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ABSTRACT

One of the goals of planetary exploration is to cache rock samples for subsequent
return to the Earth in future Mars Sample Return missions. Rocks on the Martian
surface are one of the most interesting science targets for geologists and planetary
scientists. Hence, it is essential to develop a method for the accurate segmenta-
tion of Martian rocks in Mars images. This thesis introduces a new approach to
segmenting Mars images captured by the NASA Mars Exploration Rover (MER).
An improved OTSU and Canny operator are utilized for detecting rock regions
and their space relations, respectively. The closed contours of detected rocks are
gained by the use of template dilatation edge linking for a given set of images.
These images have been obtained from MER Navcam and Pancam.
Experimental results of six representative images (with different illumination lev-
els, spectral bands and scenes) including a total of 128 rocks are shown. In these
experiments qualitative and quantitative comparisons are accomplished. The re-
sults demonstrate that the proposed approach is consistent with human perception
and is the best in terms of the average values over the performance indices such
as Precision, Recall and misclassification error in comparison to the existing ap-
proaches. Additionally, a method is proposed for computing the size of a detected
rock through the stereo triangulation technique. Experimental results also show
that this proposed method offers better accuracy than the standard disparity al-
gorithm.
Currently, science target selection, and whether or not it is possible for a robot
arm to touch the target, is accomplished by human operators and scientists on
the Earth. The use of onboard autonomy would greatly reduce the human inter-
vention, and it would be advantageous if the rover could evaluate autonomously
whether the robot arm could place an instrument against an identified science tar-
get. In this thesis a fuzzy logic-based system is presented to address the problem
of autonomous science target touchability evaluation. The touchability of a poten-
tial science target is assessed in terms of its size (the bounding area of the rock),
SV (the science value of the target), distance (the reachable distance of the arm
between its base and the science target), and orientation (the angular regions of
the arm’s shoulder azimuth). In particular, the plane in front of the arm is divided
into a number of partitions, which are ranked with the different touchability levels
by the use of a fuzzy rule-based system. Simulations on the rank of science object
touchability are carried out, via hardware implementation. Based on the real data
gathered from the cameras and the Schunk arm experimental results successfully
verify the validity of the proposed touchability approach and associated software
and hardware implementations.
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Chapter 1

Introduction

1.1 Background of the Research

Since there is a hostile environment such as dust and solar radiation on the Red

Planet, currently it is inadvisable to send humans to perform the investigation of

Mars that may endanger their life. Therefore, it is preferable to survey Mars with

robotic technology. During the recent decades important technological develop-

ments have been made in the area of robotic exploration. Robotic applications

range from search and rescue and oceanography to planetary science (Castano

et al., 2007a; Baxter et al., 2007; Antonelli et al., 2008). Modern unmanned plan-

etary rovers are sent to acquire and make real-time decisions on how to explore

their environment, and autonomously interpret the scientific data.

At the moment space robotic landers include Viking, Beagle 2 and Phoenix; and

of course the planetary rovers such as Mars Pathfinder, Spirit and Opportunity,

Curiosity. The Viking program was composed of two main parts: an orbiter de-

signed to photograph the surface of Mars from orbit, and a lander designed to

study the planet from the surface (Godwin, 2000). The lander conducted bio-

logical experiments designed to search for evidence of life in the Martian soil.

Europe’s first planetary mission incorporated an orbiter (Mars Express) and a

lander (Beagle 2)(Pullan et al., 2004). The lander (Figure 1.1) was equipped with

a highly-integrated scientific payload designed to conduct in situ geological and

astrobiology-related experiments at a landing site located within Isidis Planitia

(Bridges et al., 2003). Mission scientists used instruments aboard the Phoenix

lander to search for environments suitable for microbial life on Mars, and to inves-

tigate the history of water there (Shotwell, 2005; Goldstein & Shotwell, 2009). The
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Mars Pathfinder is a NASA spacecraft and consisted of a lander and a lightweight

wheeled robotic Mars rover named Sojourner. The mission involved a series of

scientific instruments to analyse the Martian atmosphere, climate, geology and

the composition of its rocks and soil (Golombek, 1997; Squyres et al., 2003). The

Mars Exploration Rover mission (MER) began in 2003 with the sending of the

two rovers (Spirit and Opportunity) to explore the Martian surface and geology.

The mission’s scientific objective was to search for and characterize a wide range

of rocks and soils that hold clues to past water activity on Mars (Arvidson et al.,

2006; Squyres et al., 2006). The Mars Science Laboratory mission (MSL) success-

fully landed on Mars on August 6, 2012, and consisted of a rover named Curiosity

and a scientific payload designed to identify and assess the habitability, geologi-

cal, and environmental histories of Gale crater (Anderson et al., 2012; Grotzinger

et al., 2012). In short, all these missions will be heavily influenced by the Mar-

tian geology and environment, astrobiology and habitability in terms of payload,

landing site and sampling strategies.

Rocks are one of the prime features exposed on the planet’s surface and with

regards to Mars rover missions, they play an important role in scientific inves-

tigation. Rocks carry considerable rich geologic clues for the study of planetary

geology. According to the distribution and type of rocks, a geologist can conclude

which regions may have similar rocks formed and deposited at the same time.

Different rocks may have different physical parameters and appear in different

location, which may be essential for the understanding of the Martian chemical

elements and geologic environment. The present state of the rocks can tell us what

has happened since their formation such as the influence of climate, erosion and

transportation (Gor et al., 2001). Rocks are one of the chief obstacles to endanger

a rover traverse if they are not detected ahead of time accurately. Furthermore,

rocks are also employed for vision-based localization and navigation as tie points.

Consequently, the autonomous detection of rocks is a valuable capability for plan-

etary geology survey and sample acquisition, and for hazard avoidance and rover

localization and navigation in Mars mission operations.

1.1.1 ExoMars Programme

The Mars Sample Return (MSR) mission plans to collect samples of Martian rock,

soil and gas for returning to Earth, and for carrying out scientific analysis (iMARS

Working Group, 2008; Space Studies Board, 2011). In particular, ExoMars is
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Figure 1.1: The Beagle 2 lander. The ARMwould position the PAWwhose calibra-
tion undertaken by Aberystwyth University to conduct panoramic, macroscopic
and microscopic imaging, in-situ compositional analysis, and sample acquisition
for the Gas Analysis Package (GAP) experiment (Barnes et al., 2003; Barnes et al.,
2006). Image courtesy of ESA

scheduled for the forthcoming ESA/Roscosmos 2016 and 2018 missions, which

can be regarded as precursor missions to MSR. The first mission will carry a

Trace Gas Orbiter and an Entry, Descent and Landing Demonstrator Module

(EDM), and will be launched and reach Mars in 2016. The second mission will

carry a large capsule with a surface science platform and a rover to Mars in 2018

(http://exploration.esa.int/mars/46048-programme-overview).

The ExoMars campaign will demonstrate an amount of fundamental flight and

in-situ enabling technologies, whose development objectives include:

• To enable Entry, Descent and Landing (EDL) of large payloads on Mars.

• To adopt solar electric power on the surface of Mars.

• To develop surface exploration mobility capability with a rover.
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• To access to the subsurface for sample acquisition, preparation, distribution

and analysis with a drill.

Meanwhile, a number of crucial scientific objectives are to be achieved, including:

• To search for possible signs of life on Mars, past and present.

• To investigate the water and geochemical distribution and environmental

variations.

• To survey the surface environment and identify hazards for future manned

missions to Mars.

• To study the Martian subsurface to better understand the habitability and

evolution of Mars.

1.1.1.1 ExoMars Rover

The ExoMars Rover (Figure 1.2) developed by ESA hosts the primary mission

abilities: surface mobility, subsurface drill and autonomous sample acquisition,

processing, and deployment to instruments. It provides an analytical instrument

suite called the Pasteur payload devoted to exobiology and geochemistry investiga-

tion. Solar panels are utilized to generate the electrical power required, and novel

batteries and heater units are designed for the rover survival at the cold Martian

nights. The ExoMars is of extreme automation. Scientists/operators on Earth just

specify target locations from stereo images taken by the cameras mounted on the

rover mast, then the rover will traverse to the designated location without human

intervention. In order to achieve the navigation, navigational stereo cameras are

employed for digital maps and then path planning is implemented.

The rover can safely traverse around 100 meters per sol with the help of navigation.

The six wheels of the rover control its movement. Each wheel pair is suspended on

an independently pivoted bogie. All wheels can be steered and driven individually

and can be independently used to adjust the rover height and angle relative to

the surface. Sun sensors are provided for the absolute attitude of the rover on

the Martian surface and for the direction to Earth. The rover is equipped with

a drill called the subsurface sampling device which can autonomously drill to the

maximum 2 meters depth for gathering small samples. In the heart of the rover the

analytical laboratory will analyse these samples when delivered. A fine powder will

be obtained by crushing the collected samples. Detailed chemical, physical, and

spectral analyses will be performed using the powder by means of the instruments.
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Figure 1.2: Artist’s impression of the ExoMars rover. Image courtesy of ESA

1.1.1.2 ExoMars Instruments

The ExoMars rover is equipped with a comprehensive and coherent suite of an-

alytical instruments dedicated to exobiology and geology investigation. The in-

strument suite is known as the Pasteur payload (PPL). PPL includes a set of

complementary instruments, and has the following objectives: searching for signs

of past and present life on Mars and researching the water/geochemical environ-

ment as a function of depth in the shallow subsurface (Debus et al., 2010). The key

instruments that will be comprised as part of the 2016 and 2018 ESA/Roscosmos

ExoMars rover are:

• PanCam - The Panoramic Camera

PanCam is to conduct digital terrain mapping of Mars. It is composed of

two wide angle cameras (WACs), one high resolution camera (HRC) and the

Pancam interface unit (PIU). For panoramic imaging (34◦ field of view, fixed

focus) WACs are equipped with a 12-position filter wheel each covering a

different wavelength, thus enabling multispectral observations. HRC is used
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for high-resolution colour imaging with 5◦ field of view, and is an autofocus

mechanism. PIU as the brain of the instrument undertakes the communica-

tion with the rover (Pugh et al., 2010; Barnes et al., 2011; Pugh et al., 2011;

Cousins et al., 2012).

• MOMA - Mars Organic Molecule Analyser

This instrument will target biomarkers to answer questions related to the

potential origin, evolution and distribution of life on Mars.

• MicrOmega

This is a visible plus infrared imaging spectrometer for mineralogy studies

on Martian samples.

• MARS-XRD - MARS X-Ray Diffractometer

A combined X-ray diffractometer and fluorescence spectrometer, which will

be used to analyse the mineralogy and the chemical composition of the Mar-

tian rocks and soil.

• RLS - Raman Laser Spectrometer

The Raman instrument will be used to provide context information for the

identification and characterisation of potential organic compounds which can

then be related to present or past signatures of life on Mars.

• WISDOM - Water Ice and Subsurface Deposit Observation OnMars

This instrument under the rover is a ground-penetrating radar to explore the

stratigraphy. WISDOM will be utilized in combination with Adron, which is

able to provide information about subsurface water content, to decide where

to acquire subsurface samples for analysis.

• MA MISS - Mars Multispectral Imager for Subsurface Studies

MA MISS located inside the drill will contribute to the study of the Martian

mineralogy and rock formation.

• CLUPI - Close-UP Imager

CLUPI is a camera system and is capable of taking the high resolution colour

close-up images of rocks, outcrops, drill fines and drill core samples.
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• LMC - Life Marker Chip

LMC will be utilized to detect specific molecules that may be concerned with

Martian life at past or present.

• Adron

Adron is developed to seek subsurface water and hydrated minerals, and will

be used with WISDOM to study the subsurface beneath the rover and to

search for suitable areas for drilling and sample collection.

1.2 Need for Autonomous Systems

Currently, since all extra-terrestrial planets which have been explored and

observed commonly have large changes in temperature, unstable weather

systems and very thin atmospheres, they are inhospitable for human beings.

It is well known that only Earth has liquid water compared with the other

observed planets and has the appropriate amount of oxygen to sustain life.

However, as regards to planetary exploration these are by no means the only

problems that human beings face. The main problem is how to travel to the

planet. The length of time that it would take to travel from Earth to Mars

for a spacecraft relies heavily on the relative orbits between both planets.

Any journey would be a minimum of a six month. During the journey the

crews have to be fed, warmed, shielded from radiation. Waste products must

be dealt with and oxygen is stored for use during the whole mission. Fuel for

launches and landings have to be available. It is significant that the current

technologies would make it nearly impossible for astronauts to return on

the same spacecraft which landed on Mars. A huge number of technologies

and resources would be needed to equip for the entire mission. It is mainly

for these reasons that robotic platforms have become the key tools when it

comes to planetary exploration.

Originally, in-situ landers were sent to Mars such as the Viking Landers (see

Figure 1.3A). Since it was found that a very limited amount of science could

be implemented only from the landers, mobile platforms were built, the first

being a lander like Mars Pathfinder and the Sojourner Rover (see Figure

1.3B). Success in using the mobile platforms with regard to scientific return
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has resulted in an increase in the use of the mobile platforms as the MER

rovers (see Figure 1.3C)and the Curiosity rover (see Figure 1.3D).

Certainly, the amount of science return that can be delivered by a current

robotic platform is fully less than can be achieved by an on site human

expert. Any measures that are able to maximize the amount of science

return must be contemplated seriously. Given this situation, then the way

forward is maximum autonomy for exploration devices. In this way it is that

autonomy can avail for planetary exploration. With increasing autonomy a

lot of decisions which are currently made by scientists and operators on Earth

can be made from the exploration platforms. This would reduce the amount

of communication between ground control and the robotic platform and also

would allow optimisation of the workload of a platform. This would in turn

reduce the need for pauses and times of inactivity. These pauses typically

occur at decision points when a command sequence has been accomplished

and the images have to be processed before the next move of the platform can

be decided (see Figure 1.4). An autonomous system can make this decision

and move to the next sample location. The communication bandwidth can

be specifically devoted to the return of valuable scientific data that include

poor images and other lower priority images of limited value. The European

Cooperation for Space Standardisation (ECSS) gave a definition of robotic

autonomy in a planetary exploration context (see Table 1.1). An autonomous

system can be assessed by these levels as a unified scale.

1.2.1 Benefits of Full Autonomy

In order to achieve level E4 (see Table 1.1) of autonomy, a robotic sys-

tem will have to perform goal-orientated re-planning within an unstructured

environment without human guidance. Therefore, it can be said that an

autonomous robotic system at level E4 has to be able to:

– Gather information about the environment.

– Work for an extended period without the need for human interaction.

– Move either all or part of itself through a changing environment without

human assistance.

– Avoid damaging people, property, or itself.
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Table 1.1: ECSS autonomy levels vs space robot application.
Level Description Functions

E1

Mission execution under
ground control. Limited
on-board capability
for safety issues

Real-time control from
ground for nominal operations.

Execution of time-tagged
commands for safety

issues.

E2
Execution of pre-planned,
ground defined, mission
operations on-board.

Capability to store
time-based commands in
an on-board scheduler.

E3
Execution of adaptive mission

operations on-board.

Event-based autonomous
operations. Execution of

on-board operations control
procedures.

E4
Execution of goal-orientated
mission operations on-board.

Goal-orientated mission
re-planning.

  

C 

A B 

D 

Figure 1.3: Artists rendition: A. Viking Lander, B. Mars Pathfinder and So-
journer Rover, C. MER Rover, D. Curiosity Rover. Composite images courtesy of
NASA/JPL
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Understanding this helps illustrate why this level of autonomy is so hard to

achieve. Figure 1.5 illustrates the results of moving all Earth-bound deci-

sion points to the exploration platform. The exploration platform can use

both communication windows to download images and telemetry to Earth.

No input from Earth is necessary, although Earth-bound contact would be

needed to update the platforms goal list.

This approach would also reduce the need for pauses in execution. The plat-

form can work as long as it has power available. An added benefit would

be to minimise ground-based operator workload, as Earth-bound scientists

would have less involvement during the sample selection stages. Low quality

images and work-flow images need not be down-linked at all, resulting in a

reduced administration and archiving workload. Amortized primary mission

NASAMars Exploration Rover (MER) operations have been reported to cost

approximately $4 million to $4.5 million per day and require 240 operators

working 24/7 (Pedersen et al., 2005). If a reduction in the number of op-

erators and scientists needed to assess down-linked data could be achieved,

a significant reduction in mission cost would be possible thus reducing the

overall cost of the science achieved during the mission.

1.2.2 Benefits of Limited Autonomy

Limited autonomy is more achievable, and in some ways more acceptable as

scientists are still uneasy about delegating control of the mission to the ex-

ploration platform. It has been essential for some time that certain aspects

of the exploration platform be autonomous; for example the deployment of

the on-board communication aerial (Jnsson et al., 2007). As technology ad-

vances and human acceptance towards robotic autonomy grows, more and

more mission operations could move towards autonomy. Currently no sci-

ence or targeting decisions have undergone this transition. This is primarily

because of the difficulties involved in categorizing potential targets in the

remote terrain. Significant advancements have been made in the instrument

placement (Pedersen et al., 2005) and Rover navigation domains (Laurent

& Michel, 2006). Figure 1.6 illustrates a scenario where both autonomous

navigation and instrument placement are in use. The initial target is se-

lected on Earth in the traditional way. By moving the navigation on-board,
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the rover need not wait for Earth based computers to calculate a safe path

to the target, or to produce a final DEM (Digital Elevation Model) of the

sample. This would all be accomplished on board. Instrument placement

could take place as soon as the vehicle is in position. The only Earth-bound

operation would be to select suitable targets for sampling, thus reducing

the need to provide the platform with any contextual information about its

surroundings or mission objectives. Thus the complexity of the problem is

substantially reduced.

1.3 Research Aim and Objectives

Rocks as science target are one of the main features exposed on the Martian

surface, which play an important role in scientific research and engineering

operation for Mars rover missions (such as the study of planetary geology,

and the evaluation of the information content in Mars images to identify

major obstacles for Martian rover traversing)for Mars rover missions. This

research aims to analyse Mars images by means of image processing and

computer vision techniques, and to develop a method for autonomous science

target detection.

The current strategy employed by MER and MSL is that a science target

is deemed to be able to be acquired just when it is within the robotic arm

workspace, which is a mechanical decision strategy. Hence, this research

aims to develop an autonomous flexible approach to adjusting automatically

the robotic arm workspace in terms of the science value score (SV) for a

potential scientific goal. In addition, due to the fact that Mars images may

well be captured with uncertainty and imprecision owing to the natural

environment in which a Martian rover functions, any tool to be developed

in handling such images will have to address the inherent uncertain and

imprecise information, data and knowledge.

Thus, the main aims of my research are as follows: To design and develop a

Mars surface science target touchability evaluation architecture through the

use of a fuzzy logic control structure, and to guide the actions of the rover

for planetary exploration.

The objectives of this research can be summarised as follows:
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1. Design and develop a rocks identification algorithm, and conduct exper-

iments to validate the effectiveness of the algorithm using field images

and Mars images.

2. Develop a desired keypoint matching algorithm for calculating the size

of an identified rock and the distance between the arm base and the

target.

3. Design and develop a touchability evaluation algorithm, and validate

the effectiveness of this algorithm through simulation.

4. Build upon the experiment platform and perform experiments using

the real rock data to validate the effectiveness of the above method.

1.4 Thesis Outline

The rest of this thesis has been divided into the following five chapters, which

are organised as follows:

– Chapter 2 In this chapter, four current autonomous science solu-

tions are reviewed and discussed, including: On-board Autonomous

Rover Science Investigation System (OASIS) project (Castano et al.,

2007b), the Single Command Approach and Instrument Placement

(SCAIP) project (Schenker et al., 2003), the Collaborative Research

in Exploration and Technology (CREST) project (Shaw et al., 2007),

and the Robotic Antarctic Meteorite Search (RAMS) project (Peder-

sen, 2000). These four projects represent the current state of the art

as regards autonomous science systems for planetary/terrestrial explo-

ration.

– Chapter 3 The chapter not only presents an unsupervised segmen-

tation approach about the Mars images based upon an improved OTSU

and Canny operator (Otsu, 1979) (Canny, 1986), but also introduces

a technique for measuring the size of the rock based on the SIFT-

RANSAC (Scale Invariant Feature Transform - Random Sample Con-

sensus) algorithm (Lowe, 2004) (Fischler & Bolles, 1981) and the cross

correlation method (Tsai & Lin, 2003).

– Chapter 4 The chapter describes a fuzzy logic-based touchability

system in detail for the following instrument deployment. In this system
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the five linguistic variables (Size, Distance, Science Value, Orientation

and Touchability Index) have been extracted, and their membership

functions have also been built.

– Chapter 5 In this chapter, in order to test and verify the validity

of the proposed touchability system the laboratory experiments are

described on the basis of the hardware assembly which includes two

wide-angle cameras (WACs), Schunk arm, real rocks, camera mast and

optical bench.

– Chapter 6 A discussion of the achievements of this research is pre-

sented, future direction of the study is proposed and potential areas of

improvement are identified.
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Figure 1.4: Rover to Earth communication during the representative instrument
placement. Composite images courtesy of NASA/JPL
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Figure 1.5: Rover to Earth communication during instrument placement, a fully
autonomous system E4. Composite images courtesy of NASA/JPL
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Figure 1.6: Rover to Earth communication during instrument placement, a semi-
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courtesy of NASA/JPL
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Chapter 2

Autonomous Science Systems

Autonomy in space has become a desirable capability. There is extensive

research being undertaken in the field to endow robots with the autonomy

necessary to explore a remote, relatively poorly characterized extra terres-

trial environment. This chapter is focused upon the research that has been

undertaken in the area of autonomous science which sets the background for

the present work. There are a number of key projects that are described in

the following sections.These projects are of direct relevance to the present

research. However, due to the specialism the literature is rather limited in

developing the relevant techniques for the problem that is addressed herein.

2.1 Robotic Antarctic Meteorite Search

(RAMS)

The Robotic Antarctic Meteorite Search (RAMS) is a Carnegie Mellon based

project concentrating upon developing robotic technologies to facilitate an

autonomous rover in the search for meteorites in Antarctica. Antarctica has

been chosen as a base location for this project because of its richness of well

preserved and easily accessible samples. This is caused by the predominant

environmental conditions experienced in the region. The moving glaciers

bring deposited rocks to the surface and the cold dry conditions delay their

degradation (Pedersen, 2000). The study has been built around a robotic

platform known as Nomad (see Figure 2.1) which has been outfitted and pre-

pared to deal with the harsh environment of the Antarctic (Apostolopoulos
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et al., 2000). It has also been equipped with a high resolution camera and a

visible to near infrared reflectance spectrometer (Pedersen et al., 1998). The

purpose of these upgrades are to enable Nomad to operate autonomously

for extended periods and carry out an unaided search for meteorite samples.

A Bayes network approach has been adopted to facilitate rock classification

and a Markov chain segmentation approach to segment the captured images.

 

Figure 2.1: Image of Carnegie Mellons Nomad Rover (Image courtesy of Carnegie
Mellon). Nomad is a 4 wheel drive rover measuring 2.4 m × 2.4 m × 2.4 m, and
has a total mass of just over 700 kg

2.1.1 Image Segmentation

Image segmentation for the RAMS project is made easier by the environ-

ment. The land is covered with snow and ice and is therefore white. Rocks

and meteorites which are brought to the surface by glacial motion are usu-

ally quite dark in colour and stand out quite clearly from their background.

It is still a non-trivial problem as rock shadows and partial snow cover can

29



degrade results. As previously mentioned a Markov chain segmentation ap-

proach was adopted to try and alleviate this problem. The Nomad rover

camera system has been designed to provide images along with scale infor-

mation and a centroid of all rock-like pixel areas (Pedersen, 2000). It is

assumed that no rocks are close together and all rocks are fully surrounded

by their ice background. The work of (Pedersen, 2000) asserts that if pixels

are examined along a radial projecting out from the centroid in sequence

at some unique point they cease being a rock and start becoming ice or

background pixels. In this work this sequence is modelled by a partially

observable Markov Chain.

2.1.2 Rock Classification

At the core of the RAMS system lies the rock classification agent. It en-

capsulates the system’s scientific knowledge. Its goal is to use sensor data

to classify targets as belonging to one of the pre-defined categories/types

(Apostolopoulos et al., 2000). It also calculates the potential information

gain that could result from deploying additional sensors. The classifier is re-

sponsible for deciding based upon gathered sensor data whether a processed

target is a terrestrial rock or a meteorite. This is non trivial as it is very diffi-

cult for expert geologists to classify what they are looking for. The common

analogy of not knowing exactly what you are looking for until you find it is

quite fitting. The problem will also change as the area being investigated

changes and environmental conditions fluctuate. In order to deal with this

issue an adaptive learning approach has been adopted.

The initial problem with this approach is the limited number of available

training targets. In an attempt to alleviate this issue two earlier expeditions

to Antarctica along with trips to the Arctic and the Atacama desert in

Chile were conducted to search for additional samples to use as training

data. Prior application specific data was also included in to the classifier in

order to compensate for the limited amount of training data.

The robot also has several deployable sensors which must be deployed in

turn. Some of these sensors have a high deployment cost associated with

them (such as the micro spectrometer, which requires the rover to move to

locate the sample in the target envelope) so it is desirable not to deploy
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them unless it is deemed that they will add beneficial data.

2.1.3 Bayes Network

The RAMS development team stipulate that a Bayes network based ap-

proach fits well with this problem. The benefits put forward by (Pedersen,

2000) are presented below:

– The classification of uncertainty and any ambiguity is handled by com-

puting explicit probabilities for each possible rock class, rather than

just the most likely.

– Evidence from sensor readings can be incrementally compounded by

Bayesian updates.

– Prior rock and meteorite probabilities in a specific area are accounted

for.

– The structure of a Bayes network reflects the statistical relationships

between rock samples and sensor measurements. These have been de-

duced from knowledge of geology and the physics of the sensors. This

has allowed the relationships between variables to be constrained by

domain specific knowledge, and the intrinsic dimensionality controlled.

– Given a suitable network structure, the statistical model can be learned

from statistically biased training data available.

(Pedersen, 2000) shows how the Bayes network based generative model can

be extended to allow autonomous profiling of the environment in order to

learn rock probabilities and exploit the correlations amongst the rock sam-

ples in a certain area. Furthermore, in addition to being able to handle

incremental data, a Bayes network can be used to determine which unused

sensors are likely to be useful to classify a sample, enabling active sensor

selection, reducing unnecessary deployments of sensors.

2.1.4 Final Notes on RAMS

RAMS is a good example of an autonomous exploration vehicle. It has

produced excellent results in Antarctica during several different field trials,
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responsible for the first autonomous discovery of a meteorite. However, the

discovery and classification of targets in Antarctica on the ice and snow is

significantly different from discovery and classification of targets on Mars

(or any other extra terrestrial body). The Bayes network used in this work

has preformed relatively well in this situation, but it requires the user to

pre-define what target types will be encountered so the system can cate-

gorise rocks into them. There appears to be no way to characterise the

science value of a never before encountered target. This presents a substan-

tial weakness should a system like this be used to classify unknown rock

types in an unpredictable environment. The system has also been designed

to classify targets based on their rock type, as a result a marble target would

receive a value which would be different to a meteorite or a granite sample.

This is suitable for the RAMS system but would not be suitable for an au-

tonomous extra-terrestrial exploration vehicle as a rock type in a particular

configuration (e.g., outcropping) is potentially more valuable than the same

rock in a different configuration (e.g., boulder field).

2.2 CREST Autonomous Robotic Scientist

(ARS)

The UK PPARC (now STFC) funded the Collaborative Research in Explo-

ration and Technology (CREST) scheme to support preliminary technology

development for ExoMars instrumentation and to position the UK indus-

try to compete for ESA contracts. This project focused on the production

of a framework to enable a robotic scientist to discover opportunistic sci-

ence autonomously (see Figure 2.2). In order to accomplish this goal several

intermediate aims were identified (Shaw et al., 2007), which are given as

follows:

– Establish an initial scientific methodology for the automation of science

assessment and planning based on a human field practise.

– Prototype a system architecture which can support the concept of au-

tonomous science.

– Prototype elements of the methodology provided by the science team

in order to establish the feasibility of this approach.
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– Demonstrate the prototype system in a representative Mars Yard envi-

ronment.

– Use the forthcoming ESA ExoMars mission as a target and source of

operations and science results.

The primary task was to demonstrate opportunistic science in a representa-

tive ExoMars type environment. The work presented by the project was to

demonstrate that a mobile platform could traverse a rock field en-route to

a target destination, both detecting and responding to targets of scientific

interest that were encountered en-route (Woods et al., 2009; Woods et al.,

2008).

In order to accomplish this, an extensive architecture of planners and agents

had to be produced and integrated (see Figure 2.3). The basic operation or

usage of this model is as follows:

– Nominal exploration time-lines or plans are up-linked from the mission

control centre.

– The rover executes the planned sequence which is mainly a traverse

action between designated way-points.

– At selected points the imagery collected during the traverse is assessed

for science interest.

– If sufficient interest is detected, the science component will request a

more detailed analysis via the time-line validation and control (TVCR).

– TVCR is to assess the current plan, resource state and mission priori-

ties before recommending a go/no go for the new opportunistic science

request.

– The request may involve a close-up image activity or an actual ARM

placement on a target object such as a rock or outcrop.

2.2.1 Science Assessment and Response Agent (SARA)

The SARA is responsible for the identification and assessment of scientific

targets within the CREST architecture (see Figure 2.3). In this section the

SARA agent is documented in isolation from the rest of the system.
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Figure 2.2: Opportunistic science aims of CREST (Image courtesy of SciSys,
(Woods et al., 2009). This image outlines a basic ExoMars exploration cycle,
showing the potential for opportunistic science activities. The main objective is
to traverse from a previously explored site (A) and progress toward the next site
at B, where detailed sample assessment will be carried out. The intention is to
visit seven sites over the nominal 180-sol period. Opportunistic science is clearly
possible during the traverse phase and could be used to improve the robustness of
data acquisition and prioritisation during the measurement cycle.
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Figure 2.3: CREST Project Architecture (Image courtesy of SciSys (Woods et al.,
2009))

2.2.1.1 Science Assessment Framework (SAF)

The SARA is based on an underlying scientific scoring framework outlined

in (Pullan, 2006). Within the afore mentioned report, a planetary geologist

domain expert Dr Derek Pullan put forward a science assessment frame-

work (SAF) to unravel the often complex process that a human expert goes

through to assess a potential scientific target. The expert asserts that three

primary attributes of a potential target can be used to determine the science

value of that target. These three primary attributes can then be further bro-

ken down and characterised by a group of predefined features. The expert

has gone further and produced a scoring system to characterise the scientific

value of individual features such as albedo, colour and shape. The full list

of features can be seen in Tables 2.1, 2.2 and 2.3. Once these features are

identified and scored they can be combined using the following sum:
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SVS = (
∑

Structure+
∑

Composition+
∑

Texture

+ CompositionAtributeScore) ∗Quality ∗Bias

CompositeAtributeScore is a score which can be given to a composite group of

related attributes which alone in isolation do not provide much value but when

combined produce a desirable target. The Quality value can be used to represent

the quality of the image or of an identified target, this value is generally used to

degrade the targets score by multiplying the score by a factor smaller than 1. Bias

is used to represent a scientific bias towards sampling certain kinds of targets.

If for example the system had identified a basalt bomb as being a high priority

target during an initial run, it will degrade its value during future observations.

2.2.1.2 Science Agent

The science agent’s architecture is shown in Figure 2.4. Target detection is

achieved through the use of a segmentation algorithm. Once these targets are

identified they are processed and scored according to the data provided by the

expert in the science assessment framework. Currently the system analyses six

individual features: two from each of the three primary attributes (Structure,

Composition and Texture). Once the scores of these six features are derived, they

are combined by summing the totals together.

2.2.2 Final Notes on CREST

The CREST Robotic Scientist project has demonstrated an end to end implemen-

tation of an autonomous opportunistic platform. It has proved the concept of the

Science Assessment framework produced by (Pullan, 2006). It has also proved

the concept of a geology based image assessment of potential science targets. It

is still at an early stage and as yet does not implement any sophisticated method

of assessing the science values obtained from the Science Assessment Framework

(SAF). This is due to the focus of the system being primarily on the image pro-

cessing aspects responsible for identifying the features that are present, currently

a simple summation of the SVS is carried out. This will limit the system’s ability

to deal with uncertainty as it is not possible to partially discover anything, either

it is or it is not there. It has also been suggested that at a later stage the context

of the images processed by the system will be considered by a learning technique,
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Table 2.1: Structure feature list (Table courtesy of (Pullan, 2006)).
ID Feature SVS Note

S000 Signature: No structure 0
Not available or beyond

resolution
S001 Signature: Structural 5 Clasified or unclassified

S002 Quality: Distinct signature 15
Sharp or enhanced by

weathering

S003 Quality: Indistinct signature 10
Poor resolution or masked

by drift

S004 Stratification: Continuous 20
Continuous within context

of FOV

S005 Stratification: Discontinuous 10
Discontinuous within context

of FOV
S006 Type: Planar 10
S007 Type: Wavy 50
S008 Type: Curved 20
S009 Type: Lenticular 40
S010 Type: Irregular (smooth) 30
S011 Type: Irregular (chaotic) 60 Includes draped
S012 Type: Nodular 50 Includes slumped
S013 Sub-type: Parallel 10
S014 Sub-type: Sub-parallel 30
S015 Sub-type: Non-parallel 50
S016 Scale: Very thick (bedding) 100 > 100cm
S017 Scale: thick (bedding) 100 30cm to 100cm
S018 Scale: Medium (bedding) 10 10cm to 30cm
S019 Scale: Thin (bedding) 10 3cm to 10cm
S020 Scale: Very thin (bedding) 10 1cm to 3cm
S021 Scale: Thick (lamination) 10 0.6cm to 1cm
S022 Scale: Medium (lamination) 10 0.3cm to 0.6cm
S023 Scale: Thin (lamination) 50 0.1cm to 0.3cm
S024 Scale: Very thin (lamination) 100 < 0.1cm
S025 Orientation: Horizontal 10
S026 Orientation: Inclined (left) 10
S027 Orientation: Inclined (right) 10
S028 Orientation: Vertical 10
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Table 2.2: Texture feature list (Table courtesy of (Pullan, 2006)).
ID Feature SVS Note

T000 Signature: No texture 0
Not available or beyond

resolution
T001 Signature: Textural 5 Clasified or unclassified
T002 Quality: Distinct signature 50
T003 Quality: Indistinct signature 5

T004 Fabric: Random 5
Continuous within context

of FOV

T005 Fabric: Orientated 50
Discontinuous within context

of FOV
T006 Fabric: Imbricated 100
T007 Surface: Dull 5

T008 Surface: Polished 50
Aeolian weathering
(desert polish)?

T009 Surface: Rough 10
T010 Surface: Striated 50 Aeolian weathering?
T011 Surface: Concoidal 100 Glassy fracture planes
T012 Surface: Vesiculated 10 Gas bubbles (lava)
T013 Surface: Pitted 40 Blueberry casts
T014 Surface: Bumpy 50 Blueberries in outcrop

which will then influence the SVS based on contextual information derived from

the mission requirements and from the recent system activity.

The system has been demonstrated working in the Aberystwyth University PAT-

Lab (Woods et al., 2009) with a successful outcome, there is also evidence within

the literature of SARA being run on MER images and successfully identifying

potential high value science targets. There is however little characterisation of the

quality of the achieved results against that of a planetary geologist expert.

2.3 Single Command Approach and Instrument

Placement (SCAIP)

Closed Loop Control for Autonomous Approach and Placement of Science In-

struments by Planetary Rovers or “Single Command Approach and Instrument

Placement” (SCAIP) was a project also led by JPL to create a closed loop system

to autonomously place a scientific instrument on a foreign planetary surface. The

38



Table 2.3: Composition feature list (Table courtesy of (Pullan, 2006)).
ID Feature SVS Note

C000 Signature: None 0
Not available or beyond

resolution
C001 Signature: Discernibly 5 Clasified or unclassified
C002 Quality: Distinct 100
C003 Quality: Indistinct 50
C004 Reflectivity: Low albedo 10
C005 Reflectivity: Medium albedo 50 Ice (∼ 35 %)
C006 Reflectivity: High albedo 100
C007 Reflectivity: Low specularity 10
C008 Reflectivity: Medium specularity 50 Crystallographic surfaces
C009 Reflectivity: High specularity 100 Mirror-like
C010 Distribution: Homogeneous 10
C011 Distribution: Heterogenous 50
C012 Colour: Red 0
C013 Colour: Green 100
C014 Colour: Blue 20

C015 Colour: Black 50
Fresh mafic or primitive

material?
C016 Colour: White 50 Salt or ice?
C100 Mineralogy: Carbonate 9999 First discovery?
C101 Mineralogy: Jarosite 50 Acid aqueous formation
C102 Mineralogy: Pyroxene 20
C103 Mineralogy: Ilmenite 20 Ti
C104 Mineralogy: Goethite 5
C105 Mineralogy: Hematite 10 Aqueous formation
C106 Mineralogy: Gypsum 5 Evaporite

C107 Mineralogy: Phyllosilicate 200
Clays (neutral/alkaline

formation?)
C108 Mineralogy: Kamacite 200 Meteorite
C200 Petrology: Basalt 10
C201 Petrology: Andesite 50
C202 Petrology: Carbonaceous chondrite 200 Meteorite
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Figure 2.4: SARA architecture (Image courtesy of SciSys (Woods et al., 2009))

main aim of the SCAIP project was to cut down the length of time required to take

a sample. This was achieved by reducing the level of human interaction with the

rover thus reducing the amount of time required for transmission of intermediate

data and control instructions.

This system, although not a complete solution, focused upon the autonomy as-

sociated with the rovers command sequence. It assumed that an Earth based

scientist had already specified a suitable target from down-linked images. The

system would then proceed through a six stage sequence. The stages were as

follows:

– Drive to stand-off position using interest points.

– Hand-off goal position from Navcams (navigation cameras) to Hazcams

(hazard cameras).

– Plan final approach path.

– Drive to final offset position and acquire Hazcam image.

– Plan arm path with collision checks.
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– Place instrument and acquire science data or determine a safe substitute

placement goal.

The SCAIP control software gave primary importance to mission safety. If rover

safety could not be guaranteed the rover would simply stop and call Earth for

help. The system showed great promise. Figure 2.5 shows an image overlaid with

yellow crosses showing an earlier systems placement attempts (Schenker et al.,

2003). The red circle illustrates the accuracy of the SCAIP system as all trials

of the system lie within this circle. This represents a significant step forward in

instrument placement technology which will form an essential part of any future

autonomous scientific rover.

 

Figure 2.5: Instrument placement results from 11 trial runs of the prior algorithm
with the distance being 32.5cm between the most-left yellow cross and the most-
right yellow cross, with crosses at the positions where the instrument arm made
contact overlaid on the short range image used for arm trajectory planning. In-
strument arm contact positions for the SCAIP effort all lie within the 1cm radius
red circle centred on the designated target. Image courtesy of NASA/JPL
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2.3.1 Final Notes on SCAIP

The SCAIP project itself only goes part of the way towards producing a fully func-

tional autonomous planetary scientist. The focus on the autonomous instrument

placement has enabled it to produce a robust mission ready system. Unfortu-

nately, as previously mentioned it is only part of a full system and still relies

heavily on a human scientist selecting the target and producing an activity plan.

The system also loses some of its efficiency if you are not able to see the exact

sample point from the initial image of the sample site. The rover may have to

be manually moved towards the site until the exact sample location is identified.

This manual interaction, although not always necessary will reduce the efficiency

of the system. In the case of rocks displaying lamination or bedding features such

as those seen in Figure 2.6, the exact target location may not be obvious until the

macro imaging stage has been reached.

 

Figure 2.6: Example rock target demonstrating lamination features.
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2.4 On-board Autonomous Rover Science Inves-

tigation System (OASIS)

The On-board Autonomous Rover Science Investigation System (OASIS) is de-

signed to operate on-board a rover identifying and reacting to serendipitous science

opportunities. These science opportunities can include detection of dust devils,

clouds, novel rocks (novel meaning, the kinds of rocks that the system has not

seen before) and interesting rocks. The OASIS system analyses data that the

rover gathers, and then prioritises the data based on established criteria. There

are three main components within the OASIS system (Castano et al., 2007b),

these include:

– Feature extraction from gathered images: This concentrates on locating

rocks based on shape, texture and albedo.

– Analyse and prioritise data: This uses the features extracted to deter-

mine scientific value of the planetary scene.

– Plan and schedule new command sequence: This dynamically modifies

the rovers current plan to accommodate new observations.

The following subsections provide an overview of each of these components. The

full architecture diagram of the OASIS system can be seen in Figure 2.7.

2.4.1 Feature Detection

The techniques presented in the OASIS literature are applicable to a wide range

of data modalities. However, the initial OASIS focus has been on image analysis

as images are much more commonly available and provide a large amount of

information about the scene. The first step of an image evaluation for OASIS

is to identify the features of interest within the scene. This can potentially be

done before or after segmentation depending on what feature the system is trying

to identify. Currently OASIS contains two segmentation algorithms and three

feature extraction modules. Each of these modules applies general data analysis

principles to identify and characterise image features that are representative of

distinct scientific phenomena.
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Figure 2.7: Full architecture of the OASIS system. Image courtesy of NASA/JPL
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2.4.2 Image Segmentation

Sky detection Detection of the sky is an essential activity for any automatic

scene processing, to be carried out by an autonomous system. It quickly identifies

a proportion of the scene which could be deemed of little interest and one of

primary interest. For example while searching for rocks it is unnecessary for items

above the skyline to be processed. The approach used in OASIS is based on a

region growing technique and is composed of four distinct steps (Castano et al.,

2007a):

– Find Seeds - This determines if the sky is present in the scene, with

areas of low variance searched for and identified as seeds.

– Identify variance edge - This is identified by performing an edge detec-

tion on the variance image.

– Grow Seeds - The seeds identified in step one are then grown down to

the variance edge identified in step two.

– Fill in region gaps - All enclosed gaps above the variance edge are filled

in.

The algorithm is documented as demonstrating approximately 90% accuracy while

tested on 301 MER images.

Rock detection The rock detection algorithm currently used on the OASIS

system is based on the analysis of intensities on a single greyscale image (Cas-

tano et al., 2007a; Castao et al., 2004). The detection of rocks is carried out

by finding closed shapes within the processed image. The image is initially nor-

malised, filtered with an edge preserving smoother filter (bilateral filter, (Tomasi

& Manduchi, 2004)). Its edges are then enhanced using an Unsharp Mask (USM)

process. Sobel and Canny edge detectors are then both applied to the resulting

image and all enclosed shapes are identified using an edge walker. The output of

both detectors are then combined and a list of the contours of the identified shapes

is produced. This algorithm is documented in (Castano et al., 2007a), and has

been tested on 65 MER Spirit PanCam images where 92% of the regions identified

as “rocks” were in fact rocks.
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2.4.2.1 Feature Extracion

Cloud detetor The cloud detector assumes that all large variations in intensity

within the sky region are clouds (Castao et al., 2006). The approach adopted to

identify these features is to identify the sky region and then to look for areas of

high variance. The work of (Castano et al., 2007a) reports that the algorithm

achieved a 93% accuracy in testing on 210 hand labelled images taken by the

MER Opportunity.

Dust Devil detector A Dust Devil (Figure 2.8) is a strong well-formed whirl-

wind. They occur commonly on both the surface of Earth and Mars. OASIS

attempts to detect dust devils by looking for motion within a temporal sequence.

Dust devils are not the only thing that can move in a Martian scene as clouds will

also move. However it is asserted in (Castao et al., 2006) that, if interference noise

can be accounted for within the sample images, it can be assumed that significant

changes in an image sequence would be caused by a Dust Devil. The algorithm

consists of a prepossessing step to reduce the level of noise in the image followed by

image averaging. The difference between the averages of two adjacent images in a

sequence are then computed. Noise effects are removed from the resulting image

and a blob detection is performed to identify potential Dust Devils. The Dust

Devil algorithm was tested on 385 images, divided into 25 sequences (acquired by

the MER Spirit) ranging from 6 images to 20 images. The algorithm achieved

an 85% accuracy rate when the average image was determined using a set of four

continuous images (Castano et al., 2007a).

Boundary detection An important task for a human field geologist is to de-

velop an understanding of the field area. Generally, this involves going into the

field area, identifying rock types present, key landforms and landscapes, mapping

geological contacts or boundaries, developing a geologic map, and creating a model

based on historical interpretations and the dynamic processes that have shaped

the landscape. Rocks exposed at the surface provide a record of the surface his-

tory. Their physical appearance and location testify to the environmental setting

in which they were formed. To gain an understanding of the basic geologic history

of a region, it is necessary to identify where the rocks on the surface originated.

In order to do this, the geological contacts/boundaries in the field must be identi-

fied and mapped. The identification and mapping of geological boundaries ranges

from simplistic boundary detection (e.g., hills, plains, and river channels), to com-

plex identification of different rock and cast types, to erosional and depositional
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Figure 2.8: Dust Devil as observed by MER Spirit rover (Image courtesy of
NASA/JPL)

histories of the landscape. For a rover, it is the critical hardware interface in con-

junction with the scientist on Earth that collects the data. For future long-range

rovers on a planetary surface, it is critical for the rover’s on-board software to be

capable of identifying simple boundary transitions during long traverses (Castano

et al., 2007a).

Rock properties The identification of geological features such as rock proper-

ties has been the primary focus of the OASIS feature extraction routines. OASIS

currently estimates albedo, texture, size and shape. The albedo of a rock is used as

an indicator of the reflectance of the rock which in turn gives an indication of the

composition of the rock. This value is approximated by averaging the greyscale

values of the pixels that are identified as part of the rock. OASIS uses Gabor fil-

ters to estimate the visual texture of identified rock targets (Castao et al., 1999).

Identified textures are used to gather information about the target’s history and

composition. Shape is also gathered and used to provide information about the

targets provenance (source of target) and about the environmental conditions that

the target has been exposed to. In order to calculate a target’s shape the OASIS

system fits an ellipse to the outline of the target. The eccentricity of that ellipse

along with the error is computed. The angularity of each rock is also assessed

using a measure of ruggedness.
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Analysis and prioritisation After assessing all identified targets the infor-

mation gathered is used to affect either the downlink data queue or the rover

activity schedule. OASIS utilises four methods to facilitate analysis and prioriti-

sation. The first method known as “detected events”, is used in conjunction with

the environment detectors, clouds and Dust Devils. The remaining three: “target

signature”, “novelty detection” and “representative sampling”, are used to react

to rock target discovery. There are briefly introduced below.

Detected event Simply, when an event is detected a flag is set to identify that

something of interest is present and has been identified. This flag can be applied

to an image or a sequence, as in the case of a Dust Devil.

Target signature This technique recognises key signatures that have been pre-

identified by planetary geologists as interesting. This can be done by stipulating

the value of feature combinations (Castano et al., 2007a) or by identifying a rock

with interesting properties from the rocks already observed. The system then

prioritises rocks as a function of the distance of their extracted feature vector

from the specified weighted feature vector.

Novelty detection This technique assesses new targets and produces a novelty

value based on the previously observed targets. Different techniques are developed

to implement this, including: distance-based, probability-based and discriminative

(Castao et al., 2008).

Representative sampling This technique prioritises data for down-link to

ensure that representative rocks of the traversed region are returned. This is in

order to satisfy one of the main objectives for rover traverse science, gaining an

understanding of the region being traversed.

2.4.2.2 Planning and execution

When a science target is identified by OASIS, a science event is raised. This

causes a new science event to be passed to the scheduling module which decides

if the event can be accommodated. If it can, the science plan is modified and

new data is gathered. The scheduler and planner are major components of OASIS

and primarily focus on the discovery of unexpected or opportunistic science. This

means that dynamic re-planning and scheduling can take place on-board the rover

and the rover’s command sequence can be altered. An in-depth explanation can

be found in (Castao et al., 2006).
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2.4.3 Final Notes on OASIS

OASIS provides an excellent example of a fully integrated autonomous robotic

planetary exploration rover. The subject of the research here is to explore the

feasibility of an on board autonomous planetary scientist. There are some subtle

differences between endowing a system with the ability to make decisions based on

geological cues or evidences detected in the assessed scene, and enabling a system

to examine how close preserved targets are to what a human geologist would assert

as interesting. The “target signature” method of analysis and prioritisation does

the latter. A human planetary geologist can specify that targets are prioritised

based on specific feature values: e.g., the scientist may choose to prioritise targets

based upon two aspects of the target’s shape, such as eccentricity and ellipse fit.

Or the scientist can identify a target signature that is “interesting” and prioritise

targets based upon their similarity to this signature. However, in order to emulate

a planetary geologist an autonomous system would need to access the science value

of the specified target itself in some way and identify the scientific triggers which

stipulate its value.

There are other obstacles not addressed by the OASIS project. Colour is not used

to identify potential targets as the system uses only greyscale images. Colour

could potentially be a great indicator of science value and could also add some

additional information regarding the target’s chemistry. The type of target that is

being searched for in OASIS also presents a limitation. Here OASIS has adhered

to the classic approach of target selection, that is, to look for “rocks”. A recent

report produced by a planetary geologist has indicated that bedrocks and exposed

rock shelves should carry a much higher science priority than loose rock fields.

This is primarily due to the fact that the structure of these potential target sites

can provide valuable information about the geological processes that have been at

work in the area over extended periods of time (Pullan, 2006). OASIS does not

appear to cater for this type of science target.

2.5 Summary

During this chapter the current state of the art in autonomous science and au-

tonomous sample selection and acquisition has been presented for four autonomous

science systems. RAMS is an autonomous exploration vehicle for the autonomous
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discovery of a meteorite. A Bayes network approach has been adopted for rock

classification and a Markov chain segmentation approach to segment the captured

images. The system can classify rocks into different target types that have been

pre-defined by the user. The CREST Robotic Scientist project has demonstrated

an end to end implementation of an autonomous opportunistic platform. It has

proved the concept of the Science Assessment framework and the concept of a geol-

ogy based image assessment of potential science targets. The SCAIP project goes

part of the way to produce a fully functional autonomous planetary scientist. The

focus on the autonomous instrument placement has enabled it to produce a robust

mission system. However it is only part of a full system and still relies heavily

on a human scientist selecting the target and producing an activity plan. OASIS

provides an excellent example of a fully integrated autonomous robotic planetary

exploration rover. The subject of such research is to explore the feasibility of

an on board autonomous planetary scientist. These reviews provide background

information for the subsequent development to be reported in this thesis.
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Chapter 3

Target Detection and SIFT-Based

Matching Desired Keypoints

Planetary scientists and geologists will benefit from approaches for automated

segmentation and measurement of rocks in natural environment. Since rocks show

different morphologies can be difficult to be distinguished from the background

soil, they are poorly fitted for current visual segmentation techniques. In this

chapter, an automated detection and segmentation method is proposed to address

this challenge. Additionally, a novel approach is introduced to measure the size of

a detected rock.

3.1 Background

In terms of rock segmentation research in intensity images of a planetary sur-

face, several supervised and unsupervised approaches have been developed and

produced to identify rocks. For supervised techniques, existing methods typically

employ a belief network based on machine learning to classify homogeneous regions

from colour images (Thompson et al., 2005). However, a rock may have different

intensity and colour due to the illumination and geometry of the rock surface.

Dunlop (Dunlop et al., 2007) proposed an approach applying a normalized-cut

strategy to fragment an original image into superpixels and then to merge them

into rock regions with support vector machine (SVM) classifiers. In this method

training set determination influences the quality of the resulting detections for

large rocks and also the misclassification rate of structured soil. Shang and Barnes
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(Shang & Barnes, 2011; Shang & Barnes, 2013) have constructed image classifiers

combining fuzzy-rough feature selection (FRFS) (Jensen & Shen, 2008) (Jensen

& Shen, 2009) and SVMs (Mitchell, 1997) to increase classification efficacy. As

colour images are at the present manually produced by scientists on Earth, this

method is impossible to be practically used on-board rover.

With regard to unsupervised techniques, Gor (Gor et al., 2001) implemented a

rock detection approach where large rocks are identified using range data through

ground-plane fitting and height information, whilst edge-flow segmentation along

with image intensity information is employed for small rocks. In this method, a

key control parameter is image scale and the range data is generated from stereo

imagery. Castano (Castano et al., 2007a; Castao et al., 2004) proposed a method

to detect the closed contours of rocks by combining an edge-based rock detector

with multi-scale image pyramid. However, this algorithm is efficient only when

there are obvious intensity differences between rocks and soil. Other unsuper-

vised techniques include: a method using the texture-based rock segmentation

and the edgeflow-based boundary refinement is proposed by Song (Song, 2008); a

k-Means-based method for rock clustering (Fink et al., 2008); and a similar region-

growing method for rock identification in the context of segmentation (Pugh et al.,

2010). Thompson (Thompson & Castano, 2007) conducted a comparison for the

performance of a number of existing rock detection algorithms.

In this chapter, an unsupervised method is proposed to address a segmentation

problem to extract rocks from an image. This method appears to be more com-

petent for the complex Mars environment, with little rover-Earth communication

required than the supervised approaches. In the Martian exploration all super-

vised systems require interaction with Earth-based scientists for either training

or parameter setting. Unfortunately, sufficient downlink is not available to allow

interactions between scientists on Earth and rover on Mars for science data anal-

ysis. Unsupervised techniques however, help the development of full autonomous

systems.
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3.2 Target Identification

3.2.1 Overview of the Proposed System

In order to achieve autonomy (i.e. minimizing human intervention), unsupervised

techniques are taken as the start point (Gor et al., 2001). The general issue that

is addressed by the present work is the identification of scientifically interesting

rocks (such as sedimentary, metamorphic and igneous ones) that are able to pro-

vide scientists knowledge relating to the history of the geology and environment

conditions on Mars. The proposed system deal with this challenge, having the abil-

ity to detect scientific targets in Mars images and to generate a closed contour of

an identified rock. In Figure 3.1 Rock Detection is a key stage and implements the

extraction of interesting features from the images taken over a given terrain. Here,

the segmentation performance of typical automatic global thresholding methods

were evaluated for Mars images, including Co-occurrence matrix, Histogram con-

cavity, Minimum error, OTSU and Moment-preserving methods (?). However,

OTSU leads to the best result. So, a tri-level thresholding OTSU method (Otsu,

1979) has been employed to address the issue of background segmentation. Several

edge detector approaches were evaluated for Mars images, including Canny, So-

bel, Prewitt, Robert, LoG, Basic Declivity and Modified Declivity edge detectors

(?). The method of Canny achieved the best qualitative results. Hence, edges

from the Canny method (Canny, 1986) have been utilized to merge the regions

from the tri-level thresholding OTSU into closed contours which identify the rock

boundaries.

3.2.2 Rock Detection

Rock detection is in this work, an important stage in the process of rock sam-

ple acquirement, which utilises a tri-level thresholding OTSU method to segment

foreground (rock) from its background. The Canny algorithm is then employed

not only to investigate the entire edges in an image but also to form the spatial

dependency of regions which are returned by the tri-level thresholding OTSU. Fi-

nally, a Template Dilatation Edge Linking (TDEL) method is adopted to detect

the closed contour of each rock within an image. These techniques are detailed

below.
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Figure 3.1: An overview of the proposed system.

3.2.2.1 Tri-level Thresholding OTSU

On the basis of the observations and surveys obtained from the MER panoramic

and navigation camera images, it is found that in most cases the number of back-

ground pixels is more than the foreground pixels in a given image. For simplicity,

in this research the shadow of a rock is considered as part of the rock identified.

Accordingly, the popular OTSU’s approach is not able to perform its usual a task.

The reason is that conventional OTSU is a bi-level thresholding algorithm which

just partitions the image into two regions; in other words, only one threshold is

derived. In order to meet the need for rock identification in Mars images, an im-

proved OTSU method is required to break down a given image into three regions,

thereby having to obtain two thresholds to be obtained (see Figure 3.2). Details

of the enhanced algorithm are as follows.
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(a)

 

(b)

Figure 3.2: An image example and histogram from MER Navcam data showing
the optimal thresholds g∗1 and g∗2 ([0,g∗1]:shadow; [g

∗

1,g
∗

2]:rock; [g
∗

2,255]:ground)
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OTSU’s thresholding technique (Otsu, 1979; Liao et al., 2001) is based on a dis-

criminant analysis which partitions a given image into two classes of grey levels.

An image can be seen as a 2D greyscale intensity function, which includes N pixels

with grey levels in the range of 0 to G, where G is typically 255 if 8-bit quanti-

zaition is assumed. Let the number of pixels with grey level i be indicated by fi,

and the probability of the occurrence of grey level i in an image be defined by:

pi = fi/N (3.1)

Also, let gmax denote a grey level value corresponding to the maximum probability

of pi in Eq.(1). Hence, the grey level of an image can be partitioned into two

regions R0 and R1 at the boundary defined by the grey level gmax such that R0 =

{0, 1, 2, · · · , gmax − 1} and R1 ={gmax, gmax + 1, gmax + 2, · · · ,G}. Subsequently,

OTSU applies a method that maximizing between-class variance to derive an

optimal grey level threshold for the two regions R0 and R1, respectively. Here, the

algorithm details are just shown regarding the region R0, because it is similar for

the region R1.

In the region R0, the pixels are divided into two classes, C1 with grey levels

[0, 1, · · · , t] and C2 with grey levels [t+ 1, t+ 2, · · · , gmax]. Therefore, the grey

level probability distributions for the two classes are as follows:

{

C1 : p0/ω1(t), . . . , pt/ω1(t)

C2 : pt+1/ω2(t), pt+2/ω2(t), · · · , pgmax
/ω2(t)

(3.2)

where ω1(t) =
t

∑

i=0

pi and ω2(t) =

gmax
∑

i=t+1

pi. Also, the means for classes C1 and C1

are

µ1 =
t

∑

i=0

i ∗ pi/ω1(t) (3.3)

and

µ2 =

gmax
∑

i=t+1

i ∗ pi/ω2(t). (3.4)

Let µT be the mean luminance value for the entire image. It is easy to show that
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ω1µ1 + ω2µ2 = µT (3.5)

ω1 + ω2 = 1 (3.6)

Using discriminant analysis, OTSU defined the between-class variance of the

threshold image is defined in OTSU by

σ2
B = ω1(µ1 − µT )

2 + ω2(µ2 − µT )
2. (3.7)

For bi-level thresholding, the optimal threshold g∗1 is selected so that the between-

class variance σ2
B is maximized; that is,

g∗1 = ArgMax
{

σ2
B(t)

}

.(0 ≤ t ≤ gmax) (3.8)

Likewise, the optimal threshold g∗2 can be obtained in the region R1 (Figure 3.2).

3.2.2.2 Merge of Regions

Through the use of the above work, a lot of the regions found may be regarded as

parts of the rocks in an image as shown in Figure 3.3(a). It is obvious that certain

regions may belong to the same rock, however, here they are segmented into the

different rocks, and this resulting in a serious over-segmentation situation. In order

to address this problem, spatial details are taken into account for establishing the

relation of those regions which are adjacent. Canny’s edge detector is one of

the popular ways in which edge detection is employed for spatial details. Post-

processing of the edges is required with the Canny algorithm. There are two

popular edge cleaning operations that can be used for the edge post-processing

which are described as below:

– Connecting endpoints. Because the vast majority of the edges detected

using Canny are not able to generate a closed contour relating to the

object of interest, those endpoints off one pixel are connected with a

straight line. In Figure 3.3(b) the white curves are the edges detected,

and the red points are the endpoints of the edges, and the yellow points

are the connect lines.
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(a)

(b)

Figure 3.3: (a) Resultant image of proposed method from Tri-level Thresholding
OTSU. (b) Resultant image from connecting endpoints.
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– Breaking edges. Because a good contour of the interest object is re-

quired without branched edges, those edges with points that form a

Y-junction are broken. See Figure 3.4, where four types of Y-junction

are shown, each individual is comprised of a 3 × 3 window in which the

white pixels form a ‘Y’ shape.

 

(a) (b) 

(c) (d) 

Figure 3.4: Four types of Y-junction.

Regions merging aims to combine regions which are potential portions of the same

rock. Here, the merging operation is associated with the following set operation

is defined as:

Li = Ri ∩ Ej; {1 ≤ i ≤ n; 1 ≤ j ≤ m} (3.9)
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Ok =

{

Li ∩ Lj, if Li ∩ Lj 6= Φ (i 6= j)

Li, otherwise {1 ≤ i, j ≤ n; 1 ≤ k ≤ l}
(3.10)

where Ri ∋ {R1, R2 · · · , Rn}, which denotes a set of regions from the results of the

Tri-level Thresholding OTSU method. Ei ∋ {E1, E2 · · · , Em}, which represents a

set of edges from the results of the post-precessing of the edges. Li expresses the

intersection between regions (Ri) and edges (Ei). The number of Li is equal to

the number of Ri. The ultimate result of the regions merging is Ok, which means

that the distinct regions (Ri) have been combined with a single edge. Note that if

edges do not involve shared regions, the merging operation does nothing. Figure

3.5(a) shows the results of the intersection with respect to regions and edges. The

merging results are given in Figure 3.5(b).

3.2.2.3 Template Dilatation Edge Linking (TDEL)

In the preceding section, the algorithm for merging regions and edges has been

described. However, as shown in Figure 3.5(b), certain targets do not have a

closed contour along their border, and the majority of detected rocks include

burred edges. To address this problem the Template Dilatation Edge Linking

method (TDEL) (Gui et al., 2012a; Gui et al., 2012b), is applied to construct the

closed contour for each rock in the image. The algorithm of TDEL is described as

follows:

1. Build the irregular bounding box of the desired rough rock boundary.

This is achieved by down-sampling twice the merged image (Figure

3.5(a)), then the result of the procedure is achieved by up-sampling

twice. As a result, an irregular bounding box encompassing the cor-

responding desired rock is generated for each individual rock (Figure

3.6).

2. Choose an random pixel as the start point on the irregular bounding

box.

3. Generate a m×m template based on the start pixel (m = 3 initially)

(Figure 3.7(a)).

4. Judgement: Are there other colour pixels in the template? If Yes then

do: (a) if these pixels are of the same colour, sequentially connect them

60



(a)

(b)

Figure 3.5: Intersection (a) and merging (b) of Regions and Edges.
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using a straight line and go to (5); (b) if there are different colours in

these pixels, connect the nearest two pixels of the different colour using

a straight line and go to (6); else, repeat. until all pixels are visited.

5. Dilate the current template (m = m + 2), then to (4) (Figure 3.7(b)).

6. Select the next neighbor pixel point relative to the current pixel point

on the irregular bounding box.

7. If the pixel point is the end of all sequential traversal pixels on the

irregular bounding box, then the algorithm ends; else, then go to (3).

Finally, the morphological methods of image processing erosion and dilation are

applied to remove the ‘burrs’ on the closed contour of the identified rock.

3.3 Matching Keypoints

In Mars exploration missions the size of rocks restricts instrument deployment

and sampling. Hence, one of the most important steps is to match keypoints for

calculating the size of a rock in this research. Here, keypoints are defined as the

following: top-most, bottom-most, left-most, right-most and centroid points on

the bounding box of a rock in an image. The work of matching desired keypoints

involves three key stages: (a) To match the feature points on the body of the rocks

in a pair of images based upon the SIFT-RANSAC algorithm (see later). (b) To

employ a simple method combining Euclidean distance with the rotation angle of

the image to obtain rough matching points. (c) To apply a correlation method to

compute accurate matching points.

3.3.1 SIFT-RANSAC Algorithm

Considering characteristic of Mars missions, although SIFT is low, it is more stable

than SURF in most situations (Juan & Gwun, 2009). SIFT (Lowe, 1999; Lowe,

2001; Lowe, 2004) stands for Scale Invariant Feature Transform, which is a feature

point detection and matching algorithm initially proposed by Lowe in 1999, and

finally summarized in 2004. SIFT features are not only invariant to image scaling,

translation, and rotation, but also partially invariant to illumination changes and

affine. It has been used in many fields, such as object recognition, image mosaic,

mobile robot localization and map building.
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Figure 3.6: Top: The rocks included in the irregular bounding box. [Red line de-
notes the irregular bounding box]. Bottom: Patch of the image for subsequently
explaining the TDEL algorithm. In the patch red pixels form a rough rock bound-
ary, the other colour pixels from the real rock boundary that can be connected.

The extraction of SIFT feature points mainly includes four subroutines shown

below:

1. Scale-space extreme detection

SIFT algorithm selects scale space extreme points as candidate feature
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(a)

(b)

Figure 3.7: (a) 3 × 3 template. ‘C’ pixel is the center of the template on an
irregular bounding box. Here no pixel has a different colour except for the red
and black, so there is no connection performed. (b) 5× 5 template. The template
is a dilatation of the above 3 × 3 template. Here ‘18’,‘19’ and ‘24’ pixels are in
different colours in addition to red and black, and the colour of ‘18’ and ‘19’ is
different from the colour of ‘24’. Therefore, the distances between ‘18’ and ‘24’,
‘19’ and ‘24’ are calculated separately. The nearest distance is from ‘19’ to ‘24’ in
the two results, so these two pixels are connected using a straight line.
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points. The scale space is of an image I(x, y) defined by:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (3.11)

Detect the extreme in the result of the DoG (Difference of Gaussian)

between the following image convolutions:

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ) (3.12)

In the above, the symbol ∗ represents two-dimensional convolution;

G(x, y, σ) represents a Gaussian function; and σ represents the stan-

dard deviation of normal Gaussian distribution; k represents a constant

multiplicative factor.

2. Key point localization

Construct the Taylor expansion in the scale space constructed by the

DoG function:

D(X) = D +
∂DT

∂X
X +

1

2
XT ∂

2D

∂X2
X (3.13)

Then solve the formulae:

X̂ = −
∂DT

∂X
(
∂2D

∂X2
X)−1 (3.14)

D(X̂) = D +
1

2

∂DT

∂X
X (3.15)

3. Orientation assignment

Assign a main direction for each feature point, containing gradient mag-

nitude m(x, y) and gradient direction θ(x, y):

m(x, y) = [(L(x, y + 1)− L(x, y − 1))2 + (L(x+ 1, y)− L(x− 1, y))2]
1

2

(3.16)

θ(x, y) = arctan
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)
(3.17)

4. Keypoint descriptor

Divide the image region around each critical point to blocks, calcu-

late the gradient histogram in each block, and generate a unique 128-

dimensional vector.
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In order to match a pair of images, whose SIFT feature vectors are separately

generated using the above algorithm. Euclidean distance between the correspond-

ing keypoint feature vectors is employed. It measures the similarity relative to

the keypoints in a given pair of images. A certain keypoint is picked in one of

the two images, then keypoints are found out with the closest and second-closest

Euclidean distance in relation this keypoint in the other image. Compare the dis-

tance of the closest to that of the second-closet for matching the keypoints. When

the distance is less than a predefined threshold, it can be considered to be the

correct matching. The matching effect is shown in Figure 3.8.

Figure 3.8: SIFT based matching result.

Note that in applying this method, when reducing the threshold, the number

of matching points will decrease, but with fewer mismatches. When raising the

threshold, the number of matching points will increase, but there will be more

mismatches returned. In general, the more feature points matched correctly the

better. To obtain a resonable trade off between the number of matching points

and that of mismatches, a robust estimation method needs to be developed. One

of the useful techniques is the RANSAC algorithm (Mikolajczyk & Schmid, 2002)

that can help remove mismatches.

RANSAC (Fischler & Bolles, 1981) stands for Random Sample Consensus which is

an iterative robust method to estimate parameters of a mathematical model from

a set of observed data which contains outliers. The RANSAC algorithm divides

the data into inliers that fit to the estimate model and outliers that do not. It

works mainly based on the random voting principle (Feller, 1971), tolerating the

condition that the data space contains more than half of the outliers and being

capable of effectively dealing with multiple structure data. Figure 3.9 shows an
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application example of RANSAC, to the matching result of Figure 3.8.

There are the following assumptions:

Let ω denotes probability of a feature point selected as the correct feature point.

Then, the following conditions hold:

If it is needed to select n points to estimate the model, the probability of the n

points in the inlier is ωn. Then the probability of at least one point in the outlier

is 1− ωn. This shows that a bad model is estimated.

If the model is run for k times, the probability of the n points never occurring in

the inlier is (1− ωn)k.

Let P stand for the probability of estimating a wrong model, then

P = (1− ωn)k (3.18)

k =
lnP

ln(1− ωn)
(3.19)

Figure 3.9: RANSAC result relative to Figure 3.8.

3.3.2 Fundamental Matrix

The notion of fundamental matrix in computer vision (Faugeras, 1992) is not only

developed to capture the information about the translation and rotation that relate

the cameras in a certain physical space, but also that about the intrinsics of both

cameras. As such, it relates the two cameras in pixel coordinates. A fundamental

matrix F is a 3×3 matrix which relates the points on the image plane of one camera
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to the points on the image plane of the other camera. Therefore, collectively all

pairs of the corresponding points in a stereo image pair can be expressed as follows:

qTr Fql = 0 (3.20)

In this expression, qr is a pixel point in one image, say the right image, and ql is

a corresponding pixel point relative to qr in the other, or the left image.

Based upon the above expression, the matrix F can be computed if a number

of known correspondences are provided which may be obtained from the SIFT-

RANSAC algorithm. In this algorithm, the RANSAC method is applied iteratively

using a random subset of known correspondences. The fundamental matrix F is

taken to be the solution closest to the average or the median solution over the

iterations.

3.3.3 Epipolar Geometry

The basic geometry of a stereo imaging system is referred to as epipolar geometry.

Epipolar geometry combines two pinhole models (one for each camera) and certain

interesting new points called the epipoles (see Figure 3.10). The lines XLeL and

XReR (from the points of projection to the corresponding epipolar points) in Figure

3.10 are called the epipolar lines. The epipolar line is important for matching

keypoints in this research. For example, if XL is a matching keypoint, XR is the

matched keypoint of XL on the epipolar line.

Once the fundamental matrix F is obtained, for any given point in one image,

there is a different corresponding epipolar line which can be computed in the

other image by equation (3.20) . Each computed line is encoded in the form of a

vector of three parameters (a, b, c) such that the epipolar line is defined by the

following equation:

ax+ by + c = 0 (3.21)

3.3.4 Rough Matching Points

For the present work, the ExoMars PanCam Emulator developed at Aberystwyth

University (Pugh et al., 2012) is equipped with two wide angle multi-spectral
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Figure 3.10: Epipolar geometry. Two cameras are used to observe a point X, with
their respective centers of projection being OL and OR. The projection of X onto
each of the image planes is denoted XL and XR. Points eL and eR are the epipoles.

cameras (WACs). The two cameras are fixed on a vertical mast with a baseline

distance of approximately 20 centimetre. However, due to the mounting separation

of the WACs, a slight error rotation may be produced between the homologous

images. Fortunately, the angle of rotation between the two corresponding images

can be obtained by calculating the difference angle of two pairs of feature points

based on the SIFT-RANSAC algorithm. However for improving precision when

a keypoint is matched on a rock, the nearest and secondary feature points are

chosen from the desired keypoint to calculate the angle of rotation for each pair

of images. The formula for computing the approximate location of a homologous

point is as follows:

θ = arccos

−→
AB ·

−−→
A′B′

|
−→
AB||

−−→
A′B′|

(3.22)

arctan
−−→
A′C ′ = arctan

−→
AC + θ (3.23)
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|
−−→
A′C ′| =

|
−→
AC|

|
−→
AB|

· |
−−→
A′B′| (3.24)

where AA′ and BB′ are a pair of feature points obtained by SIFT. C is a matched

point in the left image, C’ is the rough matching point of C in the right image, θ

is the rotation angle of a pair images, arctan
−→
AC denotes the direction of vector

AC and |
−→
AC| represents the distance from A to C. This is shown in Figure 3.11.

Figure 3.11: Angle of rotation determination.

3.3.5 Matching through Correlation

Matching interest points in two uncalibrated images is a fundamental problem in

computer vision. Normalized cross correlation is widely used in many applications

that require matching parts of images (Tsai & Lin, 2003). Traditional matching

methods based on normalized cross-correlation can handle the situation where

there are only translation or small rotation and scale changes between the two

images. Since the images used in this work satisfy this condition, normalized

cross-correlation is used here to perform accurate matching points.

The normalized cross correlation coefficient between two windows f and g of size

70



N is defined by:

r =

∑N−1
x=0

∑N−1
y=0 f(x, y)g(x, y)

√

∑N−1
x=0

∑N−1
y=0 f(x, y)2

∑N−1
x=0

∑N−1
y=0 g(x, y)2

(3.25)

where f(x, y) and g(x, y) are pixel values at the location (x, y) of f and g, respec-

tively. The normalization helps reduce the effects of lighting differences between

f and g, so that they have a mean of zero. The value of r changes between -1 and

+1, and the closer r is to +1, the more similar the two windows will be.

When the search area is M and the template size is N (N < M), r is computed

for each shift position (which is (M −N + 1)2 shift positions) such that

r(u, v) =

∑N−1
x=0

∑N−1
y=0 f(x, y)g(x+ u, y + v)

√

∑N−1
x=0

∑N−1
y=0 f(x, y)2

∑N−1
x=0

∑N−1
y=0 g(x+ u, y + v)2

(3.26)

where u, v = 0, 1, 2, · · · ,M −N.

Among all the computed r, the one with the largest value is taken to be the

normalized cross correlation coefficient which is used to compute the best match.

In this work the search area is concerned with a certain part of the epipolar

line, and the matched point is regarded as the center of the template. As shown

Figure 3.12, the red square box is the template window and the center of the

template is the matched point (i.e., the keypoint) in the left image. In the right

image, the blue point is the rough matching point taken by the above proposed

method. The projection point of the rough matching point is the orange point

on the epipolar. The red line is the epipolar line and the green line, as a part of

the epiplor line, is the search area, whose size depends on the distortion model

of the camera calibration at both sides of the projection point using the same

window with template window. Finally, the accurate matching point taken by the

normalized cross correlation method is the red point on the green line.

3.3.6 Triangulation

According to the above analysis, the corresponding point of the desired keypoint

can be derived in image pairs. Thus, if the camera calibration parameters are
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Figure 3.12: Correlation.
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known, then the 3D point location of the desired keypoint is able to be recon-

structed. Note that the camera calibration is completed in the Chapter 5. Here,

the triangulation method is employed for the reconstruction of the 3D point loca-

tion. For triangulation the linear algebraic approach is given as follows:

Z







u1

v1

1






= M













X

Y

Z

1













(3.27)
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(3.28)

where







u1

v1

1






and







u2

v2

1






are correspondences in a pair of images.

M =







m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34






and N =







n11 n12 n13 n14

n21 n22 n23 n24

n31 n32 n33 n34






are the projection

matrices regarding the left camera and right camera, respectively.













X

Y

Z

1













represents

the space 3D coordinates. That is, each 2D point porvides 2 independent equations

for a total of 3 unknowns (which are X, Y , Z) based upon the equations (3.27)

and (3.28). The four Linear equations are given as follows.

Xm11 + Y m12 + Zm13 +m14 − u1Xm31 − u1Y m32 − u1Zm33 = u1m34

Xm21 + Y m22 + Zm23 +m24 − v1Xm31 − v1Y m32 − v1Zm33 = v1m34

Xn11 + Y n12 + Zn13 + n14 − u1Xn31 − u1Y n32 − u1Zn33 = u1n34

Xn21 + Y n22 + Zn23 + n24 − v1Xn31 − v1Y n32 − v1Zn33 = v1n34

(3.29)

This set of overconstrained equations are resolved using conventional Least-squares
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method (Golub, 1965).

3.4 Experimental Study

3.4.1 Segmentation Based Upon Mars Images

The proposed approach has been implemented and run on a set of six repre-

sentative Mars images, as listed in Table 3.1 to demonstrate its effectiveness

via comparison with other conventional methods. These images are obtained

from two datasets: the navigation camera (Navcam) imagery, and the panoramic

camera (Pancam) imagery,both were acquired by the NASA Mars Exploration

Rover (MER) and directly downloaded from Planetary Image Atlas of National

Aeronautics and Space Administration (NASA) (http://pds-imaging.jpl.nasa.gov/

search/search.html♯QuickSearch). Note that during mission operations, Navcam

is mounted on the optical bench of the rover for terrain mapping and navigation,

and has a pair of monochrome stereo cameras; Pancam is fixed on the uniform

optical bench and employed for scientific survey of the geology, morphology and

topography on the landing sites (Bell et al., n.d.). The six images selected involve

distinct illuminations, spectral bands and scenes (see Table 3.1). Qualitative and

quantitative approaches is employed for the evaluation of performance about im-

age segmentation.

Table 3.1: Selected images for experimentation (Spirit Rover)
Image Name Image Local Solar Spectral Instrument

NO. Sol/Time Band
2n136853953ilf4000p1977l0m1 1.png 118/16:04:42 - NAVCAM
1p163700052edn5000p2384l2m1 2.png 400/14:43:25 753NM PAMCAM
2p130811027edn1000p2421l6m1 3.png 50/14:00:54 483NM PAMCAM
2p130974937eff1100p2568l7m1 4.png 52/10:20:08 440NM PAMCAM
2p162142844esfa600p2558l5m1 5.png 403/13:42:44 535NM PAMCAM
2p179724220esfaeghp2570l2c1 6.png 601/15:40:32 753NM PAMCAM

3.4.1.1 Qualitative Comparison

Qualitative comparison is a comparison of human visual perception about the

results of the different segmentation methods. Rock candidates considered in
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this study are each with an area greater than 50 pixels. Figure 3.13 shows the

resulting segmentations produced by Rockfinder, Rockster, Multiple Viola-Jones

(MVJ), Marsokhod Shadow Detector, SVM Pixel Classification from (Thompson

& Castano, 2007) and the present algorithm, for the image 1.png. Rockfinder

finds only partial large rocks. Similarly, the Stereo method can only find the large

rocks, but poor contours for the rocks are obtained. Rockster loses the main large

rocks, but can find smaller rocks. The results of MVJ, Shadows and SVM methods

fail to find the contour outlines of the rocks. As opposite to these method, the

techniques proposed herein are effective in detecting the entire large rocks and

gaining the relatively accurately the closed contours of the detected rocks.

The segmentation results of the proposed method and those of OTSU, Pugh’s

(Pugh & Barnes, 2007) and Fink’s method (Fink et al., 2008) are shown in Tables

3.2 - 3.4, for all six typical images. It can be seen that the segmentation effects

of the proposed approach are more consistent with human visual perception than

the others.

3.4.1.2 Quantitative Comparison

Quantitative comparison is a comparison carried out numerically to assess the re-

sults of the different segmentation methods. To quantitatively assess the accuracy

of the proposed approach, the results are again compared with those obtained

by the use of OTSU, Pugh’s and Fink’s methods. The underlying ground-truth

images used in this study include a total of 128 rocks that have been identified

manually. Precision, Recall and the misclassification error (ME) methods (Sez-

gin & Sankur, 2004) are adopted as the criteria to evaluate the grey-level images

given in Tables 3.2 - 3.4. In particular, Precision denotes those detections which

are actually true rocks; Recall represents the fraction of rocks which are detected;

and ME quantifies the proportion of foreground pixels mistakenly allocated to the

background and also, background pixels falsely attributed to the foreground. For

binary segmentation these performance indices are defined by

Precision =
|FO ∩ FT |

FT

(3.30)

Recall =
|FO ∩ FT |

FO

(3.31)
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Table 3.2: Qualitative comparison about 1.png and 2.png images amongst OTSU,
Pugh’s, Fink’s and the present method.

1.png 2.png

Original
Image

OTSU

Pugh’s
Method

Fink’s
Method

Proposed
Method
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Table 3.3: Qualitative comparison about 3.png and 4.png images amongst OTSU,
Pugh’s, Fink’s and the present method.

3.png 4.png

Original
Image

OTSU

Pugh’s
Method

Fink’s
Method

Proposed
Method
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Table 3.4: Qualitative comparison about 5.png and 6.png images amongst OTSU,
Pugh’s, Fink’s and the present method.

5.png 6.png

Original
Image

OTSU

Pugh’s
Method

Fink’s
Method

Proposed
Method

78



ME = 1−
|BO ∩ BT |+ |FO ∩ FT |

|BO|+ |FO|
(3.32)

In the above, BT and FT represent the set of background pixels and that of fore-

ground pixels in the test image, respectively, and BO and FO express the set of

background and that of foreground pixels in ground-truth, respectively. Note that

the value of ME varies from 0 for a completely perfect resulting segmentation to

1 for a totally wrong segmentation result.

Tables 3.5 and 3.6 list the results in terms of Precision and Recall respectively,

for the four methods on the test images.For the images 1.png, 5.png and 6.png,

the present work leads to the maximum precision. For the images 2.png, 3.png

and 4.png the best results are obtained from OTSU, Pugh’s and Fink’s method,

respectively. With regard to Recall, except for the image 3.png,the proposed

approach result in the maximum value, while the best result for 3.png is obtained

by Pugh’s method. On average, the present work outperforms the other three

with regard to this criterion. Furthermore, minimum ME is obtained for all the

test images by the algorithm developed here as shown in Table 3.7.

Table 3.5: Comparison of Precision for the four methods
1.png 2.png 3.png 4.png 5.png 6.png AVG

OTSU 0.261 0.955 0.712 0.942 0.314 0.679 0.644
Pugh’s 0.739 0.950 0.593 0.975 0.446 0.703 0.734
Fink’s 0.246 0.948 0.846 0.967 0.247 0.663 0.653
Our 0.824 0.936 0.780 0.881 0.589 0.810 0.803

Table 3.6: Comparison of Recall for the four methods
1.png 2.png 3.png 4.png 5.png 6.png AVG

OTSU 0.533 0.808 0.532 0.298 0.297 0.433 0.484
Pugh’s 0.785 0.826 0.791 0.387 0.722 0.708 0.703
Fink’s 0.534 0.820 0.133 0.289 0.312 0.434 0.420
Our 0.871 0.868 0.703 0.784 0.785 0.857 0.811
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Table 3.7: Comparison of ME for the four methods
1.png 2.png 3.png 4.png 5.png 6.png AVG

OTSU 0.332 0.091 0.090 0.109 0.108 0.155 0.148
Pugh’s 0.083 0.089 0.099 0.094 0.094 0.119 0.096
Fink’s 0.353 0.089 0.117 0.109 0.131 0.158 0.160
Our 0.053 0.076 0.065 0.049 0.061 0.069 0.062

3.4.2 Rocks Size Measurement and Results

3.4.2.1 PATLab

The experiments on the measurement of the size of rocks are accomplished in the

AU Planetary Analogue Terrain Laboratory (PATLab) at Aberystwyth Univer-

sity(AU) (Barnes et al., 2008). Facilities at PATLab allow emulation experiments

on comprehensive mission operations to be performed. These trials and experi-

ments are essential when learning how to deploy and use a robot science instrument

(Tyler & Barnes, 2008) for a given mission, thereby maximizing potential quality

scientific data return. Work has resulted in a unique facility that has a terrain

region composed of Mars Soil Simulant-D. It includes science target rocks that

have been fully characterized.

The PATLab terrian has been designed to support a new rover chassis which is

based upon the ExoMars rover Concept-E mechanics (Chien et al., 1998). It is

heavily instrumented and all data and control facilities are available via high speed

links to remote users. In particular, a panoramic camera instrument has been cre-

ated to emulate the proposed ExoMars PanCam (Paar et al., 2008). Experiments

on the motion of the rover chassis wheel mechanics, rover attitude, robot arm

deployment can be carried out, and PanCam pan and tilt mechanism can be mea-

sured using a Vicon motion capture system. The PATLab has a large selection

of software tools for rover, robot arm and instrument modelling and simulation

also, for the processing and visualisation of captured instrument data, and for

simulating planetary environmental conditions.

3.4.2.2 Experimental Results

The experiments reported here were implemented using the Aberystwyth Univer-

sity PanCam Emulator at PATLab with two wide angle multi-spectral cameras

(WACs). The intrinsic and extrinsic parameters of both cameras are obtained by
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camera calibration (Heikkila & Silven, 1997). then rocks of different sizes were

used for the experiments, including Rock 1, Rock 2, Rock3, CONGLOM ERATE,

BRECCIA, SANDSTONE aolian, SANDSTONE torridonian, MUDSTONE, OX-

FORD CLAY, CRINOIDAL LIMESTONE. The ground truths of the rock sizes

were measured using a micrometer.

The following 10 Figures (Figure 3.14 - 3.23) present the matching results for

calculating the size of each of the 10 rocks and the location of each rock centroid

at the touchable point, using the proposed rock detection method in this work.

In these figures, pink points represent the matched and matching points which

are centroid, top-most, bottom-most, left-most and right-most points. Blue lines

are the epipolar relative to the pink points. Yellow points denote the closest and

secondary points obtained by SIFT with respect to pink points. Green points are

the projection points of the rough matching points on the epipolar. The accurate

matching points are shown by the red points.

A comparison was achieved between the present work and the standard disparity

equation method. This traditional disparity method has been adopted here due

to its maturity and also, its popularity in the literature (March, 1988). Tables 3.8

and 3.9 show the experimental results, nothing that the average error of using the

proposed approach is 3.62% (this error includes measurement error and calibration

error), whereas produced the average error when using the standard disparity

method is 61.22%. The very large errors using the standard disparity method

were not expected, and may be due to calibration errors. However, given that

all experiments used the same calibrated images, these results demonstrate how

resilient the present work is to possible systematic errors.

3.5 Summary

In this chapter, an unsupervised method for image segmentation has been proposed

for Mars terrain images. An improved OTSU and Canny operator are utilized for

detecting rock regions and their space relations respectively. The closed contours of

detected rocks are gained by the use of template dilatation edge linking (TDEL) for

a given set of images. Qualitative and quantitative comparisons have shown that

the proposed approach outperforms many typical classical algorithms. A novel

approach has been presented to measure the size of a detected rock. For this,

the SIFT-RANSAC algorithm is used to properly match the prominent feature
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Table 3.8: Distance of ToptoBottom (mm)
Rock Proposed Disparity Micrometer
Name Method Method Value
Rock 1 105.47 170.06 103.46
Rock 2 67.86 109.57 66.16
Rock 3 85.88 126.01 84.43

CONGLOM ERATE 47.35 67.22 45.53
BRECCIA 49.71 72.03 46.73

SANDSTONE aolian 52.61 83.6 51.89
SANDSTONE torridonian 46.42 73.42 45.86

MUDSTONE 62.74 112.2 59.85
OXFORD CLAY 51.91 75.33 48.66

CRINOIDAL LIMESTONE 52.89 82.89 49.38

Table 3.9: Distance of LefttoRight (mm)
Rock Proposed Disparity Micrometer
Name Method Method Value
Rock 1 161.52 249.02 158.96
Rock 2 96.86 146.47 96.15
Rock 3 98.35 157.61 95.68

CONGLOM ERATE 56.55 88.97 54.06
BRECCIA 58.33 95.08 57.75

SANDSTONE aolian 51.33 78.61 50.61
SANDSTONE torridonian 67.26 105.38 63.68

MUDSTONE 66.27 105.41 63.15
OXFORD CLAY 59.73 91.65 55.54

CRINOIDAL LIMESTONE 59.38 89.04 56.5

points in a given pair of images. The work carries out an initial rough matching

of non-feature points based upon those feature points found by SIFT-RANSAC,

and then a correlation method is applied for accurately matching the points. A

comparison is achieved between the proposed method and the standard disparity

equation method using real rocks. The experiment results have demonstrated that

the average error of the proposed work is less than that of the standard disparity

technique.
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Figure 3.13: Qualitative comparison among the results using different methods.
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(b)

Figure 3.14: Matching algorithm results for rock 1 ((a): left image results. (b):
right image results).
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(b)

Figure 3.15: Matching algorithm results for rock 2 ((a): left image results. (b):
right image results).
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(b)

Figure 3.16: Matching algorithm results for rock 3 ((a): left image results. (b):
right image results).
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(b)

Figure 3.17: Matching algorithm results for rock CONGLOM ERATE ((a): left
image results. (b): right image results).
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(b)

Figure 3.18: Matching algorithm results for rock BRECCIA ((a): left image re-
sults. (b): right image results).
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(b)

Figure 3.19: Matching algorithm results for rock SANDSTONE aolian ((a): left
image results. (b): right image results).
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(b)

Figure 3.20: Matching algorithm results for rock SANDSTONE torridonian ((a):
left image results. (b): right image results).
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(b)

Figure 3.21: Matching algorithm results for rock MUDSTONE ((a): left image
results. (b): right image results).
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(b)

Figure 3.22: Matching algorithm results for rock OXFORD CLAY ((a): left image
results. (b): right image results).
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(b)

Figure 3.23: Matching algorithm results for rock CRINOIDAL LIMESTONE ((a):
left image results. (b): right image results).
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Chapter 4

Designing Algorithms for

Touchability Index Evaluation

Fuzzy systems have already been applied in a variety of aspects for planetary

exploration, such as rover navigation (Martin-Mur et al., 2014), path planning

(Carsten et al., 2007) and science value assessment (Woods et al., 2009). In this

chapter, a fuzzy logic-based controller for the touchability of the science targets

has been achieved. Here, touchability is deemed to be the capability of whether

a positive decision can be made in that a potential science target can be reached

by the robotic hand (for instrument deployment and sampling). The membership

functions and fuzzy rules have been designed and the defuzzification has been

finally carried out under the domain expert’s instruction. The simulation exper-

iment about the rank of science objects touchability has accomplished and the

result has shown the validity of the proposed system.

4.1 Background

The application of fuzzy logic in planetary exploration is currently one important

subject of studies. Recently, Seraji (Seraji, 1999) proposed the construction of

a so-called traversability index, which is meant to classify the difficulty a rover

would encounter when attempting to traverse a region of terrain in a no priori

knowledge environment. Howard et al. (Howard et al., 2002) have presented an

approach that combines the traversability map with a fuzzy map representation of

traversal difficulty of the terrain, involving the path planning logic. This approach

89



concentrates on planning over an optimally safe path of minimum traversal cost.

Mahmound (Mahmound, 2008) has utilized a fuzzy adaptation technique that ex-

amines the paths population throughout the execution of the underlying algorithm

and adjusts operator probabilities to attain better solutions for path planning.

Not only has fuzzy logic been employed for the achievement of the traversability

and path planning, it has also seen applied to planetary landing and the tier-

scalable robotic planetary reconnaissance. Navid (Navid & Homayoun, 2007) has

addressed the issue of landing site selection using fuzzy rule-based reasoning. In

that work the score of each potential candidate landing site is obtained from sensor

measurements that are feed into the fuzzy system to settle spatial and temporal

dependence in the reasoning process. Furfaro et al. (Furfaro et al., 2008) have

built a fuzzy system where the appropriate past/present water/energy indicators

can be acquired when the tier-scalable mission framework is deployed, and used to

estimate the habitability on Mars. Barnes et al. (Barnes et al., 2009), and Pugh

et al. (Pugh, 2009), have proposed a fuzzy rule based expert system (KSTIS 1.0)

that adopts knowledge elicitation from a planetary geologist to obtain the primary

clues (Structure, Texture and Composition) regarding the geological background

of the rock. The system can generate a useful science value score (SV) with respect

to each rock in a given image.

4.2 Fuzzy Control System

Fuzzy control systems are emerged on the foundation of Zadeh’s fuzzy set the-

ory (Zadeh, 1965). A fuzzy control system is an intelligent control system that

simulates human thinking and reacts on the basis of fuzzy logic. Here, the word

“fuzzy” is utilized to represent terms that are either not well-known or not clear

enough, or their closer specification depends on subjectivity, estimation, and even

the intuition of the person who is describing these terms.

In this section, the basic definitions of fuzzy sets and operators on fuzzy sets

are described. It is necessary to introduce the basic definitions of terms such

as linguistic variables, fuzzy propositions, relations, implications, and inference

engines. The way of defuzzification, namely, calculation of crisp controller output

values, is presented. The description also covers the fuzzy controller structure that

is most generally used in practice.
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4.2.1 Fuzzy Sets

In order to define and illustrate a fuzzy set, the following example is used. Let A

be a set X of all integers greater than 10. This statement can be written as:

A = {x : x ∈ X, x > 10} (4.1)

Let B be set of all integers much greater than 10. The statement can be expressed

as:

B = {x : x ∈ X, x ≫ 10} (4.2)

In these two sets the key difference is that set A is fully defined by relation (4.1),

whilst relation (4.2) is not enough for a complete definition of set B. The reason

is that the term much greater is of vagueness. It is obvious that 11, 12, 1234, and

3456 belong to the elements of set A. A majority of people will agree that 12345

and 67899 undoubtedly belong to set B. But they will doubt if 17 is an element

of set B.

This problem can be solved if one uses an alternative way of describing a set.

According to traditional set theory, a set can be defined by its characteristic

function. In other words, instead of individually declaring each element of a set a

function can take on values 1 or 0 depending on full membership or no membership

of a particular element belonging to that set, respectively.

Definition 1 (Characteristic function and crisp set) Let S be a set from the do-

main X. A characteristic function of the set S attains value µS(x) = 1 if x ∈ S,

and µS(x) = 0 if x /∈ S, µ : X → {0, 1}. Set S with such a characteristic function

is called a crisp set.

The characteristic function cannot describe set B in the above example, that is,

it cannot deal with the vagueness in determining the lowest integer which would

belong to set B. However, broadening the notion of a characteristic function offers

an elegant way to define set B. Instead of determining the lowest integer belonging

to set B, we may say that all integers greater than 10 belong to set B but with

a different membership degree. The characteristic function, obtaining partial, or

graded, values from the interval [0, 1], now becomes a membership function.
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Definition 2 (Membership function and fuzzy set) Let F be a set from the domain

X. A membership function µF (x) of set F is a function that assigns a value, or

membership degree, to every x ∈ F , µ : X → [0, 1]. Then set F is called a fuzzy

set.

Crisp sets can be treated as a special case of fuzzy sets since the characteris-

tic function can assume only margin values from the interval [0, 1] on which a

membership function is defined.

Now fuzzy set B can be completely defined as a set of pairs:

µB(x) =



















0, x < 10

x−10
100

, 10 ≤ x ≤ 110

1, x > 110

(4.3)

From the above definition we can see that numbers with membership degree 0 do

not belong to fuzzy set B. Number 11 is an element of B with membership degree

µB(11) = 0.01, while membership degree of number 100 µB(100) = 0.9. Fuzzy set

B is pictured in Figure 4.1.

Figure 4.1: A graphical representation of a fuzzy set.

In fuzzy sets theory, the domain or collection of possible quantitative values con-

sidered as the fuzzy set members is called the universe of discourse. A universe
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of discourse can be continuous or discrete. A discrete universe of discourse is nor-

mally bounded and contains a finite number of elements. A fuzzy set defined on a

discrete universe of discourse is called a discrete fuzzy set. The measure of fuzzi-

ness of each element is determined using a membership function spread either over

a part or over the entire universe of discourse. The membership function converts

the degree of fuzziness into the normalized interval [0, 1] where the boundary val-

ues 0 and 1 resemble the membership degrees of crisp set members. Membership

functions can attain different forms. However, triangular, trapezoidal, Gaussian,

and bell-shaped forms, shown in Figure 4.2, are used more than others:

Figure 4.2: Typical shapes of membership functions: 1: triangular, 2: trapezoidal,
3: Gaussian, 4: bell-shaped, 5: singleton.

triangular : µF (x) =































0, x < a

x−a
b−a

, a ≤ x ≤ b

c−x
c−b

, b ≤ x ≤ c

0, x > c

(4.4)
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trapezoidal : µF (x) =











































0, x < a

x−a
b−a

, a ≤ x ≤ b

1, b ≤ x ≤ c

c−x
c−b

, c ≤ x ≤ d

0, x > d

(4.5)

Gaussian : µF (x) = e−(x−CF )2/w (4.6)

bell − shaped : µF (x) =
1

1 + (x− CF )2
(4.7)

4.2.2 Linguistic Variables

In daily life and communication we often use short words and sentences, which

carry the same amount of information as their longer counterparts. In speaking

of age, when we say that “Roger is young”, we are less precise than when we say,

“Roger is 22”. In this sense, the label “young” may be taken as a linguistic value

of the variable Age, with the understanding that it plays a similar role as the

numerical value 22 but is less precise and hence less informative. Variables, whose

values are not numbers but words or sentences in a natural or artificial language,

are called linguistic variables. Linguistic variables may assume different linguistic

values over a designated universe of discourse. This means that linguistic values

introduced by an appropriate semantic rule represent nothing but informative

attributes about the physical values defined over a certain part of a specified

universe of discourse.

A linguistic variable can be expressed in this way:

[x, T,X,M ] (4.8)

where, x is the name of a linguistic variable, T = {Ti} is the set of linguistic values

which x may attain, i = 1, 2, · · · , l, X is the quantitative universe of discourse of

x. M is the semantic function which associates linguistic values in T with the

universe of discourse X, that is, M is a mapping relation between T and X.
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Definition 3 (Fuzzy proposition) Let x ∈ X be a linguistic variable and Ti(x) be

a fuzzy set associated with a linguistic value Ti. Then the structure

Pi : x is Ti (4.9)

written in modified notation also as P x
i : x is Ti, expresses a fuzzy proposition.

A fuzzy proposition can be interpreted by a process known as fuzzification.

Definition 4 (Fuzzification) Let x ∈ X be a linguistic variable and Ti(x) be a

fuzzy set associated with a linguistic value Ti. The conversion of a numerical

value of x into a corresponding linguistic value by associating a membership degree,

x → µT i(x) is called fuzzification. The membership degree µT i(x) represents the

fuzzy equivalent of the value of x.

The definition of a linguistic variable, as well as definitions of a fuzzy proposition

and fuzzification are illustrated with the following example.

Suppose that the size of the rocks takes values between 0 and +∞. Then a possible

fuzzy definition of a rock’s size as a linguistic variable could be:

x: Size, T : {Small,Medium,Large} , X:(0,+∞), and M : X → T

where the linguistic terms may be defined as:

Small = {(µS(x), x) |x ∈ X},

Medium = {(µM(x), x) |x ∈ X},

Large = {(µL(x), x) |x ∈ X}.

whose membership functions are defined by:

µS(x) =



















1, x < 100

300−x
200

, 100 ≤ x ≤ 300

0, x > 300

(4.10)
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µM(x) =































0, x < 100

x−100
200

, 100 ≤ x ≤ 300

600−x
300

, 300 ≤ x ≤ 600

0, x > 600

(4.11)

µL(x) =



















0, x < 300

x−300
300

, 300 ≤ x ≤ 600

1, x > 600

(4.12)

According to the semantic function M , the fact that the numerical value of the

size is equal to 360 may be interpreted using a fuzzy proposition:

size is medium

The fuzzy equivalent of the value 360 is obtained by fuzzification, that is, by

inclusion of 360 in the relation that describes the membership function of the

fuzzy set medium(x):

µM(x) = 600−360
300

, 300 ≤ x ≤ 600 = 0.8

Fuzzy propositions are the building blocks of a fuzzy controller. They are elements

used for description of one’s experience or knowledge. Very often, two or more

fuzzy propositions are put in the relation (in case of multiple input and multiple

output controller configurations) to describe more complex knowledge about a

control process.

4.2.3 Fuzzy Rules

Before fuzzy rules are presented, it is necessary to understand what a fuzzy relation

is.

Definition 5 (Fuzzy relation) Let x ∈ X and y ∈ Y be linguistic variables, and

Ti(x) and Fi(y) be fuzzy sets corresponding to the linguistic variables x and y,

respectively. Then the structure
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Pij : x is Ti Ψ y is Fj (4.13)

denotes a fuzzy relation where Ψ represents an operator (the classical operators

include AND and OR). The objective of fuzzy controllers is to make human-like

decisions or simulate a human’s actions through the use of the knowledge for

controlling a target system. The selection of Ψ directly affects the structure of

the resulting fuzzy controller. This is able to be achieved with fuzzy rules that

constitute a fuzzy rule base, which is a central part of the fuzzy controller and is the

representative of the “intelligence” in fuzzy control algorithms. An appropriate set

of fuzzy rules are formed by the experience and knowledge of the system designer.

Definition 6 (Fuzzy rule) Let X and Y be either fuzzy relations or fuzzy propo-

sitions. The the structure

FR : IF X Then Y (4.14)

is called a fuzzy rule.

Each fuzzy rule can be partitioned into an antecedent part (IF relation) and a

consequent part (THEN proposition), in which the antecedent part describes cause

and the consequent part describes consequence or the control action. Such a form

of fuzzy rules enables nonlinear mapping between inputs and outputs and thus

enables the creation of versatile static nonlinear control functions. The nonlinear

character of these functions allows fuzzy logic controllers to cope successfully with

complex nonlinear control problems.

4.2.4 Defuzzification

The result of fuzzy inference through the use of a fuzzy rule base is a fuzzy output

set. On the other hand, every control task will imply the existence of a crisp value

at the fuzzy controller output. The procedure which extracts the crisp output

value from a fuzzy output is called defuzzification.

There are various kinds of defuzzification. However, the crisp output value is

most frequently calculated in control application according to the center of gravity
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(COG) principle in the following way:

y∗ =

∑

i ui(yk)
∑r

j=1 µFRj(xk, yk)
∑

i

∑r
j=1 µFRj(xk, yk)

(4.15)

where y∗is the defuzzified output, r is the number of fuzzy rules activated by the

crisp inputs xk and ui(yk) is the membership value of the output variable.

From Equation 4.15 it may be seen that the COG method does not require aggre-

gation since it already works with individual output fuzzy sets obtained after the

processing of fuzzy rules. The distinct features of this method are marked sim-

plicity and very low computing effort. This is the main reason why this method of

defuzzification is used for the present fuzzy controller design. The second reason

is that if the max aggregation is used and several rules are activated, only the

consequent associated with the highest membership function will contribute to

the crisp output value, negating others. Ignoring the rules with lower membership

functions may create a situation where a greater weight may be given to rules that

are perhaps less important. The COG method takes into account such a situation

and calculates contributions of all activated rules regardless of the fact that what

rules are activated to generate the consequent parts may be the same.

4.2.5 Structure of Fuzzy Controllers

The structure of a fuzzy controller mainly depends on the process under control

and the demanded quality of control. Since the application area for fuzzy control

is really wide, there are many possible controller structures. These may differ

significantly with respect to the number of inputs and outputs, the number of

input and output fuzzy sets and their membership functions forms, or the form

of control rules, the type of inference engine, and the method of defuzzification.

It is up to the designer to decide which controller structure may be optimal for a

particular given problem.

Despite the variety of possible fuzzy controller structures, the basic form of all

common types of controller consists of:

– Input fuzzification

– Fuzzy rule base
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– Inference engine

– Output defuzzification

The basic structure of a fuzzy controller is shown in Figure 4.3.

Figure 4.3: Basic structure of a fuzzy logic controller.

4.3 Fuzzy Logic Control of Touchability System

4.3.1 Overview of the Touchability System

This section introduces the structure of the proposed fuzzy logic based touchabil-

ity system shown in Figure 4.4. The entire system is composed of six parts, which
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are the vision system, KSTIS 1.0 (the Knowledge based Science Target Identifica-

tion System), fuzzification, fuzzy inference engine, rule base and defuzzification.

The inputs of the fuzzy logic controller are the outputs from the sensors of the

vision system and KSTIS 1.0. The ability to autonomously detect and identify

the scientifically interesting rocks and to accurately match and calculate the 3D

location and the size of the targets, can be supported by this system (Gui et al.,

2012b; Gui et al., 2012a).

In this control system the input data id, io, is are: the distance between arm base

and the centroid of the target, the orientation of the arm’s shoulder azimuth,

and the size of the science target in the image, respectively. KSTIS 1.0 aims at

assisting in ground-based interpretation of scientific targets via making use of a

fuzzy expert system (Barnes et al., 2009; Pugh, 2009). This system is based on the

Structure, Texture and Composition associated with scientific targets whose values

are provided by scientists/experts on Earth, and iSV is the score of Science Value

from KSTIS 1.0. The output signal ot from the fuzzy controller is the touchability

probability for the scientific targets.

4.3.2 Proposed Approach

The proposed fuzzy logic approach is uncomplicated, easy to comprehend, and

provides a quick reaction capability. The resulting fuzzy logic controller for the

touchability system adopts the conventional structure that includes fuzzification,

inference mechanism and defuzzification. In the following these components are

presented.

4.3.2.1 Fuzzification

The fuzzification procedure maps the crisp input values to the linguistic fuzzy

terms with membership function values between zero and one. In this section the

four physical properties i.e., size, distance, orientation and SV are expressed by

linguistic fuzzy sets as described below.

4.3.2.1.1 Size (is) The bounding area is charactered as the size of the object.

Currently the typical way such as MER (Thompson & Castano, 2007) to iden-

tify the surroundings of an object is to form a detailed DEMs (Digital Elevation
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Figure 4.4: Fuzzy Logic Touchability Controller.

Models) by accomplishing stereo matching to the entire pixels in a pair of images.

However in this study, in order to obtain the essential size information effectively

just 5 points per object are applied for stereo matching (see Figure 4.5). In this

figure the minimum rectangle (A, B, C and D) for each edge inscribes the left-

most, rightmost, uppermost and bottommost points (P3, P4, P1 and P2) of the
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object, respectively. E, F, G and H are the middle points of the line segments

‘AB’, ‘BC’, ‘CD’ and ‘AD’, respectively. The point C0 is the cross point of the

line segments ‘EG’ and ‘HF’ and is the centroid of the object. P1, P2, P3 and P4

represent the stereo matching points, whose three dimensional frame values are

then derived by the external and internal parameters of the cameras.
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Figure 4.5: Stereo matching points selection.

The three linguistic fuzzy sets {SMALL, MEDIUM, BIG} are utilized to describe

the size that is set up on the main five levels of object size. These levels are repre-

sented in Table 4.1. The membership functions of these fuzzy sets are empirically

defined as given in Figure 4.6.

Table 4.1: Membership function levels for Size.
Level No. Small Medium Big Area(cm2)
0 1 0 0 0
1.5 0.5 0.5 0 150
3 0 1 0 300
4.5 0 0.5 0.5 450
6 0 0 1 >600

4.3.2.1.2 Distance (id) The distance is a significant physical variable in this

study, whose span is provided by the length of the robot arm. Here, we have

employed the length of the Curiosity rover arm for subsequent simulation experi-

ments. The length of the Curiosity arm is 2.3 meters from the front of the rover
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Figure 4.6: Membership functions for the Size (is).

body. In Figure 4.7, the distance is between the original point O in the mobile

robot arm base frame seen and the centroid (C) of the object. The distance is

represented by the three linguistic fuzzy sets {NEAR, MEDIUM, FAR}, which

is again set up on five levels of the distance. These levels are represented in the

Table 4.2. The membership functions of these fuzzy sets are given in Figure 4.8.

 

X 
C 

o Y 

Z 

Figure 4.7: Distance between arm and object.
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Table 4.2: Membership function levels for Distance.
Level No. Near Medium Far Distance(cm)
0 1 0 0 <60
1 0 0.5 0 105
2 0 1 0 145
3 0 0.5 0 185
4 0 0 1 230

Figure 4.8: Membership functions for the Distance (id).

4.3.2.1.3 Orientation (io) The orientation is the angle formed by the straight

line defined relative to the heading of the rover, and the straight line that connects

the projection of the centroid of the object with the reference arm (see Figure 4.9).

As shown in this figure, a transparent plane is a plane that is constituted by the

X and Y axes. C’ is the projection of C on the transparent plane. θ is an angle

between the straight line OC’ and Y axis, and is the orientation. In Figure 4.10,

the orientation in front of the rover is divided into six regions that are represented

by the six linguistic fuzzy sets {very-bad(VB), bad(B), very-soso(VS), soso(S),

good(G), very-good(VG)}. The “very-good”, “good”, “soso”, “very-soso”, “bad”

and “very-bad” are sectors at ±15◦(Red), between ±15◦ and ±30◦(Turquoise),

between ±30◦ and ±45◦(Yellow), between ±45◦ and ±60◦(Green), between ±60◦

and ±75◦(Orange), and between ±75◦ and ±90◦(Pink) relative to the heading of

the rover, respectively. The membership functions of these sets are shown in Figure

4.11 in which “0”,“2”,“4”,“6”,“8”,“10” and “12” are corresponding to −90◦, −60◦,

−30◦, 0◦, 30◦, 60◦ and 90◦, respectively.

4.3.2.1.4 Science Value (SV) (iSV ) The science value (SV) is a score com-

puted from KSTIS 1.0 system between 0 and 9999, which is represented by one of
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Figure 4.9: Orientation between arm and object.

Figure 4.10: Decomposition of orientation regions.

the three linguistic fuzzy sets {LOW, MEDIUM, HIGH}, which is set up on six

levels of significant science value. These levels are shown in the Table 4.3. The

membership functions of these fuzzy sets are given in Figure 4.12.
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Figure 4.11: Membership functions for the Orientation (io).

Table 4.3: Membership function levels for SV.
Level No. Low Medium High SV Score
0 1 0 0 <20
1 0.667 0 0 40
2 0.333 0 0 60
3 0 1 0 80
4 0 0 0.5 100
5 0 0 1 >120

Figure 4.12: Membership functions for SV (iSV ).

4.3.2.2 Inference Mechanism

The inference mechanism is responsible for undertaking decision-making in the

fuzzy logic controller using the fuzzy reasoning, achieving two fundamental tasks:

(1) To determine the extent to which each rule is associated with the current

situation as characterized by the inputs; and (2) To reach conclusions utilizing the
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current inputs and the information in the rule base. Seventy-four rules are used

for the proposed fuzzy controller, including the 72 rules shown in Figure 4.13 plus

the two rules below. Here, an example that SV is high and Size is big is described.

– IF SV is HIGH and Size is BIG and Distance is NEAR and Orientation

is VERY-BAD THEN TIndex is VERYLOW

– IF SV is HIGH and Size is BIG and Distance is NEAR and Orientation

is BAD THEN TIndex is LOW

– IF SV is HIGH and Size is BIG and Distance is NEAR and Orientation

is VERY-SOSO THEN TIndex is LOW

– IF SV is HIGH and Size is BIG and Distance is NEAR and Orientation

is SOSO THEN TIndex is MEDIUMLOW

– IF SV is HIGH and Size is BIG and Distance is NEAR and Orientation

is GOOD THEN TIndex is MEDIUMLOW

– IF SV is HIGH and Size is BIG and Distance is NEAR and Orientation

is VERY-GOOD THEN TIndex is MEDIUM

– IF SV is HIGH and Size is BIG and Distance is MEDIUM and Orien-

tation is VERY-BAD THEN TIndex is MEDIUMLOW

– IF SV is HIGH and Size is BIG and Distance is MEDIUM and Orien-

tation is BAD THEN TIndex is MEDIUM

– IF SV is HIGH and Size is BIG and Distance is MEDIUM and Orien-

tation is VERY-SOSO THEN TIndex is MEDIUMHIGH

– IF SV is HIGH and Size is BIG and Distance is MEDIUM and Orien-

tation is SOSO THEN TIndex is HIGH

– IF SV is HIGH and Size is BIG and Distance is MEDIUM and Orien-

tation is GOOD THEN TIndex is VERYHIGH

– IF SV is HIGH and Size is BIG and Distance is MEDIUM and Orien-

tation is VERY-GOOD THEN TIndex is VERYHIGH

– IF SV is HIGH and Size is BIG and Distance is FAR and Orientation

is VERY-BAD THEN TIndex is VERYLOW

– IF SV is HIGH and Size is BIG and Distance is FAR and Orientation

is BAD THEN TIndex is LOW
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– IF SV is HIGH and Size is BIG and Distance is FAR and Orientation

is VERY-SOSO THEN TIndex is LOW

– IF SV is HIGH and Size is BIG and Distance is FAR and Orientation

is SOSO THEN TIndex is MEDIUMLOW

– IF SV is HIGH and Size is BIG and Distance is FAR and Orientation

is GOOD THEN TIndex is MEDIUMLOW

– IF SV is HIGH and Size is BIG and Distance is FAR and Orientation

is VERY-GOOD THEN TIndex is MEDIUM

– IF Size is SMALL THEN TIndex is VERYLOW

– IF SV is LOW THEN TIndex is VERYLOW
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(a)  SV: medium 

 Size: medium 

(c)  SV: medium 

 Size: big 

(b)  SV: high 

 Size: medium 

(d)  SV: High 

 Size: big 

SV (High) 

Size (Big) 

SV (Medium) 

Size (Big) 

SV (High)   

Size (Medium) 

SV (Medium)   

Size (Medium) 

Figure 4.13: Rule base for touchability (VL-VeryLow, L-Low, ML-MediumLow,
M-Medium, MH-MediumHigh, H-High, VH-VeryHigh).
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4.3.2.3 Defuzzification

The output of the fuzzy controller from the inference mechanism is mapped to

a crisp value called Touchability Index by the defuzzification procedure. There

are a number of methods that can be used to implement the defuzzification, that

transforms the conclusion of the inference mechanism into the subsequent output.

Therefore defuzzification process is the opposite of the fuzzification process. In

particular the “COG defuzzification” is used that combines the output represented

by the implied fuzzy sets from all rules to calculate the gravity centroid of the

possible distribution into a control action. The Touchability Index is represented

by the seven linguistic fuzzy sets {VERYLOW, LOW, MEDIUMLOW, MEDIUM,

MEDIUMHIGH, HIGH, VERYHIGH}. The membership functions of these sets

are shown in Figure 4.14, where the horizontal axis is the Touchability Index and

the corresponding relative to the actual output is 0: 0%; 1: 10%; 2: 20%· · · 9 :

90%; 10 : 100%.

Figure 4.14: Membership functions for Touchability Index (ot).

4.4 Simulation Results and Analysis

In the following simulation experiments a data set has been constructed to validate

the fuzzy controller designed, and to work out the Touchability Index of the mock

objects which are ranked by the Touchability Index . The results are compared

with the manual rank by a human expert.

The fuzzy logic-based controller is specified by defining fuzzy variables, fuzzy

membership functions and rules utilizing the MATLAB Fuzzy ToolBox simulator.
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Nine rocks have been constructed, in which three kinds of the rock are used, i.e.,

small (10 × 15), medium (20 × 15) and big (30 × 20). The three science value

scores used are 35, 65 and 105. In Table 4.4, Length × Width is the size of the

goal.

Table 4.4: Simulation experiment data.
Rock No. Length Width SV Orientation Distance

1 10 15 105 12 132
2 10 15 65 -65 166
3 10 15 35 50 111
4 20 15 105 -17 161
5 20 15 65 -33 126
6 20 15 35 72 151
7 30 20 105 5 148
8 30 20 65 32 167
9 30 20 35 -46 112

In order to better illustrate rock ranking based on the science values (SV), a colour

coded table is designed where SV is represented by distinct colors (see Table 4.5).

Table 4.5: Correspondence between SV and colour.
Corresponding Colour SV Scores

Cyan(c) <20
Green(g) 20-39

Blue(b) 40-59
Yellow(y) 60-79

Magenta(m) 80-99
Red(r) 100-119
Black(k) >120

Figure 4.15 shows the resulting rock ranking. The centre of the frame is the

arm base, the SV is represented by color, and the size of the rock is depicted by

the diameter of the color circle. It demonstrates that the touchability sequence

of these rocks can be intuitively ranked as shown in Table 4.6. In this table

the numbers of the column TIndex are generated by running the designed fuzzy

controller in MATLAB, and the column TRank is a rank that is produced by

the magnitude sequence of TIdex . These results demonstrate the validity of

the proposed approach, comparing perfectly with the ranking given by the human

expert.
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Figure 4.15: Simulated experiment environment.

4.5 Summary

The use of fuzzy logic control has two major benefits for the touchability sys-

tem. First, the fuzzy rules are employed to emulate human experience for the

acquisition of an object, which is readily intuitive and understandable. Second,

because it is inevitable that the quality of the data for the SV and Size in mea-

suring and interpreting is inaccurate, the tolerance of fuzzy logic to imprecision

and uncertainty in sensor data is of particular appeal.

In this chapter, a fuzzy logic-based controller for the touchability of the science

targets has been presented. The membership functions and fuzzy rules have been
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Table 4.6: Simulation experiment result.
RockNO. Artificial Rank TIndex(%) TRank
1 5 35.2 5
2 7 23.8 7
3 8 22.3 8
4 2 88.4 2
5 4 54.1 4
6 9 18.4 9
7 1 96.6 1
8 3 67.5 3
9 6 34.9 6

devised and the defuzzification mechanism identified. The simulation experimen-

tation has shown the validity of the proposed system.
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Chapter 5

Experimentation of the

Touchability System

The simulation experiment environment is implemented here with respect to the

proposed method for ranking the touchability of science targets that was presented

in the preceding chapter. In particular, real rocks and data are employed to test

and verify the validity of the fuzzy logic-based controller built for the touchability

of the science objects through hardware implementation. In the experiment all

images taken are segmented manually, but the measurement method described in

chapter 3 is used to determine the size of each rock. The evaluation given by the

domain expert is used as the ground truth in this study. The experimental results

show that the designed fuzzy controller system has achieved the domain expert’s

performance.6

5.1 Experimental Platform

The experimental platform that is used to perform this set of experiments was

built in the AU Intelligent System Laboratory (ISL) at Aberystwyth University.

It mainly includes a robotic arm, two wide-angle cameras (WACs), a camera mast

and optical bench (see Figure 5.1). In this section the experimental equipment

used in order to run all experiments will be described.
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Figure 5.1: Experimental platform

5.1.1 Cameras

The two wide-angle cameras (WACs) are IEEE1394 (FireWire) monochrome cam-

eras made by The Imaging Source Ltd. The cameras each has 1024 × 768 pixel
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resolution and panchromatic sensors without infra-red filters, i.e., their spectral

range extends infra-red. This makes them ideal for use with filter wheels (mul-

tispectral filters are not involved in the present work). The lenses used have an

8mm focal length which gives an overall horizontal field of view of approximately

35o, and also has lockable focus and iris rings, which are generally desirable for the

WACs. Further details of the camera and lens specifications are shown in Table

5.1.

Table 5.1: WACs specifications.
Resolution 1024 × 768
Pixel Size 4.65µm
Sensor Size 4.76 × 3.57
Lens Computar M0814-MP
Focal Length 8 mm
Field of View 35o ×25o

Frame Rate 3.75 - 30 fps
Shutter 1/10000 - 30 s

5.1.1.1 Camera Calibration

Camera calibration is a necessary step in 3D computer vision in order to extract

metric information from 2D images. Currently, according to the different objects

used for calibration there are a number of technique that may be employed to

achieve this work. Here 2D plane based calibration technique is used (Heikkila

& Silven, 1997), as the work requires the observation of planar patterns shown

at a few different orientations. Because almost anyone can make such a calibra-

tion pattern by oneself, the setup is easy. In stereo vision two cameras are needed

generally. Therefore, the camera calibration requires not only the intrinsic and ex-

trinsic camera parameters, but also the relative position between the two cameras.

These parameters are summarized below:

– Position of the image center in an image. Note that this typically not

at (width/2, height/2) of the image.

– Focal length.

– Different scaling factors for row pixels and column pixels.

– Skew factor.
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– Lens distortion.

– Relative position of the two camera.

The Matlab tool box is used to perform the computation involved in the cam-

era calibration. The calibration involves 14 pairs of corresponding left and right

images. The results of camera calibration are shown as follows.

– Intrinsic parameters of left camera:

Focal Length: fc left = [ 1780.75603 1781.65210 ] ± [ 8.96685 8.55379 ]

Principal point: cc left = [ 451.58289 370.04071 ] ± [ 15.92816 15.23360

]

Skew: alpha c left = [ 0.00000 ] ± [ 0.00000 ] ⇒ angle of pixel axes =

90.00000 ± 0.00000 degrees

Distortion: kc left = [ -0.07750 0.09062 -0.00443 -0.00501 0.00000 ] ± [

0.04188 0.27946 0.00213 0.00350 0.00000 ]

– Intrinsic parameters of right camera:

Focal Length: fc right = [ 1780.49925 1783.21577 ] ± [ 8.85186 8.67202

]

Principal point: cc right = [ 449.69618 334.96230 ]± [ 14.69461 17.98229

]

Skew: alpha c right = [ 0.00000 ] ± [ 0.00000 ] ⇒ angle of pixel axes

= 90.00000 ± 0.00000 degrees

Distortion: kc right = [ -0.06579 -0.16427 -0.00632 -0.00852 0.00000 ]

± [ 0.05927 0.83789 0.00314 0.00257 0.00000 ]
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– Extrinsic parameters (position of the right camera with respect to the

left camera):

Rotation vector: om = [ -0.00362 0.06867 -0.00043 ] ± [ 0.01120 0.01124

0.00112 ]

Translation vector: T = [ -199.37136 -0.64008 13.00476 ] ± [ 0.73220

0.46330 3.95160 ]

In order to make a decision on choosing an appropriate distortion model to use, it

is useful to visualize the effect of distortions on a given image. Figure 5.2 shows

the impact of a complete distortion model (radial + tangential) on each pixel

of the image, with each arrow representing the effective displacement of a pixel

induced by the lens distortion. Observe that points at the corners of the image

are displaced by as much as 12 pixels in the distortion model of the right camera.

5.1.2 Optical Bench

The optical bench used for the experiments is shown in Figure 5.1. It is constructed

with lightweight aluminium optical rail and sliders. The rail and sliders have an

interlocking double-sided dovetail design that allows the cameras to be moved and

locked in the required position. The cameras are connected to the optical bench

by custom adapter plates with sliders. The cameras can be mounted anywhere

along the rail, with the two cameras situated with a baseline separation of 200mm.

5.1.3 Schunk Arm

The Schunk arm (shown in Fig. 5.3) is developed and manufactured by SCHUNK

GmbH & Co. KG. It is based on the servo-electric swivel units PRL combined

with ERB jointed modules that contain integrated motor controller units, and a

through-hole for cable feed-through. The combination of a high compact perfor-

mance, and new materials for the connection technology allow the doubling of the

payload to nominal 10 kg. The standard design of the arm is available as a 7

degrees of freedom system. In particular, the open software architecture allows

for the connection and operation of any type of modules at the servo-electric wrist

of the arm. The Schunk Dextrous Hand is set up in the end of the arm as an

end effector, a 3-fingered gripper with 7 DOF and tactile feedback sensors in the

fingers.
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(a)

(b)

Figure 5.2: (a) The distortion model of the left camera. (b) The distortion model
of the right camera.
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Figure 5.3: Schunk Arm: all the joints are at home base.

The joints of the Schunk arm are constituted by seven Powercube units. From

the base joint to the end joint, all joints are orderly named as J1, J2, J3, J4, J5,

J6 and J7, respectively. The Powercube units are numbered with #3, #4, #5,

#6, #7, #8 and #9 because of the default setting of the manufacturers. Every
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joint is allowed to operate in a range between -2 rad and 2 rad. The directions of

the rotation of the seven joints are shown in Fig. 5.4, where “+” is the positive

direction and “-” is the negative direction.

 

Figure 5.4: Directions of the rotation of the seven joints.

5.1.3.1 Object Location

In robotics, it is important to keep track of an object’s location as it is moving

within in 3D space. The workspace is always referenced to a fixed world frame,

and all objects within the workspace are positioned with respect to the fixed

reference frame by the use of three coordinate numbers (x, y, z). However, the

position of an object as described by its three coordinates possesses only half of

121



the information regarding the location of the object. The orientation of the object

is also important and requires a mathematical description as well. That is the

location of an object consists of the object position and orientation:

Location = Position and Orientaion

Thus, a reference frame is attached to each input at object location such that

knowing where the object frame is located, i.e., knowing both the frame’s position

and orientation, will unambiguously determine where all points of the object are

located.

5.1.3.2 Translations

A translation is a geometric transform that moves an object from one position

to another without modifying the object’s orientation. A translation moves every

point on the object by the same vector uuu involving three positional parameters.

Finally, if a point Q, given by its coordinates vector qqq =







xq

yq

zq






is translated by

a translation T of vector uuu =







a

b

c






denoted Tuuu, the translated point Q

′

is then

given by the coordinate vector qqq
′

such that

qqq
′

= qqq + uuu =







xq + a

yq + b

zq + c







A translation can also be represented as a homogeneous transform matrix as fol-

lows:

qqq
′

= TTTuuuqqq =













1 0 0 a

0 1 0 b

0 0 1 c

0 0 0 1

























xq

yq

zq

1













=













xq + a

yq + b

zq + c

1













Since translations have no effect on orientation, the 3 × 3 rotation submatrix of

the homogeneous translation transform matrix TTTuuu is an identity matrix.
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5.1.3.3 Rotations

Rotation transforms are associated with an axis of rotation, typically designated

by a vector vvv =







xv

yv

zv






and a fixed angle of rotation θ. If a point Q, with

coordinates qqq =







xq

yq

zq






, is rotated around vvv by an angle θ to a point Q

′

, then

the coordinate vector qqq
′

of Q
′

is determined by

qqq
′

= RRRv,θqqq

RRRv,θ =

[

cos θ + (1− cos θ)x2
v (1− cos θ)xvyv − (sin θ)zv (1− cos θ)xvzv + (sin θ)yv

(1− cos θ)yvxv + (sin θ)zv cos θ + (1− cos θ)y2v (1− cos θ)yvzv − (sin θ)xv

(1− cos θ)zvxv − (sin θ)yv (1− cos θ)zvyv + (sin θ)xv cos θ + (1− cos θ)z2v

]

where RRRv,θ represents the rotation matrix. To obtain an expression for the matrix

RRRv,θ, it is convenient to start with rotations around the reference frame axes,

referred to as canonical rotations.

5.1.3.4 Forward Kinematics

Forward kinematics is concerned with the computation of the position and ori-

entation of a robot’s end effector as a function of its joint variables which are

known. In order to compute the end effector pose given a set of joint variable

values, the robot manipulator Denavit-Hartenberg (DH) parameters are needed.

These parameters result from a set of reference frames, O0, O1, . . . , On (for an n-

joint robot), attached to the robot links. Each link frame is fully described by

its pose matrix with respect to the preceding link frame along the robotic chain.

In general, a frame Oi is described with respect to Oi−1 by its pose matrix as

determined here:

A =













ci −γisi σisi aici

si γici −σici aisi

0 σi γi di

0 0 0 1












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where ci = cos (θi), si = sin (θi), γi = cos (αi), and σi = sin (αi). θi and αi is DH

parameters.

A sequence of pose matrices, which are each themselves a homogeneous frame

transforms, are used in the forward kinematics process to compute the pose matrix

PPP of the end effector frame On with respect to the base frame of the robot O0. It is

often useful to write the homogeneous frame transform in the following partitioned

form:

AAAi =

[

RRRi pppi

000 1

]

where

RRRi =







ci −γisi σisi

si γici −σici

0 σi γi







pppi =







aici

aisi

di







The objective of the forward kinematics is to compute the pose PPP of the end

effector with respect to the base frame. With the present link frame assignment,

the frame attached to the end effector is simply On. The end effector pose matrix

PPP for an n-joint robot manipulator is then given by

PPP = AAA1AAA2 . . .AAAn−1AAAn

From the above, for any set of joint variables, there can be only one possible end

effector pose matrix. Therefore, the forward kinematics problem has at most one

solution.

with respect to the Schunk arm all seven DOF are used in the forward kinematics.

The Denavit-Hartenberg method (DH) was introduced to simplify this progress.

According to the positive direction of each joint, the DH coordinate frames of all

joints can be established as illustrated in Figure 5.5. From this the DH parameters

can be obtained, with the resulting parameter for each joint shown in Table 5.2.

In particular, the parameter θ is the variable which represents the rotation angle

of each joint. The parameters d1, d2, d3 and d4 donate the link lengths of the

Schunk arm. On the basis of manufacturer data these are measured to be: d1 =
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31.33cm,d2 = 33.41cm, d3 = 28.1cm and d4 = 43.72cm.

 

Figure 5.5: D-H frames of the Schunk arm.

5.1.3.5 Inverse Kinematics

The above forward kinematics addresses the problem of finding for the end effector

pose of a robot manipulator from a complete set of joint variables. The inverse

kinematics problem however, is to find one or more sets of joint values from a

given end effector pose. A complete set of joint values is called a configuration in

joint space. For a robot manipulator with n joints, a complete set of joint values

is an n× 1 vector ppp =
[

q1 q2 . . . qn

]

, where qi=θi if joint i is revolute and qi

= di if joint i is prismatic.

The inverse position kinematics is central to the control of robot manipulators.

Indeed, in general, the desired Cartesian location of the robot end effector, the

pose matrix, is usually known from the task specifications, but each robot joint
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Table 5.2: D-H parameters of the Schunk arm.
link twist (αi) link length (ai) link offset (di) link angle (θi)

J1 0 0 d1 θ1
J2 90◦ 0 0 θ2
J3 -90◦ 0 d2 θ3
J4 90◦ 0 0 θ4
J5 -90◦ 0 d3 θ5
J6 90◦ 0 0 θ6
J7 -90◦ 0 d4 θ7

is individually controlled. Each joint position must therefore be known in order

to obtain the necessary robot motion that achieves the desired end effector pose.

When addressing an inverse kinematics problem, as there may be different DH

parameters to incorporate, no fixed solution exists.

Considering the purpose of the present experimentation is to check whether the

objects are in the range of acquisition, many joints are not needed. Here, joints

J3, J5 and J7 are locked (the rotation angles are fixed as 0◦), shortening number

of the arm’s DOF to four for the Schunk arm. Inverse kinematics for a four DOF

manipulator is computed as follows.

Without losing generality, suppose that the coordinates of the end point are (Px,

Py, Pz) in the arm base frame, that A, B, C and D are the link lengths of the

arm, and that θ1, θ2, θ3 and θ4 are the solving targets of inverse kinematics with

θ4 fixed to be π/6 (shown in Figure 5.6).

In this general case, it can be seen that the rotation angle θ1 can be simply resolved

as below (see Figure 5.7):

θ1 = arctan(Py/Px) (5.1)

The procedure to obtain the angles θ2, θ3 are calculated in the plane ZR (see

Figure 5.8), such that

SP =
√

P 2
x + P 2

y + (A− Pz)2 (5.2)

EP =
√

C2 +D2 + 2× C ×D × cos(θ4) (5.3)

γ = arccos(B2 + SP 2 − EP 2/2× B × SP ) (5.4)
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Figure 5.6: Inverse kinematics for a four DOF manipulator.

α = arccos[(A− Pz)/SP ] (5.5)

θ2 = π − α− γ (5.6)

β = arccos[B2 + EP 2 − SP 2/2× B × EP ] (5.7)

δ = arccos[C2 + EP 2 −D2/2× C × EP ] (5.8)

θ3 = π − β − δ (5.9)
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Figure 5.7: Plan View (seen from the z axis) of the four DOF manipulator.
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Figure 5.8: ZR plane for the procedure of computing θ2 and θ3.
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5.2 Experimental Results

A total of 9 rocks of a different size and shape have been used to test the touch-

ability of rocks. Within the 9 rocks there are 3 small, 3 medium and 3 big ones,

involving three kinds of scientific value (Low, Medium and high) for each type of

rock (Small, Medium and Big) (see Figure 5.9). Because of the limit of the pan

angle (Pan 0◦) the two cameras are set at a -40◦ tilt angle to capture the initial

image. Therefore, the overlap vision range of the two cameras is approximately

between -30◦ and 30◦, corresponding to the Good and Very Good orientation (see

Chapter 4).

As the touchability of Mars scientific targets by a Martian robotic arm has been

at the present done by human experts on Earth, the comparison is therefore only

compared to the results by a human expert available to this research. In this

section results of seven experiments are reported based on the location of the

aforementioned 9 rocks (Near, Medium and Far). The rock detection software (see

Chapter 3) is not used during these experiments as not all the images used are

suitable for the algorithm. The images captured in all experiments are manually

segmented and labeled. The purpose of these experiments is to test the viability

of the Touchability system. The experimental results are discussed with respect to

the input by the domain expert (Dr Derek Pullan of the University of Leicester).

Only one expert view is adopted here as the footing for comparison, owing to

the rarity of the specialists in this application domain. The evaluation from the

domain expert for all experiments is that the Touchability Index should be at

least 80%, and the domain expert provided the science value of each rock. The

externally given parameters are used throughout the following experiment.

5.2.1 Experiment 1

In Figure 5.10 the four rocks used for this experiment. Rock 1 is a big rock, and

has a high science value; its distance to the robot hand is medium. There is a low

scientific value for the small Rock 2 with a medium distance. A high science value

and a medium distance are assumed for the small Rock 3. Small rock 4 possesses a

medium scientific value and is of a near distance to be robot hand. The evaluation

of the touchability given by the domain expert for these four rocks is that all rocks

are not touchable, except for Rock 1. Figure 5.10 shows the result produced by
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(a)   Size: small 

 SV: low (40) 

(b)   Size: small      

 SV: medium (90) 

(c)   Size: small 

 SV: high (110) 

(d)   Size: medium 

 SV: low (35) 

(e)   Size: medium 

 SV: medium (80) 

(f)   Size: medium 

 SV: high (110) 

(g)   Size: big     

 SV: low (50) 

(h)   Size: big          

 SV: medium (85) 

(i)   Size: big 

 SV: high (120) 

Figure 5.9: Rocks used for experiment.

the Schunk arm. The Touchability Index and the relevant measurement computed

are showed in Table 5.3.

5.2.2 Experiment 2

Figure 5.11 shows the four rocks that are used for experiment 2. Rock 1 is a big

rock, and has a high science value with a near distance. There is a high scientific
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Figure 5.10: Top left image: this image was captured by the left camera. Top
right image: this image was captured by the right camera. Bottom image: this
image was the result of touchability computation.

Table 5.3: Results from experiment 1.
Rock Size Orientation Distance Science Touchability
No. (cm2) (cm) Value Index
1 737.86 18◦ 76.4 120 92.5%
2 26.33 -6◦ 75.3 40 9.76%
3 24.4 -25◦ 52.7 100 9.75%
4 109.46 20◦ 37.6 90 21.6%

value in the medium Rock 2 that is of a medium distance to the robot hand. A

low science value and a far distance are assumed for the medium Rock 3. Small

rock 4 possesses a low scientific value and is of a far distance. The evaluation of

the touchability given by the domain expert for the four rocks is that all rocks

are not touchable, except for Rock 2. Figure 5.11 shows the operational result

produced by the Schunk arm. The results of Touchability Index and the relevant
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measurements computed are showed in Table 5.4.
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Figure 5.11: Top left image: this image was captured by the left camera. Top
right image: this image was captured by the right camera. Bottom image: this
image was the result of touchability computation.

Table 5.4: Results from experiment 2.
Rock Size Orientation Distance Science Touchability
No. (cm2) (cm) Value Index
1 715.72 3◦ 32.7 120 58.2%
2 308.01 16◦ 65.2 110 89.9%
3 291.66 -23◦ 82.3 35 10.2%
4 27.03 4◦ 84.5 40 9.8%

133



5.2.3 Experiment 3

In Figure 5.12 the four rocks are used for experiment 3. Rock 1 is a big rock, and

has a medium science value and is far from the robot hand. The medium Rock

2 is of a medium scientific value and a near distance. A low science value and a

medium distance are assumed for the medium Rock 3. Small rock 4 possesses a

medium scientific value and is of a far distance. The evaluation of the touchability

given by the domain expert for the four rocks is that all rocks are not touchable.

The Touchability Index and the relevant results computed are showed in Table

5.5.
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Figure 5.12: Left image: this image was captured by the left camera. Right image:
this image was captured by the right camera.

Table 5.5: Results from experiment 3.
Rock Size Orientation Distance Science Touchability
No. (cm2) (cm) Value Index
1 564.93 21◦ 83.6 85 61.8%
2 329.62 24◦ 34.2 80 52.3%
3 349.23 -11◦ 62.1 35 10.2%
4 145.15 -19◦ 84.1 90 40.2%

5.2.4 Experiment 4

Figure 5.13 shows the four rocks that are used for experiment 4. Rock 1 is a big

rock, and has a medium science value and is of a medium distance to the robot

hand. There is a low scientific value for the big Rock 2 which is of a far distance. A

high science value and a near distance are assumed for the medium Rock 3. Small
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rock 4 possesses a high scientific value and is of a far distance. The evaluation of

the touchability given by the domain expert for these four rocks is that all rocks

are not touchable, except for Rock 1. Figure 5.13 shows the operational result

produced by The Schunk arm. The resulting of Touchability Index and other

measurements are showed in Table 5.6.
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Figure 5.13: Top left image: this image was captured by the left camera. Top
right image: this image was captured by the right camera. Bottom image: this
image was the result of touchability computation.

Table 5.6: Results from experiment 4.
Rock Size Orientation Distance Science Touchability
No. (cm2) (cm) Value Index
1 561.57 12◦ 59.6 85 85.6%
2 552.08 -12◦ 86.7 50 11.4%
3 331.09 13◦ 34.3 110 60.8%
4 24.4 24◦ 87.3 100 9.8%
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5.2.5 Experiment 5

In Figure 5.14 the four rocks that are used in this experiment are shown. Rock 1

is a big rock, and has a medium science value and is of a near the distance to the

robot hand. The big rock 2 is of a low scientific value and a medium distance. A

high science value and a far distance are assumed for the medium Rock 3. Small

rock 4 possesses a low scientific value and is of a near distance. The evaluation

of the touchability given by the domain expert for the four rocks is that all rocks

are not touchable. The results of Touchability Index and relevant measurements

computed are showed in Table 5.7.
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Figure 5.14: Left image: this image was captured by the left camera. Right image:
this image was captured by the right camera.

Table 5.7: Results from experiment 5.
Rock Size Orientation Distance Science Touchability
No. (cm2) (cm) Value Index
1 520.3 26◦ 33.1 85 49.7%
2 290.57 -8◦ 62.8 50 11.4%
3 496.46 17◦ 84.7 110 62.5%
4 26.23 -26◦ 33.7 40 9.7%

5.2.6 Experiment 6

Figure 5.15 shows the four rocks that are used in this experiment 6. Rock 1 is a big

rock, and has a high science value and is of a far the distance to the robot hand.

There is a medium scientific value in the medium Rock 2 which is of a medium

distance to the robot hand. A low science value and a near distance are assumed
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for the medium Rock 3. Small rock 4 possesses a high scientific value and is of

a near distance. The evaluation of the touchability given by the domain expert

for these four rocks is that all rocks are not touchable, except for Rock 2. Figure

5.15 shows the operational result produced by The Schunk arm. The results of

Touchability Index and the relevant measurements are showed in Table 5.8.
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Figure 5.15: Top left image: this image was captured by the left camera. Top
right image: this image was captured by the right camera. Bottom image: this
image was the result of touchability.

Table 5.8: Results from experiment 6.
Rock Size Orientation Distance Science Touchability
No. (cm2) (cm) Value Index
1 717.62 15◦ 87.7 120 54.9%
2 307.67 -16◦ 62.4 80 82.1%
3 370.85 -18◦ 31.8 35 10.2%
4 23.82 28◦ 32.5 100 9.6%
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5.2.7 Experiment 7

In Figure 5.16 the three rocks that are used in this experiment are shown. Rock

1 is a big rock, and has a low science value and is of a near distance to the robot

hand. A medium scientific value and a far distance are assumed for the medium

Rock 2, and a medium science value and a medium distance for the small Rock 3.

The evaluation of the touchability given by the domain expert for the three rocks

is that all rocks are not touchable. The results of Touchability Index and other

measurements computed are showed in Table 5.9.
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Figure 5.16: Left image: this image was captured by the left camera. Right image:
this image was captured by the right camera.

Table 5.9: Results from experiment 7.
Rock Size Orientation Distance Science Touchability
No. (cm2) (cm) Value Index
1 490.55 17◦ 35.1 50 11.4%
2 329.01 10◦ 64.3 80 11.5%
3 141.83 -15◦ 83.7 90 40.6%

5.3 Discussion of Results

The Touchability Index value , 80% that is generated by the domain expert is used

as the threshold in the above experiment. Thus a positive result is achieved if the

Touchability Index over a certain rock is greater than 80%. In experiment one

only the Touchability Index over rock 1 (92.5%) is greater than 80%. This means

that instrument deployment can reach out for rock 1 but not for the others. Based
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on the evaluation of the touchability given by the domain expert only rock 1 can

be touched. Therefore the experimental result matched well with the evaluation

of domain expert.

In experiment two the Touchability Index over all rocks is less than 80%, so no

instrument deployment is possible for any rocks. The evaluation of the touchability

given by the domain expert is the same. Thus, the experimental result is consistent

with the evaluation of the domain expert. This result applies to experiments three,

five and seven also, although different rocks and different numbers of rocks are

involved.

In experiment four only the Touchability Index over rock 1 (85.6%) is greater

than 80%, implying that instrument deployment can reach out for rock 1. The

evaluation of the touchability given by the domain expert is the same, only rock

1 can be touched. Accordingly the experimental result is in accordance with the

evaluation of domain expert. Similar results are achieved for experiment six, where

only the Touchability Index over rock 1 (82.1%) is greater than the given threshold

of 80%. Thus, the instrument deployment can reach out for rock 2. This matches

with the evaluation of the touchability over these rocks by the domain expert.

Summarizing the above experiments and discussion, it is clear that the evalua-

tion outcome of the domain expert has perfectly matched with that obtained by

the present work. This means that the Touchability System designed herein has

achieved the experience and knowledge level of the domain expert.

5.4 Summary

In this chapter the results of the touchability system experimentation have been

presented. The experimental hardware platform is built, including: two wide-angle

cameras (WACs), Schunk arm, real rocks, camera mast and optical bench. The

results of seven independent experiments have been discussed involving different

locations of a subset of 9 rocks which have different sizes and science values. The

experimental results show that the touchability system designed is able to attain

the performance of a domain expert.

139



Chapter 6

Conclusions

This chapter summarizes and concludes the investigations conducted in this the-

sis, including a list of the main contributions together with a list of publications

produced within this project. It also presents a brief discussion about the future

directions of research in order to improve the current work.

6.1 Summary of the Work

Limited opportunity to explore remote planetary surfaces and the substantial cost

of each of such exploration have led to an increase in the demand for higher

levels of autonomy than that permitted by the exploration platforms currently

available (Huntsberger et al., 2005). Full autonomy is still considered as risky and

dangerous to many scientists and engineers. This has slowed the application of

autonomous systems for space exploration. However, the benefits of autonomy

can be clearly seen from the research currently ongoing in the field. Projects such

as OASIS, SCAIP, CREST and RAMS which were discussed in chapter 2, have

clearly shown the potential benefits of autonomy. On the whole, in the near future

more autonomous systems will be developed for space exploration missions.

Rocks are one of the most interesting science targets for geologists and planetary

scientists on the Martian surface. The identification of observed rocks is a signif-

icant task in route planning and geologic analysis. Rock shape, weathering and

dispersion carry important information about environmental characteristics and

processes. Therefore, it is essential to develop a method for accurate segmentation

of rocks captured in Mars images.
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In this thesis, a novel approach is presented to segment Mars images taken by

the NASA Mars Exploration Rover (MER). In particular, a tri-level thresholding

OTSU method is proposed to segment foreground (rock) from its background.

The Canny algorithm is then employed both to investigate the entire edges in an

image and to construct the spatial dependency of regions which are returned by

the tri-level thresholding OTSU. The Template Dilatation Edge Linking (TDEL)

algorithm is adapted to detect the closed contour of each rock within an image.

Experimental images are from Navcam and Pancam of the MER. The experimen-

tal results of six representative images (with different illumination levels, spectral

bands and scenes) including 128 rocks in total are shown. Qualitative and quan-

titative comparisons demonstrate that the proposed approach is consistent with

human perception and offers the best performance in terms of the average value

of the Precision, Recall and misclassification error (ME) to many typical classical

algorithms.

Additionally, a matching keypoints in comparison is proposed for calculating the

size of a detected rock. The work of matching desired keypoints involves three

main stages: (a) To match the feature points on the body of a rock in a given pair

of images based upon the SIFT-RANSAC algorithm. (b) To employ a method

that combines Euclidean distance with the rotation angle of an image to obtain

initial rough matching points. (c) To caculate the correlation between the pair of

images in order to compute the accurate matching points. The size of a rock is

estimated by the desired keypoints using the stereo triangulation method. The

experimental results show that the proposed approach for computing rock sizes is

better than the standard disparity technique in terms of accuracy.

With regards to Mars rover exploration, the ExoMars 2018 is the next ESA/Roscosmos

mission. This is part of the Aurora programme with the future goal of returning

rock samples to the Earth as part of the Mars Sample Return (MSR) mission.

Currently, science target selection, and whether or not it is possible for a robot

arm to touch a given target, is accomplished by human operators and scientists

on the Earth. The use of on-board autonomy would greatly reduce human inter-

vention, and it would be advantageous if the rover could evaluate autonomously

if the robot arm could place an instrument against an identified science target.

To adress this problem a fuzzy logic-based touchability system for autonomous

science target touchability evaluation has been developed. The basic definitions

of the terms for building the fuzzy control system are introduced, including lin-
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guistic variables, fuzzy propositions, relations, implications, and inference engines.

Based upon the nature regarding the touchability of a potential science target four

input linguistic variables (Size, Distance, SV and Orientation) and one output lin-

guistic variable (Touchability Index) are devised with their membership functions

specified. The proposed system includes 74 fuzzy rules in total.

The simulation environment for the rank of science object touchability has been

implemented in this work. Particularly, to further test and verify the validity of the

proposed touchability system, laboratory-based experiments have been carried out

using the hardware platform built within the project which includes two wide-angle

cameras (WACs), Schunk arm, real rocks, camera mast and optical bench. Nine

real rocks as experimental objects are utilised that each has a different size and

science value, and are put at a different location in terms of linguistic distance:

near, medium and far. In the experiments the images captured are segmented

manually, but the method of rock size measurement given in this work is used

to determine the size of each rock. The evaluation given by the domain expert

is adopted as the ground truth. Seven experiments have been accomplished and

the experimental results have shown that the designed fuzzy controller system can

perform as well as the domain expert.

6.2 Original Contribution

This thesis has made a number of original contributions in the following areas:

1. An unsupervised segmentation method on Mars images is proposed

to deal with the identification of scientific targets. In this method,

An improved OTSU and Canny operator are combined to find out the

regions of rocks. Finally, the colsed contours of rocks has been achieved

by a template dilation edge linking (TDEL) method.

2. A approach is proposed to match desired non-feature keypoints for the

size of rocks in a pair of images by using SIFT-RANSAC algorithm,

fundamental matrix, epipolar geometry and correlation.

3. An autonomous science target touchability evaluation system which

is designed and implemented by Fuzzy System is developed for the

following instrument deployment operation.

The above novel contributions have been documented in the following publications:
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1. C. Gui and C.J. Shang. Autonomous Science Target Detection and

Touchability Assessment for Planetary Exploration. Under review for

journal publication.

2. C. Gui and C.J. Shang. Automatic Rock Detection Based on Rover

Imagery for Planetary Exploration. Under review for journal publica-

tion.

3. C. Gui, D. Barnes and L. Pan. A SIFT-Based Method for Matching

Desired Keypoints on Mars Rock Target. In the International Sym-

posium on Artificial Intelligence, Robotics and Automation in Space

(i-SAIRAS). 2012.

4. C. Gui, D. Barnes and L. Pan. An Approach for matching Desired Non-

Feature Points on Mars Rock Targets Based on SIFT. In the Towards

Autonomous Robotic System (TAROS) Conference. 2012.

5. C. Gui, D. Barnes and L. Pan. Planetary Exploration Autonomous

Science Target Touchability Evaluation Using a Fuzzy Rule-Based Ap-

proach. In the 12th ESA Workshop on Advanced Space Technologies

for Robotics and Automation (ASTRA). 2013.

6. C. Gui, D. Barnes and L. Pan. A Method for Matching Desired Non-

Feature Points to Size Martian Rocks Based upon SIFT. In the Towards

Autonomous Robotic System (TAROS) Conference. 2014.

7. C. Gui and C.J. Shang. Autonomous Science Target Touchability Eval-

uation: A Fuzzy Logic-Based Approach. ICIRA2015 International Con-

ference on Intelligent Robotics and Applications. 2015

8. L. Pan, C. Gui, D. Barnes, C.J. Shang. Mars Multispectral Image

Classification Using Machine Learning Techniques. In the 12th ESA

Workshop on Advanced Space Technologies for Robotics and Automa-

tion (ASTRA). 2013.

9. L. Pan, D. Barnes, C. Gui. A Novel Saliency Method Based on Re-

stricted Boltzmann Machine (RBM) and Its Application to Planetary

Exploration. In the Towards Autonomous Robotic System (TAROS)

Conference. 2014.
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6.3 Future Research

Possible future directions of development are outlined as below:

1. The current latest Mars exploration rover Curiosity is loaded with Mast

Camera (MastCam) system which provides multiple spectra and true-

color imaging with two cameras. The cameras can take true-color im-

ages at 1600 × 1200 pixels and up to 10 frames per second hardware-

compressed (Malin et al., 2010) (Bell et al., 2012). Research effort exists

(Shang & Shen, 2008) (Shang et al., 2011) (Shang & Barnes, 2013) for

the rock detection and classification with color Mars images that is

currently being adapted to identify rocks in a Martian terrain. Figure

6.1 shows an example result of such work. Combining the color image

segmentation technique with the touchability work proposed herein is

of great interest to strengthen the present approach.

2. In the current experimental study, because of the limit of the hardware

equipment available ,the science targets in the front of the two cameras

can only be observed approximately between -30◦ and 30◦ (which is

the overlap vision range of the two cameras). PTU (Pan-Tilt Unit)

instrument may be used for future work so that the observation of the

science targets can be realised between a range of -90◦ to 90◦.

3. Currently, the image segmentation algorithm and the rock size mea-

surement method are developed using OpenCV, but MATLAB is used

to develop the touchability system. Hence, it is necessary to integrate

the software packages within a common language for the future rover

exploration.

4. In the present investigation, linguistic terms used to build the fuzzy

control system are fixed. It would be beneficial to examine more sys-

tematically how the variations of these terms may influence the outcome

of the touchability evaluation. This remains as an important further

research.

5. The end goal of this research is to mount the entire software and hard-

ware ( Cameras, Schunk arm) on the PATLab ‘Blodwen’ half-scale Ex-

oMars 2018 rover for field trial. Significant effort will be required to

implement this task in real settings.
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Figure 6.1: Colour image-based Martian rock detection and classification. Image
Courtesy of ELSEVIER
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Appendix A

List of Acronyms

CREST Collaborative research in exploration and technology

DEM Digital elevation model

ECSS The European cooperation for space standardisation

EDL Entry, descent and landing

EDM Entry, descent and landing demonstrator module

ESA European space agency

FRFS Fuzzy-rough feature selection

GAP Gas analysis package

HRC High resolution camera

JPL Jet propulsion laboratory

ME Misclassification error method

MER Mars exploration rover

MSL Mars science laboratory mission

MSR Mars sample return

NASA National aeronautics and space administration

OASIS On-board autonomous rover science inverstigation system

PATLab Planetary analogue terrain laboratory

PIU Pancam interface unit

PPL Pasteur payload
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RAMS Robotic antarctic meteorite search

RANSAC Random sample consensus algorithm

SCAIP Single command approach and instrument placement

SIFT Scale invariant feature transform

SV Science value

SVM Support vector machine

TDEL Template dilatation edge linking

USM Unsharp mask

WACs Wide angle cameras
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