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Abstract

Rough set theory (RST) was proposed as a mathematical tool to deal with the
analysis of imprecise, uncertain or incomplete information or knowledge. It is
of fundamental importance to artificial intelligence particularly in the areas of
knowledge discovery, machine learning, decision support systems, and inductive
reasoning. At the heart of RST is the idea of only employing the information con-
tained within the data, thus unlike many other methods, probability distribution
information or assignments are not required. RST relies on the concept of indis-
cernibility to group equivalent elements and generate knowledge granules. These
granules are then used to build a structure to approximate a given concept. This
framework has unsurprisingly proven successful for the application to the task of
feature selection.

Feature selection (FS) is a term given to the problem of selecting input at-
tributes which are most predictive of a given outcome. Unlike other dimensional-
ity reduction methods, feature selection algorithms preserve the original semantics
of the features following reduction. This has been applied to tasks which involve
datasets that contain huge numbers of features (in the order of tens of thousands),
which would be impossible to process otherwise. Recent examples of such problems
include text processing and web content classification. FS techniques have also
been applied to small and medium-sized datasets in order to discover the most
information-rich features. The application of rough sets for FS has resulted in
many efficient algorithms. However, due to the granularity of the approximations
generated by the rough set approach there is often a resulting level of uncertainty.
This uncertainty in information is usually ignored for FS (by nature of the very
fact that it is ‘uncertain’).

In this thesis, a number of methods are proposed which attempt to use the
uncertain information to improve the performance of rough sets and extensions
thereof for the task of FS. These approaches are applied to two application domain
problems where the reduction of features is of high importance; mammographic
image analysis and complex systems monitoring. The utility of the approaches
is demonstrated and compared empirically with several other dimensionality re-
duction techniques. In several experimental evaluation sections, the approaches
are shown to equal or improve classification accuracy when compared to results
obtained from unreduced data.

Based on the new fuzzy-rough approaches, further developments and tech-
niques are also presented in this thesis. The first of these is the application of a
nearest neighbour classifier for the classification of real-valued data. This tech-
nique is evaluated within the mammographic imaging application. Also, a novel
unsupervised feature selection approach is proposed which reduces features by
eliminating those which are considered redundant. Both the fuzzy-rough classi-
fier mentioned above, and UFRFS are employed and evaluated for the complex
systems monitoring application.
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Chapter 1

Introduction

“I have travelled the length and breadth of this country and talked with the best

people, and I can assure you that data processing is a fad that won’t last out the

year.” – the editor in charge of business books for Prentice Hall, 1957.

In almost every field imaginable, data is now collected and collated at a stag-

gering pace. In fact, as the capability to process data increases, so too does the

means to gather and record it. This has led to the storage and maintenance of

huge amounts of data, of which a small percentage (in spite of today’s advances in

computing technology) will ever be used to any advantage. There is therefore, a

pressing need for the development of approaches and automated tools to assist hu-

mans in extracting useful information (knowledge) from these rapidly expanding

mountains of data. Such approaches and tools are the subject of the ever-growing

field of knowledge discovery from data.

The idea behind the search for useful patterns in data has had many names in

the past, including data mining, knowledge extraction, information discovery, in-

formation harvesting, and data pattern discovery. At a fundamental level however,

knowledge discovery from data is concerned with the development of methods and

techniques which ‘make sense of data’. The basic issue which the knowledge dis-

covery process is attempting to address is that of mapping low-level data, which

is typically too expansive for human comprehension into other forms which may

be more compact, more humanly interpretable (e.g. a descriptive model of the

process that created the data), or more useful (e.g. a predictive model for esti-

mating unseen cases). At the heart of the process is the application of specific

data-mining methods for pattern recognition and extraction.

The traditional manual process of converting data into knowledge [59] as il-

lustrated in Fig. 1.1, relies on human analysis and interpretation. For example,

in market research, it is common for commercial organisations to periodically

employ an expert to analyse data relating to current consumer trends and pur-
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Figure 1.1: Process of manual knowledge discovery

chasing habits. The expert(s) then compile an assessment detailing the analysis

and present it to the organisation. This assessment forms the basis for future

marketing strategies, and decision-making with regard to target audiences, etc. In

another, completely different field, criminal forensic scientists sift through huge

amounts of scientific evidence, carefully analysing and cataloging objects, mate-

rial fragments, fingerprints, etc. before generating plausible scenarios or events.

Whether in science, crime detection, finance, machine performance, or any other

field, this classical approach to data analysis relies fundamentally on the fact that

at least one expert must have a detailed and intricate understanding of the data.

For many other applications, this form of manual manipulation of data is time-

consuming, expensive, and of-course, highly subjective. Indeed, as the volume of

data grows dramatically, this type of manual data analysis is becoming completely

impractical in some domains, if not impossible in most. Data is increasing in

size both in terms of the number of data objects, and the number of features or

attributes which describe each data object. Datasets which contain in the order

of 109 data objects are now commonplace [131], as are those which contain 103 or

greater features [32]. Clearly, these types of problems are beyond the scope of the

human being, and hence, such analysis requires automation.
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As discussed previously, not only is there often a large number of objects in

todays data, but there may also be a large number of features or attributes. There-

fore the dimensionality of the problem may be high. High-dimensional datasets

create problems in terms of the size of the search space, and it can be shown

that the addition of extra dimensions (features) causes an exponential increase in

the complexity of the problem - termed computational explosion. This is further

exacerbated at the point of data collection, as it is often naively assumed that

more features = more knowledge, thus increasing the likelihood of having enough

information to distinguish between classes. Unfortunately, this is not the case if

the size of the training dataset does not also increase remarkably with each addi-

tional feature that is included. This problem is commonly known as the curse of

dimensionality [10]. It is a problem that often frustrates the effective application

of machine learning techniques for knowledge discovery. Additionally, it increases

the possibility that an induction algorithm will find spurious patterns that are

invalid, due to high levels of noise. Solutions to this problem include methods

which reduce the overall dimensionality of the data. Such approaches are known

as dimensionality reduction techniques [118], and can be classified into one of

two categories: those which transform the underlying meaning (or semantics) of

the data, and those that do not - known as semantics preserving. The methods

known as feature selection (FS) are those which fall into the latter category [98].

These methods select a subset of the original features using a suitable evaluation

function, and are particularly useful for knowledge discovery as they preserve the

human interpretability of the original data and resulting discovered knowledge.

1.1 Feature Selection

Feature selection is common in machine learning, where it may also be termed

feature subset selection, variable selection, or attribute reduction. Fundamentally,

it can be considered as the process of selecting the input attributes of a dataset

that most closely define a particular outcome. FS attempts to focus selectively

on relevant features, whilst simultaneously attempting to ignore the (possibly

misleading) contribution of irrelevant features. From a computational complexity

point of view, it is beneficial to have a minimal set of features involved in the

classification phase, and as noted previously, many learning algorithms scale up

rapidly with the inclusion of additional features. In addition to the improvement

in classifier performance, the costs associated with collecting large amounts of

(feature) measurements can also be reduced by ensuring a minimal feature set.

It should be noted that it is not possible for even the most advanced learning

algorithms to compensate for poor FS techniques which select irrelevant or redun-
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dant features. This highlights the importance of performing efficient and robust

FS in the first instance.

Feature selection is often employed in areas where the dimensionality of the

original data is such that it is impossible for humans to comprehend, but where it

is imperative for the reduced data to retain the underlying meaning of the reduced

features (e.g. rule induction). The diagram in Fig. 1.2 represents just a few of

the many real-world applications for FS.

Figure 1.2: A few of the many real-world applications for feature selection

Feature selection algorithms are commonly used to improve classification per-

formance for image analysis systems [167], [199]. The motivation for this stems

from a phenomenon which is commonly observed during the training phase of

classification known as ‘peaking’. This occurs when the number of features is in-

creased, the classification rate of the classifier begins to decrease after a ‘peak’. In

mammographic data analysis, for instance, the accuracy of radiologists in identi-

fying tissue density lies between 60% and 84% [16]. With the application of FS

algorithms, automated recognition systems can produce classification accuracies

above 90% [141].
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Automation of the inspection of welded metal joints has led to images from

which large amounts of features must be extracted, slowing the analysis consid-

erably. Attempts at classification of such high dimensional data also results in

poor performance. In [88], the authors employ FS for a dataset which contains

radiographic image data for welded pipe seams. They succeed in reducing the

dimensionality of the data by over 80% whilst simultaneously increasing the clas-

sification accuracy, thus improving both the efficiency and the accuracy of defect

detection.

Another area where FS has been employed is that of crime detection. In

[245] the authors present methods for modelling and predicting criminal behaviour

based on historical data. Most of this data is based on movements of criminals

at or around the time a crime was committed, and includes such information as

geographic location data. Feature selection algorithms are then used to identify

important patterns hidden in the data (i.e. proximity to main roads, personal

care expenditure per household, etc.), which allows more accurate modelling of

the location of crime incidents and patterns.

Rough set theory (RST) [172] has proven popular for data dimensionality re-

duction [32], [154], [262], and has attracted much interest from researchers. This

is borne out by the wide variety of application areas, such as classification [63],

clustering [76], fault diagnosis [201], plant monitoring [32], etc. The popularity of

rough sets for feature selection tasks in particular relates mainly to its simplicity

- both conceptually and computationally. In addition to this, only the facts in

the data are analysed, and no subjective thresholding parameters, expert advice,

or domain knowledge is required. Employing RST as a preprocessor, a subset (or

reduct) of useful original features can be selected. This type of application of RST

for feature selection is usually performed as preprocessing step prior to the use of

an induction or learning algorithm.

A rough set [172] is the approximation of a vague concept by a pair of precise

concepts which are known as upper and lower approximations. The lower approx-

imation is a definition of the domain objects which are known to belong to the

concept of interest with full certainty, whilst the upper approximation is the set

of all those objects which definitely or possibly belong to the concept of interest.

The difference between the upper and lower approximation is an area known as

the boundary region or region of uncertainty.

1.2 Limitations of Current Approaches

Current rough set and rough set extensions have demonstrated much success when

applied in the area of FS [98]. Within the current rough set framework however,
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most existing approaches only consider the certain information or the information

of the lower approximation concept [70], [120], [121], [154], [203], [221], [262] de-

scribed previously. These approaches have adopted this strategy, as the certainty

that is embodied in the lower approximation is associated with greater importance

in scientific analysis. However, although often overlooked, there is also additional

information to be gathered from the boundary region or region of uncertainty.

This information by nature of the fact that it is uncertain, is often ignored as it is

assumed that it will not be able to offer any further advantage for the approxima-

tion task at hand. Within the current framework of RST, this may be true, or at

least this information may only be able to offer some additional assistance if con-

sidered in the context of attempting to minimise it, thereby maximising the certain

information. However, there is also the possibility in reality, that there are objects

in the boundary region which only differ from those in the lower approximation

as a result of noise.

Although no direct attempts have been made in the literature to qualify the

uncertain information of the boundary region, some approaches have been pro-

posed which consider the rough set upper approximation [47], [87]. The problem

with such approaches however is that the upper approximation is examined as a

whole; they do not consider the possibility that only some of the information in

the upper approximation may be relevant. That is to say; no attempt is made to

separate the upper approximation, into the lower approximation (certain informa-

tion) and boundary region (uncertain information) and deal with the data in this

manner.

It is important to emphasise that the uncertain information of the boundary

region of rough sets is only uncertain within the context of the RST framework. In

other words it is not possible to determine from the granular information structure

of rough sets whether this information relates to the concept which the theory is

attempting to approximate. This leads to the question - can this information be

used within the RST framework to assist in improving the performance of rough

sets and thus the approximation capability?

1.3 Distance Measure Assisted Rough Set Fea-

ture Selection and Extensions

The fundamental concept for the new approaches proposed in this thesis, is that

of attempting to extract knowledge from the rough set boundary region. This is

done by proposing a framework whereby a significance value (generated by a set

of distance metric values) is assigned to the boundary region information for the
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set under consideration. This information, along with the certain information of

the lower approximation is then used as an approximation metric. This approach

performs well but is restricted to the discrete or crisp-valued data domain, so in

order to consider data from real-valued domains a discretisation step is employed.

This is not adequate however and can result in information loss, as the degrees of

membership of values to discretised values are not considered.

To address the shortcoming, new approaches have been proposed based on

both tolerance rough sets [209] and fuzzy-rough sets [52]. These approaches allow

a greater degree of flexibility when compared to the strict, rigid requirements of

crisp rough sets that can deal only with full or zero membership. Tolerance rough

sets allow the consideration of real-valued data by assigning a tolerance threshold

and similarity relation such that ‘similar’ data objects are allowed to be considered

equivalent, thus easing the hard equality of rough sets, and introducing an element

of fuzziness to the crisp rough set model. Fuzzy-rough sets [52] encapsulate the

related but distinct concepts of vagueness for fuzzy sets [254], and indiscernibility

for rough sets [172], both of which occur as a result of uncertainty in knowledge. A

fuzzy-rough set is defined by two fuzzy sets, fuzzy lower and upper approximations,

obtained by extending the corresponding crisp rough set notions.

The main contribution of this thesis relates to the use of the information con-

tained in the boundary regions of rough sets, tolerance rough sets and fuzzy-rough

sets. Three different approaches are presented:

• An approach based on classical rough set theory, and is shown to improve

the performance of the basic underlying model

• Another which is based on tolerance rough sets and can handle real-valued

data.

• Also, a further development which is based on fuzzy-rough sets which at-

tempts to exploit the information gain value of the boundary region.

1.3.1 Additional Developments

Although the main contribution of this thesis is the exploitation of the boundary

region information for the task of feature selection, a number of other developments

have also been proposed. These have come about due to various reasons, and

include the application of a nearest neighbour (NN) classifier to mammographic

data analysis, and an unsupervised feature selection algorithm, both approaches

are based on fuzzy-rough sets.

The NN classifier takes advantage of the fuzzy upper and lower approximation

concepts as an indicator to predict test object classes. This approach is data-
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driven and does not require a k parameter value (although one can be specified if

required). The approach takes advantage of the complementary nature of fuzzy

sets and rough sets. Compared with the popular fuzzy nearest neighbour algo-

rithm, and a number of other fuzzy classifiers, it performs well and is successful

in classifying noisy data such as that obtained from images.

The unsupervised fuzzy-rough feature selection (UFRFS) algorithm compares

the conditional features of a dataset with one another and removes those that

are correlated and hence redundant. Fuzzy-rough sets are used to determine the

level of dependency of a feature for elimination on subsets of selected features.

UFRFS is data-driven and uses only the information contained in the data itself -

no subjective thresholding parameters are required. Additionally it has the ability

to handle real-valued data, and experimental evaluation demonstrates that it also

selects useful feature subsets.

1.3.2 Applications

The new methods proposed in this thesis can be applied to any of the domains

discussed previously where feature selection or classification have been employed.

In this thesis however, two important domains of interest were chosen; mammo-

graphic risk analysis [167], and complex systems monitoring [204]. These illustrate

the potential utility of the approaches detailed in this work.

Knowledge discovery from images often requires the maximisation of all of the

information contained within a given image. This means that large numbers of

features are often extracted initially. These features typically contain high levels

of redundancy, irrelevance, and noise. However, given that it is not known a-priori

which features are most valuable and which are not, this is a necessary step. In

the work described here the tolerance rough set-based FS method is employed

to identify the most valuable features such that the process of extracting large

amounts of features can be avoided. The selected features are then fed back

into the extraction phase ensuring that only those features need to be identified

in future. Use of fewer features means that any algorithms employed in both

the training and testing phases of the classifier will not only potentially be more

accurate as there are fewer noisy features present, but also execute in quicker

time. This helps to reduce the demands on expert radiologists’ time in examining

mammographic images. Most importantly however it can result in more accurate

breast abnormality risk assessments. The new fuzzy-rough NN classifier is also

used to classify both the unreduced data and reduced data in this work, which is

more applicable to real-valued data than previous approaches.

In systems monitoring, it is important to reduce the number of features in-
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volved for a number of reasons. First and foremost, is the cost associated with

feature measurement, as each measurement not only requires additional sensors

and monitoring equipment but also specialist data-logging of all the measurements.

Also, the monitoring process can be simplified if fewer variables are involved. Fi-

nally, it is often observed that the accuracy of the monitoring system can be

significantly improved by a reduction in measurement variables [204] as there is a

lower level of noise due to noisy or irrelevant variables. UFRFS is applied a water

treatment plant dataset [158] to demonstrate how this fuzzy-rough method can be

used within the systems monitoring domain.

1.4 Thesis Structure

The remainder of this thesis is structured as follows:

• Chapter 2: Background. This chapter presents a systematic overview of

both dimensionality reduction and current rough set techniques as well as

their extensions. It begins with basic concepts of dimensionality reduction

with a particular focus on feature selection and its various models and some

algorithms. Then, rough set theory is explored in detail with an examina-

tion of the underlying mathematical model. This is followed by a detailed

description of each of the rough set extensions and hybridisations. The work

in this chapter has been published in [145]

• Chapter 3: Exploring the Boundary Region of Rough Sets. In this chapter,

the theoretical developments of a new feature selection method are pre-

sented. This novel approach uses the information contained in the rough

set boundary region (or region of uncertainty) to improve the performance

of the rough set model. The operation of the approach and its benefits are

demonstrated through the use of some simple examples. To evaluate the

technique, comparative investigations are carried out with the current lead-

ing techniques. This chapter and parts thereof have been published initially

in [148], with a further and more in-depth version in [149] .

• Chapter 4: Exploring the Boundary Regions of Tolerance Rough Sets and

Fuzzy-rough Sets. This chapter builds on the work presented in Chapter 3.

It further expands on the initial ideas of exploiting the information contained

in the rough set boundary region for feature selection to tolerance rough sets

and fuzzy rough sets. The developments for tolerance rough sets have been

published in [144], and those for fuzzy-rough sets in [142].
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• Chapter 5: Association Learning. By exploiting fuzzy-rough sets, this

chapter presents further development of techniques for association learning.

In particular a novel classifier learning technique for application to the prob-

lem of image analysis is described. A simple example is also presented which

demonstrates the approach fully. Also a new unsupervised fuzzy-rough fea-

ture selection (UFRFS) technique is presented and is applied to 8 benchmark

datasets. The techniques described in this chapter are published in [138],

[141], and further work is currently under review for journal publication

[146].

• Chapter 6: Application to Mammographic Risk Analysis. Mammographic

risk analysis from images is an important area of research as it provides an

important indicator for the likelihood of a woman developing breast cancer,

which is the leading cause of death of women in their 40’s in the EU and

US. Like many areas which deal with image data, there are large amounts

of redundancy and noise in the data. With the use of FS, these extraneous

features can be removed. Additionally, with the aid of an accurate classifier

learner such as that described in Chapter 4, a unified approach to mam-

mographic risk analysis is formulated which can increase the accuracy of

risk analysis and thus reduce the potential for misdiagnoses. This unified

technique and application is currently under review for journal publication

[141].

• Chapter 7: Application to Plant Monitoring. Complex application prob-

lems, such as reliable monitoring and diagnosis of industrial plant equipment,

usually present large numbers of features, many of which are redundant for

the task at hand. Employing UFRFS, these correlated features can be re-

moved. This not only makes resultant rulesets generated from such data

much more concise and readable, but can reduce the equipment and moni-

toring cost involved in measuring redundant features. The monitoring sys-

tem is applied to water treatment data, and results in similar classification

accuracies than those of the full feature set. An application oriented journal

article summarising the work described in this chapter has been submitted

for consideration for publication [147].

• Chapter 8: Conclusion. A summary of the key findings from the research

is presented, together with a discussion of topics which form the basis for

future work.

19



Chapter 2

Background

“If variable elimination has not been sorted out after two decades of work

assisted by high-speed computing, then perhaps the time has come to move on to

other problems.” R.L. Plackett, discussion with Miller in [137]

This chapter is concerned firstly with the basic concepts of dimensionality

reduction with a particular focus on feature selection. Broadly speaking, there

are two different types of dimensionality reduction techniques; transformation-

based reduction, and selection-based reduction. The transformation-based meth-

ods transform the data features or attributes, whereas the selection-based methods

(such as feature selection) do not. An overview of both types of approach is pre-

sented here, followed by a more in-depth discussion of feature selection. All of the

common feature selection models are examined in detail with a simple pseudocode

example for each one. This first initial examination of dimensionality reduction is

followed by a view of rough set theory and its recent extensions, which is also pre-

sented in [145]. The preliminary concepts and theoretical foundation of rough set

theory are covered in detail. Various rough set extensions (both past and recent)

such as tolerance rough sets, variable precision rough sets, dominance-based rough

sets, vaguely quantified rough sets, and others are also explored thoroughly. The

hybridisation of rough set theory with other techniques is discussed later, with

particular emphasis on fuzzy-rough set theory as this is a useful technique which

takes advantage of the complementary nature of fuzzy and rough sets. A range

of both theoretical and real-world example applications with regard to rough set

theory, and the above mentioned extensions are demonstrated also.

2.1 Dimensionality Reduction

The inclusion of a dimensionality reduction (DR) step in a variety of problem-

solving systems [24] may be proposed for a number of different reasons. For many
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real-world application problems, data is processed in the form of a collection of

real-valued object vectors e.g. text classification [247], bookmark categorisation

[93], mining of medical data [29], mammographic image analysis [2], etc. If such

data is of high dimensionality, it can be beneficial to employ a DR step. Indeed,

it is often necessary where the dimensionality of the data prior to reduction may

be prohibitively large. The central idea behind DR therefore is the reduction of

the data to a size which is computationally tractable, without information loss.

Hence, a DR step is usually included as an integral part of a data preprocessing

system.

There are often cases where high-dimensional phenomena are governed by sig-

nificantly fewer, simple features [57]. Here, the process of dimensionality reduction

acts as a tool for modelling these phenomena, thus improving clarity. Addition-

ally, a significant amount of redundant or misleading information is also present;

this requires removal prior to any further processing. For instance, the problem of

deriving classification rules from large datasets often benefits from a data reduc-

tion preprocessing step. Not only does this reduce the time required to perform

induction, but the resulting rules are more comprehensible and this can potentially

improve the classification accuracy [98], [130], [131].

Many DR techniques destroy the underlying meaning (the semantics) behind

the features present in a dataset [48] - this is an undesirable property for many

applications. This is particularly true where the understanding of the data pro-

cessing method and that of the resulting processed data is as important as the

accuracy of the resultant lower dimensional dataset in use. For example, in med-

ical imaging it may be important to be able to identify particular areas of the

image or data which are of greatest interest both prior to, and following reduction

[18].

It is important at this point to emphasise that DR can be divided into two

categories; transformation-based approaches, and selection-based approaches - see

Fig. 2.1. The former, is a set of approaches which perform dimensionality reduc-

tion but in doing-so irreversibly transform the descriptive dataset features. The

latter approaches however, preserve the original meaning or semantics of the data

through the removal of redundant, noisy, or irrelevant features - i.e. the set of

survival features is a subset of the original unreduced features.

2.1.1 Transformation-based Approaches

The decision of which DR approach to use is often governed by whether or not

subsequent applications or systems will need to be able to refer to the underlying

data. For instance, if an application or system requires the use of the meaning
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Figure 2.1: Dimensionality reduction approaches

of the original feature set, then a feature selection approach is chosen which will

ensure this. However, conversely if an application requires a visualisation of re-

lationships within the data, then a DR approach that transforms the data into a

small number of dimensions whilst emphasising those relationships may be more

suitable.

Basically, transformation-based DR approaches can be further classified into

two distinct groups (see Fig. 2.1): linear, and non-linear. Linear methods have

enjoyed much popularity, and include such approaches as Principal Component

Analysis (PCA) [48], and Multidimensional scaling (MDS) [226]. PCA is perhaps

the most popular amongst the linear techniques due mainly to its relative simplic-

ity and the number of computationally efficient algorithms which are available.

The approach transforms the original data features with a (usually) reduced num-

ber of uncorrelated features. These features are termed principal components. At

the heart of the approach is the assumption that large feature variance is indicative

of useful information, and conversely that small variance is considered less useful.

Fig. 2.2 demonstrates this, where the principal components of a two-dimensional

normal point cloud are shown. The second principal component (PC2) indicates

the direction of maximum variance of the data, as it is most dispersed along this

new axis in the example. Data is transformed such that transformed features with

small variance are allowed to be removed. In order to do this, first the eigenvec-

tors of the covariance matrix of data points or objects must be found. Then, a

transformation matrix is constructed from the ordered eigenvectors, and finally

the original data is transformed by matrix multiplication.

One of the problems with PCA is that the number of variables to be discarded
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Figure 2.2: 2-dimension normal point cloud with corresponding principal compo-
nents

is not known a-priori, introducing a potential source of error. A subjective esti-

mation must be made therefore, as to how many transformed features should be

retained. There are other problems also, including the inability of PCA to operate

on nominal data. This relates to the matrix calculations which are obviously in-

applicable in this case. Additionally, PCA is not effective at handling data which

is correlated in a non-linear fashion. PCA is applied to a number of benchmark

datasets in Sections 3.5.3 and 4.3.6.1, and compared with other approaches.

Multidimensional scaling (MDS) [136], [226], [252], refers to a set of techniques

that use the proximity of objects as input and display its structure as a geometric

construct. The proximity values are a measure of the similarity of objects. The re-

sulting transformation to fewer dimensions aims to preserve the original proximity

values as far as possible.

The previously mentioned inability of methods such as PCA and MDS to deal

with non-linear data led initially to unsuccessful extensions based on PCA [21],

[60], [112]. These extensions however still suffered from the problems originally
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exhibited by PCA, and this provided new impetus for the development of tech-

niques which had the ability to handle non-linear data effectively. Isomap [222]

is one such technique which is based on MDS. In this approach embeddings are

optimized to preserve geodesic distances between pairs of data objects. These are

estimated by calculating the shortest paths through large sublattices of data. The

algorithm can discover non-linear degrees of freedom as the geodesic distances act

as the true low-dimensional geometry of the manifold. This approach unlike PCA

however requires the specification of a parameter known as the ‘neighbourhood

value’ such that the edges of the manifold can be determined correctly prior to

reduction. Locally Linear Embedding (LLE) [191] is another of the non-linear

DR techniques. It uses an eigenvector method for the problem of non-linear DR.

It works by computing low dimensional ‘neighbourhood-preserving’ constructs or

embeddings of high dimensional data. This is achieved through the exploitation

of the local symmetries of linear constructs. In more informal terms, non-linear

structures are modelled by piece-wise linear steps. Again, as with Isomap, LLE

suffers from the same ‘neighbourhood value’ specification problem described pre-

viously. A detailed and more comprehensive review of other non-linear approaches

can be found in [118].

2.1.2 Selection-based Approaches

The DR techniques examined in the previous section irreversibly transform data,

thus destroying the semantics or underlying meaning of the features. Feature

selection (FS) however, is a DR technique which obtains a minimal feature subset

from a problem domain whilst retaining a suitably high accuracy in representing

the original features. FS is necessary in many real-world problem domains due

to the level of noisy, irrelevant or misleading features which can lead to to the

discovery of spurious or irrelevant patterns in the data. Through the removal of

such factors, the performance of techniques which learn from data can be greatly

improved. A number of detailed reviews of feature selection techniques can be

found in [40], [130], and [131].

Feature selection is a commonly used approach in machine learning (may also

be known as feature subset selection, variable selection, or attribute reduction)

and can be considered as the process of selecting the input attributes of a dataset

that most closely define a particular outcome. FS enables the selective focus on

relevant attributes whilst ignoring the (possibly misleading) contribution of irrel-

evant attributes. From a computational efficiency standpoint, it is advantageous

to have a minimal set of features involved in the classification process as many

learning algorithms scale up quickly (O(n2) or worse) with the addition of features.

24



2.1 Dimensionality Reduction

FS has countless application domains including (but not limited to) image recog-

nition/retrieval [217], complex plant monitoring [204], text categorisation [247],

computer network intrusion detection [50] [119], genomic analysis [244], and data

mining [40], [39].

Amongst the advantages of FS are:

• Facilitation of data visualisation through the reduction of the data to fewer

dimensions. This makes trends within the data more easily identifiable and

can be very important where few features may have an influence on data

outcomes.

• Reduction in measurement and storage requirements. In domains where

features correspond to particular measurements (for instance, a water treat-

ment plant [204]), fewer features are highly desirable due to the expense and

time-cost of taking such measurements.

• Reduction of training and utilisation times. With smaller datasets, the run-

times of learning algorithms improve significantly, for both training and clas-

sification phases.

• Improvements in prediction performance. Classifier accuracy can be in-

creased as a result of feature selection, through the removal of noisy or

misleading features.

Additionally, for those methods which extract knowledge from data (e.g. rule

induction) other benefits of FS include an improvement in the readability of dis-

covered knowledge. When induction algorithms are applied to reduced data, the

resulting rules are more compact. A good feature selection method will remove

unnecessary attributes which affect both rule comprehension and rule prediction

performance.

There have been many attempts in the literature to categorise FS methods

using a review type approach [40], [50], [67], [130], [155]. All of these reviews

overlap to a greater or lesser degree when describing the FS process, which can

broken down into three discrete steps (as illustrated in Fig. 2.3): generation of

subsets, evaluation, and criteria (or a criterion) that will halt the FS process.

It is possible therefore to broadly define each approach to FS on the basis of

the following characteristics:

• Search strategy

• Generation of subsets

• Evaluation measure
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Figure 2.3: Feature selection

Note that the search strategy and the subset generation steps are closely related

(they are integrated for some approaches) and in some FS algorithms may impact

on each other. FS therefore can be viewed as a search in a feature space for

a solution which maximises some predefined evaluation measure. Let Y = the

feature set to be examined, and a cardinality |Y | = n. For any problem this can

be defined as in Fig. 2.4:

Feature Selection

J , an evaluation measure to be optimised in the manner J : Y ′ ⊆ Y → R;
Y , the feature space.
Y ′, a subset of Y
The problem of subset selection can now be viewed in
the following ways:

• Set a desired value for J called Jdes. Search for
Y ′ ⊆ Y such that |Y ′| < |Y |, and J(Y ′) ≥ Jdes

• Let |Y ′| = m < n. Search for Y ′ ⊂ Y such that
J(Y ′) is maximum.

• Search for a subset such that |Y ′| is minimised
whilst simultaneously aiming to maximise J(Y ′)

Figure 2.4: The feature selection problem

2.1.2.1 Search Strategy

The search strategy of a FS process is the manner in which the feature space is

traversed in an attempt to locate valid feature subsets. Each state in the search

space can be thought of as having a weighting ws1, ..., wsn of possible features of

Y , with |Y | = n. For a binary example, wsi ∈ {0, 1}, or discrete example, wsi ∈

26



2.1 Dimensionality Reduction

[0, 1]. Exponential Search includes approaches where the complexity is O(2n). An

exhaustive search will always guarantee an optimal solution. However a search

which returns an optimal solution does not necessarily need to be exhaustive. If

the evaluation measure is monotonic, a branch-and-bound search [159] is optimal.

An evaluation measure J is monotonic if for any two subsets S1, S2, and S1 ⊆ S2

then J(S1) ≥ J(S2).

Sequential search selects a single successor amongst all the successors to the

current state. This is performed in an iterative manner. Obviously the number of

steps for this type of search is limited to O(n) - it could not otherwise be referred

to as a sequential search. The complexity can be determined by including the

number of evaluated subsets in each change of state - (k). With this in mind the

complexity can be viewed as O(nk+1). Sequential search methods therefore cannot

guarantee optimality, as the optimal subset may be found in an area of the search

space that is not examined.

The use of random selection of features is a strategy which ensures that the

search moves through a number of states and does not become trapped in a single

area of the search space. This may mean however that the search will return

several sub-optimal solutions.

2.1.2.2 Generation of Subsets

As with search techniques, a number of different approaches can be adopted when

deciding how to generate subsets for evaluation. Forward selection for example,

is carried out by adding a feature or a number of features once per iteration to

the current subset candidate from a subset of those features that have not already

been considered for addition. For each iteration a feature (or features) that results

in an increase in J is added to the current subset candidate. Typical complexity

of forward selection is O(n).

Let Y ′ = ∅, one forward iteration will be:

Y ′ := Y ′ ∪ {yi ∈ Y \ Y ′|J(Y ′ ∪ yi) is greater }

A typical stopping criterion in this case might be |Y ′| = n′ (where the value

n′ is predetermined). Alternatively thresholds such as - if the value of J has not

increased after x iterations then stop - can be imposed. Despite the efficiency of

this of selection technique, it has one major weakness - the combined behaviour

of features is not considered. Take the features f1, f2, suppose that J({f1, f2})≫

J({f2}), J({f2}), then neither of the individual features f1, or f2 will be selected

despite their obvious combined value.
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Figure 2.5: Subset generation techniques

Backward selection works in a manner that is essentially contrary to that of

forward selection. All of the features of the original feature subset form the initial

subset candidate for consideration. Features are then removed from the current

subset candidate from a set of features that have not already been considered

for removal. For each iteration a feature is removed that results in an increase

in J . The complexity of backward selection is again O(n) although software im-

plementations have shown that it requires higher computational overhead [106],

[107], [117] to obtain similar performance to that of forward selection. Backward

selection has also shown a tendency to result in subsets which are suboptimal in

comparison to those obtained using forward selection [67].

Random selection as mentioned previously selects features at random and again

tries to optimise J for each iteration of subset generation. The selection process

may be restricted by some measure which is used to determine the feature subset

from which features are randomly selected. Examples include random-start, hill

climbing and simulated annealing [50]. An alternative approach [19] is to generate

the subset which will be selected from in a completely random manner thus any

current subset does not grow or shrink from any previous subset - i.e a new subset

is selected for each iteration. This is known as the Las Vegas algorithm. The use

of random techniques allows the search to escape local optima.

Weighted selection [115] is a method in which all of the features in the feature

space are present in the solution to a certain degree (weighting). A successor space

will have a different weighting. Searches for optimal subsets are performed on this

basis in an iterative manner.
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The selection of features using both backward and forward selection on the

same feature space is known as compound selection. Through applying several

forward steps (f) and backward steps (b) separately on the same subset, the

value of J is assessed. If the magnitude of J increases to a greater value in the

forward method then forward selection is continued until an optimal subset is

obtained and vice-versa. If the value of J appears to be equal then the next step

(forward/backward) is chosen at random.

2.1.2.3 Evaluation Measures

Optimality of subsets is subjective, and a subset that is selected as optimal us-

ing one particular evaluation function may not be equivalent to that of a subset

selected by another evaluation function. There are a number of different evalua-

tion functions employed by the various FS approaches. These include, interclass

distance measures, probability of error measures, information measures e.g. [40],

[110], dependence measures [172], consistency measures [84], and classifier error

rate [184] measures.

Interclass Distance or Euclidean measures are based on the assumption that

objects of different classes are distant in the feature space. It is sufficient therefore

to define a metric (D) which can be used to differentiate between classes and use

it as a measure:

D(ωi, ωj) =
1

NiNj

Ni
∑

k1

Ni
∑

k2=k1+1

d(x(i,k1), x(j,k2)) (2.1)

J =
m

∑

i=1

P (ωi)
m

∑

j=i+1

P (ωj)D(ωi, ωj) (2.2)

Where x(i,j), the object j of class ωi, and Ni is the number of objects of class ωi.

The most common distance measures (d) utilised for this measure are Euclidean.

When considering the accuracy of a classifier, the ability to classify instances

generated by the same probability distribution correctly is the objective. One of

the most obvious ways to approach this is to use the Bayesian probability error

measure. Minimising the probability of error P will result in a classifier that is

obviously more accurate as the probability of error is reduced. The suitability of

this measure for J is therefore clear.

Let ~x ∈ R
⋉ represent the unlabeled objects, and Ω = {ω1, ...ωn} a set of

classes such that: c : R
⋉ → Ω. Probability such as that defined in [48] can then

be applied:
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P =

∫

[1−maxP (ωi|~x)] p(~x)d ~x (2.3)

Where p(~x) =
∑m

i=1, p(~x|ωi), P (ωi) is the unconditional probability distribu-

tion of the objects, and P (ωi, vecx) is the a posteriori probability of ωi being of

class ~x.

Some classifiers such as those which use the single-nearest-neighbour type of

approach are directly related to probability of error [48].

Information measures are typically concerned with the information gain (en-

tropy measure) of a feature [40]. The information gain value from a feature f can

be defined as the difference between the prior uncertainty and the expected poste-

rior uncertainty of y. Feature y is more desirable than feature z if the information

gain using y is greater than that using z.

Dependence or correlation is a measure of how closely two features are asso-

ciated. It can be used in deduction such that if the value of a feature is known,

it is possible to deduce the value of another. This can be used to easily eliminate

highly correlated features.

Inconsistency in Y ′ and S can be defined as two instances in S that are equal

when considering only the features in Y ′ and that belong to different classes.

The aim is therefore to find the minimum subset of features that will lead to

no inconsistencies[3]. The inconsistency index (or inconsistency count [130]) of an

object (A ∈ S) can be defined as:

INDEXY ′(A) = Y ′(A)−maxY ′
k(A) (2.4)

Where Y ′ is the number of objects in S equal to A using only the features in Y ′

and,Y ′
k(A) is the number of objects in S of class k equal to A again using only

the features in Y ′. The inconsistency rate for a feature subset can therefore be

defined as:

INRATE(Y ′) =

∑

A∈S INDEXY ′(A)

| S |
(2.5)

Consistency is the measure used in the FS algorithm Focus [3]. Also the au-

thor in [98] has noted that this is identical to the rough set dependency evaluation

measure as used in [32].

2.2 Feature Selection Models

There are a number of frameworks or models which can be employed for the FS

task, and broadly these can be divided into four types: filter, wrapper, hybrid,
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and embedded methods.

Figure 2.6: FS models

Algorithms that perform FS in isolation of a learning algorithm, are termed

filter approaches. Essentially irrelevant attributes are filtered out prior to per-

forming induction. Filters are useful for most domains as they are not integrated

with any induction algorithm.

Figure 2.7: Filter FS

Filter approaches are generally employed where redundancy/irrelevance re-

moval is the aim due to their execution speed. Fig. 2.8 shows a generalised

algorithm for the filter approach.

For a given dataset D, the algorithm searches from a given subset S0 (initially

empty when using forward selection), using a predefined search strategy to traverse

the feature space. Each generated subset is then evaluated by an independent

measure J and compared with the current best subset. If as a result of the

evaluation the generated subset offers an increase in the value of J it becomes

the new current best subset. The search continues until a predefined stopping
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Filter FS (D, S0, δ, S).
D, a training dataset with N features;
S0, initially empty subset.
δ, stopping criterion.
Sopt, an optimal subset.

(1) start
(2) Sopt ← S0;
(3) γbest = eval(S0, D, J)
(4) do
(5) S = generate(D);
(6) γ = eval(S,D, J);
(7) if (γ > γbest)
(8) γbest ← γ
(9) Sopt ← S
(10) until (δ is reached)
(11) return Sopt

Figure 2.8: Generalised filter algorithm

criterion δ has been reached. The algorithm finally outputs the last ‘best current

subset’ Sopt.

Wrapper methods [25], [55], [106] in contrast to filter approaches are often

used in conjunction with a learning or data mining algorithm, where the learning

algorithm forms part of the validation process.

Figure 2.9: Wrapper FS

The wrapper approach is generally seen as being inferior [130] to other ap-

proaches because of the computational overhead that is required for the examina-

tion of each subset by the learning algorithm. However, this is not necessarily true

as the application domain should to be taken into account, and if the application

is data mining or related then a wrapper approach will return better results.

The generalised wrapper algorithm is similar to the filter approach apart from

the fact that a learning algorithm (LA) is employed in place of a measure (J) as

used in the filter approach.
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Wrapper FS (D, S0, δ, S).
D, a training dataset with N features;
S0, initially empty subset.
δ, stopping criterion.
Sopt, an optimal subset.

(1) start
(2) Sopt ← S0;
(3) γbest = eval(S0, D, LA)
(4) do
(5) S = generate(D);
(6) γ = eval(S,D,LA);
(7) if (γ > γbest)
(8) γbest ← γ
(9) S ′

opt ← S
(10) until (δ is reached)
(11) return Sopt

Figure 2.10: Generalised wrapper algorithm

Hybrid methods [38], [160], [244] are those which try to take advantage of both

previous models (filter and wrapper).

Figure 2.11: Hybrid FS

The ideology behind hybrid approaches is to make use of both a measure, and

a learning algorithm to evaluate feature subsets. The measure is used to decide

which subsets are the ‘best’ for a given cardinality. The learning algorithm is then

used to select the final ‘best’ overall feature subset from a pool of feature subsets

of different cardinalities.

The search starts from a defined subset S0 and traverses the feature space
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Hybrid Filter-Wrapper FS(D, S0, δ, S).
D, a training dataset with N features;
S0, initially empty subset.
Sopt, an optimal subset.
Fj, a feature chosen using j.

(1) start
(2) Sopt ← S0;
(3) c0 ←| S0 |;
(4) γbest ← eval(S0, D, J)
(5) θbest ←eval(S0, D, LA)
(6) for c = c0 + 1 to N begin
(7) for i = 0 to N – c begin
(8) S ← Sopt ∪ {Fj}
(9) γ ←eval(S,D, J)
(10) if (γ¿γbest)
(11) γbest ← γ
(12) S ′

opt ← S
(13) end
(14) θ ←eval(S ′

opt, D,A)
(15) if (θ is better than θbest)
(16) Sopt ← S ′

opt

(17) θbest ← θ
(18) else
(19) break
(20) return Sopt

(21) end
(22) return Sopt

(23) end

Figure 2.12: Generalised hybrid algorithm

in order to find the best subset for each level of cardinality. For each iteration

a ‘best’ subset with a cardinality c, is searched for through all possible subsets

with cardinality of c + 1 by adding a feature from the remaining features. Each

newly generated feature subset is evaluated by measure M and then compared to

current optimal candidate S ′
opt. If S is determined to be ‘better’ it becomes the

‘best’ candidate S ← Sopt at level c + 1. Before performing the next iteration, the

learning algorithm LA is applied to S ′
opt at cardinality level c+1 and the goodness

or ‘quality’ of the learned result θ is compared to that of the best feature subset

at cardinality level c. If S ′
opt is better, the algorithm continues to search for the

’best’ subset at the next level. Otherwise it stops and will return the current best

subset candidate. The ‘quality’ of the results from a learning algorithm ensures

that the search will terminate automatically.
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Finally, there is the embedded method approach. This approach simply means

that embedded within the learning algorithm is an implicit or explicit FS mecha-

nism e.g. [184]. Decision trees are an example of the embedded approach, indeed

some decision tree algorithms as well as allowing the use of their own internal

embedded FS process allow other FS algorithms to be ‘plugged-in’ [48].

2.3 Rough Sets for Approximate Modelling

The ability to deal effectively with insufficient or imperfect knowledge is a central

motivating factor in much of the research in the field of computational intelligence.

In the areas of machine learning, data-mining, pattern recognition, and intelligent

control, the ability to handle such knowledge is of primary importance both in

terms of theoretical advancement and practical applications. The work in the

area of rough set theory (RST) [172], [175] offers perhaps one of the most distinct

and recent approaches in this respect.

Such is the world-wide nature of the attention that RST has attracted since its

inception [108], that much research and development has been carried out not only

in applying the theory to many and varied problem domains, but also to extending

it theoretically. This has resulted in a significant breadth and depth of work in the

area. Rough set theory [172] has been used as a tool to discover data dependencies

and to reduce the number of attributes contained in a dataset using the data

alone, requiring no additional information [172], [175], [182], and [205]. Over the

past ten years, RST has become a topic of great interest to researchers and has

been applied to many domains. Indeed, since its inception, this theory has been

successfully utilised to devise mathematically sound and often, computationally

efficient techniques for addressing problems such as knowledge discovery from data,

data reduction, data significance evaluation, decision rule generation, and data-

driven inference interpretation [171]. Given a dataset with discretised attribute

values, it is possible to find a subset (termed reduct) of the original attributes using

RST that are the most informative; all other attributes can be removed from the

dataset with minimal information loss. Rough set theory possesses many features

in common (to a certain extent) with the Dempster-Shafer theory of evidence

[197] and fuzzy set theory [254]. It works by making use of the granular structure

of the data only. This is a major difference when compared with Dempster-

Shafer theory and fuzzy set theory, which require probability assignments and

membership values, respectively. The use of only the data and its granularity

ensures that no other assumptions are made about the data. This approach has

led to some researchers suggesting that this is a disadvantage rather than an

advantage, of rough set theory [108] as other numerical and contextual aspects
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are effectively ignored. However, in disregarding such supplemental information,

model assumptions can be minimised.

Formally, a rough set is the approximation of a vague concept (set) by a pair of

precise concepts, called lower and upper approximations, which are a classification

of the domain of interest into disjoint categories. The lower approximation is a

description of the domain objects which are known with certainty to belong to

the concept of interest, whereas the upper approximation is a description of the

objects which possibly belong to the concept. The approximations are constructed

with regard to a particular subset of attributes or features.

One of the primary drawbacks of RST lies in its inability to deal with real

world data. Due mainly to the granular approach that RST uses to handle data,

and the strict structure of equivalence imposed, it does not allow any flexibility

when dealing with measurement noise, or imperfection that are prevalent in real-

world data. However, most datasets contain real-valued features and so it becomes

necessary to perform a discretisation step prior to employing RST for knowledge

discovery. Take for instance a weather forecasting system which records a number

of meteorological attributes, one in particular might be average rainfall, in reality

this is a continuous and real-valued measurement. However, in order to apply

RST to such a problem, this attribute must be discretised with a set of labels such

as light, medium, and heavy. This imposes subjective human judgment on what is

otherwise an objective measurement.

The deficiency of RST in handling real-valued data has led over the years to

the development of a number of extensions which aim to address this problem.

There are two areas of RST which have been considerably exploited in order to

achieve this; modification of the equivalence relation, and manipulation of the

subset operator. These are the primary operations of RST and it is unsurprising

therefore that a number of extensions have been proposed with regard to these

areas. The tolerance rough set model (TRSM) [208], is a typical example of

an attempt to address this problem through the modification of the equivalence

relation. Variable precision rough sets (VPRS) [263] allow the relaxation of the

subset operator of traditional RST. This approach was originally formulated in

order to analyse and identify data patterns which represent statistical trends.

In addition to the use of alternative equivalence relations and modification of

the subset operator, there is also a third aspect of RST which has been exploited,

that of the use of the information contained in the boundary region, or region

of uncertainty between the lower and upper approximations, [84], [148]. This

information although uncertain can be useful in maximising the performance of

RST without changing the underlying model or modifying the subset operators.

As well as directly extending RST, it has also been hybridised with other soft
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computing methods such as fuzzy sets [254], genetic algorithms (GAs), neural

networks, and statistical methods such as principal component analysis (PCA)

[48] etc. Such hybridisation has highlighted the value of employing RST, as its

use often results in methods which outperform such methods individually. In

particular, the hybridisation of RST with fuzzy set theory [254] to form fuzzy-

rough set theory [52] is perhaps the most important of all. Fuzzy-rough set theory

[52] attempts to take advantage of the complementary nature of fuzzy sets and

rough sets. The significance of this work is reflected in the level of research carried

out in this area and also to the number of applications of fuzzy-rough set theory.

2.3.1 Basic Concepts and Theoretical Background

In this section, the basic notions, definitions, and operations of rough set theory

are described. The upper and lower approximation concepts, as well as how these

can be used to minimise data are also explored. A small example is used to

demonstrate all of the concepts described and show the individual steps involved

in employing RST. Heuristics for discovering reducts, and search techniques are

also discussed.

Central to rough set theory is the concept of indiscernibility. Let I = (U, A) be

an information system, where U is a non-empty set of finite objects (the universe

of discourse) and A is a non-empty finite set of attributes such that a : U → Va

for every a ∈ A. Va is the set of values that attribute a may take. For any P ⊆ A

there is an associated equivalence relation IND(P ):

IND(P ) = {(x, y) ∈ U
2 | ∀a ∈ P, a(x) = a(y)} (2.6)

The partition of U, generated by IND(P ) is denoted U/IND(P ) and can be

defined as follows:

U/IND(P ) = ⊗{a ∈ P : U/IND({a})} (2.7)

where,

U/IND({a}) = {{x|a(x) = b, x ∈ U}|b ∈ Va} (2.8)

and,

A⊗B = {X ∩ Y : ∀X ∈ A,∀Y ∈ B,X ∩ Y 6= ∅} (2.9)

If (x, y) ∈ IND(P ), then x and y are indiscernible by attributes from P . The

equivalence classes of the P -indiscernibility relation are denoted [x]P .
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Let X ⊆ U. X can be approximated using only the information contained

within P by constructing the P -lower and P -upper approximations of X:

PX = {x| [x]P ⊆ X} (2.10)

PX = {x| [x]P ∩X 6= ∅} (2.11)

Figure 2.13: Basic rough set concepts

Let P and Q be equivalence relations over U, then the positive, negative and

boundary regions are defined by:

POSP (Q) =
⋃

X∈U/Q

PX (2.12)

NEGP (Q) = U−
⋃

X∈U/Q

PX (2.13)

BNDP (Q) =
⋃

X∈U/Q

PX −
⋃

X∈U/Q

PX (2.14)

The positive region contains all objects of U that can be classified to classes

of U/Q using the information in attributes P . The boundary region, BNDP (Q),

is the set of objects that can possibly, but not certainly, be classified in this way.

The negative region, NEGP (Q), is the set of objects that cannot be classified to

classes of U/Q.
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2.3.1.1 Example

To illustrate the above concepts a short example in the form of an information

system is employed. There are four conditional attributes: a, b, c, and d, and a

single decisional attribute, e.

x ∈ U a b c d → e
1 M L N N H
2 L M M M F
3 M M L N F
4 M L N L G
5 N N L M G
6 N M M M F
7 L M M L G

Table 2.1: Example dataset

Using the indiscernibilty concept, the data in Table 2.1 can be partitioned

according to the outcome. Va is the set of values that attribute a may take (in

this case L, M , or N). In a decision system A = {C∪D} where C denotes the set

of condition attributes and D denotes the set of decision attribute(s). There are

associated equivalence relations with any P ⊆ A:

IND(P ) = {(x, y) ∈ U
2 | ∀a ∈ P, a(x) = a(y)} (2.15)

For the data in Table 2.1 - the partition of U by the attribute a would be:

U/IND({a}) = {{1, 3, 4}, {2, 7}, {5, 6}} (2.16)

And for the same table using attributes {b, c}

U/IND({b, c}) = {{1, 4}, {2, 6, 7}, {3}, {5}} (2.17)

This relates to the partition or grouping of the attributes where: a = L (objects

1 3 and 4), where a = M (objects 2, and 7) and, where: a = N (objects 5 and

6). The equivalence classes of the P -indiscernibility relation are denoted by [x]p.

Let X ⊆ U. X can be approximated using only the information within P by

formulating lower and upper approximations of X as described previously.

2.3.2 Rough Set Dependency and Other Measures

An important aspect of data analysis is the discovery of dependencies between

attributes. From an intuitive point-of-view an attribute or a set of attributes Q

can depend on a set of attributes P , denoted P ⇒ Q if all values of attribute(s)
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in Q are determined uniquely by values of attribute(s) from P . Another way of

describing this is that, Q depends totally on P if a functional dependency exists

between the values of Q and P .

Referring to the example in the previous section, the rough set dependency for

the set of attributes Q on a set of attributes P can be shown. For P,Q ⊂ A, it can

be said that Q depends on P in a degree k (where k ∈ [0,1]) denoted P ⇒k Q, if:

k = γP (Q) =
| POSP (Q) |

| U |
(2.18)

where

POSP (Q) =
⋃

X∈U/Q

P (X) (2.19)

is the positive region of the partition of the universe with respect to P (i.e. the

set of all elements that can be classified uniquely into sets of the partition U/Q

in terms of P ).

If k=1, Q is completely dependent on P , if k < 1 Q is partially dependent (to

a degree - k) on P and obviously, if k = 0, Q is completely non-dependent on P .

Calculation of the relevant dependencies of each attribute (or group of attributes)

allows the significance of that attribute (or group) to be realised.

Taking the data from the example decision table (Table 2.1), the degree of

dependency of attribute {e} upon the attributes {b, c} is:

γ{b,c}({e}) =
| {POS{b,c}({e}) |

| U |

=
| {3, 5} |

| {1, 2, 3, 4, 5, 6, 7, } |
=

2

7

For the application of feature selection, the minimisation of attributes can

be realised through the comparison of equivalence relations generated by sets of

attributes ({b, c} for the purpose of the previous example). Attributes are removed

such that the minimised set provides an equivalent predictive characteristic as the

initial decision features. This minimised set is termed a reduct and can be defined

as a subset R of the conditional attribute set cond such that γR(D) = γC(D).

Other measures have also been used to discover rough set reducts, for instance

in [69], a feature selection method which is based on an alternative dependency

measure is presented. This technique was proposed in order to avoid the expensive

calculation of discernibility functions or positive regions. The authors replace the
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traditional rough set dependency measure with the relative dependency measure,

defined as follows for an attribute subset P:

κP (D) =
| U/IND(P ) |

| U/IND(P ∪ D) |
(2.20)

The authors then demonstrate that R is a reduct if and only if κR(D) = κC(D)

and that ∀X ⊂ R, κX(D) 6= κC(D).

In addition, the entropy measure has been used in [94] to discover smaller

reducts than the rough set dependency measure alone. In this approach, although

entropy is used in the search for reducts, rough set dependency is still used as a

termination criterion.

2.3.2.1 An Example Feature Selection Algorithm - Rough Set At-

tribute Reduction

To demonstrate how the concepts described in the last few sections can be applied,

a feature selection algorithm which exploits all of the measures discussed previ-

ously is discussed here. This approach has been used extensively, and successfully

[32], [202], [203] etc.

At the heart of the RSAR approach is the concept of indiscernibility [172]. Let

I = (U, S) be an information system, where U is a non-empty set of finite objects

(the universe of discourse) and S is a non-empty finite set of attributes so that

a : U→ Va for every a ∈ S. Va is the set of values that a can take. For any P ⊆ S,

there exists an associated equivalence relation IND(P ):

IND(P ) = {(x, y) ∈ U
2|∀a ∈ P, a(x) = a(y)} (2.21)

The partition generated by IND(P ) is denoted U/IND(P ) and is calculated

as follows:

U/IND(P ) = ⊗{U/IND({a}) : a ∈ P} (2.22)

where,

S ⊗ T = {X ∩ Y : ∀X ∈ S,∀Y ∈ T,X ∩ Y 6= ∅} (2.23)

If (x, y) ∈ IND(P ), then x and y are indiscernible by attributes from P . The

equivalence classes of the P-indiscernibility relation are denoted [x]p. Let X ⊆ U.

X can be approximated using only the information contained in P by constructing

the P-lower and P-upper approximations of X:
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PX = {x|[x]p ⊆ X} (2.24)

PX = {x|[x]p ∩X 6= ∅} (2.25)

Let P and Q be equivalence relations over U, then the concepts of the positive,

negative and boundary regions can be defined:

POSP (Q) =
⋃

X∈U/Q

PX (2.26)

NEGP (Q) = U−
⋃

X∈U/Q

PX (2.27)

BNDP (Q) =
⋃

X∈U/Q

PX −
⋃

X∈U/Q

PX (2.28)

By employing this definition of the positive region it is possible to calculate

the rough set degree of dependency of a set of attributes Q on a set of attributes

P . This can be achieved as follows: For P ,Q ⊆ S, it can be said that Q depends

on P in a degree k (0 ≤ k ≤ 1), thus the higher the value of k the more dependent

Q is upon P . This is denoted (P ⇒k Q) if:

k = γP (Q) =
|POSP (Q)|

|U|
(2.29)

The reduction of attributes can be achieved through the comparison of equiv-

alence relations generated by sets of attributes. Attributes are removed such that

the reduced set provides identical predictive capability of the decision feature or

features as that of the original or unreduced set of features, assuming of course

that the dataset is consistent. A reduct of set N is a minimal set of attributes

B ⊆ A such that INDN(B) = INDN(A). In other words, a reduct is a minimal

set of attributes from A that preserves the partitioning of the universe and hence

the ability to perform classifications as the whole attribute set A does.

The QuickReduct algorithm [32] shown in Fig. 2.14 searches for a minimal

subset without exhaustively generating all possible subsets. The search begins

with an empty subset, attributes which result in the greatest increase in the rough

set dependency value are added iteratively. This process continues until the search

produces its maximum possible dependency value for that dataset (γc(D)). Note

that this type of search does not guarantee a minimal subset and may only discover

a local minimum.
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QuickReduct(C,D).
C, the set of all conditional features;
D, the set of decision features.

(1) R← {}
(2) do
(3) T ← R
(4) ∀x ∈ (C−R)
(5) if γR∪{x}(D) > γT (D)
(6) T ← R ∪ {x}
(7) R← T
(8) until γR(D) == γC(D)
(9) return R

Figure 2.14: The QuickReduct algorithm

2.3.3 Minimal Reducts and Reduct Discovery

A method for reducing data, demonstrated in Section 2.3.1.1, identifies equivalence

classes using the available attributes [172]. If only those attributes that preserve

the indiscernibility relation are retained as demonstrated in Section 2.3.2.1, any

remaining attributes are redundant since their omission will not affect classifica-

tion. There are usually many such subsets of attributes, however those which are

minimal are termed minimal reducts. A minimal reduct is therefore a minimal set

of attributes that preserves the partitioning of the universe and hence the ability

to perform the same classification as the complete dataset. In practical terms

this means that no attributes can be removed from the subset without affecting

the dependency measure. Let R be the set of all reducts then minimal reducts

Rmin ⊆ R can be defined as:

Rmin = {X : X ∈ R,∀Y ∈ R, | X |≤| Y |} (2.30)

The search for minimal reducts is however non-trivial [206], [221] and it can

be demonstrated that the number of reducts for a given information system with

n attributes can be as much as:





m

⌊m/2⌋



 (2.31)

The intersection of all the sets in R is termed the core. This set contains the

attributes which cannot be eliminated without the introduction of contradictions

in the data.

Many rough set approaches for dealing with data opt for search techniques
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which tend to balance the need for the discovery of minimal reducts with the

computational overhead involved in searching for such reducts. The greedy hill-

climbing search [32] is such an example, and although it will not guarantee mini-

mality it is relatively efficient in terms of time/space complexity - (n2 + n)/2 for

a data dimensionality of n. Other search techniques which also do not guarantee

minimality but which have been employed for the rough set methodology include

backward-elimination (similar to hill-climbing) [40], compound selection [155], and

stochastic selection [19]. However, where the discovery of minimal reducts is neces-

sary, this approach may not be acceptable, and this has frustrated efforts to apply

the rough set methodology to application domains which involve large numbers of

features and relatively few objects [108] such as gene expression data.

There are various search techniques and heuristics which can be used to alle-

viate this problem however. Genetic algorithms (GAs) are an obvious candidate

for this type of problem, and indeed the work in [93], and [238] employ such tech-

niques to search for minimal reducts. Although such techniques cannot guarantee

minimality, they do offer an alternative which will avoid local minima. Problems

may arise when employing GAs for situations where the number of data attributes

is high, as the amount of time taken to discover reducts may increase considerably.

Another approach similar to GA is particle-swarm-optimisation (PSO) [233],

which does not require operations such as crossover and mutation, but primitive

and simple mathematical operators, and is also efficient in terms of time/space

complexity. Again, PSO will not guarantee minimality of any reducts discovered

but like GAs allows the search to escape local minima. Other techniques similar to

GA and PSO include ant-colony-optimisation (ACO) [93], [95], [102] and simulated

annealing [93]. The approach in [262] also offers an interesting insight into possible

heuristics for finding minimal reducts.

The only way in which to ensure minimality is to conduct a complete search of

all possible reducts. An exhaustive search is an example of a complete search, but

it does not necessarily follow that a complete search must be exhaustive. A branch-

and-bound search [159] is typical of a complete search that is non-exhaustive,

others include Boolean propositional satisfiability (SAT) [43]. In [98] the authors

use a SAT solver algorithm [43] to perform a complete search for rough set reducts.

The SAT algorithm can be used to perform a complete search of the feature

space and thus discover minimal reducts. This technique is both computationally

efficient and can guarantee the minimality of any discovered reduct. One of the

principal drawbacks of SAT however, is that it can only be applied to discrete

data domains.
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2.4 Rough Set Extensions

Figure 2.15: A taxonomy of rough set extensions

The conceptual simplicity of the rough set approach is undoubtedly one of

the main reasons for its success. The two areas which are most often exploited in

order to extend the approach are the equivalence relation, and the subset operator.

These aspects are therefore the subject of a number of extensions. In addition to

these extensions, there is also a third aspect of RST which has been exploited,

that of the use of the information contained in the boundary region, or region

of uncertainty. The illustration in Fig. 2.15 shows the main RST extensions in

relation to the aspects of the theory they extend. The approaches are discussed

here with reference to their underlying concepts as well as their respective merits

and drawbacks.

2.4.1 Tolerance Rough Sets

The tolerance rough set model (TRSM) [208] can be useful for application to real-

valued data. TRSM employs a similarity relation to minimise data as opposed

to the indiscernibility relation used in classical rough-sets. This allows a relax-

ation in the way equivalence classes are considered. The effect of employing this

relaxation, means that the granularity of the rough equivalence classes has been

blurred slightly. Fig. 2.16 attempts to demonstrate this, and also how tolerance

classes are allowed to ‘overlap’, whereas traditional RST lacks the ability to con-

sider equivalence classes in this manner. This flexibility enables a change to occur

in the boundaries of the former rough or crisp equivalence classes and objects may

now belong to more than one so-called tolerance class which is TRSM equivalent

of a rough set equivalence class.
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Figure 2.16: Tolerance rough set model

The tolerance threshold (τ) is a global similarity threshold and determines the

required level of similarity for inclusion within a tolerance class. The specification

of this threshold however is a departure from the traditional rough set approach,

which relies only upon the information contained in the data. The framework

also allows for the specific case of traditional rough sets by defining a suitable

similarity measure (e.g. complete equality of features and the use of equation

(15)) and threshold (τ = 1). Further similarity relations are summarised in [163],

but are not included here. From this, the tolerance classes that are generated by

a given similarity relation for an object x are defined as:

SIMP,τ (x) = {y ∈ U | (x, y) ∈ SIMP,τ} (2.32)

Lower and upper approximations are defined in a similar way to those of traditional

rough set theory:

PτX = {x | SIMP,τ (x) ⊆ X} (2.33)

PτX = {x | SIMP,τ (x) ∩X 6= ∅} (2.34)

The tuple 〈PτX, PτX〉 is known as a tolerance rough set [208]. Using this, the

positive region and dependency functions can be defined as follows:

46



2.4 Rough Set Extensions

POSP,τ (Q) =
⋃

X∈U/Q

PτX (2.35)

γP,τ (Q) =
| POSP,τ (Q) |

| U |
(2.36)

These definitions are analogous to the traditional rough set concepts and can

be applied in the same way as demonstrated in Section 2.3.1.1.

2.4.2 Variable Precision Rough Sets

The variable precision rough sets (VPRS) approach [263] extends rough set theory

by relaxing the subset operator. It was originally proposed in order to analyse and

identify data patterns which represent statistical trends rather than those which

are functional. At the heart of VPRS, is the idea of allowing objects to be classified

with an error smaller than a given predefined level or threshold. The introduction

of this threshold means that unlike the traditional rough set approach, VPRS

requires additional information other than that contained within the data.

Let X,Y ⊆ U, the relative classification error is defined by:

c(X,Y ) = 1−
| X ∩ Y |

| X |
(2.37)

Note that c(X,Y ) = 0 if and only if X ⊆ Y . A degree of inclusion can therefore

be achieved by allowing a certain level of error, β, in classification:

X ⊆β Y ⇐⇒ c(X,Y ) ≤ β, 0 ≤ β ≤ 0.5 (2.38)

Thus by replacing ⊆, with the operator ⊆β, the β-upper and β-lower approxima-

tions can be formulated:

RβX = {x| [x]R ⊆β X} (2.39)

RβX = {x| c([x]R, X) < 1− β} (2.40)

Note that when β = 0, RβX = RX.

Using this extension, the positive, negative and boundary regions can now also

be defined:

POSRβ(Q) =
⋃

X∈U/Q

RβX (2.41)
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NEGRβ(Q) = U −
⋃

X∈Q

RβX (2.42)

BNDRβ(Q) =
⋃

X∈Q

RβX −
⋃

X∈Q

RβX (2.43)

A more comprehensive investigation of reducts for the VPRS approach may

be found in [11], [12], and [113]. No general comparative studies appear to have

been carried out with regard to comparing the rough set and the VPRS methods,

although in [223], the authors compare feature selection methods based on both

RST and VPRS.

As indicated previously, the VPRS approach requires the specification of an

additional parameter (β). This parameter can be approximated by repeated ex-

perimentation. However, problems may arise if searching for true reducts, as the

VPRS approach incorporates an element of inaccuracy in determining the number

of classifiable objects.

2.4.3 Dominance-based Rough Sets

The Dominance-based Rough Set Approach (DRSA) [62] is an extension of RST

for multi-criteria decision analysis. In contrast to traditional RST, DRSA employs

a dominance relation instead of an equivalence relation. This allows DRSA to

deal with the inconsistencies which are typical of criteria and preference-ordered

decision classes.

The ordering of data describing decision situations is naturally related to pref-

erences of considered condition and decision attributes. Traditional RST does not

have the ability to deal with ordinal data in the same way that DRSA does. This

is because DRSA employs a dominance relation in place of the traditional rough

set equivalence relation.

In DRSA, data is represented in decision table form. Let S = 〈U, Q, V, f〉,

where U is a non-empty set of finite objects, Q is a finite set of criteria, V =
⋃

q∈QVq where Vq is the set of values that the criterion q can take, and f : U×Q→

V is an information function such that f(x, q) ∈ Vq for every (x, q) ∈ U×Q. The

set Q consists of condition criteria C, and the decision class D. Note that f(x, q)

is the evaluation of object x, on criterion q ∈ C, while f(x, d) is the decision class

assignment for that object.

In order for DRSA to operate effectively on preordered data, the approach

employs an ‘preferencing’ or ‘outranking’ relation. A typical example is: �q; x �q

y which means that x is preferential to or ‘outranks’ y with respect to q. The

values that q can take is a subset of real numbers - R, such that Vq ⊆ R, and the
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preference relation is a simple order between real numbers≥ such that x �q y ⇐⇒

f(x, q) ≥ f(y, q) holds. This relation is straightforward for simple maximisation

criterion, e.g. an exam result - ‘the higher, the better’. For criteria where the

opposite is true, e.g. student failure-rate (‘the less, the better’), the relation can

be satisfied by negated values of Vq. Let P ⊆ C, it can be said that x dominates y,

denoted by xDpy, if x is ‘better’ than y for every criterion from P , x �q y, ∀q ∈ P .

For each P ⊆ C, the dominance relation DP is reflexive and transitive. Given that

P ⊆ C and x ∈ U,

D+
P (x) = {y ∈ U : yDpx} (2.44)

D−
P (x) = {y ∈ U : xDpy} (2.45)

These are termed the P -dominating set and P -dominated set respectively.

As the DRSA deals with ordinal data and objects, the manipulation of the data

is carried out with respect to the ranking of decision classes. Let T = {1, . . . , n}.

The domain values of decision criterion, Vd consists of n elements (it is assumed

that Vd = T ) and induces a partition of U into n classes Dc = {Dct, t ∈ T},

where Dct = {x ∈ U : f(x, d) = t}. Each object x ∈ U is assigned to only one

decision class Dct, t ∈ T . All of the classes are preference-ordered according to

an increasing order of class indices, i.e. ∀r, s ∈ T | r ≥ s, objects from Dcr are

preferential to the objects from Dcs. Thus the upward and downward unions of

classes, can be defined respectively, as:

Dc≥t =
⋃

s≥t

Dcs Dc≤t
⋃

s≤t

Dcs t ∈ T (2.46)

In DRSA, the knowledge being approximated is a collection of upward and

downward unions of decision classes. The knowledge granules employed for ap-

proximation in DRSA are the P -dominating and P -dominated sets, these are anal-

ogous to the equivalence classes of traditional RST. The P -lower and the P -upper

approximation of Dc≥t , t ∈ T are denoted P (Dc≥t ) and P (Dc≥t ), respectively, and

can be defined as follows:

P (Dc≥t ) = {x ∈ U : D+
P (x) ⊆ Dc≥t } (2.47)

P (Dc≥t ) = {x ∈ U : D−
P (x) ∩Dc≥t 6= ∅} (2.48)

Similarly, the P -lower and the P -upper approximation of Dc≤t , denoted P (Dc≤t )

and P (Dc≤t ), respectively, can be defined thus:
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P (Dc≤t ) = {x ∈ U : D−
P (x) ⊆ Dc≤t } (2.49)

P (Dc≤t ) = {x ∈ U : D+
P (x) ∩Dc≤t 6= ∅} (2.50)

As with traditional RST, the boundary regions of Dc≥t and Dc≤t can also be

defined:

BNDP (Dc≥t ) = P (Dc≥t )− P (Dc≥t ) (2.51)

BNDP (Dc≤t ) = P (Dc≤t )− P (Dc≤t ) (2.52)

2.4.4 Vaguely Quantified Rough Sets

In traditional RST, an object is a member of the upper approximation of a set if

it is related to one of the elements in the set, while the lower approximation only

retains those objects related to all the elements in the set. This is a result of the

use of an existential quantifier in the definition of the upper approximation, and

the use of a universal quantifier for the lower approximation. For real-world data

which includes noise to a greater or lesser degree, this approach will inevitably

suffer from classification errors and inconsistency. The associated definition of the

upper approximation may be too general (thus resulting in very large sets), while

the definition of lower approximation might be too rigid (resulting in an empty

set in the extreme case). Fuzzy rough set theory (which is covered in the next

section), exhibits similar behaviour where the quantifiers ∃ and ∀ are replaced

by the sup and inf operations [36]. These operators however, can be equally as

susceptible to the effects of noise as their crisp counterparts.

As demonstrated previously in Section 2.4.2, thresholds are introduced in

VPRS to deal with these problems for the crisp case. In general, given 0 <

l < u < 1, an element y is added to the lower approximation of a set A if at

least (100 x u) % of the elements related to y are in A. Likewise, y belongs to

the upper approximation of A if more than (100 x l) % of the elements related to

y. This can be interpreted as a generalisation of the rough set model using crisp

quantifiers at least (100 x u) %, and more than (100 x l) % to replace the universal

quantifier which demands rigid (at least 100%) membership for an element to be

included in the lower approximation, and the existential quantifier which demands

membership which is non-zero (greater than 0%) for an element to be included in

the upper approximation.

In perhaps what is one of the most recent extensions of rough sets, the authors
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of [36] introduce vague quantifiers like ‘most’ and ‘some’ to the rough set model.

As a result of this, an element y now belongs to the lower approximation of A if

most of the elements related to y are included in A. Similarly, an element belongs

to the upper approximation of A if some of the elements related to y are included

in A. Also, the vague quantifiers are modeled mathematically in terms of the

notion of fuzzy quantifiers in [254], so not only does the VQRS model inherit the

flexibility of VPRS for dealing with classification errors mentioned previously, but

also that of fuzzy sets for the expression of partial constraint satisfaction - by

distinguishing between varying levels of membership of both the upper and lower

approximations.

The definitions used for the upper and lower approximations in VPRS can be

relaxed through the use of vague quantifiers, to express that y belongs to the upper

approximation of the set X to the extent that some elements of y’s equivalence

class (Ry) are in the set A, and y belongs to the lower approximation of A to the

extent that most elements of Ry are in X. In VQRS, it is implicitly assumed that

the approximations are fuzzy sets, i.e. mapped from X to [0, 1], that evaluate

the degree to which the associated condition is fulfilled. The concept of a fuzzy

quantifier in [254] is employed, i.e. a [0, 1] → [0, 1] mapping Q. The set Q is said

to be regularly increasing, if it is increasing and it satisfies the boundary conditions

Q(0) = 0 and Q(1) = 1. Examples of fuzzy quantifiers can be generated by means

of the following parameterised formula, for 0 ≤ α < β ≤ 1, and x ∈ [0, 1],

Q(α,β)(x) =























0, x ≤ α
2(x−α)2

(β−α)2
, α ≤ x ≤ α+β

2

1− 2(x−β)2

(β−α)2
, α+β

2
≤ x ≤ β

1, β ≤ x

(2.53)

For instance, Q(0.1,0.6) and Q(0.2,1) may be used to reflect the vague quantifiers

some and most respectively from natural language.

The VQRS upper and lower approximations can be defined once the quantifier

pair (Ql, Qu) has been fixed such that:

µQu

RP X(y) = Qu

(

|RP y ∩X|

|RP y|

)

(2.54)

µQl

RP X
(y) = Ql

(

|RP y ∩X|

|RP y|

)

(2.55)

In other words, an element y belongs to the lower approximation of X if most

of the elements related to y are included in X. Likewise, an element belongs to

the upper approximation of X if some of the elements related to y are included in
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X. Notice that when X and RP are a crisp set and a crisp equivalence relation

respectively, the approximations may still be non-crisp because of the use of vague

quantifiers.

2.4.5 Other Rough Set Extensions

As mentioned previously, perhaps one of the most appealing aspects of tradi-

tional RST lies in its simplicity. It is based on straightforward set operations,

and is computationally efficient. Examining the concepts described earlier in

Section 2.3.1, the most obvious areas for further exploration and extension are

the equivalence relation and the subset operator, both of which are extended by

the VPRS/VQRS[263], [36] and TRSM/DRSA [208], [62] approaches respectively.

One possible avenue for further exploration which has not been examined pre-

viously lies in a variable precision tolerance rough set approach. Although this

would involve the specification of two parameters, it could take advantage of the

benefits offered by both models: the ability to deal with real-valued data from

TRSM and the ability to handle noise from the VPRS approach.

There is also one further aspect of RST that is often overlooked however;

the upper approximation concept and its potential contribution to improving the

performance of the rough set model. Work in this area has included an approach

which generates reducts which preserve the rough upper approximation [87], as

well as an approach which considers the upper approximation and proposes a

feature selection algorithm based on a rough upper approximation measure [47].

Other techniques such as those presented in [84], [148], and [144] consider the

positive and boundary regions as conceptually different entities, and attempt to

use the boundary region information for both feature selection and classification.

In particular in [84], the authors employ a consistency measure for feature se-

lection in order to determine the classification of objects in the rough set bound-

ary region and use this information to search for reducts. The approach uses a

greedy-type search to select attributes which result in the greatest increase in the

consistency value. Problems may arise however, if the data on which the approach

is operating is inconsistent, in these cases a stopping threshold must be specified

to avoid overfitting.

The approach in [148] however treats the data in the same way as that of

traditional crisp RST. The central idea of this approach is that from an intuitive

point-of-view objects in the boundary region of a given concept are more likely

to belong to that concept if those objects are close to the objects of the positive

region. Thus, a distance measure is employed to determine the ‘closeness’ or

proximity of boundary region objects to those objects in the positive region. This
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proximity information is then used in feature selection as a measure to determine

the ‘goodness’ or value of potential reducts.

An approach which examines the boundary region of tolerance rough sets (and

thus can also handle real-valued data) based on [148] has also been proposed

[144]. Also in [162] the authors discuss what they term ‘approximate reducts’,

based on exploiting the rough set boundary. However the work does not outline

their application.

Another interesting idea which is explored in [210] and [211] is the re-definition

of the upper and lower approximation concepts of RST. The definitions propose

the use of fuzzy similarity, and tolerance, as opposed to indiscernibility, although

otherwise the framework remains unchanged from that of traditional RST. Similar

treatment is also given by the authors in [257] to VPRS to extend the β-upper

and β-lower approximations, however only similarity is explored in this case.

2.5 Combining Rough Sets with Other Techniques

The combination of RST with other soft computing techniques to form hybrid

systems has highlighted the value of employing RST as a part of a wider framework

for improving the overall performance of such systems. Such hybrids include the

combination of RST with neural networks, genetic algorithms (GAs), evolutionary

algorithms, and fuzzy sets. Very significantly, there is the hybridisation of rough

sets and fuzzy sets to form fuzzy-rough set theory.

2.5.1 Rough Set Hybridisation

It has been demonstrated that RST can be very effective for preprocessing data

input for neural networks [91]. More recent work [133] compared the rule extrac-

tion capabilities of both rough sets and neural networks and hybrid methods with

ID3 [184]. The work of [246] further reinforces the utility of employing RST ei-

ther as a neural network’s preprocessor or as a combined inference mechanism for

medical diagnosis and tested on a hepatitis disease dataset. Another approach for

medical image classification is reported in [199] that uses RST as a dimensionality

reduction step prior to the application of a neural networks based classifier. Fur-

ther detail with regard to the use of rough sets and hybrid methods for medical

applications can be found in [170].

In [123], a hybrid rough set and neural networks approach for rule induction

is presented. This technique is applied to relatively large data sets in order to

generate more concise and accurate rules than either neural networks or rough

sets alone. A feature selection algorithm is proposed and rules are generated from
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a decision table based on the rough set discernibility matrix. Reducts and rules

are obtained using RST with neural networks employed to remove noisy data.

Other rough set/neural network hybrid approaches are also to be found in [91],

[151], [218], and [230]. Additionally, it has been demonstrated that rough sets can

help to generate new models of neurons in [124], and [125].

A review of the hybridisation of RST with genetic algorithms (GAs) is doc-

umented in [35]. Prior to this, the first hybridisation based on lower and upper

bounds of numeric ranges was proposed as a rough-genetic algorithm in [126].

Others include: genetic encoding in order to generate rough set representations

of clusters [129], and a hybrid decision support system for cancer detection [152].

Genetic programming has also been allied with rough sets for bankruptcy classi-

fication [135].

RST has also been hybridised with classical statistical methods such as Princi-

pal Component Analysis (PCA) [220], Bayesian methods [219], or wavelets [229].

Such integration has resulted in classifiers of better quality than those constructed

through the use of RST alone [22].

In terms of hybridising rough set extensions, a number of approaches have been

proposed such as fuzzy-rough VPRS [190], dominance based rough sets and VPRS

[81]. An interesting idea that has not yet been explored is a VPRS and TRSM

hybrid. This would allow the flexibility to deal with real-valued data inherited

from the TRSM approach and the noise-tolerance of the VPRS method. This

would mean the specification of two parameters however, which would involve

significant experimentation in order to establish ideal values for a given set of

data.

2.5.2 Fuzzy-Rough Sets

Fuzzy set theory (FST) was first proposed nearly forty four years ago [254] and

RST will celebrate its twenty-eighth anniversary this year [172]. FST and RST

complement one another [52] and much advantage has been taken of this fact.

This is reflected in the breadth and depth of research which has been undertaken

in this particular hybridisation of rough sets.

Note that fuzzy-rough sets should not be confused with existing approaches

that directly combine the use of RST for dimensionality reduction and that of FST

for knowledge modeling e.g [203]. Whilst successful in real-world applications, the

underlying ideas of such work are straightforward and hence are omitted from the

discussions below.

There have been two main lines of thought in the hybridisation of fuzzy and

rough sets [128], the constructive approach and the axiomatic approach. A general

54



2.5 Combining Rough Sets with Other Techniques

framework for the study of fuzzy-rough sets from both of these viewpoints is

presented in [251]. For the constructive approach, generalised lower and upper

approximations are defined based on fuzzy relations. Initially, these were fuzzy

similarity/equivalence relations [52] but have since been extended to arbitrary

fuzzy relations [251]. The axiomatic approach is primarily for the study of the

mathematical properties of fuzzy-rough sets [240].

In [52], the authors define the fuzzy P -lower and P -upper approximations as

follows:

µPX(Fi) = inf
x

max{1− µFi
(x), µX(x)} ∀i (2.56)

µPX(Fi) = sup
x

max{µFi
(x), µX(x)} ∀i (2.57)

where Fi is a fuzzy equivalence class and X is the (fuzzy) concept to be approxi-

mated. The tuple 〈PX,PX〉 is known as a fuzzy-rough set. Also in literature are

definitions for rough-fuzzy sets [51], [214], which can be seen as a particular case

of fuzzy-rough sets. A rough-fuzzy set is a generalisation of a rough set, derived

from the approximation of a fuzzy set in a crisp approximation space. In [249] it

is argued that, in order to remain consistent, the approximation of a crisp set in a

fuzzy approximation space should be called a fuzzy-rough set, and the approxima-

tion of a fuzzy set in a crisp approximation space should be called a rough-fuzzy

set, thus ensuring that both models are complementary. In this framework, the

approximation of a fuzzy set in a fuzzy approximation space is considered to be a

more general model, unifying both theories. However, most researchers consider

the traditional definition of fuzzy-rough sets in [52] as standard. The specific use

of min and max operators in the above definitions is expanded in [186], where a

wide range of fuzzy-rough sets are constructed, with each member represented by

a particular implicator and t-norm. The properties of three typical implicators are

investigated. Further investigations in this area can also be found in [44], [224],

[241], [251].

In [17], [157], an axiomatic approach is taken, but restricted to fuzzy T-

similarity relations (and hence fuzzy T-rough sets). The properties of generalised

fuzzy-rough sets are investigated in [239], and a pair of dual generalised fuzzy

approximation operators are defined based on arbitrary fuzzy relations. The ap-

proach presented in [150] introduces definitions for generalised fuzzy lower and

upper approximation operators determined by a residual implication. Assump-

tions are found that allow a given fuzzy set-theoretic operator to represent a lower

or upper approximation from a fuzzy relation. Different types of fuzzy relations

produce different classes of fuzzy-rough set algebras.
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The work in [187] generalises the fuzzy-rough set concept through the use of

residuated lattices. An arbitrary residuated lattice is used as a basic algebraic

structure, and several classes of lattice-valued fuzzy-rough sets (a fuzzy-rough hy-

bridisation of L-fuzzy sets)and their properties are investigated. In [28], a complete

completely distributive (CCD) lattice is selected as the foundation for defining

lower and upper approximations in an attempt to provide a unified framework for

rough set generalisations. It is demonstrated that the existing fuzzy-rough sets

are special cases of the approximations on a CCD lattice for T -similarity rela-

tions. The relationships between fuzzy-rough set models and fuzzy topologies on

a finite universe have been investigated. The first such research was reported in

[17], where it was proved that the lower and upper approximation operators were

fuzzy interior and closure operators respectively for fuzzy T -similarity relations.

The work carried out in [251] investigated this for arbitrary fuzzy relations. In

[183], [242] it was shown that a pair of dual fuzzy rough approximation operators

can induce a topological space if and only if the fuzzy relation is reflexive and

transitive. The fuzzy interior (closure) operator, is also examined.

In addition to the previous approaches to fuzzy-rough hybridisation, other gen-

eralisations are possible. One of the first attempts at hybridising the two theories

is reported in [243], where rough sets are expressed by a fuzzy membership func-

tion to represent the negative, boundary and positive regions. All objects in the

positive region have a membership of one and those belonging to the boundary

region have a membership of 0.5; whilst those of the negative region have a mem-

bership of 0 as they do not belong to the set of interest. Thus, in adopting this

approach a rough set can be defined using FST. This also means that the rough set

operators of union and intersection are modified accordingly. In [177] the author

attempts to address the problem where the fuzzy set representation of a rough set

may be too-precise, such that a concept is described exactly once its membership

function has been defined. The solution to this is to employ an approximation

of a family of fuzzy sets which the author terms a shadowed set. Shadowed sets

do not use exact membership values but instead use truth values and a zone of

uncertainty. A similar approach to that of [243] is applied where elements may

belong to a set with certainty (membership value 1), possibility (unit interval), or

not belong (membership value 0). These ideas of course correspond to the rough

set positive, boundary and negative regions respectively.

Another approach is reported in [31] where the rough set lower approximation

is employed, and elements are allowed to belong to this with certainty, however

the boundary region or uncertain region is fuzzified and membership values of

elements are expressed in terms of a fuzzy membership function. The authors of

[190] apply a fuzzy-rough sets extension to the VPRS model described in Section
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2.4.2 in an attempt to capitalise on the advantages of both rough sets and fuzzy

sets within the VPRS framework. However, the VQRS approach of [36] as detailed

in Section 2.4.4 also takes advantage of these in a single approach as it employs

fuzzy quantifiers and extends the VPRS approach simultaneously.

The interest in the hybridisation of fuzzy sets with rough sets is borne out by

the level of publication in this area. The marriage of these approaches has resulted

in methods which take advantage of the ability of rough sets to model vagueness

and that of fuzzy sets to model uncertainty. In this sense both approaches are

complimentary, furthermore when hybridised as described in this section no tun-

able parameters are required and only the data is used. There is much scope for

further research in relation to the development of fuzzy-rough sets. In particular

there is much interest in the area of type-2 fuzzy sets [255] at the present moment.

However, a hybridisation with rough sets has not been proposed as yet. Addition-

ally, there are a number of aspects in respect of fuzzy measures with application

to fuzzy-rough sets which remain unexplored, and these may offer some new and

interesting research areas.

2.6 Applications

In this section a number of theoretical and real world application areas of RST,

rough set extensions, and fuzzy-rough set theory are examined. Note that these

examples are for representative purposes and do not serve to demonstrate the

whole spectrum of possible applicable areas. The sheer number of applications

and amount of work that has been published in the area means that it would

be impossible to cover all areas in sufficient depth. Therefore, in this chapter

three important areas of machine learning have been chosen for close examination;

classification, clustering, and feature selection. A review of each of these areas is

documented in the following sections. In each section a further subsection is

devoted to an example real-world application.

2.6.1 Classification

Classification concerns any problem in which a decision is taken or a forecast is

made on the basis of available knowledge or information. A classification algorithm

allows repeated forecasts to be made with regard to accumulated knowledge for

new situations. Such algorithms can then be applied in order to classify previously

unseen objects. Each new object can be assigned to a predefined set of classes,

based on the observed values of suitably chosen attributes or features.

It is interesting to note that, despite the level of interest in rough set classi-
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fication which is borne out by the number of publications in the area, no com-

prehensive survey of rough classification has been published to date. Perhaps

this is due in part to the fact that RST is often married with other approaches

when applied to the classification problem. Nevertheless, a number of RST-based

classifiers have been proposed. The first application of RST to the classification

problem is demonstrated in [173]. The authors of [176], [207], and [212] discuss

the fundamentals of rough set rule induction for classification, but no algorithms

are proposed.

The earliest RST-based classification algorithm is described in [174]. Later

examples were proposed in [9], and [46], although the latter focused on database

mining. Much use has been made of rough classifiers which were integrated into

the learning from examples based on rough sets (LERS) framework [63], [64]. In

these methods, descriptions of concepts are constructed through the calculation

of all reducts for a given dataset, by means of the decision rules. In [8], it is

argued that these methods are not appropriate for classifying unseen data, thus

a number of rough set classification methods are proposed which address this

problem. Additionally, some new methods for rule induction from reducts, as

well as ways of dealing with real-valued data discretisation are also described

(also within the LERS framework). Similar aspects are also examined in [65] and

[66]. Other research such as [215] also concentrates on addressing some of the

shortcomings of the use of rough sets for rule induction as an aid to classification.

Rough set extensions have also been employed for classification. In [264], the

author discusses the use of VPRS for building decision tables from data models.

Others which also employ VPRS include [61] and [259] for email spam filtering,

and general classification [256]. In [231] the authors have combined VPRS with

fuzzy clustering techniques to discover rules in process planning. In the same way

that VPRS has been applied to the classification task, so too has the tolerance

rough set model (TRSM), and a number of papers have been published in this area.

Applications include handwriting classification [104], web document classification

[250], geographical land classification [253]. Although a relatively new approach,

VQRS has also been applied to the classification of mammographic data (see

Section 2.6 for further detail) [141]. The DRSA has also been employed for rule

induction [200], and classification [111] albeit with application to ordinal data.

Initial attempts to use fuzzy-rough sets for classification were presented in

[193], which adopted a nearest neighbour (NN) type classifier approach. This ap-

proach attempted to handle both the fuzzy uncertainty due to overlapping classes

and the rough uncertainty caused by lack of informative features. A fuzzy-rough

ownership function (a value which is influenced by all training objects) was em-

ployed in an effort to capture both of the aforementioned aspects. Additionally,
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this also allows a possibilistic class membership assignment. The ownership func-

tion is influenced by all of the objects in the training set, this in turn means

that the number of neighbours does not need to be defined. Other parameters

must however be specified for successful operation. In [234], the authors extend

the approach but divide the task of classification into four parts. Firstly, using

leave-one-out type of strategy the fuzzy-rough ownership value is calculated for

each training object for all classes. The ownership value indicates the degree to

which other objects support each individual object. Inconsistencies are then fil-

tered from the training data - a high fuzzy-rough ownership value indicates a class

other than a known class. Following this, representative points are selected from

the processed training data and fuzzy-rough ownership values are refreshed based

on mountain clustering. Then, finally test objects are classified using only the

representative training data from the previous step using the algorithm proposed

in [193].

Other NN classification methods which employ fuzzy-rough hybridisation in-

clude [15] which integrates rough uncertainty into the fuzzy kNN classifier using

the definitions of fuzzy upper and lower approximations as defined in [52]. The

membership of a test object to the upper and lower approximations for every class

is determined by k nearest neighbours. Also, a similar approach is used in [141],

once again the fuzzy-rough upper and lower approximations are used to determine

the membership of test objects to a particular class.

Little research has taken place in the area of fuzzy-rough decision tree in-

duction, although there is much interest in fuzzy decision trees because of their

ability to model vagueness. The work on fuzzy-rough decision trees outlined in

[14] employs the fuzzy-rough ownership measure from [193] which is used to define

a ‘fuzzy-roughness’ measure and fuzzy-rough entropy measure. The node splitting

criterion is determined using the fuzzy-rough entropy measure. In [98] a fuzzy

decision tree algorithm based on the well-known fuzzy ID3 approach is described.

In this case, fuzzy-rough dependency is employed to decide when node splitting

should occur. An approach for rule induction using fuzzy rough sets is proposed

in [80] for generating certain and possible rulesets from hierarchical data.

2.6.1.1 Image Data Analysis for Mammographic Risk Assessment

Breast cancer is a major health issue, and the most common amongst women in

the EU. It is estimated that 8–13% of all women will develop breast cancer at

some point during their lives. Furthermore, in the EU and US, breast cancer

is attributed as the leading cause of death of women in their 40s. Although in-

creased incidence of breast cancer has been recorded, so too has the level of early
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detection through screening in order to assess the risk of developing cancer using

mammographic imaging and expert opinion. However, even expert radiologists

can sometimes fail to detect a significant proportion of mammographic abnormal-

ities. In addition, a large number of detected abnormalities are usually discovered

to be benign following medical investigation. Existing mammographic Computer

Aided Diagnosis (CAD) systems concentrate on the detection and classification

of mammographic abnormalities. As breast tissue density increases however, the

effectiveness of such systems in detecting mammographic abnormalities is reduced

significantly. Also, it is known that there is a strong correlation between mammo-

graphic breast tissue density and the risk of development of breast cancer. Auto-

matic classification which has the ability to consider tissue density when searching

for mammographic abnormalities is therefore highly desirable.

The approach in [141] describes the application of a number of rough and

fuzzy-rough approaches for dealing with mammographic risk assessment data.

The objective of this analysis is to determine the risk of developing cancer by

classifying each woman or mammogram according to a consensus class which has

been agreed upon by three expert radiologists. The actual approach employs a

fuzzy-rough framework. There are three steps: feature extraction to extract the

features from the raw image data, feature selection which removes noisy irrelevant

or redundant features from those extracted features, and classification to classify

the mammograms into one of four predefined classes. The work here focuses on a

brief review of the fuzzy-rough sets based classification step.

Efficient, and in particular accurate classification of mammographic imaging is

of high importance. Any improvement in accuracy for automatic mammographic

classification systems can result in a reduction in the amount of required expert

analysis thus improving the time taken to perform breast abnormality risk as-

sessment. Also, by reducing inter-expert variation the resulting automatic risk

assessments can be more accurate. The data in mammographic imaging is real-

valued and can also be noisy. Clearly, any classifier employed must therefore have

the ability to deal with such data. Discrete methods require that the real-valued

data is discretised and thus may result in significant information loss, however the

methods described here require no discretisation, and are based on fuzzy-rough

set theory which uses only the information contained within the data.

The fuzzy-rough classifier shown in [141] and [92] is based on the nearest neigh-

bour (NN) classifier technique. It works on the basic principle that the lower and

the upper approximations of a decision class, calculated by means of the nearest

neighbours of a test object y, provides good clues in order to predict the mem-

bership of the test object to that class. The membership of a test object y to

each (crisp or fuzzy) decision class is determined via the calculation of the fuzzy
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lower and upper approximation. The algorithm outputs the decision class with

the resulting best fuzzy lower and upper approximation memberships. The com-

plexity of the algorithm is O(|C| · (2|U|)). Note that, although a value for the

parameter k that is employed in the traditional kNN method is not required it

can be incorporated into the algorithm.

The FRNN approach is applied to two mammographic imaging datasets, which

have been labeled with the consensus opinion of 3 experts. The FRNN algorithm

was compared against several other algorithms including fuzzy nearest neighbour

[103], a fuzzy-rough nearest neighbour FRNN-O [194] (based on the measure in

[193]), and an approach based of VQRS [36] - VQNN vaguely quantified nearest

neighbour. The classification accuracies are obtained using 10 x 10-fold cross

validation. The FRNN approach performs well compared with the other classifiers

achieving accuracies of 91.2% compared with 75.12% for FNN, 82.1% for FRNN-

O, and 72% for VQNN for the first dataset. Values for the second dataset also

show that FRNN performed better than all of the other approaches [141].

2.6.2 Clustering

The clustering task is the unsupervised classification of data objects (patterns ob-

servations, data vectors) into groups or clusters. Clustering has been addressed in

many contexts and by researchers of many different disciplines, and this reflects

its applicability and popularity as an important step in data analysis. Since both

cluster analysis and RST form data groups, it is easy to see the conceptual sim-

ilarity between the upper and lower approximation constructs of rough sets, and

formation of data clusters or groups. This similarity has meant that the rough

sets lend themselves easily to the clustering problem. A further advantage that

RST offers is that it may also provide scope for the discovery of ‘possible’ data

clusterings through the use of the information contained in the rough set boundary

region.

Much of the interest in rough clustering has been relatively recent [76], [77],

[180]. The application of rough sets to clustering is not limited to the use of rough

indiscernibility [77]. For instance a rough set version of the classical k-means

algorithm is proposed in [129]. Similarly in [127], Kohonen SOM (self-organising-

maps) were used to generate intervals of clusters based on RST. The authors

of [134], propose a rough set clustering algorithm by combining entropy-based

thresholding with rough sets

The use of VPRS within the framework of the fuzzy c-means (FCM) algorithm

[13], [54] is documented in [7] where VPRS is employed to assign weights to each

of the features. The basis for the approach is VPRS but an extension is proposed
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for the variable precision fuzzy-rough case. This is demonstrated by applying it

to image analysis. VPRS is also used along with fuzzy-rough sets in [261] as part

of a fault diagnosis system. As an aid to fuzzy clustering in the general case

in [235], VPRS is employed for generating rules from the fuzzy conditional and

decision constructs of the fuzzy clustering algorithm. Although not as popular

as traditional RST or VPRS, TRSM has been applied to the clustering problem

in [101], and [78], where the authors employ an algorithm to cluster documents.

Later work [161], also used TRSM in a similar manner for clustering web search

results. The traditional rough set approach is extended in [114] by using a toler-

ance relation to form initial clusters, subsequent clusters are then formed using a

constrained similarity relation which is also used as a merging criteria to combine

initially identified clusters.

There have been few applications of fuzzy-rough set theory to clustering. Most

approaches such as [235] (mentioned previously), and [258] have tended to use both

FST and RST but in isolation rather than in terms of fuzzy-rough set theory.

Rough-fuzzy sets are employed in [179] for texture separation in imaging, and in

[169] the author also describes the application of rough-fuzzy sets for clustering and

employs an image segmentation example to demonstrate this. In [31], the authors

propose a fuzzy-rough extension of the well-known FCM clustering algorithm and

apply it to network security intrusion detection. Another fuzzy-rough approach

which is also based on FCM is proposed in [82]. It remains to be seen whether

further fuzzy-rough approaches for clustering will be proposed, although it would

seem that fuzzy-rough sets are well-suited for such problems.

2.6.2.1 Document Clustering

The clustering of documents is a difficult task for a number of reasons, mainly

due to the textual characteristics and unstructured format that every individual

document takes. In [79], the authors describe a method to cluster documents using

tolerance rough sets. Two algorithms are described: one for hierarchical clustering

and another for non-hierarchical clustering.

The approach can be broken down into two stages, the generation of tolerance

classes, and the manipulation and generation of the clusters. In the first step

shown below in Fig. 2.17, a set of terms (words) is extracted from each document,

these are then assigned weights according to occurrence. Each individual term

(ti) is assigned a weight (wi) which reflects its importance in the document; where

i = 1, 2, 3, ...n with n being the number of extracted terms. A document is denoted

dj = (t1, w1j; t2, w2j . . . ; tn, wnj) and wiq ∈ [0, 1]. The weights are calculated by

means of a frequency function, such that terms that occur often have a lower
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weight than those that rarely occur. This ensures that terms that occur in all

documents have a zero weight. Each document is represented by a predefined

number (R) of its highest weighted terms. All of the terms for all documents

denoted T are used in a co-occurrence matrix to determine how terms are related

to one another. Using an uncertainty function derived from a tolerance relation,

this matrix can then be used to generate tolerance classes of terms in T. It is

at this point that the tolerance value (τ) must be specified for the uncertainty

function.

Figure 2.17: Document clustering using tolerance rough sets - stage 1

In the second stage of the approach shown in Fig. 2.18, a concept is defined

which is used for the representation of clusters. This representation is what the

authors term polythetic and must fulfill three properties which relate to the docu-

ments under consideration and the terms (words) in each document. Membership

of each document to a cluster is defined in terms of a Bayesian minimum error

rate and can be used to build each of the clusters. Cluster similarity is carried

out in the usual manner, by employing a distance metric. It should be noted that

clusters are built using only the upper approximation of the tolerance rough set

calculated from a subset of terms X ⊆ T .

A number of experiments are conducted using both hierarchical and non-
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Figure 2.18: Document clustering using tolerance rough sets - stage 2

hierarchical clustering algorithms for both general clustering and information re-

trieval. In particular, the TRSM-based approach is compared with a vector space

model (VSM) approach to clustering for information retrieval. The TRSM-based

method demonstrates that it can equal or outperform the VSM method. This

however requires that a range of tolerance values are specified for the uncertainty

function.

It is interesting to note, there are a number of areas of this approach that

could be covered by using fuzzy-rough set theory, thus eliminating the need for

the subjective specification of not only the thresholding value of the TRSM but

also of a number of other thresholds relating to the number of the terms, R that

should be considered for each document.

2.6.3 Feature Selection

Feature selection (FS), which may also be referred to as attribute selection or

semantics-preserving attribute reduction, is a term used to describe the problem

of selecting input attributes that are most predictive of a given outcome. The

FS problem is pervasive and can be encountered in many areas of machine learn-

ing, pattern recognition and signal processing. In contrast to other methods for

reduction of dimensionality, the feature selection approach preserves the original

semantics or meaning of the features following reduction. FS has been applied to

tasks that involve datasets which contain very large numbers of features (in the

order of tens of thousands) [32]. Without FS, such problems would prove to be

computationally intractable.

As RST was originally proposed for supervised learning, it is no surprise there-

fore that one of the many successful applications of rough set theory has been in

the area of FS. The basic tenet of RST which means that only the supplied data is

employed for data reduction (with no additional information) has many benefits
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in FS. Most other methods require at least some supplementary knowledge. The

main disadvantage of rough set-based feature selection in the literature is the re-

strictive requirement for all data to be crisp, and hence the motivation to extend

the rough set model as described in Section 2.4.

There are two main approaches when searching for rough set reducts: the

dependency degree approach, and the discernibility matrix approach. Both ap-

proaches have been employed for rough set-based FS, although the discernibility

matrix approach is computationally expensive for large datasets [98], but some

constructs [175] have been proposed to alleviate this problem.

Amongst the earliest rough set-based dependency degree approaches to FS is

the Preset algorithm [154], which uses RST to rank features heuristically, within

the assumption of a noise free binary domain. In [262], a rough set heuristic filter-

based approach is presented. The algorithm starts out by calculating the core

of the dataset (attributes that cannot be removed without introducing inconsis-

tency) and then it incrementally adds attributes based on a heuristic measure.

A threshold value is required as a stopping criterion to determine when a reduct

candidate is sufficiently ‘close’ to being a reduct. In [32], the authors also present a

filter-based method called rough set attribute reduction (RSAR), based on rough

set dependency degree. It uses a greedy forward selection technique (starting with

an empty subset) that incrementally adds features that result in an increase in

the dependency value. Other approaches have also utilised this approach but used

other measures such as entropy [94] and a boundary region measure [148] to search

for reducts. In terms of the discernibility matrix approach [206], a number of tech-

niques have also been proposed, and algorithms such as that described in [163]

adopt this technique to search for reducts. Others also include [166] with specific

application to medical problem domains, and [232] which attempts to address the

computational complexity associated with discernibility matrices.

Although not as popular as the traditional rough set approach, VPRS has also

been applied to the FS problem. In [223] the authors compare VPRS and tradi-

tional rough set based FS techniques. A fault-detection process which uses VPRS

as a FS step is also described in [122]. The main disadvantage with approaches

like VPRS is the specification of additional tunable parameters, in this case β. As

mentioned previously, the optimum value can be obtained by repeated experimen-

tation but this may take considerable time depending on the nature of the data

being examined.

Applying rough set-based feature selection to domains where the data is real-

valued has previously meant that the data must be discretised beforehand. Toler-

ance rough sets have provided a solution to this problem however, and in [98] the

authors demonstrate how this can be achieved. Unfortunately, the tolerance rough
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set approach requires a thresholding value which is specified by the user and can

only be automatically approximated by repeated experimentation. Human specifi-

cation of such a threshold however, conflicts with the rough set ideology that only

the information in the data should be employed. As mentioned previously, this

has resulted in the development of techniques which extend the rough set concepts

of the positive region and dependency function through the use of fuzzy sets re-

sulting in a number of fuzzy-rough set approaches [85, 93, 94, 97, 98, 99, 204, 227].

A greedy hill-climbing search mechanism is then employed to search for subsets of

features and a new fuzzy dependency measure is employed as a stopping criteria.

In [83] an approach that employs information measures for fuzzy indiscernibility

relations is presented for the computation of feature importance. Reducts are

then calculated by employing a greedy selection algorithm. Comprehensive cov-

erage is given to fuzzy-rough FS approaches in [98], which explores all aspects of

generation of reducts, and selection and search methods.

2.6.3.1 Feature Selection for Gene Expression Data

The application of techniques such as machine learning, data mining [225], and

pattern recognition [167], to areas of medicine and bioinformatics has enjoyed

much attention in recent years, and rough sets and their extensions are no excep-

tion. One particular area within this field, is the manipulation of gene expression

data. Due to the high dimensionality of the sample data, the search space is expo-

nentially large, thus any techniques which are applied to this type of data must be

robust. Rough set techniques are therefore an ideal candidate for the examination

of such data as demonstrated in [32].

Rough set FS is employed in [156] as a dimensionality reduction step and ap-

plied to a number of gene expression datasets. The FS step generates a number

of reducts which are then used to reduce the data before it is classified using a

nearest-neighbour approach. The approach can be described as a series of individ-

ual steps as shown in Fig. 2.19. The first step involves discretising the data such

that it can be used with the rough set approach. This discretisation step involves

the search for partitions for each attribute domain. These partitions form new

intervals to which objects can be assigned. An Bayesian equal-width approach is

used in this case, which handles outliers in a sensible fashion, but assumes uniform

distribution of the data.

Having discretised the data, the FS step is then implemented, using a heuristic

search described below. The approach starts out with an empty set, to which those

attributes that have a rough set dependency (γ > 0) are added incrementally.

This generates a set of attributes from which reducts can later be generated. A
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Figure 2.19: Feature selection for gene expression data

thresholding value is also specified at this point termed λ, this value is used to

limit the cardinality of all generated reducts. All possible reducts of cardinality λ

are then generated, only those of γ =1 are retained. A pruning of all super sets

of reducts is then carried out, and the data is reduced prior to the next step.

The next stage is data reduction where all of the reducts are used to minimise

the data by selecting the each of the features that appear in a given reduct from

the data. Each reduced dataset is then classified. The classifier used here is k

nearest neighbours (kNN) [103], which is an object-based classifier learner.

The above process is applied to four publically available datasets relating to

various types of cancer. Various values of λ are used to generate the reducts for

each of the datasets which are then classified. For the kNN classifier 3, 5 and 7,

are selected for values of k, i.e the number of neighbours considered. Discovery

of an optimal value for k may take considerable time however. A classification

accuracy of 100% for all datasets is achieved, for some but not all of the reducts

generated. The process of generating such large numbers of reducts however is

computationally expensive. The feature selection approach is compared with two

other rough set approaches [202] and [262] which also perform well, however the
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authors argue that their method performs better on the basis of classification

results.

Again, as with the application example in Section 2.6.2.1, what becomes appar-

ent is the number of tunable parameters, despite very high classification accuracies

achieved. The authors mention a parameter for the discretisation of the data, an-

other for the feature selection approach, and of course k for the classification step.

Note that, if a hybrid fuzzy-rough approach rather than the current rough set

approach were to be employed the discretisation step could be eliminated com-

pletely. This would also ensure that any potential loss of information would not

occur due to the discretision step.

2.7 Summary

This chapter has in the first case, provided a review of the increasingly impor-

tant problem of dimensionality reduction (DR). As the amount of available data

increases, so too does the need for effective dimensionality reduction. Indeed,

in many areas such as machine learning and pattern recognition, it has become

unavoidable due to the sheer size of data. Although DR is usually integral to a

data preprocessing subsystem, it should not suffer from the same symptoms that

learning algorithms do in the presence of large dimensionality. That is to say, it

should be able to find minimal or close-to-minimal subsets as discussed in Sections

2.1.2.1 and 2.3.3.

Broadly speaking there are two types of DR, transformation-based, and selection-

based. The former is only a valid solution where there is no need to be able to

refer to the underlying data, as the original features are transformed and hence

the semantics of the data are destroyed. However, quite often DR is employed

to improve the readability of the data. The selection based approaches such as

feature selection avoid this transformation and thus perform DR which preserves

the semantics of the underlying data, making the reduced data more transparent

to human scrutiny. A particular example of this is rule induction, where rules

induced from reduced data may need the same transparency as those from the

unreduced data. Feature selection is therefore an important, and valuable tech-

nique for DR as it facilitates the reduction of the data to fewer dimensions without

the need for transformation.

Rough set theory was originally introduced as an important approach for super-

vised learning. The significance of RST is reflected in both the level of publications

in the area, and the wide number of real-world application problems for which it

has been employed. It is no surprise therefore that it has found much success in

the area of semantics-preserving DR, or feature selection. This is due largely to
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the fact that RST requires no thresholding information and operates only on the

data. Furthermore, RST is computationally efficient and only involves simple set

operations.

One of the primary disadvantages of RST however, is its inability to deal with

real-valued data. This has led to a number of extensions which attempt to address

this deficiency. Amongst these are the tolerance rough set approach, fuzzy rough

sets, variable precision rough sets, and vaguely quantified rough sets. The utility

and applicability of such approaches and others are examined in depth through

the use of real-world examples.

A particular point which is apparent from the careful examination of rough

set theory is that any extensions that have been proposed tend to be focused in

two particular areas; modification of the subset operator, and modification of the

equivalence relation. There is however a third area of RST which is often over-

looked, and holds much potential without the need to modify the basic underlying

rough set model; that of the rough set boundary region. This has provided the

motivation for the approaches which follow in Chapter 3 and Chapter 4.
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Chapter 3

Exploring the Boundary Region:

Rough Sets

Most existing rough set-based FS approaches [70], [75], [120], [121], [154], [165],

[221], [262] rely on the information gathered from the lower approximation of a set

to minimise data. These approaches have been adopted as the certainty that is

embodied in the lower approximation is associated with greater importance in sci-

entific analysis. Although successful, these lower approximation based approaches

ignore the information that is contained in the boundary region, or region of un-

certainty. Whilst there are also some existing RST approaches which consider the

boundary region information [47], [87], they adopt an approach which examines

the upper approximation as a whole rather than examining the lower approxima-

tion and boundary region as conceptually separate entities. This chapter presents

a method which is presented in [148], and [149], and examines both the informa-

tion in the lower approximation and the information contained in the boundary

region for the selection of feature subsets. This can result in the selection of sub-

sets which are smaller than those selected using the information gathered from

the lower approximation alone. If the boundary region is empty however the ap-

proach will select subsets which are comparable to those of the traditional rough

set approach.

There are a number of extensions to the rough set model. However two ap-

proaches of note are variable precision rough sets (VPRS) [263] and the tolerance

rough sets (TRSM) [209]. These particular extensions have been covered in detail

in Chapter 2. They are considered important in the context of this chapter because

they extend the rough set approach and utilise the information contained in the

boundary region - albeit indirectly. The disadvantages of such approaches how-

ever lie in the specification of an additional subjective thresholding value which is

necessary for operation.
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As discussed previously, almost all techniques for rough set attribute reduction

adopt an approach to minimisation of the data that examines only the information

contained within the lower approximation of a set. Currently, there are no mech-

anisms in rough set based methods to deal with the uncertainty of the boundary

region. Any useful information that may be contained in the boundary region is

therefore lost when only the lower approximation is employed for data minimisa-

tion.

The approach described here uses both the information contained in the lower

approximation and the information contained in the boundary region to search for

reducts. The DMRSAR [148], [149] method uses a distance measure to determine

the proximity of objects in the boundary region to those in the lower approximation

and assigns a significance value to these distances collectively.

3.1 Distance Metric and Mean Positive Region

The distance metric attempts to qualify the objects in the boundary region of RST

with regard to their proximity to the lower approximation. From an intuitive

point-of-view, the closer the proximity of an object in the boundary region to

objects of the lower approximation, the greater the likelihood that it actually

belongs to the set of interest. The central motivation of this approach is illustrated

in Fig. 3.1. The granularity of RST enforces a hard or strict perimeter for the

lower approximation, this means that objects that may in actuality belong to

the set which is being approximated are relegated to the region of uncertainty.

Note that this diagram serves only to convey the ideas for the motivation of the

approach and is not an attempt to accurately portray all of the concepts of RST.

For the method detailed here, all of the distances of objects in the boundary region

are calculated. From this, the significance value for a subset can be obtained.

Since calculating the margin of the lower approximation for an n-dimensional

space would involve considerable computational effort, a more pragmatic solution

is employed - the mean of all object attribute values in the positive region (POSP )

or union of lower approximations is calculated. This can be defined as follows:

POSPMEAN
=

{

∑

o∈PX a(o)

|POSP X|
: ∀a ∈ P

}

(3.1)

Using this definition of the mean of the P positive region, the distance function

for the proximity of objects in the boundary region from the P positive region mean

can be defined by

δP (POSPMEAN
, y), y ∈ BNDP (Q) (3.2)

71



Exploring the Boundary Region: Rough Sets

Figure 3.1: Objects of the lower approximation and boundary region

Clearly this definition only holds true if either POSPMEAN
or BNDP (Q) is non-

empty.

The exact distance function is not defined here as a number of strategies may

be employed for the calculation of the distance of objects in the boundary. In the

worked example section a Euclidean type distance metric is employed.

In order to measure the quality of the boundary region, a significance value ω

for subset P is calculated by obtaining the sum of all object distances and inverting

it such that:

ωP (Q) =





∑

y∈BNDP (Q)

δP (POSPMEAN
, y)





−1

(3.3)

It is important to note that if POSP (Q) = ∅ there are no certain objects from

which to generate a POSPMEAN
, in which case no distance function can be defined

and hence the significance degree ωP (Q) is set to 0. Also, when BNDP (Q) = ∅

there is no uncertainty about the concept being approximated and so there are

no uncertain objects to measure using the distance function, in which case the

significance degree ωP (Q) is set to its maximum value of 1.

This significance measure is used in conjunction with the rough set dependency

value to gauge the utility of attribute subsets in a similar way to that of the rough

set dependency measure. As one measure only operates on the objects in the lower

approximation and the other only on the objects in the boundary, both entities

are considered separately and then combined to create a new evaluation measure

M :
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3.2 Distance Measure-based Selection Algorithm

MP (Q) =
ωP (Q) + γP (Q)

2
(3.4)

Obviously if γP (Q) = 1, then the concept being approximated has no uncer-

tainty with respect to P and, ωP (Q) = 1. A mean of both values is obtained

as both operate in the range [0,1]. A new feature selection mechanism can be

constructed that uses both the significance value and the rough dependency value

to guide the search for the best feature subset.

An alternative to the mean positive region concept and distance metric is an

approach which uses the Hausdorff metric to calculate the distance between non-

empty sets. It measures the extent to which each point in a set is located relative to

those of another set. The Hausdorff metric has been applied to facial recognition

[192], image processing [196] and FS [181] with much success. It can be defined

as:

h(A,B) = max
a∈A
{min

b∈B
{d(a, b)}} (3.5)

where a and b are points (objects) of sets A and B respectively, and d(a, b) is

any distance metric between these points. A basic implementation of this has

been incorporated into the above framework using Euclidean distance as a metric.

Experimentation using this approach can be seen later. The primary disadvantage

to this approach however is the computational overhead involved in calculating the

distance for all objects in the boundary region from all of the objects in the lower

approximation. For n boundary region objects, this means that O(n2) distance

calculations must be made, unlike the mean positive region which results in O(n)

distance calculations.

3.2 Distance Measure-based Selection Algorithm

The illustration in Fig. 3.2 below shows a rough-set based DMQuickReduct

algorithm based on the previously described rough set-based approach in Fig.

2.14.

DMQuickReduct is similar to the RSAR algorithm but uses a combined

distance and rough-set dependency value of a subset to guide the feature selection

process. If the combined value M of the current reduct candidate is greater than

that of the previous, then this subset is retained and used in the next iteration of

the loop. It is important to point out that the subset is evaluated by examining the

value of M , termination only occurs when the addition of any remaining features

results in the dependency function value (γT ) reaching that of the unreduced

dataset. The value of M is therefore not used as a termination criterion.
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DMQuickReduct(C,D).
C, the set of all conditional features;
D, the set of decision features.

(1) T ← {}, R← {}
(2) do
(3) ∀x ∈ (C−R)
(4) if M(R ∪ {x}) > M(T )
(5) T ← R ∪ {x}
(6) R← T
(7) until γR(D) == γC(D)
(8) return R

Figure 3.2: The rough-set distance metric-based algorithm

The algorithm begins with an empty subset R. The do-until loop works by

examining the combined dependency and significance value of a subset and in-

crementally adding a single conditional feature at a time. For each iteration, a

conditional feature that has not already been evaluated will be temporarily added

to the subset R. The combined measure of the subset currently being examined

(line 6) is then evaluated and compared with that of T (the previous subset). If

the combined measure of the current subset is greater, then the attribute added

(line 5) is retained as part of the new subset candidate T (line 6).

The loop continues to evaluate in the above manner by adding conditional

features, until the dependency value of the current reduct candidate (γR(D)) equals

the consistency of the dataset (1 if the dataset is consistent).

3.3 Computational Complexity

As the DMRSAR algorithm is based on a greedy hill-climbing type of search, the

computational complexity will be similar to that of other approaches which use

this method. However, in addition to the factors which govern the computational

complexity of the rough set QuickReduct algorithm [32] demonstrated in Fig.

2.14, other factors must also be taken into account. In the DMRSAR approach

objects in the boundary region are also considered and this inevitably adds to

the computational overhead. Furthermore, all of those objects in the lower ap-

proximation are also considered when calculating a positive region object for each

concept - where the objects of the positive region are ‘collapsed’ to form a sin-

gle representative object. At this lower level the additional factors that must be

considered (also those that are not employed in the rough set case) include: the

calculation of the collapsed lower approximation mean, the calculation of the up-

74



3.4 A Worked Example

per approximation, and the calculation of the distances of objects in the boundary

from the collapsed lower approximation mean.

From a high level point-of-view the DMQuickreduct has an intuitive com-

plexity of (n2 + n)/2 for a dimensionality of n. This is the number of evaluations

of the dependency function and distance measure performed in the ‘worst case’.

For instance if the feature set consists of {a1, a2}, then the DMQuickreduct

algorithm will make 3 evaluations, one each for {a1} and {a2}, and finally one for

{a1, a2} in the worst case.

In an attempt to compare the complexity of both the RSAR and DMRSAR

approaches from an application viewpoint, a number of artificial datasets were

generated. These ranged in size from 20 to 350 attributes, and 500 to 8000 objects.

The objects in each dataset were created using a simple random number generator

program. This program also included a step which generated the class label for

each object from a given specified range of labels and ensured that the dataset

was consistent - i.e that there were no contradictory object-to-class assignments.

Both FS approaches were applied to these datasets and the time taken to find

a reduct was recorded in each case. The results show that there is only a marginal

increase in runtime for the DMRSAR approach. There is even a decrease in some

cases, but this relates to the fact that DMRSAR found smaller subsets than RSAR

in these particular cases. However, Fig. 3.3 and Fig. 3.4 demonstrate that for

increased dimensionality and numbers of objects there is little overall difference

in runtime between the approaches.

3.4 A Worked Example

To illustrate the operation of the distance measure-based algorithm, a small ex-

ample dataset is considered, containing discrete-valued conditional and decision

attributes. Both crisp and real-valued data is used in the experimentation evalua-

tion in later sections, however crisp data is used in this example to aid explanation

of the approach. Note also for brevity, that only the selection of two subsets is

shown here.

Table 3.1 contains seven objects. It has four crisp-valued conditional attributes

and a single crisp-valued decision attribute.

The fist step is to calculate the lower and upper approximations:

PX = {x|[x]p ⊆ X}
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Figure 3.3: RSAR and DMRSAR runtimes for 50-350 attributes

Object a b c d e
0 1 0 2 2 0
1 0 1 0 0 2
2 1 0 0 1 1
3 1 0 0 2 2
4 1 2 0 0 1
5 1 2 0 2 0
6 0 1 2 0 1

Table 3.1: Example dataset: crisp attributes

PX = {x| [x]P ∩X 6= ∅}

Referring to the example in sec. 2.3.1.1, and considering attribute d these can

be calculated as:

{d} = {{}, {2}, {}}

Similarly for the upper approximation:
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Figure 3.4: RSAR and DMRSAR runtimes for 500-8000 objects

{d} = {{0, 3, 5}, {1, 2, 4, 6}, {0, 1, 3, 4, 6}}

Having calculated the upper and lower approximations for {d}, the positive

and boundary regions can be shown to be:

POS{d}({e}) =
⋃

{∅, {2}} = {2}

BND{d}({e}) =
⋃

{{0, 3, 5}, {2}

{1, 4, 6}, {1, 4, 6}} - {2}

= {0, 1, 3, 4, 5, 6}

The rough-set dependency, the positive region mean, and object distances can

now all be calculated. As mentioned in the previous section there are many dis-

tance metrics which can be applied to measure the distance of the objects in

the boundary from the lower approximation mean. For simplicity, a variation of

Euclidean distance is used in the approach documented here, and this is defined

as:

δP (POSPMEAN
, y) =

√

∑

a∈P

fa(POSPMEAN
, y)2 (3.6)
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where:

fa(POSPMEAN
, y) =







1 ⇐⇒ a(POSPMEAN
) 6= a(y)

0 otherwise

From this, the distances of all of the objects in the boundary region in relation

to the lower approximation mean can now be calculated.

As there is only a single object in the lower approximation, the mean of the

lower approximation does not need to be calculated in this case. The individual

distances of objects in the boundary of {d} can be shown to be:

obj 0
√

fd(POSPMEAN
, 0)2 = 1

obj 1
√

fd(POSPMEAN
, 1)2 = 1

obj 3
√

fd(POSPMEAN
, 3)2 = 1

obj 4
√

fd(POSPMEAN
, 4)2 = 1

obj 5
√

fd(POSPMEAN
, 5)2 = 1

obj 6
√

fd(POSPMEAN
, 6)2 = 1

Where there is more than one object in the lower approximation of the candidate

reduct, calculating the POSPMEAN
object can be achieved in the manner described

in the previous section i.e. examine all of those attribute values for each of the

objects that appear in the lower approximation of the considered subset. For

example considering the subset {a, d}, the lower approximation and boundary

regions are:

POS{a,d}({e}) =
⋃

{∅, {2}, {4}}

BND{a,d}({e}) =
⋃

{{0, 3, 5}, {0, 3, 5}{1, 6}, {1, 6}}

= {0, 1, 3, 5, 6}

The attribute values for {a, d} for objects {2, 4} can be obtained by referring

to Table 3.1:

for {a} : object 2 = ′1′

object 4 = ′1′

for {d} : object 2 = ′1′

object 4 = ′0′

This results in:
POSPMEAN

= {1, 0.5} for {a, d}
These real-valued numbers however, are not meaningful when dealing with

crisp-valued data within the framework of RST (1 is considered as different from

1.1 as it is from 100). The strategy employed to address this problem was to
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examine all of the attribute values for the attribute in question and assign it

a value which appears in that range of values to which it is closest in terms of

magnitude. So as the POSPMEAN
value for the attribute a is an existing value, this

does not need to be considered; the POSPMEAN
value assigned to d however is not

in the range of values taken by the attribute d. Values of 0.5 or less are considered

to be closer to 0, and thus approximated to ′0′, and becomes POSPMEAN
= {1, 0}.

Again by utilisation of Euclidean distance and the new POSPMEAN
, the dis-

tances of objects in the boundary region can be calculated:

ob 0
√

(fa(POSPMEAN
, 0)2 + fd(POSPMEAN

, 0)2) = 1

ob 1
√

(fa(POSPMEAN
, 1)2 + fd(POSPMEAN

, 1)2) = 1

ob 3
√

(fa(POSPMEAN
, 3)2 + fd(POSPMEAN

, 3)2) = 1

ob 5
√

(fa(POSPMEAN
, 5)2 + fd(POSPMEAN

, 5)2) = 1

ob 6
√

(fa(POSPMEAN
, 6)2 + fd(POSPMEAN

, 6)2) = 1

It is perhaps worth noting at this point, that although a form of Euclidean

distance is used to calculate the distance of the objects from the POSPMEAN
, in

calculating that distance, the difference between two values is always considered

in boolean terms for crisp data. The reason for this is that the values are states

rather than real-valued. This means that if the value for a particular attribute in

the POSPMEAN
happened to be 1 and that of the corresponding attribute value

of an object in the boundary region was 1563, the difference between these two

states would be (1− 1563) = 1. For real–valued data however, this would not be

the case as the values of attributes are real numerical values.

Although the individual distances may be useful in identifying objects that are

similar to those in the lower approximation, they are not individually indicative of

the subset goodness. A method of achieving this measure is to calculate the sum

of all of the distances and invert it, thus giving a significance value to each subset

considered for selection. The significance value is real-valued and has membership

in the range [0,1] for the purpose of dealing with crisp data.

Thus for {a, d}:

ω{a,d}({e}) = (1 + 1 + 1 + 1 + 1)−1 = 0.2

Although the significance measure alone can be used to search for subsets,

the results from some initial investigation indicated that these were not of equal

quality as those returned by RSAR. So the significance value was combined with

the rough set dependency value. This results in a combined metric in which both

dependency and significance have equal participation. This approach is adopted

as it ensures that the subjective specification of a parameter is not required.
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By calculating the change in combined significance and dependency value (M)

when an attribute is removed from the set of considered conditional attributes, a

measure of the goodness of that attribute can be obtained. The greater the change

in M the greater the measure of goodness that attribute has attached to it.

Using the previous examples of the DMRSAR method the values for the com-

bined metric can be calculated for all considered subsets of C using DMRSAR:

M{b}({e}) = 0.0 M{b,d}({e}) = 0.3910

M{c}({e}) = 0.0 M{c,d}({e}) = 0.3026

M{d}({e}) = 0.342 M{a,b,d}({e}) = 0.3026

M{a,d}({e}) = 0.2425 M{b,c,d}({e}) = 1.0

It is obvious from the above example that the search finds a subset in the

manner {d} → {b, d} → {b, c, d}. As {a, d} and {c, d} and also {a, b, d} do not

result in the same increase in combined metric these subsets are ignored. Note

that larger subsets can result in lower values of M .

3.5 Experimental Evaluation - Comparison with

Other Approaches

This section presents the results of experimental studies using both crisp-valued

and real-valued datasets. The DMRSAR method is initially compared with a

rough set-based feature selection method (RSAR) [32], and Principal Component

Analysis (PCA) [48]. Additionally DMRSAR is also compared with fuzzy-rough

set-based FS (FRFS)[93] and a tolerance rough set based feature selection method

[209] for real-valued data. It is important to note that DMRSAR operates on

discretised versions of the real-valued datasets listed. This is related to the fact

that the underlying model for DMRSAR is RST, and as discussed previously RST

is unable to deal with real-valued data. Chapter 4 presents an approach which is

able to overcome this problem.

All of the datasets presented are of the same format as that used in the ex-

ample of the previous section. All data has been obtained from [5] and [158].

A comparison of the RSAR, FRFS, and distance-based dimensionality reduction

techniques is made based on subset size, classification accuracy, and time taken

to discover subsets.
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3.5.1 Classifier Learners

Three classifier learners were employed for the classification of the data, JRip,

J48, and PART [237].

J48 [184] creates decision trees by choosing the most informative features and

recursively partitioning the data into subtables based on their values. Each node in

the tree represents a feature with branches from a node representing the alternative

values this feature can take according to the current subtable. Partitioning stops

when all data items in the subtable have the same classification. A leaf node is

then created, and this classification assigned.

JRip [33] learns propositional rules by repeatedly growing rules and pruning

them. During the growth phase, antecedents are added greedily until a termination

condition is satisfied. Antecedents are then pruned in the next phase subject to a

pruning metric. Once the ruleset is generated, a further optimization is performed

where rules are evaluated and deleted based on their performance on randomized

data.

PART [236] generates rules by means of repeatedly creating partial decision

trees from data. The algorithm adopts a divide-and-conquer strategy such that it

removes instances covered by the current ruleset during processing. Essentially, a

rule is created by building a pruned tree for the current set of instances; the leaf

with the highest coverage is promoted to a rule.

3.5.2 Comparison with RSAR

Results are presented here both in terms of subset size and classification accuracy.

The datasets employed range in size from 47 to 2000 objects and between 7 and 57

attributes. Conditional attributes and decision attributes are crisp and discrete-

valued.

3.5.2.1 Classification Accuracy

The data presented in Table 3.2 shows the average classification accuracy as a per-

centage using each of the previously described classifiers. The classification was

initially performed on the unreduced dataset, followed by the reduced datasets

which were obtained, by using the RSAR [32], and DMRSAR dimensionality re-

duction techniques respectively.

Noting the classification results, the DMRSAR approach performs well and

shows increases in classification accuracies for at least one classifier where there

has been a corresponding decrease in dimensionality (e.g credit, exactly, etc.) No-

tably for the exactly dataset DMRSAR shows an increase of up to 30% whilst si-
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J48 JRip PART
Dataset Unred. RSAR DMRSAR Unred. RSAR DMRSAR Unred. RSAR DMRSAR

credit 72.60 70.10 69.59 71.90 72.0 70.30 68.9 68.3 69.4
derm 95.90 80.32 82.51 92.07 77.32 76.77 95.62 78.76 81.96

derm2 95.25 94.41 94.41 93.85 92.73 93.85 92.73 93.85 93.85
ionosphere 85.21 88.26 87.39 86.60 84.34 86.93 86.08 87.39 89.56

exactly 85.5 69.4 98.1 69.30 68.00 91.30 92.10 67.32 99.20
exactly 2 74.9 74.9 73.1 75.0 75.0 74.8 74.2 74.20 78.20

heart 77.89 80.95 81.29 79.59 76.10 77.55 77.21 78.57 81.63
led 100 100 100 100 100 100 100 100 100

lung 84.38 84.38 78.12 68.75 84.38 68.75 71.88 84.38 78.12
m-of-n 100 100 100 97.3 98.60 98.60 100 100 100
monk3 100 100 100 99.76 99.07 99.07 100 100 100

soybean 91.35 89.84 87.59 88.72 88.72 80.89 92.10 87.96 84.21
tic-tac-toe 92.38 88.10 87.89 98.32 91.10 91.44 95.30 87.68 87.68

vote 93.67 93.67 93.67 95.00 93.67 93.67 91.67 93.67 93.67
wq 71.07 64.87 67.37 70.44 68.71 67.51 67.17 65.25 66.02

Table 3.2: Average classification accuracy – crisp data

multaneously demonstrating a reduction in dimensionality. Even where there has

been a decrease in the case of some classifiers and datasets which are of similar

size to those of RSAR, this decrease is insignificant. Indeed, DMRSAR may some-

times discover subsets of similar size (but contain different features) to RSAR yet

demonstrate an increase in classification accuracy (e.g. derm, ionosphere, heart).

3.5.2.2 Reduct Size and Run Times

Table 3.3 shows a comparison of reduct size, and runtimes for both the RSAR, and

DMRSAR approaches. At the very least DMRSAR can match the performance

of RSAR, and shows that there are gains to be made with crisp-valued data, with

(credit, exactly, exactly2, wq), demonstrating that there is much information con-

tained in the boundary region which if employed for feature selection can improve

the approximation ability of RST.

There is little relative increase in runtimes when comparing RSAR with DMR-

SAR, indeed DMRSAR sometimes demonstrates a reduction in dimensionality

along with a reduction in runtime. Considering also that no runtime optimisation

has been performed for DMRSAR these results are very encouraging. However,

it also suggests that there is some improvement required in terms of the mean

positive region calculation which would result in more accurate measurement of

distances.
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Original number Reduct size Time taken to locate reduct
Dataset of features RSAR DMRSAR RSAR DMRSAR

credit 21 9 8 0.937 1.656
derm 35 7 7 0.625 0.625

derm2 35 10 10 0.578 0.640
ionosphere 35 8 8 0.313 0.313

exactly 14 9 8 0.203 0.172
exactly2 14 13 10 0.328 0.235

heart 14 7 7 0.188 0.188
led 25 12 12 2.168 2.375

lung 57 4 4 0.125 0.132
m-of-n 14 8 7 0.171 0.142
monk3 7 3 3 0.063 0.063

soybean 36 12 12 0.797 0.828
tic-tac-toe 10 8 8 0.188 0.203

vote 17 9 9 0.157 0.172
wq 39 15 14 3.250 2.766

Table 3.3: Comparison of reduct size, dependency value, & run times – crisp Data

3.5.3 Comparison with PCA

PCA [48] is a versatile transformation-based DR technique which projects the

data onto a new coordinate system of reduced dimensions. This process of linear

transformation however also transforms the underlying semantics or meaning of

the data. This results in data that is difficult for humans to interpret, but which

may still provide useful automatic classification of new data. In order to ensure

that the comparison of DMRSAR and PCA is balanced, the same subset sizes

discovered for each dataset are also employed in the analysis of PCA. Each of the

best number of transformed features are also utilised for PCA.

The results in Table 3.4 show that of the 15 datasets only credit, derm, and tic-

tac-toe demonstrate a small decrease in classification accuracy performance when

compared with DMRSAR. These decreases are small in magnitude and DMRSAR

outperforms PCA in all other cases, sometimes significantly.

It should be emphasised however, that while PCA might marginally outperform

DMRSAR in three instances in terms of classification accuracy, the semantics of

the data is irreversibly transformed following dimensionality reduction. This can

have consequences where human interpretability of the data is important, which

is one of the key reasons for performing feature selection tasks to begin with. As

DMRSAR is a feature selection approach as opposed to a feature ranking method,

a predefined threshold is not required; selection is complete as soon as the ter-

mination criterion (rough set dependency) is fulfilled. The rough set dependency

value is integral to the selection process and as such, in contrast to PCA does not
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Dataset (predefined) subset size J48 JRIP PART

credit 8 71.10 71.00 72.00
derm 7 90.40 94.08 93.98

derm2 10 93.29 91.34 93.52
ionosphere 8 81.30 76.95 79.12

exactly 8 67.80 66.70 68.60
exactly2 10 75.90 74.30 75.80

heart 7 77.89 79.58 77.21
led 12 99.38 98.55 99.38

lung 4 71.85 68.75 65.62
m-of-n 7 76.2 73.30 75.30
monk3 3 77.77 76.62 77.31

soybean 12 77.81 72.18 75.18
tic-tac-toe 8 96.18 94.57 95.92

vote 9 89.00 89.00 87.67
wq 14 67.32 67.37 66.41

Table 3.4: Subset size and classification accuracy results for PCA

need to be predefined.

Finally, it is worth noting that PCA is selected for comparison here in recog-

nition of the fact that it is an established approach for dimensionality reduction.

3.5.4 Comparison with FRFS

The real-valued data used in this section comprises of datasets which are small-

to-medium in size, with between 120 and 390 objects per dataset and feature sets

ranging from 5 to 39. The unreduced data classification is illustrated in Fig. 3.5.

The data has been discretised for use with DMRSAR as it is unable to handle

real-valued data. The DMRSAR selected subsets are however employed when

reducing and classifying the original real-valued data.

J48 JRip PART
Dataset Unred. DMRSAR FRFS Unred. DMRSAR FRFS Unred. DMRSAR FRFS

water 2 85.64 86.67 80.26 83.84 85.89 84.36 83.33 84.36 82.56
water 3 79.48 79.74 79.74 81.28 81.79 82.05 77.43 83.33 78.97

cleveland 50.16 54.20 53.87 52.18 53.53 55.55 51.85 51.51 52.18
glass 67.75 69.15 68.22 67.75 69.62 69.62 67.28 72.89 69.62
heart 73.30 77.78 75.55 77.40 82.22 80.00 76.66 81.82 78.51

ionosphere 86.26 86.10 91.30 86.52 84.78 87.82 87.82 86.10 91.30
olitos 57.50 68.33 62.50 70.83 67.33 70.83 67.50 67.50 67.50
wine 93.82 93.25 93.82 92.69 95.86 88.76 94.33 94.94 92.13

Table 3.5: Classification accuracy of unreduced, DMRSAR reduced, and FRFS
reduced, data using JRIP, PART, and J48 classifiers
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3.5.4.1 Classification Accuracy

It is interesting to note that where a decrease in classification accuracy is recorded

for FRFS, with respect to the unreduced data, the same is also true for DMRSAR.

This decrease in classification accuracy is small when comparing both FRFS and

DMRSAR approaches to the unreduced data. Also, when comparing classification

results, where the DMRSAR approach shows a fall in classification accuracy, the

corresponding reduction in dimensionality (shown in Table 3.5) is significantly

better than that of FRFS.

3.5.4.2 Subset Size and Runtimes

Original number of Subset size Time taken to locate subset
Dataset features objects FRFS DMRSAR FRFS DMRSAR

water 2 39 390 11 12 96.58 0.860
water 3 39 390 12 18 158.73 1.266

cleveland 14 297 11 9 24.11 0.219
glass 10 214 9 6 1.61 0.156
heart 14 270 11 10 11.84 0.158

ionosphere 35 230 5 4 0.488 0.512
olitos 26 120 10 8 11.20 0.156
wine 14 178 10 8 1.42 0.125

Table 3.6: Comparison of subset size, dependency value, & run times – FRFS

It is clear also from the runtime figures that DMRSAR runs considerably faster

than FRFS. This primarily, can be attributed to the computational complexity of

FRFS which is related to the time taken in calculating fuzzy-equivalence classes.

Clearly, DMRSAR has a considerable advantage in this respect as the figures in

Table 3.5.4.2 demonstrate.

The advantages of the DMRSAR method in terms of subset size are more

pronounced when compared with FRFS than those for RSAR. This is a strong

indicator that the approach is perhaps more efficient when applied to domains

where the data is real-valued, this is borne out by the marked contrast between the

subset-size results obtained for both approaches. There are however two datasets

where DMRSAR fails to outperform FRFS in terms of subset size – water 2 and

water 3- (see chapter summary for further discussion of this). However, it should

be noted that FRFS is considerably more mature and refined in terms of both

research effort and development.
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3.5.5 Comparison with TRSM

In this section an extension of the rough set model - the tolerance rough set model

(TRSM) [209] is compared with DMRSAR. TRSM employs a similarity relation

to minimise data as opposed to the indiscernibility relation used in classical rough-

sets. This allows a relaxation in the way equivalence classes are considered. This

flexibility allows a blurring of the boundaries of the former rough or crisp equiva-

lence classes and objects may now belong to more than one tolerance class, thus

allowing the consideration of real-valued data. Thus, as for FRFS, real-valued

data is also employed for the evaluation of this approach.

The ideal tolerance threshold value can be obtained by repeated experimenta-

tion for a given dataset. This is where the TRSM diverges from the approaches

to which DMRSAR has been compared up until now, which have all been data-

driven. Further work which examines a non-data-driven feature selection approach

and which utilises the boundary region of the TRSM can be found in [144]. For

the comparison of DMRSAR and TRSM, results are presented in the following

subsections for two different values of tolerance threshold (τ) - 0.90, and 0.95.

3.5.5.1 Subset Size

The subset sizes for both values of tolerance threshold are outlined in Table 3.7.

The results demonstrate that the TRSM method can sometimes outperform both

FRFS and DMRSAR in terms of subset size. However, it should be borne in

mind that the TRSM is not completely data-driven and much experimentation

may be required before optimal results are achieved for each individual dataset.

Additionally, the results also demonstrate that the TRSM method does not per-

form consistently and in some cases returns a larger subset whilst simultaneously

displaying a decrease in classification accuracy.

Original TRSM
number

Dataset of features τ = 0.90 τ = 0.95
water 2 39 8 12
water 3 39 9 12

cleveland 14 11 8
glass 10 3 8
heart 14 12 8

ionosphere 34 6 8
olitos 25 9 6
wine 13 5 5

Table 3.7: Comparison of subset size for each tolerance threshold value
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3.5.5.2 Classification Accuracy

The results presented here show that DMRSAR when compared with TRSM per-

forms favourably. The results obtained for both tolerance values, show that for 4

of the 8 datasets for τ = 0.9, the TRSM performs poorly and for the remaining

4 datasets the results are comparable. When τ = 0.95, DMRSAR outperforms

TRSM in 6 cases. The TRSM however defeats DMRSAR marginally for the iono-

sphere dataset but the corresponding subset is twice the size. The remaining

dataset - wine, shows a classification result that is comparable to DMRSAR.

TRSM
Dataset JRIP PART J48

water 2 85.38 82.30 87.43
water 3 80.00 81.53 76.67

cleveland 54.20 53.87 52.52
glass 65.88 69.15 68.69
heart 79.25 75.19 78.88

ionosphere 85.65 86.52 85.21
olitos 70.00 65.83 61.66
wine 96.06 94.94 96.62

Table 3.8: Classification accuracy using JRIP, PART, and J48 classifiers (τ = 0.90)

TRSM
Dataset JRIP PART J48

water 2 82.82 83.07 82.05
water 3 81.02 80.77 81.02

cleveland 50.54 50.84 54.54
glass 69.62 68.22 69.62
heart 80.38 78.57 81.48

ionosphere 86.08 87.39 87.39
olitos 64.16 66.67 64.16
wine 93.25 95.50 96.02

Table 3.9: Classification accuracy using JRIP, PART, and J48 classifiers (τ = 0.95)

3.5.6 Hausdorff Metric Implementation

The Hausdorff metric approach to distance measurement has been described pre-

viously as an alternative to the mean positive region and Euclidean distance based

method which was used to generate the empirical results shown above.

The DMRSAR approach was augmented with the Hausdorff metric to mea-

sure the distance between the lower approximation and the boundary region was

implemented in order to investigate the performance of this method in terms of
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subset size and runtimes. The results of this investigation are included here in

Table 3.10.

DMRSAR Hausdorff Metric
Dataset Subset Size Subset Size Runtime

credit 8 10 41.64
derm 7 32 19.343

derm2 10 32 18.437
ionosphere 8 28 7.000

exactly 8 13 17.422
exactly2 10 13 19.250

Heart 7 10 1.734
LED 12 13 566.05
lung 4 5 0.484

m-of-n 7 9 22.03
monk3 3 6 0.422

soybean 12 19 23.518
tic-tac-toe 8 8 5.859

vote 9 9 3.205
wq 14 27 57.031

Table 3.10: DMRSAR – Hausdorff metric implementation subset size and runtimes

It is apparent that this particular implementation of the Hausdorff metric fails

to capture the useful information of the boundary region in the same way that the

mean positive region method does. Examining the results for subset size, it can

be seen that the existing DMRSAR approach returns superior results in all cases.

Perhaps even more apparent are the results for the runtimes with the LED dataset

which takes 566s to run. This was to be expected as there are a large number of

distance calculations performed even for small datasets (exponential O(n2)) for n

upper approximation objects).

3.6 Summary

In this chapter, a method for feature selection based on the exploitation of the

rough set boundary region has been presented. An algorithm for finding feature

subsets, based on the new combined dependency and boundary region metric was

introduced, and illustrated by means of a simple example.

Several benchmark datasets were also used to evaluate the utility of the DMR-

SAR algorithm and provide comparisons with other state-of-the-art feature selec-

tion algorithms. The results show that the new metric presented here performs

better than the use of the rough set dependency measure alone, emphasising the

fact that there is much valuable information to be extracted from the rough set
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boundary region. Classification accuracy results have been shown to be very sim-

ilar to those of FRFS, and in some cases the DMRSAR method has even shown

an increase whilst simultaneously demonstrating a reduction in dimensionality.

Where a decrease has been observed in relation to FRFS, it has been small and,

as discussed previously, the actual decrease is statistically insignificant.

Additional comparison with a TRSM based feature selection method has demon-

strated that while this method may sometimes marginally outperform DMRSAR,

it requires an additional thresholding value. In order to determine the optimal

value however, repeated experimentation is required for each dataset. DMRSAR

requires no such thresholding value and relies only on the information in the data.

The work described in this chapter proposed an approach which operated on

crisp or nominal data. This approach is not suitable for use where the feature

values are continuous, as the rigid granular structure cannot handle e.g. a situation

where two feature values may only differ as a result of noise. In order to address

this deficiency, other rough set methods must be considered. The following chapter

explores some extensions that have the ability to handle real-valued data.
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Chapter 4

Exploring the Boundary Region:

Tolerance Rough Sets and

Fuzzy-Rough Sets

In Chapter 3, it was demonstrated how the boundary region of RST can be used to

improve the performance of the rough set model for the task of feature selection.

However, as discussed previously in Chapter 2, the main disadvantage of RST is

its inability to deal with real-valued data. In order to tackle this problem, methods

of discretising the data were employed prior to the application of RST. The use of

such methods can result in information loss however, and a number of extensions

to RST have emerged [52], [209], [263] which have attempted to address this

inability to operate on real-valued domains. Perhaps the most significant of these

are the tolerance rough set model (TRSM) [209] and fuzzy-rough sets (FRS) [52].

Both approaches have the ability to operate effectively on real-valued (and crisp)

data, thus minimising any information loss. This along with the positive results

obtained for the crisp approach provided clear motivation for the formulation of

an extension to DMRSAR.

Two new methods for feature selection are presented here, which are based on

the TRSM and FRS respectively. The first employs a distance metric to examine

the uncertain information contained in the boundary region of tolerance rough sets,

and uses that information to guide the feature selection process. This uncertain

information is normally ignored in the traditional RST and TRSM approaches

to FS which can result in information loss. The second approach utilises various

metrics such as fuzzy dependency, fuzzy-entropy [110], and fuzzy information gain

ratio [184], to guide the FS search process.

The new distance metric-assisted tolerance rough set selection method is demon-

strated with a worked example in order to show the approach fully. All exper-
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imental evaluation and results for the approach are presented, and comparison

is made with the Principal Component Analysis (PCA) dimensionality reduction

technique [48], and also four additional FS techniques: CFS [68], consistency-

based FS [41], ReliefF [109], and a wrapper FS approach which employs J48 [184]

as an evaluation metric.

For the new fuzzy-rough FS method, in-depth experimental comparisons are

made with existing FRS approaches as reported in [98] and [99].

4.1 Tolerance-based Feature Selection

The tolerance rough set model (TRSM) [209] can be useful for application to real-

valued data. TRSM employs a similarity relation to minimise data as opposed to

the indiscernibility relation used in classical rough-sets. This allows a relaxation

in the way equivalence classes are considered. Fig. 2.16 attempted to illustrate the

effect of employing this relaxation, where the granularity of the rough equivalence

classes has been reduced. This flexibility allows a blurring of the boundaries of

the former rough or crisp equivalence classes and objects may now belong to more

than one tolerance class.

In this approach [96], suitable similarity relations must be defined for each

feature, although the same definition can be used for all features if applicable. A

standard measure for this purpose, given in [209], is:

SIMa(x, y) = 1−
| a(x)− a(y) |

| amax − amin |
(4.1)

where a is a considered feature, and amax and amin denote the maximum and

minimum values of a respectively. This similarity relation is employed here as

it avoids the situation that may arise with other relations where all similarity

values may be potentially unique. When considering the case where there is more

than one feature, the defined similarities must be combined to provide an overall

measure of similarity of objects. For a subset of features, P , this can be achieved

in many ways including the following approaches:

(x, y) ∈ SIMP,τ ⇐⇒
∏

a∈P

SIMa(x, y) ≥ τ (4.2)

(x, y) ∈ SIMP,τ ⇐⇒

∑

a∈P SIMa(x, y)

| P |
≥ τ (4.3)

where τ is a global similarity threshold and determines the required level of simi-

larity for inclusion within a tolerance class. This framework allows for the specific

case of traditional rough sets by defining a suitable similarity measure (e.g. com-
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plete equality of features and the use of equation 4.1) and threshold (τ = 1).

Further similarity relations are summarised in [163], but are not included here.

From this, the so-called tolerance classes that are generated by a given similarity

relation for an object x are defined as:

SIMP,τ (x) = {y ∈ U | (x, y) ∈ SIMP,τ} (4.4)

Lower and upper approximations can now be defined in a similar way to that of

traditional rough set theory:

PτX = {x | SIMP,τ (x) ⊆ X} (4.5)

PτX = {x | SIMP,τ (x) ∩X 6= ∅} (4.6)

The tuple 〈PτX, PτX〉 is known as a tolerance rough set [209]. Using this, the

positive region and dependency functions can be defined as follows:

POSP,τ (Q) =
⋃

X∈U/Q

PτX (4.7)

γP,τ (Q) =
| POSP,τ (Q) |

| U |
(4.8)

From these definitions, an attribute reduction method can be formulated that uses

the tolerance-based degree of dependency, γP,τ (Q), to measure the significance of

feature subsets (in a similar way to the rough set QUICKREDUCT algorithm

described previously). Although this allows the consideration of real-valued data,

the inclusion of the tolerance threshold (τ) also now means that TRSM departs

from the traditional rough set approach which requires no additional thresholding

information.

4.2 Distance Metric-Assisted Tolerance Rough

Set Feature Selection

The Distance Metric-Assisted Tolerance Rough Set Feature Selection (DM-TRS)

is an extension of the TRSM approach described previously which has the ability

to operate on real-valued data. It marries the TRSM with the distance metric

assisted rough set approaches. This allows the information of the TRSM boundary

region that is otherwise ignored to be examined and used for FS. This ability to

deal with real-valued data along with the consideration of the uncertain boundary

region information allows a more flexible approach for FS.
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4.2 Distance Metric-Assisted Tolerance Rough Set Feature Selection

4.2.1 Distance Metric-based ToleranceQuickReduct

Following the outline of TRSM in Section 2.4.1, a similarity relation is defined on

all features using 4.3. Employing the already defined tolerance lower and upper

approximations (see 4.5 & 4.6) definition the boundary region can be computed:

BNDP,τ (Q) =
⋃

X∈U/Q

PτX −
⋃

X∈U/Q

PτX (4.9)

This and the similarity relation form the principal concepts required for the ap-

plication of the distance metric. However, in an attempt to quantify the value

of the boundary region objects, a metric is required. As argued previously in

the intuitive sense, by introducing the P-lower approximation mean, the distance

function for the calculation of the proximity of objects in the boundary region can

be formulated:

δP (PτXMEAN , y), y ∈ BNDPτ (Q) (4.10)

Once again, various distance metrics can be employed for this distance function.

To measure the quality of the boundary region, a significance value ω is obtained

by measuring all of the distances of the objects and combining them such that:

ωP (Q) =





∑

y∈BNDP (Q))

δP (PXMEAN , y)





−1

(4.11)

An alternative to the mean lower approximation and distance metric is another

approach which uses the Hausdorff metric to calculate the distance between non-

empty sets. It measures the extent to which each point in a set is located relative to

those of another set. The Hausdorff metric has been applied to facial recognition

[192], image processing [196] and FS [181] with much success. It can be defined

as:

h(A,B) = maxa∈A{minb∈B{d(a, b)}} (4.12)

where a and b are points (objects) of sets A and B respectively, and d(a, b) is any

metric between these points. A basic implementation of this has been incorporated

into the above framework using Euclidean distance as a metric. Experimentation

using this approach can be found in Section 4.3.5. The primary disadvantage of

this approach however is the computational overhead involved in calculating the

distance of all objects in the boundary region from each other. For n boundary

region objects, this means that O(n2) distance calculations must be made, unlike

the mean lower approximation which results in O(n) distance calculations.
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As with the previously described rough set-based method the significance mea-

sure takes values in the interval [0, 1]. This measure can now be combined with

the tolerance rough set dependency value and used to gauge the utility of at-

tribute subsets, using the same mechanism as defined in 3.4. This ensures that

this method is stable and will always return the same subset of features for a given

training dataset.

4.1 shows a distance metric tolerance rough set (DM-TRS) algorithm, that

implements the ideas presented above, based on the previously described algorithm

in Fig. 3.2.

DMTQuickReduct(C,D).
C, the set of all conditional features;
D, the set of decision features.

(1) R← {}, Mbest ← 0, Mprev ← 0
(2) M ← 0, γ′

best ← 0, γ′
prev ← 0

(3) do
(4) T ← R
(5) Mprev ←Mbest

(6) γ′
prev ← γ′

best

(7) ∀x ∈ (C−R)
(8) if MR∪{x}(D) > MT (D)
(9) T ← R ∪ {x}
(10) Mbest ←MT (D)
(11) γ′

best ← γ′
T (D)

(12) R← T
(13) until γ′

best == γ′
prev

(14) return R

Figure 4.1: The DMTQuickReduct algorithm

The algorithm employs the combined significance and dependency value M

to choose which features to add to the current reduct candidate. The metric M

is only used to select subsets. The termination criterion is the tolerance rough

set dependency value; the algorithm terminates when the addition of any single

remaining feature does not result in an increase in the dependency.

Whereas the combined evaluation metric determines the utility of each subset,

the stopping criteria is automatically defined through the use of the dependency

measure and the subset search is complete either; when the addition of further

features does not result in an increase in dependency or when it is equal to 1.
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4.2.2 Worked Example

To illustrate the operation of the new distance metric-based approach which com-

bines the tolerance rough set and distance metric methods a small example dataset

is considered, containing real-valued conditional attributes and crisp decision at-

tributes.

Table 4.2.2 contains six objects. It has three real-valued conditional attributes

and a single crisp-valued decision attribute. For this example, the similarity mea-

sure is the same as that given in 4.1 for all conditional attributes, with τ = 0.8.

The choice of this threshold allows attribute values to differ to a limited degree,

with close values considered as though they are identical.

Object a b c f
0 −0.4 −0.3 −0.5 no
1 −0.4 0.2 −0.1 yes
2 −0.3 −0.4 −0.3 no
3 0.3 −0.3 0 yes
4 0.2 −0.3 0 yes
5 0.2 0 0 no

Table 4.1: Example dataset

Thus by making A = {a}, B = {b}, C = {c} and F = {f}, the following tolerance

classes are generated:

U/SIMA,τ = {{0, 1, 2}, {3, 4, 5}}

U/SIMB,τ = {{0, 2, 3, 4}, {1}, {5}}

U/SIMC,τ = {{0}, {1}, {3,4,5}, {2}}

U/SIMF,τ = {{0,2,5}, {1,3,4}}

U/SIM{a,b},τ = {{0,2}, {1}, {3,4}, {3,4,5}, {4,5}}

U/SIM{a,c},τ = {{0}, {1}, {2}, {3,4,5}, {3,4,5}}

U/SIM{b,c},τ = {{0,2}, {1}, {3,4}, {5}}

U/SIM{a,b,c},τ = {{0}, {1}, {2}, {3,4}, {4,5}}

It is apparent that some objects belong to more than one tolerance class. This is a

result of employing a similarity measure rather than the strict equivalence of the

conventional rough set model. Using these partitions, a degree of dependency can

be calculated for attribute subsets, providing an evaluation of their significance in

the same way as previously outlined for the crisp rough case.

The algorithm described previously and shown in Fig. 4.1 can now be em-

ployed. It considers the addition of attributes to the stored best current subset

(initially the empty set) and selects the feature that results in the greatest increase
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of the dependency degree. Considering attribute b, the lower approximations of

the decision classes are calculated as follows:

Bτ {0,2,5} = {x | SIMB,τ (x) ⊆ {0, 2, 5}} = {5}

Bτ {1,3,4} = {x | SIMB,τ (x) ⊆ {0, 2, 5}} = {1}

Also the upper approximations:

Bτ {0,2,5} = {x | SIMB,τ (x) ∩ {0, 2, 5}} = {0, 2, 5}

Bτ {1,3,4} = {x | SIMB,τ (x) ∩ {0, 2, 5}} = {1, 3, 4}

From the lower approximation, the positive and boundary regions can then be

generated:

POSB,τ (F ) =
⋃

X∈U/F

BτX = {1, 5}

BNDB,τ (F ) =
⋃

X∈U/F

BτX − POSB,τ (F ) = {0, 2, 3, 4}

To calculate the distances of the boundary objects from the lower approxima-

tion, it is necessary to generate a lower approximation mean object as described

previously:

PXMEAN =

{

∑

o∈PX a(o)

| PX |
: ∀a ∈ P

}

=

{∑

a(1), a(5)

| 2 |

}

= 0.1

There are many distance metrics which can be applied to measure the distance

of the objects in the boundary from the lower approximation mean. For simplicity,

a variation of Euclidean distance is used in the approach documented here, and

this is defined as:

δP (PXMEAN , y) =

√

∑

a∈P

fa(PXMEAN , y)2 (4.13)

where:

fa(x, y) = a(x)− a(y) (4.14)

From this, the distances of all of the objects in the boundary region in relation

to the lower approximation mean can now be calculated:
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obj 0
√

fb(PXMEAN , 0)2 = 0.4

obj 2
√

fb(PXMEAN , 2)2 = 0.5

obj 3
√

fb(PXMEAN , 3)2 = 0.4

obj 4
√

fb(PXMEAN , 4)2 = 0.4

The significance value is therefore:

ωB(F ) =
(

∑

y∈BNDP (Q)) δP (PXMEAN , y)
)−1

= (
∑

(0.4, 0.5, 0.4, 0.4))−1 = 0.588

The significance value is combined with the rough set dependency to form a

subset measure (M) such that the value for {b}:

M(B) =
ωB(F ) + γB(F )

2
=

0.588 + 0.333

2
= 0.461

By calculating the change in combined significance and dependency value (M)

when an attribute is removed from the set of considered conditional attributes, a

measure of the goodness of that attribute can be obtained. The greater the change

in M the greater the measure of goodness that attribute has attached to it.

The values for the combined metric can be calculated for all considered subsets

of conditional attributes using DMRSAR:

M{a}({f}) = 0.0 M{a,c}({f}) = 0.498

M{b}({f}) = 0.461 M{b,c}({f}) = 1.0

M{c}({f}) = 0.805 M{a,b,c}({f}) = 0.492

It is obvious from the above example that the search finds a subset in the

manner {c} → {b, c}. As {a} and {a, c} and also {a, b, c} do not result in the

same increase in combined metric these subsets are ignored.

4.3 Experimentation

This section presents the results of experimental studies using 8 real-valued datasets.

These datasets are of the same format as that used for the worked example in the

previous section.
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4.3.1 Experimental Setup

The datasets employed here are well-known machine learning benchmark examples

and are small-to-medium in size, with between 120 and 390 objects per dataset

and feature sets ranging from 5 to 39. All datasets have been obtained from [5]

and [158].

A comparison of both the tolerance rough set algorithm and the distance-metric

based tolerance rough set dimensionality reduction techniques is made based on

subset size, and classification accuracy. Furthermore, the DM-TRS approach is

also compared with five other FS techniques. The comparison is made in terms

of both subset size and classification accuracy and also in terms of classification

accuracy for each given subset size discovered by the DM-TRS method where

applicable.

A range of 4 tolerance values, (0.80–0.95 in intervals of 0.05) were employed

when considering the datasets. It should be borne in mind that the ideal tolerance

value for any given dataset can only be optimised for that dataset by repeated

experimentation. This is true of the TRSM as well as to any extensions applied

to it, such as described here. Therefore, the range of values chosen is an attempt

to demonstrate the ideal tolerance threshold for each dataset without exhaustive

experimentation.

In the generation and discussion of results for classification accuracies, a fuzzy

classifier learning method QSBA [188], and three other classifier learners - J48,

JRip, and PART [237] - were employed. QSBA is briefly outlined below, the other

classifier learners have been covered in detail in Section 3.5.1.

QSBA [188] works by generating fuzzy rules using the fuzzy subsethood mea-

sure for each decision class and a threshold to determine what appears in the

rule for that decision class. The fuzzy subsethood measure is then used to act as

weights, and the algorithm then modifies the weights to act as fuzzy quantifiers.

4.3.2 Comparison of Classification Accuracy

The data presented in Table 4.2 shows the average classification accuracy using the

classifiers learned by the four learner methods described previously. The recorded

values are expressed as a percentage and obtained using 10-fold cross validation.

Classification was initially performed on the unreduced dataset, followed by the

reduced datasets, which were obtained by using both the TRS and DM-TRS di-

mensionality reduction techniques respectively for each of the tolerance values.

Examining the classification values obtained using QSBA, even when the subset

size in Table 4.7 is of a similar value to that of the TRS approach, the correspond-

ing classification figures for DM-TRS demonstrate the selection of better quality
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QSBA τ = 0.8 τ = 0.85 τ = 0.90 τ = 0.95
Dataset Unred. TRS DM-TRS TRS DM-TRS TRS DM-TRS TRS DM-TRS
water 2 57.94 77.76 77.76 73.16 73.16 74.53 74.53 67.79 76.38
water 3 48.97 63.12 63.12 74.34 74.34 73.56 73.56 68.25 63.83

cleveland 37.46 36.51 39.47 35.78 35.78 43.58 46.61 43.28 43.28
glass 43.65 37.60 37.60 38.51 38.51 25.88 25.88 42.12 39.43
heart 64.07 77.41 77.42 73.33 74.07 70.00 70.00 74.81 74.81

ionosphere 80.67 74.34 74.34 68.26 68.26 68.26 69.14 64.10 65.65
olitos 64.16 61.66 64.16 57.50 86.08 61.66 62.36 54.16 60.01
wine 94.86 85.39 85.39 81.40 81.40 84.11 84.11 83.72 84.10

Table 4.2: Classification accuracy using QSBA

TRS DM-TRS
Dataset JRIP PART J48 JRIP PART J48

water 2 83.58 84.61 83.58 83.58 84.61 83.58
water 3 84.61 81.80 83.84 84.61 81.80 83.84

cleveland 52.86 52.18 53.19 55.55 53.53 54.20
glass 50.00 49.53 48.13 50.00 49.53 48.13
heart 73.70 78.89 75.56 73.70 78.89 75.56

ionosphere 89.13 88.26 88.26 89.13 88.26 88.26
olitos 67.50 70.00 64.16 65.83 62.50 59.16
wine 95.50 94.38 81.40 81.40 84.11 84.11

Table 4.3: Classification accuracy using JRIP, PART, and J48 classifiers (τ = 0.80)

subsets. In some cases the DM-TRS approach even manages to select a subset of

smaller cardinality for a given dataset, whilst also maintaining a similar level of

classification as TRS.

Obviously, where DM-TRS discovers identical subsets to those found by TRS,

the classification accuracies will also be identical. Where this is not the case

however, the results can differ substantially depending on whether fuzzy or crisp

classifiers have been employed in obtaining the results e.g. for the water 3 dataset

with (τ = 0.95), the crisp classifiers show an average result for DM-TRS that is

better than TRS, whilst the fuzzy classifier shows a result that is poorer than

TRS DM-TRS
Dataset JRIP PART J48 JRIP PART J48

water 2 84.61 82.30 84.87 84.61 82.30 84.87
water 3 83.58 82.30 81.02 83.58 82.30 81.02

cleveland 53.87 50.84 54.54 53.87 50.54 54.54
glass 64.95 60.74 68.22 61.93 66.82 68.70
heart 75.55 77.40 82.59 81.85 80.74 82.63

ionosphere 90.42 88.69 86.52 90.42 88.69 86.52
olitos 62.50 60.83 60.00 62.50 65.83 67.50
wine 95.25 95.50 96.06 95.25 95.50 96.06

Table 4.4: Classification accuracy using JRIP, PART, and J48 classifiers (τ = 0.85)
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TRS DM-TRS
Dataset JRIP PART J48 JRIP PART J48

water 2 85.38 82.30 87.43 85.38 82.30 87.43
water 3 80.00 81.53 76.67 80.00 81.53 76.67

cleveland 54.20 53.87 52.52 54.03 55.55 54.88
glass 65.88 69.15 68.69 65.88 69.15 68.69
heart 79.25 75.19 78.88 79.25 75.19 78.88

ionosphere 85.65 86.52 85.21 86.01 89.56 89.13
olitos 70.00 65.83 61.66 59.17 60.84 67.50
wine 96.06 94.94 96.62 96.06 94.94 96.62

Table 4.5: Classification accuracy using JRIP, PART, and J48 classifiers (τ = 0.90)

TRS DM-TRS
Dataset JRIP PART J48 JRIP PART J48

water 2 82.82 83.07 82.05 84.10 84.10 80.77
water 3 81.02 80.77 81.02 83.59 78.98 81.80

cleveland 50.54 50.84 54.54 50.54 50.84 54.54
glass 69.62 68.22 69.62 65.42 64.95 62.00
heart 80.38 78.57 81.48 80.38 78.57 81.48

ionosphere 86.08 87.39 87.39 85.93 87.82 87.82
olitos 64.16 66.67 64.16 64.16 65.88 64.16
wine 93.25 95.50 96.02 91.57 94.98 97.19

Table 4.6: Classification accuracy using JRIP, PART, and J48 classifiers (τ = 0.95)

TRS. For the same tolerance value (0.95), the glass dataset, also demonstrates

a small decrease in the order of up to 7% (for all classifiers), however when the

corresponding decrease in dimensionality of 37.5% is considered over the TRS

method, this decrease is not significant. In all other cases where the crisp classifiers

show a decrease in classification accuracy, this is reflected as an increase when

QSBA is employed for classification. This is due mainly to the fact that although

J48, JRip, and PART are intended to handle real-valued data, they are unable to

examine data in the same way that a fuzzy classifier learner such as QSBA can.

4.3.3 Subset Sizes

Table 4.7 presents the results of a comparison of subset size, for both the TRS

and DM-TRS approaches, with DM-TRS showing a small but clear advantage in

terms of more compact subsets. Note that * indicates a subset whose size was the

same as TRS but for which different attributes had been selected.

Examining the results in Table 4.7, the DM-TRS method shows that there is

much information contained in the boundary region of a tolerance rough set. This

is reflected in the subset sizes obtained. DM-TRS succeeds in finding subsets of
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Original Subset size Subset size Subset size Subset size
number (τ = 0.8) (τ = 0.85) (τ = 0.90) (τ = 0.95)

Dataset of features TRS DM-TRS TRS DM-TRS TRS DM-TRS TRS DM-TRS
water 2 39 6 6 5 5 8 8 12 12*
water 3 39 5 5 9 9 9 9 12 11

cleveland 14 3 2 2 2 11 10 8 8
glass 10 3 3 5 5* 3 3 8 3
heart 14 4 4 6 8 12 12 8 8

ionosphere 34 3 3 6 6 6 6* 8 8*
olitos 25 8 5 5 5* 9 8 6 6*
wine 13 5 5 4 4 5 5 5 5*

Table 4.7: Comparison of subset size for each tolerance threshold value

cardinality that are at least equal and sometimes smaller than those obtained using

the TRS method, with the exception of the heart dataset for τ = 0.85. However if

the classification results are examined closely, it is clear that although the subset

size is of greater cardinality for this particular case, the subset is of greater quality

than that obtained using TRS. The results also demonstrate that the nature of

the data along with a particular value of τ can mean that there is little or no

information in the boundary region and therefore DM-TRS relies purely on the

information contained in the lower approximation dependency value. This can in

turn, result in subsets that are identical to those discovered by the TRS method.

It is expected that a decrease in τ would reflect a change in performance in

terms of subset size for the TRS method alone such that an optimal value is

arrived at after a period of experimentation. This occurs as the lower threshold

allows a greater flexibility in the membership of data objects to tolerance classes.

However the results for subset size demonstrate an interesting trend where the

DM-TRS method may actually discover smaller subset sizes than TRS for similar

tolerance threshold values. As the DM-TRS method examines the boundary region

information, it would be expected that a decrease in τ (thereby increasing the

number of objects in the lower approximation and decreasing the number of objects

in the boundary region) would result in the DM-TRS performing poorly for the

next decrement of threshold value documented above – as there is less information

contained in the boundary region for the DM-TRS method to examine. However,

if the results in Tables 4.7 and 4.2 are examined for e.g. the dataset olitos, it can

be seen that DM-TRS selects subsets which are of smaller size and in some cases

of better quality. This suggests that, as long as there is some information in the

boundary region, regardless of whether the optimal value of τ has been obtained,

DM-TRS can select subsets of better quality than TRS.
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4.3.4 Comparison with Randomly Selected Subsets

The FS process helps to remove measurement noise as a positive by-product. A

valid question therefore is whether other subsets of dimensionality 5 (e.g. for

the “water 2” dataset) would perform similarly as those identified by DM-TRS

selection. To avoid a biased answer to this, and without resorting to exhaustive

computation 30 sets of five features have been randomly chosen in order to see

what classification results might be achieved.

Figure 4.2: DM-TRS vs. randomly selected subsets

Fig. 4.2 shows the error rate of the corresponding 30 classifiers, along with

the error rate of the classifier that uses the DM-TRS selected subset. The average

error of the classifiers that each employ five randomly selected features is 22.32%,

far higher than that attained by the classifier which utilises the DM-TRS selected

subset of the same dimensionality. This implies that those randomly selected

entail important information loss in the course of feature selection; this is not the

case for the DM-TRS selection-based approach.

4.3.5 Hausdorff Metric Implementation

The Hausdorff metric approach to distance measurement has been described pre-

viously as an alternative to the mean lower approximation and Euclidean distance

based method which was used to generate the empirical results described in the

preceding sections.

In this section the DM-TRS approach was augmented with the Hausdorff met-

ric. This metric is used to measure the distance between the lower approximation
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and the boundary region, and was implemented in order to investigate the per-

formance of this method in terms of subset size. The results of this investigation

are included here in Table 4.3.5. For brevity only the results for a single tolerance

value are included.

DM-TRS Hausdorff Metric
Dataset Subset Size Subset Size
water2 8 10
water3 9 32

cleveland 10 12
glass 3 9
heart 12 13

ionosphere 6 16
olitos 8 14
wine 5 13

Table 4.8: DMRSAR – Hausdorff metric implementation (τ =0.90)

It is clear that this particular implementation of the Hausdorff metric fails to

capture the useful information of the boundary region in the same way that the

mean lower approximation method does. Examining the results for subset size,

it can be seen that the existing DM-TRS approach returns superior results in all

cases. This approach took a considerable length of time to run, however this was

to be expected as there are a large number of distance calculations performed even

for small datasets (exponential O(n2) for n upper approximation objects).

4.3.6 Comparison with Existing FS Methods

In this section further comparison of DM-TRS with some of the more traditional

dimensionality reduction and FS techniques demonstrates the approach in a more

comprehensive manner. DM-TRS is compared with principal component analysis

(PCA) [48], ReliefF [109], CFS [68], consistency-based FS [237], and a wrapper

method employing J48 [184] as an evaluation metric.

4.3.6.1 PCA

PCA is a versatile transformation-based DR technique which projects the data

onto a new coordinate system of reduced dimensions. This process of linear trans-

formation however also transforms the underlying semantics or meaning of the

data. This results in data that is difficult for humans to interpret, but which may

still provide useful automatic classification of new data. In order to ensure that

the comparison of DM-TRS and PCA is balanced, the same subset sizes discovered
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for each dataset and tolerance level are also employed in the analysis of PCA, e.g.

olitos in Table 4.7 has subsets of size 5, 6, and 8. Each of the best number of

transformed features are utilised for PCA, (in this case the best 5, 6, and 8).

The results in Table 4.3.6.1 show that of the eight datasets only olitos demon-

strates a consistent decrease in classification accuracy performance for DM-TRS

(see future work for further discussion). There are other instances where PCA

slightly outperforms the DM-TRS method but this is not consistent and in a

majority of cases DM-TRS usually shows equal performance or an increase in

classification accuracy.

subset size PCA DM-TRS
J48 JRIP PART J48 JRIP PART

water 2 5 83.33 83.84 83.07 84.61 82.30 84.87
6 86.41 85.38 87.69 84.87 84.61 82.30
8 81.02 83.58 83.33 85.38 82.30 87.43

12 85.89 84.36 81.28 84.10 84.10 80.77

water 3 5 87.94 85.64 83.58 84.61 81.80 83.84
9 82.30 84.36 81.35 83.58 82.30 81.02

11 84.35 85.38 83.07 83.59 78.98 81.80

cleveland 2 58.92 53.87 57.23 55.55 53.53 54.20
8 56.90 57.91 54.20 50.54 50.84 54.54

10 51.85 52.18 50.16 54.03 55.55 54.88

glass 3 64.48 61.68 65.42 65.88 69.15 68.69
5 68.61 61.21 66.35 61.93 66.82 68.70

heart 4 82.96 82.59 82.96 73.70 78.89 75.56
8 79.25 83.33 79.62 81.85 80.74 82.63

12 82.59 84.07 78.14 79.25 75.19 78.88

ionosphere 3 77.39 77.39 79.56 89.13 88.26 88.26
6 83.04 86.08 79.56 90.42 88.69 86.52
8 82.60 85.21 82.17 85.93 87.82 87.82

olitos 5 85.00 80.00 82.50 62.50 65.83 75.56
6 85.00 81.66 81.66 64.16 65.88 64.16
8 80.33 75.00 80.33 59.17 60.84 67.50

wine 4 93.25 92.69 93.82 95.25 95.50 96.06
5 93.25 89.88 94.38 96.06 94.94 96.62

Table 4.9: PCA & DM-TRS – Comparison of classification accuracy

It should be emphasised however that while PCA might outperform DM-TRS

in some instances in terms of classification accuracy, the semantics of the data is

irreversibly transformed following dimensionality reduction. This can have con-

sequences where human interpretability of the data is important, which is one of

the key reasons for performing feature selection tasks to begin with. As DM-TRS

is a feature selection approach as opposed to a feature ranking method, a prede-

fined threshold is not required; selection is complete as soon as the termination

criterion (rough set dependency) is fulfilled. The rough set dependency value is
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integral to the selection process and as such, in contrast to PCA does not need to

be predefined.

Finally, it is worth noting that PCA is selected for comparison here due to

recognition of the fact that it is an established approach for dimensionality reduc-

tion. However, such comparison uses PCA as a global step prior to classification.

This may not maximise the potential of PCA serving as a feature reduction tool.

It may be a better approach to include PCA as an intrinsic substep of LDA

[183], [73]. However, the FS method employed here is a global preprocessor for

semantics-preserving dimensionality reduction and hence PCA is examined in a

similar manner.

4.3.6.2 CFS - Correlation-based Feature Selection

CFS [68] is a filter-based approach to FS and uses a search algorithm along with an

evaluation metric to decide on the ‘goodness’ or merit of potential feature subsets.

Rather than scoring (and ranking) individual features, the method scores (and

ranks) the worth of subsets of features. As the feature subset space is usually

large, CFS employs a best-first-search heuristic. This heuristic algorithm takes

into account the usefulness of individual features for predicting the class along

with the level of intercorrelation amongst features using the premise that good

feature subsets contain features that are highly correlated to the class, yet not

correlated to each other. CFS calculates a matrix of feature-to-class and feature-

to-feature correlations from the training data.

The subset generation technique employed in this case was a greedy-hillclimbing

type similar to DM-TRS, where features are added greedily until the termination

criteria are fulfilled. The results for subset size and classification values for the

three classifier learners are illustrated in Table 4.10.

Dataset subset size JRIP PART J48

water 2 9 83.33 83.07 84.61
water 3 11 82.30 82.05 81.79

cleveland 7 55.54 57.91 58.92
glass 7 65.42 68.69 69.15
heart 7 77.40 77.03 81.11

ionosphere 11 90.00 90.00 90.00
olitos 16 69.16 71.67 69.16
wine 11 94.38 93.82 94.38

Table 4.10: CFS Subset size and classification accuracy

Unlike DM-TRS, CFS has no tunable parameters which means that it can be

quite difficult to compare the results of Tables 4.3–4.7 with those obtained here.
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It would be easy just to pick the optimal result for DM-TRS and state that the

approach is better based on those performance figures. Two different approaches

have therefore been adopted. The first approach is to obtain a mean for all of the

subset sizes and classification values for DM-TRS for all values of τ and compare

these with CFS. The second is to compare CFS and DM-TRS by finding a subset

size in the results for DM-TRS that is comparable to that obtained by CFS and

use the associated classification figures. So, if CFS has a subset size of 10 for a

particular dataset, find a subset of identical or similar size in the DM-TRS results

in Table 4.7 and use this to compare classification accuracy.

Dataset subset size JRIP PART J48

water 2 7.75 84.29 83.32 84.16
water 3 8.50 82.94 81.15 80.83

cleveland 5.50 53.49 52.61 54.54
glass 3.5 60.80 62.61 61.88
heart 8 78.79 78.34 79.63

ionosphere 5.75 87.87 68.83 87.93
olitos 6 62.91 63.76 64.58
wine 4.75 91.07 92.38 93.49

Table 4.11: Average subset size and classification accuracy for DM-TRS

The results for CFS when compared with the mean values for DM-TRS demon-

strate that the DM-TRS method has a clear advantage in terms of subset size.

The only exception perhaps is the result for the heart dataset, however if Table

4.7 is examined, it can be seen that DM-TRS is capable of reducing this value

to 4. The mean classification values for DM-TRS although not as clear as those

for subset size show that the difference in classification accuracy between the two

approaches is less than 8% even in the most extreme cases e.g. olitos and glass. It

must be remembered however that the figures are mean values, and that DM-TRS

outperforms CFS in many of the examples for individual values of τ .

Dataset subset size JRIP PART J48

water 2 8* 85.38 82.30 87.43
water 3 11 83.59 78.98 81.80

cleveland 8* 50.54 50.84 54.54
glass 5 61.93 66.82 68.70
heart 8* 81.85 80.74 82.63

ionosphere 8* 85.93 87.82 87.82
olitos 8* 59.17 60.84 67.50
wine 5* 96.06 94.94 96.62

Table 4.12: Closest comparable subset size and classification accuracy for DM-
TRS
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The second approach to comparing CFS with DM-TRS uses information which

is derived from Tables 4.3–4.7, perhaps most apparent is the fact that DM-TRS on

the whole selects subsets which are more compact than those selected by CFS. The

classification values tell a similar story, however some values are lower than those

obtained by CFS. The reason for this is related to the fact that suboptimal results

must be chosen in order to find a way to compare this approach with CFS, e.g.

the glass dataset shows comparable classification results to the values recorded in

Table 4.12 as it does in Table 4.4 and Table 4.7 but with a subset size of only 5.

Thus it achieves greater reduction in dimensionality yet retains the classification

ability, and easily outperforms CFS. It should be noted in the case of Table 4.12

that subsets marked with an asterisk (*) are of size which was not identical to

that obtained by CFS but represented the closest available value.

4.3.6.3 Consistency-based Feature Selection

Consistency-based feature selection [41] employs a consistency measure for objects

in a dataset. Consistency is measured by comparing the values of a given feature

set over a set of objects. There are three steps necessary to calculate the consis-

tency rate for a set of objects: a) Consider two objects where the feature values of

both are identical but their respective decision feature classes are not, e.g object1

={1 0 1 a}, and object2 = {1 0 1 b}, (where a 6= b) in this case objects 1 and 2 are

said to be inconsistent; b) The inconsistency count for an object is the number of

times objects with the same feature values appear in the dataset minus the largest

number amongst different decision feature classes, e.g. for n objects with identical

decision feature values for which o1 objects belong to the d1 decision feature class,

o2 to the d2 decision feature class, and o3 to the d3 decision feature class, and

|d1|+ |d2|+ |d3| = n Assume that |d2| is the greatest of all three, the consistency

count can be calculated as: n− |d2|; c). The consistency rate can then be calcu-

lated by summing the consistency counts for the number of groups of objects of

given feature values of a subset, divided by the total number of objects.

The FS approach used in this consistency-based method employs a greedy

stepwise subset generation technique similar to that of DM-TRS. Again, as with

CFS, this method has no tunable parameters, and must be compared with DM-

TRS in the same manner as that employed in the previous subsection.

Examining the results in Table 4.13 and comparing them with those of Table

4.11 it is clear that like CFS, the subset sizes obtained for consistency-based FS are

greater than the average result obtained using DM-TRS. The classification results

show similar performance to CFS with some insignificant increases or decreases

with respect to certain datasets, but overall comparable to DM-TRS.
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Dataset subset size JRIP PART J48

water 2 14 84.35 85.60 83.58
water 3 11 83.84 82.56 81.02

cleveland 9 54.54 55.21 56.22
glass 7 65.42 71.96 64.48
heart 10 78.88 74.04 78.88

ionosphere 7 89.56 88.69 89.56
olitos 11 67.50 65.00 68.33
wine 5 90.43 97.19 97.12

Table 4.13: Subset size and classification accuracy results for consistency-based
FS

4.3.6.4 ReliefF

ReliefF [109] is an extension of Relief [105] but which has the ability to deal with

multiple decision classes. In ReliefF each feature is given a relevance weighting that

reflects its ability to discern between the decision class labels. The first threshold,

specifies the number of sampled objects used for constructing the weights. For

each sampling, an object x is randomly chosen, and its ‘near hit’ and ‘near miss’

are calculated. These are x’s nearest objects with the same class label and different

class label respectively. The user has to supply a threshold which determines the

level of relevance that features must surpass in order to be finally chosen.

ReliefF is typically used in conjunction with a feature ranking method em-

ployed for the selection of features. In this experimental comparison, the number

of nearest neighbours for feature estimation was set to 10, and the other parameter

ReliefF requires namely sigma or the influence of nearest neighbours was set to

2. The number of features to select was applied according to the optimal subset

sizes obtained for DM-TRS.

Dataset (predefined) subset size JRIP PART J48

water 2 5 83.33 84.61 84.10
water 3 5 83.84 81.02 81.53

cleveland 2 58.24 58.21 53.87
glass 3 68.22 68.69 65.42
heart 4 78.50 77.77 78.51

ionosphere 7 86.02 87.82 86.52
olitos 5 65.00 70.03 65.00
wine 4 91.00 93.82 89.87

Table 4.14: Subset size and classification accuracy results for ReliefF

The classification results obtained show that despite the improved search method

employed by ReliefF, the DM-TRS classification accuracies are comparable with

little difference or even a small increase in most cases for DM-TRS.
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4.3.6.5 Wrapper FS Employing J48

Although DM-TRS is a filter type FS method, it is interesting to compare it with

wrapper-based FS techniques also. Having recognised this, a comparison of the

performance of DM-TRS with that of C4.5 [184] which is one of the well known

wrapper methods is presented here.

To compare these two approaches meaningfully, the 8 datasets were divided

into training and test data respectively. This was accomplished by removing half

of the objects from the original data at random and using this data as ‘test’ data

whilst the remainder is used as ‘training’ data. The results illustrated in Table

4.15 show the classification accuracies recorded having performed FS on the ‘test’

data.

C4.5 Wrapper DM-TRS
Dataset JRIP PART J48 JRIP PART J48

water 2 90.76 91.28 89.74 90.88 91.65 90.10
water 3 83.84 81.02 81.53 88.71 84.61 86.67

cleveland 51.67 47.65 53.60 52.03 54.05 56.67
glass 78.50 74.76 82.24 79.86 74.76 83.85
heart 75.37 76.86 77.61 77.03 77.77 80.27

ionosphere 86.08 85.21 84.34 90.63 92.45 94.44
olitos 61.66 71.66 63.33 65.33 71.78 65.00
wine 88.76 88.76 87.64 96.62 96.62 92.13

Table 4.15: Subset size and classification accuracy results for consistency-based
FS

One would expect that the wrapper should outperform any filter method in

terms of classification accuracy as the validation step is carried out using a classi-

fier. The results demonstrate however that this is not strictly the case, and DM-

TRS shows a clear increase in classification accuracy over the wrapper method.

The increase is small and in some cases in the order of a few percent, but the

wrapper method has an extremely high computational overhead. This means that

execution times are considerably affected as a result.

4.4 The Fuzzy-Rough Set Boundary Region

Fuzzy-rough sets [52], like TRSM also have the ability (which is lacking in tra-

ditional RST), to deal with real-valued data. However, TRSM also requires the

specification of an additional parameter (τ) in order to operate. This additional

parameter is human-specified and repeated experimentation may be required to

arrive at an ideal value for any given dataset. The specification of such a param-

eter is counter to the rough set tenet of using only the information contained in
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the data. This has led to the exploration of fuzzy-rough sets as an alternative,

which does not require any thresholding information.

In the context of exploration of the boundary region, fuzzy-rough sets offer

all of the advantages of traditional RST, but also have the ability to deal with

real-valued data. In the very strict sense, it would be incorrect to say that fuzzy-

rough does not require any additional human input, as decisions about which fuzzy

connectives ans similarity measures need to be made. However, subjective thresh-

olding values are not required. This section presents some new evaluation metrics

for fuzzy-rough feature selection, based on the fuzzy entropy measure. These met-

rics are applied to the fuzzy-rough lower approximation and most importantly to

the fuzzy-rough boundary region.

4.4.1 Fuzzy-Rough Feature Selection (FRFS)

In the past, work on fuzzy-rough feature selection used a fuzzy partitioning of the

input space [204] in order to determine fuzzy equivalence classes. Alternative defi-

nitions for the fuzzy lower and upper approximations can be found in [186], where

a T -transitive fuzzy similarity relation is used to approximate a fuzzy concept X:

µRP X(x) = inf
y∈U

I(µRP
(x, y), µX(y)) (4.15)

µRP X(x) = sup
y∈U

T (µRP
(x, y), µX(y)) (4.16)

Here, I is a fuzzy implicator and T a t-norm. RP is the fuzzy similarity relation

induced by the subset of features P :

µRP
(x, y) =

⋂

a∈P

{µRa(x, y)} (4.17)

µRa(x, y) is the degree to which objects x and y are similar for feature a. Many

fuzzy similarity relations can be constructed such as equation 4.1, and others:

µRa(x, y) = exp(−
(a(x)− a(y))2

2σa
2

) (4.18)

µRa(x, y) = max(min(
(a(y)− (a(x)− σa))

(a(x)− (a(x)− σa))
,

((a(x) + σa)− a(y))

((a(x) + σa)− a(x))
, 0) (4.19)

where σa
2 is the variance of feature a. As these relations do not necessarily display

T -transitivity, the fuzzy transitive closure must be computed for each attribute

[45]. The combination of feature relations in equation (4.17) has been shown to
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preserve T -transitivity [228].

4.4.1.1 Reduction

In a similar way to the original RSAR approach (Section 2.3.2.1), the fuzzy positive

region [99] can be defined as:

µPOSRP
(D)(x) = sup

X∈U/D

µRP X(x) (4.20)

The resulting degree of dependency is:

γ′
P (D) =

∑

x∈U

µPOSRP
(D)(x)

|U|
(4.21)

A fuzzy-rough reduct R can be defined as a minimal subset of features that

preserves the dependency degree of the entire dataset, i.e. γ′
R(D) = γ′

C
(D). Based

on this, a fuzzy-rough QuickReduct algorithm can be constructed that operates

in the same way as Fig. 2.14, but uses equation (4.21) to gauge subset quality. In

[99], it has been shown that the dependency function is monotonic and that fuzzy

discernibility matrices may also be used to discover reducts.

Core features may be determined by considering the change in dependency of

the full set of conditional features when individual attributes are removed:

Core(C) = {a ∈ C|γ′
C−{a}(Q) < γ′

C
(Q)} (4.22)

4.4.2 Fuzzy Boundary Region-based FS

The lower approximation contains information regarding the extent of certainty

of object membership to a given concept. However, the upper approximation

contains information regarding the degree of uncertainty of objects and hence

this information can be used to discriminate between subsets. For example, two

subsets may result in the same lower approximation but one subset may produce

a smaller upper approximation. This subset will be more useful as there is less

uncertainty concerning objects within the boundary region.

Following the original rough set approach, the fuzzy-rough boundary region

for a concept X can be defined by:

µBNDRP
(X)(x) = µRP X(x)− µRP X(x) (4.23)

When the decision feature is real-valued the same fuzzy similarity measure is

employed, resulting in the relation RD with foresets D1, D2, ..., Dn. The fuzzy-
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rough boundary region then becomes:

µBNDRP
(Dj)(x) =

µRP Dj
(x)− µRP Dj

(x)

|Dj|
(4.24)

for decision foreset Dj, where |Dj| stands for the cardinality of Dj.

4.4.2.1 Reduction

As the search for an optimal subset progresses, the object memberships to the

boundary region for each concept diminishes until a minimum is achieved. For

crisp rough set FS, the boundary region will be zero for each concept when a

reduct is discovered. This may not necessarily be the case for fuzzy-rough FS due

to the additional imprecise information (ID) involved. The ID for a concept X

described using features in P can be calculated as follows:

UP (X) =

∑

x∈U

µBNDRP
(X)(x)

|U|
(4.25)

This is the average extent to which objects belong to the fuzzy boundary region

for the concept X. The total ID degree for all concepts, given a feature subset P

is defined as:

λP (D) =

∑

X∈U/D

UP (X)

|U/D|
(4.26)

When the decision feature is fuzzy, this becomes:

λP (D) =

∑

Dj∈RD

UP (Dj)

∑

Dn∈RD
(|Dn|)−1

(4.27)

Obviously, this degenerates to the previous definition when dealing with crisp

decisions. A QuickReduct-style algorithm can be constructed for locating fuzzy-

rough reducts based on this measure. Instead of maximising the dependency

degree, the task of the algorithm is to minimize the total uncertainty degree.

When this reaches the minimum for the dataset, a fuzzy-rough reduct has been

found.

Theorem 1. B-FRFS monotonicity. Suppose that P ⊆ C, a is an arbitrary

conditional feature that belongs to the dataset and Q is the set of decision features.

Then λP∪{a}(Q) ≤ λP (Q).

Proof. The fuzzy boundary region of a concept X for an object x and set of
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features P ∪ {a} is defined as

µBNDRP∪{a}
(X)(x) = µRP∪{a}X(x)− µRP∪{a}X(x)

For the fuzzy upper approximation component of the fuzzy boundary region:

µRP∪{a}X(x) = sup
y∈U

T (µRP∪{a}
(x, y), µX(y))

It is known from Theorem 1 in [96] that µRP∪{a}
(x, y) ≤ µRP

(x, y), so µRP∪{a}
X(x) ≤

µRP X(x). As µRP∪{a}X(x) ≥ µRP X(x), then µBNDRP∪{a}
(X)(x) ≤ µBNDRP

(X)(x).

Thus, UP∪{a}(Q) ≤ UP (Q) and therefore λP∪{a}(Q) ≤ λP (Q).

4.4.2.2 Example

Object a b c q
1 −0.4 −0.3 −0.5 no
2 −0.4 0.2 −0.1 yes
3 −0.3 −0.4 −0.3 no
4 0.3 −0.3 0 yes
5 0.2 −0.3 0 yes
6 0.2 0 0 no

Table 4.16: Example dataset

To determine the fuzzy boundary region, the lower and upper approximations

of each concept for each feature must be calculated. Considering feature a and

concept {1,3,6}:

µBNDRa({1,3,6})(x) = µRa{1,3,6}(x)− µRa{1,3,6}(x)

For object 4, this is

µBNDRa ({1,3,6})(4) = sup
y∈U

T (µRa(4, y), µ{1,3,6}(y))

− inf
y∈U

I(µRa(4, y), µ{1,3,6}(y))

= 0.699− 0.0

= 0.699
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For the remaining objects, this is:

µBNDRa ({1,3,6})(1) = 1.0

µBNDRa ({1,3,6})(2) = 1.0

µBNDRa ({1,3,6})(3) = 0.699

µBNDRa ({1,3,6})(5) = 1.0

µBNDRa ({1,3,6})(6) = 1.0

Hence, the ID for concept {1,3,6} is:

Ua({1, 3, 6}) =

∑

x∈U

µBNDRa ({1,3,6})(x)

|U|

=
1.0 + 1.0 + 0.699 + 0.699 + 1.0 + 1.0

6
= 0.899

For concept {2, 4, 5}, the ID is:

Ua({2, 4, 5}) =

∑

x∈U

µBNDRa ({2,4,5})(x)

|U|

=
1.0 + 1.0 + 0.699 + 0.699 + 1.0 + 1.0

6
= 0.899

From this, the total ID for feature a is calculated as follows:

λa(Q) =

∑

X∈U/Q

Ua(X)

|U/Q|

=
0.899 + 0.899

2
= 0.899 (4.28)

The values of the total ID for the remaining features are:

λ{b}(Q) = 0.640 λ{c}(Q) = 0.592

As feature c results in the smallest total imprecision degree, it is chosen and

added to the reduct candidate. The algorithm then considers the addition of the

remaining features to the subset:

λ{a,c}(Q) = 0.500 λ{b,c}(Q) = 0.0
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The subset {b, c} results in the minimal imprecision degree for the dataset, and

the algorithm terminates. Interestingly, this is the same subset as that chosen by

the fuzzy lower approximation-based method above.

4.4.3 Integration of Fuzzy Entropy

In the above method, the overall uncertainty is evaluated by averaging the uncer-

tainty of all decision concepts. The ID for a concept is itself an average measure

of the belonging of objects to the fuzzy boundary region. A more appropriate way

of measuring the uncertainty within the boundary region of a concept X is to

calculate the fuzzy entropy:

U ′
P (X) =

∑

x∈U

−
µBNDRP

(X)(x)

|BNDRP
(X)|

log2

µBNDRP
(X)(x)

|BNDRP
(X)|

(4.29)

λ′
P (D) =

∑

Dj∈RD

U ′
P (Dj)

∑

Dn∈RD
(|Dn|)−1

(4.30)

This will be minimized when all fuzzy boundary regions are empty, hence λ′
P (D) =

λP (D) = 0 and therefore P must be a fuzzy-rough reduct.

4.4.4 Fuzzy-Rough Reduction with Fuzzy Entropy

Fuzzy entropy itself can be used to find fuzzy-rough reducts [139]. A subset P ⊆ C

induces a fuzzy similarity relation (RP ) with corresponding foresets F1, F2, ..., Fn.

Similarly, the foresets induced by the (fuzzy) decision feature D are D1, D2, ..., Dn.

The fuzzy entropy for a foreset Fi can be defined as:

H(Fi) =
∑

Dj∈RD

−p(Dj|Fi) log2 p(Dj|Fi)

|Dj|
(4.31)

where p(Dj|Fi) is the relative frequency of foreset Fi with respect to the decision

Dj, and is defined:

p(Dj|Fi) =
|Dj ∩ Fi|

|Fi|
(4.32)

Based on these definitions, the fuzzy entropy for an attribute subset P can be

defined as follows:

E(P ) =
∑

Fi∈RP

|Fi|
∑

Yi∈RP
|Yi|

H(Fi) (4.33)

This fuzzy entropy is monotonic and can be used to gauge the utility of fea-
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ture subsets in a similar way to that of the fuzzy-rough measure. By dividing the

entropy by log2(
∑

Dn∈RD
(|Dn|)

−1), the measure will be normalized. This can be in-

tegrated into a QuickReduct-style algorithm, employing a greedy hill-climbing

approach. Again, as the measure monotonically decreases with addition of fea-

tures, the search algorithm seeks to minimize this value in a manner similar to the

boundary region minimization approach.

Theorem 2. E-FRFS reducts are fuzzy-rough reducts. Suppose that P ⊆ C. If

E(P ) = 0 then P is a fuzzy-rough reduct.

Proof. Equation (4.20) can be rewritten as [96]:

µPOSRP
(D)(x) = sup

Dj

sup
Fi

min(inf
y∈U

I(µFi
(y), µDj

(y)))

If P is a fuzzy-rough reduct, then it must be the case that Fi ⊆ Dj or Fi ∩Dj =

∅∀Fi, Dj. If Fi ⊆ Dj, then p(Dj|Fi) = 1, and if Fi ∩ Dj = ∅, then p(Dj|Fi) = 0

∀Fi, Dj. Therefore each H(Fi) = 0, and E(P ) = 0.

4.4.4.1 Example

Returning to the example dataset in Table 4.16, the fuzzy entropy measure is used

to determine fuzzy-rough reducts. The algorithm begins with an empty subset,

and considers the addition of individual features. The attribute that results in the

greatest decrease in fuzzy entropy will ultimately be added to the reduct candidate.

For attribute a, the fuzzy entropy is calculated as follows (A = {a}):

E(A) =
∑

Fi∈RA

|Fi|
∑

Yi∈RA
|Yi|

H(Fi)

Each foreset Fi corresponds to one row in the matrix RA:

F1 1.0 1.0 0.699 0.0 0.0 0.0

F2 1.0 1.0 0.699 0.0 0.0 0.0

F3 0.699 0.699 1.0 0.0 0.0 0.0

F4 0.0 0.0 0.0 1.0 0.699 0.699

F5 0.0 0.0 0.0 0.699 1.0 1.0

F6 0.0 0.0 0.0 0.699 1.0 1.0

Considering F1, H(F1) must be calculated:

H(F1) =
∑

Dj∈RD

−p(Dj|F1) log2 p(Dj|F1)

|Dj|
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Each foreset Dj corresponds to one row in the matrix RD:

D1 1.0 0.0 1.0 0.0 0.0 1.0

D2 0.0 1.0 0.0 1.0 1.0 0.0

D3 1.0 0.0 1.0 0.0 0.0 1.0

D4 0.0 1.0 0.0 1.0 1.0 0.0

D5 0.0 1.0 0.0 1.0 1.0 0.0

D6 1.0 0.0 1.0 0.0 0.0 1.0

For D1:

H(D1) =
−p(D1|F1) log2 p(D1|F1)

|D1|

=
−(1.699/2.699) log2(1.699/2.699)

3.0

Calculating this for each Dj produces:

H(F1) = 0.140 + 0.177 + 0.140 + 0.177 + 0.177 + 0.140 = 0.951

The procedure is repeated for each remaining foreset:

H(F2) = 0.951, H(F3) = 0.871, H(F4) = 0.871,

H(F5) = 0.951, H(F6) = 0.951

Hence, the fuzzy entropy is:

E(A) =
∑

Fi∈RA

|Fi|
∑

Yi∈RA
|Yi|

H(Fi)

= 0.926 = E({a})

Repeating this process for the remaining attributes gives:

E({b}) = 0.921

E({c}) = 0.738
From this it can be seen that attribute c will cause the greatest decrease in fuzzy

entropy. This attribute is chosen and added to the potential reduct, R← R∪{c}.

The process iterates and the two fuzzy entropy values calculated are

E({a, c}) = 0.669

E({b, c}) = 0.0
Adding attribute b to the reduct candidate results in the minimum entropy for the

data, and the search terminates, outputting the subset {b, c}. The dataset can

now be reduced to only those attributes appearing in the reduct.
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4.4.5 Fuzzy-Rough Reduction with Fuzzy Gain Ratio

The Information Gain (IG) [184] is the expected reduction in entropy resulting

from partitioning the dataset objects according to a particular feature. For the

fuzzy case this can be expressed as:

IG(P ∪ {a}) = E(P )− E(P ∪ {a}) (4.34)

One limitation of the IG measure is that it favours features with many values.

The Gain Ratio (GR) seeks to avoid this bias by incorporating another term, split

information, that is sensitive to how broadly and uniformly the attribute splits

the considered data. Again, for the fuzzy case this can be expressed as:

SP (Q) =
∑

Fi∈RQ

|Fi|
∑

Yi∈RQ
|Yi|

log2

|Fi|
∑

Yi∈RQ
|Yi|

(4.35)

The Gain Ratio is then defined as follows:

GR(P ∪ {a}) =
IG(P ∪ {a})

SP (P ∪ {a})
(4.36)

When this is minimized, P∪{a} is a fuzzy-rough reduct due to the monotonicity of

the fuzzy entropy measure. This metric is applied in the same manner as described

previously for the feature selection approach.

4.5 Experimentation

This section presents the initial experimental evaluation of the selection methods

for the task of pattern classification, over nine benchmark datasets obtained from

[158] with two classifier learners.

4.5.1 Experimental Setup

For the fuzzy-rough methods, the  Lukasiewicz fuzzy connectives are used, with

fuzzy similarity defined in (4.19). After feature selection, the datasets are reduced

according to the discovered reducts. These reduced datasets are then classified

using the relevant classifier learning method.

Two learning mechanisms were employed to create classifiers for the purpose

of evaluating the resulting subsets from the feature selection phase: JRip [33] and

PART [236, 237].
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Dataset Objects Features Reduct size
E B L BE GR

Cleveland 297 14 10 9 9 10 10
Glass 214 10 9 9 10 10 9
Heart 270 14 9 8 8 8 9

Ionosphere 230 35 8 9 9 10 8
Olitos 120 26 6 6 6 6 6

Water 2 390 39 7 7 7 7 7
Water 3 390 39 7 7 7 7 7

Web 149 2557 23 20 21 20 18
Wine 178 14 6 6 6 6 6

Table 4.17: Reduct size and time taken

Dataset JRip
Unred. E B L BE GR

Cleveland 52.19 53.53 54.55 54.55 53.20 53.53
Glass 71.50 65.89 65.89 71.50 71.50 65.89
Heart 77.41 80.37 78.52 78.52 78.15 80.37

Ionosphere 86.52 84.37 88.26 88.26 89.15 84.37
Olitos 70.83 67.50 71.67 64.17 65.83 67.50

Water 2 83.85 82.30 85.64 85.64 84.36 83.59
Water 3 82.82 81.29 82.56 81.03 84.10 81.29

Web 58.39 53.02 46.97 55.03 50.37 52.34
Wine 92.70 94.94 95.50 95.50 93.82 91.57

Table 4.18: Resulting classification accuracies JRip (%)

Dataset PART
Unred. E B L BE GR

Cleveland 50.17 56.22 53.20 53.20 57.23 56.22
Glass 67.76 70.56 70.56 67.76 67.76 70.56
Heart 73.33 78.51 76.30 76.30 76.30 78.51

Ionosphere 88.26 86.95 86.09 86.09 88.26 86.95
Olitos 57.50 61.67 67.50 58.33 69.16 56.67

Water 2 83.08 83.59 84.62 84.62 84.10 82.31
Water 3 83.33 80.76 81.03 80.77 85.39 80.76

Web 42.95 55.70 55.03 57.72 52.34 53.69
Wine 93.82 94.94 94.38 94.38 94.94 93.82

Table 4.19: Resulting classification accuracies PART (%)
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4.5.2 Experimental Results

Table 4.17 compares the reduct size for fuzzy entropy-based FS (E), fuzzy bound-

ary region-based FS (B), fuzzy lower approximation-based FS (L), fuzzy bound-

ary/entropy FS (BE) and fuzzy gain ratio FS (GR). It can be seen that the new

entropy-based fuzzy-rough methods find smaller subsets in general (B, BE, GR).

The fuzzy boundary region-based method finds smaller or equally-sized subsets

than the L. This is to be expected, as B includes fuzzy upper approximation

information in addition to that of the fuzzy lower approximation. The entropy-

based methods perform similarly, with the fuzzy gain ratio measure finding the

smallest subsets in general. This demonstrates the utility of considering the split

information when evaluating subset quality.

Figure 4.3: Performance: JRip

Table 4.18 shows the average classification accuracy as a percentage obtained

using 10-fold cross validation. The classification accuracies are also presented in

Figs. 4.3 and 4.4 for each of the nine datasets. The classification was initially

performed on the unreduced dataset, followed by the reduced datasets which were

obtained using the feature selection techniques. All techniques perform similarly,

with both the boundary (B) and lower approximation (L) FS approaches showing

the most consistent results for both classifier learners. It would appear that the

GR approach also generally selects compact subsets at the expense of classification

accuracy. The BE approach demonstrates that there is some useful information to

be extracted from the fuzzy-rough boundary region for the PART classifier learner.

However as this approach only examines the boundary region information, the

certain information of the lower approximation is ignored and the results reflect
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Figure 4.4: Performance: PART

this. The boundary entropy measure attempts to analyse the level of order in the

boundary region and use this information to guide the FS task. The level of order

in the boundary however may not be always be indicative of the best quality of

subsets and hence performs better for some datasets over others - see Fig. 4.3.

4.6 Summary

This chapter has presented a new technique for tolerance rough set-based feature

selection and three new techniques for fuzzy-rough feature selection based on the

use of fuzzy entropy as an evaluation metric for the fuzzy-rough boundary region

(which are also applicable to the fuzzy-rough lower approximation).

Overall, the experimental results presented in this chapter have shown the

utility of employing the information contained in the boundary regions of tolerance

rough sets and fuzzy-rough sets to guide FS methods.

The work has demonstrated the potential benefits of using the boundary re-

gion information in the search for reducts. Moreover, this work has shown that

the approach originally proposed in Chapter 3, is capable of being extended to

methods which have the ability to handle real-valued data. In all experimental

studies, no attempt has been made to discover the optimal value for the param-

eter τ , as this would involve exhaustive experimentation for each dataset. In the

case of fuzzy-rough sets only the fuzzy connectives detailed here were employed

for minimisation, as again this would involve considerable experimentation. It

is expected that results obtained with such optimisation would show a marked

improvement over those that are observed here.
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Chapter 5

Association Learning

The nearest neighbour (NN) type of classifier approach is a popular method of

learning classifiers. This relates to its relative simplicity, and the fact that concept

of ‘nearest neighbours’ appeals to human intuition. The original kNN approach

[53] has seen many developments over the years and a fuzzy extension (FNN) [103],

and indeed a fuzzy-rough extension [194]. Despite the fact that the extension in

[194] is based on fuzzy-rough sets, no use is made of the fuzzy upper and lower

approximation concepts in classifying test objects. Given the great success in using

these concepts for feature selection [98], a new NN classifier was developed with

this in mind. This chapter describes the development of a fuzzy-rough nearest

neighbour (FRNN) classifier learner.

In addition to the work on association learning using the fuzzy-rough lower

approximation, another idea regarding the use of fuzzy dependency and its ap-

plicability to unsupervised FS is also proposed in this chapter. Since fuzzy de-

pendency has been used to find dependencies between conditional and decisional

attributes, it could also be applied to discover dependencies between sets of condi-

tional features. This strategy can be used to learn about the interdependencies of

features and eliminate those features which are subsumed by larger subsets, and

are therefore redundant.

5.1 Classifier Learning

A classifier learning technique is a systematic approach for building classification

models from data. All classifier learning techniques employ a learning algorithm to

identify a model or models which describe the relationship between the input data

and the class labels as accurately as possible, also termed the level of ‘fit’. The

model generated by a learning algorithm should fit the input data well and also be

able to correctly predict the class labels of objects that it has not previously ‘seen’.
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The ability of the models which have been learned to generalise well is therefore

of primary importance. The performance of a classifier learner can be assessed by

classification accuracy, that is the ratio of correctly predicted test objects to the

total number of test objects. Classification error may also be used, i.e the measure

of the percentage of incorrectly classified objects. Other aspects (when used in

conjunction with classifier error/accuracy) such as standard deviation can also be

useful indicators for determining the performance of classification algorithms.

5.1.1 Nearest Neighbours Classification

The k-nearest neighbours (kNN) algorithm [53] is a well-known classification tech-

nique that assigns a test object to the decision class most common among its k

nearest neighbours. In nearest neighbour (NN) classification, the training set is a

set of objects in a multidimensional feature space. The feature space is partitioned

into regions by locations and labels of the training objects. A point in the space is

assigned to the class C if it is the most common class amongst k-nearest training

objects. This is demonstrated in the diagram in Fig. 5.1; when k = 4 the test

object is classified to the class of those red objects, however when k = 8 the test

object will be classified to the class of blue objects. Euclidean distance is typically

used as the distance metric for numeric values. For application to areas such as

text classification, metrics like Hamming distance are employed as these can be

applied to non-numeric data.

For the algorithm training phase, the feature vectors and class labels of the

training objects are used to build a model. Then, for the classification phase, the

test object (whose class is unknown) is represented as an object in the feature

space. Distances from the new object to all training objects are calculated and

the k closest objects are chosen. There are a number of ways to classify the test

object to a particular class, one of the most common techniques is to predict

the test object with reference to the most common class amongst the k nearest

neighbours. A major drawback when using this technique to classify test objects to

a particular class is that classes with the most frequent objects tend to dominate

the prediction of the test object. This is because they tend to occur in the k

nearest neighbours when neighbours are calculated due to their larger number. In

order to overcome this, the distance of each of the k nearest neighbours must be

considered with respect to the distance from the test object and predict the class

of the new vector based on these distances. Note that the special case where a test

object class is predicted by the class of the closest single training object (k = 1)

is known as the nearest neighbour algorithm.

The ideal value for k depends upon the data. In general larger values tend
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Figure 5.1: Nearest neighbours (NN) classification

to reduce the effects of noise on the classification, but ‘blur’ the class boundaries

for the testing phase. Heuristic techniques may be used as an aid to selecting an

optimal value for k, e.g. cross-validation.

The accuracy of the kNN algorithm will degrade severely in the presence of

noisy or irrelevant features, or if the feature scaling is not consistent with impor-

tance.

5.1.2 Fuzzy Nearest Neighbours Classification

An extension of the kNN algorithm to fuzzy set theory (FNN) was introduced in

[103]. It allows partial membership of an object to different classes, and also takes

into account the relative importance (closeness) of each neighbour with respect to

the test instance. However, as correctly argued in [194], the FNN algorithm has

problems dealing adequately with insufficient knowledge. In particular, when every

training pattern is far removed from the test object, and hence there are no suitable

neighbours, the algorithm is still forced to make clear-cut predictions. This is
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because the sum of the predicted membership degrees to the various decision

classes is always required to be equal to 1.

The fuzzy k-nearest neighbours algorithm [103] aims to classify test objects

based on their similarity to a given number of neighbours and their neighbours’

degree of belonging to (crisp or fuzzy) class labels. For the purposes of FNN, the

extent to which an unclassified object y belongs to class X is defined as:

µX(y) =
∑

x∈N

µR(x, y)µX(x) (5.1)

where N is the set of object y’s k-nearest neighbours and µR(x, y) is the fuzzy

similarity of y and object x. In the traditional fuzzy kNN approach, this is defined

in the following way:

µR(x, y) =
||y − x||−2/(m−1)

∑

j∈N ||y − j||−2/(m−1)
(5.2)

where || · || denotes the Euclidean norm, and m is a parameter that controls the

overall weighting of this fuzzy similarity. The FNN algorithm (Fig. 5.2) employs

these definitions to determine the extent to which an object y belongs to each

class, typically classifying y to the class with the highest resulting membership.

The complexity of this algorithm for the classification of one test pattern is O(|U|+

k · |C|),

FNN(U,C,y,k).
U, the training data;
C, the set of decision classes;
y, the object to be classified;
k, the number of nearest neighbours.

(1) N ← getNearestNeighbours(y,K);
(2) ∀X ∈ C
(3) µX(y) =

∑

x∈N µR(x, y)µX(x)
(4) output arg max

X∈C
(µX(y))

Figure 5.2: The fuzzy kNN algorithm

5.2 Fuzzy-Rough Set Theory

In many real-world applications, data is often both crisp and real-valued, and this

is where traditional rough set theory encounters a problem. It is not possible in the

original theory to say whether two attribute values are similar and to what extent
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they are the same; for example, two close values may only differ as a result of noise,

but RST considers them as different as two values of a dissimilar magnitude. It is,

therefore desirable to develop techniques which provide a method for knowledge

modelling of crisp and real-value attribute datasets which utilise the extent to

which values are similar. This can be achieved through the use of fuzzy-rough

sets. Fuzzy-rough sets encapsulate the related but distinct concepts of vagueness

(for fuzzy sets) and indiscernibility (for rough sets), both of which occur as a result

of uncertainty in knowledge

Comprehensive coverage of fuzzy-rough sets and definitions for the fuzzy lower

and upper approximations concepts can be found in Section 4.4.1, but they are

provided here once again for completeness.

A T -transitive fuzzy similarity relation is used to approximate a fuzzy concept

X the lower and upper approximations are:

µRP X(x) = inf
y∈U

I(µRP
(x, y), µX(y)) (5.3)

µRP X(x) = sup
y∈U

T (µRP
(x, y), µX(y)) (5.4)

Here, I is a fuzzy implicator and T a t-norm. RP is the fuzzy similarity relation

induced by the subset of features P :

µRP
(x, y) = Ta∈P{µRa(x, y)} (5.5)

µRa(x, y) is the degree to which objects x and y are similar for feature a, and may

be defined in many ways - three common examples are demonstrated in Section

4.4.1.

In a similar way to the original crisp rough set approach, the fuzzy positive

region [99] can be defined as:

µPOSRP
(D)(x) = sup

X∈U/D

µRP X(x) (5.6)

An important issue in data analysis is the discovery of dependencies between

attributes. The fuzzy-rough dependency degree of D on the attribute subset P

can be defined as:

γ′
P (D) =

∑

x∈U

µPOSRP
(D)(x)

|U|
(5.7)

A fuzzy-rough reduct R can be defined as a minimal subset of features which

preserves the dependency degree of the entire dataset, i.e. γ′
R(D) = γ′

C
(D). Based

on this, a fuzzy-rough greedy hill-climbing algorithm can be constructed that

uses equation (5.7) to gauge subset quality. In [99], it has been shown that the
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dependency function is monotonic and that fuzzy discernibility matrices may also

be used to discover reducts.

5.2.1 Fuzzy-Rough Ownership kNN

Initial attempts to combine the FNN algorithm with concepts from fuzzy rough

set theory were presented in [194, 230] (this approach is denoted FRNN-O here).

In these papers, a fuzzy-rough ownership function is constructed that attempts

to handle both “fuzzy uncertainty” (caused by overlapping classes) and “rough

uncertainty” (caused by insufficient knowledge, i.e. attributes, about the objects).

All training objects influence the ownership function, and hence no decision is

required as to the number of neighbours to consider, although there are other

parameters that must be defined for its successful operation. It should be noted

that the algorithm does not use fuzzy lower or upper approximations to determine

class membership. The fuzzy-rough ownership function was defined as:

τX(y) =

∑

x∈U
µR(x, y)µX(x)

|U|
(5.8)

This can be modified to consider only the k nearest neighbours as follows:

τX(y) =

∑

x∈N µR(x, y)µX(x)

|N |
(5.9)

where N is the set of object y’s k-nearest neighbours. When k = |U| then the

original definition is obtained. The fuzzy similarity is determined by:

µR(x, y) = exp(−
∑

a∈C

κa(a(y)− a(x))2/(m−1)) (5.10)

where m controls the weighting of the similarity (as in FNN) and κa is a parameter

that decides the bandwidth of the membership, defined as

κa =
|U|

2
∑

x∈U
||a(y)− a(x)||2/(m−1)

(5.11)

The algorithm can be seen in Fig. 5.3. Initially, the parameter κa is calculated

for each attribute and all memberships of decision classes for test object y are set to

zero. Next, the weighted distance of y from all objects in the universe is computed

and used to update the class memberships of y via equation (5.8). Finally, when

all training objects have been considered, the algorithm outputs the class with

highest membership. The complexity of the algorithm is O(|C||U|+|U|·(|C|+|C|)).

To obtain the k-nearest neighbours version of this algorithm, line (3) should be

replaced with N ← getNearestNeighbours(y,k). The method still requires a choice
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of parameter m, which plays a similar role to that in FNN.

FRNN-O(U,C,C,y).
U, the training data;
C, the set of conditional features;
C, the set of decision classes;
y, the object to be classified.

(1) ∀a ∈ C

(2) κa = |U|/2
∑

x∈U
||a(y)− a(x)||2/(m−1)

(3) N ← |U|
(4) ∀X ∈ C, τX(y) = 0
(5) ∀x ∈ N
(6) d =

∑

a∈C
κa(a(y)− a(x))2

(7) ∀X ∈ C

(8) τX(y)+ = µX(x)·exp(−d1/(m−1))
|N |

(9) output arg max
X∈C

τX(y)

Figure 5.3: The fuzzy-rough ownership NN algorithm

5.2.2 Fuzzy-Rough Nearest Neighbours

At the heart of the FRNN approach described here, is the previously mentioned

ability of fuzzy-rough sets to handle real-valued and noisy data. This ability has

been exploited with great success for feature selection [98], and given that the

classification task is very closely related, the motivation for such an application

was clear. Initial work on this has been carried out in [92] and described in further

detail here.

To perform classification, the algorithm shown in Fig. 5.4 is used. The ra-

tionale behind the algorithm is that the lower and the upper approximation of a

decision class, calculated by means of the nearest neighbours of a test object y,

provide good clues to predict the membership of the test object to that class.

The membership of a test object y to each (crisp or fuzzy) decision class is

determined via the calculation of the fuzzy lower and upper approximation. The

algorithm outputs the decision class with the resulting best fuzzy lower and upper

approximation memberships. The complexity of the algorithm is O(|C| · (2|U|)).

Although k is not required, it can be incorporated into the algorithm by replacing

line (1) with “N ← getNearestNeighbours(y,k)”. As µRP
(x, y) becomes smaller,

x tends to only have a minor influence on µRP X(y) and µRP X(y).
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FRNN(U,C,y).
U, the training data;
C, the set of decision classes;
y, the object to be classified.

(1) N ← U

(2) µ1(y)← 0, µ2(y)← 0, Class ← ∅
(3) ∀X ∈ C
(4) µRP X(y) = inf

z∈N
I(µRP

(y, z), µX(z))

(5) µRP X(y) = sup
z∈N

T (µRP
(y, z), µX(z))

(6) if (µRP X(y) ≥ µ1(y) && µRP X(y) ≥ µ2(y))
(7) Class ← X
(8) µ1(y)← µRP X(y), µ2(y)← µRP X(y)
(9) output Class

Figure 5.4: The FRNN algorithm

5.2.3 Worked Example

In order to demonstrate the application of the algorithm, a small worked example

is presented. This example employs a dataset with 3 real-valued conditional at-

tributes and a single crisp discrete-valued decision attribute as the training data,

shown in Table 5.1. A further dataset illustrated in Table 5.2 containing 2 objects

is used as the test data to be classified.

Object a b c q
1 −0.4 −0.3 −0.5 yes
2 −0.4 0.2 −0.1 no
3 0.2 −0.3 0 no
4 0.2 0 0 yes

Table 5.1: Example training data

Object a b c q
t1 0.3 −0.3 0 no
t2 −0.3 −0.4 −0.3 yes

Table 5.2: Example test data

Referring to the FRNN algorithm described in the previous section, the first

step is to calculate the fuzzy upper and lower approximations for all decision

classes. In Table 5.1 there are 4 objects and as noted previously a decision attribute

which has 2 classes;yes, and no.
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Using the fuzzy similarity measure as defined in equation 4.1 the similarity

of each test object is compared to all of the objects in the training data. For

instance, consider the training object t1:

µR{P}(t1, 1) = T (µR{a}(t1, 1), µR{b}(t1, 1), µR{c}(t1, 1)) = 0

µR{P}(t1, 2) = T (µR{a}(t1, 2), µR{b}(t1, 2), µR{c}(t1, 2)) = 0.16

µR{P}(t1, 3) = T (µR{a}(t1, 3), µR{b}(t1, 3), µR{c}(t1, 3)) = 0.83

µR{P}(t1, 4) = T (µR{a}(t1, 4), µR{b}(t1, 4), µR{c}(t1, 4)) = 0.40

These similarity values can then be used to generate the lower and upper ap-

proximations. Note that the fuzzy connectives chosen for this example are the

 Lukasiewicz t-norm (max(x+y−1, 0)), and  Lukasiewicz fuzzy implicator (min(1−

x + y), 1).

For the decision concept X = yes these are:

µRP
X(t1) = inf

y∈U

{I(µRP
(t1, y), µX(y)}

= inf{I(0, 1), I(0.16, 0), I(0.83, 0), I(0.4, 1)} = 0.14

and,

µRP
X(t1) = sup

y∈U

{I(µRP
(t1, y), µX(y)}

= sup{T (0, 1), T (0.16, 0), T (0.83, 0), T (0.4, 1)} = 0.84

Similarly for the decision concept X = no:

µRP
X(t1) = inf{I(0, 0), I(0.16, 1), I(0.83, 1), I(0.4, 0)} = 0.16

µRP
X(t1) = sup{T (0, 0), T (0.16, 1), T (0.83, 1), T (0.4, 0)} = 0.86

With reference once again to the FRNN algorithm in Fig. 5.4, it can be seen

that the upper and lower approximation membership values for test object t1 for

the class label X = no are higher than those for when X = yes. The algorithm

will therefore classify t1 as belonging to the class X = no. The procedure can be

repeated for training object t2 which results in upper and lower approximation

values for X = no:

µRP
X(t2) = inf{I(0.6, 1), I(0.6, 0), I(0.17, 0), I(0.17, 1)} = 0.4
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µRP
X(t2) = sup{T (0.6, 1), T (0.6, 0), T (0.17, 0), T (0.17, 1)} = 0.6

And, X = yes:

µRP
X(t2) = inf{I(0.6, 0), I(0.6, 1), I(0.17, 1), I(0.17, 0)} = 0.4

µRP
X(t2) = sup{T (0.6, 0), T (0.6, 1), T (0.17, 1), T (0.17, 0)} = 0.6

In this case, both upper and lower approximation membership values for each

of the classes X = no and X = yes are identical. However because of line 6 of the

FRNN algorithm, t2 will be classified as belonging to X = yes.

5.3 Unsupervised Feature Selection

Conventional supervised FS methods evaluate various feature subsets using an

evaluation function or metric to select only those features which are related to, or

lead to, the decision classes of the data under consideration. However, for many

data mining applications, decision class labels are often unknown or incomplete,

thus indicating the significance of unsupervised feature selection. In a broad sense,

two different types of approach to unsupervised FS have been adopted: Those

which maximise clustering performance using an index function [42], [168], and

those which consider features for selection on the basis of dependency or relevance.

The central idea behind the latter, is that any single feature which carries little or

no further information than that subsumed by the remaining features is redundant

and can therefore be eliminated [37], [68], [153]. The approach described in this

work is related to these techniques since it involves the removal of features which

are considered to be redundant.

Fuzzy-rough sets are used as a basis for the technique described below. It em-

ploys the fuzzy-rough discernibility measure to examine the level of discernibility

between a single feature and subsets of other features. Where a single feature can

be discerned completely by a subset of features, that single feature is considered to

be redundant and can be removed from the feature set. FS is conducted through

the removal of features until no further inter-dependency can be found. The re-

sulting subset of original features can then be used to define the original complete

feature set.
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5.3.1 Unsupervised Fuzzy-Rough Feature Selection

In the previous chapter, it was demonstrated how FRS can be applied to the prob-

lem of supervised feature selection. One of the most important aspects relating

to feature set reduction is the fuzzy-rough dependency measure (see (5.7)), and it

is this measure which is also employed for the new unsupervised fuzzy-rough FS

(UFRFS) method described in this section. A worked example is also provided

here to illustrate the approach.

5.3.2 Fuzzy Dependency

The discovery of dependencies between attributes, is in general, an important

issue in data analysis. Intuitively, a set of attributes Q depends totally on a

set of attributes P , denoted P → Q, if all attribute values from Q are uniquely

determined by values of attributes from P .

The central idea behind the present work is that, as with supervised fuzzy-

rough FS [99], the fuzzy dependency measure can also be used to discover the

inter-dependency of features. This can be achieved by simply substituting the

decision feature(s) D in (5.7) of the supervised approach for any given feature or

group of features Q such that

γ′
P (Q) =

∑

x∈U

µPOSRP
(Q)(x)

|U|
(5.12)

where P ∩Q = ∅ and,

µPOSRP
(Q)(x) = sup

X∈U/Q

µRP X(x) (5.13)

Note that the dependency measure is not symmetric, i.e. (P → Q) 6= (Q→

P ). This is why a backwards elimination style search has been implemented for

the selection of features for the proposed method as oppose to a forward greedy

method that is commonly adopted in supervised FS.

Although the above proposal may be applied to evaluate the dependency be-

tween any two subsets of features in theory; practically, this may be computa-

tionally prohibitive. Fortunately, for unsupervised feature selection it is sufficient

to find the dependency between a single feature and other subsets of features. If

it has been established that one single feature depends fully on a feature subset

then that feature can be removed. Hence, the proposed approach only requires

the calculation of the dependency in the specific case of (5.12) where Q contains

just a single feature. In light of this observation, equation (5.3) as used in (5.13)

becomes:
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µRP Ruz(x) = inf
y∈U

I(µRP
(x, y), µRuz(y)) (5.14)

where z denotes the single feature under examination and Ruz indicates the tol-

erance class (or fuzzy equivalence class) for object u of z.

5.3.3 Algorithm

Algorithm 5.5 shows the new unsupervised FS approach. The algorithm starts

by considering all of the features contained in the dataset. Each feature is then

examined iteratively, and the fuzzy dependency measure is calculated. If the fuzzy

dependency (γ′) is equal to 1 then that feature can be removed. This process

continues until all features have been examined.

UFRQuickReduct(C,D)
F, the set of all features;
R, a feature subset.

(1) R← F
(2) T ← F
(3) for x ∈ T
(4) do T ← T − {x}
(5) if γ′

{R−{x}}({x}) = 1

(6) then R← R− {x}
(7) until T = ∅
(8) return R

Figure 5.5: The UFRQuickReduct algorithm

If no interdependency exists, the algorithm will return the full set of features.

The complexity for the search in the worst case is O(n), where n is the number

of original features. This is because the fuzzy dependency calculation is made for

every feature with respect to the subset of survival features.

5.3.4 Worked Example

To illustrate the ideas discussed, a small dataset shown in Table 5.3 is employed.

As recommended in [45], the  Lukasiewicz t-norm (max(x + y - 1, 0)) and the

 Lukasiewicz fuzzy implicator (min(1 - x + y, 1)) are adopted to implement the

fuzzy connectives. Other interpretations may also be used.

Using the fuzzy similarity measure defined in equation (4.19), the resulting

relations for each feature in the dataset are shown (for brevity) in Table 5.4.

133



Association Learning

Object a b c d
1 0.0 0.1 0.1 0.5
2 0.2 0.1 0.6 0.9
3 0.6 0.7 0.3 0.9
4 0.3 0.4 0.8 0.6
5 0.2 0.7 0.9 0.2

Table 5.3: Example dataset

Ra(x, y) Rb(x, y) Rc(x, y) Rd(x, y)
1.0 0.83 0.0 0.50 0.83 1.0 1.0 0.0 0.50 0.0 1.0 0.375 0.75 0.125 0.0 1.0 0.429 0.429 0.857 0.572
0.83 1.0 0.33 0.83 1.0 1.0 1.0 0.0 0.50 0.0 0.375 1.0 0.625 0.75 0.625 0.429 1.0 1.0 0.572 0.0
0.0 0.33 1.0 0.50 0.33 0.0 0.0 1.0 0.50 1.0 0.75 0.625 1.0 0.375 0.25 0.429 1.0 1.0 0.572 0.0
0.50 0.83 0.50 1.0 0.83 0.50 0.50 0.50 1.0 0.50 0.125 0.75 0.375 1.0 0.375 0.857 0.572 0.572 1.0 0.429
0.83 1.0 0.33 0.83 1.0 0.0 0.0 1.0 0.50 1.0 0.0 0.625 0.25 0.375 1.0 0.572 0.0 0.0 0.429 1.0

Table 5.4: Fuzzy similarity relations

Initially, the lower approximations of the concepts of a given feature must be

computed for each of the other features in the dataset. This is then used to cal-

culate the dependency degree. For the example dataset, consider the dependency

of the feature b on the feature a:

µR{a}Rub(x) = inf
y∈U

I(µR{a}
(x, y), µRub(y)) (5.15)

Thus, for a particular instance where object x = 2, and u = 2, this is (as high-

lighted in Table 5.4):

µR{a}R2b(2) = inf
y∈U

I(µRa(2, y), µR2b(y)) =

inf{I(0.83, 1), I(1, 1)I(0.33, 0)I(0.83, 0.5)I(1, 0)} = 0

and for the remaining objects regarding a (i.e. u ∈ {1, 3, 4, 5}) this is:

µR{a}R1b(2) = inf{I(1, 1), I(0.83, 1)I(0, 0)I(0.5, 0.5)I(0.83, 0)} = 0.0

µR{a}R3b(2) = inf{I(0, 1), I(0.33, 1)I(1, 0)I(0.5, 0.5)I(0.33, 0)} = 0.0

µR{a}R4b(2) = inf{I(0.5, 1), I(0.83, 1)I(0.5, 0)I(1, 0.5)I(0.83, 0)} = 0.17

µR{a}R5b(2) = inf{I(0.83, 1), I(1, 1)I(0.33, 0)I(0.83, 0.5)I(1, 0)} = 0.0

This process is repeated for every object regarding b in order to calculate

the remaining lower approximations for each object. These can then be used to

calculate the positive regions:

µPOSR{a}({b})
(1) = 0.5

µPOSR{a}({b})
(2) = 0.5
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µPOSR{a}({b})
(3) = 0.67

µPOSR{a}({b})
(4) = 0.67

µPOSR{a}({b})
(5) = 0.67

Therefore the resulting dependency degree is:

γ′
{a}({b}) =

∑

x∈U

µPOSRP
(x)

|U|
=

3.01

6
= 0.602

In the interests of brevity only the computation of the dependency of feature

b upon feature a is illustrated here. However, in the actual implementation of

the UFRFS algorithm, the first step is to consider the dependency of {a} on the

subset {b, c, d}. For the example dataset this leads to the following result:

γ′
{b,c,d}({a}) = 1.0 (T = {b, c, d})

γ′
{c,d}({b}) = 0.9569 (T = {c, d})

γ′
{b,d}({c}) = 1.0 (T = {d})

γ′
{b}({d}) = 0.2 (T = ∅)

Note that each time γ′ = 1, the feature in question is eliminated resulting in

the final subset {b, d}, after all features have been examined.

5.4 Experimentation

This section presents the experimental evaluation of the unsupervised FS method

to support the task of pattern classification, over eight real-valued benchmark

datasets (obtained from [158]) with three classifier learners. The approach is also

compared with an advanced supervised approach [99] which shares the common

mathematical foundations as the present work. Results are presented in terms of

selected subset size and classification accuracy.

5.4.1 Experimental Setup

The FS method employs  Lukasiewicz fuzzy connectives, with fuzzy similarity de-

fined in (4.19). Following feature selection, the datasets are reduced according to

the discovered reducts. These reduced datasets are then classified using the rel-

evant classifier learning method (as described below) and evaluated with 10-fold

cross validation.

Three learning mechanisms were employed to create classifiers for the purpose

of evaluating the resulting subsets from the feature selection phase: JRip [33],

PART [236] [237], and J48 [184]. For a more detailed description of these classifier

learners, see Section 3.5.1.
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Association Learning

All of the data which is used in this experimental investigation is labelled.

However, before applying UFRFS the decision feature is removed from the data,

and the approach operates on the unlabelled data only. When learning classifiers,

or applying supervised FRFS the complete dataset including the decision feature

is used.

5.4.2 Experimental Results

The results presented in Table 5.5, show the subset sizes discovered by UFRFS

and the state of the art supervised FRFS method of [99]. It can be seen that the

proposed method manages reduction in all cases and returns substantial levels of

dimensionality reduction for some datasets (e.g. water2, water3, olitos). These

results compare well with the supervised approach and show that UFRFS may

even find smaller subsets in some cases.

Original number of FRFS UFRFS
Dataset features objects Subset size Subset size

water 2 38 390 7 7
water 3 38 390 7 7

cleveland 13 297 9 11
glass 9 214 9 7
heart 13 270 8 11

ionosphere 34 230 8 9
olitos 25 120 6 6
wine 13 178 10 7

Table 5.5: Subset sizes for UFRFS

The classification results are presented in Table 5.6. These demonstrate that

despite the fact that UFRFS does not consider the decision feature for reduction,

it retains useful features. This is borne out by comparison to the classification

accuracy of the unreduced data, showing that the greatest decrease amongst all

of the reduced data is only in the order of 10% overall. There are also cases where

the use of UFRFS-reduced data outperforms the unreduced data and that of the

FRFS-reduced data.

These promising results demonstrate that the UFRFS method can be used

effectively to select features when class labels are not known. The classification

accuracies for FRFS and UFRFS are generally comparable.

5.5 Summary

This chapter has presented some novel fuzzy-rough techniques for association

learning based on the fuzzy upper and lower approximation concepts. The ap-
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5.5 Summary

Unreduced Data FRFS Reduced Data UFRFS Reduced Data
Dataset J48 PART JRip J48 PART JRip J48 PART JRip

water 2 83.33 83.08 83.85 80.76 78.97 82.82 80.00 81.53 81.03
water 3 77.43 83.33 82.82 78.55 79.74 80.00 75.64 76.67 78.71

cleveland 51.85 50.17 52.19 55.01 53.19 54.55 53.19 51.51 55.21
glass 67.28 67.76 71.50 65.65 67.76 65.89 64.01 69.62 64.95
heart 76.66 73.33 77.41 78.84 76.30 75.82 71.48 68.69 69.25

ionosphere 87.82 88.26 86.52 83.98 85.23 86.96 83.47 82.17 83.91
olitos 67.50 57.50 70.83 65.00 64.17 63.33 55.00 60.00 55.86
wine 94.38 93.82 92.70 92.20 94.38 88.20 95.50 94.38 94.38

Table 5.6: Unreduced, supervised FRFS, and UFRFS Classification accuracies
(%)

proaches are data-driven, and no user-defined thresholds are required. A choice

must however be made with regard to similarity relations and fuzzy connectives.

Note that these choices must also be made for all existing approaches which share

the same underlying mathematical foundations however. A short experimental

evaluation for 6 benchmark datasets is presented and the approach is compared

with 2 other NN classifiers.

The detail and experimental results presented here offer only a glimpse of the

technique. There is much potential for further work with regard to the measures

which are currently utilised. Chapter 6 demonstrates the approach more fully

where it is applied to the real-world problem of mammographic risk analysis.

Also presented is the fuzzy-rough approach to unsupervised feature selection.

The approach employs a backward elimination-type search to remove features from

the complete set of original features. As with the FRNN classifier, no thresholding

information is required. The approach is compared with an advanced supervised

approach and demonstrates that it can effectively remove redundant features. The

subsets returned by this unsupervised method are of similar size to that of the

supervised approach and classification of the reduced data shows that the method

selects useful features which are of comparable quality.
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Chapter 6

Application to Mammographic

Image Analysis

Breast cancer is a major health issue, and the most common amongst women in

the EU. It is estimated that 8–13% of all women will develop breast cancer at

some point during their lives [20], [56]. Furthermore, in the EU and US, breast

cancer is recognised as the leading cause of death of women in their 40s [20], [23],

[56]. Although increased incidence of breast cancer has been recorded, so too

has the level of early detection through the screening of potential occurence using

mammographic imaging and expert opinion. However, even expert radiologists can

sometimes fail to detect a significant proportion of mammographic abnormalities.

In addition, a large number of detected abnormalities are usually discovered to be

benign following medical investigation.

Existing mammographic Computer Aided Diagnosis (CAD) systems [86, 185]

concentrate on the detection and classification of mammographic abnormalities.

As breast tissue density increases however, the effectiveness of such systems in

detecting mammographic abnormalities is reduced significantly. Also, it is known

that there is a strong correlation between mammographic breast tissue density and

the risk of development of breast cancer. Automatic classification which has the

ability to consider tissue density when searching for mammographic abnormalities

is therefore highly desirable. It must be stressed at this point that the problem un-

der consideration here is mammographic risk analysis rather than mammographic

diagnosis from images, an area where many publications have been written with

respect to the application of machine learning techniques [2], [18], [71], [189]. As

such, the technique aims to classify image data objects into one of four BIRADS

categories [1] shown in Fig. 6.1 which relates to the tissue type found in each

mammogram. Therefore, the purpose of the technique is not classify breast tissue

abnormalities, but rather give an indication of the tissue density.
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Figure 6.1: Example mammograms where breast tissue density increases from L-R
Corresponding to BIRADS class I(far left) to class IV (far right)

In this chapter, a unified approach which employs a number of rough and

fuzzy-rough approaches to deal with mammographic data is presented. This has

been proposed as there are many and varied methods which can be employed for

dealing with complex real-world data, and this can often lead to much confusion

when choosing e.g which classifier to use, or which feature selection approach to

employ for ease of computation or reduction of feature measurement. In particular,

an approach to dealing with mammographic data is presented which considers each

step from feature extraction through to data classification, although this chapter

focuses primarily on the latter two steps.

Knowledge discovery from images often requires the maximisation of all of the

information contained within the image. This means that initially large numbers of

features are often extracted from the image. These features typically contain high

levels of redundancy, irrelevancy, and noise. However, given that it is not known

a-priori which features are most valuable and which are not, this is a necessary

step. In the unified approach proposed here, a number of rough and fuzzy-rough

methods are employed in an attempt to identify the most valuable features such

that the process of extracting large amounts of features can be avoided. The se-

lected features can then be fed back into the extraction phase ensuring that only

those features need to be identified. The benefits of adopting such an approach

include faster identification of relevant features, thus reducing the amount of time

and computational effort required in the feature extraction phase. Use of fewer

features means that any algorithms employed in both the training and testing

phases of the classifier are potentially more accurate as there are fewer noisy fea-

tures present. Additionally, fewer features means less computational overhead and

hence the task is performed in less time. This helps to reduce the demands on ex-

perts’ time, but most importantly can result in more accurate breast abnormality
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Application to Mammographic Image Analysis

risk assessments.

In addition to the proposed unified approach described previously, a fuzzy-

rough nearest-neighbours (NN) classifier (described previously in Section 5.1.2) is

applied to the image data. This classifier is compared with other approaches and

demonstrates a significant increase in performance when compared with existing

methods.

An overview of related work is presented and, this forms the basis for the work

demonstrated later. The unified fuzzy-rough framework is also demonstrated.

Comparative results are presented for a number of dimensionality reduction and

classifier learner approaches within the framework discussed earlier.

6.1 System Overview

As mentioned previously, the problem considered in this chapter is that of mam-

mographic risk analysis, where mammographic breast tissue density information

extracted from images is used to assess how likely a woman is to develop breast

cancer. The basic steps involved are outlined in Fig. 6.2, with detailed background

described in [167]. The initial stages involve the segmentation and filtering of the

mammographic images: all mammograms are pre-processed to identify the breast

region and remove image background, labels, and pectoral muscle areas. This seg-

mentation step results in a very minor loss of skin-line pixels in the breast area,

however these pixels are not required for tissue estimation.

Then, a feature extraction step is performed, where the fuzzy c-means (FCM)

algorithm [13] is employed which results in the devision of the breast into two

clusters. A co-occurrence matrix (which is essentially a 2D histogram) is then

used to derive a feature set which results in 10 features to describe morphological

characteristics and 216 for the texture information (226 total). This feature set

is then labelled using the consensus opinion of 3 experts to assign a label to

each object mammogram using the BIRADS [1] classification. This consensus is

determined where the classification for a given mammogram, which two or three

radiologists agreed upon (majority vote) is selected as the ‘consensus class’. If all

experts classified a single mammogram differently, the median value is chosen as

consensus opinion. The divergence in the opinion of the experts, is a major factor

which often frustrates the use of automatic methods. This highlights the need

to remove inter-observer (inter-operator) variability through the development of

more autonomous approaches.

In this work the classification step is replaced with a dimensionality reduction

phase and a classification phase. The existing feature set is used, as is the consen-

sus expert labelling of the data. A unified framework such as that shown in Fig.
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6.1 System Overview

Figure 6.2: Mammographic density classification

6.3 is adopted to simplify the way in which knowledge can be efficiently learned

from the (mammographic) training data, and therefore applied to real-world risk

assessment problems. In this work, the focus lies in the implementation of rough

and fuzzy-rough techniques for the dimensionality reduction and classifier learner

steps. The approach for the feature extraction step employed here is documented

in [167], however there is no reason why future work could not include a fuzzy-

rough method to accomplish this in an effort to unify the underlying mathematical

approach (see conclusion chapter for further discussion).

Efficient, and in particular, accurate classification of mammographic imaging is

of high importance. Any improvement in accuracy for automatic mammographic

classification systems can result in a reduction in the amount of required expert

analysis thus improving the time taken to perform breast abnormality risk as-

sessment. Also, by reducing inter-expert variation the resulting automatic risk

assessments can be more accurate. The data in mammographic imaging is real-

valued and as mentioned previously can be noisy. Clearly, any classifier employed

must therefore have the ability to deal with such data. Discrete methods require

that the real-valued data is discretised and thus result in information loss, how-

ever the methods described in this work require no discretisation and use only the
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information contained within the data.

Figure 6.3: Unified fuzzy-rough framework for mammographic data analysis

6.1.1 Dimensionality Reduction

In this work, feature selection (FS) is utilised as the dimensionality reduction tech-

nique. This allows the identification of a minimal feature subset from a problem

domain while retaining both a suitably high accuracy and the semantics entailed

by the original features. In many real world problems, FS is essential due to

the level of noisy, irrelevant or misleading features. By removing these factors,

techniques for learning from data can benefit greatly. See the earlier literature re-

view in Section 2.1.2 for a more detailed coverage of FS, and some representative

applications.

6.1.1.1 Tolerance Rough Set Feature Selection

Unfortunately, one of the main disadvantages of the rough set methodology is its

inability to deal with real-valued data unless the data is discretised which can

result in information loss. One particular extension which has been proposed to

address this shortcoming is the tolerance rough set model (TRSM) [209]. Other

extensions such as variable precision rough sets (VPRS) [263] deal with misclassi-

fication of objects rather than real-valued data.
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6.1 System Overview

The work in this chapter utilises a rough set-based FS approach which has the

ability to deal with real-valued data. It implements a version of tolerance rough

sets [209] which also takes advantage of the information in the boundary region or

region of uncertainty [144]. Section 4.2 contains a detailed study of this approach.

6.1.1.2 Fuzzy-Rough Feature Selection (FRFS)

The requirement of rough set theory to rely on discrete data implies an objectivity

in the data that is simply not present. For example, consider an attribute Blood

Pressure in a medical dataset. In the real world, this is a real-valued measurement

but for the purposes of RST must be discretized into a small set of labels such

as Normal, High, etc. Subjective judgments are therefore required to establish

boundaries for objective measurements.

A more appropriate way of handling this problem is the use of fuzzy-rough

sets [52]. Subjective judgments are not entirely removed as fuzzy set membership

functions still need to be defined. However, the method offers a high degree of flex-

ibility when dealing with real-valued data, enabling the vagueness and imprecision

present to be modeled effectively.

Fuzzy-rough sets encapsulate the related but distinct concepts of vagueness

(for fuzzy sets) and indiscernibility (for rough sets), both of which occur as a

result of uncertainty in knowledge. Vagueness arises due to a lack of distinction

or hard boundaries in the data itself. This is typical of human communication

and reasoning. Rough sets can be said to model ambiguity resulting from a lack

of information through set approximations.

Fuzzy-rough sets and their applications to FS are described in detail in Sections

2.5.2 and 4.4.1.

6.1.2 Nearest Neighbour Classification

In the previous work of [167], conventional crisp classifier learners were employed

for the classification of the mammographic data – kNN, C4.5 [184], and a com-

bined Bayesian estimation approach type classifier [53]. In this work a number of

hybrid fuzzy set and rough set-based classifiers have been employed to classify the

mammographic data.

In this section a number of existing classifiers as well as the application of

a hybrid fuzzy-rough classifier described previously in Chapter 5 are examined.

These include: FNN [103], a fuzzy version of the well-known kNN algorithm [53];

FRNN-O a fuzzy-rough ownership function based classifier [194, 230]; and VQNN

a nearest neighbour (NN) classifier based on the vaguely quantified rough set

model [36](discussed in Section 2.4.4).

143



Application to Mammographic Image Analysis

The kNN algorithm assigns a test object to the decision class most common

among its ‘k nearest neighbours’, i.e., the k training objects that are closest to

the test object. An extension of the kNN algorithm to fuzzy set theory (FNN)

was introduced in [103]. It allows partial membership of an object to different

classes, and also takes into account the relative importance (proximity) of each

neighbour with respect to the test instance. However, as correctly argued in [194],

the FNN algorithm has problems dealing adequately with insufficient knowledge.

In particular, when every training pattern is far removed from the test object, and

hence there are no suitable neighbours, the algorithm is still forced to make clear-

cut predictions. This is because the sum of the predicted membership degrees to

the various decision classes is always required to be equal to 1.

6.1.3 Fuzzy-Rough Ownership kNN

Initial attempts to combine the FNN algorithm with concepts from fuzzy rough

set theory were presented in [194, 230] (here denoted FRNN-O). In these papers, a

fuzzy-rough ownership function is constructed that attempts to handle both “fuzzy

uncertainty” (caused by overlapping classes) and “rough uncertainty” (caused by

insufficient knowledge, i.e. attributes, about the objects). All training objects

influence the ownership function, and hence no decision is required as to the

number of neighbours to consider, although there are other parameters that must

be defined for its successful operation. The FRNN-O approach is covered in detail

in Section 5.2.1.

Note that the algorithm does not use fuzzy lower or upper approximations to

determine class membership unlike the method proposed in Chapter 5. However,

the method still requires a choice of parameter m, which plays a similar role to

that in FNN.

6.1.4 Vaguely Quantified Rough Sets (VQRS)

Equations (5.3) and (5.4) have been conceived with the purpose of conserving the

traditional lower and upper approximations in mind. Indeed, when X and RP

are both crisp, it can be verified that the original crisp rough set definitions are

recovered. Note in particular how the inf and sup operations play the same role as

the ∀ and ∃ quantifiers of the classical rough sets approach, and how a change in

a single element can thus have a large impact on equations (5.3) and (5.4). This

makes fuzzy-rough sets equally susceptible to noisy data (which is difficult to rule

out in real-life applications) as their crisp counterparts.

To make up for this shortcoming, the work in [36] proposed to soften the

universal and existential quantifier by means of vague quantifiers like most and
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some. Mathematically, the vague quantifiers were modeled in terms of Zadeh’s

notion of a regularly increasing fuzzy quantifier Q: an increasing [0, 1] → [0, 1]

mapping that satisfies the boundary conditions Q(0) = 0 and Q(1) = 1.

Examples of fuzzy quantifiers can be generated by means of the following

parametrised formula, for 0 ≤ α < β ≤ 1, and x in [0, 1],

Q(α,β)(x) =























0, x ≤ α
2(x−α)2

(β−α)2
, α ≤ x ≤ α+β

2

1− 2(x−β)2

(β−α)2
, α+β

2
≤ x ≤ β

1, β ≤ x

(6.1)

For instance, Q(0.1,0.6) and Q(0.2,1) might be used respectively to reflect the vague

quantifiers some and most from natural language.

Once a couple (Ql, Qu) of fuzzy quantifiers is fixed, the Ql-upper and Qu-lower

approximation of a fuzzy set A under a fuzzy relation R are defined by

µQu

RP X(y) = Qu

(

|RP y ∩X|

|RP y|

)

(6.2)

µQl

RP X
(y) = Ql

(

|RP y ∩X|

|RP y|

)

(6.3)

for all y in U. In other words, an element y belongs to the lower approximation

of X if most of the elements related to y are included in X. Likewise, an element

belongs to the upper approximation of X if some of the elements related to y are

included in X. Notice that when X and RP are a crisp set and a crisp equivalence

relation respectively, the approximations may still be non-crisp.

The algorithm given in Fig. 5.4 can be adapted to perform VQRS-based near-

est neighbours (VQNN) classification by replacing µRP X(y) and µRP X(y) with

µQu

RP X(y) and µQl

RP X
(y). The computational complexity of this approach is similar

to that of classical rough set approach.

6.2 Fuzzy-Rough Nearest Neighbours

This section provides a description of the new fuzzy-rough nearest neighbour al-

gorithm. The need for such a classification technique arose from the fact that

although the FRNN-O algorithm proposed in [194] uses a fuzzy-rough framework;

no use is made of the fuzzy upper and lower approximations to determine class

membership. This has prompted the development of an approach which was built

upon the existing fuzzy-rough techniques which had been applied successfully to

the feature selection problem [99]. As both the FS problem and the classification
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problem are similar is many ways, the motivation was therefore quite clear.

The intuitive basis for the approach is that the lower and the upper approxi-

mation of a decision class, calculated by means of the nearest neighbours of a test

object y, provide good clues to predict the membership of the test object to that

class. Thus, by calculating the upper and lower approximation of a given decision

class these can be employed as a metric for the test object in determining class

membership.

6.2.1 FRNN Algorithm

The membership of a test object y to each (crisp or fuzzy) decision class is de-

termined via the calculation of the fuzzy lower and upper approximation. The

algorithm outputs the decision class with the resulting best fuzzy lower and upper

approximation memberships. More specifically, if the membership of y to the fuzzy

lower approximation of class C is high, it means that all of y′s neighbours belong

to class C, while a high membership value of the fuzzy upper approximation of

C indicates that at least one neighbour or neighbours belong to that class. The

algorithm iterates through all of class concepts (X) in the training data. The deci-

sion class which results in the highest upper and lower approximation membership

values is assigned to the test object.

The algorithm works by examining each of the classes in the training data

in-turn. It computes the membership of a test object to the fuzzy upper and

lower approximations. These values are then compared with the highest existing

values. If the approximation membership values for the currently considered class

are higher, then both are assigned these values and that class label is assigned to

the test object. If not, the algorithm continues to iterate through all remaining

decision classes. Classification accuracy is calculated by comparing the output

with the actual class labels of the test objects. Further detailed description as

well as a worked example are presented in Section 5.1.2.

6.3 Experimentation

In this section the results of applying the previously described classifiers and FS

preprocessors are presented. Initially the classifiers are applied to the unreduced

extracted feature data - i.e. data on which FS has not been performed. Clas-

sification is then performed on data which has been reduced by two previously

described FS preprocessors DMTRS [144], and FRFS [99] as shown in Fig. 6.4.

The results are then assessed for both FS methods used in conjunction with each

of the individual classifiers. Additionally the results obtained in this work are
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briefly compared with those reported in [167].

Figure 6.4: Experimental setup

Initially, the fuzzy-rough set classification techniques are applied to the unre-

duced datasets, and the 10-fold-cross validation (10-fold CV) approach is used to

generate the classification models. The dimensionality of the data is then reduced

and a summary of the average classification values achieved for each FS method

is used to compare the methods.

6.3.1 Mammographic Risk Analysis Data

There are two datasets considered here, and both are available in the public do-

main: the Mammographic Image Analysis Society (MIAS) database [216], and the

Digital Database of Screening Mammography (DDSM) [74]. The MIAS dataset is

composed of Medio-Lateral-Oblique (MLO) left and right mammograms from 161

women (322 objects). Each mammogram object is represented by 281 features

extracted using the process described earlier in Section 6.1 and in further detail

in [167]. The spatial resolution of the images is 50µm× 50µm and quantized to 8

bits with a linear optical density in the range 0− 3.2.

The DDSM database provides four mammograms, comprising left and right

Medio-Lateral-Oblique (MLO) and left and right Cranio-Caudal (CC) views, for

most women. To avoid bias only the right MLO mammogram for each woman is

selected. The dataset contains 832 mammograms (objects) and again 281 features

obtained in the same manner as those for the MIAS dataset above.

The class labels for each mammogram are assigned by three experts consensus

opinion as described previously in Section 6.1. There are four discrete labels

ranging from 1 to 4 relating to the BIRADS classification [1], where 1 represents

a breast that is entirely fatty and 4 represents a breast that is extremely dense.
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6.3.2 Experimental Setup

The FRFS preprocessor employs the fuzzy similarity defined in equation (4.19)

along with the  Lukasiewicz t-norm (max(x + y− 1, 0)) and the  Lukasiewicz fuzzy

implicator (min(1−x+y, 1)). It has been shown that these work particularly well

when used for fuzzy-rough feature selection [99].

The DM-TRS preprocessor used 4 different tolerance values (τ) – 0.97 and

0.98 for the MIAS dataset, while for the DDSM dataset the values 0.98 and 0.99

were chosen. These were the values that empirically demonstrated the best level

of dimensionality reduction for each of the datasets respectively.

For each of the classifier learners the value of k is initialised as 30 and then

decremented by 1 each time, resulting in 30 experiments for each dataset. Such a

wide range of values for k ensures a comprehensive exploration and comparison of

each of the classifiers. Cross validation of 10 times 10-fold cross-validation (10-fold

CV) is performed for each experiment. Note that the k parameter is essential only

for FNN and is not required for the other classifier learners. However, for ease

of comparison, the other approaches have been adapted such that a k value can

be specified. This is achieved by calculating the test objects k nearest neighbours

rather than using all of the objects in the training set. For FNN and FRNN-O, m

is set to 2. The VQNN approach was implemented using the commonly adopted

Ql = Q(0.1,0.6) and Qu = Q(0.2,1.0), according to the general formula in equation

(6.1).

For the new classifier approach, although there are no parameters to tune,

decisions about which fuzzy relations and implicators must still be made. For

the purpose of the experimentation documented here, the fuzzy relation given in

equation (4.19) was chosen for simplicity. In the FRNN approach, the min t-norm

and the Kleene-Dienes implicator I (defined by I(x, y) = max(1−x, y)) were used.

6.3.3 Unreduced Data

The classification accuracy results for the unreduced data are presented in this

section. This was achieved by applying each of the four classifiers to both of the

datasets which gives a background against which to make subsequent comparative

studies.

Considering the classification accuracy results illustrated in Fig. 6.5, it can be

seen that there is little variation in the performance for the MIAS dataset. The

FRNN-O approach seems to have a slight advantage, however this is only in the

order of 2-6% for all values of k. The results for the DDSM dataset tell a slightly

different story with VQNN achieving a small but clear advantage. FNN also

appears to marginally outperform FRNN, and FRNN-O following a similar trend
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Figure 6.5: Classification accuracy: Unreduced MIAS data for the four methods
and different values of k – 10CV

to that of VQNN. Generally, as the number of objects in the dataset increases, so

too does the potential for measurement noise. The noise-tolerant characteristics

of VQNN and the fact that the DDSM dataset has many more objects than the

MIAS dataset may explain why VQNN performs particularly well in this case.

It is important to note at this point that the levels of performance shown for

the FRNN approach are of little importance in this section as the data prior to

reduction with FS contains much redundancy, irrelevance, and noise.

6.3.4 Reduced Data

In this section the results of classifying the MIAS and DDSM datasets following

feature selection are presented. Classification accuracy results are provided for

both DMTRS and FRFS, using both 10-fold CV and LOOCV. In Table 6.1, the

subset sizes obtained following FS are presented. It is interesting to note that a

substantial level of dimensionality reduction is achieved for both approaches. A

reduction of 97.15% and 97.5% were achieved for the MIAS dataset, while the

DDSM dataset (Table 6.2) achieved 97.15%, and 98.22%.
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Figure 6.6: Classification accuracy: Unreduced DDSM data for the four methods
and different values of k – 10CV

Orig No. DMTRS DMTRS FRFS
of feats (τ=0.97) (τ=0.98)

281 8 7 7

Table 6.1: Reduct sizes for the MIAS dataset following the application of DMTRS
and FRFS

6.3.4.1 DMTRS Reduced Data

The results presented in this section illustrate the classification accuracies obtained

when using DMTRS as a FS preprocessing step. There are a total of four diagrams

(Fig. 6.7 – 6.10), two of which represent the tolerance values for the MIAS dataset

(0.97 and 0.98), and the remaining two represent the values for the DDSM dataset

(0.98 and 0.99).

Orig No. DMTRS DMTRS FRFS
of feats. (τ=0.98) (τ=0.99)

281 8 5 8

Table 6.2: Reduct sizes for the DDSM dataset following the application of DMTRS
and FRFS
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Figure 6.7: Classification accuracy: DMTRS reduced MIAS data for the four
methods and different values of k – 10-fold CV

6.3.4.2 FRFS Reduced Data

The results shown in Fig. 6.11 and Fig. 6.12 are those obtained when applying

the classifiers to the data following the application of FRFS to reduce the data.

Perhaps the most obvious aspect of the results demonstrated here is the in-

crease in classification accuracy for all classifiers following the use of FS. The

advantages of applying FS are manifold, however in this case the level of dimen-

sionality reduction and the aforementioned increase in classification accuracy are

borne out in Figs. 6.7–6.12.

6.3.5 Investigation I: Unreduced Data for All Classifiers

As clearly demonstrated in Figs. 6.7–6.12 employing either method for FS re-

sults in a significant increase in classification accuracy. Importantly, the FRNN

technique proposed in Chapter 4 performs best for both the MIAS and DDSM

datasets, with the VQNN approach closely mirroring the performance of FNN.

FRNN-O also seems to show similar accuracy for some values of k to FRNN but

fails to do so consistently.

Figs. 6.7 – 6.12 present the classification accuracy results following the appli-

cation of both the FRFS and DMTRS feature selection pre-processors. What is

most noticeable about these results is the overall increase in classification accu-
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Figure 6.8: Classification accuracy: DMTRS reduced MIAS data for the four
methods and different values of k – 10-fold CV

racy when FS has been employed. This not only highlights the level of redundant

features in the original (unreduced) dataset, but also the ability of fuzzy-rough FS

methods to reduce the data dimensionality considerably.

In order to aid comparison, the classification results of Figs. 6.7–6.12 have

been summarised in Tables 6.3 and 6.4. Note that this summary is of average

classification accuracy values. It is interesting to note the subset sizes obtained

for each FS approach. For example in Table 6.1, the DMTRS approach achieves a

subset sizes of 7 and 8 for the MIAS dataset. In Table 6.3, it can be seen that there

is little difference in average classification accuracy between each of the tolerance

values for DMTRS. Similarly, FRFS produces average classification results which

are comparable with those of DMTRS for all classifiers. For the DDSM dataset

however the DMTRS method manages better classification accuracies than FRFS

for τ=0.98 for all classifiers except FRNN-O. Indeed the standard deviation value

for this DMTRS subset is also lower than that achieved by FRFS. For the subset

selected when τ=0.99, which is of size 5 compared to that of FRFS which is 8,

there is little to separate FRFS and DMTRS in terms of average classification

accuracy despite the greater level of dimensionality reduction.

152



6.3 Experimentation

Figure 6.9: Classification accuracy: DMTRS reduced DDSM data for the four
methods and different values of k – 10-fold CV

Classifier FRFS st.dev DMTRS st.dev DMTRS st.dev
(τ = 0.97) (τ = 0.98)

FRNN 86.99 6.85 86.69 7.16 86.30 7.07
FNN 75.78 8.65 71.18 10.13 71.61 10.03

FRNN-O 82.21 7.42 75.77 8.77 75.78 8.53
VQNN 76.85 8.34 80.85 8.10 80.75 7.98

Table 6.3: MIAS - Average classification accuracy, and standard deviation results
using 10-fold CV

6.3.6 Investigation II: Comparison with Current State-of-

the-art

When comparing the results obtained here with those of [167], which represents the

current state-of-the-art in automated mammographic breast density classification,

it is clear that there is a significant improvement in classification accuracy. In

[167], for the MIAS dataset classification rates of 77%, 72%, and 86% are achieved

respectively for each of the classifier learners employed - namely SFS+kNN, C4.5,

and a Bayesian classifier (although this is an approach which combines the previous

two methods). Leave-one-out cross validation (LOOCV) is employed for cross

validation in the paper in question, and k=7, for the kNN classifier. Additionally,

the SFS+kNN approach employs a ‘wrapper’ type FS approach to select a subset
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Figure 6.10: Classification accuracy: DMTRS reduced DDSM data for the four
methods and different values of k – 10-fold CV

Classifier FRFS st.dev DMTRS st.dev DMTRS st.dev
(τ = 0.98) (τ = 0.99)

FRNN 82.60 7.98 84.85 6.75 84.52 7.36
FNN 72.98 9.43 74.07 8.83 72.08 10.29

FRNN-O 81.14 8.69 77.39 7.67 74.14 9.44
VQNN 72.81 9.13 77.05 8.08 75.20 9.13

Table 6.4: DDSM - Average classification accuracy, and standard deviation results
using 10-fold CV

of size 9 for MIAS and 9 also for the DDSM data.

Both DMTRS and FRFS feature selection approaches achieve results of 8 and

7 for MIAS and 5 and 8 for DDSM. Both of these approaches find smaller subset

sizes when compared to the approach noted above whilst simultaneously leading

to a significant increase in both average classification accuracy values albeit using

10-fold CV - see Fig. 6.6 - 6.8. As demonstrated previously, more optimum values

can be achieved for individual values of k (Figs. 6.7 - 6.12) rather than considering

only those average classification accuracy results.

Both FS techniques employed here are data-driven and do not require any

normalisation or transformation of the data. In the work of [167] however, the

data has to be normalised prior to the application of wrapper FS using kNN.
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Figure 6.11: Classification accuracy: FRFS reduced MIAS data for the four meth-
ods and different values of k – 10-fold CV

Classifier FRFS st.dev DMRSAR st.dev DMRSAR st.dev
(τ = 0.98) (τ = 0.99)

FRNN 84.12 35.62 86.41 33.10 86.50 32.92
FNN 72.54 43.96 75.17 42.04 73.02 42.98

FRNN-O 82.27 37.07 78.13 40.44 75.12 41.87
VQNN 74.46 42.94 77.42 40.75 76.20 41.36

Table 6.5: DDSM - Average classification accuracy, and standard deviation results
using LOOCV

This may have the effect of information loss since it involves subjective human

intervention when dealing with the data.

Considering the FRNN results obtained here for the MIAS dataset, classifi-

cation accuracies of 91.4%, 90.28%, and 90.81%, were achieved for DMTRS(τ =

0.97), DMTRS(τ = 0.98), and FRFS reduced data respectively. Indeed, if the

results from Table 6.3 are examined, it can be seen that even the average classi-

fication accuracies are considerably better in most cases than those obtained in

[167].

For the DDSM dataset where classification accuracies of 70%, 72%, and 77%

have been achieved in the previous work [167], considerably improved results have

also been obtained using the new fuzzy and fuzzy-rough methods - 89.24%, 88.51%,

and 85.84%. Again the average classification results of Table 6.4 reflect what has
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Figure 6.12: Classification accuracy: FRFS reduced DDSM data for the four
methods and different values of k – 10-fold CV

Classifier FRFS st.dev DMRSAR st.dev DMRSAR st.dev
(τ = 0.97) (τ = 0.98)

FRNN 87.34 32.76 86.69 33.01 87.21 32.95
FNN 72.82 43.74 71.79 43.83 69.94 44.84

FRNN-O 81.09 38.80 76.49 41.50 75.42 42.34
VQNN 78.15 40.86 80.76 38.54 80.00 39.50

Table 6.6: MIAS - Average classification accuracy, and standard deviation results
using LOOCV

also been demonstrated in the case of the MIAS dataset.

The results obtained above show that the work described here can easily out-

perform that in [167] despite the use of 10-fold CV. LOOCV is also employed

for cross validation in this section, such that both approaches can be compared

directly. The subset sizes are identical for those discovered previously, only the

cross-validation technique for the classifier learners has been altered to LOOCV.

Considering the results obtained in this work, values of 96.58%, 88.92%, 90.37%,

and 92.23% using the four hybrid fuzzy-rough set-based classifiers described ear-

lier. Similar results are obtained regardless of the FS approach employed. Indeed,

if the results from Tables 6.4 and 6.5 are examined, it can be seen that even

the average classification values are considerably better in most cases than those

obtained in [167].
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Figure 6.13: Classification accuracy: FRFS reduced MIAS data for each of the
four methods and different values of k – LOOCV

For the DDSM dataset where classification accuracies of 70%, 72%, and 77%

have been achieved in previous work, considerably improved results have also been

obtained using the new fuzzy and fuzzy-rough methods - 96.63%, 94.07%, 95.60%,

and 94.71%. Again the average classification results of Tables 6.4 and 6.5 reflect

what has also been demonstrated in the case of the MIAS dataset.

6.4 Summary

This chapter has demonstrated the application of fuzzy-rough methods to data

for mammographic risk analysis. It has also introduced a new NN classification

approach and demonstrated how this can be applied for the analysis of mammo-

graphic data. In particular, it has demonstrated how the classification accuracy

for mammographic risk-analysis can be increased significantly by employing fuzzy

classifiers which have the ability to handle real-valued data.

Most importantly however, the value of adopting a unified approach has been

highlighted. This is clearly shown in the large improvement of classification ac-

curacy over the unreduced data for all classifier methods and also the significant

reduction in dimensionality, which has a direct impact on the time taken to classify

mammographic density. The use of FS to identify information-rich features whilst

minimising feature measurement noise from the many initially extracted features
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Figure 6.14: Classification accuracy: FRFS reduced DDSM data for each of the
four methods and different values of k – LOOCV

is important. It can be used as an indicator to identify the same information

in previously unseen mammograms thus, reducing the time needed in extracting

many irrelevant, redundant and noisy features. Increases in classification accu-

racy for diagnosis means a benefit not only for the patient but also a reduction in

expert analysis thus the minimising inter-observer variation. Additionally, correct

initial identification of breast density can potentially mean that further additional

screening of the same woman is not required, reducing the physical demands and

stresses of further examination.
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Figure 6.15: Classification accuracy: DMTRS (τ=0.97) reduced MIAS data for
the four methods and different values of k – LOOCV

Figure 6.16: Classification accuracy: DMTRS (τ=0.98) reduced MIAS data for
the four methods and different values of k – LOOCV
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Figure 6.17: Classification accuracy: DMTRS (τ=0.98) reduced DDSM data for
the four methods and different values of k – LOOCV

Figure 6.18: Classification accuracy: DMTRS (τ=0.99) reduced DDSM data for
the four methods and different values of k – LOOCV
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Chapter 7

Application to Plant Monitoring

The ever-increasing demand for dependable, trustworthy intelligent diagnostic and

monitoring systems, as well as knowledge-based systems in general, has focused

much of the attention of researchers on the knowledge-acquisition bottleneck. The

task of gathering information and extracting knowledge from it is known to be the

most difficult part of creating a knowledge-based system. Complex application

problems, such as reliable monitoring and diagnosis of industrial plant, are likely

to present large numbers of features, many of which will be redundant for the

task at hand [178, 195]. Additionally, inaccurate and/or uncertain values cannot

be ruled out. Such applications typically require convincing explanations about

the inference performed, therefore a method to allow automated generation of

knowledge models of clear semantics is highly desirable.

In this chapter the UFRFS method described in Section 5.3.1 is applied to the

problem of selecting information-rich features for a water treatment plant moni-

toring system. The work here aims to reduce the dimensionality of the existing

data in order to simplify rulesets induced from historical descriptions of domain

features which are often of high dimensionality. The UFRFS method demonstrates

that it can eliminate redundant features using the fuzzy dependency measure and

thus reduce dimensionality. The UFRFS reduced data is compared with the unre-

duced data and the complexity of the rules induced from both are examined. Also

the classification accuracies are examined once again for both the reduced and

unreduced data.

7.1 Rule Induction

The most common approach to developing expressive and human readable repre-

sentations of knowledge is the use of if-then production rules [116]. In order to

speed up rule induction learning algorithms (RIA) and reduce rule complexity,
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a preprocessing step is required. This is particularly important for tasks where

learned rulesets need to be regularly updated to reflect the changes in the de-

scription of domain features. This step reduces the dimensionality of potentially

very large feature sets while minimising the loss of information needed for rule

induction. It has an advantageous side-effect in that it removes redundancy from

the historical data. This also helps to simplify the design and implementation of

the actual pattern classifier itself, by determining what features should be made

available to the system. In addition, the reduced input dimensionality increases

the processing speed of the classifier, leading to better response times. Most signif-

icant, however, is the fact that the technique employed here (UFRFS - see Section

5.3.1) preserves the semantics of the surviving features following the removal of any

redundancy. This is essential in satisfying the requirement of user interpretability

of the generated knowledge model, as well as ensuring the transparency of the

pattern classification process.

There exist a number of approaches relevant to the rule induction task at hand,

both from the point of view of applications and that of computational methods.

For example, the FAPACS (Fuzzy Automatic Pattern Analysis and Classification

System) algorithm documented in [6, 26] is able to discover fuzzy association rules

in relational databases. It works by locating pairs of features that satisfy an

‘interestingness’ measure that is defined in terms of an adjusted difference between

the observed and expected values of relations. A similar method, [90] has proposed

modifications to decision trees to combine traditional symbolic decision trees with

approximate reasoning, offered by fuzzy representation. This approach redefines

the methodology for knowledge inference, resulting in a method best suited to

relatively stationary problems.

A common disadvantage of these techniques is their sensitivity to high dimen-

sionality. This may be remedied using conventional work such as Principal Com-

ponents Analysis (PCA) [48]. Unfortunately, whilst efficient, PCA irreversibly

destroys the underlying semantics the data, as discussed in Section 2.1.1. Most

semantics-preserving dimensionality reduction (or feature selection) approaches

tend to be domain specific, however, relying on the use of well-known features of

the relevant application domain problems.

Fuzzy-rough sets encapsulate the related but distinct concepts of vagueness

(for fuzzy sets [254]) and indiscernibility (for rough sets), both of which occur as

a result of uncertainty in knowledge [52] and can be applied to the problem of

FS. This chapter is based on the most recent work as reported in [146] (and also

described in Section 5.3.1 of this thesis), presents such a method which employs

fuzzy-rough sets to improve the handling of this uncertainty. The theoretical

domain independence of the approach allows it to be employed for different rule
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induction algorithms and classifier learners. Furthermore, this method uses only

the information of the conditional features to reduce the data - no information

about the class labels is considered. In light of this, the present work is developed

in a modular manner. Note that both of the approaches given in [203] and [204]

are similar to the work described here, however supervised approaches are used

for selection of features.

7.2 Unsupervised Fuzzy-Rough Feature Selection

In the previous chapter, it was demonstrated how FRS can be applied to the prob-

lem of supervised feature selection. One of the most important aspects relating to

feature set reduction is the fuzzy-rough dependency measure (see Section 4.4.1),

and it is this measure which is also employed for the new unsupervised fuzzy-rough

FS (UFRFS) method described in this section. A short worked example is also

provided here to illustrate the approach.

7.2.1 Fuzzy Dependency

The central idea behind the work described in Section 5.3.1 is that, as with su-

pervised fuzzy-rough FS [99], the fuzzy dependency measure can also be used to

discover the inter-dependency of features. This can be achieved by simply substi-

tuting the decision feature(s) of the supervised approach for any given feature or

group of features.

Although the above proposal may be applied to evaluate the dependency be-

tween any two subsets of features in theory, practically, this may be computa-

tionally prohibitive. Fortunately, for unsupervised feature selection it is sufficient

to find the dependency between a single feature and other subsets of features. If

it has been established that one single feature depends fully on a feature subset

then that feature can be removed. Hence, the proposed approach only requires

the calculation of the dependency in the specific case of (5.12) where Q contains

just a single feature. In light of this observation, equation (5.3) as used in (5.13)

becomes:

µRP Ruz(x) = inf
y∈U

I(µRP
(x, y), µRuz(y)) (7.1)

where z denotes the single feature under examination and Ruz indicates the tol-

erance class (or fuzzy equivalence class) for object u of z.
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7.2.2 Classification and Rule Induction

To show the potential utility of unsupervised fuzzy-rough feature selection, the

UFRFS method is applied as a pre-processor to some existing fuzzy classifiers and

rule induction algorithms (RIA). The classification algorithms used are: FRNN

[141], [143] (described in Chapter 5 of this thesis also), and QSBA [188]. QSBA

works by generating fuzzy rules using the fuzzy subsethood measure for each

decision class and a threshold to determine what appears in the rule for that

decision class. The fuzzy subsethood measure is then used to act as weights, and

the algorithm then modifies the weights to act as fuzzy quantifiers.

Rule induction algorithms include JRIP, and PART, which are described in

detail in Section 3.5.1. These techniques have been shown to produce highly

competitive results [237] in terms of both classification accuracy, and number of

rules generated. However, as is the case for most rule induction algorithms, the

resultant rules may be unnecessarily complex due to the presence of redundant or

misleading features. Unsupervised Fuzzy-Rough Feature Selection may be used

to significantly reduce dataset dimensionality, removing redundant features that

would otherwise increase rule complexity and reducing the time for the induction

process itself.

Figure 7.1: Modular decomposition of the implemented system

Note that the original monitoring system as shown in Fig. 7.1, and developed

in [202] consisted of several modules. This modular structure is retained for the
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work described here, but the feature selection step is replaced with UFRFS. A

pre-categorisation step was used originally such that the data could be discretised

and used with traditional rough set theory. This step is now redundant as UFRFS

has the ability to deal with real-valued data, and thus reduce the potential for

information loss.

7.3 A Realistic Application

In order to evaluate the utility of the UFRFS approach and to illustrate its domain-

independence, a challenging test dataset was chosen, namely the Water Treatment

Plant Database [158]. The dataset itself is a set of historical data recorded over

521 days (or data objects), with 38 different input features measured each day.

Each daily object is classified into one of thirteen categories depending on the

operational status of the plant. However, these can be collapsed into just two

or three categories (i.e. Normal and Faulty, or OK, Good and Faulty) for plant

monitoring purposes as many classifications reflect similar performance. Because

of the efficiency of the actual plant the measurements were taken from, all faults

appear for short periods (usually single days) and are dealt with immediately. This

does not allow for a lot of training examples of faults, which is a clear drawback

if a monitoring system is to be produced. However, it should be emphasised that

for the work presented here, that the conditional features are not considered for

the reduction of the data.

The 38 conditional features account for the following five aspects of the water

treatment plant’s operation (see Fig 7.2):

1. Input to plant (9 features)

2. Input to primary settler (6 features)

3. Input to secondary settler (7 features)

4. Output from plant (7 features)

5. Overall plant performance (9 features)

It is likely that not all of the 38 input features are required to determine the

status of the plant, hence the dimensionality reduction step. However, choosing

the most informative features is a difficult task as there will be many dependencies

between subsets of features. There is also a number factors associated with the

monitoring of large numbers of inputs. Firstly there is the equipment cost since

more gauges and measuring equipment means increased initial expenditure on
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this equipment, as well as on-going maintenance costs. Furthermore, the larger

the amount of measuring equipment involved, the more inherently unreliable the

system becomes. It is soon clear that a reduction in the number of measurements

is highly desirable.

Figure 7.2: Water treatment plant overview

7.4 Experimental Results

This section firstly provides the results for the UFRFS-based approach compared

with the unreduced data in using the previously mentioned classifier learners.

Note that all classifiers use 10-fold cross validation in generating the classification

results. The FRNN algorithm does not employ a k value but instead uses all of the

objects in the training data. Next, a comparative experimental study is carried

out employing the RIA; and the ruleset complexity and sizes are compared for the

unreduced and reduced data.

7.4.1 Classification of Unreduced and Reduced Features

First of all, it is important to show that, at least, the use of features selected

does not significantly reduce the classification accuracy as compared to the use of

the full set of original features. The results which demonstrate the dimensionality

reduction are presented in Table 7.1 for both datasets. They show a significant

reduction in dimensionality from the original feature sizes.

Table 7.2 compares the classification accuracies of the reduced and unreduced

datasets. As can be seen, there is only a small difference between the UFRFS
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Dataset Orig No. UFRFS
of feats reduced

water 2-class 38 8
water 3-class 38 7

Table 7.1: Subset sizes obtained using UFRFS

results and the unreduced data (in the order of less than 10%) for both classifiers.

This is not significant given the corresponding level of dimensionality reduction in

each case. Indeed, for the FRNN for the classifier there is a slight increase for the

3-class data.

Unreduced UFRFS Reduced
Dataset QSBA FRNN QSBA FRNN

water 2-class 85.38 84.61 75.87 80.00
water 3-class 82.30 78.46 72.21 79.25

Table 7.2: Classification accuracy results: reduced and unreduced data

7.4.2 Rule Induction

Table 7.3 compares the resulting rule arity of the two approaches. It is evident that

rules induced using UFRFS as a preprocessor are simpler, albeit with a little loss

in classification accuracy. In fact, the simple rules produced regularly outperform

the more complex ones generated by the unreduced approach. The rule arity of

the UFRFS reduced 3-class data is 3.0 which is less than that of the unreduced

optimum, 7.0 for the PART RIA. Although the rule arity values are 3.0 for both

the unreduced and reduced 3-class data using JRIP, if the number of rules is

examined in Table 7.4, it can be seen that the unreduced data generates 7 rules,

whilst for the resulting reduced data only 3 rules are generated.

Unreduced UFRFS Reduced
Dataset JRIP PART JRIP PART

water 2-class 4 6 1 2
water 3-class 3 7 3 3

Table 7.3: Maximum rule arity for unreduced and UFRFS reduced data

It is important to compare not only the rule arity but also the number of

rules generated to assess the impact of employing a dimensionality reduction step

such as UFRFS. The numbers of rules generated for each RIA are shown in Table

7.4. The results show that UFRFS reduced data generates fewer rules than the
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unreduced data, with the exception of PART for the 3-class data which results in 16

rules as opposed to 13 rules for the unreduced data. However, if the corresponding

arity value is examined, it can be see that although the UFRFS reduced data

results in the generation of more rules, they are less complex than those of the

unreduced data.

Unreduced UFRFS Reduced
Dataset JRIP PART JRIP PART

water 2-class 3 12 2 2
water 3-class 7 13 3 16

Table 7.4: Number of rules generated for unreduced and UFRFS reduced data

These results show that UFRFS is useful not only in removing redundant

feature measures but also in dealing with the noise associated with such measure-

ments. To demonstrate that the resulting rules are comprehensible, two sets of

rules produced by the induction mechanism JRIP for the 3-class data are given in

Fig. 7.3. The rules produced are reasonably short and understandable. However,

when semantics-destroying dimensionality reduction techniques are applied, such

interpretability is lost.

7.4.3 Comparison with Other FS Techniques

The above comparison ensured that little information loss is incurred due to

UFRFS. The question now is whether any other feature selection approaches would

perform similarly. To answer to this, a number of other methods are examined

here in order to see what classification results and subset sizes might be achieved.

The FS approaches employed, in contrast to UFRFS are supervised and can

take advantage of the class information. It may seem to disadvantage UFRFS

to be compared with such approaches but the results demonstrate the utility of

UFRFS and its ability to select useful features.

Three different FS algorithms have been chosen for comparison: CFS [68],

Consistency-based feature selection [41], and a C4.5 wrapper [184]. The reduced

data is classified using the same classifier learners that were used in the last section

- QSBA [188] and FRNN [141].

The results for the subset size returned by the 3 approaches are shown in Table

7.5. Both Consistency-based and CFS return subsets which are significantly larger

than those obtained by UFRFS. But, the C4.5 wrapper obtains very small subsets.

However, the corresponding classification results (Table 7.6)show that this method

fails to find informative features and the results for UFRFS are considerably better.
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Figure 7.3: Example rules generated from the 3-class data: unreduced and reduced

Dataset Consistency CFS C4.5 wrapper

water 2-class 14 10 3
water 3-class 12 12 4

Table 7.5: Subset sizes returned by consistency-based, CFS, and C4.5 wrapper,
feature selection methods

When comparing UFRFS with the results obtained in Table 7.6, it can be

seen that, Consistency-based and CFS methods outperform UFRFS although the

differences are once again small (less than 10%). However, the corresponding

subset sizes obtained for both of these approaches are much larger than UFRFS,

as demonstrated in Table 7.5. Additionally, UFRFS outperforms the C4.5 wrapper

approach easily, demonstrating that useful features are retained by this method.

It is worth emphasising once again that all 3 methods are supervised and can take
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Consistency CFS C4.5 Wrapper
Dataset QSBA FRNN QSBA FRNN QSBA FRNN

water 2-class 85.12 85.64 85.38 84.35 71.02 44.36
water 3-class 80.00 82.01 80.32 85.12 74.23 78.33

Table 7.6: Subset size and classification accuracy results for consistency-based FS

advantage of the class information, UFRFS cannot.

The most important discovery from the experimentation in this work, is that

it is possible to identify informative features for plant monitoring using UFRFS.

Indeed, this unsupervised approach even outperforms the C4.5 wrapper method

in selecting features.

7.5 Summary

Automated generation of feature pattern-based if-then rules is essential to the suc-

cess of many intelligent pattern classifiers, especially when their inference results

are expected to be directly human-comprehensible. This work has presented such

an approach which integrates rule induction algorithms with a fuzzy-rough method

for unsupervised feature selection. Unlike semantics-destroying approaches such as

PCA, this approach maintains the underlying semantics of the feature set, thereby

ensuring that the resulting models are interpretable and the inference explainable.

The rules are simplified by the use of UFRFS, and the resulting classification

accuracies are comparable to the unreduced data. This method alleviates impor-

tant problems encountered by traditional RSFS such as dealing with noise and

real-valued features.

In all experimental studies there has been no attempt to optimize the fuzzifica-

tions or the classifiers employed. It can be expected that the results obtained with

optimization would be even better than those already observed. The generality

of this approach should enable it to be applied to other domains. The ruleset

generated by the RIAs were not processed by any post-processing tools so as to

allow its behaviour and capabilities to be revealed fully. By enhancing the induced

ruleset through post-processing, performance should also improve.
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Chapter 8

Conclusion

This chapter concludes the thesis. A summary of the research is presented, with a

focus on the main contribution: exploiting the rough set boundary region informa-

tion for feature selection, and its applications. Examining the existing literature,

it was demonstrated that many rough set techniques and their extensions rely on

the information in the lower approximation to perform feature selection.

Although the classical rough set-based approaches may only operate on crisp

datasets, the introduction of the new boundary measure employs a distance metric

allows the importance of uncertain data objects to be assessed for the task of

feature selection. This measure is based on a unary fuzzy set and has shown

that there is much useful information to be extracted from the boundary region.

Additionally, it has been demonstrated that the boundary region of fuzzy-rough

sets can offer useful information for guiding the feature selection process. Three

different techniques in this area have been presented in this thesis; in Section 3.2,

Section 4.2 and Section 4.4.1.

Other additional work that has been carried out includes a comprehensive re-

view of rough sets and some of their applications [145]. This review allows an

in-depth view of existing techniques as well as the most recent developments and

hybridisations of rough sets with other approaches. It also offers some suggestions

and identifies areas for further exploration. The application of fuzzy and rough

techniques for the classification of mammographic risk analysis data represents a

new area of application for the techniques proposed earlier in this thesis. The

fuzzy-rough nearest neighbour classification algorithm (FRNN) employed is de-

scribed in Section 5.2.2 and takes advantage of the important fuzzy upper and

lower approximation concepts. The improved performance as a result of utilising

these rough and fuzzy-rough techniques is then demonstrated in Section 6.2.1.

Another new method for unsupervised feature selection based on fuzzy-rough

sets (UFRFS) is proposed and described in detail in Section 5.3.1. This method

examines the interdependency of features using fuzzy-rough sets. The selection
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takes place by comparing single features to subsets of features and using the fuzzy

dependency measure to eliminate redundant features. This is a useful technique to

employ for feature selection when the decision feature(s) are missing or unknown.

This is demonstrated in Section 7.3, by application to a real-world plant monitor-

ing problem where it is shown that UFRFS retains information-rich features.

8.1 Distance Measure Assisted Rough Set Fea-

ture Selection

This thesis has been concerned primarily with the utility of distance measure

assisted rough set feature selection as a way of utilising the uncertain information

in the boundary region of rough sets. The approach achieves this by examining

the uncertain objects, and quantifying them in terms of their proximity from the

lower approximation concept. This method results in better performance when

choosing which features to select. This is done without the need to modify the

underlying rough set mathematical model.

The approach was also extended to handle real-valued data through the use of

tolerance rough sets and fuzzy-rough sets and proved in these cases also, that there

is much information to be extracted from the boundary region. This information

has in the past largely been ignored as the certainty that is embodied in the lower

approximation is associated with greater importance in scientific analysis.

The DMRSAR and DM-TRS methods have proven that the uncertain infor-

mation in the boundary region can also be used to guide the feature selection

process more effectively than through the use of the dependency measure alone.

This is reflected in the results obtained through experimental evaluation, and the

real-world application of mammographic data analysis.

The new approaches have been evaluated experimentally by comparing them

with other state-of-the-art dimensionality reduction/FS techniques such as PCA

[48], Consistency-based FS [41], CFS [68], ReliefF [109], and a J48-based wrapper

[184].

In the case of the fuzzy-rough set boundary region, not only has the work in this

thesis attempted to use this uncertain information but some new interpretations of

existing measures have also been proposed such as the boundary entropy measure,

and boundary region reduction measure. These measures have demonstrated that

they are useful for finding fuzzy-rough reducts from the information of the fuzzy

boundary region as well as the traditional use of the lower approximation. This

is supported by the experimentation documented in Section 4.5, where existing

methods which only use the lower approximation for the task of feature selection
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are compared with those which utilise the information of the boundary region over

a number of benchmark datasets.

8.2 Unsupervised Fuzzy-Rough Feature Selection

In unsupervised learning decision class labels are not provided. This poses some

relevant questions, such as: which features should be retained? and, why not use

all of the information? The problem is that not all features are important. Some of

the features may be redundant, and others may be irrelevant and noisy. In the work

described in this thesis, a new fuzzy-rough set-based unsupervised feature selection

approach (UFRFS) was proposed. The approach does not require thresholding

information, and uses the fuzzy-rough indiscernibility measure to select features,

which results in a significant reduction in dimensionality whilst retaining the data

semantics. This new approach was compared with an advanced supervised feature

selection technique. UFRFS returned similar results to the supervised method

both in terms of subset sizes and classification accuracy, despite the absence of

class labels.

8.3 Mammographic Image Analysis

The knowledge discovery obstacle is a significant problem that impedes the devel-

opment of intelligent systems for mammographic data analysis. The generation of

accurate classifier learning techniques for this task is extremely difficult. This is

particularly true where expert opinion differs. Machine learning techniques are of

great benefit to this area by providing strategies to automatically extract useful

knowledge, given sufficient historical data.

For many techniques, the high dimensionality of the domain attributes makes

many of the problems computationally intractable. In addition, when applying

classifier learners that can cope with this size of data, the resulting knowledge

may be of poor quality. A semantics-preserving dimensionality reduction step is

required to alleviate this problem, such that the resulting subset is interpretable

by humans. This is essential for medical applications.

DM-TRS was applied to this domain for mammographic risk analysis to show

that classification can be improved significantly with feature selection, whilst re-

ducing the dimensionality by over 95%. The identification of only those important

features from such vast data means that the process of extracting large amounts

of features can be avoided. The selected features can then be fed back into the

extraction phase ensuring that only those features need to be identified in future.
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The benefits of adopting such an approach include faster identification of relevant

features, thus reducing the amount of time and computational effort required in

the feature extraction phase. For the end user (the patient) this means more swift

and accurate diagnosis, and less screening. The DM-TRS method was shown to

perform very well against other feature selection methods for this task. Addition-

ally, the FRNN classification technique was applied and demonstrated improved

performance over existing classifiers.

8.4 Industrial Plant Monitoring

Complex domain application problems, such as the reliable monitoring and diag-

nosis of industrial processes, are likely to result in large numbers of features, many

of which are redundant for the task at hand. Also, inaccurate and/or noisy values

cannot be ruled out. Such applications usually require convincing explanations

about the inference performed, therefore a method which enables the automated

generation of knowledge models of clear semantics is highly desirable.

In previous work [202], [204], supervised feature selection was used for the re-

moval of noisy and redundant features. Here, UFRFS has been employed. The use

of an unsupervised method demonstrates how redundancy can be removed from

large feature sets which have incomplete or missing class labels without affecting

those valuable or information-rich features. The rules induced from the UFRFS

reduced data are shown to be less complex, and more easily interpreted, than

those induced from the unreduced data. Additionally, the classification accura-

cies, (despite the lack of class label information) are shown to be comparable to

the unreduced data.

8.5 Future Work

There is much scope for future work for all of the developments presented in this

thesis. A summary of the main points of this can be divided into two categories:

work that could be completed if additional time was available, and longer-term

work that would involve considerable research effort.

8.5.1 Short-term Developments

Amongst the topics in the first category are ideas which relate to the DMRSAR/DM-

TRS feature selection approaches. Further development and re-evaluation of how

the mean lower approximation is calculated, may prove beneficial. Implementa-

tion of a more accurate calculation of the lower approximation boundary would
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mean that distances of objects in the boundary region could be more accurately

measured.

Additionally the significance measure which is employed for DMRSAR is rudi-

mentary, and considers the boundary region as a single value which is expressed

as membership value of a unary fuzzy set. By redefining this as a number of fuzzy

sets, the boundary region could be quantified more accurately by expressing object

membership in terms of weights in the boundary in relation to distance from the

lower approximation. Apart from the use of extra fuzzy sets, the way in which ob-

jects in the boundary are related is another area which is worthy of investigation.

By examining the correlation of objects and their individual distances, it may

be possible to provide more accurate information on individual objects and the

extent to which they belong to the concept under consideration. The use of this

information for other areas e.g. classification may result in improved performance.

Other aspects which warrant investigation include the distance metric and

also the application area of the approach. For the worked examples described

in this thesis a Euclidean distance metric is employed. Other metrics such as

Mahalanobis distance [132], fuzzy Hausdorff distance [27], and others could also

be considered. Other measures such as entropy or information gain ratio could be

employed in place of rough dependency, these have proven useful for the classical

rough set case [93], [98] and should also yield similar results when combined with

the distance metric. Additionally, the distance-based rough set approach could

be extended to other application areas such as clustering or unsupervised FS with

some further development. Most rough classification techniques like FS, currently

rely on the certain information of the lower approximation, where the boundary

is considered the distances of individual objects to the lower approximation are

not taken into account. This is where the distance measure assisted approach

could prove useful and offer additional information for guiding the classification

of test objects. Similarly, for the task of clustering the distance measure could

be used to assess the distance of individual unclustered objects from the lower

approximations of existing cluster prototypes.

The unsupervised fuzzy-rough feature selection method is another approach

that could be extended significantly. There are a considerable number of unsu-

pervised FS approaches which investigate the validity of the generated clusters

[42], [89], [168]. However, this aspect of UFRFS has not been investigated as yet.

Given the positive results obtained during experimentation and the additional

tentative work in this area, it is expected that this method would demonstrate an

improvement in performance over existing methods. The complimentary nature

of fuzzy-rough sets enables the UFRFS approach to consider both the vagueness

and indiscernibility of real-valued data. This is an aspect that is lacking in other
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approaches.

The FRNN algorithm [92], although proposed for classification could be equally

applicable to FS by implementing a nearest-neighbour search when selecting fea-

tures. Further developments of this idea could extend to the use of the fuzzy-

boundary region as well as the lower approximation to select features as demon-

strated in [142].

In addition There are also a wealth of application areas where the approaches

described in this thesis could be applied such as crime investigation [245] where

feature selection could be used to identify hidden patterns in data, or for image

scene analysis [49] to identify important features which may be related to the

specific patterns of human behaviour.

8.5.2 Long-term Developments

This section describes future developments that could form the basis either indi-

vidually or collectively for a large project (e.g. PhD project or group project).

As reported previously the areas of FS, classification and clustering are all

closely related. Given that fuzzy-rough sets have been employed with much suc-

cess for supervised learning, the development of fuzzy-rough clustering approaches

would represent a further step to addressing the need for additional work on un-

supervised learning. Clustering is essentially unsupervised classification, and the

initial work on supervised learning, and unsupervised classification described in

this thesis form a useful starting point for such further investigation.

In Chapter 6 the application of fuzzy-rough methods to the field of mammo-

graphic data analysis highlights the need for a fuzzy-rough approach to feature ex-

traction/clustering. At present, a fuzzy c-means (FCM) [13] algorithm is employed

for image segmentation and feature extraction in the approach described in Section

6.1. The development of a new fuzzy-rough feature extraction/clustering technique

would unify the underlying mathematical model for the approach demonstrated

initially in this thesis.

FCM requires the subjective specification of a number of parameters including

a ‘neighbourhood’ value, a ‘fuzziness’ value, and a ‘termination threshold’ value.

By utilising a fuzzy-rough method, the number of these parameters could be re-

duced to the specification of a single value for the number of clusters. Additionally,

only the information contained in the data would be required for clustering ren-

dering the specification of fuzziness and a termination threshold obsolete. This

would perhaps extend the previously suggested work in the area of clustering.

By enhancing the algorithm with a rough extension in the same way as the

fuzzy nearest neighbour algorithm for instance, any new method could take advan-
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tage of the benefits that a fuzzy-rough hybrid has offered in other areas. FS and

classification are good examples of this. This is due to the fact that fuzzy-rough

sets are better equipped to deal with the uncertainty and vagueness present in

real-world data. In particular, looking closely at the fuzzy-rough approach out-

lined in [99] and also in Sections 5.2.2 and 5.3.1, it can be seen that the definition

for the fuzzy lower and upper approximation concepts lend themselves well to

unsupervised learning. Examining the definitions below, in informal terms the

fragment µRP
(x, y) represents the fuzzy similarity of two objects x and y, or the

extent to which two distinct objects are similar. Also, µX(y) is the extent that y

belongs to the concept X:

µRP X(x) = inf
y∈U

I(µRP
(x, y), µX(y)) (8.1)

µRP X(x) = sup
y∈U

T (µRP
(x, y), µX(y)) (8.2)

These definitions could be extended to the non-hierarchical c-means clustering

framework by replacing the set X with the cluster n, where n in the number of

predefined cluster concepts. The choice of fuzzy similarity measures and connec-

tives would also provide much scope for further experimentation. In addition to

this, given that FRNN has been successful for supervised classification a similar

approach could be adopted for agglomerative clustering where a nearest-neighbour

type search strategy could be employed. This strategy would involve the use of

the fuzzy lower and upper approximation concepts as a measure to agglomerate

or merge clusters as the algorithm progresses. Given that the number of clusters

is not required in the first instance, this method would not require any subjective

parameter specification and could be data-driven exclusively.

Another particular area worthy of investigation for FS in general, and in partic-

ular for the methods proposed in this thesis is that of search methods. Approaches

such as particle swarm optimisation (PSO) [233], and artificial immune systems

(AIS) [58] although not optimal or complete do provide useful areas for exploration

as an alternative to more conventional search methods for the task of feature se-

lection. Moreover, the utility of the boolean propositional satisfiability (SAT)

technique [43] to search for feature subsets offers much scope for development.

This search method is complete. Although the SAT problem is NP − complete

[34], in practice the technique is computationally efficient, does not involve an

exhaustive examination of the search space, and can guarantee the minimality of

discovered solutions. Indeed, SAT has been employed for FS for the discovery of

rough set reducts with much success [98], but its use for fuzzy-rough set FS has yet

to be investigated. It is felt that this would offer a significant performance increase
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in the area of (supervised and unsupervised) fuzzy-rough set FS - eliminating the

need to search for reducts down sub-optimal paths of the search space. Moreover,

the minimality of the reducts discovered can be guaranteed, which ensures that

only the most compact reduct or subset will result.

To conclude, it is appropriate to emphasise the value of the uncertain informa-

tion contained within the boundary region of rough sets and rough set extensions

and the role it can play in improving the performance of the existing methods.

Given the ever-growing availability of information (and the size of data in general),

the performance of tools for knowledge discovery such as FS, classification, and

clustering are becoming more and more important. The series of investigations

and experimentation documented in this thesis, demonstrate the potential utility

of employing the boundary region information of rough and fuzzy-rough sets for

the task of feature selection. Those issues which affect the use of rough sets and

their extensions for feature selection and areas which require further research have

been highlighted and discussed.
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ence on Fuzzy Systems (FUZZ-IEEE’07), pp. 1084–1089. 2007.
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Appendix B

Glossary of Terms

A list of commonly used terms and acronyms in the text of this thesis are described

below.

DMRSAR (Distance Measure Rough Set Attribute Reduction)

DMRSAR [148], [149] is a feature selection technique based on rough sets. It

attempts to qualify the objects in the boundary region of rough set theory with

regard to their proximity to the lower approximation. From an intuitive point-of-

view, the closer the proximity of an object in the boundary region to objects of

the lower approximation, the greater the likelihood that it actually belongs to the

set of interest.

DM-TRS (Distance Metric-Assisted Tolerance Rough Set Feature Se-

lection)

DM-TRS [144] is an extension of the TRSM approach which has the ability to op-

erate on real-valued data. It marries the TRSM with the distance metric assisted

rough set approaches. This allows the information of the TRSM boundary region

that is otherwise ignored to be examined and used for FS.

DR (Dimensionality Reduction)

DR is the reduction of the data to a size which is computationally tractable, with-

out information loss. It is usually included as part of a data preprocessing system.

DRSA (Dominance-based Rough Set Approach) The DRSA [62] is an ex-

tension of RST for multi-criteria decision analysis. In contrast to traditional RST,

DRSA employs a dominance relation instead of an equivalence relation. This

allows DRSA to deal with the inconsistencies which are typical of criteria and

preference-ordered decision classes.
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Feature

A feature, (may also be known as a variable or attribute) is a single dimension of

a data object. A data object may have many features which are used to describe

it. For example the object car may have the features: 4, 2, and red to describe

the number of wheels, doors, and colour.

FS (Feature Selection)

Feature selection [130] is a commonly used approach in machine learning (may

also be known as feature subset selection, variable selection, or attribute reduc-

tion) and can be considered as the process of selecting the input attributes of a

dataset that most closely define a particular outcome.

Fuzzy Set Theory

Fuzzy sets [254] are sets whose elements have degrees of membership. Fuzzy set

theory was introduced by Lotfi A. Zadeh in 1965 as an extension of the classical

set. In traditional set theory, the membership of elements in a set is defined in

binary terms according to a hard condition an element either belongs to the set or

an element does not belong to the set. In contrast, fuzzy set theory allows gradual

membership of elements in a set; this is described by employing a membership

function in the real unit interval [0, 1].

PCA (Principal Component Analysis)

PCA [48] is a versatile transformation-based DR technique which projects the ex-

isting data onto a new coordinate system of reduced dimensions. This process of

linear transformation however also transforms the underlying semantics or mean-

ing of the data. This results in data that is difficult for humans to interpret, but

which may still provide useful automatic classification of new data.

Reduct

A reduct C is a subset of original attributes or features of a dataset which pro-

vides an equivalent predictive characteristic (γ) as the complete set of conditional

features (R) with regard to the decision feature (D). A reduct can be defined as

a subset of the conditional attribute set such that γR(D) = γC(D).

RST (Rough Set Theory)

Rough set theory proposed by Pawlak [172] is a tool used to discover data depen-

dencies and to reduce the number of attributes contained in a dataset using the

data alone, requiring no additional information. RST is the formal approximation
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of a crisp or classical set in terms of a pair of sets which give the lower and the

upper approximation of the original set. The lower approximation contains those

objects which definately belong to the concept (set) of interest, while the upper

approximation contains those objects which definately belong to the subset of in-

terest and those objects which possibly belong to the subset of interest.

Supervised Learning

Supervised learning is a technique in machine learning for deducing a function

from training data. The training data usually consist of pairs of input objects

(typically vectors), along with desired outputs. The output of the function can

predict a class label of the input object - this is known as classification. The task

of the supervised learning mechanism is to predict the value of the function for

any input object having ‘seen’ a number of training examples - i.e. pairs for input

and target output.

TRSM (Tolerance Rough Set Model)

TRSM [208] employs a similarity relation to minimise data as opposed to the indis-

cernibility relation used in classical rough-sets. This allows a relaxation in the way

equivalence classes are considered. The effect of employing this relaxation, means

that the granularity of the rough equivalence classes has been blurred slightly.

This flexibility enables a change to occur in the boundaries of the former rough or

crisp equivalence classes and objects may now belong to more than one so-called

tolerance class which is TRSM equivalent of a rough set equivalence class.

UFRFS (Unsupervised Fuzzy-Rough Feature Selection)

A feature selection technique based upon fuzzy-rough set theory that minimises

the feature set based on the interdependencies between sets of features [138], [146].

Unsupervised Learning

Unsupervised learning is the task of attempting to determine how data is or-

ganised. It can be differentiated from supervised learning because the learning

mechanism uses only unlabeled data objects. Unsupervised learning is closely re-

lated to the problem of density estimation in statistics. However, unsupervised

learning also encompasses many other techniques that also attempt to summarise

and explain key aspects of the data. One particular example of unsupervised

learning is the task of clustering.

VPRS (Variable Precision Rough Sets)

The variable precision rough sets (VPRS) approach [263] extends rough set theory
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by relaxing the subset operator. It was originally proposed in order to analyse and

identify data patterns which represent statistical trends rather than those which

are functional. At the heart of VPRS, is the idea of allowing objects to be classi-

fied with an error smaller than a given predefined level or threshold.
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[24] M.A. Carreira-Perpinñán. Continuous latent variable models for dimension-

ality reduction and sequential data reconstruction. PhD thesis, University of

Sheffield, UK, 2001.

[25] R. Caruna, and D. Freitag. Greedy Attribute Selection. Proceedings of the

11th International Conference on Machine Learning, pp. 28–36, 1994.

[26] K. Chan and A. Wong. APACS: A System for Automatic Analysis and Classi-

fication of Conceptual Patterns. Computational Intelligence, vol. 6, pp. 119–131,

1990.

[27] B.B Chaudhuri and A. Rosenfeld, A modified Hausdorff distance between

fuzzy sets, Information Sciences, vol. 118, no. 1–4, pp. 159–171, 1999.

[28] D. Chen, W.X. Zhang, D. Yeung, and E.C.C. Tsang, Rough approximations

on a complete completely distributive lattice with applications to generalized

rough sets, Information Sciences, vol. 176, no. 13, pp. 1829–1848, 2006.

[29] T-H. Cheng, C-P. Wei, and V.S. Tseng. Feature Selection for Medical Data

Mining: Comparisons of Expert Judgment and Automatic Approaches. 19th

IEEE International Symposium on Computer-Based Medical Systems, pp.165–

170, 2006.

[30] S. Chimphlee, N. Salim, M.S.B. Ngadiman, W. Chimphlee, and S. Srinoy.

Independent Component Analysis and Rough Fuzzy based Approach to Web

Usage Mining, Proceedings Artificial Intelligence and Applications, 2006.

[31] W Chimphlee, A. H. Abdullah, M. N. M. Sap, S. Srinoy, S. Chimphlee.

Anomaly-Based Intrusion Detection using Fuzzy Rough Clustering, Inter-

national Conference on Hybrid Information Technology (ICHIT’06), vol. 1,

pp.329–334, 2006.

187



BIBLIOGRAPHY

[32] A. Chouchoulas and Q. Shen, Rough set-aided keyword reduction for text

categorisation, Applied Artificial Intelligence, vol. 15, no. 9, pp. 843–873, 2001.

[33] W.W. Cohen. Fast effective rule induction. In Machine Learning: Proceedings

of the 12th International Conference, pp. 115–123, 1995.

[34] S. Cook. The complexity of theorem proving procedures, Proceedings of the

Third Annual ACM Symposium on Theory of Computing, pp. 151158, 1971.

[35] O. Cordon, F. Gomide, F. Herrera, F. Hoffmann, and L. Magdalena. Ten

years of genetic fuzzy systems: current framework and new trends, Fuzzy Sets

and Systems, vol. 141, pp. 5–31, 2001.

[36] C. Cornelis, M. De Cock and A. Radzikowska. Vaguely Quantified Rough

Sets, Proc. of the 11th Int. Conf. on Rough Sets, Fuzzy Sets, Data Mining and

Granular Computing (RSFDGrC2007), Lecture Notes in Artificial Intelligence

vol. 4482, pp. 87–94, 2007.

[37] S.K. Das. Feature Selection with a Linear Dependence Measure, IEEE trans-

actions on Computers, pp. 1106–1109, 1971.

[38] S. Das. Filters, Wrappers and a Boosting-Based Hybrid for Feature Selection.

Proceedings of the 18th International Conference on Machine Learning, pp. 74–

81, 2001.

[39] M. Dash, K. Choi, P. Scheuermann, and H. Liu. Feature Selection for Clus-

tering - a Filter Solution. Proceedings of the second international conference on

Data Mining, pp. 115–122, 2002.

[40] M. Dash and H. Liu. Feature Selection for Classification. Intelligent Data

Analysis, vol. 1, no. 3, pp. 131–156, 1997.

[41] M. Dash, H. Liu, and H. Motoda, Consistency Based Feature Selection,

Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 98-109,

2000.

[42] M. Dash, and H. Liu, Unsupervised Feature Selection, Proceedings of the

Pacific and Asia Conference on Knowledge Discovery and Data Mining, pp.

110–121, 2000.

[43] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem

proving. Communications of the ACM. vol. 5, pp. 394–397, 1962.

188



BIBLIOGRAPHY

[44] M. De Cock, C. Cornelis, and E.E. Kerre, Fuzzy rough sets: beyond the

obvious, IEEE International Conference on Fuzzy Systems, vol. 1, pp. 103–108,

2004.

[45] De Cock, M., Cornelis, C. and Kerre, E.E., 2007. Fuzzy Rough Sets: The

Forgotten Step, IEEE Transactions on Fuzzy Systems, vol. 15, no. 1, pp. 121–

130, 2007.

[46] J. S. Deogun, V. V. Raghavan, and H. Sever. Rough set based classification

methods and extended decision tables, Proceedings of the International Work-

shop on Rough Sets and Soft Computing, (San Jose, California), pp. 302–309,

1994.

[47] J.S. Deogun, V.V. Raghavan, and H. Sever, Exploiting upper approximations

in the rough set methodology, Proceedings of the First International Conference

on Knowledge Discovery and Data Mining, Quebec, Canada, pp. 1–10, 1995.

[48] P. Devijver and J. Kittler. Pattern Recognition: A Statistical Approach, Pren-

tice Hall, 1982.

[49] V. Devendran, A. K. Hemalatha Thiagarajan, Santra, and Amitabh Wahi,

Feature Selection for Scene Categorization Using Support Vector Machines,

Congress on Image and Signal Processing (CISP), vol. 1, pp. 588–592, 2008.

[50] J. Doak. An Evaluation of Feature Selection Methods and Their Application

to Computer Security. technical report, University of California at Davis, Dept.

of Computer Science, 1992.

[51] D. Dubois and H. Prade, Rough fuzzy sets and fuzzy rough sets, International

Journal of General Systems, vol. 17, pp. 191–209, 1990.

[52] D. Dubois and H. Prade, Putting Rough Sets and Fuzzy Sets Together, In-

telligent Decision Support, pp. 203–232, 1992.

[53] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification, 2nd ed. John

Wiley and Sons, New York, 2001.

[54] J. C. Dunn. A Fuzzy Relative of the ISODATA Process and Its Use in De-

tecting Compact Well-Separated Clusters, Journal of Cybernetics, vol. 3, pp.

32–57, 1973.

[55] J.G. Dy, and C.E. Brodley. Feature Subset Selection and Order Identification

for Unsupervised Learning. Proceedings of the 17th international Conference on

Machine Learning, pp. 247–254, 2000.

189



BIBLIOGRAPHY

[56] Eurostat. Health statistics atlas on mortality in the European Union. Official

Journal of the European Union, 2002.

[57] B.S. Everitt. An Introduction to Latent Variable Models, Monographs on

Statistics and Applied Probability, Chapman & Hall, London, 1984.

[58] J.D. Farmer, N. Packard and A. Perelson, The immune system, adaptation

and machine learning, Physica D, vol. 2, pp. 187–204, 1986.

[59] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowl-

edge discovery in databases, AI Magazine, vol. 17, pp 37–54, 1996.

[60] D. Gering. Linear and nonlinear data dimensionality reduction. Technical

report, Massachusetts Institute of Technology, 2002.

[61] M. Glymin and W. Ziarko. Rough set approach to spam filter learning,

Proceedings of Rough Sets and Emerging Intelligent Systems Paradigms,

RSEISP’07, Lecture Notes in Artificial Intelligence vol. 4585, pp. 350–359, 2007.

[62] S. Greco, B. Matarazzo, and R. Slowiński. Rough sets theory for multicriteria
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[143] N. Mac Parthaláin, R. Jensen and Q. Shen. Rough and fuzzy-rough methods

for mammographic data analysis. Proceedings of the 8th Annual UK Workshop

on Computational Intelligence (UKCI’08), 2008.
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