence of the stabilisation performance over the second slice 

(worst slice). The yellow substance (yellow bin) is the only major region variance within the 

shown sequence; therefore, we will use this substance (yellow bin) position to determine the 

stabilisation performance. The object was displaced by almost half of the frame’s distance. We 

may not notice the importance of these changes but if the targeted object(s) were smaller in size 

or more substances existed these changes will become more observable. However, we might 

change the SSP’s ultimate outcome if more substances were added to this frames’ sequence. 

 

Figure 6.23 - Stabilisation over the second slice of the first Indoor experiment 

To evaluate the stabilisation in a more precise procedure, we will use a common area (or point) 

which can be seen in all (or most) of the frames’ sequences. The pink dot is an indication of a 

common point over all captured frames (see Figure 6.23). Table 6.9 shows the pixel positioning 

of the pink point over the sequence (we will use the small sized images for this evaluation 

process). The standard deviation of all positions is also calculated to determine the variation 

between the gained positions. 

Table 6.9 - Indoor first experiment pixel positions over the worst slice 

Position 26 23 13 32 33 

Standard Deviation 8.08 
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The fourth slice was chosen according to its visual image’s attributes. As earlier explained, the 

substances on the fourth slice are clustered in the central region, which made it the most 

divergent slice from the region/colour variance point of view. However, the fourth slice has also 

gained a low DC value. Figure 6.24 shows the stabilisation performance over the fourth slice. We 

can easily observe the visual differences and the stabilisation performance between this frames’ 

sequence (Figure 6.24) and the captured sequence over the second slice (see Figure 6.23) by 

observing the positions of the yellow bin in both sequences. In contrast to a previous scenario 

(see Figure 6.23), in Figure 6.24 (excluding the last frame), the yellow bin looks to have less 

variation than in the previous state. The last frame shows a slight change in the positioning with 

the objects shifted to the left hand side location. However, this does not always mean that the 

stabilisation behaved incorrectly but it could be due to the camera’s overshoot during the snap 

shot. Moreover, having one out of five frames not being stabilised is an acceptable case but 

having the variations on the objects’ positions over the entire sequence (i.e. Figure 6.23) is 

definitely a sign of a non-stabilised condition. 

 

Figure 6.24 - Stabilisation over the fourth slice of the first Indoor experiment 

As stated previously, to obtain a more precise evaluation, we have indicated a pink dot below the 

yellow bin. Table 6.10 shows the pink dot’s gained positions over the fourth slice. The standard 

deviation was also calculated to determine the variation of the object positioning throughout the 

whole sequence. However, the gained standard deviation is defined as 6.18 and that is less than 

the gained number over the second slice test. This indicates how the region/colour variations 

affect the ultimate outcome. 
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Table 6.10 - Indoor first experiment pixel positions over the fourth slice 

Positions 35 40 38 35 24 

Standard Deviation 6.18 

 

We now move to test the stabilisation over the best gained slice (sixth slice). Figure 6.25 shows 

the frames’ sequence of the stabilisation process over the best found slice (sixth slice). The blue 

substance is our main object which influenced the variation of this slice. However, part of the red 

substance is also included within the frames but our patch is designed to capture and iterate 

through the central X axis (see Chapter 4) and the possibility of capturing that red area is 

extremely unlikely. Nevertheless, even the blue substance will not be fully within the reference 

patch but from the SSP outcomes, we can determine that this small influence of the blue 

substance is enough to promote it as a best image’s slice. Consequently, we have located the pink 

dot below the blue substance to determine its precise positioning through the frames’ sequence. 

This shows us how well the stabilisation has performed over the best slice (sixth slice). 

 

Figure 6.25 - Stabilisation over the sixth slice of the first Indoor experiment 

The pink dot’s positions and their standard deviations are presented in Table 6.11. The gained 

standard deviation is 2.50, which is less than the retrieved outcome over the second and fourth 

slices. This indicates how well the stabilisation was achieved in comparison to the previous two 

scenarios (second and fourth Slices).   

Table 6.11 – Indoor first experiment pixel positions over the best slice 

Positions 34 39 34 33 33 

Standard Deviation 2.50 
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6.3.2.2 Second Experiment 

Our second Indoor experiment differs only in the way the same colourful substances are placed. 

After we had them all clustered in the central region (first Indoor experiment), we now have them 

aligned horizontally. Figure 6.26 shows how the colourful substances are aligned with the black 

drain over the central region. The purpose is to observe if the aligned objects will encourage the 

SSP to select their slice as the best one to stabilise over. 

 

Figure 6.26 - Area view for the second Indoor experiment 

Table 6.12 shows the retrieved SSP outcome over the view shown in Figure 6.26. The fifth slice 

gained the lowest and the first gained the highest DCs. The experiment will run the stabilisation 

over both slices. 

Table 6.12 – Indoor second experiment DC values 

Slice 1 2 3 4 5 6 7 8 9 

DC 280 272 229 209 101 157 190 221 182 

 

Figure 6.27 shows the frames’ sequence captured during the stabilisation process over the first 

slice (worst slice). To indicate some of the common areas, we have drawn a blue circle around 

one region (second and fifth frames) and a pink dot around another visible region (first, third and 

fourth frames). The reason for indicating two different regions is because of the inability to find a 

single region being visible throughout the sequence. However, having the regions appearing in 

some frames and disappearing in others is an indication of a poor stabilisation performance over 

the first slice. This poor performance could be due to the low region/colour variations throughout 
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the slice. This low region/colour variance is common in some other image’s slices (i.e. seventh, 

eighth, ninth), but the first slice is less illuminated than the others which might be the reason as to 

why SSP selected it as the worst slice. Nevertheless, we need to choose one indicator to define its 

positions throughout the sequence. As with previous examples, these positions will be used for 

the evaluation purpose. However, the second indicator (i.e. blue circle) will be used to help with 

defining how far the main indicator (i.e. pink dot) was shifted. The distance between the two 

indicators (blue circle and pink dot) needs to be determined from Figure 6.26. 

 

Figure 6.27 - Stabilisation over the first slice of the second Indoor experiment 

Table 6.13 shows the pink dots’ positions over the frames’ sequence (if applicable). However, the 

negative values are an indication of having the pink dots out of the frame’s boundaries, which 

resulted in obtaining a high standard deviation value over the applied experiment. 

Table 6.13 – Second experiment pixel positions over the worst slice 

Positions 23 -40 51 28 -49 

Standard Deviation 44.38 

 

Figure 6.28 shows the frames’ sequence of the stabilisation procedure over the fifth slice (best 

slice). As we expected, the aligned objects are all appearing within the image space and their 

positions are almost identical in the entire sequence. There are a few shifting from right to left 

and left to right but ultimately the images were well stabilised. The objects’ colours and some of 

the ground’s fractures made this slice the most variable in terms of its colours’ contents. 

However, the difference in performance over the worst and best slices (first and fifth) is highly 

obvious, which also indicates the high viability of the SSP as a prerequisite condition for the 
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stabilisation procedure. Figure 6.28 shows the indicated pink point as a selected common point 

over the whole sequence. The pink dot is located below the yellow bin and it is used for the 

purpose of evaluation.  

 

Figure 6.28 - Stabilisation over the fifth slice of the second Indoor experiment 

Table 6.14 shows the retrieved pixel positioning of the pink dot over the whole sequence. 

However, the retrieved standard deviation is 6.37, which is a huge reduction when it is compared 

against the stabilisation process over the first slice (see Table 6.13). 

Table 6.14 – Second experiment pixel positions over the best slice 

Positions 14 24 9 9 10 

Standard Deviation 6.37 

 

6.3.2.3 Third Experiment 

Figure 6.29 shows the third and last indoor experiment. The used substances are different to the 

ones used in the last two experiments. We used a few wood pieces with colours that are quite 

close to the background colouring. The aim is to test the system’s abilities against these sorts of 

views. 

 

Figure 6.29 - Area view for the third Indoor experiment 

Table 6.15 shows the retrieved SSP outcomes over the experimental view (see Figure 6.29). The 

sixth slice gained the lowest and the first gained the highest DCs value. However, looking at the 
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retrieved numbers, the lowest found SSP is 409 DCs which is a high SSP outcome. Nevertheless, 

if we look back at all previous experiments (laboratory and real world), the best stabilisation 

performances were mostly over those slices with less than 140 or 150 DCs. However, as with the 

Door image experiment (see Chapter 5), if both the best and worst slices have a high DCs value, 

then the expectation is to have a poor stabilisation performance over both slices. 

Table 6.15 – Indoor third experiment DC values 

Slice 1 2 3 4 5 6 7 8 9 

DC 785 684 653 410 457 409 712 703 771 

 

We now process the stabilisation technique over both slices (first and sixth). Figure 6.30 shows 

the images’ sequence retrieved during the stabilisation technique over the first slice (worst slice). 

Pink dots indicate the found common region across the sequence. However, the pink dot is shown 

on 4 out of 5 frames, which is an indication of missing that common region in one of the captured 

frames. Due to the difficulties of finding further common regions, to evaluate our data, we will 

use the position “0” for the frame with the missed region. 

 

Figure 6.30 - Stabilisation over the first slice of the third Indoor experiment 

Table 6.16 shows the pixel positions of the pink dots over the whole sequence. The gained 

standard deviation is 20.16, which we will compare against the experiment over the best slice. 

Table 6.16 – Third experiment pixel positions over the worst slice 

Pixel Displacement 0 41 54 26 26 

Standard Deviation 20.16 
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Figure 6.31 shows the frames’ sequence of the stabilisation process over the sixth slice (best 

slice). Pink dots are located below a small black region on the wood stick to examine the 

performance of our stabilisation technique over the best slice (sixth slice). However, the indicated 

common region appeared in 4 out of 5 frames. As in the previous experiment, we will use the 

position “0” for the frame with the missed region. 

 

Figure 6.31 - Stabilisation over the sixth slice of the third Indoor experiment 

Table 6.17 shows the pink dots’ positions over the whole sequence. The retrieved standard 

deviation is “21.17”, slightly higher than the retrieved standard deviation over the first slice (see 

Table 6.16).  This approves the failure of the SSP over this image (see Figure 6.29).  

Table 6.17 - Second experiment pixel positions over the best slice 

Positions 13 56 26 0 33 

Standard Deviation 21.17 

 

However, as explained earlier, if the best slice still has a high DCs value, it signifies that the 

whole image (or view) does not have potential for the stabilisation purpose. Nevertheless, the 

comparison between the best and worst slice will still be processed to observe the possible 

difference between the two scenarios. 
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6.3.2.4 FFT Results 

As for laboratory experiments, we would need to run the FFT analysis for every retrieved pixel 

displacement graphs in Indoor experiments. The results will be compared against the DCs values. 

Table 6.18 shows both the DCs and their FFT analysis for every image slice of the Indoor 

experiment. 

Table 6.18 - DC and FFT analysis numbers for every image’s slices of the Indoor environment 

EXP Slices 

1 2 3 4 5 6 7 8 9 

 DC FFT DC FFT DC FFT DC FFT DC FFT DC FFT DC FFT DC FFT DC FFT 

1 401 52.0 461 110.0 312 31.9 120 19.2 106 19.4 94 18.2 256 40.7 331 36.0 344 39.5 

2 280 62.1 272 47.2 229 43.6 209 38.3 101 26.8 157 38.1 190 38.2 221 37.3 182 38.5 

3 785 266.3 684 257.8 653 190.8 410 151.7 457 142.5 409 95.2 712 267.2 703 226.7 771 304.4 

 

Looking at Table 6.18, the lowest FFT analysis values were found over the slices with the lowest 

DC value. This shows that the outcome for the FFT analysis was quite close to our DC outcomes. 

This indicates a great match between the DC and FFT analysis. However, as the FFT is a well-

known and widely used technique, we can use this matching as a way to back up our DC analysis 

from the research point of view. 

6.3.2.5 Angle’s View 

As explained earlier, the angle’s view can significantly influence the tracking performance. The 

reason for having a lens with a larger angled view is to cover the most possible ground space to 

avoid the possibilities of none overlapping between the consecutive frames. To test how the 

angle’s view affects real world experiments, we apply an experiment using a lens with a narrower 

angle view (6mm) to appreciate the effect of using a wider angle view lens (3.5mm). However, as 
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we are testing the effect of the angle’s view only, we will exclude the use of SSP and place our 

colourful substances over the central slice. 

Figure 6.32 shows the captured views using both lenses, but it is visually obvious that the 3.5mm 

lens has captured a larger image’s space. This makes the possibility of the frames overlapping 

higher. 

 

Figure 6.32 - Views from 6mm lens (left) and 3.5mm lens (right)  

Figure 6.33 shows the snap shot of the view and the frames’ sequence of the stabilisation process 

using the 6mm lens. However, to observe the difference more carefully, we have captured 10 

frames over the whole sequence. We have drawn a blue circle over the interior part of the yellow 

bin to track it over the sequence. Nevertheless, the blue circle (common region) appeared on 9 

out of 10 frames. The blue circle location on the first snap shot (Figure 6.33 - left hand side 

image) is the reference position. The blue circle positions in the frames’ sequence shows the 

stability of the camera during the platform’s swing. 

 

Figure 6.33 - Stabilisation with 6mm lens over the central slice 

Table 6.19 shows the pixel positioning of the indicated blue circle. The standard deviation is also 

calculated to compare it against the subsequent experiment (3.5mm lens experiment). The gained 
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standard deviation is 14.17. However, having clustered colourful objects in the central region 

decreases the possibility of the stabilisation failure even if a narrow lens was used.  

Table 6.19 - Retrieving pixel positions using 6mm lens 

Positions 37 10 0 8 5 35 21 39 14 12 

Standard Deviation 14.17 

 

Figure 6.34 shows the repeated process of the stabilisation technique using the 3.5mm lens. As 

with previous experiments (Figure 6.33), the blue circle was also drawn in the interior region of 

the yellow bin. This indicates how well the wider angle view affected the stabilisation technique. 

However, the blue circle (common region) is also missed out in some captured frames (i.e. fourth 

frame), but the overall performance demonstrates a better stabilisation outcome. 

 

Figure 6.34 - Stabilisation with 3.5mm lens over the central slice 

Table 6.20 shows the pixel positioning of the blue circle (common region) across the sequence. 

The gained standard deviation is 5.57 and that presents more of an enhancement of the 

stabilisation performance than the previous experiment (see Table 6.19). 

Table 6.20 – Retrieving pixel positions using 3.5mm lens 

Positions 14 14 16 30 21 21 14 17 19 27 

Standard Deviation 5.57 

 

Nevertheless, this improvement can be due to the larger area this lens (3.5mm lens) has covered, 

which can be notified by observing the difference of both blue circles (Figures 6.33 & 6.34). A 
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wider angle view reflects on having more possible feature variations, resulting in obtaining a 

better SSP outcome. 
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6.3.3 Outdoor Experiments 

As in Indoor environments, we will now repeat similar experiments in a complete Outdoor 

environment. Referring back to Figure 6.1 (Middle Image), it shows the platform is hanging 

between the wall and a tree, challenging both the light and wind condition variance.  

6.3.3.1 First Experiment 

Figure 6.35 shows the view of our first Outdoor experiment. As in the first Indoor experiment, 

the colourful substances are all clustered in the central region. However, as we had 3 colourful 

features and a drain which represented our fourth feature in the Indoor environment, a plastic 

rubber cone sign is added to the three substances in our Outdoor experiments to equalise the 

number of clustered features for both environments. In our Outdoor space, the top and left 

regions are concrete walls which increase the region variations dramatically. This would add 

extra difficulties to our ground colour invariance. However, due to earlier rain, the ground 

colouring does vary in some areas, while the wet regions appear darker than the dried ones. As 

explained earlier, the lighting variances are due to having variations in both the sun light and the 

electrical light, which goes on and off every so often. This light variance highly affects the colour 

variation of the similar object(s). 

 

Figure 6.35 - Area view for the first Outdoor experiment 

Table 6.21 shows the retrieved SSP numbers over the demonstrated area (see Figure 6.35). We 

will run the stabilisation technique over the best and worst slices (fifth and first slices) to observe 

how well this technique matches our expectations of the SSP in a complete Outdoor environment. 
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Table 6.21 - First Outdoor experiment DC values 

Slice 1 2 3 4 5 6 7 8 9 

DC 389 294 284 152 122 184 158 146 145 

 

Figure 6.36 shows the frames’ sequence of the stabilisation process over the first slice (worst 

slice). The blue circle shows the common region over the whole sequence. However, taking the 

high colour repetition into account, to some extent the blue circle shows good stabilisation 

achievement.  

 

Figure 6.36 - Stabilisation over the first slice of the first Outdoor experiment 

Table 6.22 shows the pixel positions and their standard deviation of the common region (blue 

circle) over the whole frames’ sequence (see Figure 6.36).  

Table 6.22 – Outdoor first experiment pixel positions over the worst slice 

Positions 18 18 18 30 26 

Standard Deviation 5.65 

 

Figure 6.37 shows the frames’ sequence captured over the fifth slice experiment. Unlike the 

previous scenario (Figure 6.36), the substances’ positions appear to be stable over both the X and 

Y axes. 

 

Figure 6.37 - Stabilisation over the fifth slice of the first Outdoor experiment 
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Table 6.23 shows the pixel positions of the common region (blue circle) over the fifth slice. 

However, the calculated standard deviation is now 5.58, which is lower than the first slice (5.65) 

outcome.  

Table 6.23 - Outdoor first experiment pixel positions over the best slice 

Positions 24 24 36 34 28 

Standard Deviation 5.58 

 

Due to having a small difference between both standard deviations, a similarity in the 

performance of both scenarios is indicated. Nevertheless, this similarity is mostly due to verifying 

the blue circle positions over the X axis only. However, if we also take the Y axis into account, 

the positions’ instability for the first slice experiment (Figure 6.36) becomes very apparent. 

6.3.3.2 Second Experiment 

As in the Indoor experiments, for our second experiment, we align the used colourful substances 

over the horizontal space. As usual, the SSP method will determine which slice is the best to use. 

Figure 6.37 shows the experimental area and the way substances are aligned. However, the area 

looks more illuminated than how it previously was (see Figure 6.38) which could be due to either 

the sun’s position or the on and off of the electrical light which we mentioned earlier. 

 

Figure 6.38 - Area view for the second Outdoor experiment 

Unlike the previous experiment where the first slice was chosen as the worst, in this experiment 

the ninth slice is the worst selected slice (see Table 6.24). However, the change of illumination 

may have changed the ultimate SSP outcome. Nevertheless, in a previous experiment, the first 
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slice was appointed the second highest DC, which still counted as one of the worse slices to 

stabilise over. We are expecting the best slice to be the one with the aligned substances included. 

However, according to the numbers shown in Table 6.24, the fifth is the best chosen slice from 

the SSP point of view. 

Table 6.24 - Second Outdoor experiment DC values 

Slice 1 2 3 4 5 6 7 8 9 

DC 511 392 331 255 105 299 309 399 647 

 

Figure 6.39 shows the frames’ sequence of the stabilisation process over the fifth slice (best 

slice). To determine the precise evaluation, we have located the pink dot over the yellow bin’s 

base. 

However, the frames’ sequence shows a gradual shifting of the substances as we near towards the 

end. This shift can be observed clearly by monitoring the positions of the plastic rubber cone sign 

which disappears by the end of the sequence.  

Due to mainly having the colourful substances on the top part of the sequence, the ground colour 

repetition over the central and the lower regions could be the most influencing point over the 

shifting progression. Due to setting a time limit for the stabilisation period, we are unaware of 

how far this shift can proceed and which substances will also disappear from the image’s space. 

However, a camera’s overshoot may compensate this shift and return the camera back to the 

origin. 

 

Figure 6.39 - Stabilisation over the fifth slice of the second Outdoor experiment 
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Table 6.25 shows the pixel positions of the common region (pink dots) across the frames’ 

sequence over the fifth slice. 

Table 6.25 - Second Outdoor experiment pixel positions over the best slice 

Positions 32 33 24 23 21 

Standard Deviation 5.50 

 

Figure 6.40 shows the frames’ sequence of the stabilisation process over the ninth slice (worst 

slice). However, it looks identical to the first slice of the previous experiment (see Figure 6.36) 

but the absolute darkness is dominating and makes the process of finding the common region 

impossible. Consequently, the evaluation of the stabilisation process over this slice is 

unattainable but we noticed the camera’s physical maneuver went too far to be called 

“stabilised”. 

 

Figure 6.40 - Stabilisation over the ninth slice of the second Outdoor experiment 

6.3.3.3 Third Experiment 

Figure 6.41 shows the third Outdoor experiment’s view. As with the third Indoor experiment, we 

used a few wooden pieces to replace the plastic colourful substances. The new replaced objects 

would decrease the saturation of the clustered substances in the central region. This reduction 

would trim down the region’s uniqueness, causing some side effects to the ultimate SSP outcome. 

 

Figure 6.41 - Area view for the third Outdoor experiment 
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Table 6.26 shows the retrieved SSP numbers over the demonstrated area (see Figure 6.41). The 

stabilisation technique will be used to observe how well it will perform over the best and worst 

slices (fifth and sixth  slices).  However, the majority of slices gained quite similar DCs, which 

indicates a large reduction over the features’ uniqueness across the image’s space.  

Table 6.26 - Third Outdoor experiment DC values 

Slice 1 2 3 4 5 6 7 8 9 

DC 268 273 274 207 202 425 222 239 224 

 

Figure 6.42 shows the frames’ sequence of the stabilisation over the best slice (fifth slice). The 

blue circles are drawn over the common region across the sequence. Figure 6.42 shows the 

existence of the common region during the whole frames’ sequence. However, the common 

region shows the camera’s shift from central to the most left region. Depending on how the 

objects are aligned, a shift over a single axis may also reflect some shifting proportion over the 

opposite axis. Yet, this depends on how the objects are aligned to the way the platform is 

swinging. 

 

Figure 6.42 - Stabilisation over the fifth slice of the third Outdoor experiment 

Table 6.27 shows the pixel positions of the common region (blue circle) over the fifth slice (see 

Figure 6.42). The calculated standard deviation is 8.57, although the first pixel position (“32”) 

looks to be a camera’s overshoot. This may have boosted the calculated standard deviation 

further up. 
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Table 6.27 - Third Outdoor experiment pixel positions over the best slice 

Positions 32 16 13 11 13 

Standard Deviation 8.57 

 

Consequently, if we exclude the first value (“32”) from Table 6.27 and recalculate the remaining 

4 values, the new standard deviation becomes 2.06 (see Table 6.28). This shows a huge reduction 

from the previously calculated standard deviations (see Table 6.27). This reduction illustrates the 

enormous effect of the camera’s overshoot on the ultimate outcome. 

Table 6.28 - Excluding one standard deviation value from the third experiment and calculate the new average 

Positions 16 13 11 13 

Standard Deviation 2.06 

 

Figure 6.43 shows the frames’ sequence captured over the sixth slice (worst slice). As with the 

previous frames’ sequence (Figure 6.43), we have drawn blue circles around the common region 

throughout the sequence. However, the frames’ sequence shows a high level of instability over 

the vertical axis, but our system is designed to recover only horizontally. Nevertheless, this 

vertical instability could be due to the horizontal instability by having dissimilar objects aligned 

against the way the platform swings. 

 

Figure 6.43 - Stabilisation over the sixth slice of the third Outdoor experiment 

Table 6.29 demonstrates the pixel positions and their standard deviation value over the sixth slice 

scenario. However, this value looks smaller than the gained standard deviation in Table 6.27 (best 

slice), but it becomes larger if we exclude the overshoot value over the first captured frame (see 

Table 6.28). Nevertheless, this clarifies a better stabilisation performance over the best slice. 
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Table 6.29 - Third Outdoor experiment pixel positions over the worst slice 

Positions 23 28 16 17 16 

Standard Deviation 5.33 

6.3.3.4 FFT Results 

As in the Indoor experiments, we will run the FFT analysis for every retrieved pixel displacement 

graph in the Outdoor experiments. The results will be compared against the DC values of the 

Outdoor experiments. Table 6.30 shows both the DC and their FFT analysis for every image slice 

of the Outdoor experiment. 

Table 6.30 - DC and FFT analysis numbers for every image’s slices of the Outdoor environment 

EXP Slices 

1 2 3 4 5 6 7 8 9 

 DC FFT DC FFT DC FFT DC FFT DC FFT DC FFT DC FFT DC FFT DC FFT 

1 389 130.0 294 132.0 284 114.9 152 56.9 122 38.1 184 57.2 158 42.7 146 61.3 145 34.0 

2 511 208.3 392 167.8 331 164.5 255 156.8 105 31.4 299 139.8 309 164.0 399 169.0 647 253.8 

3 268 69.3 273 72.4 274 47.3 207 46.4 202 71.4 425 86.0 222 35.3 239 50.9 224 24.6 

 

Table 6.30 shows a complete match on the second, a partial match on the third and no match on 

the first experiments in allocating the smallest and largest FFTs over the same slices with the 

smallest and largest DCs. In the third experiment, the largest FFT value refers to the same slice 

with the largest DCs, but the smallest FFT refers to the ninth slice, which also has one of the 

lowest DC numbers. However, the first experiment is the only one whereby both the smallest and 

largest FFT analysis were not allocated over slices with the smallest and largest DCs. 

Nevertheless, the smallest and largest FFTs were also allocated over slices which held small and 

large DCs values. Consequently, we are also able to depend on FFT analysis for the stabilisation 

technique. 
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6.3.3.5 Angle’s View 

As with the Indoor environment, we now repeat a similar experiment of using a narrower lens 

(6mm) to observe the effect of the wider angle’s view over the stabilisation performance in the 

Outdoor environment. Similar to previous scenarios, we exclude the use of SSP and place some 

colourful substances over the central slice. Figure 6.44 shows the captured views using both 

lenses. It shows how the 3.5mm lens captured a larger image’s space which increases the 

overlapping possibilities. The captured image with the wider lens (3.5mm) appears more 

illuminated. However, a more condensed view could have the influence of lessening the image’s 

illumination level. Our prerequisite was to ensure the software and the camera’s settings are 

identical in both Indoor and Outdoor environments, to ensure the credibility of our comparison 

technique. 

 

Figure 6.44 - Views from 6mm lens (left) and 3.5mm lens (right) 

Figure 6.45 shows both the reference snap shot (left hand side image) and the frames’ sequence, 

which illustrates how well the stabilisation was achieved. We can visually observe the fact that 

the fourth frame is the only stabilized frame over the whole sequence. The rest of the frames 

show a background region completely, which indicates how far the camera was mismatched and 

directed away from the origin. We also cannot judge if the fourth frame was stabilized or if it just 

happened to be captured when the camera was above the origin. Loss of origin can also be due to 

having another competitive local minimum within the image space but this sequence 

demonstrates a total instability scenario. We can observe this instability by observing the 

ground’s fractures where they differ from some frames to others. 
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Figure 6.45 - (Stabilisation using 6mm lens). Different colour indicators showing different ground’s fractures 

However, there are two indicators shown over this frames’ sequence (Figure 6.46 - pink and blue 

dots), where each refers to a common region across the sequence. Figure 6.46 shows both 

common regions are visible over the sequence’s seventh frame. The pixel distance between the 

two indicators presents the large instability reached with this sequence, but we choose the pink 

point indicator to evaluate how well the stabilisation was performed. Nevertheless, we would 

need to use the other visible region (with the blue indicator) to calculate the pixel positioning of 

the pink dot whenever it is invisible. However, as Figure 6.46 shows, the pixel distance between 

the two dots is 47 pixels (on this frame’s size) and therefore, this distance will be added to the 

blue dot position whenever the pink dot is invisible. 

 

Figure 6.46 - Seventh frame showing both common regions 

Due to having none of the two indicators existence over the fourth and fifth frames, we would 

need to calculate the possible camera’s shift over the whole image’s space. Figure 6.47 

demonstrates the calculated distance from the blue point to the centre of two captured frames 

(fourth and fifth). However, we can visually clarify that the possible distance between the blue 

point and fourth frame looks to be approximately one complete frame’s width (see Figure 6.47 

(Red line)) and the distance between the blue point to the fifth frame appears to be 5 × (frame’s 
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width). On the other hand, if we attempt to define the pink point position on the fourth frame, we 

have to add one complete frame’s width plus the blue to pink distance and for the pink point 

position over the fifth slice, we have to multiply 5 × (frame’s width) plus the blue to pink 

distance. 

 

Figure 6.47 - Approximate distance between the regions 

Table 6.31 shows the pink dot pixel positions over the entire sequence. It also presents the 

calculated standard deviation to determine how well the camera’s stabilisation was achieved. 

Table 6.31 - 6mm lens experiment pixel positions outcome 

Positions 56 21 94 112 372 108 58 24 62 110 

Standard Deviation 100.80 

 

The next frames’ sequence in Figure 6.48 shows the stabilisation process using a wider lens’s 

view. Blue circles were drawn around a common region across the sequence to evaluate the 

stabilisation performance. 

This sequence shows quite good stabilisation from the second to the ninth frames. Although, the 

instability is shown more on the first and last frames, this could be due to some cameras 

overshoot during the capturing time. This overshoot could be due to having competitive local 

minima within the image’s space. 
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Figure 6.48 - (Stabilisation using 3.5mm lens). Blue circle indicator presents the common region across the sequence 

Table 6.32 shows the pixel positions of the common region and their standard deviation over the 

frames’ sequence (see Figure 6.48). However, using the wider angle’s lens increased the stability 

and decreased the standard deviation from 100.80 (Table 6.31) down to 16.77 (Table 6.32). This 

demonstrates the effect of a large angle’s lens over the ultimate outcome. 

Table 6.32 – 3.5mm lens experiment pixel positions outcome 

Positions 7 48 51 52 57 57 54 52 52 22 

Standard Deviation 16.77 
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6.4 Conclusion 

Real world experiments were applied to test the performance of our designed system over 

different environments. The aim was to test the workability of the SSP and the hierarchical search 

algorithms in real world scenarios and also to sustain the laboratory’s gained outcome further. 

Nevertheless, as earlier explained, we tested the designed hierarchical search algorithms over the 

Indoor, Outdoor and the Sea environments, but due to impracticality, the SSP was tested over the 

Indoor and Outdoor environments only (i.e. flying scenarios). However, despite the fact that the 

SSP was excluded, we have always chosen the central slice that holds the majority of the region 

variations in our sea experiments. This would decrease the necessity for such a slice selection 

technique. 

On the other hand, choosing the central slice of our sea experiments may not consistently lead to 

the best selection. Table 6.33 presents the gained average of all the applied sea experiments’ 

outcomes. It shows how some experiments gained a low result and how others have achieved a 

higher result. This is an indication that the central slice in some experiments led to a better 

stabilisation. 

Table 6.33 - Average of all experiments’ standard deviations 

Sea Experiments 

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 

13.34 4.51 11.45 2.84 5.18 

Average 7.46 

 

Due to the procedures’ similarities, we are able to present and compare the Indoor and Outdoor 

experiments’ outcomes simultaneously. Nevertheless, the third experiments in both scenarios 

have presented higher values which are an indication of the camera’s instability during the 
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experimental period. However, the camera’s high instability in the Indoor third experiment was 

reflected in the camera’s better stability in the Outdoor environment. 

Table 6.34 - Averages of all Indoor and Outdoor experiments’ standard deviations results over the best slices 

Indoor Experiments 

Experiment 1 Experiment 2 Experiment 3 

2.50 6.37 21.17 

Average 10.01 

Outdoor Experiments 

Experiment 1 Experiment 2 Experiment 3 

5.58 5.50 8.57 

Average 6.55 

 

Eventually, the achieved experiments were applied to answer the question asked in chapter 1 that 

identifies the appropriate regions for image-based stabilisation using pixel-wise comparison in 

real world environments.  

However, as in laboratory environments, the experiments with high region/colour variations have 

shown better camera stability. This shows how these variations have enhanced the camera’s 

stability.   
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Chapter 7 

Conclusion 
  



258 

 

7.1 Preface 

The techniques and simulations developed in chapter 4 combined with the experiments and 

results described in chapter 5 and 6 support a positive answer to the research question: Can 

appropriate regions for image-based stabilisation be selected empirically using pixel-wise 

comparison and simulated platform motion? 

In this chapter we summarise the content of each chapter and present the contribution made in 

this research. The chapter also details the limitations of this research and the possible future work 

that could expand it. 

7.2 Summarising the content 

This research started by categorising the content of the literature into two major divisions 

(“Input” and “Tools & Methods”). However, the “Tools & Methods” section was subcategorised 

as Probability Distribution, Edges and Segmentations, Contours, Features and Adaptive Methods 

& Filters. The listed tools/methods in each subcategory share a similar methodology that is used 

in their tracking systems. The research is then continued to define a methodology that fulfils the 

project’s requirements. Various strategies were followed to implement solutions for locating a 

patch within the image for use in stabilisation. These strategies were chosen to attain the best 

possible error surfaces to achieve the most effective stabilisation. Fixed Locations, Edge 

Tracking, Feature Tracking and Image Smoothness are some of the implemented strategies which 

were applied and tested to determine their influence over the error surface generation process. 

However, each strategy has its strengths and weaknesses, for example, fixed locations are only 

good if those fixed patches happen to be located over useful features for fixation. Edge tracking 

also runs the risk of locating the patch over a repetitive feature region which may result in an 

error surface with many local minima. Feature tracking was also applied using different blob 

sizes which showed good results on artificial images but did not present the same quality on real 
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world images. Also, to have more gradual changes over the error surface, the image smoothing 

procedure was applied to reduce the unwanted edges and keep the most effective ones, but this 

can easily fail if the image’s blurriness increases due to some internal or external influences (i.e. 

environmental conditions, lens setup). Since the random selection technique was used as the main 

pixel selection mode, the concern remains about choosing the right range for the random 

distribution (patch size) and the patch position on the vertical axis. In contrast to the third 

chapter, the retrieved data on the fourth chapter is the result of hanging and swinging the platform 

in the laboratory environment. The patch size selection procedure was carried out by letting the 

platform swing and applying the appearance comparison between every two consecutive images. 

This process is repeated using different patch sizes and the displacement graph with fewer 

overshoots points to the most suitable patch size. We have determined that the 100 × 100 patch is 

the most appropriate patch size to be used on the 300 × 300 images in our experiments. However, 

the uEye camera can retrieve up to 1600 × 1200 images, so rather than locating the patch in the 

central position, we have implemented the Slice Selection Process (SSP) which analyses where 

best to locate the patch on the vertical axis. The SSP divides the image into a few slices, locates 

the patch and generates the pixel displacement graph for every slice. The graph with fewer 

overshoots is used to select the most suitable slice that the patch can be located over. To apply the 

appearance comparison process, Hierarchical Search algorithms were designed to find the best 

correlation between the reference and the current patches using Euclidean distance. Many 

minimisation methods (Gradient Descent and Newton's Method) navigate over gradually 

descending surfaces but the hierarchical searching method looks for the global minimal over the 

whole surface. 

In the laboratory environment, experiments were done on various printed images. The SSP was 

used to choose the best and worst slices of each image. The stabilisations are then applied to the 
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chosen slices and the performances are compared to determine how the SSP influenced the 

ultimate outcome. In addition, Chapter 4 presented useful visual analyses to explain the contrast 

between different images or different slices. Also, the edge distributions were investigated to 

verify their possible effect on the SSP and on stabilisation performance. However, to backup the 

SSP outcome further, the FFT technique was used to analyse the pixel displacement graphs [129]. 

This analysis showed a significant link between counting the Direction Changes (DC) and the 

FFT analysis of the displacement graphs. However, as the retrieved graphs represent the pixel 

displacement values, if any confliction between the DC and the FFT values appears in the graph 

analysis then it is safer to rely on the DC measurement, as it can reflect the platform’s movement 

more accurately. The laboratory experiments were followed by experiments in real world 

environments to assess the system’s performance under variable conditional environments. The 

aim was to test the SSP and hierarchical search algorithms in real world conditions. Both SSP and 

hierarchical search algorithms were tested on kite flying experiments but due to the SSP’s 

impracticality in our boat scenario, the SSP method was excluded and the hierarchical search 

algorithms was tested to give evidence of the workability of this algorithm in non-flying 

scenarios. We always used the central slice that holds the majority of the region variations in our 

sea experiments therefore the necessity for such a slice selection technique is less than in the 

flying experiments. As in the laboratory work, the appearance investigation and the FFT analysis 

were also carried out in the real world experiments. However, the real world experiments and the 

applied analysis demonstrated a reasonable system performance in the real world projects. 
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7.3 Significance of the findings (research contribution) 

The Slice Selection Process (SSP) is the major contribution of this research. The SSP has 

contributed to how to use the camera as the key sensor for continuously orienting the position 

over the original view. It was mainly designed to help systems that require automatic selection of 

image regions for active fixation.  

The Slice Selection Process (SSP) uses the pixel displacement graphs to choose the image region 

that can best be used for active fixation. The selection technique is based on counting every graph 

peak and choosing the slice with the fewest peaks for camera fixation. 

The research has also contributed by introducing the “hierarchical search” which aims to perform 

an exhaustive search with an enormous reduction in pixel processing. The hierarchical search is 

used to speed up the process of the Slice Selection Process (SSP). 

The techniques and experiments described here show that, it is possible to perform real time 

stabilisation using automatically selected image regions using low computational overhead 

algorithms. In general, it doesn’t seem to be necessary to perform complex image analysis in 

order to achieve this. 

7.4 Limitations of the current study 

This research has limitations which are observable if the system is intended to be used for a real 

project. The fixation is achieved in the rotation about the axes in the image plane but has not 

focused on scenarios where the camera rotates about its optical axis. Another limitation is due to 

the possible scale change during the tracking period. This study has not covered a possible 

solution that can be used to recover from scale changes. On the other hand, the possible changes 

to both the platform’s rotation and the scale can influence best slice selection, therefore we would 
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then need a better strategy that updates the best slice selection whenever such changes occur 

during the tracking period. 

7.5 Recommendations for further work 

Future work could give attention to the clarification of the current limitations. For example, as 

explained earlier, the camera rotating on its optical axis and the possible scale changes are the 

major limitations of this research. However, there are a few existing techniques that are used to 

determine this tracking path using a sequence of images (i.e. Dynamic Programming [2], [37] and 

[127]). Though, if the platform rotates dramatically, the comparison between the two paths may 

turn out to be impossible. On the other hand, the scale change is also considered by many 

literatures, for instance modifying a version of kernel’s radius by ±10% can help to increase the 

tracking robustness. As a consequence of determining the camera rotation over its optical axis or 

the scale change, we may re-run the SSP method to enhance the system performance during the 

tracking period. Moreover, future work may also focus on converting the SSP to a more 

generalised feature selection method using just a single captured shot. 
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