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Abstract

With autonomous robotic systems increasingly being used for various tasks including re-
search projects, their ability to operate away from their ideal laboratory environment comes
into question. Whilst long term autonomous robotic platforms do exist, few are based on
vehicles that provide all terrain maneuverability, and certainly none combine this with skid-
steering mechanisms. Inspired by the robotic requirements of the Rees Scan project in New
Zealand, this dissertation aims to show the development of an all terrain robotic platform
based on an ARGO 6x6 Amphibious Petrol Powered Skid-Steer Vehicle. The design and
development of a control system, including software and hardware, is discussed. Further,
a simplistic simulation environment is developed in an attempt to model the performance
of the robotic platform on different surfaces. It is shown that the control of such a vehicle
is possible with a reasonably high level of precision with relatively low cost components,
suggesting that with more expensive hardware or different techniques, high-precision con-
trol would be possible. Further, it is shown that based on the various characteristics of the
robotic platform such as the throttle values, wheel rotations and turn rates it is possible to
classify, with some level of accuracy, the varying surfaces allowing for future work towards
adaptive control systems able to adjust their performance as the robot moves from one
unknown environment to another.
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Chapter 1

Introduction

“I have learnt that our background and circumstances may have influenced who we are, but
we are responsible for who we become.”

James Rhinehart

1.1 Background

The geography department at Aberystwyth University, in conjunction with various other
universities, are in the process of surveying the river bed of the Rees River in New Zealand.
They have various research goals of which one in particular specifically relates to this project.

“To use Terrestrial Laser Scanner (TLS) to derive hyperscale topographic models
of the Rees River before and after floods in spring-autumn 2009-2010.” [14]

In order to accomplish their research the team are performing surveys of the river bed
every time it floods during a period of one year. The resulting data is then being analysed
to identify changes to the river bed, which will hopefully provide answers and conclusions
to their questions and theories.

Traditionally the measurements and readings for this kind of survey are taken using a
manual process [4]. However, the computer science department at Aberystwyth University
have helped to semi-automate the process by attaching various sensing and scanning equip-
ment including Global Positioning System (GPS), Accelerometers and Terrestrial Laser
Scanner (TLS) to a ARGO 6x6 Frontier (ARGO) based amphibious vehicle. The ARGO is
currently driven and operated manually.

This project aims to further the work already completed towards automation by intro-
ducing appropriate mechanical, electronic and software components such that the ARGO
can be autonomously driven by a computer control system.

In addition to the control software the project aims to produce a simulation environment
to allow testing and development of code for eventual use on the ARGO in the hope that
this will allow future software to be developed in a laboratory environment before being
deployed onto expensive physical hardware, reducing the possible cost of mistakes, and
hopefully decreasing the time required for development and testing of new software.

It is further anticipated the this project will significantly help towards the goal of produc-
ing a fully autonomous robotic platform that could be used in various other areas of research
currently being undertaken at Aberystwyth University such as the scanning and surveying
of possible archaeological sites or the ‘collaboration’ of varying autonomous robotic systems.
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1.2 ARGO 6x6 Frontier Vehicle

Figure 1.1: The ARGO 6x6 Frontier Amphibious Skid-Steer Off-Road Vehicle

The vehicle currently being used for the research in New Zealand is an ARGO 6x6
Frontier (Figure 1.1). The ARGO was never designed to be a robotic system, but as a
off-road amphibious vehicle. This means that there are various aspects of the ARGO which
could be considered unusual in a robotic system. Some of these are discussed in this section.

1.2.1 Amphibious

The vehicle is amphibious, and as such is capable of driving both on land and in water.
Further, it can do this without any modifications, adjustments or configuration changes -
the vehicle can drive directly from land and into water, continuing operations as normal.

However, in water it is clear that the vehicle will perform differently than on land.
According to the manufacturers website1 the vehicle can achieve a top speed of 3.5 mph (5
km per hour) in water and up to 22 mph (35 km per hour) on dry land.

This clearly has implications for the development of a control system. It is potentially
the case that in order for the vehicle to behave appropriately the control system will need
to be able to compensate and adapt to these differing conditions as they occur.

1.2.2 Steering

The vehicle uses a method known as skid-steering. This effectively involves locking one set
of wheels (via applying the breaks on the left or right side of the ARGO) and adjusting the
throttle to a point where the vehicle skids. This again has the potential to present various
challenges for automation.

The ground surface is expected to have a considerable impact. For example, in wet grassy
conditions it is expected that the vehicle will skid with less effort than on dry concreted
surfaces. This will clearly mean that the control software will have to adjust both the

1ARGO manufacturers website: http://www.argoatv.com, Last accessed 13th October 2009.
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steering column and throttle at the same time, and in the correct proportions, for the right
amount of time, dependant on the surface conditions, to achieve a desired turn angle.

Further, skidding is clearly not going to be as accurate as a ‘conventional steering system’
found on many purpose-built robotic systems and automobiles. As such it is possible that
after the control system has cut the throttle and unlocked the wheels the vehicle could
conceivably continue to skid. In such an eventuality the control software would have to
detect and compensate for this, and preferably have a method of preventing this in the first
place.

It may be possible to perform surface type identification by gathering enough sensor
readings during turns and maneuvers. If this is the case it may further be possible to build
characteristic profiles of performance on the various different surfaces in order to better
tune the control system, and to enable more accurate representations of movements in the
simulator environment.

1.2.3 Petroleum Internal Combustion Engine

The ARGO uses a mechanical internal combustion engine fulled by petroleum. Such engines
have considerably more mechanical complexity than an electrical system with a motor and
battery. As such this presents various challenges, and also some opportunities.

One clear problem will be that the vehicle will periodically need re-fueling as more
conventional options such as solar power will not be possible. This will greatly impact the
potential for long periods of autonomy. In addition there will almost certainly be timing
issues with the engine that will need to be monitored and accounted for. One possible
example of this is the time between the increase in throttle and the resulting acceleration.
There will almost certainly be a time lag and this could potentially add further complications
for the steering.

However, there are some advantages that should also be noted. Having a petrol engine
effectively means an “unlimited” amount of electrical power is available for computer equip-
ment while there is sufficient petrol. In addition, the various mechanical components (such
as wheel drive chains) could pose possible targets for sensors to be able to measure speed
without necessarily requiring any mechanical modifications to the wheel axles or the engine
itself.

1.3 Current Control System Techniques

There are a number of techniques already in wide use for the development of robotic control
systems. Those which may be of value for this project are described in this section.

1.3.1 Open and Closed Systems

There are two classifications of control systems, those which use feedback are called ‘closed
systems’. They monitor the state of a system and perform actions to ensure that the state
is maintained, or that a desired new state is achieved. A primary example of closed loop
systems includes Proportional Integral Derivative (PID) controllers discussed later in this
section.

Open loop systems work by using a model of the system to decide on actions to perform.
Such systems are only useful when the responses of the system can be accurately modeled
and can be guaranteed. If this is not the case then a open loop control system could, for
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example, attempt to turn a motor on at a specific speed by delivering a certain voltage
and current. However, when under load the motor may require more power, and so the
motor may not achieve the desired speed. A open loop control system would not be able
to compensate for the extra power requirements as it has no feedback informing it that the
motor is running slower than required.

1.3.2 PID Controllers

PID controllers [9] are used in many systems as a method of closed-loop control. In their
simplest form they use the process variable, pv, from a system being controlled (that is the
current state of the system) and calculate the error for a point in time, e(t), against the set
point, sp, (the state the system should be achieving), as shown in Equation 1.1. This error
is then used to continually calculate appropriate values to move servos, actuators, motors
or other mechanical components so that the desired set point can be achieved.

e(t) = sp − pv (1.1)

PID controllers are built from three separate components. P or the proportional compo-
nent (Equation 1.2) is used to control the system such that it smoothly reaches the set point
by adjusting the speed of the system proportionally to the current error. I or the integral
(Equation 1.3) is used to prevent steady-state-errors which can sometimes occur when using
P controller. If the error is not decreasing I will continue to increase (or decrease) effec-
tively overriding P until the system responds. However, this can lead to over-shoot of the
set point and as such D or derivative control (Equation 1.4) can be added to compensate.

P = Kpe(t) (1.2)

I = Ki

t∫

0

e(τ)dτ (1.3)

D = Kd

d

dt
e(t) (1.4)

Although the three values are often used together to form a PID controller as shown in
Equation 1.5, the three values of P , I and D can be used on their own or in any combination.
It may be the case that a simple P or PI controller provides sufficient control that the use
of D is not necessary.

MV (t) = Kpe(t) + Ki

t∫

0

e(τ)dτ + Kd

d

dt
e(t) (1.5)

1.3.3 Fuzzy Logic

Fuzzy Logic is a method of making definite decisions based on imprecise, noisy or only
partially accurate data. The general idea is that we as humans often make decisions with
partial or unclear information, and we are usually right. We can make statements about
the world such as “the temperature is hotter today than yesterday” without having precise
numerical measurements.
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Such systems make decisions by evaluating a collection of varying system states. For
example, if attempting to classify the height of an object, fuzzy logic may have three fuzzy
scales: ‘object is tall’, ‘object is small’, ‘object is of medium height’. Each scale will have a
value of 1 to 0. As such, a tall object may result in a value of ‘1’ in the ‘object is tall’ state,
whilst values of ‘0’ may be used for the states ‘object is small’ and ‘object is of medium
height’. Further, with fuzzy logic, states can be represented such as ‘the object is not of
small height (0), it is slightly tall (0.1), but is very medium (0.9)’. This would then be
evaluated to suggest the object is in the boundary between medium and tall and as such
appropriate control operations could be performed for an object of that approximate height.

Fuzzy Logic can therefore be used in closed-loop control systems as a way of making
control decisions based on sensor data that may be noisy, imprecise, or where the data input
is only partially available.

It has been used with varying success [20, 16] in the development of control systems
for robotic sailing boats and for the automation of steering vehicles [7] amongst other
applications.

1.3.4 Deliberative, Reactive and Hybrid Approaches

As well as the algorithmic methods already discussed such as PID controllers, there are also
different approaches to the control of systems in terms of the amount of processing that
should take place to make decisions and where that processing should execute. This has
lead to three categories of control systems:

• Deliberative control systems are those where every control decision takes place
within a central processing unit. Data from sensors is captured, analysed and a
decision on how to move servos, actuators and motors is made based on a set program
or algorithm. It could be considered analogous to humans taking sensor input from
eyes and ears and processing them in the brain before sending control decisions via
the nervous system to arms, legs etc. Such control systems often require a model of
the real world in order to make sensible decisions. They tend to have relatively deter-
ministic responses to different stimuli due to the implementation of the main control
algorithms.

• Reactive control systems are usually built from individual small control systems or
agents which culminate into an overall robotic system. In general, each component of
the control system make their own decisions regarding sensor input, possibly notifying
other agents of their discoveries. In such control systems the reactions of any individ-
ual component does not necessarily rely on the input from others. For example, if a
robotic system had a manipulator, all the appendages may operate individually. If a
sensor on one appendage detects that it is applying too much pressure it may reduce
the pressure whilst the remainder of the appendages would continue to operate as
normal. Such control systems can often be related to impulse reactions seen in living
animals. Due to the complexity of such systems it is often the case that the behaviour
is emergent and perhaps less predicable than deliberative control systems. However,
the response times can often be improved using such systems.

• Hybrid control systems are those which use a combination of both reactive and delib-
erative control methods. In such systems the deliberative system may be programmed
to achieve a specific goal, whilst the reactive system may be in place to respond to
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changes in the environment when the deliberate systems would fail. Using the analogy
of a human once again, this is clearly how we operate. Our brain provides high-level
targets such as move arm from point a to b, perhaps crossing an unanticipated hot
surface, whilst our instinctive nature prevents us from burning ourselves by reacting
to the sudden change of temperature.
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Chapter 2

Proposed System

“It is the mark of an educated mind to be able to entertain a thought without accepting it.”

Aristotle

2.1 Overview

As already discussed this project primarily involves the development of a control system
for an ARGO amphibious vehicle and also a simulator environment that, to a reasonable
degree of accuracy, simulates the performance of the control system and the movements of
the ARGO in differing conditions. This results in a number of constraints and requirements
for the resulting system. Ultimately it is proposed that the final system should be capable
of controlling the movements of the ARGO. This is likely to include features such as steering
control and throttle control.

It should be made clear that this project is a research project rather than commercial and
therefore in addition to the software engineering problems there are a number of research
questions or goals which are detailed later in this chapter.

This chapter details further information about the software engineering and research
goals along with any assumptions that will be made regarding the software, vehicle and the
operating environment.

2.2 Research Objectives

Whilst robotic platforms are widespread, after significant investigation, it has become clear
to the author that the automation of an ARGO (or sufficiently similar) vehicle has never
been attempted before. This has lead to a number of questions both about the automation
of such a vehicle and the effects of its surroundings:

1. Can a vehicle such as an ARGO be automated, and what complexity of both software
and electronic components are required?

2. What level of accuracy can be expected from a skid-steering system, and to what
extent is a control system more or less accurate than a human operator?

3. What effects do surface type have on the operation of the vehicle?

4. Given observed characteristics of the vehicle is it possible to identify the surface type?
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The development of the control system is intended to help provide answers to these
questions, and will hopefully provide a solid robotic platform for further scientific study in
the future. However, if the software system is a failure in so far as it is unable to control
the ARGO, or does so with little or no control, then this project will not be considered a
failure. This would simply result in negative responses to most of the research questions
posed. For example, it may simply be the case that it is not possible to automate such a
vehicle.

2.3 Primary Objectives

There are a number of primary software engineering objectives that this project aims to
accomplish which are discussed in further detail in this section.

2.3.1 Control Software

The control software will be responsible for providing a solid and stable interface to the
hardware of the ARGO. This will allow for the control of all the ARGO’s low level opera-
tions, including various tasks such as the adjustment of throttle values and the positioning
of the steering. It will further allow for future development of higher level control software
capable of performing tasks such as navigation, obstacle avoidance etc. This section gives
an overview of the features required in order to produce a software system such as the one
described.

Teleoperation

The ability for a human to control the ARGO to maneuver it before and after testing or
for display purposes would be highly advantageous. As such, the low level control system
should have simplistic teleoperation capabilities. This should include:

• Set throttle position.

• Set handle bar position.

• Emergency stop.

• The ability to give control to a high-level control system.

Turn By Angle

The control software should have the ability to instruct the ARGO to turn by a specific
angle, relative to the current heading. Such angles would be expected to be within the
range of -360 to 360 degrees where the sign denotes the direction of travel, with a negative
sign indicating that the ARGO should turn in an anti-clockwise direction.

Appropriate control techniques should be used to ensure as much accuracy as possible,
within the constraints of the vehicle and bearing in mind the research objectives of this
project relating to accuracy on differing surfaces.
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Turn To Angle

The ARGO should be able to turn to any specified heading relative to North. Angles
would be expected to be absolute, that is between 0 and 359 degrees. An appropriate turn
direction should be chosen when performing a turn to ensure that the ARGO never spends
longer than is necessary to achieve the target heading.

Once again, accuracy may be impaired depending on the constraints of the vehicle,
surface type and hardware.

Move Forwards

The control system should be able to move the ARGO forwards in a particular direction,
indefinitely until told to stop. In addition, the speed of the vehicle should be controllable
via this interface.

Get Sensor Data

The control system should provide an interface to gather raw or formatted sensor data.
Specifically this data might include:

• GPS data including longitude, latitude, altitude, number of satellites, hdop etc.

• Accelerometer and gyroscope data.

• Compass data.

2.3.2 Simulator Software

The simulator software will need to have an identical set of interfaces as the control software.
However, instead of manipulating physical hardware, it will simulate the operations of
the vehicle. This means that developers of higher level control systems (such as obstacle
avoidance, track following etc) or scientists wishing to try out their hypothesises would be
able to do so without leaving the laboratory environment.

In addition the simulation software will need to have operations to set specific target
environments. This will be required in order to more accurately simulate the movements of
the ARGO in differing conditions.

It should be noted that a simulator could be an entirely separate dissertation. For this
reason the simulator is expected to be relatively simplistic with a limited set of features.
This section details the requirements for the simulator software.

Dynamic Surface Types

The simulator should have a framework for developing different classes that each repre-
sent different surface types. Such surface type classes should hold data representing the
performance of the ARGO on that specific surface. This data may include:

• Maximum and minimum speed possible.

• The speed of the vehicle at differing throttle values.

• Rates of turn and associated response times.
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It should be possible to develop new surface type classes independently of the simulator
using an API. As such new surface type implementations can be developed as they become
needed - without needing to make modifications to the main code base of the simulator.

Load Map File

The simulator should be able to load a relatively simplistic map file. Such a map file
will define differing areas, each with their own surface types. The aim is that this will
allow for the development of relatively simplistic two-dimensional representations of different
geographical locations.

Display ARGO

The simulator should display the ARGO on the loaded map at some defined starting co-
ordinate. The ARGO should then move around the map appropriately as per the control
directions received.

Simulate ARGO Command Set

All command sets from the physical ARGO should be simulated. This includes the turn by
angle, turn to angle and move forward requirements.

It will be assumed that some set point in the environment will be considered North
for the purposes of calculating compass and other sensor data. However, it may not be
appropriate to generate some sensor data such as GPS data.

2.3.3 High-Level Example Software

In addition to the control software and simulator a very basic higher-level control system
will be produced to demonstrate the functional operation of the control software. The
higher-level software will have a number of operations to perform, including:

• Providing specific angles to turn through.

• Providing specific target headings.

• Providing specific target speeds or throttle settings to the vehicle.

The high-level control software will in effect operate as a 3rd party high-level control
system would and will be developed for two reasons. First it will provide a excellent way
to test the functionality of the main control system, and secondly it will act as an example
application for future software development.

2.4 Secondary Objectives

In addition to the primary objectives there are many possibilities for enhancements and
further research. This section aims to give a brief overview of some which could potentially
be attempted if sufficient time exists.
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Enhanced Simulator

The simulator software could be greatly enhanced in a number of ways:

• The use of a 3D environment to allow the simulation of more of the environment such
as obstacles with differing heights.

• The use of a physics engine to more accurately simulate the movements of the ARGO.

Simple GPS Navigation

It would be nice to have the ability to tell the ARGO to navigate to a GPS coordinate.
Whilst more sophisticated methods of navigation and path planning [8] may not be ap-
propriate given the scope of this project, a simple “turn to heading and drive forward”
approach may be achievable.

Obstacle Detection

Some of the research being undertaken at Aberystwyth includes obstacle detection and
avoidance using various methods from camera images to 2D laser scanning. Depending on
the time remaining it may be possible to incorporate existing obstacle detection algorithms
and techniques to the ARGO.

2.5 Non-Functional Objectives

In addition to the functional and research objectives there are a number of non-functional
requirements for the control system. These are important as they can have a significant
impact on both the accuracy of any results obtained and the success of the control system.

2.5.1 Real-Time Operation

Many features of the control system will have to operate within real-time constraints. Ex-
amples of where this becomes evident include the performance of operations such as turn by
angle. In such an instance it will be vital that sensor data (such as the compass) is returned
to the control algorithm on time. If the reading of sensors is delayed it could result in the
vehicle significantly overshooting the desired target angle due to the anticipated turn rates.

Further, if the reading of sensor data is “late”, meaning insufficient readings during
operations, it could potentially result in the invalid analysis of the data when identifying
the effects of surface types on the characteristics of the ARGO.

In addition, a number of the existing control techniques already discussed such as PID
controllers require guaranteed loop time in order to be tuned correctly. Failure to have a
response time that is consistent could mean that the tuning is correct for one loop but not
for another.

2.5.2 Safety

Given the size and nature of the ARGO safety is of significant importance. It is conceivable
that the ARGO could seriously injury or, in extreme cases, kill someone if the software fails.

As such, the robotic platform should have mechanisms to manually override the control
software in the event of unexpected or unsafe behaviour, and preferably the software should
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have procedures in place to ensure that the vehicle fails safe if communications are lost with
higher-level control software, or operator requests are inappropriate.

2.6 Assumptions

In order to minimise the scope of the project to more reasonable levels given the time
constraints a number of assumptions have been made regarding the vehicle, software and
operating environment. These assumptions are discussed here.

2.6.1 Relatively Flat Ground

The hardware being used for this project is expected to be relatively inexpensive and perhaps
primitive. As such it is anticipated that the compass (in particular) will be unable to deal
with significant inclines. Whilst gradual gradients and uneven ground are unlikely to cause
problems, larger hills or slops could conceivably cause a number of problems:

• The slope may have an impact on the speed of the ARGO. This could result in
significantly more overshoot than anticipated, or faster/slower speeds than desired.

• The slope is almost certainly likely to cause issues with the compass heading readings.

As such, it is assumed that the ARGO is on flat ground during the testing. During the
course of the development solutions to these problems may be identified (such as the use
of a more expensive compass) and as such this assumption may be removed as the project
progresses.

2.6.2 Compass Data is Correct

Given the nature of a petrol engine there is likely to be vibrations and minor electrical
interference (from spark plugs) that could cause error in the sensor data from the compass.
Despite this it will be assumed that the compass data returned is correct possibly after
some simple filtering.
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Chapter 3

Market Analysis

“Do you realise if it weren’t for Edison we’d be watching TV by candlelight?”

Al Boliska

3.1 Why the System is Needed

As already discussed in the introduction (Chapter 1) this projects primary aim is related
to research currently being undertaken in New Zealand. In that respect a need had already
been identified for a robotic system.

It is also clear that all robotic systems need some means of controlling them. Various
approaches already exist from the traditional deliberative methods to the use of Artificial
Intelligence (AI) and Artificial Neural Networks (ANN). [10, 11] Due to the massive varia-
tions in robotic systems this control software is often specialised. As a result it is clear that
there is no one control system to work and fit all robotic systems. Due to the custom nature
of the hardware configuration being used on the ARGO no such control system exists.

A significant portion of robotic systems have simulator environments. [5, 12] This allows
for the development and testing of software, possibly without needing to use expensive
hardware. In addition it allows for troubleshooting of software when the physical robot
may be hundreds or, in the case of space robotics, millions of miles away. Clearly the
simulator must be a close approximation of the physical hardware and control software.
For this reason the simulator must either be custom built, or highly configurable such that
it can allow for the building and development of custom robotic configurations. Again, due
to the custom nature of the ARGO hardware and the decision to produce a custom control
system, there will be a clear need for a purpose built simulator.

3.1.1 Possible Future Uses

Military

The military have been using Unmanned Air Vehicle (UAV) and Unmanned Ground Vehicle
(UGV) robotic systems for many years and their use is expected to increase over the next
decade. [21]

There are many possible uses for robotics in the military. Some of these are clearly not
directly relevant to this project (such as UAV or airborne robotic systems). However there
are many possibilities for UGVs. Some of these might include:
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• Detection and disarmament of mines and explosives.

• Patrol and intrusion detection of secure areas.

• Incursion into enemy territory.

• Troop transportation, especially given the amphibious nature of the vehicle, etc.

Space Exploration

Due to the harsh environment in space, robotics are already widely used for exploration
in the form or orbiters, landers and rovers. A paper [13] released in 2003 suggests many
current and possible future uses for robotics in the space arena, including:

• Planetary surface exploration.

• In space assembly, inspection and maintenance.

• Surface and in-space human assistance.

• Surface instrument deployment.

• Science planning and perception.

Whilst it is highly unlikely that this project will directly be used for space exploration
both due to the size and weight of the ARGO and due to the fact that space certified
components are not likely to be used in its construction, some aspects of this project such
as the simulation environment and the control software may prove useful as a base for future
research in the field.

Research & Teaching

The Intelligent Robotics Group (IRG) at Aberystwyth University, one of the largest robotics
groups in the UK, are constantly pursuing new ways of using and controlling robotic systems.
As such in addition to the research being conducted in New Zealand it is highly likely that
the ARGO will be used for additional research in various areas after the initial research is
completed. This is further likely due to the fact the department owns two ARGOs.

According to the IRG website1 their research topics include biologically inspired robotics
and control, space robotics, visual navigation and mapping and field robotics. Some of their
research has included development of the European Space Agency (ESA) ExoMarse rovers,
calibration of the robotic arm on Beagle 2 and the development of Beagle-B, a robotic
sailing boat.

In addition to their often internationally leading research, many of the robotic systems
at Aberystwyth are used by students at the university for teaching, dissertation and PhD
research. Having a robotic platform available which can easily be controlled and adapted
to include additional sensors according to a specific goal would be highly valuable to the
department.

1IRG website: http://www.aber.ac.uk/en/cs/research/ir/, Last Accessed: 16th October 2009
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3.2 Existing Products

3.2.1 Control Software

Player

Player2 is an open-source network control interface for robotic systems. In effect, Player sits
between a client application, which is generally used to do high-level robotic control such
as path planning, and a platform specific hardware driver used to physically control the
motors and sensors on the robot. Player then provides a network interface for the control
of the robot, allowing the high-level control software to be developed in any programming
or scripting language that supports network communication.

Due to the modular nature of the software it can be used to control almost any robotic
system simply by the production of a driver. As such Player has the advantage that it
can allow for one control system developed for one robotic system to be used on any robot
that has a Player driver. This also means that Player can be used with various simulation
environments (detailed later in this chapter) by simply producing an appropriate driver for
conversion of Player commands to the simulator commands.

Player is already widely used within the IRG at Aberystwyth and this means that is
could potentially be a competitor to aspects of this project. However, it is also possible that
a Player driver could be developed which would allow for Player to control the ARGO using
the control software developed for this dissertation. Whilst this would lead to another layer
of abstraction from the physical hardware and the high-level control software, it would also
mean that some of the existing control software and algorithms could potentially be used
on the ARGO with few or no modifications.

Bespoke Control Software

Due to the nature of the robotics industry there are many bespoke software solutions to
control robotic systems. Some of these use traditional methods often known as deliberative
control systems, others use a variety or hybrids of different methods such as reactive control
systems, ANNs and Artificial Endocrine System (AES).

There can be many reasons for the development of such control software, some of which
may include:

• Research into new or better methods of controlling robotic systems.

• Research into other areas such as biological systems. This can then lead to the simu-
lation of these biological systems through robotics.

• New or bespoke hardware that doesn’t already have control software, such as with
this project.

The problem with such software is that it tends to be developed for a specific robotic
system, or it is designed to perform a specific task. As such any existing software of this
kind will be unlikely to function properly or adequately for the ARGO.

2Player website: http://playerstage.sourceforge.net/index.pgp?src=player, Last accessed: 18th
October 2009.
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3.2.2 Simulator Software

Various simulators for robotic systems exist. This section aims to give a brief overview of
some of these simulators and their features.

Stage

Stage3 is a relatively simple open-source 2D robotic simulator (Figure 3.1) designed for use
in a UNIX/Linux environment. According to the Stage simulator website the aims of the
project are to “support research into multi-agent autonomous systems.” As such the result-
ing software attempts to simulate a wide range of robotic systems, often simultaneously, to
see how they react together. However, the models used for the robotic systems tend to be
relatively simplistic and “computationally cheap.”

Figure 3.1: The Stage Open-Source 2D Robotic Simulator Environment

Stage can work using one of two methods:

1. As a Player plug-in allowing code developed for robots that use Player to seamlessly
use the simulator environment. The advantage of this approach is that most of the
time code developed using the simulator can be used on physical hardware with few
or no modifications.

2. Via the provided C library (libstage). Unfortunately using this method means that
once code is produced for the simulator it will need modifying to work with the libraries
provided by the control software of the physical robot, introducing the possibility of
mistakes during the conversion from simulator to the physical world.

3Stage website: http://playerstage.sourceforge.net/index.php?src=stage, Last accessed: 18th Oc-
tober 2009.
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Gazebo

Gazebo4 is a more sophisticated 3D robotic simulator environment (Figure 3.2) which is
still under heavy development by the same group that produce Player and Stage. Gazebo
is also an open source project designed for use on a Linux/UNIX system. Unlike Stage,
Gazebo does not intend to simulate a large population of robots, but a smaller population
more accurately.

In addition to simulating the robotic systems, Gazebo can also simulate a lot of the
hardware that robots use including sonar, GPS, stereo cameras etc. The environment also
includes a physics engine which allows for much more complex simulations such as picking
up objects or pushing objects around the simulated environment.

Figure 3.2: The Gazebo Open-Source 3D Robotic Simulator Environment

An additional advantage of Gazebo is that, as well as providing various templates for
existing robotic systems such as the Pioneer5 robots, it also allows developers to build
custom robot configurations and then simulate their movements and operations within the
environment.

As with Stage, software developers can interact with Gazebo using two methods. The
first being a Player plug-in, and the second being a C library called libgazebo. As such,
both these methods suffer from the same advantages and disadvantages already identified
with the method of interaction with Stage.

Simbad Java 3D Robot Simulator

Simbad6 is a 3D robotic simulator written in Java (Figure 3.3). According to the Simbad
website the simulator has been designed specifically for educational and scientific purposes.

4Gazebo website: http://playerstage.sourceforge.org/gazebo/gazebo.html, Last accessed 18th Oc-
tober 2009.

5Pioneer robot: http://www.activrobots.com/ROBOTS/p2dx.html, Last accessed: 18th October 2009.
6Simbad webiste: http://simbad.sourceforge.net/, Last accessed: 18th October 2009.
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Figure 3.3: The Simbad Java 3D Robotic Simulator

Simbad boasts various features including the ability to easily develop control software,
modify the environment and the use of various sensors including color monoscopic cameras,
sonars, Infra-red (IR) and contact sensors such as bumpers.

As with the other simulator environments, Simbad is an open source product. However,
unlike the other simulators discussed, Simbad has the advantage that it has been developed
in the Java programming language. This means that it can be used on any operating system
that supports the Java Runtime Environment (JRE).
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Chapter 4

Risk Analysis

“Foolproof systems don’t take into account the ingenuity of fools.”

Gene Brown

4.1 Overview

There are a number of different risks that could have an impact on this project. Such risks
could happen during the development of the project and could therefore have an impact on
the success of this project. Other risks are identified which relate to the operation of the
ARGO, and as such clearly affect how the software should operate.

This chapter aims to give an overview of these different risks along with suggestions for
their reduction or total mitigation.

4.2 Development Risks

4.2.1 Hardware Development Time

Identified Risk

One major aspect of this project requires the ARGO to be equipped with various hardware
components. At the time of starting the project these components are on order. It is
expected that the time for delivery will be approximately three weeks. After this point
it could take another two to three weeks to install the hardware. The result of this is a
potential delay of six weeks.

Risk Mitigation

A number of things can be done to reduce this significant risk:

• Aspects of the simulation software can be started, and possibly completed, before the
hardware is delivered. Although this will not reduce the risks related to the hardware,
it will mean that time otherwise ‘wasted’ can be put to effective use. This would mean
that in the later stages of the project the coding can focus primarily on the physical
aspects rather than the virtual.
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• Prototype hardware already available such as accelerometers, GPS etc can be used
with the ARGO to get initial readings for the development of the simulator. This could
also potentially help towards a more appropriate choice of hardware. For example, it
may be found that the accelerometer or compass components are not accurate enough
during testing with the prototype hardware. With this information it will be easier
to specify more appropriate components.

4.2.2 Hardware Failure

Identified Risk

All hardware is subject to failure. Should the hardware fail this could have devastating
consequences for the success of this project.

Risk Mitigation

• In order to allow for possible hardware failure it is hoped to have major aspects of the
programming completed by December 2009. This way should hardware fail there will
be sufficient time to order replacement components before the final project is due.

• The simulator developed could potentially be used to demonstrate some of the high-
level aspects of the project (the high-level example control software for example)
should the ARGO be irreparable.

• Many components to be used in the production of the ARGO will be ordered in
duplicate, or there are already spares available. This will mean that most hardware
failures should be relatively simple and quick straight swap replacements.

4.2.3 Access to Hardware

Identified Risk

The hardware being used is located on a university campus approximately 20 minutes walk
from the main campus. It is not always staffed and as such there will almost certainly be
periods of time where access to the physical hardware is limited.

Risk Mitigation

• It is intend that the time when hardware is not available can be used to complete
work on the simulator aspect of the project. Further, documentation could also be
maintained during these periods.

• Where possible the use of the simulator environment, once completed, can be used to
conduct tests and further development work on the high-level example control software
until the hardware is once again available.

4.2.4 Lack of Previous Experience in the Field

Identified Risk

The author of this report has limited experience of the robotics field and as such some of the
terminology and methods may be less familiar. This could potentially lead to unwise design
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and development decisions both with respect to the hardware and sensor requirements and
to the software development.

Risk Mitigation

• Investigative work will be conducted to more thoroughly understand any aspects of
the project where the author lacks experience.

• Existing hardware platforms can be used as prototype hardware to gain readings and
measurements of the ARGOs performance in order to assist in the decision making
process as to what sensors and hardware will be required.

4.3 Operational Risks

4.3.1 Software Failure

Identified Risk

The software controlling the ARGO may fail or attempt to perform operations which are
not sensible or worse, dangerous.

Risk Mitigation

• The control system software should have sufficient protective methods to prevent such
occurrences in the first place. This should include the use of appropriate coding stan-
dards, recognised design and development methodologies, appropriate error handling
and validation of parameters to functions and fail-safe mechanisms.

• All testing of the hardware will be conducted with more than one person; preferably
one person will remain in the vehicle at all times allowing for the emergency manual
application of the brakes or the turning off of the engine.

• The use of a industrial grade electronic remote override will be installed to cut power
to the engine remotely if all other safety systems fail.

4.3.2 Hardware Failure

Identified Risk

During the course of normal operations hardware components may fail. In such circum-
stances software control of the ARGO may become impossible. For example, failure of a
servo controlling the throttle would not be rectifiable by software. Attempts to reset the
throttle to an appropriate level would fail due to the damaged hardware.

Risk Mitigation

• As with the software failure, the industrial grade emergency shut-off will be helpful
in such circumstances.

• Once again, as with the software failure, more than one person should be present
during all tests to provide assistance or manual override of breaking etc.
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Chapter 5

Development Methodology

“A computer lets you make more mistakes faster than any invention in human history -
with the possible exception of handguns and tequila.”

Mitch Ratcliffe

5.1 Choosing a Methodology

When working on any engineering development it is prudent to have a recognised, accepted
and proven methodology to control and manage the development process. This is as equally
important in the software engineering world as it is for any other engineering discipline. Hav-
ing a good solid methodology provides numerous benefits during the software development
process, including the control and monitoring of the project progress and ensuring that all
team members have a consensus as to the direction of the project.

There are a number of differences between the software engineering community and that
of other engineering discipline such as mechanical engineering. To use a simple example
of building a bridge. In mechanical engineering it is very important to have a detailed
design of the bridge before the manufacturing of parts and assembly work can commence.
This means everything must be specified down to the smallest detail. One screw with the
wrong thread or the wrong diameter could potentially cause the whole bridge to collapse.
As such, engineering methodologies have emerged which enable engineers to specify, and
build their bridges such that mistakes like the size or type of a screw or bolt do not happen.
Adaptations of these methodologies are then often used in the software engineering industry
leading to methodologies such as the waterfall methodology. [15]

However, unlike with mechanical engineering where it is clear that the bridge must
span a certain area, and be load-bearing up to some maximum figure etc, software is not a
tangible product and is subject to change. In software engineering it is not always possible
to know all of a users requirements up front or in great detail. This can mean that projects
developed using traditional methods can often go over budget, take longer than expected
or even fail all together. Others can find that projects using such methodologies deliver
working software on time and in budget. For this reason, over time, various software
engineers have developed new and differing methodologies for the development of software.
Boehm suggests in his paper [3] that these methodologies follow a spectrum (Figure 5.1)
from the traditional heavy-weight plan-driven methodologies such as the waterfall or spiral
methodology to what is known in the industry as agile methodologies such as SCRUM, [17]
Feature Driven Development (FDD) [1] and eXtreme Programming (XP). [2]
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Figure 5.1: Boehm’s Planning Spectrum

Choosing which methodology is appropriate for a given project is a difficult task that
is aided by the experience of the engineers undertaking the project. For example, an en-
gineer may have experience of using various different methodologies, and have their own
ideas about which methodologies work under certain circumstances. Further, the choice
of methodology also depends on the amount of up-front information known about the end
product. If engineers have worked on similar projects previously, and have a good idea of
the requirements, methodologies such as the waterfall methodology may be appropriate as
more accurate estimates and identification of tasks and milestones can take place early on in
the development stage. However, if little information is known, or the project is subject to
change, or there is a lack of experience and thus significant risk involved then agile method-
ologies can often prove to be useful as they allow for a changing customer requirements
during the project. If nothing else, one thing is clear - no single methodology exists that
will suit all development projects.

In order to decide on a methodology for use during the project it was necessary to
identify various aspects of the project. These aspects are discussed briefly.

5.1.1 Known Requirements

It is clear up to this point that there are various requirements which are known and almost
certainly will be set in stone. These are detailed in the project objectives (Chapter 2). This
may suggest that a up-front design methodology such as the waterfall methodology would
be appropriate for this project.

It is also clear that there are a lot of unknown aspects to the project, and further that
some of the requirements which do exist could be considered vague. With this in mind it is
highly likely that the requirements could need modifying during the course of the project,
and this suggests that an agile approach would be more appropriate for this project.

5.1.2 Authors Experience

One risk identified during the risk analysis (Chapter 4) was that the author has limited
experience in the field of robotics. This means that it is highly unlikely that the author has
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sufficient knowledge to accurately take into account all possible influences on the project and
as such plan mile-stones for the project upfront as is required by a heavy-weight methodol-
ogy.

It is also likely that a significant amount of spike or research work will need to be
conducted in order to bring the author up to speed. Given this, it suggests that an agile
methodology would be most appropriate.

It is further the case that the author has had experience of some agile methodologies
such as XP and also of plan-based methodologies such as the waterfall methodology. Whilst
both projects were a success, delivering the software products on time and working, it
was felt that the agile approach worked better for the author and was more suited to the
authors personality. This further enhances the suggestion that an agile approach would be
appropriate.

5.1.3 Project Size

Given the nature of this project, it will be conducted by a single person - namely the
author. Plan driven methodologies are often more suited to large teams of people where
communication of information is only viable via documentation, wikis, forums and other
project management tools.

Agile methodologies are much more suited to smaller teams. This once again suggests
that the author should take an agile approach to the development of the software.

5.2 SCRUM

After reviewing the factors affecting this project it has been decided that an agile approach
would be most suited. Numerous so called agile methodologies exist, and of these SCRUM
has been chosen as the methodology for developing this project.

SCRUM is a iterative framework consisting of a number of different practices and roles
for the development and management of software products. SCRUM developed over a
number of years separately in various organisations. [19, 6, 18] SCRUM provides a nice
balance between plan-driven and extreme agile methodologies, allowing for some up-front
design and requirements analysis whilst still managing to be agile in so far as it is able to
account for and adapt to change during the project.

5.2.1 SCRUM Roles

There are a number of roles defined in SCRUM which can be categorised into one of two
groups: pigs or chickens. The ‘pig’ roles are those who are fully committed to the project
such as the developers. The ‘chicken’ roles are those who are not actually part of the process
but those who must be taken into account such as managers and customers. In this section
a brief overview of the primary roles in SCRUM is given.

SCRUM Master

This is a member of the team who maintains the process. That is, he or she is in-charge
of ensuring that all team members are following the SCRUM process. The Scrum Master
also has various other duties during the different aspects of the SCRUM process such as
controlling the stand-up meetings discussed later in this section.
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Traditionally the SCRUM Master role is taken on by a member of the team and is
therefore considered to be a ‘pig’. However, it is important to note that the SCRUM
Master is not the leader of the team as, in SCRUM, the team is supposed to self-organise.

Given that this is a one-man project this role effectively becomes superfluous to require-
ments and so will be ignored during the course of this project.

Product Owner

This is a person who represents the customers and stakeholders. The product owner is
there to ensure that the development team work on the tasks that are most important to
the customer. Whilst the customers are considered to be ‘chickens’ in SCRUM, the product
owner is considered to be a ‘pig’.

In this project, there are various candidates for the product owner role:

• The project author is clearly a stakeholder as he has to produce the software in order
to gain a degree.

• The project supervisor is a customer as he wishes to use the end product at a later
date for future research.

• The research team in New Zealand are also customers as they eventually hope to use
the end product to control the ARGO in their possession.

During the development process it is the product owner who has the last say as to
which items in the feature or product backlog should be developed next. For this project
it is intended that the author will act as the primary product owner.

The Team

The final primary role in the methodology is ‘the team’. This includes the engineers who
do the actual design, analysis, implementation, testing, etc during the development process.
All members of the team are considered to be in the ‘pig’ category.

Once again, given the nature of this project the ‘team’ will consist solely of the author.

Stakeholders or Customers

The stakeholders or customers are the people that the software is being developed for. They
are considered to be ‘chickens’ in the SCRUM methodology.

The Product Owner is responsible for contacting the stakeholders and identifying their
needs. As such, anyone who could potentially be a product owner in this project could also
be a stakeholder. Specifically this means this project has two stakeholders:

• The author.

• The project supervisor.

Although the team in New Zealand would eventually like to use the resulting robotic
platform, they are not considered to be a primary stakeholder or customer for this project.
The only contact the author has to the team in New Zealand is via the project supervisor,
and so for the purpose of this project the project supervisor speaks for all the stakeholders.
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Managers

The managers are people who setup and maintain the development environment etc. In
SCRUM the managers are considered to be ‘chickens’. In this project the author is clearly
the primary person who decides which development environment will be used.

5.2.2 SCRUM Phases

SCRUM is split into three separate phases (Figure 5.2), each of which is detailed in this
section.

PregamePregame PostgamePostgameGameGame

Basic Planning 

and Overview 

Architecture Design

Sprints

Iterative Development Closure

Figure 5.2: SCRUM Development Methodology Phases

Phase 1: Pregame

The pregame phase is used to do a some initial planning and design work. The pregame
stage can also be used to do spike or initial investigative work to help identify and minimise
risk during the project.

Whilst SCRUM is an iterative methodology it is still important to have a certain amount
of planning involved. In SCRUM this involves a number of tasks:

• Developing a backlog list. The backlog is effectively a list of features that are known
to be needed.

• Defining the delivery date and functionality of one or more releases.

• Selecting the release most appropriate for immediate development.

• Defining project teams.

• Assessing risk (through spike work).

• Development tool and environment selection.

• Various management tasks such as marketing analysis, estimating cost, marketing,
and ensuring that funding is available.
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It is clear from this list of tasks that some are inappropriate for this project such as
ensuring that funding is available and defining project teams. As such, these stages will not
be used during this project.

Once the planning is completed an architecture or high-level design is produced. It is
important to note that because the methodology is iterative the design work completed
should not be heavy-weight as is the case with plan-based methodologies. That is to say,
the design should be concise and show a general overview only of features that are known
and the expected work involved in producing those features. Further, it is acceptable (and
expected) that the design can change considerably during the development of the project.

The design and overall system architecture produced during the pregame stage can be
considered a starting point. It will help with the identification of tasks and the identification
of how many sprints are needed etc. During each sprint in the game stage the design is
extended, modified and improved.

Phase 2: Game

The game stage is the main aspect of SCRUM. It is during stage that the design and
development work really takes place in the forms of sprints.

At the beginning of each sprint a ‘sprint planning meeting’ takes place where a number
of things are discussed including the work that is to be completed, preparing the sprint
backlog which details the time it should take to do the work. Given the nature of this
project, this meeting will take a written form at the start of each sprint chapter.

Once the initial meetings are completed the sprint begins. Each day during the sprint
a 15 minute meeting is held. During this meeting each member of the team discusses what
they have achieved since the previous day, what they intend to do that day and any problems
that are preventing them from accomplishing their goals. Once again, due to the nature of
the project, this meeting will not take place. Instead the general progress of the sprint will
be documented in the appropriate section of this report.

In larger projects using SCRUM it may be the case that work is distributed amongst
many teams. After the Daily SCRUM meeting a ‘SCRUM of SCRUMS’ meeting takes place
amongst team leaders with a similar agenda to that of the daily SCRUM, but discussing
the progress of teams as opposed to individuals. As this project does not have teams of
people this meeting will be omitted.

At the end of each sprint a Sprint Review meeting takes place where a review takes place
of the work that was completed, and not completed. Anything that can be demonstrated
to the stakeholders is. After this meeting a sprint retrospective takes place where all team
members reflect on the sprint and try to continually improve the development process by
answering two questions: What went well during the sprint? What could be improved in
the next sprint? These items will appear at the end of each sprint chapter.

Phase 3: Postgame

The final stage of the project is postgame. This happens when there is no more time
available for development and those features in the backlog of most importance as decided
by the project owner have been completed.

At this point a number of final tasks are completed, designed to prepare the product for
general release. This means the integration, testing, user documentation, training material
and marketing material are produced.
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Chapter 6

Phase 1: Pregame

“I’m doing a (free) operating system (just a hobby, won’t be big and professional like gnu)
for 386(486) AT clones.”

Linus Trovalds, The launch of Linux.

6.1 Environment Setup

One important task involved in fulfilling phase one is to ensure that a functional development
environment exists. This includes many aspects such as ensuring backups are taken, that
source code is under version control systems, that all compilers and libraries are at the
correct versions etc.

This section details a number of the decisions taken in order to achieve a suitable working
environment for development.

6.1.1 Version Control System

Version control is very important in the management of a software project. It allows tracking
of all changes made to software. This means that if mistakes are made which cause the
software to fail, it is easy to retrieve a previous working version and identify the changes
that caused the faults.

The author has had experience of various version control systems including Subversion1,
Mercurial2 and GIT3.

Using this previous knowledge it was decided that Subversion would be the most ap-
propriate choice for this project. Whilst it does not offer some of the collaborative and
distributed features that GIT and Mercurial offer, these are not necessary for this project
and so would have simply added more complications.

Various Subversion servers were available to the author for use, including:

• Departmental Subversion Server

• Google Code

• Personal Virtual Private Server

1Subversion website: http://subversion.tigris.org/, Last accessed: 20th November 2009.
2Mercurial website: http://mercurial.selenic.com/, Last accessed: 20th November 2009.
3GIT website: http://git-scm.com/, Last accessed: 20th November 2009.
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• Personal Laptop/Desktop Computer

Each of these have their advantages and disadvantages when being used. The depart-
mental server is good choice as it is maintained by the department, backed up regularly and
if there are any problems with it the department will be aware of them immediately.

The Google Code option was also of interest as it provides a management interface that
can be used for issue and ticket tracking. However, Google Code requires that all projects
be released under an Open Source license. Whilst the author is not opposed to Open Source
(and indeed favours it), it was unclear what the position was of the university with regards
to ownership of the resulting project code. As such, Google Code was not chosen.

The advantage of using both the personal virtual private server or a personal lap-
top/desktop computer is that the author would have full control over all aspects of the
configuration and management of the subversion repository. Unfortunately it would also
mean that any hardware or data corruption would be entirely the authors fault, and as such
this would not provide adequate protection during the course of this project.

Given these factors a decision was made to use the departmental subversion server.

6.1.2 Backup Management

Backups are a vital part of everyday computing. The ease with which programs and docu-
ments can be changed, deleted and created means that if backups are not kept it is highly
likely that at some important documents will be lost or possibly corrupted.

Fortunately, due to the authors choice of subversion server there are already regular
backups being taken by the university. However, for the sake of paranoia the author has
elected to produce a cron script which checks out a copy of the subversion repository each
day to a separate off-site server. A such at most the author will loose one days work should
all the servers in the university fail and the backup procedures also fail.

6.1.3 Language Choice

The nature of this project means that there are effectively two target environments that
need to be considered. The first is the physical hardware which runs on the ARGO. The
nature of the hardware to be used limits the language choice to assembly and C. Fortunately
the author has had extensive experience of both languages and as such it has been decided
that C will be used where possible, but if Central Processing Unit (CPU) or Peripheral
Interface Controller (PIC) registers need to be modified, assembly can also be used.

The second target architecture relates to the simulator. It would be preferred that
the simulator will work on various different environments and as such it is suggested that
the Java programming language be used as this allows for extensive portability across any
platform that provides a JRE.

6.1.4 Operating System and IDE Choice

The author has extensive experience of the UNIX and Linux operating systems and has
decided to use these for the development environment. Specifically the author will be using
four different operating systems during the development process.

• Gentoo4 Linux is installed on the authors home workstation.

4Gentoo website: http://www.gentoo.org, Last accessed: 21st November 2009.
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• Ubuntu5 Linux is installed on the authors personal laptop.

• Fedora6 Linux is installed on the workstations in the digital systems laboratory and
also on the computer system in the robotics laboratory on the Llanbardan campus.

• OpenSolaris7 (UNIX) is installed on various workstations in the department.

All these operating systems provide a similar set of features and all are familiar to the
author. The advantage of having a diverse set of operating systems for the development
work is that the simulator software in particular can be tested on multiple platforms to
ensure compatibility.

The author is an avid user of vi/vim8, and as such this tool will be used for the devel-
opment of code. vi/vim also has the advantage that it is found on almost all UNIX/Linux
systems.

For compilation the author will be using the GNU Compiler Collection9 for compiling the
C code and the Sun Microsystems Java Development Kit (JDK) Version 6.010 for compiling
Java code.

Specifically GNU Make11 makefiles will be used to automate the build process of the C
code and Apache ANT12 build files will be used to automate the build process of the Java
code.

6.2 Investigative Work

During phase one of this project a large amount of investigative or spike work has been
conducted in order to alleviate a number of risks identified in the risk analysis (Chapter 4)
and in order to better estimate and plan the subsequent sprints. This work is detailed in
this section.

6.2.1 Hardware Development

One of the first things that was done was to start developing prototype hardware. There
were two reasons for this:

1. It was recognised early on in the project that in order for the development of the
simulator code, information would be needed regarding the timings and accuracy of
the ARGO during operations such as turning through differing angles etc. In order
to gain this information sensor data was required.

2. The hardware was identified as a major risk and potential show-stopper for the project.
As such, any work that could be done early on in the project to reduce this risk was
considered to be beneficial.

5Ubuntu webiste: http://www.ubuntu.com, Last accessed: 21st November 2009.
6Fedora website: http://www.fedoraproject.com, Last accessed: 21st November 2009.
7OpenSolaris webiste: http://www.opensolaris.com, Last accessed: 21st November 2009.
8vi/vim website: http://www.vim.org, Last accessed: 22nd November 2009.
9GNU Compiler Collection website: http://gcc.gnu.org/, Last accessed: 22nd November 2009.

10Sun Microsystems JDK website: http://java.sun.com/javase/downloads/index.jsp, Last accessed:
22nd November 2009.

11GNU Make website: http://www.gnu.org/software/make, Last accessed: 22nd November 2009.
12Apache ANT website: http://ant.apache.org, Last accessed: 22nd November 2009.
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Fortunately the author was aware of some existing hardware (Figure 6.1) solutions
under development by the department for a number of second and third year undergraduate
modules. The boards offered various sensors, including:

• 3-axis Accelerometer

• GPS Module

• Compass

• PICDem Board with a 10-bit Analog to Digital Converter (ADC)

• GUMSTIX board with WiFi and RJ45 network connections

Figure 6.1: Initial Hardware Development with 2-Axis Gyroscope

It was initially expected that this configuration of hardware would provide sufficient
sensor data to accurately calculate the required information for the later development of
the simulator and control software. This proved (after testing the ARGO, detailed later in
this chapter) to be incorrect and so a 2-axis gyroscope was also added to the hardware in
such a way that it could easily be removed for the undergraduate modules.

With the hardware completed and ready for testing, spike code was produced to get
various sensor readings, including the GPS location and compass heading of the ARGO. In
addition, code was also written to get information from the gyroscope and accelerometer.
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6.2.2 ARGO Testing & Results Analysis

With the prototype hardware complete the next step was to manually drive the ARGO,
performing various different turns and movements, whilst retrieving data. Given the nature
of the hardware, luggage straps were used to attach the hardware to the underside of the
seat of the ARGO (Figure 6.2).

Figure 6.2: Picture of the ARGO During Testing

In total four attempts were made to get the required data. Each of these tests are
detailed here.

Test One: Friday 23rd October 2009

During the first test a number of aspects were considered including the moves that needed
to be made so that the author could get sufficient information for the development of the
simulator and possible further testing.

It was decided that a set of 90 degree moves would be executed on differing conditions
(specifically grass, gravel and tarmac) followed by a number of 45 degree turns (Figure 6.3).

45 deg 45 deg

Figure 6.3: The moves executed during the testing of the ARGO

Between each test a large gap of approximately 30 - 60 seconds was left in order to
identify the start and end of each test in the resulting data file. The data was then plotted
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using GNU Plot13, and the results of that are shown (Figure 6.4).
A number of things are immediately obvious from the result data. The first is right at

the end at approximately 21500 readings. This sudden drop is where the seat that the test
hardware was strapped to was lifted at the end of the testing and so can be ignored.

Additionally, it is also evident that the data is very noisy and does not clearly show the
different turns executed. Further, because no time information was taken between readings
it was not possible to accurately work out where one test ended and the next began.

Armed with this information it was clear that a gyroscope would be needed as well as
an accelerometer, and so the hardware was modified as detailed earlier.

Figure 6.4: Test Result Data: 23rd October 2009

Test Two: Tuesday 10th November 2009

For the second test a similar set of movements were executed with a few additions. First,
a 180 degree turn left followed by a 180 degree turn right, and then a 360 degree turn left
and right. Additional information was also gathered regarding the maximum speed of the
vehicle which turned out to be approximately 15 - 20 mph.

In addition to the extra data recorded, repeat readings were taken for every maneuver
in order to verify the results were correct and once again the results were plotted using
GNU Plot (Figure 6.5).

Further to recording the turns taken, this time the time was noted at the start and end
of each test and as such it is now clear that the sampling rate was 5 readings per second.
With the gyroscope data and the extra timing information the author was able to identify
specific maneuvers in the data.

Figure 6.6 clearly shows four turns. The first two turns are 180 degrees, first left then
right. The second two turns are 360 degrees - again first left the right.

It is easy to identify on the graph how long each turn took and to see the different
readings from both the gyroscope and accelerometer during these turns and maneuvers.

13GNU Plot website: http://www.gnuplot.org, Last accessed: 20th November 2009
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Figure 6.5: Test Result Data: 10th November 2009

Figure 6.6: Detailed Test Result Data: 10th November 2009
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Although the data retrieved proved to be useful it is also lacking as it does not show the
compass data. The compass data is important as it helps to accurately identify the actual
turn angle. Given that the ARGO was being manually driven it may be that a 90 degree
turn was actually 85 or 100 degrees. With the compass data it would have been possible to
accurately measure the turn angle.

Unfortunately during the first test the time taken to read the compass was approximately
1.05 seconds per reading. This is clearly not a fast enough sampling rate to get the required
data. As such, the author spent some time attempting to identify the problem. After some
investigation the problem was identified (a sleep() statement that had been put in during
testing) and was fixed ready for the next day of testing.

Test Three: Wednesday 11th November 2009

With all the previous faults and errors identified and fixed this test was used to gather
much more information including GPS, compass, gyroscope and accelerometer data.

Once again the same set of maneuvers that were used for the second test were used
for this test. Unfortunately due to corruption in the data (Figure 6.7), which was due to
the quality of the spike code, the data proved to be useless for this project and so will be
ignored completely.

Figure 6.7: Corrupted Test Result Data: 11th November 2009

Test Four: Thursday 26th November 2009

In the fourth and final test all the aforementioned turns were executed twice so as to get
repeat readings for all sensor data and the results are shown (Figure 6.8).

It is important to note a number of things regarding the data shown. First, the compass
readings have been scaled by a factor of 10 so that they are within the correct value range
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Figure 6.8: Test Result Data: 26th November 2009

to show on the same graph as the accelerometer and gyroscope. As such, a reading of 35 is
actually 350 degrees etc.

Of interest in this graph are the values between 6,000 readings and 10,000 readings.
During this period a brief telephone call took place and so the testing was halted for a few
seconds. Further, after approximately 12,500 readings there were no more readings being
taken. This was simply readings whilst the ARGO was stationary and the software was
shut down. Both of these periods of time can be ignored, and that data will not be used
for any analysis work.

Figure 6.9 shows a more detailed analysis of two turns during this test. It is clear from
the compass data in the graphs that the first turn, between approximately 11,180 readings
and 11,220 readings was a 45 degree turn from approximately 225 degrees from North to
270 degrees from North.

Having the compass data allows for significantly more actuate analysis of the data. In
addition, it starts to show with some accuracy the point at which a turn truly begins. As
seen from Figure 6.9 the accelerometer and gyroscope start to get readings far before the
heading changes. It is suggested that this is caused by the build up of the throttle, and
therefore the resulting vibrations, required before the vehicle truly begins to turn.

The results also show that even after the vehicle has finished a turn (that is the compass
value is no longer varying) there are still residue vibrations shown by the accelerometer and
gyroscope. For example, from approximately readings 11,130 to 11,150 the compass remains
static yet the accelerometer is particularly active.

In addition, the graph also shows some interesting characteristics of the vehicle at the
end of a turn that were not previously visible due to the lack of sufficient data. Specifically
at approximately 11,130 to 11,140 readings the compass is static (suggesting the end of the
turn) but the gyroscope records significant accelerations in a direction opposite to the turn
direction. It is suggested that this is where the vehicle truly came to a stop, and could even
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be characteristics of the wheels flexing.

Figure 6.9: Detailed Test Result Data: 26th November 2009

6.3 Planning

As required in SCRUM during the pregame stage a basic plan has been developed that uses
the high-level requirements identified previously (Chapter 2).

6.3.1 The Project Backlog

The first stage in the planning process is to identify a full list of requirements that will
be put into the project backlog based on the functional requirements already identified
(Chapter 2) and the investigative work already conducted. During the project, the backlog
may be modified after each sprint to include more tasks, or to remove tasks that are no
longer necessary due to the agile nature of SCRUM.

1. Control Software

(a) Retrieve Sensor Data

i. Get accelerometer readings.

ii. Get gyroscope readings.

iii. Get compass heading.

iv. Retrieve GPS position information.

(b) Vehicle Control

i. Servo and actuator hardware control code.

ii. Set engine speed/throttle position.
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iii. Set handlebar position.

(c) Turning and Maneuvering

i. Turn by angle algorithm.

ii. Turn to angle algorithm.

(d) Teleoperation Functionality

i. Retrieve and parse user input.

ii. Increase throttle.

iii. Set steering left/right.

iv. Emergency Stop.

v. Get and display compass heading.

vi. Start high-level example algorithms.

(e) High-Level Example Algorithm

i. Turn to various angles, 90, 180, 270, 360 etc.

ii. Turn by various angles, 45, 90, 180 etc.

2. Simulator Software

(a) Emulation of Vehicle

i. Get compass heading.

ii. Servo and actuator hardware simulation.

iii. Set engine speed/throttle position.

iv. Set handlebar position.

(b) Emulation of Low Level Control Algorithms

i. Turn by angle algorithm.

ii. Turn to angle algorithm.

(c) Emulation of Teleoperation Mode

i. Retrieve and parse user input.

ii. Increase throttle.

iii. Set steering left/right.

iv. Emergency stop.

v. Get and display compass heading.

vi. Start high-level example algorithms.

(d) Simulator Framework

i. Loading of maps.

ii. Dynamic surface types.

(e) Graphical Interface

i. Display of the map.

ii. Continually updating display of the ARGO and its current position on the
map.

iii. Display of sensor data and the current status of the ARGO, such as the
coordinates, heading, speed, throttle etc.
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6.3.2 Current Situation

Thanks to the investigative work already completed a significant amount of work has already
been completed towards a number of the project objectives, including a brief analysis of
the characteristics of the ARGO under manual control.

In addition, the initial investigative work has included the development of very primitive
code to gather some initial sensor readings. Whilst this code will be “thrown away” in favor
of higher quality production level code it has still been a useful exercise in identifying how to
interact with a significant proportion of the hardware. This in turn has helped to minimise
a number of the risks identified (Chapter 4). Further, it has assisted greatly with the
identification of tasks for the project backlog, and the ordering in which those tasks should
be developed.

Based on the information available, the ultimate project deadlines set by the university,
the spike work already completed and the project backlog it is suggested that five sprints
will be required for the development of the simulator and control system. Further, each
sprint is expected to last approximately 2 weeks.

However, given the methodology being used is an agile methodology it is acceptable that
the requirements and timings could change during the project, and as such the information
following in this section should be considered an initial estimation only.

6.3.3 Sprint 1

The first sprint is planned to start on the 23rd November 2009 and last two weeks. During
this time the commands to complete the following tasks are expected to be completed from
the backlog:

• 1.a.i Get accelerometer readings.

• 1.a.ii Get gyroscope readings.

• 1.a.iii Get compass heading.

• 1.a.iv Retrieve GPS position information.

• 1.b.i Servo and actuator hardware control code.

• 1.d.i Retrieve and parse user input.

• 2.a.i Get compass heading.

• 2.a.ii Servo and actuator hardware simulation.

• 2.c.i Retrieve and parse user input.

Further, during this sprint work is also expected to take place installing motors and
servos into the ARGO.

6.3.4 Sprint 2

The second sprint is planned to start on the 7th December 2009 and last two weeks. During
this sprint, the following tasks from the backlog should be completed:
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• 1.b.ii Set engine speed/throttle position.

• 1.b.iii Set handlebar position.

• 1.d.ii Increase throttle.

• 1.d.iii Set steering left/right.

• 1.d.iv Emergency stop.

• 1.d.v Get and display compass heading.

• 2.a.iii Set engine speed/throttle position.

• 2.a.iv Set handlebar position.

• 2.c.ii Increase throttle.

• 2.c.iii Set steering left/right.

• 2.c.iv Emergency stop.

• 2.c.v Get and display compass heading.

6.3.5 Sprint 3

The third sprint of the project is expected to start on the 4th January 2010 and should
last for two weeks. Although the previous sprint finishes a few weeks before this the author
anticipated that during the Christmas period little work is likely to be completed.

During this sprint, the following tasks from the sprint backlog are expected to be com-
pleted:

• 1.c.i Turn by angle algorithm.

• 1.d.vi Start high-level example algorithm.

• 1.e.i Turn by various angles, 45, 90, 180 etc.

• 2.d.i Loading map files.

• 2.d.ii Dynamic surface types.

• 2.e.i Display of the map.

6.3.6 Sprint 4

The fourth sprint is expected to start on the 18th January 2010 and again should run for
two weeks. The start date of this sprint may need to be moved forward by one or two weeks
due to exams during the end of January. During this sprint, the following tasks from the
sprint backlog are expected to be completed:

• 1.c.ii Turn to angle algorithm.

• 1.e.ii Turn to various angles, 90, 180, 270, 360 etc.
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• 2.b.i Turn by angle algorithm.

• 2.b.ii Turn to angle algorithm.

• 2.c.vi Start high-level example algorithms.

6.3.7 Sprint 5

This sprint is the final sprint and is expected to start on the 1st February 2010, though it
may start later due to possible collisions with sprint 4 and the exam period. This sprint is
expected to last two weeks, during which the following tasks in the backlog are expected to
be completed:

• 2.e.ii Continually updating display of the ARGO and its current position on the map.

• 2.e.iii Display of sensor data and the current status of the ARGO, such as the coor-
dinates, heading, speed, throttle etc.

6.3.8 Endgame

After all sprints are completed the endgame begins. Whilst normally in SCRUM testing
would take place during this period, it has been decided that testing should take place at the
end of every sprint instead. As such the end game will be used primarily for data analysis
towards surface type detected. The endgame is expected to begin on the 15th February
2010 and will last at a maximum of 4 weeks (22nd March 2010).

At the end of the endgame the project should be completed, and fully functional. All
testing and data analysis should also be complete. This will then leave approximately one
and a half months for the completion of the project report.

6.4 High-Level Design

Although in SCRUM the design of the project is supposed to evolve during the course
of the project and during each sprint, a brief overview design is suggested, as detailed in
the development methodology (Chapter 5). In this section there is a brief overview of the
current design for the simulator software and for the ARGO control software.

6.4.1 ARGO Control Software Design

Figure 6.10 shows a high-level overview of the current design for the ARGO control system.
The diagram shows a number of separate components and their communication links

such as the I2C bus or a standard RS232 terminal connection. The two main components
(the Gumstix and PIC) are briefly discussed below.

Gumstix

The Gumstix is responsible for the overall control of the system. It will have software
running on it that will allow high-level control software to issue the various commands
defined in the requirements analysis such as ‘turn by angle’ etc. In addition, it will be
responsible for retrieving and processing all the sensor data from the other components. It
has a direct serial link to the GPS module, a serial link to the PIC and a I2C link to the
compass.
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Figure 6.10: Overview of the ARGO Control System Design
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PIC

The PIC is responsible for receiving commands from the Gumstix and then acting on those
commands. The exact commands required will be identified at the appropriate spints, but
are expected to be simple textual commands such as ‘getGyro’, ‘getAccel’, or ‘moveServo’
etc.

6.4.2 Simulator Software Design

As with the control software, there is a very brief overview of the initial high-level design
for the simulator software.

Simulator.javaSimulator.javaSimulator.javaSimulator.java

APIAPIAPIAPI

BackendBackendBackendBackendGUIGUIGUIGUI

SandSandSandSand

GravelGravelGravelGravel

GrassGrassGrassGrass

WaterWaterWaterWater

High Level Control 

System Commands

Figure 6.11: Overview of the Simulator Design

In this design there are three main aspects which are important and are discussed below.

Graphical User Interface (GUI)

This block represents the graphical user interface to the simulator. The GUI will commu-
nicate with the backend system to get information regarding where the ARGO is currently
positioned etc. It is ultimately responsible for the drawing of the map and the 2D repre-
sentation of the ARGO on the map.

As with all good design, the GUI should have no functional code, leaving all major
processing to the backend classes. This way, should a different user interface be desired at a
late point it can easily be added without major code modifications. Various design patterns
such as Model View Controller (MVC) will be considered in the appropriate sprint for this
purpose.
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Backend

The backend block is the main bulk of the simulator. It is responsible for loading in
the map file, displaying the teleoperation menu and simulating the command interface
that the physical ARGO has. It will also be responsible for emulating the ARGO (sensor
readings, heading, throttle, response times etc) and also for all the processing required for
the movements of the ARGO when specific commands are received such as, for example
‘setThrottle’ or ‘setHandlebarPosition’ etc.

API

The application programming interface (API) block is used so that scientists and developers
can easily write new surface types for the simulator. This means that if a new use for the
ARGO is found that requires it to operate on a surface not previous accounted for (for
example, the Mars surface) a new surface type can quickly and easily be developed and
compiled and then loaded as a plug-in into the simulator.

It is intended that the API should be fully distributable without the need for the whole
simulator package and that Java dynamic class loading and method invocation will be used
to call the custom built surface types.
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Chapter 7

Sprint 1

“If you think education is expensive, try ignorance.”

Derek Bok

7.1 Sprint Planning

Being the first sprint of the project it started as planned on the 23rd November 2009.
During the initial planning in the pre-game phase it was decided that the following features
from the product backlog would be completed:

• 1.a.i Get accelerometer readings.

• 1.a.ii Get gyroscope readings.

• 1.a.iii Get compass heading.

• 1.a.iv Retrieve GPS position information.

• 1.b.i Servo and actuator hardware control code.

• 1.d.i Retrieve and parse user input.

• 2.a.i Get compass heading.

• 2.a.ii Servo and actuator hardware simulation.

• 2.c.i Retrieve and parse user input.

Further, being the first sprint there were no additional requirements or features left in
the backlog from previous sprints, or additional features added to the backlog. However, it
was anticipated that a number of additional design decisions would need to be made during
this sprint such as precisely what hardware would be used, what communications protocols
would be used between the differing hardware platforms etc.

Given the spike work already completed and the nature of the features in the backlog,
this first sprint was expected to be relatively trivial allowing time for hardware components
(such as actuators, servos, PICs etc) to arrive and be installed into the ARGO.

It was decided that the first half of the first week in the sprint should be primarily spent
doing a large section of the design work. The next week would then involve the development
of functions 1.a.i, 1.a.ii, 1.a.iii, 1.a.iv, 1.b.i, and 1.d.i. Finally the last half of the second
week was to be spent writing the simulator functions 2.a.i, 2.a.ii and 2.c.i.
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7.2 Design Decisions

This section covers the major design decisions that took place during this sprint.

7.2.1 Hardware Design

It was decided that due to the limited time available for the project, the experience already
gained with the teaching boards during the pre-game phase and the wide range of sensors
already available on the boards including GPS, a compass and a 3 axis accelerometer, these
would be perfect for the development of the main control system. This immediately helped
to simplify the design of the hardware for the final vehicle.

Further, it also meant that any modifications that would be needed (such as the addition
of gyroscopes, servos and actuators) would have to be easily removable and modular. This
had the added advantage that if the board failed at any point it would be trivial to replace
it with a new one simply by installing the software and firmware and finally by connecting
any external devices.

In addition to the sensors and processing hardware choices, it was also important to
decide upon the most appropriate method of controlling the engine in the ARGO and the
steering.

Steering

The steering system on the ARGO operates via handlebars which apply brake pads to a set
of discs. These discs are directly connected via chains and sprockets to the wheels on either
side of the vehicle. When the handlebars are moved, for example to a fully left position,
the brakes on the left hand side are applied and the vehicle skids left.

The simplest method of modifying this system for computer control would involve mov-
ing the handlebars using an appropriate linear actuator. Unfortunately, whilst simple and
low cost, the response times of such a liner actuator are expected to be within the region
of two seconds to go from a full lock left to a full lock right. Further, given the nature of
the system the effects of steering are only felt when the handlebars are at full lock.

The result of such a system would mean that it would be incredibly difficult to change
the heading of the ARGO whilst moving. The control system would have to bring the
vehicle to a full stop, apply the steering and then continue moving in the new direction.

The alternatives are significantly more complicated and would require the direct modifi-
cation of the braking system such that each disc brake operates independently via separate
actuators. This would have a number of advantages, in particular allowing for fast response
steering allowing the vehicle to change direction whilst moving and full vehicle braking by
applying both left and right breaks at the same time. However, such modifications would
prevent the continued manual operation of the vehicle via the handlebars.

Given this information, whilst in the long term or for future projects it would be an
interesting progression to attempt direct manipulation of the brakes, it has been decided
that the simpler option of installing a liner actuator directly onto the handlebars is the
most simple choice. Specifically, a LINAK LA121 actuator has been chosen for this purpose.
Finally, in order to accept pulse-width-modulation, a simple motor controller will be used
as the interface between the control system and the liner actuator.

1Linak website: http://www.linak.com/Products/?id2=2, Last accessed: 16th April 2010
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Figure 7.1: Steering Hardware Design

Throttle Control

When driven manually the throttle is adjusted via a grip-and-twist adjuster on the handle-
bars. This in turn adjusts a centrifugal governor. This then maintains appropriate throttle
levels at the carburetter. Unfortunately, simply attaching a servo to the governor would
significantly slow the response times of changing the throttle via a control system. For this
reason it was decided that the governor should be completely disconnected and a simple
servo would be placed directly onto the carburetter in its place.

This provides a number of advantages. First, it provided significantly faster response
times from the engine when adjusting throttle values, something which is going to be vital
for the development of the control system and secondly it allows for much greater control of
the actual throttle value. Instead of allowing the governor to decide on the actual throttle
value, the control system will be in complete control.

However, there are a number of disadvantages also. First, without the governor attached
it is highly unlikely that the engine will run at peak efficiency and as such the engine may
need more regular servicing, and further it may not provide as much power as the manufac-
turers anticipated. Secondly, it removes the possibility for the vehicle to be manually driven
without re-attaching the governor. However, as this is an extremely trivial job which takes
approximately two minutes this is not considered to be a major disadvantage. Further, with
the teleoperation mode this is also not anticipated to be needed.
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Steering and Throttle Control Overview

Having decided that the use of a LINAK LA12 for the steering and a simple servo for the
throttle the final decision was how to actually control these devices. There were a number
of options for the actual hardware/software interaction.

The first option was to use direct pulse-width-modulation via the PIC. This would have
meant having a control loop or timer interrupt driven process on the PIC directly responsible
for sending pulses to the throttle servo and motor controller for the steering.

The second option was to use an off the shelf hardware Pololu 16-Servo Controller board2

which is specifically designed to take position information via a serial line and then performs
constant pulse-width-modulation. This Pololu board would need to be run via the Gumstix
rather than the PIC via a USB serial driver.

It was decided that the use of the Pololu board would be the most appropriate in
order to get a clear division of labour in terms of the control system. The PIC will be
solely responsible for retrieving sensor data, whilst the Gumstix will be responsible for the
processing of the data and controlling the vehicle via the hardware components (Figure
7.2).

LINAK LA12 ActuatorLINAK LA12 ActuatorLINAK LA12 ActuatorLINAK LA12 Actuator

HandlebarsHandlebarsHandlebarsHandlebars

Left BrakeLeft BrakeLeft BrakeLeft Brake Right BrakeRight BrakeRight BrakeRight Brake

Motor ControllerMotor ControllerMotor ControllerMotor Controller

GUMSTIXGUMSTIXGUMSTIXGUMSTIX

Pololu BoardPololu BoardPololu BoardPololu Board

Throttle ServoThrottle ServoThrottle ServoThrottle Servo

USB Serial

Communications

Pulse Width

Modulation

Figure 7.2: Steering and Throttle Hardware Design Overview

Safety Hardware

Clearly the autonomous operation of any vehicle poses risks to people in the near vicinity
and a petroleum powered vehicle is no exception to this. It was identified during the

2Pololu Board website: http://www.pololu.com/catalog/product/390, Last accessed: 16th April 2010
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risk analysis that safety would be of vital important during this project and a number
of recommendations were made including always having human operators in the vehicle
able to shut down power to the vehicle. Further, it was also suggested that the use of an
industrial grade emergency shutoff system should be installed. As such this system will be
wired directly to the ignition system of the ARGO. In the even of an emergency pressing
the red stop button on the remote control will instantly cut power to the engine, preventing
damage to humans and property.

Current Hardware Design Overview

Having made a number of decisions regarding the hardware platform to be used a new
improved hardware design (Figure 7.3) is shown below. This design is in keeping with the
original design during the pre-game phase but also incorporates the additional hardware
design decisions made during the first sprint.
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Figure 7.3: Sprint 1: Final Hardware Design Overview
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7.2.2 PIC Firmware Design

As already discussed during the hardware design it is vital that there is a clear division of
labour between the different sections of the control system. This is important as it helps
to lead towards a clear and concise modular system which will significantly help towards
further safety and ensuring that any real-time constraints are met.

Given the nature of the hardware design it is inevitable that the PIC will have to be
responsible for the retrieval of data from sensors. However, as the PIC has no connections to
any other hardware, it will have no other responsibilities. As such a number of possibilities
are available for the development of the PIC system.

The first option is that the PIC has a external interface to retrieve requests for data
from the Gumstix. A simple protocol would then be developed that would operate as shown
below (Figure 7.4).

Start

Wait for Request

Has 
Request?

Get Sensor Data

Send Result

getGyro No

Yes

GyroValue

Gyro

Accelerometer

Figure 7.4: Possible PIC algorithm where requests for sensor data are received.

This design has one major advantage - that only the data needed is ever collected and
sent. This means that time is never ‘wasted’ collecting sensor data that will not be used.
However, there are significant overheads with this design. If all sensor data is required it
would mean a number of repeated requests for every sensor. This would add significant
processing time that is undesirable.

A modified version of this design (Figure 7.5) could be used that has a significantly
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more simplified algorithm. In this instance, a request would be processed, not for individual
sensors, but for all the sensor data at once.

Start

Wait for Request

Has 
Request?

Get All Sensor Data

Send Result

getData No

Yes

SendData

Gyro

Accelerometer

Produce Data String

Figure 7.5: Possible PIC algorithm where a request for all sensor data is received.

Whilst this algorithm is more sensible there are still issues. Firstly, because of the hap-
hazard nature of requests it would prevent the PIC being usable for any other operations
in the future. Secondly, as all data is always being returned anyway, there seems no point
in having the added complications of processing data requests. Further, having a request
data, send data protocol provides more opportunities for errors. If the Gumstix were to
send the wrong request and then wait for an answer, the PIC may never respond due to
invalid requests etc.

As such, a much simpler solution will be used in the final system. The PIC will simply
sit in a tight loop continually getting sensor data, producing data strings and sending them
via the serial line. It will then be the responsibility of the Gumstix to simply read the
serial line for data when it needs the information. This also has the advantage that if at a
later date other devices also need this sensor data, they could also simply read the serial
line, removing any possible future concurrency issues regarding requests to the PIC for
information.

A very simple data string (Figure 7.6) will be used for transmission via the serial line.
The data string will be precisely 15 digits long. First will be the accelerometer values and
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finally the gyroscope value. All values will be precisely 3 digits long due to the 8-bit limited
value from the analogue to digital converter, and all values will be comma separated.

120,100,225,89

   x             y              z         gyro

Figure 7.6: Transmitted PIC Data String

7.2.3 Gumstix Software Design

Although the C programming language is not object-orientated it is clearly important that
the various tasks that the control system needs to perform should be divided into separate
files. This will both help with the clarity of the code and the maintainability, for example, it
would be clear at a later date that the retrieval and parsing of data from the PIC would be
contained with all functions in the single pic.c file. As such, this section uses standard UML
Class Diagram notation, where each class actually represents either a .c file, or a structure
as appropriate.

pic.c and pic data t

All data from the PIC will be stored in a single structure. This structure is depicted in
Figure 7.7. All the values are of type uint8 t due to the fact that the data from the PIC is
always 8 bits in length.

There will be a need for three functions to read the data from the PIC. The first of
these three functions, open pic(rate, char), will be responsible for opening a serial link with
the PIC so that data can be read. The baud rate of the PIC will be set at 19,200bps. The
serial line the PIC is installed on is located at /dev/ttyS2. The close pic() function has a
similar requirement, it must simply close the serial line.

Finally, the get pic data(pdt ptr) is responsible for reading a single line from the PIC,
parsing it into the individual components (i.e. accelerometer readings, gyroscope etc) and
then populating the pic data t that was passed in as a pointer.

pic.c

- pic_fd : uint32_t

+ open_pic(rate : uint32_t, term : char *) : void
+ close_pic(void) : void
+ get_pic_data(pdt_ptr : pic_data_t *) : void

pic_data_t (struct pic_data)

+ x : uint8_t
+ y : uint8_t
+ z : uint8_t
+ gyro : uint8_t

Figure 7.7: Gumstix Software PIC UML Diagram
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gps.c and gps data t

The GPS module being used is connected to a serial line with the Gumstix. It has a
relatively simple protocol for communications, as shown in Figure 7.8.

SEND: at$gpsacp
RETURNS:  GPSACP: 115133.000,5224.5665N,00403.1573W,0.8,74.7,3,22.73,0.10,0.05,250210,08
              

       UTC             lat                 lon              hdop    fix         speed knots      num of satellites
              

altitude      cog     speed km/h   date
              

Figure 7.8: GPS Protocol

Each of the values in the response string will be stored in a data structure called
gps data t, as shown in Figure 7.9. In addition there will be four functions required in
order to communicate with the GPS module, retrieve and process the resulting GPS data
string.

gps.c

- gps_fd : uint32_t

+ open_gps(rate : uint32_t, term : char *) : void
+ close_gps(void) : void
+ get_gps_data(data : gps_data_t *) : void
- convert(angle : char *) : double
- execute_command(command : char *, response : char *) : void

gps_data_t (struct gps_data)

+ utc : float
+ lon : float
+ lat : float
+ hdop : float
+ alt : float
+ cog : float
+ speed_kmh : float
+ speed_knots : float
+ date : char[7]
+ fix : short
+ num_of_sats : short

Figure 7.9: Gumstix Software GPS UML Diagram

The first two functions have almost identical requirements to those in the PIC code,
open gps(rate, char) and close gps() are both responsible for opening and closing the se-
rial line to the GPS module. The baud rate for the GPS module is higher than the PIC
at 115,200bps as is located at /dev/ttyS1. The get gps data(data) function is used to re-
trieve the current GPS information from the GPS module and then populate the gps data t
structure pointed to by the data pointer.

In addition to these three ‘public’ functions, two more will be used. The convert(angle)
function will be used to convert the longitude and latitude from the Degrees Minutes Seconds
format from the GPS module to decimal degrees. This will hopefully make any future work
easier as decimal degrees are more appropriate for distance calculations, waypoint navigation
etc.
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Finally, the execute command(command, response) function is used to directly execute
the AT commands on the GPS unit and return the response in the response buffer.

compass.c

The compass uses the I2C bus for communications between itself and the Gumstix. A library
is already available that both deals with the low level requirements and implements the I2C
protocol allowing for relatively simple communications with I2C devices. The library3 is
part of the standard gumstix-buildroot and is licensed under the GNU Version 2.

Given the use of the library, all that will be required for compass communications
is the appropriate calls to the I2C library and three functions are sufficient to do this.
The open compass(compass address) function is responsible for initialising the I2C bus for
communications with the compass at the given address. The close compass() function
releases the I2C bus. Both of these functions are called whenever a read needs to take
place. The get compass data() function is responsible for making the appropriate calls to
the I2C library to retrieve the current compass heading.

compass.c

- open_compass(compass_address : uint32_t) : void
- close_compass(void) : void
+ get_compass_data(void) : uint16_t

Figure 7.10: Gumstix Software Compass UML Diagram

servo.c

The Pololu board is to be used for all control of servos, motors and actuators in the project.
It is capable of continually generating pulse-width-modulation for 16 separate peripheries.
The Pololu board also uses a simple USB serial line for communications with the Gumstix.
The functions open servo(rate, term) and close servo() are responsible for opening the serial
line (located at /dev/ttyUSB0) with a baud rate of 9,600 (the maximum available for the
Pololu board) and closing it.

Once a serial line is open, there are two different protocols available for communicating
with the Pololu board. The simplest mode, Mini SSC II Mode, provides precisely the
required features for this project. As such this mode will be used rather than have the
complications of the ‘Pololu Mode’ which are simply not necessary.

The Mini SSC II Mode protocol is very simple. It requires that three bytes are sent.
The first byte is a start byte and this should always be 0xFF. The next byte is the servo
number that the operation should take place on, this should be in the range 0x00 to 0x0F
(0 - 15). The final byte is the new position of the servo, and this should be in the range
0x00 - 0xFE (0 - 254).

3I2C library available for download from: http://svn.gumstix.com/gumstix-buildroot/branches/

projects/robostix/gumstix/Common/, Last accessed: 18th April 2010
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In the ARGO control system, the set servo(servo, position) will be responsible for for-
mulating this arrangement of bytes, taking the servo number and the new position as
parameters.

servo.c

- servo_fd : uint32_t

+ open_servo(rate : uint32_t, term : char *) : void
+ close_servo(void) : void
+ set_servo(servo : uint32_t, position : uint32_t) : uint32_t

Figure 7.11: Gumstix Software Servo UML Diagram

argo.c

The final stage in the design of the control system, at least in terms of the tasks specified,
involved the acquisition of user input. It was decided that this should this should simply
take place in the main method.

It was further decided that all key presses should be processed directly by the program
rather than having the terminal buffer the commands. As such a standard ‘termio’ structure
will be needed in order to disable buffering or blocking I/O from the terminal. This will
mean that all key presses are directly, and instantly, handled by the control system.

argo.c

- ttystate : struct termio
- c : char

+ main(argc : int, argv : char **) : int

Figure 7.12: Gumstix Software Main ARGO Method UML Diagram

Final Gumstix Software Design

The final overview of the design for the Gumstix software to the end of this sprint is shown
in Figure 7.13.
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argo.c

- ttystate : struct termio
- c : char

+ main(argc : int, argv : char **) : int

pic.c

- pic_fd : uint32_t

+ open_pic(rate : uint32_t, term : char *) : void
+ close_pic(void) : void
+ get_pic_data(pdt_ptr : pic_data_t *) : void

gps.c

- gps_fd : uint32_t

+ open_gps(rate : uint32_t, term : char *) : void
+ close_gps(void) : void
+ get_gps_data(data : gps_data_t *) : void
- convert(angle : char *) : double
- execute_command(command : char *, response : char *) : void

gps_data_t (struct gps_data)

+ utc : float
+ lon : float
+ lat : float
+ hdop : float
+ alt : float
+ cog : float
+ speed_kmh : float
+ speed_knots : float
+ date : char[7]
+ fix : short
+ num_of_sats : short

pic_data_t (struct pic_data)

+ x : uint8_t
+ y : uint8_t
+ z : uint8_t
+ gyro : uint8_t

uart.c

+ uart_init(rate : uint32_t, term : char *) : uint32_t
+ uart_deinit(fd : uint32_t) : void
+ uart_rx(fd : uint32_t) : unsigned char
+ uart_tx(fd : uint32_t, data : char) : void

compass.c

- open_compass(compass_address : uint32_t) : void
- close_compass(void) : void
+ get_compass_data(void) : uint16_t

servo.c

- servo_fd : uint32_t

+ open_servo(rate : uint32_t, term : char *) : void
+ close_servo(void) : void
+ set_servo(servo : uint32_t, position : uint32_t) : uint32_t

External I2C Library

Figure 7.13: Gumstix Software UML Design
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7.2.4 Simulator Software Design

The simulator software design mimics as closely as possible the design of the physical control
system and is detailed in this section.

Packages Overview

The simulator will be split into three distinct packages. A brief overview of these three
packages is given. The first package will contain all the class files which simulate the
physical robotic platform. It will be called uk.ac.aber.dcs.sem9060.backend. The second
package, uk.ac.aber.dcs.sem9060.api, will provide a simple API (Application Program-
ming Interface) for developers who wish to produce surface types. The final package,
uk.ac.aber.dcs.sem9060.gui, will hold a simple graphical user interface that will commu-
nicate with the backend for display purposes only.

Simulator.java

The main Simulator file will be responsible for creating an instance of the backed and
passing control to it. It simply holds the main method.

Simulator.java

+ main(args : String[]) : void

Figure 7.14: Simulator Software Simulator Class UML Diagram

Backend.java

Backend.java

- instance : Backend
- argoInstance : Argo

- Backend()

+ getInstance() : Backend
+ simulateInterface() : void
+ getArgoInstance() : Argo

Figure 7.15: Simulator Software Backend Class UML Diagram

The backend of the simulator is to be responsible for human-simulator interaction by
emulating the control interface of the ARGO, and for the direct manipulation of the sim-
ulated ARGO. For this reason, it is vital there there is only ever a single instance of the
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backend. If two backend instances were ever to occur it could result in both of them at-
tempting to make different control decisions on the ARGO at the same time. This would
clearly be unacceptable.

For this reason it has been decided that the Backend class should use a singleton design
pattern. As such, a static method getInstance() exists which is required to both create a
instance of the Backend if one does not already exist, and then return to the caller the
current instance. To prevent other classes from creating an instance of the Backend, the
constructor is to be private.

The simulateInterface() method will display a menu and act like the ‘argo.c’ file in the
physical implementation. However, it will be required to run in its own thread so that at
a later date, commands can continue to be sent to the backend even whilst the front end
graphical user interface is performing updates, or because the backend is simulating another
control maneuver. Finally the getArgoInstance() method will simply act as a ‘getter’ in order
for other parts of the control system, or the front end, to be able to get the current instance
of the simulated Argo, for example for displaying its location on a map.

Argo.java

The final class for this sprint is the Argo class. It has the sole job of representing the
physical characteristics of the physical Argo. This means that, at the moment, it simply
holds a compass heading. However, as work progresses during the development this class is
expected to increase in size to include coordinates and possibly other information such as
the speed of the vehicle etc.

Argo.java

- heading : int

- Argo()
+ getCompassHeading() : int

Figure 7.16: Simulator Software Argo Class UML Diagram

Final Simulator Software Design

An overview UML diagram of the final simulator software design for this sprint is shown in
Figure 7.17. Further, all whiteboard drawings for the entire of this sprint relating to the
design work can be found in Appendix A.
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Simulator.java

+ main(args : String[]) : void

Backend.java

- instance : Backend
- argoInstance : Argo

- Backend()

+ getInstance() : Backend
+ simulateInterface() : void
+ getArgoInstance() : Argo

uk.ac.aber.dcs.sem9060.backend

uk.ac.aber.dcs.sem9060

Argo.java

- heading : int

- Argo()

+ getCompassHeading() : int

Figure 7.17: Simulator Software UML Design
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7.3 Implementation

The actual implementation of the system was relatively simple thanks to a lot of the tasks
having a very similar nature to the investigative work. However, there was one notable
issue that occurred. The design for the protocol between the PIC and Gumstix proved to
be unacceptable. Although the PIC was sending the correct data, because there was no
synchronisation, the Gumstix often started reading a data string half way through trans-
mission. With no identification of the start, or end, of a transmission it would often mean
that the gyroscope value would get treated as a accelerometer value etc.

In order to get around this issue the protocol string between the Gumstix and PIC was
modified such that it has a start and end string that must be matched. The code on the
Gumstix was then modified to wait until the correct start sequence was identified from the
PIC before reading any values.

::x120y100z225g089\n

   sync     x          y        z      gyro

Figure 7.18: Revised PIC Data String

Adding this synchronisation information fixed all the issues that were being seen.

7.4 Testing

At the end of each sprint it is important to perform testing. Testing of features at the end of
each sprint will help to prevent problems as the project progresses. Faults or errors caught
early on in the development phase will significantly help in the reduction of code that must
be re-written, time and effort. Further, showing that the functions at this low level are
working correctly will mean that if there are faults later on it will be possible to confirm
the faults are not in the lower level (by re-running the tests and comparing output). In
addition, the testing framework will mean that if changes are required to the code already
completed at a later date, it will be possible to directly check that the functionality has not
been affected. Having said this, a lot of the functionality developed thus far is very hard to
test. In spite of this a simple test strategy was devised and the results are indicated in the
table (Figure 7.19).
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Test Feature Expected Result Pass/Fail

Accelerometer values
P1 Read accelerometer. change as the hardware Changing values. Pass

is Manipulated.

Gyro values change
P2 Read gyro. as the hardware is Changing values. Pass

manipulated.

Sent string
P3 from PIC is in See design. As per design. Pass

correct format.

G1 Read compass. Display compass value. 265 degrees Pass

Read string
G2 from PIC is in See design. As per design. Pass

correct format.

G3 Move any servo. Servo attached moves. Servo moved. Pass

S1 Read compass. Value: 0 degrees 0 degrees Pass

Figure 7.19: Sprint 1 Test Results, P: PIC, G: Gumstix, S: Simulator

61



7.5 Sprint Review

Despite being a relatively trivial sprint in terms of development work, a significant portion
of time has been spent doing design work. In particular, a lot of the basic frame work for
the physical control system has been completed meaning it will now be possible to progress
to the other tasks in the product backlog.

During the sprint, the only notable issue was discussed during the coding section and
related to the protocol used for communication between the PIC and Gumstix. However,
this was sorted with minimal changes to the design and proved to be a trivial fix.

All tests that could be conducted have passed, and all features that were to be completed
during this sprint were developed to an acceptable level and as such have been removed
from the project backlog. Finally, according to the original plan, the project is on schedule.
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Chapter 8

Sprint 2

“You will never find time for anything. If you want time, you must make it.”

Charles Bixton

8.1 Sprint Planning

The second sprint started on time on the 7th December 2009. As there were no features un-
completed from the previous sprint, and no additional features added, the product backlog
was as defined during the pre-game state.

• 1.b.ii Set engine speed/throttle position.

• 1.b.iii Set handlebar position.

• 1.d.ii Increase throttle.

• 1.d.iii Set steering left/right.

• 1.d.iv Emergency stop.

• 1.d.v Get and display compass heading.

• 2.a.iii Set engine speed/throttle position.

• 2.a.iv Set handlebar position.

• 2.c.ii Increase throttle.

• 2.c.iii Set steering left/right.

• 2.c.iv Emergency stop.

• 2.c.v Get and display compass heading.

8.2 Design Decisions

During this sprint significantly less design work was required compared to the first sprint.
However, there were some changes to the current design, including a minor hardware design
change. The details of these changes, and the details of the new components of the system
are discussed in this section.
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8.2.1 Hardware Design

Unknown in the first sprint, the actuator that will control the handlebars does not function
in the same way as the standard servo to be used on the throttle. The motor controller sets
the speed of the handlebars and the direction, not a position. It is then the requirement of
software to read a potentiometer installed within the actuator to identify its position.

As a result of this a minor change needs to be made to the PIC hardware design, the
potentiometer wire from the actuator will be fed into the analogue-to-digital converter as
well as the accelerometer and gyroscope.

8.2.2 PIC Firmware Design

As a result of the hardware changes the PIC will now be responsible for sending the po-
tentiometer value to the Gumstix in addition to the accelerometer and gyroscope. As such,
the data string will need to be changed to 22 digits in length: the two start colons, the
accelerometer values, the gyroscope value and finally the potentiometer value.

::x120y100z225g089p128\n

   sync     x       y       z     gyro   actuator POT

Figure 8.1: PIC Data String Including Actuator POT

8.2.3 Gumstix Software Design

This section reviews the design changes made to the Gumstix software in order to accom-
modate the new hardware design. It then discusses the additional design decisions made
with regards to new features to be developed from the product backlog.

pic.c and pic data t

As a result of the changes regarding the potentiometer and the PIC firmware, there is a
small change to the pic data structure. It will now require a attribute to hold the current
position of the handlebars, as shown in the updated UML diagram (Figure 8.2).

argo.c

Finally, in order to accommodate for the requirements 1.d.ii to 1.d.v the main function
within the argo.c file will need to be modified to include a simple menu. This will require
no design changes, but will require additional code within the main function. For simplicity,
it has been decided that the menu should have the following options available.
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pic_data_t (struct pic_data)

+ x : uint8_t
+ y : uint8_t
+ z : uint8_t
+ gyro : uint8_t
+ pot : uint8_t

Figure 8.2: Gumstix Software pic data t UML Diagram

Option Action

w Increase Throttle
a Handlebars To Left
s Full Stop, Center Handlebars, Throttle to Minimum
d Handlebars To Right
c Get and Display Compass Reading

throttle.c

Given the current progress towards the control of servos from the previous sprint and the
use of a Pololu board, the design for the control of the throttle is trivial.

Two functions are required, init throttle(motor) which will be used to tell the control
system the port number on the Pololu board that is connected to the throttle servo, and
set throttle position(speed) which is to be responsible for setting the position of the throttle
servo. It does this by simply using the set servo(servo, position) function within the servo.c
file.

Unfortunately, due to the way the throttle servo has been attached to the carburetor, the
maximum throttle position is a smaller integer than the minimum throttle value. As such,
in order to increase the throttle, and thus the speed of the vehicle, a smaller number must
be passed in. To make this slightly easier, the maximum throttle position, THROTTLE MAX,
which is actually 1, and the minimum throttle position, THROTTLE MIN, which is 81, are to
be made available throughout the code base as #define variables.

steering.c

The steering for the ARGO will be controlled via the steering.c file, as depicted in Figure
8.4. Unlike with the throttle code, the steering is more complicated. When a desired
position is received (from anything in the range STEERING LEFT to STEERING RIGHT) the
software must turn the actuator on with an appropriate speed and direction, depending on
the current position of the handlebars. Further, the software must continually check for
the current position of the steering, until such a time as the desired position is achieved.
At this point, the software must stop all movement of the steering. However, due to the
potential response times from the steering, it may be the case that the steering overshoots
the anticipated position, and as such the software must be able to reverse the direction of
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throttle.c

+ THROTTLE_MAX : int

+ THROTTLE_MIN : int

+ init_throttle(motor : uint32_t) : void
+ set_throttle_position(speed : uint32_t) : uint32_t

Figure 8.3: Gumstix Software Throttle UML Diagram

steering.c

+ STEERING_LEFT : int
+ STEERING_RIGHT : int

+ STEERING_OFF : int

+ init_steering(motor : uint32_t) : void
+ set_steering_position(position : uint32_t) : uint32_t

Figure 8.4: Gumstix Software Steering UML Diagram
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travel at any point. In order to achieve this a simple algorithm, as shown in Figure 8.5, will
be used.

Start

Get Current 
Handlebar Position

Is >
Desired 
Position?

Start Turning 
Handlebars Right

Is <
Desired 
Position?

Start Turning 
Handlebars Right

Within 
Position 

Deadband?

Stop and Return

No No

Yes Yes

Yes

No

Figure 8.5: Steering Algorithm Flow Diagram

Final Gumstix Softwre Design

The final design of the Gumstix software to this point, including all modifications made
during this sprint is shown in Figure 8.6.

8.2.4 Simulator Software Design

Only minimal design changes were required to implement features within the product back-
log for the simulator. Those design changes are briefly discussed in this section.
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argo.c

- ttystate : struct termio
- c : char

+ main(argc : int, argv : char **) : int

pic.c

- pic_fd : uint32_t

+ open_pic(rate : uint32_t, term : char *) : void
+ close_pic(void) : void
+ get_pic_data(pdt_ptr : pic_data_t *) : void

gps.c

- gps_fd : uint32_t

+ open_gps(rate : uint32_t, term : char *) : void
+ close_gps(void) : void
+ get_gps_data(data : gps_data_t *) : void
- convert(angle : char *) : double
- execute_command(command : char *, response : char *) : void

gps_data_t (struct gps_data)

+ utc : float
+ lon : float
+ lat : float
+ hdop : float
+ alt : float
+ cog : float
+ speed_kmh : float
+ speed_knots : float
+ date : char[7]
+ fix : short
+ num_of_sats : short

pic_data_t (struct pic_data)

+ x : uint8_t
+ y : uint8_t
+ z : uint8_t
+ gyro : uint8_t
+ pot : uint8_t

uart.c

+ uart_init(rate : uint32_t, term : char *) : uint32_t
+ uart_deinit(fd : uint32_t) : void
+ uart_rx(fd : uint32_t) : unsigned char
+ uart_tx(fd : uint32_t, data : char) : void

compass.c

- open_compass(compass_address : uint32_t) : void
- close_compass(void) : void
+ get_compass_data(void) : uint16_t

servo.c

- servo_fd : uint32_t

+ open_servo(rate : uint32_t, term : char *) : void
+ close_servo(void) : void
+ set_servo(servo : uint32_t, position : uint32_t) : uint32_t

External I2C Library

throttle.c

+ THROTTLE_MAX : int
+ THROTTLE_MIN : int

+ init_throttle(motor : uint32_t) : void
+ set_throttle_position(speed : uint32_t) : uint32_t

steering.c

+ STEERING_LEFT : int
+ STEERING_RIGHT : int

+ STEERING_OFF : int

+ init_steering(motor : uint32_t) : void
+ set_steering_position(position : uint32_t) : uint32_t

Figure 8.6: Gumstix Software UML Design

68



Argo.java

The main changes to the design are within the Argo class as shown in Figure 8.7.

Argo.java

+ STEERING_LEFT : int

+ STEERING_RIGHT : int

+ STEERING_OFF : int

+ THROTTLE_MAX : int

+ THROTTLE_MIN : int

- heading : int
- x : int
- y : int
- speed : int
- engine : Thread

- Argo()
+ getCompassHeading() : int
+ setSteeringPosition(position : int) : void
+ getSteeringPosition() : int
+ increaseThrottle() : void
+ increaseThrottle(value : int) : void
+ decreaseThrottle() : void
+ decreaseThrottle(value : int) : void
+ setThrottle(value : int) : void
+ getThrottle() : int
+ setY(int y) : void
+ setX(int x) : void
+ getY() : int
+ getX() : int

Figure 8.7: Simulator Software Revised Argo Class Diagram

A number of new parameters have been added, as have various methods. The function
increaseThrottle() and increaseThrottle(value) will increase the throttle speed by one, or
by any given value respectively. By the same token, the functions decreaseThrottle() and
decreaseThrottle(value) will have the opposite effect, decreasing the throttle speed by one,
or by the specified value. All of these methods will eventually use the setThrottle(value)
function to physically manipulate the speed attribute.

The setSteeringPosition(position) method will set the position of the handlebars between
STEERING LEFT and STEERING RIGHT. Any value out of this range will keep the steering at
its current position, as is the functionality with the real ARGO. The function will delay for
at least two seconds to simulate the real time the handlebars take to move on the physical
ARGO.

The only other notable change is that a engine attribute has been created. This will
simulate the actual engine in the ARGO. As such, when a call is made to increaseThrottle()
for example, the speed value will be increased. However, this will not have an effect on
the vehicle until the engine thread picks up the change after some appropriate time delay.
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This is the expected functionality of the ARGO, simply increase the throttle does not have
a instantaneous effect on the vehicle.

Whilst at this stage the time delay and the engine response will be a static value,
eventually it is desired that these values will be retrieved from the specific surface type that
the ARGO is positioned over. It is via this method that it is hoped to have the simulator
react differently to differing surfaces.

The use of a thread in this situation is further required due to the way in which the
control system and humans interact with the vehicle. The ARGO may be performing an
operation such as turning. At this point the engine will have a certain throttle speed and so
the engine thread will be turning the ARGO at an appropriate speed for that throttle value.
However, it is clear that eventually the control system will need to tell the ARGO to stop
moving. If threads were not used in this situation it would mean that the implementation
of performing a turn would also have to be in the engine thread! At this point all object-
orientation and code coherency would be lost!

Backend.java

Although there are no design changes, a menu identical to that used in the physical ARGO,
with the operations increase throttle, stop, handlebars left, handlebars right and get compass
value will be added in order to emulate the physical interface as closely as possible.

Final Simulator Design Overview

The new complete UML diagram for the simulator software design is shown in Figure 8.8.
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Simulator.java

+ main(args : String[]) : void

Backend.java

- instance : Backend
- argoInstance : Argo

- Backend()
+ getInstance() : Backend
+ simulateInterface() : void
+ getArgoInstance() : Argo

uk.ac.aber.dcs.sem9060.backend

uk.ac.aber.dcs.sem9060

Argo.java

+ STEERING_LEFT : int
+ STEERING_RIGHT : int
+ STEERING_OFF : int
+ THROTTLE_MAX : int
+ THROTTLE_MIN : int
- heading : int
- x : int
- y : int
- speed : int
- engine : Thread

- Argo()
+ getCompassHeading() : int
+ setSteeringPosition(position : int) : void
+ getSteeringPosition() : int
+ increaseThrottle() : void
+ increaseThrottle(value : int) : void
+ decreaseThrottle() : void
+ decreaseThrottle(value : int) : void
+ setThrottle(value : int) : void
+ getThrottle() : int
+ setY(int y) : void
+ setX(int x) : void
+ getY() : int
+ getX() : int

Figure 8.8: Simulator Software UML Design
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8.3 Implementation

The actual coding during this sprint was again relatively simple. Surprisingly, no problems
were found during the development of the physical control system on the Gumstix. The
most complicated parts of the design were related to the engine thread within the simulator.

It was clear that whilst simple operations such as moving forward at zero degrees, or
left at 90 degrees from North were trivial to implement, requiring only the incrementation
or the decrementing of the y and x values. However, when moving at any arbitrary angle
it was clear that trigonometry would be required in order to identify the appropriate new
values for x and y.

The eventual algorithm used is shown below in pseudo code.

if (speed < THROTTLE_MIN) {

current_speed = 1; /* Change to surface speed eventually. */

xChange = sin(current_angle) * current_speed;

yChange = cos(current_angle) * current_speed;

if (current_angle == 0) {

y -= current_speed;

} else if (current_angle == 90) {

x += current_speed;

} else if (current_angle == 180) {

y += current_speed;

} else if (current_angle == 270) {

x -= current_speed;

} else if (current_angle > 270) {

y += y_change;

x -= x_change;

} else if (current_angle > 180) {

y -= x_change;

x -= y_change;

} else if (current_angle > 90) {

y += x_change;

x += y_change;

} else {

y -= yChange;

x += xChange;

}

Apart from this small complication, all development work during this sprint went as per
the original design.

8.4 Testing

The first step in testing was to ensure that there was no regression as a result of the new
features implemented. The results of this testing is shown in the table (Figure 8.9).
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Test Feature Expected Result Pass/Fail

Accelerometer values
P1 Read accelerometer. change as the hardware Changing values. Pass

is Manipulated.

Gyro values change
P2 Read gyro. as the hardware is Changing values. Pass

manipulated.

Sent string
P3 from PIC is in See design. As per design. Pass

correct format.

G1 Read compass. Display compass value. 265 degrees Pass

Read string
G2 from PIC is in See design. As per design. Pass

correct format.

G3 Move any servo. Servo attached moves. Servo moved. Pass

S1 Read compass. Value: 0 degrees 0 degrees Pass

Figure 8.9: Sprint 2 Regression Testing Results, P: PIC, G: Gumstix, S: Simulator
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Test Feature Expected Result Pass/Fail

G4 Press a. Handlebars turn left. Handlebars left. Pass

G5 Press d. Handlebars turn right. Handlebars right. Pass

Handlebars
G6 Press s. Handlebars center. centered. Pass

Throttle
G7 Press w. Throttle increases. increased. Pass

Throttle decreased Throttle set to
G8 Press s. to zero, handlebars zero, handlebars Pass

center. centered.

Current Compass
G9 Press c. heading heading Pass

displayed. displayed.

S2 Press a. Handlebars turn left. Handlebars left. Pass

S3 Press d. Handlebars turn right. Handlebars right. Pass

Handlebars
S4 Press s. Handlebars centered. centered. Pass

Throttle incr.,
S5 Press w. Throttle increases. x and y values Pass

changed correctly.

Figure 8.10: Sprint 2 Test Results, P: PIC, G: Gumstix, S: Simulator

Having been satisfied that no regression was apparent, the next stage was to perform
testing on the features implemented during this sprint. By the end of the sprint the control
system on the ARGO was at such a state that it was possible to perform live testing with
the vehicle. All teleoperation functions were completed and as such manual control of the
vehicle was expected to be possible. Various tests were conducted using the teleoperation
mode for correct functionality, as shown in the results table (Figure 8.10).

8.5 Sprint Review

This sprint finished on time with all tasks completed. The test results are extremely promis-
ing showing that, at the very least, teleoperation of the vehicle is possible. This further
suggests that the work towards automated control due to proceed in the next sprints is
likely to be lucrative.

It was interesting that the most complex part of this sprint related to the development
of the simulator, and not the physical control system.

Finally, according to the original plan the project remains on schedule.
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Chapter 9

Sprint 3

“He who asks is a fool for five minutes, but he who does not ask remains a fool forever.”

Chinese Proverb

9.1 Sprint Planning

To this point all previous sprints have started and finished on time leaving the project
timings unchanged and the project running smoothly on schedule. Given this it meant that
the third sprint started on time on the 4th January 2010 at the start of the examination
period after the Christmas holidays.

To this point, no features from the product backlog have been removed, and no additional
features have been added. Further, all previous sprints have been fully complete, leaving
no features from previous sprints unimplemented. As such during this sprint the original
feature set from the product backlog are expected to be completed, specifically this includes:

• 1.c.i Turn by angle algorithm.

• 1.d.vi Start high-level example algorithm.

• 1.e.i Turn by various angles, 45, 90, 180 etc.

• 2.d.i Loading map file.

• 2.d.ii Dynamic surface types.

• 2.e.i Display of the map.

9.2 Design Decisions

Few design changes were required for the design of the physical control system for this
sprint. However, significant design work was required for the simulator.

9.2.1 Hardware Design

No hardware design changes were needed for this sprint.

75



9.2.2 PIC Firmware Design

No PIC firmware design changes were needed for this sprint.

9.2.3 Gumstix Software Design

The addition of a new file was required in order for feature 1.c.i to be implemented. The
details of this file are given in this section.

control.c

This file has been designed to hold all the primary control algorithms to be used within the
ARGO control system.

control.c

+ turn_by_angle(angle : int32_t) : int32_t
- get_heading_difference(now : uint32_t, want : uint32_t) : uint32_t

Figure 9.1: Gumstix Software Control UML Diagram

The function turn by angle(angle) will be responsible for setting the handlebar positions
and the throttle control such that the vehicle turns by a specific angle relative to the start
heading reading. It will use the get heading difference(now, want) function to calculate the
current distance for the desired new heading.

Initially a very simple algorithm will be used to perform the turn. The new heading will
be calculated according to the current heading and the desired turn angle. At this point,
the control system will turn the handlebars such that the turn will never be greater than
180 degrees. Finally, the control system will continue to increase the throttle and read the
compass value in a loop until the desired new heading is achieved.

Final Gumstix Software Design

The final design of the Gumstix hardware to this point is shown in Figure 9.2.
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argo.c

- ttystate : struct termio
- c : char

+ main(argc : int, argv : char **) : int

pic.c

- pic_fd : uint32_t

+ open_pic(rate : uint32_t, term : char *) : void
+ close_pic(void) : void
+ get_pic_data(pdt_ptr : pic_data_t *) : void

gps.c

- gps_fd : uint32_t

+ open_gps(rate : uint32_t, term : char *) : void
+ close_gps(void) : void
+ get_gps_data(data : gps_data_t *) : void
- convert(angle : char *) : double
- execute_command(command : char *, response : char *) : void

gps_data_t (struct gps_data)

+ utc : float
+ lon : float
+ lat : float
+ hdop : float
+ alt : float
+ cog : float
+ speed_kmh : float
+ speed_knots : float
+ date : char[7]
+ fix : short
+ num_of_sats : short

pic_data_t (struct pic_data)

+ x : uint8_t
+ y : uint8_t
+ z : uint8_t
+ gyro : uint8_t
+ pot : uint8_t

uart.c

+ uart_init(rate : uint32_t, term : char *) : uint32_t
+ uart_deinit(fd : uint32_t) : void
+ uart_rx(fd : uint32_t) : unsigned char
+ uart_tx(fd : uint32_t, data : char) : void

compass.c

- open_compass(compass_address : uint32_t) : void
- close_compass(void) : void
+ get_compass_data(void) : uint16_t

servo.c

- servo_fd : uint32_t

+ open_servo(rate : uint32_t, term : char *) : void
+ close_servo(void) : void
+ set_servo(servo : uint32_t, position : uint32_t) : uint32_t

External I2C Library

throttle.c

+ THROTTLE_MAX : int
+ THROTTLE_MIN : int

+ init_throttle(motor : uint32_t) : void
+ set_throttle_position(speed : uint32_t) : uint32_t

steering.c

+ STEERING_LEFT : int
+ STEERING_RIGHT : int

+ STEERING_OFF : int

+ init_steering(motor : uint32_t) : void
+ set_steering_position(position : uint32_t) : uint32_t

control.c

+ turn_by_angle(angle : int32_t) : int32_t
- get_heading_difference(now : uint32_t, want : uint32_t) : uint32_t

Figure 9.2: Gumstix Software UML Design
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9.2.4 Simulator Software Design

Significant design work was required in order to implement the new features within the
simulator. A brief overview of the design changes, and new class diagrams follows.

SurfaceType.java

The first feature to be designed was the dynamic surface types (2.d.ii). In order to achieve
this it was clear that a interface class would be required that would be able to represent
any possible implementation of a surface type. The resulting interface is shown in Figure
9.3.

SurfaceType.java
<<interface>>

+ getSpeed(throttle : int) : int
+ getMaxSpeed() : int
+ getAngleChangeValue(throttle : int) : int
+ getThrottleToGo() : int
+ getColor() : Color
+ getName() : String

Figure 9.3: Simulator Software SurfaceType UML Diagram

The SurfaceType class has a number of methods that must be implemented in order to
properly simulate different surfaces. The getSpeed(throttle) method is used to get the current
vehicle speed given a specific throttle setting. For example, on water it is expected that a
high throttle value would be needed in order to achieve any forward momentum. However,
on gravel a lesser throttle value might be needed. This method will allow different surfaces
to react differently, in terms of forward or reverse speed, depending on different throttle
values. The actual implementation of this method is clearly therefore surface type specific.
Closely related to this are the getMaxSpeed(), used to get the maximum possible speed the
ARGO can achieve on the specific surface, and getThrottleToGo() which is used to get the
absolute minimum that the throttle can be at before movement occurs, including turning
or general driving.

The getAngleChangeValue(throttle) method has a similar function as the getSpeed(throttle)
method. Given different throttle values it is likely that the speed the ARGO turns by will
be different. As such, this allows for a surface type to specify what the change in heading
is likely to be at given throttle values. As such, as the throttle changes during turns, the
rate at which a turn takes place will fluctuate depending on the current surface.

Finally, the getColor() and getName() methods are simply for graphical display pur-
poses. An example implementation of a Surface Type is shown in Appendix D.
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Map.java

The Map class (Figure 9.4) is used to load a map file. Map files will be in the format of a
XML document, and an example of a simple map file is shown in Appendix D.

Map.java

- areas : ArrayList<MapArea>
- width : int
- height : int

+  Map(filename : String)

+ getMapAreas() : ArrayList<MapArea>
+ getMapDimensions() : Dimension
- buildMap (filename : String) : void

Figure 9.4: Simulator Software Map UML Diagram

Apart from having obvious attributes such as the width and height of the map the
class also includes a list of all the areas within the map. These areas are discussed in
further detail later in this section. However, the important method within this class is the
buildMap(filename) method which is responsible for both reading the Map XML file and
generating all the appropriate MapArea classes. These MapArea classes are then stored
in the areas array. In order to do this the existing facilities of the Java programming
language are used including the Document Object Model provided by the w3c package:
org.w3c.dom.* which is shipped with the latest versions of Java by default.

MapArea.java

The MapArea class (Figure 9.5) is used to represent the different areas of a map that
are defined in any given map file. The class holds various attributes such as the size

and coordinates of the area within the map, but of most important is the surfaceType

attribute. This is to be used at a later date by the simulator to get the appropriate
SurfaceType class for a given area of the map. As such, the ARGO will then be able
to adapt its performance accordingly.

Backend.java

Very minor changes have been made to the Backend class such that it now loads a map file
when created. This has included the addition of three methods. The first loadMap(filename)
and getMap() are simple and will be used to create a new Map class and also to provide
access to the class. In addition, the getInstance(filename) method has been added such
that the first access to the backend can pass details of the location of the map file to use.
Future calls to the method should ignore the file name, or more preferable is the use of the
getInstance() function in future calls. All changes are visible in Figure 9.6.
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MapArea.java

- name : String
- coordinates : Point
- size : Dimension
- surfaceType : SurfaceType

+  MapArea()
+ setName(name : String) : void
+ setCoordinates(coordinates : Point) : void
+ setSize(size : Dimension) : void
+ setSurfaceType( st : SurfaceType ) : void
+ getName() : String
+ getCoordinates() : Point
+ getSize() : Dimension
+ getSurfaceType() : SurfaceType

Figure 9.5: Simulator Software MapArea UML Diagram

Backend.java

- instance : Backend
- argoInstance : Argo
- map : Map

- Backend(mapFileName : String)
+ getInstance() : Backend
+ getInstance(mapFileName : String) : Backend
+ simulateInterface() : void
+ getArgoInstance() : Argo
+ getMap() : Map
- loadMap(mapFileName : String) : void

Figure 9.6: Simulator Software Backend UML Diagram
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GraphicsInterface.java

The final features for this class involve the display of the map in a graphical format. The
GraphicsInterface class (Figure 9.7) will hold the main JFrame component for the graphical
user interface. As with the backend it has been decided that at any one point only one
single user interface should be loaded. As such, this class is also a singleton, having a
private constructor and a getInstance() method.

GraphicsInterface.java

- backend : Backend
- map : GMap

-  GraphicsInterface() 
+ getInstance() : GraphicsInterface
+ setMap(map : GMap) : void

Figure 9.7: Simulator Software GraphicsInterface UML Diagram

The setMap(map) method is simply used to update the map JPanel used when display-
ing the graphical interface.

GMap.java

GMap.java

- map : Map

+  GMap(map : Map)
+ setMap(map : Map) : void
+ paint(g : Graphics) : void
+ getSize() : Dimension

Figure 9.8: Simulator Software GMap UML Diagram

The final class required for this sprint was the GMap class (Figure 9.8). It is solely respon-
sible for painting a graphical representation of the Map class passed into the constructor.

Final Simulator Software Design

The final design of the simulator can be seen in Figure 9.9.
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Simulator.java

+ main(args : String[]) : void

uk.ac.aber.dcs.sem9060.backend

uk.ac.aber.dcs.sem9060

Argo.java

+ STEERING_LEFT : int
+ STEERING_RIGHT : int
+ STEERING_OFF : int
+ THROTTLE_MAX : int
+ THROTTLE_MIN : int
- heading : int
- x : int
- y : int
- speed : int
- engine : Thread

- Argo()
+ getCompassHeading() : int
+ setSteeringPosition(position : int) : void
+ getSteeringPosition() : int
+ increaseThrottle() : void
+ increaseThrottle(value : int) : void
+ decreaseThrottle() : void
+ decreaseThrottle(value : int) : void
+ setThrottle(value : int) : void
+ getThrottle() : int
+ setY(int y) : void
+ setX(int x) : void
+ getY() : int
+ getX() : int

Backend.java

- instance : Backend
- argoInstance : Argo
- map : Map

- Backend(mapFileName : String)

+ getInstance() : Backend
+ getInstance(mapFileName : String) : Backend
+ simulateInterface() : void
+ getArgoInstance() : Argo
+ getMap() : Map
- loadMap(mapFileName : String) : void

Map.java

- areas : ArrayList<MapArea>
- width : int
- height : int

+  Map(filename : String)
+ getMapAreas() : ArrayList<MapArea>
+ getMapDimensions() : Dimension
- buildMap (filename : String) : void

MapArea.java

- name : String
- coordinates : Point
- size : Dimension
- surfaceType : SurfaceType

+  MapArea()
+ setName(name : String) : void
+ setCoordinates(coordinates : Point) : void
+ setSize(size : Dimension) : void
+ setSurfaceType( st : SurfaceType ) : void
+ getName() : String
+ getCoordinates() : Point
+ getSize() : Dimension
+ getSurfaceType() : SurfaceType

SurfaceType.java
<<interface>>

+ getSpeed(throttle : int) : int
+ getMaxSpeed() : int
+ getAngleChangeValue(throttle : int) : int
+ getThrottleToGo() : int
+ getColor() : Color
+ getName() : String

uk.ac.aber.dcs.sem9060.api

uk.ac.aber.dcs.sem9060.gui

GraphicsInterface.java

- backend : Backend
- map : GMap

-  GraphicsInterface() 
+ getInstance() : GraphicsInterface
+ setMap(map : GMap) : void

GMap.java

Figure 9.9: Simulator Software UML Design
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9.3 Implementation

The development of the physical control system proved to be significantly more challenging
during this sprint and as a result caused the sprint to go significantly over the alloted time
of 2 weeks. In particular, two major problems were identified.

9.3.1 Compass Vibrations

During the development it became clear very quickly that whilst the compass had been
working perfectly fine in previous sprints with the engine off, as soon as the engine was
started there was a massive amount of noise. The result of this was changes in heading
between 10 - 20 degrees whilst the vehicle remained stationary.

A number of different methods to try and identify the cause of the noise were attempted,
including the shielding of park plugs, wrapping I2C cables in tin foil and finally using tilt-
compensated compasses. The last attempt, using a tilt-compensated compass, resulted in
even more noise (approximately 20 - 40 degrees of error when stationary) and it was this
that made it clear that the issue was vehicle vibrations, and not electrical interference.

Various attempts were made to reduce the vibrations, including suspending the compass
with elastic bands as shown in the photograph.

Figure 9.10: Attempts to Fix the Noisy Compass

Unfortunately a significant amount of time was wasted attempting to dampen the vi-
brations to the compass. Eventually it was decided that without the use of an expensive
marine compass there was little that could be done. In one final attempt an average reading
of five compass readings is being used to attempt to filter the compass readings somewhat.
This helped to some degree, but there is still approximately 10 degrees of noise from the
compass when the ARGO is standing still.
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9.3.2 Rate of Turn

The second issue that caused significant annoyance during the iteration was found during
turns. The rate at which the ARGO turned was considerably more than desirable and as
such it was often the case that the ARGO would enter a turn and never exit, spinning on
the spot for minutes at a time.

The reason for this was due to the rate of turn. As the ARGO approached the desired
heading it had no method of slowing down the rate of turn. As such it would have massive
overshoot past the desired heading.

A simple attempt to reduce the effects of this was used whereby the throttle was con-
tinually pulsed up and down, rather than set at a maximum value and left until the desired
heading was reached. This certainly fixed some of the issues, and the ARGO behaved with
more control. However, it became clear that some method of measuring the wheel rotations
would be needed in order control the rate of turn more accurately. As a result of this, two
additional features were added to the sprint backlog for the next sprint in an attempt to
control the rate of turn. These features are discussed in Chapter 10.

9.3.3 Simulator

The simulator development work also took longer than expected due to the amount of work
in the sprint. However, by the end of the sprint the simulator was starting to take shape
and was capable of loading map files and displaying them in a graphical interface.

9.4 Testing

Tests were performed daily during the development stages of the physical control system, in
particular during the attempts to control the rate of turn and compass noise. However no
formal testing was conducted due to the nature of the functionality, the fact the sprint was
already over the alloted time and due to the issues regarding the lack of controlled turns
which clearly was resulting in the failure of all tests relating to turning by specific angles.

A similar situation existed for the simulator. Due to the nature of the simulator at this
stage all that could be tested was that the user interface displayed correctly showing the
appropriate map file. Evidence of this working is shown in Figure 9.11.

9.5 Sprint Review

Despite many issues during this sprint significant headway was made towards the final
project goals. Further, two additional features were added to the product backlog in an
attempt to resolve the problems discussed.

However, this sprint ran significantly over time , finishing on the 29th January (two weeks
after originally anticipated), leaving little time for testing. Fortunately informal testing was
conducted on a daily basis during the development. The project is now behind in terms
of the original schedule. However, due to the nature of an agile methodology, and the fact
that over a month was available in the initial plan for final testing and documentation work,
this is not expected to have a impact in terms of the success of the project.
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Figure 9.11: Simulator Screen Shot
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Chapter 10

Sprint 4

“The intelligence of the planet is constant, and the population is growing.”

Arthur C. Clarke

10.1 Sprint Planning

Unfortunately, due to the time taken during the third sprint, this sprint started two weeks
later than planned on the 1st February 2010. Further, due to changes to the product backlog
the features that were to be implemented during this sprint had changed.

All the original features that were to be implemented during this iteration remained the
same:

• 1.c.ii Turn to angle algorithm.

• 1.e.ii Turn to various angles, 90, 180, 270, 360 etc.

• 2.b.i Turn by angle algorithm.

• 2.b.ii Turn to angle algorithm.

• 2.c.vi Start high-level example algorithms.

However two extra features were added to the product backlog for this sprint:

• 1.a.v Calculate the rate of wheel turns.

• 1.c.iii Control the rate of wheel turns.

10.2 Design Decisions

Minimal design changes are required in order to implement the product backlog during this
sprint. Those design modifications and enhancements that were necessary are discussed in
this section.
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10.2.1 Hardware Design

During the previous sprint it became clear that it would be vital to have the ability to
identify the speed at which the wheels on the ARGO rotate during different maneuvers,
particularly during turn operations.

Unfortunately the current hardware design of the ARGO does not have any method
of identifying the rate of wheel turns other than a speedometer. This speedometer does
not provide sufficient precision for this project and further fails to identify the speed of
individual sets of wheels. The information from the speedometer relates to all six wheels,
not simply those on the left or right. As such a simple mechanism was needed, and has
been identified, that allows for the relatively accurate measurement of left and right wheel
rotations independently to a much higher degree of accuracy than the speedometer. In
effect two proximity sensors will be installed, one on each chain connecting the left and
right wheels to the engine. These sensors will be able to count the number of chain links
that pass over a predefined period of time. Each chain link is called a ‘wheel tick’ from this
point forward, and it has been calculated that there are a total of 7 wheel ticks per full
wheel rotation.

Both sensors will feed directly into the PIC on two I/O lines. The PIC will then be
responsible for counting the number of wheel ticks, and therefore wheel rotations, and
sending that information to the Gumstix so that the control system can adjust the throttle
appropriately during turns.

10.2.2 PIC Firmware Design

A number of possibilities existed with regards to the best method of calculating wheel
rotations from the use of interrupts to a statically timed control loop. Numerous of these
different approaches were attempted during the implementation process in order to identify
the most appropriate, as discussed later in the implementation section. However, it was
eventually decided that the best solution was to use a statically timed loop that, rather
than counting the actual number of wheel ticks, calculated the amount of time that had
passed since the previous wheel tick. This then allowed the frequency of wheel rotations to
be calculated.

Unfortunately the PIC only has support for up to 16-bits, and as such all timers and
integers have a maximum range between 0 and 64,999 when unsigned. This proved to be
insufficient, in terms of the range of values, to count all wheel ticks. As such, two 16-
bit integers were used for each wheel where the second integer represented an overflow of
the first 16-bit number. As the first number reached 64,999 it was reset and the second
number was incremented by one. The result of the correct calculations with these two 16-bit
numbers is a 32-bit integer with sufficient range to count all wheel ticks.

As a result of the changes to the PIC, modifications were once again needed to the data
string to be sent back to the Gumstix from the PIC. The format of the new data string in
shown in Figure 10.1.

10.2.3 Gumstix Software Design

pic.c and pic data t

Having the information regarding the time since the last wheel rotation meant that mi-
nor modifications were required to the PIC code. First, two additions were made to the
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::x120y100z225g089p128l12345678r12345678lo123ro123\n

      sync        y      z     gyro          time since last         left wheel

                                                      left wheel tick         overflow

                                            actuator POT    time since last        right wheel

                                                                     right wheel tick      overflow

Figure 10.1: Revised PIC Data String

pic data t structure to hold the new information. The two attributes left wheels and
right wheels in the diagram (Figure 10.2) hold the left and right wheel rotations per
second.

pic_data_t (struct pic_data)

+ x : uint8_t
+ y : uint8_t
+ z : uint8_t
+ gyro : uint8_t
+ pot : uint8_t
+ left_wheel : float
+ right_wheel : float

Figure 10.2: Gumstix Software pic data t UML Diagram

The rotations are calculated using the formula shown (Eq. 10.1) where r is the number
of rotations per second, t is the number of timer ticks since the last wheel rotation as
provided by the value l or r in the PIC data string. v represents the number of times the
value t has overflowed and comes from lo and ro in the PIC data string. k1 is a constant
set at 64999 and is the last possible value that t can be before it overflows and is reset to
zero. Finally, k2 is a second constant (0.0002) and represents the precise number of seconds
per timer tick.

r =
1

(t + vk1) · k2

(10.1)

control.c

Only a single design change was made to the control.c file, and that was the inclusion of the
turn to angle(angle) function. The design of this function was made as simple as possible,
simply calling the turn by angle(angle) function with the appropriate heading difference
between the current heading of the ARGO and the target heading.
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control.c

+ turn_by_angle(angle : int32_t) : int32_t
+ turn_to_angle(angle : uint32_t) : uint32_t
- get_heading_difference(now : uint32_t, want : uint32_t) : uint32_t

Figure 10.3: Gumstix Software control.c UML Diagram

However, significant work was undertaken to the turn by angle(angle) function to im-
prove accuracy. Details of this are given in the implementation section, however the final
design uses a PI controller to achieve controlled turns.

Final Gumstix Software Design

A final overview of the Gumstix software design is shown in Figure 10.5.

10.2.4 Simulator Software Design

Control.java

The design work for the simulator in this sprint is minimal and simply follows the existing
design in place in the physical control system resulting in the addition of a Control class
(Figure 10.4).

Like the control.c file in the physical ARGO control system, three methods exist: get-
HeadingDifference(now, want) is used to get the heading difference between two headings,
turnByAngle(angle) is used to turn by a given angle relative to the current heading and
finally turnToAngle(angle) is used to turn to a specific heading.

Control.java

- argo : Argo

+  Control(argo : Argo)

+ turnToAngle(angle : int) : int
+ turnByAngle(angle : int) : int
- getHeadingDiffrenece(now : int, want : int) : int

Figure 10.4: Simulator Software Control UML Diagram

Final PIC Software Design

The final design of the PIC software to this point is shown in Figure 10.6.
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argo.c

- ttystate : struct termio
- c : char

+ main(argc : int, argv : char **) : int

pic.c

- pic_fd : uint32_t

+ open_pic(rate : uint32_t, term : char *) : void
+ close_pic(void) : void
+ get_pic_data(pdt_ptr : pic_data_t *) : void

gps.c

- gps_fd : uint32_t

+ open_gps(rate : uint32_t, term : char *) : void
+ close_gps(void) : void
+ get_gps_data(data : gps_data_t *) : void
- convert(angle : char *) : double
- execute_command(command : char *, response : char *) : void

gps_data_t (struct gps_data)

+ utc : float
+ lon : float
+ lat : float
+ hdop : float
+ alt : float
+ cog : float
+ speed_kmh : float
+ speed_knots : float
+ date : char[7]
+ fix : short
+ num_of_sats : short

pic_data_t (struct pic_data)

+ x : uint8_t
+ y : uint8_t
+ z : uint8_t
+ gyro : uint8_t
+ pot : uint8_t
+ left_wheel : float
+ right_wheel : float

uart.c

+ uart_init(rate : uint32_t, term : char *) : uint32_t
+ uart_deinit(fd : uint32_t) : void
+ uart_rx(fd : uint32_t) : unsigned char
+ uart_tx(fd : uint32_t, data : char) : void

compass.c

- open_compass(compass_address : uint32_t) : void
- close_compass(void) : void
+ get_compass_data(void) : uint16_t

servo.c

- servo_fd : uint32_t

+ open_servo(rate : uint32_t, term : char *) : void
+ close_servo(void) : void
+ set_servo(servo : uint32_t, position : uint32_t) : uint32_t

External I2C Library

throttle.c

+ THROTTLE_MAX : int
+ THROTTLE_MIN : int

+ init_throttle(motor : uint32_t) : void
+ set_throttle_position(speed : uint32_t) : uint32_t

steering.c

+ STEERING_LEFT : int
+ STEERING_RIGHT : int

+ STEERING_OFF : int

+ init_steering(motor : uint32_t) : void
+ set_steering_position(position : uint32_t) : uint32_t

control.c

+ turn_by_angle(angle : int32_t) : int32_t
+ turn_to_angle(angle : uint32_t) : uint32_t
- get_heading_difference(now : uint32_t, want : uint32_t) : uint32_t

Figure 10.5: Gumstix Software UML Design
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Simulator.java

+ main(args : String[]) : void

uk.ac.aber.dcs.sem9060.backend

uk.ac.aber.dcs.sem9060

Argo.java

+ STEERING_LEFT : int
+ STEERING_RIGHT : int
+ STEERING_OFF : int
+ THROTTLE_MAX : int
+ THROTTLE_MIN : int
- heading : int
- x : int
- y : int
- speed : int
- engine : Thread

- Argo()
+ getCompassHeading() : int
+ setSteeringPosition(position : int) : void
+ getSteeringPosition() : int
+ increaseThrottle() : void
+ increaseThrottle(value : int) : void
+ decreaseThrottle() : void
+ decreaseThrottle(value : int) : void
+ setThrottle(value : int) : void
+ getThrottle() : int
+ setY(int y) : void
+ setX(int x) : void
+ getY() : int
+ getX() : int

Backend.java

- instance : Backend
- argoInstance : Argo
- map : Map

- Backend(mapFileName : String)

+ getInstance() : Backend
+ getInstance(mapFileName : String) : Backend
+ simulateInterface() : void
+ getArgoInstance() : Argo
+ getMap() : Map
- loadMap(mapFileName : String) : void

Map.java

- areas : ArrayList<MapArea>
- width : int
- height : int

+  Map(filename : String)
+ getMapAreas() : ArrayList<MapArea>
+ getMapDimensions() : Dimension
- buildMap (filename : String) : void

MapArea.java

- name : String
- coordinates : Point
- size : Dimension
- surfaceType : SurfaceType

+  MapArea()
+ setName(name : String) : void
+ setCoordinates(coordinates : Point) : void
+ setSize(size : Dimension) : void
+ setSurfaceType( st : SurfaceType ) : void
+ getName() : String
+ getCoordinates() : Point
+ getSize() : Dimension
+ getSurfaceType() : SurfaceType

SurfaceType.java
<<interface>>

+ getSpeed(throttle : int) : int
+ getMaxSpeed() : int
+ getAngleChangeValue(throttle : int) : int
+ getThrottleToGo() : int
+ getColor() : Color
+ getName() : String

uk.ac.aber.dcs.sem9060.api

uk.ac.aber.dcs.sem9060.gui

GraphicsInterface.java

- backend : Backend
- map : GMap

-  GraphicsInterface() 
+ getInstance() : GraphicsInterface
+ setMap(map : GMap) : void

GMap.java

Control.java

- argo : Argo

+ Control(argo : Argo)
+ turnByAngle(angle : int) : int

+ turnToAngle(angle : int) : int
- getHeadingDiffrenece(now : int, want : int) : int

Figure 10.6: Simulator Software UML Design
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10.3 Implementation

10.3.1 Wheel Rotation Counting

It was initially thought that an interrupt based approach would be most appropriate for
counting wheel ticks. As a change is identified by the sensors an interrupt would be gen-
erated incrementing a counter. However, this proved to be unacceptable due to the fact
that it did not provide guaranteed execution time and, as a result of this, it was often the
case that the PIC was so busy dealing with interrupts that it was unable to spend time
transmitting data over the serial line.

As such it became clear that a fixed time loop system would be required. This meant
that the PIC software needed to keep a record of the previous state of the sensors on both
the left and right wheels (i.e. high or low), and then compare the current reading against
the previous. Any changes would then result in a counter being incremented. A timer would
then be used to generate an interrupt once a second to reset the counters to zero. As such
every second it would be clear how many wheel rotations there had been. However, this
again was found to be unacceptable for two reasons. First, it means that if the wheels stop
turning it can take a whole second before this is noticed and second the interrupt generated
every second often occurred during the transmission of serial data causing significant issues
regarding which value should be sent over the serial line (the previous value or the new
value of zero) and also with regards to corrupted data arriving at the Gumstix.

A final solution was identified without the use of any interrupts. Instead of counting
the number of wheel ticks per second, the time since the last wheel tick was counted and
the frequency was then calculated as detailed in the design section (Eq. 10.1). This proved
to be a much better solution, capable of counting all wheel rotations in a fixed timed loop
algorithm, without having any impact on the transmission of data to the Gumstix. The
final algorithm used is shown below.

1 while (1) {

2

3 timer = ReadTimer0 ();

4 left_wheel += timer;

5 right_wheel += timer;

6

7 if (right_wheel > 64999) {

8 right_wheel = 0;

9 rwover ++;

10 }

11

12 if (left_wheel > 64999) {

13 left_wheel = 0;

14 lwover ++;

15 }

16

17 if (rwover > rwoverprint)

18 rwoverprint = rwover;

19

20 if (lwover > lwoverprint)

21 lwoverprint = lwover;

22

23 if (left_wheel > lwprint)

24 lwprint = left_wheel;
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25

26 if (right_wheel > rwprint)

27 rwprint = right_wheel;

28

29 if (PORTBbits.RB6 != left_last) {

30 left_last = PORTBbits.RB6;

31 lwprint = left_wheel;

32 lwoverprint = lwover;

33 left_wheel = 0;

34 lwover = 0;

35 }

36

37 if (PORTBbits.RB7 != right_last) {

38 right_last = PORTBbits.RB7;

39 rwprint = right_wheel;

40 rwoverprint = rwover;

41 right_wheel = 0;

42 rwover = 0;

43 }

44 WriteTimer0 (0);

45 }

10.3.2 Proportional Control During Turning

After the problems during the previous sprint and the clear need for a reduced turn rate a
number of attempts were made to adjust the rate of turns.

Firstly, the fluctuating throttle ‘solution’ from the previous sprint was modified such
that the throttle would be increased until the wheels actually began to rotate, rather than
to an arbitrary maximum figure. At this point, the throttle was instantly reduced to zero
again. Unfortunately, whilst providing a minor improvement in control over the previous
solution, it was still not sufficient to get fully controlled turns. At this point it became clear
that what was really needed was a method of controlling the throttle proportionally to the
target heading.

As such a simple P and later a PI controller was implemented. The proportional aspect
came from the distance to the target heading. This value then results in a target wheel
rotation speed that is related to the heading distance.

Using this target wheel rotation speed the current error in terms of the current wheel
rotations verses desired wheel rotations is calculated, and the result is used to produce
a throttle adjustment value. This value is then added to (or deducted from) the current
throttle, resulting in the integral component of the PI controller. As such, the further
the distance from the heading, the greater the error in wheel rotations and so the greater
the error in the throttle setting, thus the larger the resulting adjustments of throttle value
used to compensate. Further, failure for any change in heading to occur after throttle
adjustments simply result in the continual increase in the throttle until the vehicle moves.

A simple trial-and-error method was used to tune the PI controller, and two gain values
were calculated. The first, 0.0075, is the gain for the proportional component, and 10.0
was the resulting gain for the integral component. The result of this tuning was the ability
of the throttle to respond quickly to changes in wheel rotations, whilst the wheel rotations
remained at appropriate levels for controlled turns with relation to the distance to the target
headings.
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Compass Calibration

After the issues relating to the compass in the previous sprint, further issues were identified.
Whilst the ARGO was now performing turns with reasonable accuracy (and certainly in
a controlled manner) it was apparent that a lot of the turns failed to result in the ARGO
pointing in the correct heading.

Initially it was thought that this was still due to vibrations. However, it became apparent
that the compass was simply uncalibrated, as can be seen in the graph (Figure 10.7).

Figure 10.7: Compass Calibration

The resulting compass calibration required the use of two linear formula. The first (Eq.
10.2) is used for compass values between 40 and 112 degrees, and the second (Eq. 10.3) is
used for all compass values between 112 and 275 degrees.

hnew = 0.63 · hold (10.2)

hnew = 225 − ((235 − hold) · 1.52) (10.3)

10.4 Testing

As with previous sprints testing took place on a daily basis during the development of
the software and in particular during the development of the physical control system. All
previous tests were re-run in order to ensure that no features implemented during this sprint
had caused regression, and the results are shown in the table (Figure 10.8).

A brief overview of additional tests required for this sprint, and the results, is provided
in the table (Figure 10.9).
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Test Feature Expected Result Pass/Fail

Accelerometer values
P1 Read accelerometer. change as the hardware Changing values. Pass

is Manipulated.

Gyro values change
P2 Read gyro. as the hardware is Changing values. Pass

manipulated.

Sent string
P3 from PIC is in See design. As per design. Pass

correct format.

G1 Read compass. Display compass value. 265 degrees Pass

Read string
G2 from PIC is in See design. As per design. Pass

correct format.

G3 Move any servo. Servo attached moves. Servo moved. Pass

G4 Press a. Handlebars turn left. Handlebars left. Pass

G5 Press d. Handlebars turn right. Handlebars right. Pass

Handlebars
G6 Press s. Handlebars center. centered. Pass

Throttle
G7 Press w. Throttle increases. increased. Pass

Throttle decreased Throttle set to
G8 Press s. to zero, handlebars zero, handlebars Pass

center. centered.

Current Compass
G9 Press c. heading heading Pass

displayed. displayed.

S1 Read compass. Value: 0 degrees 0 degrees Pass

S2 Press a. Handlebars turn left. Handlebars left. Pass

S3 Press d. Handlebars turn right. Handlebars right. Pass

Handlebars
S4 Press s. Handlebars centered. centered. Pass

Throttle incr.,
S5 Press w. Throttle increases. x and y values Pass

changed correctly.

Figure 10.8: Sprint 4 Regression Testing Results, P: PIC, G: Gumstix, S: Simulator
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Test Feature Expected Result Pass/Fail

Wheel rotations Left wheel rotations
P4 counting, moving have appropriate Changing values. Pass

left wheel. changing values.

Wheel rotations Right wheel rotations
P5 counting, moving have appropriate Changing values. Pass

right wheel. changing values.

Various Various
G10 Press g. angles angles Pass

achieved. achieved.

Various Various
S6 Press g. angles angles Pass

achieved. achieved.

Figure 10.9: Sprint 4 Test Results, P: PIC, G: Gumstix, S: Simulator

10.5 Sprint Review

Despite starting two weeks late and having more work than initially planned this sprint
has proven to be significantly more successful than the previous sprint. In order to include
testing, the sprint went over the estimated time by one week, making the sprint three weeks
long and finishing on the 20th February 2010.

During the sprint a number of important decisions were made with regards to achieving
acceptable levels of control of the ARGO resulting in the completion of all functional re-
quirements for the physical ARGO control system and proving that control of such a vehicle
is indeed possible to a reasonable level even without expensive components once sufficient
software calibration has taken place.

By the end of the sprint all original features, and additional features, had been completed
and were shown to be in good order via testing. Further, no regression had resulted from
the addition of the new features. However, the project was now three weeks behind the
original schedule.
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Chapter 11

Sprint 5

“If you focus on results, you will never change. If you focus on change, you will get results.”

Jack Dixon

11.1 Sprint Planning

The fifth and final sprint of the project started on the 22nd February 2010, three weeks
later than originally planned. However, the original requirements of the project for this
sprint were trivial - simply involving the enhancement of the graphical components of the
simulator environment:

• 2.e.ii Continually updating display of the ARGO and its current position on the map.

• 2.e.iii Display of sensor data and the current status of the ARGO, such as the coor-
dinates, heading, speed and throttle etc.

Despite being late according to the original project plan sufficient time existed for the
addition of a secondary objective into the product backlog. It was decided that the im-
plementation of a high-level simplistic GPS navigation algorithm using simple way-point
navigation would be easy to develop thanks to the now proven and functional low level
control software. The lead to the addition of one final feature, 1.e.iii:

• 1.e.iii Develop simple GPS way-point navigation techniques.

Whilst there has been an additional feature added to the product backlog, the original
primary objectives are of most importance. As such, whilst this chapter deals with the
physical implementation details, and therefore the secondary objective, first in order to
remain consistent with all the previous chapters, during the development stage the simulator
aspects took first priority during this sprint.

11.2 Design Decisions

11.2.1 Hardware Design

No hardware design changes were needed for this sprint.
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11.2.2 PIC Firmware Design

No PIC firmware changes were needed for this sprint.

11.2.3 Gumstix Software Design

A number of small changes were required to the design of the Gumstix software for this
sprint. Specifically, the introduction of GPS navigation code into the control.c class and
minor modifications to the gps.c file.

gps.c

In order to achieve GPS navigation two pieces of information were necessary. First, it
was important to be able to get the appropriate turn angle given the current heading of
the ARGO so that the vehicle could turn to face the new GPS point. This was achieved
with the new function gps get heading(curr, dest). The mathematics for this calculation are
shown in Equation 11.1.

θ = atan2(sin(∆long) · cos(lat2), cos(lat1 · sin(lat2) − sin(lat1) · cos(lat2) · cos(∆long))1

(11.1)
The other information vital is the current distance to the point. Clearly, if the distance

is 0 meters the position has been reached and the vehicle should not re-attempt to navigate
to the position. The function gps get distnace(curr, dest) deals with the calculation of
distance between two GPS positions via Equation 11.2 and 11.3.

a = sin2(
∆lat

2
) + cos(lat1) · cos(lat2) · sin

2(
∆lon

2
) (11.2)

d = (R · (2 · atan2(
√

a,
√

1 − a)) · k1 (11.3)

In Equation 11.3, R is the approximate radius of the Earth (6371km) and k is a constant
of 1000 used in order to change the units from kilometers to meters. The resulting UML
diagram representing the new gps.c file is shown in Figure 11.1.

control.c

The addition of one function was made to the control.c file: navigate to gps point(lon, lat).
It is used to perform the actual navigation from one GPS point to another using all other
control functions previously developed including the turn to angle(angle) and the new GPS
functions.

argo.c

Whilst no design changes were made to this file, two additions occurred. First, a simple
loop will be implemented at the start of the main method to read in a simple GPS data file
(see Appendix D for an example) which holds way points and a menu item ‘n’ for navigate
will also be added to start autonomous navigation to the GPS coordinates specified in the
data file.

1Both formula from: http://www.movable-type.co.uk/scripts/latlong.html, Last accessed: 22nd
April 2010.
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gps.c

- gps_fd : uint32_t

+ open_gps(rate : uint32_t, term : char *) : void
+ close_gps(void) : void
+ get_gps_data(data : gps_data_t *) : void
+ gps_get_distance(curr : gps_data_t *, dest : gps_data_t *) : double
+ gps_get_heading(curr : gps_data_t *, dest : gps_data_t *) : uint32_t
- convert(angle : char *) : double
- execute_command(command : char *, response : char *) : void

Figure 11.1: Gumstix Software GPS UML Diagram.

control.c

+ turn_by_angle(angle : int32_t) : int32_t
+ turn_to_angle(angle : uint32_t) : uint32_t
+ navigate_to_gps_point(lon : double, lat : double) : void
- get_heading_difference(now : uint32_t, want : uint32_t) : uint32_t

Figure 11.2: Gumstix Software Control UML Diagram.
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Final Gumstix Software Design

The final software design for the Gumstix is shown in Figure 11.3

11.2.4 Simulator Software Design

During this sprint two new features were to be added, both of which solely affect the
graphical user interface of the simulator. Given that all the work relating to moving the
ARGO takes place in the backend, the work during this sprint was anticipated to be trivial.
The final design work for this sprint is shown detailed in the remainder of this chapter.

DataPanel.java

The DataPanel class (Figure 11.4) has the simple job of displaying data regarding the
current ARGO operations. This data includes:

• Current Speed

• Current x and y Coordinates

• Current Heading

• Surface Type

• Maximum Possible Speed

• Current Throttle Position

• Handlebar Position

The updateDisplay() method is used to update this information with the latest fig-
ures from the backend. This happens once every 1 millisecond via a call from the main
GraphicsInterface class.

GArgo.java

The GArgo class (Figure 11.5) is simply used to draw the current position of the ARGO,
and its orientation, on the map. The draw(g) method is called by the GMap class whenever
the map is re-drawn.

Final Simulator Software Design

Figure 11.6 shows a UML diagram of the final simulator design.
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argo.c

- ttystate : struct termio
- c : char

+ main(argc : int, argv : char **) : int

pic.c0

- pic_fd : uint32_t

+ open_pic(rate : uint32_t, term : char *) : void
+ close_pic(void) : void
+ get_pic_data(pdt_ptr : pic_data_t *) : void

gps.c

- gps_fd : uint32_t

+ open_gps(rate : uint32_t, term : char *) : void
+ close_gps(void) : void
+ get_gps_data(data : gps_data_t *) : void
+ gps_get_heading(curr : gps_data_t *, dest : gps_data_t *) : uint32_t
+ gps_get_distance(curr : gps_data_t *, dest : gps_data_t *) : double
- convert(angle : char *) : double
- execute_command(command : char *, response : char *) : void

gps_data_t (struct gps_data)

+ utc : float
+ lon : float
+ lat : float
+ hdop : float
+ alt : float
+ cog : float
+ speed_kmh : float
+ speed_knots : float
+ date : char[7]
+ fix : short
+ num_of_sats : short

pic_data_t (struct pic_data)

+ x : uint8_t
+ y : uint8_t
+ z : uint8_t
+ gyro : uint8_t
+ pot : uint8_t
+ left_wheel : float
+ right_wheel : float

uart.c

+ uart_init(rate : uint32_t, term : char *) : uint32_t
+ uart_deinit(fd : uint32_t) : void
+ uart_rx(fd : uint32_t) : unsigned char
+ uart_tx(fd : uint32_t, data : char) : void

compass.c

- open_compass(compass_address : uint32_t) : void
- close_compass(void) : void
+ get_compass_data(void) : uint16_t

servo.c

- servo_fd : uint32_t

+ open_servo(rate : uint32_t, term : char *) : void
+ close_servo(void) : void
+ set_servo(servo : uint32_t, position : uint32_t) : uint32_t

External I2C Library

throttle.c

+ THROTTLE_MAX : int
+ THROTTLE_MIN : int

+ init_throttle(motor : uint32_t) : void
+ set_throttle_position(speed : uint32_t) : uint32_t

steering.c

+ STEERING_LEFT : int
+ STEERING_RIGHT : int

+ STEERING_OFF : int

+ init_steering(motor : uint32_t) : void
+ set_steering_position(position : uint32_t) : uint32_t

control.c

+ turn_by_angle(angle : int32_t) : int32_t
+ turn_to_angle(angle : uint32_t) : uint32_t
+ navigate_to_gps_point(lon : double, lat : double) : void
- get_heading_difference(now : uint32_t, want : uint32_t) : uint32_t

Figure 11.3: Gumstix Software UML Design
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DataPanel.java

- argo : Argo
- backend : Backend

+  DataPanel() 
+ updateDisplay() : void

Figure 11.4: Simulator Software DataPanel UML Diagram

GArgo.java

- argo : Argo
- g : Graphics
- gArgo : GArgo

- GArgo() 
+ getInstance() : GArgo
+ draw(g : Graphics) : void

Figure 11.5: Simulator Software GArgo UML Diagram
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Simulator.java

+ main(args : String[]) : void

Argo.java

+ STEERING_LEFT : int
+ STEERING_RIGHT : int
+ STEERING_OFF : int
+ THROTTLE_MAX : int
+ THROTTLE_MIN : int
- heading : int
- x : int
- y : int
- speed : int
- engine : Thread

- Argo()
+ getCompassHeading() : int
+ setSteeringPosition(position : int) : void
+ getSteeringPosition() : int
+ increaseThrottle() : void
+ increaseThrottle(value : int) : void
+ decreaseThrottle() : void
+ decreaseThrottle(value : int) : void
+ setThrottle(value : int) : void
+ getThrottle() : int
+ setY(int y) : void
+ setX(int x) : void
+ getY() : int
+ getX() : int

Backend.java

- instance : Backend
- argoInstance : Argo
- map : Map

- Backend(mapFileName : String)
+ getInstance() : Backend
+ getInstance(mapFileName : String) : Backend
+ simulateInterface() : void
+ getArgoInstance() : Argo
+ getMap() : Map
- loadMap(mapFileName : String) : void

SurfaceType.java
<<interface>>

+ getSpeed(throttle : int) : int
+ getMaxSpeed() : int
+ getAngleChangeValue(throttle : int) : int
+ getThrottleToGo() : int
+ getColor() : Color
+ getName() : String

GraphicsInterface.java

- backend : Backend
- map : GMap

-  GraphicsInterface() 
+ getInstance() : GraphicsInterface
+ setMap(map : GMap) : void

Control.java

- argo : Argo

+ Control(argo : Argo)
+ turnByAngle(angle : int) : int

+ turnToAngle(angle : int) : int
- getHeadingDiffrenece(now : int, want : int) : int

MapArea.java

- name : String
- coordinates : Point
- size : Dimension
- surfaceType : SurfaceType

+  MapArea()
+ setName(name : String) : void
+ setCoordinates(coordinates : Point) : void
+ setSize(size : Dimension) : void
+ setSurfaceType( st : SurfaceType ) : void
+ getName() : String
+ getCoordinates() : Point
+ getSize() : Dimension
+ getSurfaceType() : SurfaceType

Map.java

- areas : ArrayList<MapArea>
- width : int
- height : int

+  Map(filename : String)
+ getMapAreas() : ArrayList<MapArea>
+ getMapDimensions() : Dimension
- buildMap (filename : String) : void

GMap.java

DataPanel.java

- Backend : Backend
- argo : Argo

+ DataPanel()

+ updateDisplay() : void

GArgo.java

- argo : Argo
- g : Graphics
- gArgo : GArgo

- GArgo()

+ getInstance() : GArgo
+ draw(g : Graphics)

Figure 11.6: Simulator Software UML Design
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11.3 Implementation

11.3.1 GPS Navigation

Despite the anticipated simplicity the GPS navigation actually proved to be more difficult
than originally expected. The primary cause for problems was the continued noise in the
compass. As the vehicle moved the compass vibrations would often cause the control al-
gorithm to ‘think’ that the ARGO was off course - often by a factor of 10 - 20 degrees.
This would cause the ARGO to continually turn on the spot, first left, then right etc in an
attempt to get precisely on heading. As such the vehicle made very little progress forwards
towards the final destination.

Fortunately, a primitive solution was found to this problem. The control algorithm was
updated such that the ARGO would only attempt to correct course in two circumstances:

1. The ARGO was travelling in completely the wrong direction, and the distance to the
final way-point was increasing rather than decreasing.

2. The ARGO had moved forwards, in any direction, at least 5 meters since the last
course correction.

This seemed to fix the problems seen and the ARGO now navigates to GPS points with
few course corrections. The resulting control algorithm used is shown below.

1 void navigate_to_gps_point(double lon , double lat) {

2

3 gps_data_t current , new;

4 uint32_t compass , heading;

5 float distanceStart , distanceCurrent;

6 extern uint32_t DIS_TO_WAYPOINT , ANG_TO_WAYPOINT;

7

8 get_gps_data (& current );

9 new.lon = lon;

10 new.lat = lat;

11

12 distanceStart = gps_get_distance (&current , &new);

13 distanceCurrent = gps_get_distance (&current , &new);

14

15 while (distanceCurrent > DIS_TO_WAYPOINT) {

16

17 get_gps_data (& current );

18 compass = get_compass_data ();

19 heading = gps_get_heading (&current , &new);

20

21 distanceCurrent = gps_get_distance (&current , &new);

22

23 while (( get_heading_difference(compass , heading)

24 > ANG_TO_WAYPOINT && (distanceStart - distanceCurrent > 5.0))

25 || (distanceCurrent > distanceStart )) {

26

27 distanceStart = gps_get_distance (&current , &new);

28 set_throttle_position(THROTTLE_MIN );

29 turn_to_angle(heading );

30 set_steering_position(STEERING_OFF );
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31

32 compass = get_compass_data ();

33

34 }

35

36 set_throttle_position (73);

37

38 }

39

40 set_throttle_position(THROTTLE_MIN );

41 set_steering_position(STEERING_OFF );

42

43 }

Finally, testing and tuning took place before it was decided that a reasonable distance
to waypoint (DIS TO WAYPOINT) figure was 7 meters. Further, it was decied that the use
of 15 degrees for the angle to waypoint (ANG TO WAYPOINT) parameter was suitable. Both
these seemed to work best in terms of the accuracy and repeatability when navigating to
the same GPS position.

11.3.2 Simulator

The simulator development work was as expected and proved to be exceedingly trivial,
taking approximately two hours to complete! No problems were identified during the de-
velopment work worth noting.

Figure 11.7 shows the final output of the simulator whilst performing turns.

11.4 Testing

As with all previous sprints, regression testing was conducted to ensure that no new features
had caused faults to occur. The results are shown in Figure 11.4.

Having confirmed that no features were regressed during this sprint testing took place
to ensure that all the new features were correctly functioning. Given the nature of these
features, no automation was possible, and so all tests are ‘visual’ in nature and the results
are shown in Figure 11.4.
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Figure 11.7: Simulator Screen Shot Performing Turns
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Test Feature Expected Result Pass/Fail

Accelerometer values
P1 Read accelerometer. change as the hardware Changing values. Pass

is Manipulated.

Gyro values change
P2 Read gyro. as the hardware is Changing values. Pass

manipulated.

Sent string
P3 from PIC is in See design. As per design. Pass

correct format.

Wheel rotations Left wheel rotations
P4 counting, moving have appropriate Changing values. Pass

left wheel. changing values.

Wheel rotations Right wheel rotations
P5 counting, moving have appropriate Changing values. Pass

right wheel. changing values.

G1 Read compass. Display compass value. 265 degrees Pass

Read string
G2 from PIC is in See design. As per design. Pass

correct format.

G3 Move any servo. Servo attached moves. Servo moved. Pass

G4 Press a. Handlebars turn left. Handlebars left. Pass

G5 Press d. Handlebars turn right. Handlebars right. Pass

Handlebars
G6 Press s. Handlebars center. centered. Pass

Throttle
G7 Press w. Throttle increases. increased. Pass

Throttle decreased Throttle set to
G8 Press s. to zero, handlebars zero, handlebars Pass

center. centered.

Current Compass
G9 Press c. heading heading Pass

displayed. displayed.
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Test Feature Expected Result Pass/Fail

Various Various
G10 Press g. angles angles Pass

achieved. achieved.

S1 Read compass. Value: 0 degrees 0 degrees Pass

S2 Press a. Handlebars turn left. Handlebars left. Pass

S3 Press d. Handlebars turn right. Handlebars right. Pass

Handlebars
S4 Press s. Handlebars centered. centered. Pass

Throttle incr.,
S5 Press w. Throttle increases. x and y values Pass

changed correctly.

Various Various
S6 Press g. angles angles Pass

achieved. achieved.

Figure 11.8: Sprint 5 Regression Testing Results, P:PIC, G: Gumstix, S: Simulator

Test Feature Expected Result Pass/Fail

Navigate between +/- 7m distance
G11 GPS Navigation three different from GPS points Pass

waypoints specified. achieved.

Argo is displayed
S7 Argo Displays and moves in the Moving argo. Pass

appropriate directions.

Appropriate and correct
S8 Data Display data is displayed and Data correct. Pass

updated in the GUI.

Figure 11.9: Sprint 5: Testing Results, P: PIC, G: Gumstix, S: Simulator

11.5 Sprint Review

This final sprint represented the end of the development work for the project. Once again,
despite starting late, the sprint was highly successful with all tests passing and all features
complete. Further, it is pleasing to have primitive GPS navigation available at the end of
this sprint as it clearly helps to show that the control and automation of a vehicle such
as the ARGO is possible. The only issues during this sprint were related, once again, to
the compass hardware used. However, even given these issues, the performance has clearly
been sufficient for simple navigation tasks.

Whilst the simulator aspect during this sprint took very little time, the GPS code took
much longer than anticipated. As such this sprint also ran over time by one week. This
puts the whole project four weeks behind the original plan. Overall this sprint is considered
to be a great success and the project is in such a state that data can be gathered in order
to assist with the final research objectives.
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Chapter 12

Data Analysis

“No amount of experimentation can ever prove me right; a single experiment can prove me
wrong.”

Albert Einstein

12.1 Data Gathering

The first step towards answering the research objectives of this project was to gather suf-
ficient data. Some initial data relating to human-driven testing was already available from
the investigative work completed at the beginning of this project. Further, a significant
amount of data existed from the many tests completed during the development stages.

However, the data gathered during the development work was clearly not sufficient for
data analysis. Whilst it may show interesting results, one set of data cannot be compared
against another set of data. The conditions were often different, tuning parameters often
changed between testing, details were not recorded of the precise surface conditions or of
anomalies during testing which could produce perplexing results.

As such it was clear that a set of final testing would need to be conducted under much
more controlled circumstances. Data gathered would have to be identical across all tests
and details regarding the surface type and conditions (wet, dry, damp etc) would also be
needed. Further, it was important to decide what data would actually be appropriate -
would it have been sufficient to gather only 90 degree turns or would 45 degree turns have
been better. Further, does the use of only 45 degree turns result in different characteristics
than the use of 90 or 180 degree turns?

Eventually, after some thought, a data gathering strategy was decided. Simple paper
records of all three tests are attached to this dissertation in Appendix B. The testing involved
the use of 45, 90 and 180 degree turns on three separate surfaces including tarmac, grass
and gravel. In addition to the testing sheets log files were collected for each test which
held data regarding the wheel rotations, compass heading, throttle values, gyroscope and
accelerometer readings. Due to the size of these data files they have not been attached
directly to this dissertation. However, they are available on the provided CD.

12.2 Data Processing

Having acquired all the data from the individual tests each turn during the testing was
processed into individual files using a simple shell script:
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1 cat $1 | sed s/:/=/g > $1.out

2 cat $1.out | sed s/[a-z_ ]*=//g > $1

3 cat $1 | sed s/[a-z]*//g > $1.out

4 cat $1.out | sed s/" "//g > $1

5 cat $1 | sed s/","/", "/g > $1.out

6 mv $1.out $1

This left the data in the comma separated format required by tools such as GNU Plot.
The format of the data at this point was:

• gyroscope,

• accelerometer x-axis,

• accelerometer y-axis,

• accelerometer z-axis,

• current throttle speed,

• current heading,

• difference between desired heading and current heading,

• left wheel rotations per second,

• right wheel rotations per second,

• target wheel rotations per second,

• difference between right/left (depending on turn direction) rotations and the target
wheel rotations.

This data was then processed using GNU Plot to generate various graphs to allow for
data analysis. Some of these graphs are included in Appendix C along with hand written
analysis notes.

12.2.1 Gravel

Figure 12.2.1 shows turn data plotted for a 45 degree turn on gravel. Specifically it shows a
turn from 45 degrees to 90 degrees from North. The first thing that is noticeable regarding
this data is that there is considerable variation in the wheel rotation speed with large spikes,
yet there are only very small and progressive changes in heading during the turn.

In addition to this, the compass (and as such target wheel rotations and heading differ-
ence) seems to be exceedingly noisy with constantly changing readings +/- 5 degrees either
side of the actual heading.

Both these characteristics may be as a result of the surface type. On gravel it was
observed during testing that the wheels would often get stuck or spin on the loose surface.
This would cause the throttle to immediately decrease because the wheel rotations would
be significantly over the target and eventually the throttle would increase again until the
wheels started to grip and move at the correct rotational speed. At this point the vehicle
would turn quite quickly until the heading was reached, or the wheels once again hit loose
ground.
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Figure 12.1: A Typical 45 Degree Turn on Gravel

This behaviour on gravel is further seen in the throttle value. On all the graphs for
gravel the throttle is seen to increase and decrease with considerable uniformity. This is
particularly well seen in the 180 degree turn data (Figure 12.2.1) where the throttle never
reaches maximum but approximately half speed before wheel rotations shoot far past the
target resulting in the instant reduction of throttle.

It is interesting that the response of the engine seems to be quite fast on gravel - at
least in terms of acceleration. Very little throttle is needed before massive wheel rotations
occur. However, it is also clear that whilst wheel rotations increase they remain high before
the vehicle actually moves. This is particularly well seen in the 180 degree turn between
50 and 200 readings. The wheel rotations are high for a considerable duration whilst the
change in heading seems to have large steps, rather than smooth changes.

It seems to this point that the data in the graphs quite closely represents the observed
behaviour.

12.2.2 Grass

All the graphs for Grass (Figures 12.2.2, 12.2.2 and 12.2.2) show considerably different
characteristics compared to gravel. Unlike with gravel there is a significant delay between
the increase in throttle and the increase in wheel rations. Even on the smaller turns the
throttle reached the maximum value and stayed there for approximately 30 readings before
any wheel rotations occurred. This is significantly different to gravel where minor changes
in throttle had a relatively quick effect on wheel rotations.
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Figure 12.2: A Typical 90 Degree Turn on Gravel
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Figure 12.3: A Typical 180 Degree Turn on Gravel
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Figure 12.4: A Typical 45 Degree Turn on Grass

Further differences are evident in terms of the effects of those wheel rotations. As soon
as the wheels begin to rotate the compass heading changes. This is once again different
than on gravel where wheels spin on loose gravel before changes in heading.

Finally, and probably due to the relatively slow reaction of the wheels, there seems to
be significantly fewer fluctuations in the throttle on grass than on gravel.

12.2.3 Tarmac

The data on tarmac is of significant interest. First, it should be noted that the surface
was particularly grainy with a strange almost sand like coating of tarmac on top of the
normal road surface. Further, the test data for tarmac was on a considerable slope due to
the limited and constrained testing environments available. As such the data may not be
directly comparable with grass or gravel.

However, most of the data gathered on the tarmac seems to have very similar character-
istics to the grass surface. Once again long delays are seen between the increase in throttle
and turns actually taking place. Further similarities include the rate of turns. As with
grass, once the wheels spin the heading changes with incredible speed.

It is interesting to see the effects of the slope within the data. Whilst most of the turn
data looks incredibly like grass some parts exhibit quite different characterises. For example
during the 180 degree turn (Figure 12.2.3), readings 50 - 100 show a considerable duration
where the wheel rotations are high. This is clearly different to grass, and looks more like
gravel. Further, the turn rate during this is relatively constant and progressive - not quick
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Figure 12.5: A Typical 90 Degree Turn on Grass

115



Figure 12.6: A Typical 180 Degree Turn on Grass
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Figure 12.7: A Typical 45 Degree Turn on Tarmac

as with the rest of the data set. This once again is similar to gravel. The reason for this
strange data is due to the hill. At this point in time the ARGO was actually turning uphill
and this was having an effect on the performance.
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Figure 12.8: A Typical 90 Degree Turn on Tarmac
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Figure 12.9: A Typical 180 Degree Turn on Tarmac
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12.3 Conclusions

It is quite clear from the data gathered that there are significant differences between the
different surfaces, particularly between grass/tarmac and gravel. This suggests that it would
be possible to detect the surface characteristics and adjust a control system appropriately.
Indeed, it may be that a fuzzy logic system would be one method of achieving this where
conditions statements such as ‘mostly looks like grass’, ‘is tarmac’, ‘does not looks like
gravel’, and ‘does not looks like water’ are evaluated to make appropriate control decisions.

However, it is also clear that there are environmental effects that change the data. For
example, the results for the tarmac data are clearly compromised by the slope. This lead
to parts of the data having characteristics similar to gravel.

The question that should be answered is not, “is is possible to identify the surface,
for example grass, gravel, tarmac etc?”, but “is it possible to identify how the surface
reacts?” For example, does a surface react in a similar enough way as grass to be treated
as grass would be? Given the data analysed, it would seem that a control system developed
specifically for grass would, for example, work with similar precision and efficiency on
tarmac. Therefore those two surfaces can be characterised as ‘the same’ as far as a control
system would be concerned whilst gravel would clearly need a different control system for
optimum performance.
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Chapter 13

Critical Evaluation

“A friendship comes when silence between two people is comfortable.”

David Tyson Gentry

13.1 Research Goals

Four research questions were suggested at the start of this project:

1. Can a vehicle such as an ARGO be automated, and what complexity of both software
and electronic components are required?

2. What level of accuracy can be expected from a skid-steering system, and to what
extent is a control system more or less accurate than a human operator?

3. What effects do surface type have on the operation of the vehicle?

4. Given observed characteristics of the vehicle is it possible to identify the surface type?

With all development and testing work complete a significant portion of time at the end
of the project was spent towards answering these questions.

Question 1: Can a vehicle such as an ARGO be automated?

The answer to this question is quite clearly yes. Whilst there have been many challenges
during this project, specifically relating to the quality of the hardware components used, it
has been shown without doubt that the control of such a vehicle is possible.

Further, the final control system used, whilst relatively primitive, has been shown to
have precise, accurate and repeatable control of the ARGO. With further work the accuracy
of the control system could be significantly increased. Some future possibilities for the
enhancements of the control system include:

• The use of a more expensive compass able to dampen the vibrations that the ARGO
is subjected to. This would have the most significant impact on the performance.
Most of the issues encountered during development and testing related to issues with
the compass.
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• The use of surface type detection discussed in the data analysis chapter, perhaps using
fuzzy logic systems, to change and adapt the control system according to the surface
characteristics could help towards improved accuracy and efficiency on different sur-
faces. For example, on surfaces such as gravel the target wheel rotations could be
adjusted to attempt to reduce the amount of fluctuations seen in the throttle.

• Visual navigation techniques currently under investigation at Aberystwyth [8] could
be used and may show significant improvements over the GPS navigation methods.
Such a method would be less prone to vibrations or environmental conditions affecting
compass readings and GPS coverage.

• The addition of actuators to control the gear leaver. This would then allow the ARGO
to reverse and change from low range to high-range when necessary. At this stage,
such operations were performed manually via a human operator.

Whilst these changes could improve the efficiency, control, maneuverability and accuracy
of the ARGO it is clear that the current control system is adequate for many tasks. It is
capable of working on various different surfaces and has been successful in primitive GPS
navigation. As such, given the current state of the project, it would be perfectly possible
to attach scanning equipment and provide a data file with GPS coordinates such that the
ARGO could perform automated scans of fields, rivers etc. In this respect, not only is the
control of an ARGO possible, but it has also been achieved with very inexpensive hardware.

Question 2: What level of accuracy can be expected?

Although the accuracy of the ARGO has not been directly discussed, test data (see Ap-
pendix C) has been collected and shows that with a primitive control system 75.6% of turns
were within 10 degrees of the final target heading. The remaining turns were never more
than 5 or 6 degrees from the final destination. This suggests that a reasonable degree of
accuracy, and indeed sufficient for a control system, has already been achieved with the
current control system.

However, at the moment it is evident that human driven experiments were capable of
achieving better accuracy. As humans we are able to both turn the handlebars of the ARGO
faster and apply the breaks - removing issues relating to response times that the control
system has to deal with.

Despite this, with minor modifications such as the addition of actuators to control
breaking and possibly independent control of the left and right disc breaks rather than
manipulation of the handlebars could conceivably result in a significant rise in accuracy. In
addition, the use of more expensive hardware such as a tilt-compensated marine compass,
capable of dampening vibrations and dealing with inclines, would help to further improve
the accuracy of the existing control system.

Question 3: What effect does surface type have on the vehicle?

Surface type has been shown to have a significant effect on the performance of the ARGO
control system. Areas with loose ground and rocks such as gravel resulted in a significant
increase in wheel rotations whilst slower turn rates are achieved. Other surfaces, such
as grass or tarmac, have a resistive effect slowing down the increase in wheel rotations.
However, once sufficient wheel rotations are achieved the response is quite dramatic with
fast turn rates.
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Further other surface characteristics such as hills and slopes have a direct impact on
the control system and vehicle operations. Whilst traveling up hill throttle values increase,
turn rates reduce and wheel rotations increase. The result is interesting data where, for
example, tarmac takes on many of the characteristics of gravel. By the same token, when
traveling down hill surfaces such as gravel react much more like tarmac and grass - slow
buildup of throttle values, followed by fast turn rates.

However, even considering these changes, the effects on the accuracy of the control
system are limited. The control system was actually quite good at adjusting its performance
to ensure the desired turn angles were indeed reached. The major factor affecting the
accuracy of the vehicle (at least on the surfaces tested) was not the surface type but was
the noisy sensor data.

Question 4: Is it possible to identify surface type?

As identified during the data analysis chapter it is not directly possible to identify the
specific surface type. For example, it does not make sense with regards to the data or
control systems to make statements such as ‘this is grass’. It was shown that data from
grass and tarmac were so similar that it is almost impossible to distinguish between the
two.

However, a more appropriate question was suggested: “Is it possible to identify surface
characteristics?” That is, is it possible to say that the current surface acts ‘like’ grass,
rather than ‘is’ grass.

This is indeed possible. The data shows considerable differences between gravel and the
other surfaces tested: gravel and tarmac. As such, given unknown data sets it would be
quite possible to make the statement: ‘this data shows the ARGO performing as though it
were on grass.’ It is further suggested that this is sufficient in order to adjust the control
system of the ARGO to improve the performance on different surfaces. If a surface is so
similar to another to be indistinguishable, the control system for both those surfaces should
also be indistinguishable.

13.2 Software Objectives

A number of primary and secondary software objectives were identified at the beginning of
the project. All primary objectives have been completed and this has lead to the ability to
answer the research questions posed.

During the development stages numerous problems were identified that caused delays.
In particular the compass, and aspects of the control system that relied on the compass,
caused the most problems delaying the whole project by two weeks.

However, despite this, time remained at the end of the project in the final sprint for
the development of a secondary objective: GPS Navigation. Whilst simplistic in nature
the development of this secondary objective helped to show both the accuracy and control
of the low level control system specified in the primary objectives, and the usability of the
vehicle for future research such as robotic collaboration, laser scanning, visual navigation
etc.

Unfortunately, no extra time remained for the development of additional secondary
objectives such as enhancements to the simulator. However, this has in no way affected
the success of the project - all primary objectives have been completed and all research
questions have been answered. Indeed, many of the secondary objectives suggested could
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make more than adequate future dissertation or research projects - all being of considerable
size and complexity.

13.3 Methodology

The SCRUM methodology has proven to be highly successful in the project. Whilst the
author had experience of various methodologies, including agile methodologies such as XP
and Feature Driven Development, SCRUM had never previously been used. The use of
SCRUM resulted in a fully functional control system with only a few problems during the
development. Further, its use resulted in the many advantages:

• It allowed the author to progressively increase his knowledge of the field of robotics.
If it were not for the use of a agile methodology it is highly likely that the authors
inexperience would have resulted in failure of the project.

• It was flexible enough to deal with the problems that were encountered during the
third sprint which could have been fatal to the project if following a plan-driven
methodology.

• It was not at the extreme end of the planning spectrum, meaning that there was
enough design work necessary to help keep the project in hand and on track whilst
allowing for change.

However, as was discussed when deciding the most appropriate methodology it was
pointed out that no single design methodology is ever suited to every project in every
way, and this was true for this project. Unfortunately, using an agile methodology had its
disadvantages during this project:

• Methodologies are usually suited more to group or team development with many as-
pects only making sense in this context. For example, during this project aspects such
as the SCRUM of SCRUMS, and the daily SCRUM were quite simply inappropriate
and as such were not used.

• Having no up-front design did mean that during the project it was often necessary to
continually change the design as the project progressed in order to incorporate new
features. This, whilst adding flexibility, did often mean that some sections of code had
to be thrown away or re-written. This was specifically seen with the communications
protocol between the Gumstix and PIC. On numerous occasions that code was re-
developed in order to incorporate new features such as the counting of wheel rotations
etc.

Ultimately, whilst the SCRUM methodology proved to be successful for this project, if
the author were asked to produce software of a similar nature again (with knowledge of the
experiences gained during this project) a more plan-driven methodology would definitely
be chosen in order to better ensure the real-time constraints and safety-critical aspects of
the project. However, if in identical circumstances as this project, where little experience
was held, the author would seriously consider the use of SCRUM or a similar methodology
such as Feature Driven Development.
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13.4 Conclusion

This project has been highly successful with all project goals being met. Whilst over
schedule by four weeks, additional secondary features were included such as GPS navigation
showing some of the more advanced capabilities of the control system and ARGO.

The project has opened up many possibilities for future research, and numerous sugges-
tions for future enhancements have been put forward to improve the ARGO performance,
and accuracy.

The chosen methodology helped the author considerably given his lack of previous ex-
perience in the field, yet was perhaps not the most appropriate for a robotics project where
there are often safety-critical or real-time constraints that are better met through the use
of more plan-driven approaches.
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Appendix A

Whiteboard Drawings
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Appendix B

Test Data Sheets
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Appendix C

Simple Turn Data Analysis

143



144



145



146



Appendix D

Example Simulator Files
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1 <!--

2 SEM9060 Dissertation Project: Development of a Control System and Simulator

3 for a Skid Steer Amphibious Vehicle.

4

5 (C) Copyright 2009. Michael F Clarke. All Rights Reserved.

6 (C) Copyright 2009. Aberystwyth University. All Rights Reserved.

7

8 The code below is submitted as partial fulfilment of the MEng in Software

9 Engineering degree at Aberystwyth University. All code is my own work

10 unless otherwise stated.

11

12 This file gives an example of how a world can be developed for the simulator

13 environment.

14 -->

15 <world >

16 <width >800</width>

17 <height >600</height >

18 <description >

19 An sample world which demonstrates the full capabilities of the

20 simulator setup.

21 </description >

22 <area>

23 <name>Aberystwyth Beach</name>

24 <surface >surfaceTypes.Sand</surface >

25 <coordinates >

26 <x>20</x>

27 <y>50</y>

28 </coordinates >

29 <dimensions >

30 <width >100</width>

31 <height >80</height >

32 </dimensions >

33 </area>

34 <area>

35 <name>Gravel Area</name>

36 <surface >surfaceTypes.Gravel </surface >

37 <coordinates >

38 <x>60</x>

39 <y>100</y>

40 </coordinates >

41 <dimensions >

42 <width >50</width>

43 <height >100</height >

44 </dimensions >

45 </area>

46 </world >
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1 package surfaceTypes;

2

3 /* SEM9060 Dissertation Project: Development of a Control System and Simulator

4 * for a Skid Steer Amphibious Vehicle.

5 *

6 * (C) Copyright 2009. Michael F Clarke. All Rights Reserved.

7 * (C) Copyright 2009. Aberystwyth University. All Rights Reserved.

8 *

9 * The code below is submitted as partial fulfilment of the MEng in Software

10 * Engineering degree at Aberystwyth University. All code is my own work

11 * unless otherwise stated.

12 */

13

14 import java.awt.Color;

15

16 import uk.ac.aber.dcs.sem9060.api.SurfaceType;

17

18 /**

19 * This is the implementation of the Gravel SurfaceType.

20 *

21 * @author Michael F Clarke (mfc5@aber.ac.uk)

22 * @version 0.1

23 */

24 public class Gravel implements SurfaceType {

25

26 /**

27 * This is used to get the actual speed of the ARGO.

28 *

29 * @param throttle The current throttle value.

30 *

31 * @return The speed of the ARGO.

32 */

33 public int getSpeed(int throttle) {

34

35 if (throttle < 20) return 12;

36 if (throttle < 40) return 3;

37 if (throttle < 70) return 1;

38 return 0;

39 }

40

41 /**

42 * Returns the maximum speed that the ARGO can travel at on Gravel.

43 *

44 * @return The maxmimum speed of the ARGO on gravel.

45 */

46 public int getMaxSpeed () {

47 return 12;

48 }

49

50 /**

51 * Returns the change in angle at the current throttle value.

52 *

53 * @return The change in angle to be applied.

54 */
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55 public int getAngleChangeValue(int throttle) {

56

57 if (throttle < 40) return 2;

58 if (throttle < 20) return 8;

59 if (throttle < 10) return 15;

60 if (throttle < 5) return 20;

61 return 0;

62

63 }

64

65 /**

66 * Returns the minimum throttle value before any movement.

67 *

68 * @return The minimum throttle value before the ARGO will

69 * move on Gravel.

70 */

71 public int getThrottleToGo () {

72 return 70;

73 }

74

75

76 /**

77 * This method is used to return to the colour that should be used

78 * when displaying the map.

79 *

80 * As this is gravel , the colour is gray.

81 *

82 * @return The color (gray) to be used for displaying areas of this

83 * surface type.

84 */

85 public Color getColor () {

86 return Color.gray;

87 }

88

89 /**

90 * This method is used to get the name of this surface type: GRAVEL.

91 *

92 * @return The name of this surface type , specifically GRAVEL.

93 */

94 public String getName () {

95 return "GRAVEL";

96 }

97

98 }
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Example GPS data file. Format is first line number of entries. Thereafter longitude, lati-
tude.

1 3

2 -4.053083 , 52.409367

3 -4.052717 , 52.409317

4 -4.052367 , 52.409351
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Appendix E

Resource CD

Included on the CD:

• A soft copy of this report with all LATEX files and diagrams.

• Copies of many of the papers referenced in this report.

• Various videos and images of the ARGO in action.

• Data files from testing.

• A copy of the SVN repository, including simulator and physical ARGO control source
code.

• Test data files and graphs, including GPS test data.
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