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Abstract 

Background: The vestibular system has been shown to contribute to mechanisms of 

locomotion such as distance perception. Galvanic vestibular stimulation (GVS) is a tool 

used to perturb the vestibular system, and causes significant deviations in path trajectory 

during locomotion. Previous research has suggested that applying GVS during straight-

line locomotion tasks is not sufficient to determine the effects of the vestibular system on 

locomotion. However, spatial navigation challenges one’s ability to navigate throughout 

the environment using idiothetic cues to constantly update one’s position. The purpose of 

the current study was to determine the effects of GVS on both path trajectory and body 

rotation during a task of spatial navigation in the absence of visual cues, and how 

accuracy of this task is affected by dance training. It was hypothesized that the delivery 

of GVS would significantly increase errors during the triangle completion task, and this 

increase would be more pronounced in the control participants compared to the dancers. 

 

Methods: Participants (n=34, all female, 18-30 years) were divided into two groups: 

controls (n=18) had no experience with sport-specific training while dancers (n=16) had 

previously experienced dance training (M = 15.6 years, SD = ±4.1) and were still 

currently training in dance (M = 11.5 hours/week, SD = ±7.3). Monofilament testing 

(Touch-Test Six Piece Foot Kit) was used to determine the plantar surface cutaneous 

sensitivity threshold and a joint angle-matching task was used to quantify the 

proprioceptive awareness of each individual. Participants completed trials of the triangle 

completion task in VR (via Oculus Rift DK2), during which they would navigate along 

the first two legs of one of two triangles using visual input, and then accurately navigate 
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back to their initial position with the use of vision. GVS was delivered at three times the 

participant’s threshold in either the left or right direction prior to the final body rotation 

and until the participant reached their end position. The task was completed six times for 

each of the GVS conditions (with and without GVS) with the experimental GVS 

condition being further divided into right and left perturbation trials, for each of the two 

triangles, in both the right and left triangle directions, for a total of 48 trials (six trials x 2 

GVS conditions x 2 triangles x 2 directions). Whole body kinematic data were collected 

at 60 Hz using an NDI Optotrak motion tracking system.  

 

Results: No significant differences were observed between control subjects and dancers 

with respect to arrival error, angular error, path variability, cutaneous sensitivity or 

proprioceptive awareness. However, there was a significant effect of GVS on both arrival 

error and angular error. Conditions without GVS had significantly smaller angular error 

than both conditions with GVS. In addition, GVS conditions with the perturbation in the 

same direction as the final body rotation had significantly greater arrival error than both 

the condition without GVS and with the current in the opposite direction of the final body 

rotation. There was no significant difference between GVS conditions in path variability 

during the return to the initial position.  

 

Conclusions: The significant effect of GVS on both arrival error and angular rotation 

demonstrates that vestibular perturbation reduced the accuracy of the triangle completion 

task. These findings suggest that the vestibular system plays a major role in both path 

trajectory and body rotation during tasks of spatial navigation in the absence of vision.
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1.0 Introduction 

 With every motor output that is produced, there is a variety of sensory information 

that has contributed to its characteristics. We are constantly taking information from the 

external environment and using it to produce a motor response. Postural control in 

humans is maintained by feedback from the somatosensory, visual and vestibular 

systems, and this information is then integrated by the locomotor and central nervous 

systems (Johansson & Magnusson, 1991). Previous research has supported that the 

contribution of each sensory system depends on the environment and the applied 

perturbations, and the process of adjusting these sensory contributions is referred to as 

sensory reweighting (Asslander & Peterka, 2014; Peterka R., 2002). During quiet stance, 

the central nervous system tends to give higher weight to the sensory system with the 

most accurate input. In a study by Peterka (2002), the author demonstrated that during 

conditions without visual input, subjects primarily used somatosensory or proprioceptive 

input in order to maintain postural control. However, during conditions with a moving 

support surface causing perturbation of the somatosensory system, subjects then became 

more reliant on graviceptive information, which is defined as a form of vestibular 

information providing individuals cues about their body orientation with respect to the 

vertical (Peterka, 2002). Clearly, relative weighting of sensory inputs changes depending 

on the environmental conditions and the accuracy of sensory inputs. Peterka followed up 

these findings by testing subjects using an apparatus to manipulate sway and 

proprioceptive information in participants. The protocol supported the previous research 

that sensory weighting is dependent on environment conditions, such that the corrective 

ankle torque required to maintain balance is generated in proportion to the combination 



  2 

of sensory cues weighted based on accuracy (Peterka & Loughlin, 2004). Aside from 

their contributions to quiet stance, visual, vestibular and proprioceptive information are 

also integrated in the central nervous system to accurately produce goal-directed 

movements during locomotion and for spatial updating in the environment (Horak & 

Macpherson, 1996; Frissen et al., 2011).  

 Across the lifespan, sensory manipulations have been used to determine that 

sensory reweighting is less effective in older adults (Deshpande & Patla, 2007). The 

opposite effect has been shown in high-level athletes, such that sport-specific training has 

been shown to improve the ability of an individual to accurately weight sensory inputs in 

order to produce the appropriate motor output (Bredin et al., 2005). However, current 

research is limited regarding individuals with extensive dance training and how they 

integrate the available sensory information during motor tasks. Thus, the general purpose 

of this research is to determine how vestibular perturbations affect tasks of spatial 

navigation, and how competitive dance training influences an individual’s sensory 

weighting abilities compared to non-dancers. 

 

1.1 Sensory Integration 

 According to previous research, there is a hierarchy in sensory input during motor 

tasks, and visual input is typically the dominant sensory system (Lee & Lishman, 1975; 

Woollacott et al., 1986). Lee and Lishman (1975) supported this finding when they 

conducted a well-known study titled the Moving Room Experiment that justly 

demonstrated the dominance of the visual system during postural control. Researchers 

placed subjects in a room with three walls and a ceiling that were detached from the 
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ground. During the experiment, the walls oscillated synchronously in the anterior-

posterior direction while the floor remained motionless, and researchers studied the sway 

in response to the perceived motion of the room. For all participants, their natural 

response was to sway in the direction of the movement of the walls, maintaining their 

balance as if the floor was actually moving in coordination with the rest of the room. 

Younger adults used an ankle strategy in order to maintain postural control during the 

perceived movement of the room. Older adults used a compensatory step, children fell on 

the ground, and even pigeons bobbed their heads back and forth in response to the 

movement of the walls. Thus, all participants were reacting as though the entire room, 

including the floor, was oscillating back and forth, when in reality their bodies were not 

experiencing any sort of physical movement. This experiment became a well-known 

study because it significantly contributed to the scientific body of knowledge; it used a 

visual perturbation to distinctly show that visual sensory input is the dominant sensory 

system during sensory integration for postural control (Lee & Lishman, 1975).  

 Subsequent studies have supported that vision is the dominant sensory system for 

balance and postural control in young adults. One experiment in particular used a similar 

protocol to Lee & Lishman (1975), but tested postural control during both a slight 

voluntary forward and backward lean in an attempt to increase the proprioceptive input 

during static stance to try and outweigh the perturbed visual information. Isableu and 

colleagues (2011) used a force plate to measure COP displacement during upright stance 

with a voluntary forward and backward lean and a revolving visual scene. The visual 

reference in front of each participant contained a stationary visual scene that served as the 

fixation point, with a peripheral scene that rotated medial-laterally up to 10 degrees. 
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Results showed that the motion of the outer visual frame affected the postural control of 

the unstable participants during both the forward and backward lean of the participants, 

such that they were using the visual frame to stabilize and orient themselves. According 

to the authors, the high dependence on visual information was emphasized by the effect 

of the movement of the outer visual scene, even with the availability of stationary central 

visual cues (Isableu et al., 2011). Evidently, there is ample evidence that in young adults, 

visual input is the dominant sensory system during tasks of balance and postural control. 

 The previously discussed study by Peterka demonstrated evidence that the postural 

system makes limited use of vestibular information when inputs from multiple sensory 

systems are redundant (Peterka, 2002). Vestibular information is thought to have lower 

weight than other sensory systems during postural control because the information has 

been shown to be less precise than visual or proprioceptive information during conditions 

without sensory manipulation (van der Kooij et al., 2001). Subsequent research has 

determined that normal vision overrides perturbed vestibular information for the 

optimization of performance during goal directed locomotion, suggesting down-

regulation of vestibular gain (Deshpande & Patla, 2007). However, in the absence of 

vision, would the lack of visual cues cause an increase in the gain of the vestibular 

system? It is predicted that since the vestibular system provides information on the 

body’s orientation with respect to the vertical, there may be an increased reliance or 

weighting of vestibular information during conditions in which visual and somatosensory 

information are not reliable (Peterka & Loughlin, 2004). 
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1.2 The Vestibular System 

 The vestibular system is responsible for providing the central nervous system with 

detailed information regarding the position and movement of the head in space. The 

vestibular system consists of two crucial components in the internal ear: semi-circular 

canals and otoliths. Semi-circular canals contain crista-receptors that provide information 

on the angular acceleration of the head, while otoliths provide information on linear 

acceleration of the head including gravity. Acceleration of the head causes movement of 

the endolymph fluid in the internal ear that deflects hair cells in the sensory organs. This 

deflection changes the cells membrane potential, and an electrical signal is sent via the 

vestibular nerve to the vestibular nuclei. From here, information is integrated and 

distributed to other brain structures for multiple purposes. 

 During tasks of dynamic stability, we also see an effect of GVS on motor response. 

This is because locomotion in itself is a mechanical perturbation, and requires the 

involvement of higher structures of the central nervous system to maintain stability. 

Sensory feedback is very important for not only sustaining balance, but also in 

maintaining a normal locomotor rhythm. Individuals use sensory information to modify 

locomotion based on the specific environment they are navigating through (Kandel et al., 

2012). When navigating through the environment, visual, vestibular and proprioceptive 

information are used to determine the magnitude of distance travelled (Campos et al., 

2012). Information from these sensory systems regarding the current state of the body 

within its environment is sent to the central nervous system, where it is integrated and 

produces the appropriate stepping behaviour for the individual in their current space. 

During locomotion in the absence of vision, vestibular information is used to estimate 
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distance travelled, contributing to non-visual distance perception (Campos et al., 2012). 

In a study conducted by Frissen and colleagues (2011), vestibular and proprioceptive 

inputs were manipulated independently during a treadmill-walking task. When 

conflicting information was provided to the participants, spatial updating was determined 

using both systems, but a higher weight was attributed to the provided vestibular cues, 

demonstrating the contributions of the vestibular system to spatial navigation (Frissen et 

al., 2011). In addition to these vestibular effects on locomotion, the vestibular nuclei also 

distribute information from the otoliths and semicircular canals to many areas of the 

central nervous system, such as the oculomotor nuclei, the spinal cord, the cerebellum 

and the thalamocortical pathway (Fitzpatrick & Day, 2004). Thus, vestibular information 

is not only important with respect to the position and movement of the head; it is also 

involved in postural reflexes, gaze reflexes and central motor information (Kandel et al., 

2012). The cerebellum is thought to integrate vestibular information of the position and 

movement of the head with proprioceptive input from the legs in order to regulate 

balance during locomotion. In addition, the system is responsible for the vestibulo-ocular 

reflex, which maintains eye position during movements of the head in order to project a 

stable image onto the retina. And finally, the vestibular system communicates with the 

somatosensory cortex, where the information is used for the perception and orientation of 

movement in the environment (Kandel et al., 2012). Clearly, the vestibular system is 

accountable for the position and movement of the head in space, but also contributes to a 

variety of aspects of locomotion and whole-body movements. 
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1.3 Galvanic Vestibular Stimulation 

 A variety of studies have been conducted in order to study and better understand 

this particular sensory system, but one method in particular has generated a great amount 

of knowledge on the subject. Previous research has determined that when visual input is 

available, body responses to vestibular perturbations decrease (Bent et al., 2002; Britton 

et al., 1993; Welgampola & Colebatch, 2001). Thus, in order to properly examine how 

perturbing the vestibular system alters responses of the body, the majority of studies 

analyzing contributions of the vestibular system have removed or altered visual input. 

Galvanic vestibular stimulation (GVS) is a method used to perturb the vestibular system, 

during which a small current is sent across the mastoid processes, evoking sensations of 

movement (Fitzpatrick & Day, 2004). The current that passes between electrodes creates 

a perturbation of the vestibular system, causing subjects to elicit a postural response in 

the absence of vision. Galvanic vestibular stimulation has been used for close to two 

centuries, dating back to at least a dissertation by Johann Purkyne in 1819 stating that the 

galvanic current is capable of upsetting the balance and equilibrium of the body 

(Purkyne, 1819). This tool is frequently used throughout research to better understand the 

vestibular system due to its ability to isolate vestibular inputs from other sensory inputs 

without disturbing balance, and evoke strong balance responses in participants (Britton et 

al., 1993; Fitzpatrick et al., 1994). GVS is a safe methodology used for many years with 

low risk due to the use of currents of small amplitudes. The electrical current does not 

have any adverse effects on the participant, aside from a very low risk of nausea or 

dizziness. A particular study examining the safety of repeated sessions of GVS in stroke 

patients determined that GVS is tolerable at 1 mA when applied for 30 minutes 
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consistently (Wilkinson et al., 2009). This proves that the instrument is safe for a young 

adult population, such as the sample in the current study. 

 Typically, a constant current of 1-2 mA in amplitude is applied, but the stimulation 

can also be designed as a proportion of the subject’s threshold to the stimulus. Current 

amplitudes are small because even a stimulation of 1mA is enough to evoke a noticeable 

postural response in individuals. This small current is one of the main reasons that 

galvanic vestibular stimulation is considered a safe procedure. Based on a review by 

Fitzpatrick and Day, with only 1mA of GVS, a single afferent fiber would signal angular 

acceleration of 2 deg/s2 in the semicircular canals and linear acceleration of 1.18 m/s2 in 

the otoliths. Thus, only small and safe amplitudes of stimulation are necessary when 

using GVS to study the vestibular system. However, individuals have different thresholds 

when responding to galvanic vestibular stimulation, such that the delivery of the same 

amplitude of stimulation will not produce the exact same magnitude of response across 

all individuals. It is important to incorporate threshold concepts when investigating 

effects of GVS as opposed to using fixed stimulation levels (Bent et al., 2000). Specific 

amplitude thresholds are determined for each individual participant, and then GVS is 

administered in magnitudes of this original threshold in order to normalize the effect of 

stimulation and the body’s response to GVS. 

 

1.3.1 GVS and Head Position 

 As previously stated, GVS is a tool used to better understand the structure and 

function of the vestibular system. In a review by Fitzpatrick and Day (2004), the authors 

analyze a variety of studies on a large number of aspects of galvanic vestibular 



  9 

stimulation. Most importantly, they established a model regarding vestibular signals 

arising from GVS. They predicted that when the head is upright, the semicircular canal 

signal indicates lateral head rotation while the otoliths indicate lateral tilt or acceleration. 

While the head is pitched forward, they predicted the semicircular canal signal would 

indicate body spin on the vertical axis, but the otolith signal would still signify lateral 

body motion. In other words, the semicircular canals can distinguish between movements 

with the head upright and pitched forward, where as the functional significance of the 

otolith signal is predicted to remain the same in both head positions (Fitzpatrick & Day, 

2004). 

 Cathers and colleagues (2005) took this model and applied it to their study 

analyzing head position during GVS stimulation. GVS was applied during two different 

conditions, both with a 90-degree rotation of the head accomplished with both head and 

trunk rotation. In the first condition, head-up, the head was elevated by 18 degrees. The 

second condition, head-down, depressed the head by 72 degrees. GVS was administered 

in both conditions, and researchers measured anterior-posterior sway and 

electromyographic activity of the tibialis anterior and the soleus. With respect to sway, 

the amplitude was greater during the head-up condition, whereas there was no significant 

change in sway during the head-down condition. In addition, the EMG results showed 

different latencies in muscle activation across the two conditions (Cathers et al., 2005). 

These results were interpreted to support the model by Fitzpatrick and Day predicting 

that maximal canal responses would be evoked in the head-up condition and would 

disappear in the head-down condition (Fitzpatrick & Day, 2004). This difference between 

the conditions is due to the fact that semicircular canals are unaffected by head position 
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and were activated in both conditions. The three semi-circular canals are oriented such 

that they each respond maximally to a specific movement of the head, ensuring that they 

are activated during all head positions. Otoliths, on the other hand, are sensitive to the 

position of the head such that they are stimulated more during a forward pitch of the 

head, similar to the head-down condition. Since the otoliths were less activated during the 

head-up condition, there was more sway in the anterior-posterior direction. This study 

was successful in determining that head position affects an individual’s postural response 

to GVS stimulation. The EMG results also helped determine that otolith organs are 

responsible for eliciting short-latency muscle activation in response to GVS, whereas 

medium-latency muscle activation and large sway is driven by the semicircular canals 

(Cathers et al., 2005). Clearly, galvanic vestibular stimulation has been used to contribute 

to the knowledge of the structure and function of the vestibular system, showing that the 

semi-circular canals and otoliths do not function as one unit; they are separate sensory 

systems that operate through different pathways. 

 

1.3.2 GVS Effects on Balance Control: Static and Dynamic 

 Since the semi-circular canals and otoliths have been shown to function 

independently through the use of galvanic vestibular stimulation, there has been a 

constant debate throughout academic literature as to which structure is stimulated during 

administration of GVS. Reynolds & Osler (2012) published a review analyzing a large 

number of studies using GVS in order to compare results and determine how the brain 

interprets the stimulation from the electrodes on the mastoid processes. The paper set out 

to disprove the theory of Cohen and colleagues that GVS stimulates both the otolith and 



  11 

semi-circular afferents, but only the otolith-related responses are induced; there is no 

sensation of rotation that would support stimulation of the semi-circular canals (Cohen et. 

al, 2012). The review then sources a variety of studies and their findings proving the 

exact opposite. A study by Fitzpatrick and colleagues in 2002 investigated the effect of 

GVS on subjects lying in a supine position. GVS was applied to individuals lying on a 

platform that only rotated around the vertical axis, removing any linear movement. The 

platform movements consisted of right, left or none, and the GVS stimulation occurred as 

anode left, right or none. During only movement conditions, subjects could accurately 

determine the direction of rotation. During only GVS conditions, subjects reported a 

rotation in the direction of the cathode when there was no physical rotation occurring. 

When the movement and GVS were applied congruently, subjects reported greater spin 

than when they were applied incongruently. Thus, the researchers concluded that GVS 

produces a signal of rotation affiliated with the semi-circular canals (Fitzpatrick et al., 

2002). Reynolds and Osler used many additional sources in their review to support their 

theory that “GVS is primarily interpreted by the brain as head roll, consistent with 

activation of semicircular canal afferents” (Reynolds & Osler, 2012). 

 Regardless of which vestibular component is responsible for the reaction to GVS, it 

has also been of great interest to researchers how this perturbation affects the postural 

response of subjects. Previous research has shown that subjects tend to lean towards the 

anode during galvanic vestibular stimulation in the absence of vision, such that the head 

tilts on the trunk, the trunk tilts on the pelvis, and the pelvis tilts with respect to the 

ground (Fitzpatrick & Day, 2004). At the time of this original discovery, the mechanics 

behind this perception had yet to be fully understood. A study by Wardman and 
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colleagues tested three different hypotheses as to why GVS causes subjects to lean 

without conscious awareness. The first hypothesis was that GVS might alter our 

perception of the vertical that we use to align the body. However, their study showed that 

participants still had a consistent perception of the vertical under GVS stimulation. The 

second suggestion was that subjects interpreted the GVS signal as a tilt in the support 

surface under their feet. But after comparing body angle responses of GVS to responses 

of an actual tilt in the support surface, it was determined the body angles were different. 

Finally, the last hypothesis was that the GVS signal produces the illusion of movement in 

subjects. Researchers compared perceptions of movement during freestanding and 

restricted conditions, but the perceptions did not coincide, disproving their last 

hypothesis. After determining that all three hypotheses were incorrect, they concluded 

that the lean observed in subjects towards the anode is due to the body’s automatic 

response to maintain head position in space. A perceived change in head position is 

detected and the trunk and legs respond accordingly to counteract the destabilizing 

moment created (Wardman et al., 2003). 

 Specific studies have shown that using GVS to perturb the vestibular system causes 

path deviations in individuals in the absence of vision (Fitzpatrick, 1999; Bent, 2000; 

Jahn, 2000; Deshpande & Patla, 2007). In a study by Fitzpatrick, Wardman & Taylor in 

1999, subjects were instructed to walk towards a previously seen target without vision 

while GVS was applied. This study aimed at analyzing the effects of GVS on path 

trajectory during locomotion without input from the visual system. A second condition 

was studied during which subjects were blindfolded and guided from one point to another 

while seated in a wheel chair. The objective of the second portion of the study was to 
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determine the perception of path trajectory during GVS when there was no visual input. 

The results of the study showed that during locomotion, the path trajectory of the 

participants deviated towards the anode, in the direction of the current. In the wheelchair 

condition, participants perceived that they had travelled in the direction of the cathode, in 

the direction opposite of the current, as opposed to straight ahead. These results showed 

that not only does GVS during locomotion cause subjects to alter their path trajectory, but 

it also changes their perception of their path trajectory, because the GVS stimulation has 

altered their perception of position and acceleration of the head in space (Fitzpatrick et 

al., 1999). This supports the previous research on GVS during static balance that 

stimulating the vestibular system with an electrical current causes a perturbation of the 

vestibular system; stimulation during static stance causes a lean towards the anode, while 

stimulation during locomotion causes a path deviation towards the anode. 

 Once it was determined that GVS caused a deviation in path trajectory towards the 

direction of the current, many other aspects of the vestibular system’s contributions to 

locomotion became of great interest. One particular study by Bent and colleagues used 

GVS at different magnitudes to study the relationship between the magnitude of the 

electrical current and the degree of path deviation during locomotion. Researchers 

determined the subject-specific anodal threshold levels for each participant, then applied 

stimulation at one, two and three times the threshold without vision. Results showed that 

the path trajectories of all participants deviated in the direction of the anode, similar to 

the findings of Fitzpatrick, Wardman and Taylor (1999). In addition, the degree of 

deviation from the intended path trajectory was shown to be proportional to the 

magnitude of stimulation; as the magnitude of the electrical current increased, the degree 
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of path deviation also increased. This study has clearly shown that GVS is not only 

successful in perturbing the vestibular system during locomotion, but it has a proportional 

relationship with the resulting path deviation. It demonstrated that the vestibular system 

is able to identify the magnitude of stimulation and generate an appropriate response to 

this magnitude (Bent et al., 2000). GVS has shown that the system is capable of 

differentiating between different magnitudes of stimulation, and is capable of evoking the 

appropriate response. 

 Bent and colleagues built on this previous research by analyzing the information 

provided by the vestibular system contributing to the execution of a single forward 

voluntary step. In this study, the anode was placed either on the side of the stance limb or 

the swing limb and both ground reaction forces and body position were measured. Prior 

to the onset of a forward step, slight shifts were seen in both COP and COM at the onset 

of GVS stimulation. However, during the initiation of the forward step, no further 

deviations in either measurement were seen. This supports previous research that step 

initiation is unaffected by vestibular influences, and is an activity pre-programmed by the 

central nervous system (Lyon & Day, 1997). Once the body entered the dynamic phase of 

locomotion, particularly beginning at first heel contact, GVS-related COM displacements 

were seen for all subsequent events. However, COP displacements were only existent 

after second heel contact, prior to step termination. These results show that, without 

visual input, vestibular information is used differently across the phases of a forward 

voluntary step, such that it has less contribution during initiation of a step compared to 

the more dynamic phases of gait, including termination (Bent et al., 2002). Although the 

authors were unsure as to the mechanisms behind these differences in displacement, it is 
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clear that the control of the vestibular system is dependent on the phase of locomotion. 

 Soon after, Bent & colleagues continued their research by investigating the 

interaction of the vestibular and visual system during the transition from quiet standing to 

a single forward voluntary step. Their research demonstrated that the importance of 

visual and vestibular sensory input during human gait is also dependent on the phase of 

locomotion. These sensory systems are weighted and integrated differently across the 

phases of a single forward voluntary step (Bent et. al., 2002). A subsequent experiment 

was then conducted that separated the single forward voluntary step into three phases: 

anticipatory postural adjustment, toe-off of the first swing limb and heel contact of the 

first swing limb. It was determined that the magnitude of the response of lower body foot 

placement was different depending on the phase of the step cycle that the GVS was 

delivered. These results support that even foot placement is dependent on the point during 

gait at which the stimulation occurs (Bent et al., 2004). Overall, Bent and colleagues have 

successfully used GVS to show that the sensory input of both the vestibular and visual 

systems are dependent on the phase of the gait cycle. Sensory weighting is altered based 

on the step phase that the subject is performing, as well as which phase the perturbation is 

delivered. 

 

1.3.3 GVS as a Tool to Assess Sensory Integration 

 Many studies involving galvanic vestibular stimulation, are conducted without 

visual input, because there have been many instances where it has been stated that GVS is 

only effective in altering path trajectory during locomotion if visual information is not 

present. Visual input from the environment is said to outweigh any vestibular 
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perturbation that alters the perception of the position and acceleration of the head in 

space. Based on the prediction that the visual and vestibular systems may work together 

to maintain stability during the onset of human gait (Bent et al., 2002), a study was 

conducted by Kennedy and colleagues that focused on the contributions of both the visual 

and vestibular system during gait. The objective of the study was to perturb both the 

visual and vestibular system separately and together to study the effects that these 

conditions would have on the path trajectory of subjects during locomotion. Vision was 

perturbed using prisms that altered the visual scenery by 20° to the right or left, and the 

vestibular system was perturbed in both directions using galvanic vestibular stimulation. 

When the prisms or GVS were presented alone, the subjects deviated accordingly; 

subjects veered towards the direction of the prism during the visual conditions and 

towards the anode during the GVS conditions. However, when both the prisms and GVS 

were presented together, subject’s path trajectory deviated toward the direction of the 

prism, regardless of which direction the GVS current was travelling. This is evidence that 

the sensory system is capable of reweighting information based on the most reliable input 

that is available. In this case, the body determined that the visual input was more relevant 

than the vestibular input, which caused an increase in visual gain that produced a 

response correlated with the prism direction rather than the anode position. In addition, 

when the visual-vestibular conditions were congruent in direction, the deviation in path 

trajectory was even greater than the condition with the visual perturbation only (Kennedy 

et al., 2003). Clearly, the visual and vestibular systems are working together and are both 

important in the control of locomotor trajectory, but vision is the dominant sensory 

system providing input during human gait.  
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 A similar study was conducted a few years later in 2005, when Carlsen and 

colleagues repeated the same conditions as Kennedy and colleagues, only using visual 

targets to guide locomotion. Participants were exposed to varied combinations of prisms 

and galvanic vestibular stimulation in order to study the contributions of both the visual 

and vestibular systems during forward locomotion towards a visual target.  Similar to 

Kennedy et al., the results showed that when the prism and anode placement were 

congruent, the deviation in path trajectory of the subjects was approximately equal to the 

summation of deviations of the visual and vestibular conditions presented alone. Thus, it 

is clear that there is an additive effect on human gait when both perturbations are 

combined. However, when the prism and anode placement were not congruent in their 

direction, the deviation was significantly smaller, almost zero. These results conflicted 

with those found by Kennedy et al., who found that the deviation shifted towards the 

effect of the prisms and the GVS had no effect on the resulting locomotion (Kennedy et 

al., 2003). Carlsen and colleagues discovered that during their trials, the visual and 

vestibular perturbations seemed to cancel each other out during locomotion, resulting in a 

path trajectory with very little deviation regardless of the perturbations occurring in both 

the visual and vestibular systems. Researchers stated that this cancellation of perturbation 

shows that the nervous system integrates the inputs from the vestibular and visual system 

equally, rather than the visual system having a higher gain. They argued that during 

target-directed locomotion, the information from the systems is continuously integrated at 

the same weight, because both are important in the perception of trajectory (Carlsen et 

al., 2005). Apparently, the simple addition of a visual target during locomotion reduced 

the participant’s reliance on vision and equalized the weighting of sensory systems during 
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the integration of inputs in the CNS. 

 Aside from the studies discussed above, the majority of studies using galvanic 

vestibular stimulation have observed the effects of GVS during locomotion without 

vision, since visual input has been shown to override vestibular input during locomotion 

(Kennedy et. al., 2003). Many of the locomotor studies remove vision by studying gait 

simply with the eyes closed or using a blindfold. But, in a study conducted by Deshpande 

& Patla in 2007, the researchers were more interested in the visual-vestibular interaction 

during GVS than the actual path trajectory. The objective of the study was to use GVS to 

determine how age-related visual deterioration influenced the visual-vestibular 

interaction during locomotion. Nine young adults and nine healthy older adults were 

studied under both normal and blurred conditions while walking towards a target with or 

without GVS. During normal vision conditions, younger adults were more successful in 

walking towards the target than older adults, whose locomotor pathways were more 

affected by GVS. These results indicate that younger adults are able to successfully 

reduce their vestibular gain and rely more heavily on visual input to determine their body 

orientation in space and path trajectory during locomotion. Younger adults can control 

their sensory systems more efficiently than older adults, and are able to increase the gain 

of their visual input to outweigh the perturbation of the vestibular system. During the 

blurred vision condition, the study did not find any further increase in path deviation for 

both young and older adults. Since the subject’s vision was only blurred and visual input 

was not completely removed, it is possible that the amount of vision provided was still 

sufficient enough to allow subjects to maintain path trajectory and outweigh the 

perturbation of the vestibular system. However, it would have been expected that reduced 
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vision should have elicited a re-weighting of the sensory systems, increasing the gain of 

the vestibular system and eliciting a greater path deviation (Deshpande & Patla, 2007). 

One explanation is that locomotion in a straight line, on a flat surface, without obstacles 

is not challenging enough to induce sensory reweighting towards the vestibular system. A 

more challenging task may elicit a greater reliance on the input from the vestibular 

system causing the GVS to create a greater path deviation during locomotion in both 

young and older adults. 

 With this thought in mind, McFadyen and colleagues (2007) generated a study that 

analyzed the influences of both the visual and vestibular systems during obstacle 

avoidance. Subjects were instructed to complete trials of level walking or obstacle 

avoidance, during a variety of conditions with vision present or occluded and with or 

without galvanic vestibular stimulation. During the trials of obstacle avoidance without 

vision, gait speed decreased and clearance of the leading foot increased compared to the 

results of the level walking trials. This is expected since the reduction in visual input has 

been shown to produce the exact same results during obstacle avoidance in previous 

studies (Mohagheghi et al., 2004). When GVS was applied during level walking, 

deviations in body orientation and foot trajectory were observed, similar to the results of 

the previous research (Bent et al., 2004). However, during obstacle avoidance, these 

deviations were no different than those present during level walking. This suggests that 

vestibular information is not an important sensory input during the completion of obstacle 

avoidance. These results clearly show that there is a heavy reliance on vision during 

obstacle avoidance, but no contribution of the vestibular system. The authors contrasted 

their findings with those of Carlsen and colleagues in 2005, which found that the visual 
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and vestibular systems contributed equally to producing locomotion when a visual target 

was available. However, the present study did not use a visual target, and the authors 

stated that although stepping over an obstacle is goal-oriented, it is transient in nature 

(McFadyen et al., 2007). Thus, although locomotion requires vestibular input to produce 

movement, obstacle avoidance is only reliant on the visual system for sensory input. 

 

1.4 Spatial Navigation  

 However, obstacle avoidance is not the only task that is more difficult than straight-

line walking without vision. A specific task that has increased difficulty compared to 

basic locomotion is the triangle completion task, created to analyze an individual’s spatial 

navigation proficiency. Spatial navigation is the ability to constantly update one’s 

position in space while moving through the environment (Smith et al., 2013). This 

process is composed of cues from the visual, vestibular and somatosensory system that 

provide feedback of the body’s movement within space. The latter two contribute to a 

process termed path integration, which is defined as using movement information or 

idiothetic cues from the vestibular and proprioceptive systems as feedback to update our 

position in the environment (Mittelstaedt, 2001; Smith et al., 2013). According to Loomis 

and colleagues (1993), an individual’s spatial navigation can be classified according to 

three types of information. Position-based navigation relies on visual cues or landmarks 

to give the individual information on their position and orientation in the environment. 

Velocity-based navigation relies on optical flow, acoustic flow, and proprioception to 

gain information on characteristics of the individual’s self-motion such as speed and 

direction of travel. And finally, acceleration-based navigation relies on vestibular 
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information about linear acceleration and rotational velocity and acceleration. Humans 

use all three components of navigation—position, velocity, and acceleration— during 

spatial navigation within an environment (Loomis et al., 1993). This highlights how all 

three sensory systems are integrated in order for an individual to successfully navigate 

throughout space. As with any form of integration, removing visual information from an 

individual will cause the weight of the vestibular and proprioceptive information to be 

increased, and force the participant to rely solely on path integration to gain information 

on self-motion within the environment. 

 

1.5 Triangle Completion Task  

 The triangle completion task is an analysis of spatial navigation during which 

participants navigate along two sides of a triangle, then must navigate their way back to 

the origin without guidance or vision (Smith et al., 2010). The individual will either be 

guided by the researcher in the absence of vision (Loomis et al., 1993; Smith et al., 2013) 

or actively navigate with vision along the first two legs of a triangular pathway. 

Participants typically navigate in a straight line from the starting point, then are rotated 

90 degrees to the right or left before navigating along the second leg of the triangle 

(Smith et al., 2013). The researcher can manipulate the characteristics of the triangle, 

such as angles and side lengths, in order to analyze different responses. Participants are 

then instructed via physical cues or verbal instructions to navigate their way to the origin 

at which they started the task, without the use of visual cues or guidance from the 

researcher. Individuals are expected to use idiothetic cues such as vestibular and 

proprioceptive input (path integration) to return to their starting position. By calculating 
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the error between the participant’s estimated end-point and the actual origin or start 

position, the individual’s interpretation of both the distance and angular relationship can 

be analyzed to determine the participant’s path integration abilities (Smith, 2013). When 

conducting studies that utilize the triangle completion task, it is important to ensure that 

participants do not receive any feedback on their performance of the task. These studies 

tend to be more interested in analyzing the performance of the participant across different 

conditions, as opposed to the learning effects of providing feedback during tasks of 

spatial navigation in the absence of vision. However, the lack of feedback may also act as 

a hindrance on performance, as individuals may perceive this as feedback in itself. 

Participants may see this as a lack of correction; they believe they are performing the task 

properly every time and that is why they are not receiving feedback. This would cause 

participants to continue to perform in the same manner for all succeeding trials. 

Alternatively, participants may interpret this lack of feedback as failure, and perceive the 

subsequent trials as an opportunity to correct their performance. This would cause 

participants to alter their behaviour across all of the following trials. However, even 

though this lack of feedback could manipulate a participant’s behaviour, providing 

performance feedback would create a learning effect across trials that would influence the 

effect of the conditions on the performance of the task. Thus, in the majority of studies 

utilizing the triangle completion task to analyze an individual’s ability to navigate 

throughout space in the absence of vision, feedback on performance is not provided to the 

participants. 

 As previously stated, the triangle completion task uses both distance and angular 

error to determine the spatial navigational abilities of an individual. Distance error is 
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typically defined as the difference between the position at which the participant started, 

and the end position they predicted to be their origin. Angular error is the difference 

between the heading that was required to reach the correct origin, and the actual direction 

of the participant’s path trajectory. These components were further analyzed in a study by 

Worsley and colleagues (2001), which used the triangle completion task to examine the 

performance of individuals that had experienced either right or left-hemisphere temporal 

lobectomies. Distance and angular errors were measured to determine if the mechanisms 

were processed by the same systems. The study found no difference between groups in 

terms of distance error, however the right-hemisphere patients had a great impairment in 

their angular error. These results determine that distance and direction are processed by 

different mechanisms during spatial navigation. In addition, the results suggest that the 

right temporal lobe plays a role in idiothetic spatial memory (Worsley et al., 2001). Thus, 

this research supported that both distance and angular error are components of path 

integration that are processed separately (Berthoz et al., 1999; Smith et al., 2010; 

Worsley et al., 2001), and both should be analyzed when conducting studies with spatial 

navigation tasks. 

 Another study, by Loomis and colleagues (1993), used the triangle completion task 

to examine spatial navigation of adventitiously blind, congenitally blind and blindfolded 

sighted individuals. Results showed that all participants were sensitive to the 

manipulations of angle and distance characteristics of the triangle pathway, such that 

there was an overestimation of short distances and an underestimation of large distances. 

In addition, Loomis and colleagues stated that the results showed that triangle completion 

is a very difficult task. Subjects over all three groups showed significant error in both 
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distance and angular estimations, demonstrating that individuals had inadequate 

proprioceptive and vestibular cues to navigate successfully through the environment 

(Loomis et al., 1993). Thus, it would be a more challenging task than normal locomotion 

with respect to a population of young adults. Although untrained young adults have 

difficulty successfully performing the triangle completion task, would there be similar 

results for individuals that are sport-specifically trained to navigate throughout their 

environment? 

 

1.6 Virtual Reality 

 Most of studies that use the triangle completion task to investigate accuracy of 

spatial navigation typically blindfold individuals and lead them across the first two legs 

of the triangle. However, if the visual environment could be more efficiently 

manipulated, participants could use vision to navigate the first component of the task on 

their own, and then visual cues could be effectively removed for the final leg of the 

triangle. A technological component such as virtual reality could be used in order to 

allow participants to navigate through the environment on their own rather than with the 

guidance of the researcher. In a study by Harris and Wolbers (2012), researchers 

examined the navigational abilities of younger and older adults in a virtual navigation 

task. The triangle completion task was combined with a virtual environment that the 

individuals were instructed to perform within. The virtual reality consisted of a 

widescreen monitor displaying one of the two environments, and participants navigated 

throughout the scenery using a joystick. The first scene was a “dot floor” environment; a 

dark grey floor with 5,000 white dots. These dots appeared in randomized locations for 
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only 2 seconds at a time, ensuring the participant was given optic flow information, but 

no fixed reference points. The second environment included mountain scenery that did 

provide visual reference points for the participants. The triangle completion task was 

performed in both environments, during which participants were automatically moved 

along the first two legs of the pathway, then instructed to use the joystick to turn and face 

their starting position, then move towards it. Results for both age groups showed similar 

results to previous studies; an overshooting of small distance and an undershooting of 

large distances (Harris & Wolbers, 2012). Since the study of triangle completion using 

virtual reality found similar results to the physical completion of the triangle task, is it 

fair to assume that virtual reality can successfully be used to examine spatial navigation 

characteristics in individuals? 

 The study by Harris and Wolbers (2012) presents an interesting combination of 

virtual reality for tasks of spatial navigation. However, this approach is limited because 

the display does not allow the participants to physically interact with the virtual space. A 

study by Grant & Magee (1998) guided participants along a route in both a real 

environment that individuals physically navigated through, and a virtual environment that 

allowed them to effectively explore the space while walking in place. Results showed 

more accurate performance when the participants were physically navigating throughout 

the environment, and the researchers attributed these findings to the abundance of 

idiothetic information they were receiving from actively moving through the space (Grant 

& Magee, 1998). Previous research has determined that active navigation throughout an 

environment better contributes to spatial learning (Chrastil & Warren, 2012). Clearly, 

participants would benefit from actively navigating through a space because it would 
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increase the amount of somatosensory and vestibular information contributing to spatial 

navigation.  

 In 2002, a paper by Tarr & Warren highlighted the use of virtual reality in 

behavioural neuroscience, from desktop virtual reality to head-mounted systems. The 

authors introduced the VENLab system, stating that it was the “largest walkable 

immersive virtual reality system in existence for scientific research” (Tarr & Warren, 

2002). The system combines a head tracker with high-end graphics and a head-mounted 

display to create an immersive and realistic virtual environment. The success of this 

technology is based on the wide field-of-view, the speed at which the display is 

consistently updated, and the effect of the participant’s own movements creating changes 

in the virtual environment. VENLab has been used to analyze aspects and characteristics 

of locomotor behaviour, and provides the means to effortlessly manipulate visual 

information for self-motion (Tarr & Warren, 2002). Although this technology has created 

an avenue for immersive virtual environments to study aspects of behavioural 

neuroscience, the system is still fairly expensive and not affordable to the general public. 

According to Parkin (2014), a new virtual reality technology has recently emerged aimed 

at being used as a visually immersive interface for entertainment and communication. 

Palmer Luckey designed the oculus rift using cheap smartphone components to create a 

rich virtual environment that follows the movement of your head in real time to create a 

realistic and believable atmosphere. The device creates a 3-D image by turning a scene 

into two warped side-by-side views, with a resolution higher than 1,920 by 1,080 pixels 

per eye. Previous technology for virtual reality in the mid-1990’s received many 

complaints of nausea from users. However, the latest version of oculus rift claims to have 
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almost completely eliminated any effects of nausea in users. Although virtual reality 

technology has been explored before, this is the first high-quality device that has been 

priced accordingly for the consumer market; it’s affordable to the general public (Parkin, 

2014). This technology may have been created for use during video games to create a 

more realistic and immersive environment, but could it also be used in scientific 

experimental studies in order to allow participants to navigate through a simulated 

environment? 

 

1.7 Effects of Sport-Specific Training on Spatial Navigation 

 Research has supported that athletes have superior ability with regards to spatial 

navigation compared to the untrained population (Bredin et al., 2005; Ozel et al. 2002; 

Smith et al., 2010). A study conducted by Bredin and colleagues (2005), examined how 

athletes navigate through the environment without visual cues compared to untrained 

individuals. The purpose of the study was to determine if athletes were better able to 

calibrate idiothetic cues of self-motion to improve their accuracy of path integration. The 

participants were blindfolded and instructed to walk towards a previously seen goal at 

slow, normal and fast speeds. Participants were instructed to terminate gait at their 

estimated location of the goal, and their error in distance to the actual goal was measured. 

Results demonstrated that both groups were most accurate at the normal or preferred 

velocity. At slow speeds, both groups overestimated the distance of the goal. During the 

conditions of fast velocity, athletes were more accurate in determining the position of the 

goal, and thus demonstrated more accurate path integration. The authors suggested that 

this improvement in accuracy was due to the fact that athletic training typically involves 
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movement at high speeds, and the participants in the athlete group have more experience 

with processing multi-sensory information at fast velocities (Bredin et al., 2005). 

However, this particular study is limited in many ways. First, the research does not 

include how the varied speeds were controlled; did the researchers ensure participants 

were walking at 50, 100 and 150% of their normal walking velocity? In addition, the 

methods of data collection used in this study did not use precise instruments, and could 

largely have been affected by human error. This was also a very simple, straight-line, 

forward-walking task, and is not definitive representation of all spatial navigational tasks. 

And finally, the sample athlete group consisted only of athletes involved in rugby, 

handball, or volleyball. Therefore, the findings of this research cannot be generalized to 

all athletes. However, despite the limitations of this study, it does support the possibility 

that the sport-specific training that athletes endure may improve the computation of 

idiothetic cues of self-motion (Bredin et al., 2005).  

 Clearly, athletes have demonstrated that sport-specific training may improve the 

accuracy of an individual’s path integration. Interestingly, it has been argued that an 

individual’s spatial abilities are scale-invariant, such that behaviour of an individual at 

one spatial scale may not interchange when exposed to a different spatial scale (Montello, 

1993). With this suggestion in mind, Smith and colleagues (2010) conducted a study with 

the purpose of determining if the spatial scale of athletic training affected an athlete’s 

accuracy of path integration. The authors entertained the possibility that sport-specific 

training may only improve path integration when it is a similar scale to that of the athletic 

training. The study examined two groups of trained athletes: rugby players and martial 

artists. Rugby players are trained at a large spatial scale, while martial artists are trained 
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at a small spatial scale. All participants performed the triangle completion task on an 

outdoor sports field, or large spatial scale. There was no difference between groups on 

their distance error, but rugby players were significantly more accurate at determining the 

correct angular component during the triangle completion task, thus reducing their overall 

landing error. The author attributed this difference to the spatial demands of rugby, 

stating that the athletes may have greater experience in computing idiothetic cues during 

locomotion. In addition, the researchers suggested that rugby players experience more 

situations requiring that they make inferences about spatial location without visual input 

regarding the multiple components of play (Smith et al., 2010). Not only does this 

research support that distance and angular components are processed by separate 

mechanisms, but it also supports that the spatial scale of training affects the spatial 

navigation ability of an individual. 

 Research has clearly supported that the spatial-scale of training determines an 

individual’s accuracy of path integration, such that athletes trained in large spatial scales 

perform tasks of path integration more accurately in large environments and vice versa 

(Smith et al., 2010). Dancers, however, are specifically trained on both a small and large 

spatial scale. These specific athletes are trained to use idiothetic cues in their personal 

space with respect to the proprioception of their limbs such as martial artists, but also 

must continually make inferences of their location within the environment without the 

use of visual cues such as rugby players. They must be aware of the performance of their 

bodies in space, but also of the other individual and the environment surrounding them on 

a larger scale. Thus, dancers are trained on both small and large spatial scales, and would 

be expected to demonstrate improved accuracy in spatial navigation. 
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 As much as this hypothesis seems plausible, there is a very limited amount of 

research studying the accuracy of spatial navigation or path integration in professional 

dancers. Dance training has been shown in previous research to have beneficial effects on 

postural stability (Kattenstroth et al., 2013; Lin et al., 2014; Panchuk & Vickers, 2011; 

Simmons, 2005; Thullier & Moufti, 2004), sensorimotor performance (Golomer et al., 

1999; Golomer & Dupui, 2000; Kattenstroth et al., 2013; Simmons, 2005), cognition 

(Kattenstroth et al., 2013; Kimura & Hozumi, 2012), long-term memory recall (Blasing et 

al., 2009; Blasing, 2010; Stevens et al., 2010), and subjective well-being (Kattenstroth et 

al., 2013). However, even with the existing research supporting that dance training 

improves many aspects of motor and cognitive behaviour, very few studies have studied 

any aspects of spatial navigation in the professional dancer population. It has been 

suggested in previous research that spatial awareness, body representation and perception 

of time are the main cognitive abilities acquired through dance training (Jola, 2010). 

Motor skills such as dance movements involve the integration of rhythm, spatial pattern, 

synchronization to external stimuli and coordination of the entire body (Brown et al., 

2006). So with this complex integration of multiple movement and spatial components, 

do dancers develop a more advanced technique for processing information? 

 One study in particular by Cortese and Rossi-Arnaud (2010) investigated 

professional dancers and how motor and spatial tasks interfered with their recall of 

movement and spatial location. The purpose of the study was to use multiple experiments 

to determine if dancers were better able to recall movement and location combinations 

from their working memory even when presented with a task of interference. Previous 

research in the area has shown that a variety of motor tasks cause interference in the 
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function of spatial working memory (Logie & Marchetti, 1991; Quinn & Ralston, 1986). 

Thus, it was expected that both tasks of motor and spatial interference would reduce the 

ability of participant’s to recall movements and spatial locations from the working 

memory. In each experiment, a group of professional ballet dancers were instructed to 

learn a set of ballet movements orally in a specific sequence. The control group would 

always perform an articulatory suppression task as the movement sequence was presented 

verbally to them, where as the experimental performed either motor or spatial tasks along 

with the verbal task as the movement sequence was presented verbally. All participants 

were then instructed to recall the sequence of movements by physically repeating each 

movement separately, but in the correct order. When the interference was a spatial task, 

there was no decrease in performance in the serial recall of dance movements, most likely 

because movement and spatial location are processed through separate systems. A second 

similar experiment was conducted during which the ballet movements were combined 

with spatial locations presented visually to the participant. As expected, a motor 

interference task interrupted the recall of the ballet movements, due to the fact that the 

task and movements were using the same system. However, the presentation of a spatial 

interference task did not decrease performance in the recall of spatial location. This result 

was not concurrent with previous research in untrained populations, and caused the 

authors to hypothesize that dancers encode spatial information differently than non-

dancers. Following this, a third experiment was conducted during which dancers were 

required to only recall a spatial location without the association of ballet movement, 

during a task of spatial interference. Results of this experiment showed a decrease in 

performance in dancers when recalling spatial location. Thus, the authors interpreted their 
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research to insinuate that dancers have a distinctly separate system for encoding 

combined movement and spatial information (Cortese & Rossi-Arnaud, 2010). This 

research clearly demonstrates that dancers process spatial information differently than the 

untrained population, such that their specific training has created a subsystem specifically 

for processing spatial locations combined with movement. 

 Since dancers have developed different means for processing spatial information, 

would this transfer to improved performance in tasks of spatial navigation or path 

integration? Dancers have been shown to organize dance movements into spatial patterns 

that encompass a trajectory map of the body within the environment (Brown et al., 2006; 

Longstaff, 2000). Blasing and Schack (2012) further analyzed this organization of 

movement within the surrounding environment by studying the representations of dance 

movement in long-term memory, specifically with regards to spatial parameters. Three 

groups of dancers—expert, amateur and novice—were to match the components of two 

well-known ballet movements to their associated spatial parameters. Results showed that 

expert dancers were more adequate at identifying the spatial parameter associated with 

each phase of the ballet movement, demonstrating that dance training shapes the 

cognitive representation of spatial information of movement concepts in expert dancers. 

This research supports the findings of Cortese & Rossi-Arnaud (2010) that expert dancers 

have special embodied representations of movement including information on spatial 

parameters in an egocentric frame of reference (Blasing & Schack, 2012). Thus, it is 

expected that dancers would excel in a task of spatial navigation such as the triangle 

completion task. 
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1.8 Effects of Ballet Training on Sensory Dominance  

 Returning now to sensory integration during motor control, a study conducted by 

Perry and colleagues determined that aspects of locomotion such as gait termination are 

under feedback control (Perry et al., 2001). Thus, sensory systems contribute to 

locomotion and provide constant feedback of the body in the environment to adapt 

locomotor characteristics accordingly. Studies of untrained young adults have shown that 

vision is the dominant sensory system during dynamic balance and postural control (Lee 

& Lishman, 1975). However, researchers have examined the effect of athletic training on 

dynamic motor control and have found that sport-specific training may improve multi-

sensory integration in the absence of vision in athletes (Bredin et al., 2005). More 

specifically, dance training in particular has demonstrated a reduction in reliance on 

vision for balance control in individuals. In a study by Mouchnino and colleagues (1992) 

dancers and naive subjects were instructed to perform unilateral leg movements in 

response to a light in order to analyze different aspects of the posturokinetic sequence in 

both populations. The purpose was to determine how their sport-specific training affected 

the coordination strategies used by dancers during leg movement. As expected, the 

researchers determined that dancers shifted their center of gravity to the supporting foot 

in a shorter amount of time and minimized this displacement towards the supporting side. 

But more importantly, it was determined that while maintaining equilibrium during leg 

movement, dancers were less vision-dependent. The authors stated that this was because 

dancers may have developed a new sensorimotor program without visual feedback 

(Mouchnino et al., 1992). Regardless of the reasoning, this study clearly showed that 

dancers are less dependent on vision than naive subjects in tasks of postural control and 
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balance. Even so, plenty of research has supported that sensory feedback is a major 

component in maintaining balance, particularly during tasks of dynamic nature. Thus, if 

dancers are not using vision as the dominant sensory system, what sensory input is the 

central nervous system increasing reliance on in order for the population to maintain 

balance? 

 Research has shown that dancers tend to shift their sensorimotor reliance from 

vision to somatosensory input, particularly proprioception, during dynamic balance tasks 

(Golomer et al., 1999; Golomer & Dupui, 2000; Simmons, 2005). During a performance, 

dancers use visual information for a variety of purposes that do not necessarily apply to 

untrained individuals. Dancers must navigate across the stage and around other dancers in 

their environment while performing complex movements. They are also expected to use 

their eyes for artistic expression in order to improve the performance quality of their 

movement. Not to mention there are typically blinding stage lights that prevent dancers 

from using many visual cues on stage while performing. Thus, researchers have explored 

the idea that dancers may not rely on visual input for postural control as much as an 

untrained individual. A study conducted by Golomer and colleagues (1999) studied both 

dynamic balance and the degree of dependence on vision for postural control in 

professional male ballet dancers. Dynamic balance of participants was analyzed by 

measuring the amplitude of sway in both the anterior-posterior and medial-lateral 

directions on a seesaw platform. Visual dependence was examined using the rod and 

frame test, in which participants must align a rod with their subjective interpretation of 

the vertical regardless of the orientation of the frame. Results showed that the 

professional dancers had significantly less sway in the anterior-posterior direction and 
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were less reliant on vision for balance control. The researchers suggested that this is 

because training creates a more accurate position sense of lower limbs. This 

strengthening in the accuracy proprioceptive inputs has caused professional dancers to 

switch their dominant sensory system for motor control from vision to proprioception. In 

addition, dancers that were less visually dependent were the individuals that had less 

sway and were more stable. This shift in reliance to the somatosensory system in dancers 

is what allows their visual input to be used for other aspects of their performance rather 

than balance or postural control. Clearly, professional dance training has been shown to 

alter which sensory input has the largest contribution to the resulting motor outputs, such 

that dancers are more reliant on proprioceptive cues rather than vision for motor control 

(Golomer et al., 1999).  

 Subsequent studies have supported the findings of Golomer and colleagues that the 

somatosensory system is the dominant form of input for dancers with respect to motor 

control. Golomer and Dupui (2000) used a similar paradigm as Golomer and colleagues 

(1999), such that a seesaw platform was used to isolate sway in both the anterior-

posterior and medial-lateral directions, under conditions with eyes opened and eyes 

closed. This particular methodology was used to examine the contribution of visual 

information to the regulation of postural control in professional dancers of variable age. 

The results showed that participants aged 14 and 23 showed improved balance control in 

the eyes closed conditions compared to the individuals aged 11 and 18. Researchers 

suggested that the results supported previous research that dance training reduces the 

reliance on vision for the maintenance of postural control, since dancers of older ages and 

increased training demonstrated a reduction in sway. However, dancers tend to have a 
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delayed onset of puberty such that males tend to undergo growth acceleration between 

the ages of 14 and 18. The authors suggested that the 18 year old participants had 

experienced pubertal changes in their bodies that may have disturbed their proprioceptive 

references and internal body representations, increasing their reliance on vision and 

reducing their postural stability (Golomer & Dupui, 2000). Thus, regardless of the 

increase in sway in the 18 year-old participants, the results of this study still support that 

dance training reduces an individual’s dependence on vision for postural control and 

causes dancers to rely more heavily on information from the somatosensory system. 

 Additionally, Simmons (2005) conducted a study of dynamic balance in 

professional ballet dancers during manipulation of both the visual and somatosensory 

systems. Six balance tests were used under conditions in which vision and/or 

somatosensory information were either completely removed or made unreliable. Results 

showed that dancers were significantly less stable than control subjects during the 

manipulation of somatosensory information alone and when combined with the unreliable 

visual input. Specifically, dancers were forced to use a hip strategy in order to maintain 

balance during the sensory perturbations (Simmons, 2005). This study contributes to the 

literature supporting that dancers are significantly more reliant on somatosensory input 

during dynamic assessment. Thus, there is an abundance of research supporting that 

dance training reduces an individual’s reliance on vision for postural control, such that 

dancers rely more on the input from their somatosensory system. This would allow 

dancers to potentially increase the gain of their somatosensory system when applying 

galvanic vestibular stimulation during locomotion and result in smaller errors attributed 

to the vestibular perturbation. 
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 The somatosensory system is a broad term consisting of a variety of sensory inputs 

that contribute to producing the desired motor output. Two components of the 

somatosensory system include cutaneous mechanoreceptors and proprioceptors (muscle 

spindles and Golgi tendon organs). Cutaneous mechanoreceptors are responsible for 

detecting tactile sensations such as pain, pressure, touch and temperature. On the other 

hand, proprioceptors provide information regarding the body’s position in space; this 

includes factors such as muscle length, muscle tension and joint angle. So this creates the 

question, that if dancers shift their reliance to somatosensory input during locomotion, are 

they relying more on cutaneous mechanoreceptor or proprioceptive input? In the study by 

Simmons (2005) that was previously discussed, the researchers manipulated both visual 

and somatosensory input during a dynamic balance task comparing dancers and control 

subjects. The perturbation specifically manipulated the proprioceptive information by 

rotating the participant’s support surface in reference to their A-P sway. In addition, they 

used the Semmes-Weinstein monofilaments to demonstrate that the cutaneous sensitivity 

of the control subjects and dancers were not significantly different from each other. Thus, 

they were controlling for cutaneous sensitivity while manipulating proprioceptive input 

during a dynamic balance task. Their results showed that dancers were significantly less 

stable than control subjects during this somatosensory perturbation (Simmons, 2005). 

Since the perturbation was a direct manipulation of their proprioceptive input, these 

findings support that dancers rely more heavily on their somatosensory input, but 

specifically the sensory information from their proprioceptors.  

 Based on this previous research, it can be inferred that dancers may rely more 

heavily on their proprioceptive input, rather than just their somatosensory system as a 
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whole. Since the cutaneous sensitivity was controlled for, and the proprioceptive 

perturbations were isolated, it seems that dancers may be relying more specifically on 

proprioceptive input from their joint receptors in order to produce the appropriate motor 

output. Another study looked to directly quantify the proprioceptive abilities of the lower 

limb in a group of professional dancers compared to a matched control sample. Kiefer 

and colleagues (2013) used a joint angle-matching task to determine the accuracy of the 

participants when reproducing a desired joint angle at the hip, knee and ankle. Individuals 

closed their eyes and stood on one leg, stabilizing themselves with a walker, while the 

experimenter manipulated the joint to a particular angle. The limb was then returned to a 

resting position, and participants were asked actively reproduce the joint angle without 

assistance. A manual goniometer was used to measure the joint angle and determine the 

absolute difference between the actual and estimated joint angles. Results of this study 

showed that dancers had significantly less error and were more accurate in reproducing 

the desired joint angles than control subjects at all three joints, with the greatest 

significance shown at the ankle joint. Clearly, the findings of this particular study support 

that dancers may have improved proprioceptive awareness of their lower limb joints in 

space. Their increased reliance on proprioception therefore puts them at an advantage 

compared to control subjects, particularly in tasks of perturbed visual input. Since 

dancers are relying more heavily on proprioceptive input during motor tasks, removing or 

altering visual input does not have as great of an effect on their motor output. Thus, it 

seems that dancers have a greater accuracy with respect to proprioceptive awareness, and 

it is predicted that they would rely specifically on this input when attempting to navigate 

through the environment during visual and vestibular perturbations. 
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1.9 Purpose and Objectives 

 Currently, there is limited research perturbing the vestibular system in dancers 

during a task of spatial navigation. However, based on previous literature, it was expected 

that dancers would rely more heavily on their somatosensory input during vestibular 

perturbation without visual cues, and would be more successful when navigating 

throughout their environment compared to non-dancers. The purpose of this study was to 

examine the effect of perturbing the vestibular system with GVS on path trajectory and 

body rotation during a triangle completion task in virtual reality, and to analyze how this 

task is affected by dance training. By using virtual reality and GVS to perturb the 

individuals, participants had to navigate throughout the environment with inaccurate 

vestibular information and without visual cues. Baseline tests of cutaneous sensitivity and 

proprioceptive awareness were also conducted and compared between groups in order to 

justify the expected main effect of dance training during the triangle completion task.  

 The hypothesis of the study was that there would be a main effect of GVS on both 

path trajectory and body rotation in both the dancer and control samples, such that there 

would be significantly greater errors in navigation when GVS was administered. Since 

the vestibular system has been shown to largely contribute to navigational tasks in the 

absence of vision (Campos et al., 2012; Frissen et al., 2011), it would be expected that 

GVS would reduce the accuracy of individuals attempting to navigate throughout the 

environment. In addition, it was expected that there would be no significant difference in 

errors between the two triangular pathways used in the protocol. It was also hypothesized 

that there would be a significant main effect of training, such that dancers were predicted 

to show fewer errors and better accuracy in navigating throughout the virtual 
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environment. This hypothesis was based on the previously discussed research, 

highlighting their superior representations of spatial parameters (Blasing & Schack, 2012; 

Brown et al., 2006), as well as their increased reliance on somatosensory information 

(Golomer et al., 1999; Golomer & Dupui, 2000; Simmons, 2005). Dancers were expected 

to have a greater reliance on the input from their somatosensory system to override the 

inaccurate vestibular and unavailable visual information during these trials. Finally, it 

was hypothesized that dancers would not significantly differ from the control subjects 

with respect to cutaneous sensitivity, but were expected to demonstrate greater accuracy 

in tasks of proprioceptive awareness, based on previous literature (Kiefer et al., 2013).  

 The objective of this study was to use the findings to create a better understanding 

of the role of the vestibular system in the absence of visual cues during tasks of spatial 

navigation. In addition, the study also aimed to understand the effects of dance training 

on both the reweighting of sensory input, and the accuracy of spatial navigation in the 

absence of visual cues. This research will contribute to the gap in current literature on 

sensory weighting during spatial navigation, specifically in dancers, by exploring how 

individuals adapt to the manipulation of both the visual and vestibular systems while 

attempting to navigate throughout a virtual environment. 
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2.0 Methodology  

2.1 Participants 

 Participants were recruited from Wilfrid Laurier University and local dance studios 

in Waterloo, Ontario. All participants were female between the ages of 18-30 years that 

were able to walk 10 meters unassisted and understand English instructions. This was in 

order to remove any effects of gender on performance. Females were selected for the 

study based on the increased availability of female dancers in the correct age range 

compared to male dancers. Sample sizes of each group were selected based on 

convenience and availability particularly with respect to the sample of dancers; there 

were a limited number of competitive dancers in the particular age range and location that 

were available for recruitment within the time frame of the data collection. In addition, 

the required sample size based on a power analysis could not be calculated because there 

were a limited number of pre-existing studies examining the effect of GVS on dancers, 

and pilot work was not conducted prior to data collection. The control group consisted of 

eighteen individuals (n=18) that had not participated in sport-specific or athletic training 

at the varsity level or higher. The experimental group included sixteen dancers (n=16) 

that had a minimum of eight years of training experience and all participants in this group 

were, at the time of the study, still training on a weekly basis. Training duration across 

the dancers ranged from 8-22 years of experience in a variety of styles including ballet, 

pointe, jazz, tap, hip hop, contemporary, acrobatics, and traditional Indian dance. Dancers 

were selected as the experimental group in the current study based on previous research 

that has supported that dancers rely more heavily on somatosensory information during 

dynamic balance tasks (Golomer et al., 1999; Golomer & Dupui, 2000; Simmons, 2005) 

and encode spatial information differently than untrained individuals (Blasing & Schack, 
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2012; Cortese and Rossi-Arnaud, 2010). Participants were excluded from the 

experimental group of dancers if they were not training in at least one of the dance styles 

listed above on a minimum weekly basis. Individuals were excluded from the overall 

study if they had any sensory disorder, vestibular deficits, vertigo, peripheral neuropathy, 

visual impairments that cannot be counteracted with the use of corrective lenses, 

functional limitation of the limbs, medical conditions, or any other neurological disease. 

Individuals that fit the inclusion criteria were recruited via email and social media outlets. 

A recruitment email was also distributed specifically to the Wilfrid Laurier Competitive 

Dance Team and dance teachers in the Waterloo area. Research ethics approval was 

received from the Wilfrid Laurier Research Ethics Board (REB) and each participant 

gave written informed consent before completing the study. Each participant completed a 

background questionnaire regarding the inclusion and exclusion criteria of the study, with 

emphasis on previous athletic training and experience. This information was used to 

ensure that each participant fit the inclusion criteria of the sample group they were 

included in (Table 2-1). The entire study took approximately 2 hours to complete and 

participants received monetary compensation of $10/hour for completing the study. 

 

Table 2-1. Participant Demographics: Characteristics of controls subjects (n = 18) and dancers (n = 16) 

gathered from the participant background questionnaire based on the inclusion criteria of the current study. 

 
a Physical activity is defined as exercise that is not sport-specific and does not include dance training. 
b Styles of dance included in the categories dance experience and current dance training: ballet, pointe, jazz, 

tap, hip-hop, contemporary, acrobatics, Highland and traditional Indian dance. 
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2.2 Baseline Testing 

2.2.1 Mechanoreceptor Sensitivity (Monofilaments) 

 Baseline sensory testing was conducted to analyze any differences between control 

subjects and dancers in mechanoreceptor sensitivity and proprioception. Plantar surface 

cutaneous sensation was measured using monofilaments to determine the touch 

sensitivity in both the control participants and the dancers. The test locations and 

application were standardized across all participants. Individuals were tested at four 

locations on both the right and left feet: the great toe, first metatarsal, fifth metatarsal, and 

heel (Figure 2-1). Prior to data collection, the experimenter visually located each foot 

site. All individuals were seated on a table with their knees extended at 180° and their 

feet resting on a stool in front of them, with the plantar surface of the foot facing the 

experimenter. The monofilaments (Touch-Test Six Piece Foot Kit) used in this study 

were 2.83, 3.61, 4.31, 4.56, 5.07 and 6.65 in evaluator size, which is equivalent to 0.07, 

0.4, 2, 4, 10 and 300g of force when the filament is applied perpendicular to the plantar 

surface of the foot and bent to half it’s length (Perry, 2006). Participants were instructed 

to close their eyes, and verbally respond with a yes or no if they could feel the pressure of 

the monofilament in the specified location. The experimenter counted down to prepare 

the participant, and then subsequently applied the monofilament to the plantar surface of 

the foot for two seconds with enough pressure to initiate a bend in the filament. Three 

trials of each monofilament were conducted at each location on both feet, and were 

applied descending in size. The largest monofilament (6.65 evaluator size) was first used 

on all four locations of the right foot. Locations that were sensitive enough to detect the 

force of the monofilament were then further tested with the next monofilament of 
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descending size (5.07, 4.56, 4.31, 3.61, 2.83) until the threshold of each specific location 

was determined. The entire process was then repeated on the left foot. The threshold of 

each participant was defined as the force that a participant could detect 2/3 of the time 

(Perry, 2006). If the participant could detect the force of the monofilament for at least 

two of the three trials (2/3), the experimenter continued with the next monofilament of 

descending size and force. Once the participant could no longer detect the pressure of the 

filament, the experimenter returned to the monofilament of increasing size to ensure that 

it was the correct threshold of the participant. Catch trials, where there was no physical 

contact of the monofilament with the plantar surface of the foot, were inserted throughout 

the trials at all sites to ensure the accuracy of detection of the participants. 

 
Figure 2-1. Monofilament Test – Monofilaments of varying evaluator size were used to determine the 

cutaneous sensitivity of the plantar surface of the foot at four locations on both the right and left feet: great 

toe, first metatarsal, fifth metatarsal and heel.  
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2.2.2 Proprioception (Joint Angle-Matching) 

 Proprioception was measured using a static joint angle-matching task to determine 

how well participants were able to detect their limb position in space in the absence of 

visual cues. The tools and procedure used were similar to those described in the 

aforementioned study by Kiefer and colleagues (2013), that analyzed the reproduction of 

a target joint position at the hip, knee and ankle in dancers and control participants 

(Kiefer et al., 2013). Individuals were seated at the edge of a table with the lower leg 

extending towards the floor unsupported, creating a natural 90° flexion at both knees. 

This position was chosen to remove any somatosensory input from the plantar surface of 

the feet and isolated the individual’s proprioceptive awareness. A goniometer (Vernier 

Software and Technology) was used to measure the target angle at the specified joint. 

The goniometer connected to the computer, and the program Logger Pro 3 was used to 

collect the data and export it to Excel. Goniometer placement at the joint was determined 

by specific anatomical landmarks and standardized across all participants. At the knee, 

the fulcrum was placed at the lateral epicondyle of the femur, the stationary arm was 

attached to the midline of the thigh, and the moving arm along the leg, in line with the 

fibula. At the ankle, the fulcrum was positioned at the lateral malleolus, the stationary 

arm was attached to the midline of the leg, along the fibula, and the moving arm was 

aligned with the lateral surface of the foot along the fifth metatarsal (Figure 2-2) (Kiefer 

et al., 2013). The knee was manipulated to 30°, 45°, and 60° extension, where 0° was 

defined as the neutral 90° flexed position that was naturally produced in the seated 

position. The ankle was manipulated to 0°, 15°, and 30° plantarflexion, where 0° was 

classified as 90° flexion at the ankle joint. The experimenter manipulated each joint to 
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one of the defined angles to produce the target position, and then returned the joint to its 

original starting position. The participant was then instructed to actively reproduce the 

target angle with the same limb, without assistance from the experimenter. The target 

position was held for three seconds, averaged, and reported as the individual’s estimated 

target joint angle. This process was performed three times for each of the three angles of 

both the ankle and knee joints, and the entire process was conducted on both legs. Thus, 

the task consisted of a total of 36 trials (three trials x three angles x two joints x two legs). 

 
Figure 2-2. Joint Angle-Matching Task: Top) 0° at the knee joint (defined as the neutral 90° flexed position 

naturally produced in this seated position) prior to target angles of 30°, 45°, and 60° extension. Bottom) 0° 

at the ankle joint (defined as 90° flexion at the ankle joint) prior to target angles of 0°, 15°, and 30° 

plantarflexion. 
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2.2.3 GVS Threshold 

 Galvanic vestibular stimulation was used to perturb individuals during the 

experimental conditions of the study. However, individuals have been shown to have 

different thresholds when responding to GVS, such that the same amplitude of 

stimulation will not necessarily produce the same magnitude of response across two 

different individuals. Therefore, as opposed to using fixed stimulation levels, it is 

important to incorporate threshold concepts when studying the effects of GVS (Bent et 

al., 2000). In the current study, specific GVS thresholds were determined separately for 

both right and left sides of each participant by altering the direction of the current, and 

therefore altering the placement of the anode. Participants stood in a natural stance, with 

their feet approximately hip-width apart, and with their eyes closed. Binaural, bipolar 

GVS was delivered to participants through two electrodes placed on the left and right 

mastoid processes. An A395 Linear Stimulus Isolator (World Precision Instruments) was 

used to deliver a square-wave impulse of stimulation to the participants for 3s at each 

increment. Testing began at 0.1mA, and was increased in 0.1mA increments until the 

individual’s personal threshold was established. The threshold of each participant was 

defined as the point at which individuals exhibited visible sway that was related to the 

onset of stimulation. Once the threshold was found, the experimenter decreased the 

stimulation, and then re-tested the threshold value for validation. The level of stimulation 

used during the experimental trials in the current study was three times the participant’s 

individual threshold. When the right and left threshold values were asymmetrical, the 

higher of the two values was used. 
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2.3 Experimental Design 

 The current study measured the body kinematics of the individual as they navigated 

through the environment to calculate path trajectory and body rotation. Oculus Rift DK2 

was used to simulate a basic virtual environment (built using Vizard 5 from World Viz, 

California) with a ground plane for the participants to navigate throughout. The headset 

(Head Mounted Display, HMD) was worn on the participant’s head and completely 

occluded any vision from the real-world lab space, immersing the individual in the virtual 

environment. Individuals were exposed to a room with grey tiles on the floor, walls and 

ceilings, and navigated between both red and green poles as locomotor targets during the 

task (Figure 2-3).  

 The use of the Oculus Rift allowed the participants to actively navigate along the 

first two legs of the triangle, without assistance from the experimenter. This methodology 

is beneficial, since previous research has supported that active navigation throughout an 

environment better contributes to spatial learning because of the idiothetic information 

the individual receives (Chrastil & Warren, 2012; Grant & Magee, 1998). In addition, the 

Oculus Rift allowed for the precise removal of visual cues (instead of removing visual 

information via closing one’s eyes) once the individual reached the second target, which 

was cued by the movement of the head-mounted display through the second target pole in 

the virtual environment. Thus, the vision of participant’s was not completely occluded; 

visual cues were simply and efficiently removed from the individual’s surrounding 

environment. 
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Figure 2-3. Virtual World: The red poles (top) identified the origin or initial position and the green poles 

(bottom) identified the target positions for each of the trials. Participants were instructed to step inside the 

pole with both feet and turn to face the next target. 

 

 

 Whole body kinematic data were collected at 60Hz throughout the entire trial using 

an NDI OptoTrak motion tracking system. For the purpose of this study, rigid bodies 

were used to track body segment motion. Each rigid body contained three Infrared Light 

Emitting Diodes (IREDs) arranged in a triangle. Participants were outfitted with 4 

forward-facing rigid bodies that were placed on the head (front of HMD), trunk 
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(Xyphoid), and each leg (distal end between malleoli). Four digitized points were used to 

calculate COM, and marked specific anatomical landmarks including: left and right 

glenohumeral joints and left and right anterior-superior-iliac-spines. A single rear-facing 

rigid body was placed on the trunk (between the scapulae), along with 4 additional 

digitized points that were used if the anterior trunk rigid body was not visible: left and 

right glenohumeral joints and left and right posterior-superior-iliac-spines. Five Optotrak 

cameras were dispersed around the outer border of the lab space in order to have 360-

degree coverage of the IREDs throughout the entire procedure. A camera was placed in 

each of the four corners of the room, and an additional camera was positioned at the end 

of the designated space where the body rotations occurred, in order to improve the quality 

of data collection and ensure kinematics were collected during the entire trial (Figure 2-

4). The digitized points were used to calculate a weighted whole body center of mass 

(COM), previously used by Winter (2008), in order to properly analyze body position and 

path trajectory of each participant.  

 



  51 

 

Figure 2-4. Experimental Design: Four cameras were placed in each corner of the lab space and one was 

positioned at the end adjacent to the final body rotation. Participants navigated to Goal 1, Goal 2, then 

returned to their initial position (Origin). Example pathways are shown above such that A) Triangle 1, 

Right Start Position, B) Triangle 2, Left Start Position. 

 

 

2.4 Procedure 

 Each trial was based on the triangle completion task, during which participants 

would complete the first two legs of a triangle by walking towards two separate goals in 

the virtual environment, and then navigate back to their starting position with a blank 

visual screen. The triangle completion task was selected in the current study based on the 

previous research that stated that a more difficult task than straight-line, forward walking 

on a flat surface was necessary to induce sensory reweighting towards the vestibular 

system (Deshpande & Patla, 2007). In addition, previous studies have supported that the 
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vestibular system largely contributes to tasks of spatial navigation in the absence of 

vision (Campos et al., 2012; Frissen et al., 2011). Thus, the task was selected for the 

current study in order to develop a better understanding of the contributions of the 

vestibular system to spatial navigation in the absence of vision, and how the body 

responds to vestibular perturbations during this task. Verbal instructions and directions 

were delivered to the participant during each trial. Prior to completing the trials of the 

study, individuals were given a practice trial that involved navigating to four poles placed 

in the four corners of the border of the virtual environment. Individuals were instructed to 

step inside the pole, turn to the right, and step inside the next target pole until all four 

targets were reached. This allowed participants to experience locomotion throughout the 

virtual environment, and develop an understanding of the cues in the virtual world. They 

were able to learn that stepping directly inside the target pole caused it to disappear, and 

was necessary in order for the next target to appear. This also helped to develop trust 

between the participant and the experimenter; allowing participants to navigate the outer 

border of the data collection space in the virtual environment demonstrated that 

participants were not in danger of colliding with any obstacles in the real world. 

 Following the practice trials, the experimenter began the study trials during which 

data was collected and the conditions were applied. Participants were instructed to step 

inside the (red) starting pole and turn to face the first target (green) (Figure 2-3). They 

were then instructed to navigate along the first leg of the triangle in the direction of the 

first target (green) pole, and once inside the target they were instructed to walk along the 

second leg of the triangle in the direction of the second (green) target pole (Figure 2-3). 

Once they reached the second (green) target, the visual input from the virtual world was 
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removed, and participants were instructed to turn and walk back to their starting position 

in the absence of visual cues. Once the individuals had returned to their estimated starting 

position, they were instructed to stand with both feet shoulder width apart to produce a 

well-defined final position.  

 Two separate triangles with different dimensions were used as the designated 

pathways in this study. Triangle One was 3m x 2m, with a final angle of rotation of 

56.31° (Figure 2-4A), and Triangle Two was 2m x 3m with a final angle of rotation of 

33.69° (Figure 2-4B). The triangular pathways consisted of an equal amount of clockwise 

and counter-clockwise triangles, allowing for both right and left turns at the final angle of 

rotation. During the experimental conditions, binaural, bipolar galvanic vestibular 

stimulation (GVS) was delivered when the participant reached the second target pole 

(approximately 100ms before the final body rotation) and continued until the participant 

reached their estimated starting position. A research assistant was responsible for 

delivering the GVS once the individual reached the second target and visual cues from 

the environment were removed. Unfortunately this allowed for human error, such that 

there could have been inconsistencies in the delivery of GVS, including a delay between 

when the individual reached the second target and when the GVS was actually delivered 

by the research assistant. GVS was administered in both right and left directions (anode 

right and anode left) for an equal amount of trials and the amplitude of stimulation was 3 

times each participant’s personal threshold (Bent et al., 2002). Control conditions did not 

include GVS stimulation during the final turn and return. Participants performed an equal 

amount of trials with and without GVS. The task was completed six times for each of the 

GVS conditions (with and without GVS) with the experimental GVS condition being 
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further divided into three cathodal and three anodal trials, for each of the two triangles, in 

both the right and left directions. Thus, the study consisted of a total of 48 trials (six trials 

x 2 GVS conditions x 2 triangles x 2 directions). 

 

2.5 Data Analysis   

 Three dependent variables were analyzed during this study: 1) arrival error was 

used to determine the distance error from the original starting position; 2) angular error 

was measured to determine the error in body rotation; and 3) average instantaneous angle 

was determined to examine variability in path trajectory. Arrival error was determined by 

comparing the distance from the participant’s estimated point of origin to the actual 

starting position using a radial distance (i.e., hypotenuse of AP and ML distances). 

Angular error was calculated by comparing the ideal angle of body rotation necessary for 

the participant to reach the origin, to the actual angle of body rotation that each 

participant produced before the final leg of the triangle. This absolute value was 

calculated for each trial and then averaged across conditions. These first two dependent 

variables were measured based on previous studies that use both distance and angular 

error in order to determine an individual’s spatial navigational abilities in the absence of 

visual cues (Berthoz et al., 1999; Loomis et al., 1993; Smith et al., 2010; Worsley et al., 

2001). In the current study, a third measure was added to the analysis. Variability in path 

trajectory was calculated during the final leg of the triangle by calculating the 

instantaneous trajectory angle at ten equally spaced points along the final trajectory 

during each condition. Standard deviation values were calculated, and then divided by the 

mean angle of the trajectory in order to represent variability as a value of coefficient of 
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variation, normalizing the variability across each trial. This variable was added in order 

to develop a better understanding of each participant’s path trajectory between the final 

body rotation and gait termination at the predicted origin. This analysis was used as a 

means of analyzing if individuals adjusted their path trajectory on the final leg of the 

triangle, possibly indicating adjustments in their sensory weighting during the task. 

Variability in trajectory could represent the central nervous system altering the weight or 

gain of each sensory input during the trial. All three of these dependent variables were 

used to determine the accuracy of spatial navigation of participants without visual cues, 

in the presence and absence of vestibular perturbation. 

 The factors in this study produced a total of twelve separate conditions: three levels 

of GVS (no GVS, GVS anode right, and GVS anode left), two triangles, and two final 

turning directions. Missing kinematic data were fixed using a cubic spline interpolation. 

Whole body kinematic data were used to calculate a weighted center of mass (COM) 

based on previous literature (Winter, 2008). These values were calculated for the x, y and 

z planes using the following equation: 

COM = 0.46 *((Left Glenohumeral Joint + Right Glenohumeral Joint + Xyphoid) / 

3) + 0.22 * ((Left ASIS + Right ASIS) / 2) + 0.16 * (0.625 * Left ASIS + 0.375 * 

Left Ankle) + 0.16 * (0.625 * Right ASIS + 0.375 * Right Ankle) 

 

The initial starting position of the participant for each trial before movement began was 

calculated by averaging the COM values of the first 30 frames of the trial prior to any 

observed changes in the AP and ML axis. The final position was classified as the point in 

which the participant came to rest (i.e., velocity in plane of progression was < 10cm/s).  
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2.6 Statistical Analysis 

 The cutaneous sensitivity values from the monofilament test were averaged across 

right and left feet. The values were submitted to a 2 (group: controls vs. dancers) x 4 

(great toe, first metatarsal, fifth metatarsal and heel) mixed model repeated measures 

ANOVA comparing location between groups.  

 In the joint angle-matching task, the absolute difference scores were calculated for 

each of the 36 trials for each participant by comparing the angle of the target position to 

the participant’s estimated target position. These error scores were then averaged across 

trials of the same condition, target position (angle) and leg. The remaining scores were 

submitted to a 2 (group: controls vs. dancers) x 2 (location: ankle vs. knee) mixed model 

repeated measures ANOVA. This process quantified each participant’s joint positioning 

accuracy in order to determine proprioceptive awareness in the ankle and knee and 

compare between control subjects and dancers. 

 Arrival errors, angular errors, and instantaneous angles were analyzed as three 

separate dependent variables to quantify each participant’s spatial navigation abilities 

during sensory perturbation. Each variable was averaged across the three trials in each of 

the twelve conditions for all participants. All three variables were first submitted to a 2 

(group: controls vs. dancers) x 2 (triangle: 1 vs. 2) x 2 (start position: left vs. right) mixed 

model repeated measures ANOVA comparing triangles and direction between groups, 

only for the control conditions (i.e., without GVS). This analysis was used to determine if 

there was a significant effect of starting position (left or right) in the absence of GVS. 

The ANOVA showed that there was no main effect of side on arrival error (F(1,32) = 

.175cm, p = .678), angular error (F(1,32) = 2.504°, p = .123), or path variability (F(1,32) 
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= .642, p = .429). Thus, since there was no significant difference between left and right 

start positions in any of the three dependent variables, the data were collapsed across 

direction of triangle to produce the three GVS conditions: no GVS (NGVS), GVS away 

from the direction of the turn (GVSaway), and GVS towards the direction of the turn 

(GVStoward). The GVSaway conditions consisted of all trials when the anode was on the 

opposite side of the direction of the turn (participants turned away from the anode), while 

the GVStoward conditions included the trials when the anode was on the same side as the 

direction of the turn (participants turned towards the anode). The resulting data were 

submitted to a 2 (group: controls vs. dancers) x 3 (No GVS, GVS away, GVS towards) x 

2 (triangle: 1 vs. 2) mixed model repeated measures ANOVA comparing GVS conditions 

and triangles between groups, to determine if there was a significant main effect of GVS 

or triangle. This analysis was also used to determine if there was a significant difference 

between groups (control subjects and dancers), to identify if there was a main effect of 

dance training. Lastly, the coefficient of variability (CoV) was also calculated for each of 

the dependent variables in the twelve conditions. The CoV values were submitted to 

another 2 (group: controls vs. dancers) x 3 (No GVS, GVS away, GVS towards) x 2 

(triangle: 1 vs. 2) mixed model repeated measures ANOVA comparing GVS conditions 

and triangles between groups. This analysis was to determine if there were any 

differences in variability between control subjects and dancers, and if GVS condition or 

triangle had a significant effect on variability across participants. 
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3.0 Results 

3.1 Baseline Testing 

 Baseline tests of cutaneous sensitivity and proprioceptive awareness were used in 

an attempt to differentiate between the sensory qualities of control participants and 

dancers. Monofilament testing was used to determine the cutaneous sensitivity of the 

mechanoreceptors on the plantar surface of the foot. Reported mean values are in 

evaluator size, not grams of force. A 2 x 4 mixed model repeated measures ANOVA 

showed that control participants (M = 4.002, SD = .501) and dancers (M = 4.007, SD = 

.531) did not show a significant difference between monofilament testing scores when 

averaged across location (F(1,32) = .002, p = .969) (Table 3-1). However, there was a 

significant main effect of location (F(3,96) = 12.092, p < .001, η² = .274). The heel (M = 

4.301, SD = .099) had significantly reduced sensitivity (p < .001) compared to the great 

toe (M = 3.824, SD = .571), first metatarsal (M = 3.895, SD = .566), and fifth metatarsal 

(M = 3.999, SD = .496), and the great toe is significantly more sensitive than the fifth 

metatarsal (p = .025). There was no significant interaction between location and group 

(F(3,96) = .717, p = .544). 

 A joint angle-matching task was used to determine the proprioceptive awareness of 

the participants by determining their error in reaching a target joint position without 

vision. A 2 x 2 mixed model repeated measures ANOVA showed that control participants 

(M = 2.526°, SD = .834) and dancers (M = 2.510°, SD = .880) did not show a significant 

difference between joint angle errors when averaged across joint (F(1,32) = .006, p = 

.939) (Table 3-1). However, there was a significant main effect of joint (F(1,32) = 7.87, p 

= .008, η² = .197) such that the errors in joint angle matching at the ankle joint (M = 

2.869°, SD = .758) were significantly greater than the errors at the knee joint (M = 
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2.168°, SD = 1.10). There was no significant interaction between location and group 

(F(1,32) = .003, p = .960). 

 

3.2 Triangle Completion Task 

 Based on the small sample size of each group, assumptions were verified prior to 

running the statistical analysis. Box plots showed that there were very few outliers across 

conditions, and no single participant was a consistent outlier across the twelve conditions. 

Thus, all values were included in the analysis. The assumption of normality is not met 

based on the sizes of the sample (ncontrol= 18, ndancer = 16). Since the majority of the 

twelve conditions produced non-significant values in both the Shapiro-Wilk and 

Kolmogorov-Smirnov tests for each dependent variable, all values were included in the 

analysis and normality was assumed. Both P-P and Q-Q plots produced patterns that were 

consistent with the homogeneity of variance. All values of Levene’s Test for equality of 

variance were insignificant for each condition for each separate analysis. Thus, equal 

variances across conditions and between groups were assumed. 

 Prior to analyzing the triangle completion task data, the values of GVS used in the 

study (3 times the participant’s threshold) were submitted to an independent samples T-

test comparing control participants and dancers. This analysis showed that there was no 

significant difference in the GVS thresholds (t(32) = -.274, p = .786) between the control 

participants (M = 1.3661mA, SD = .458) and dancers (M = 1.4081mA, SD = .435) (Table 

3-1).  
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Table 3-1. Participant Demographics and Results: A display of the mean values and standard deviations 

comparing controls subjects (n = 18) and dancers (n = 16) based on the results from the participant 

background questionnaire and the baseline tests (monofilaments and joint angle-matching task). 

 
a RGVS: GVS threshold of rightward current (anode right). 
b LGVS: GVS threshold of leftward current (anode left). 
c GVS (3x): Participant’s larger GVS threshold multiplied by 3. 
d Monofilament test scores displayed in evaluator size. 
e Joint angle-matching scores displayed as an absolute angular error. 

 

 

 All dependent variables were then submitted to a 3 x 2 x 2 mixed model repeated 

ANOVA comparing GVS conditions and triangles between groups. The analysis showed 

that there was no significant difference between control participants (M = 82.200cm, SD 

= 27.201) and dancers (M = 77.729cm, SD = 28.852) on arrival error (F(1,32) = .432, p = 

.516). However, the results showed a significant main effect of GVS (F(2,64) = 8.273, p 

= .001, η² = .205) such that GVStoward (M = 85.953cm, SD = 19.685) had significantly 

greater arrival errors (p = .000) than NGVS (M = 74.631cm, SD = 21.761), as well as 

significantly greater arrival errors (p = .016) than GVSaway (M = 79.310cm, SD = 

24.175) (Figure 3-1). There was no significant main effect of triangle (F(1,32) = 3.608, p 

= .067) when comparing triangle 1 (M = 75.655cm, SD = 26.933) and triangle 2 (M = 

84.274cm, SD = 20.268). Mauchley’s test of sphericity stated that the assumption of 
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sphericity had been violated for GVS*Triangle, �2(2) = 9.68, p = .008, therefore the 

degrees of freedom were corrected using Huynh-Feldt estimates of sphericity (⍷  = .848). 

There were no significant two-way interactions between GVS and group (F(2,64) = .921, 

p = .403), triangle and group (F(1,32) = .079, p = .780) or GVS and triangle 

(F(1.697,54.298) = 2.765, p = .080). There was no significant three-way interaction 

between GVS, triangle and group (F(1.697,54.298) = .213, p = .772). 

 

 
Figure 3-1. Arrival Error: The average arrival error compared within triangle (triangle 1 vs. triangle 2) and 

GVS (No GVS, GVS away from direction of turn, GVS towards direction of turn) conditions, and between 

groups (control vs. dancer). Results show a main effect of GVS (F(2,64) = 8.273, p = .001, η² = .205) such 

that GVStoward had significantly greater arrival errors than NGVS (p<.001) and GVSaway (p = .016). 

Error bars represent the variability for each condition. 

 

 

 

 

 

 

 With respect to angular error, the 3 x 2 x 2 mixed model repeated measures 
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ANOVA showed that there was no significant difference between control participants (M 

= 9.058°, SD = 3.697) and dancers (M = 7.820°, SD = 3.918) when comparing the actual 

angle of projection to the ideal angle (F(1,32) = 1.796, p = .190). However, the results 

showed a significant main effect of GVS (F(2,64) = 6.340, p = .003, η² = .165) such that 

NGVS (M = 7.430°, SD = 2.682) had significantly smaller error (p = .025) than 

GVSaway (M = 8.629°, SD = 3.236), as well as significantly smaller error (p = .003) than 

GVStoward (M = 9.258°, SD = 3.656) (Figure 3-2). There was no significant main effect 

of triangle (F(1,32) = 2.206, p = .147) when comparing errors between triangle 1 (M = 

7.811°, SD = 3.248) and triangle 2 (M = 9.067°, SD = 4.012). Mauchley’s test of 

sphericity stated that the assumption of sphericity had been violated for GVS*Triangle, 

�2(2) = 15.38, p < .001, therefore the degrees of freedom were corrected using Huynh-

Feldt estimates of sphericity (⍷  = .767). There were no significant two-way interactions 

between GVS and group (F(2,64) = .153, p = .859) or triangle and group (F(1,32) = .097, 

p = .758). However, there was a significant two-way interaction between GVS and 

triangle (F(1.534,49.086) = 3.783, p = .040, η² = .106) in the GVStoward condition 

between triangle 1 (M = 7.911°, SD = 4.152) and triangle 2 (M = 10.604°, SD = 5.452). 

There was no significant three-way interaction between GVS, triangle and group 

(F(1.534,49.086) = .175, p = .782). 
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Figure 3-2. Angular Error: The average angular error compared within triangle (triangle 1 vs. triangle 2) 

and GVS (No GVS, GVS away from direction of turn, GVS towards direction of turn) conditions, and 

between groups (control vs. dancer). Results show a main effect of GVS (F(2,64) = 6.340, p = .003, η² = 

.165) such that NGVS had significantly smaller error than GVSaway (p = 0.25) and GVStoward (p = .003). 

Error bars represent the variability for each condition. 

 

 

 The same 3 x 2 x 2 mixed model repeated measures ANOVA was run on the 

coefficient of variation values for the instantaneous angles of each participant to 

determine path variability (Figure 3-3). This analysis showed that there was no 

significant difference between control participants (M = .139, SD = .052) and dancers (M 

= .135, SD = .052) when comparing the CoV values of path trajectory (F(1,32) = .121, p 

= .730). There was no significant main effect of GVS (F(2,64) = 1.937, p = .153) when 

comparing NGVS (M = .122, SD = .052), GVSaway (M = .146, SD = .058), and 

GVStoward (M = .143, SD = .064) conditions. There was no significant main effect of 

triangle (F(1,32) = .256, p = .616) when comparing variability between triangle 1 (M = 

.134, SD = .047) and triangle 2 (M = .140, SD =.058). There were no significant two-way 
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interactions between GVS and group (F(2,64) = 1.086, p = .344), triangle and group 

(F(1,32) = 1.256, p = .271), or GVS and triangle (F(2,64) = 1.079, p = .346). There was 

no significant three-way interaction between GVS, triangle and group (F(2,64) = 1.924, p 

= .154). 

 

 
 

Figure 3-3. Path Trajectory: Path angle data from one participant during the return phase of each GVS 

condition (nGVS, GVSaway, GVStoward) for triangle 1. The target final body rotation for triangle 1 was 

56.3° (Figure 2-4A). Instantaneous angles were recorded and averaged across the three trials at ten equally 

distributed time points (0-100%) during the final path trajectory.  
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 Coefficient of variation (CoV) values were also calculated for both arrival error 

and angular error to determine if there were any significant differences in variability 

between groups. Error values for both variables were submitted separately to the 3 x 2 x 2 

mixed model repeated measures ANOVA. This analysis showed no significant 

differences between control participants (M = .431, SD = .163) and dancers (M = .428, 

SD = .174) in arrival error (F(1,32) = .006, p = .941), and no significant differences 

between control participants (M = .620, SD = .146) and dancers (M = .630, SD = .152) in 

angular error (F = (1,32) = .078, p = .782). There was no significant difference between 

GVS conditions NGVS (M = .456, SD = .169), GVSaway (M = .434, SD = .157) and 

GVStoward (M = .399, SD = .152) in arrival error (F (2,64) = 1.692, p = .192) as well as 

no significant difference between GVS conditions NGVS (M = .634, SD = .145), 

GVSaway (M = .648, SD = .157) and GVStoward (M = .593, SD = .181) and angular 

error (F(2,64) = 1.160, p = .320). Lastly, there were no main effect of triangle when 

comparing triangle 1 (M = .430, SD = .157) and triangle 2 (M = .429, SD = .134) in 

arrival error (F(1,32) = .002, p =.963), as well as no significant main effect of triangle 

when comparing triangle 1 (M = .647, SD = .152) and triangle 2 (M = .603, SD = .152) in 

angular error (F(1,32)= 1.421, p = .242). 

 A post-hoc power analysis was conducted for each of the main effects on all three 

of the dependent variables in SPSS. The power calculation was based on the size of the 

sample, the statistical significance, and the effect size of each dependent variable. The 

observed powers for the main effect of GVS were: arrival error = .954, angular error = 

.886, and path variability = .387. The observed powers for the main effect of triangle 

were: arrival error = .453, angular error = .302, and path variability = .078. And lastly, 
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the observed powers for the main effect of dance training (between groups) were: arrival 

error = .098, angular error = .255, and path variability = .063.  
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4.0 Discussion 

 The purpose of this research was to examine the effect of vestibular perturbation 

(GVS) on path trajectory and body rotation during spatial navigation in control 

participants and dancers. It was hypothesized that there would be a significant difference 

in the arrival error, angular error, and path variability between groups such that dancers 

would show significantly less error, demonstrating a main effect of training on 

performance.  

 

4.1 Effects of GVS and Triangle Size 

 Path integration is the strategy of spatial navigation in the absence of vision 

involving two parameters: perception of distance and direction of locomotion (Bredin et 

al., 2005). Both of these parameters are measured in the triangle completion task as 

arrival error and angular error, respectively. When navigating throughout the 

environment, individuals constantly use idiothetic information from non-visual sensory 

organs, such as the vestibular system, in order to update their spatial location as a product 

of movement. Thus, it would be expected that a perturbation of the vestibular system 

would alter the spatial accuracy of movements and increase the errors produced during 

path integration. It was hypothesized in the current study that during experimental trials 

in which GVS was administered, there would be increased arrival and angular errors and 

greater path variability when completing a task of spatial navigation in the absence of 

visual cues. Results revealed a significant main effect of GVS on both arrival error 

(Figure 3-1) and angular error (Figure 3-2) across participants, but no significant effect 

on path variability (Figure 3-3).  
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 Previous literature has determined that, in the absence of vision, our central nervous 

system (CNS) attributes a higher weight to the vestibular system in tasks of spatial 

navigation (Frissen et al., 2011). So in the absence of visual cues, in a task of path 

integration such as the triangle completion task, individuals are likely to increase the gain 

of the vestibular input during sensory integration. Since the vestibular system was 

perturbed via GVS, the CNS may have been unable to down-regulate its reliance on 

vestibular information (inaccurate information) to complete the task, which in turn 

affected the motor output. In this case, the reliance on inaccurate sensory input has 

caused an increase in both arrival and angular error. This explanation is further supported 

by the research by Campos and colleagues (2012), which demonstrated that vestibular 

information contributes to distance perception in the absence of visual input by 

estimating the distance travelled (Campos et al., 2012). It is possible that arrival error in 

the current study was significantly worse when GVS was administered because vestibular 

input, which is normally used to estimate the distance travelled and help guide 

individuals back to their initial position, was inaccurate due to the perturbation of GVS. 

In the absence of vision, vestibular information is an important source of input that 

greatly contributes to our spatial navigation abilities. Thus, when this sensory input is 

perturbed, it reduces an individual’s ability to accurately navigate throughout their 

environment.  

 With regards to angular error, our hypotheses line up with the results, such that 

there was a significant difference between the control condition without GVS (NGVS) 

and both experimental conditions with GVS (GVSaway, GVS toward) (Figure 3-2). 

However, the results of arrival error showed that when GVS was administered towards 
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the direction of the turn, performance was significantly different from both the condition 

with no GVS and when GVS was administered away from the direction of the turn 

(Figure 3-1). Since the effects of GVS on spatial navigation have not been thoroughly 

discussed in previous literature, it is difficult to postulate why arrival error was 

significantly greater in conditions when GVS was administered in the direction towards 

the turn compared to away from the turn. One possible explanation for this difference 

could be generated from the previous research stating that there is an additive effect of 

visual and vestibular perturbations during locomotion (Carlsen et al., 2005; Kennedy et 

al. 2003). When vestibular and visual perturbations were applied at the same time in a 

congruent direction, the resulting perturbation was approximately equal to the summation 

of the independent perturbations. When they were applied in opposing directions, the 

visual and vestibular perturbations counteracted each other, producing smaller deviations 

in path trajectory. Although a body rotation is not a visual perturbation, the movement is 

still perturbing the body while the individual attempts to maintain stability. It is possible 

that the additive effect of visual and vestibular perturbations could also be applied during 

physical and sensory perturbations. This would explain why, when the body rotation was 

in the same direction as the GVS current, there was a larger arrival error during the task. 

The combination of the physical and sensory perturbation could be producing an additive 

effect on the distance estimation of path trajectory, causing greater errors when the 

perturbations are congruent. Future studies should aim to further understand how physical 

and sensory perturbations work together to control locomotor trajectory, specifically in 

tasks of spatial navigation. 

 The results of this study have also shown a difference in the effect of GVS on 
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performance with respect to the dependent variable. When looking specifically at the 

experimental conditions administering GVS (GVSaway, GVStoward), there was a 

significant difference between conditions in arrival error (Figure 3-1), but not angular 

error (Figure 3-2). Previous research has indicated that during tasks of path integration, 

distance and angular components are processed by separate mechanisms (Berthoz et al., 

1999; Smith et al., 2010; Worsley et al., 2001). Worsley and colleagues (2001) further 

explored this declaration by conducting a study that observed the arrival and angular 

errors during a triangle completion task comparing individuals with lesions in the right 

hemisphere, left hemisphere, and control participants. Although results showed that all 

three groups had equal absolute measures of distance estimation (no significant 

differences in arrival error), patients with lesions in the right hemisphere had significantly 

greater angular errors. This allowed the researchers to determine that heading angle is 

represented in the right hippocampus. Thus, differences between arrival and angular 

errors during GVS conditions could be attributed to the different mechanisms responsible 

for distance and heading. GVS may have a greater effect on the site (right hippocampus) 

or the processing of the angular component of path trajectory, that resulted in a greater 

error during path integration in the current study. This is further supported by the prior 

research by Berthoz and colleagues (1999), who made the distinction between distance 

and heading mechanisms, stating that the information is separately coded in the human 

brain. The researchers were one of the first to verify the activation of the hippocampus by 

vestibular perturbation in humans (Berthoz et al., 1999). This connection of the vestibular 

perturbation with the area of the brain responsible for determining heading during spatial 

navigation supports that GVS would have a substantial effect on the angular error during 
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the triangle completion task. These particular studies were unable to identify the exact 

neural structure responsible for the processing of distance information during spatial 

navigation, however, more recent research has revealed that vestibular input contributes 

to the estimation of distance travelled (Campos et al., 2012). Thus, GVS may directly 

affect the distance error in the triangle completion task because it perturbs the vestibular 

input used for distance perception. One final possible explanation for the difference 

between results in arrival and angular error is the timing of the delivery of the GVS. 

Since the stimulus was administered prior to the final body rotation, it could have had a 

different effect on the angular error as opposed to the distance error. The effect of GVS 

on both arrival error and even path variability may have been different if the GVS was 

delivered after the final body rotation and just prior to the initiation of the final path 

trajectory. The administration of the GVS in the current study may have had more of an 

effect on angular error based on the delivery just prior to the final body rotation, possibly 

affecting the heading of the trajectory more than the distance or variability. Although 

more research is needed to completely understand the neural mechanisms behind the 

processing of distance and heading during spatial navigation, the distinction between the 

two mechanisms as independent of each other is enough to explain why there are 

differences between the two components in the results of the current study. 

 Since the results showed no significant effect of variability in the path trajectory of 

the final leg of the triangle (Figure 3-3), it can be assumed that once participants began 

the return to their initial position, they maintained their initial heading angle. Their path 

trajectory did not significantly deviate in any given direction once they began the final 

leg of the triangle, such that there were no significant corrections in their direction of 
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travel. Two particular factors could have contributed to this finding: the timing of the 

administration of GVS and the short distance of the return. The stimulation was applied 

once the participants reached the second target pole, approximately 100ms prior to their 

final body rotation. Since the vestibular system detects angular and linear acceleration of 

the head, it may be possible that once the head position reached a constant velocity, the 

GVS did not have as significant of an effect on the variability of path trajectory. This 

could be due to the fact that the inaccurate vestibular input affected the final body 

rotation, and then the participant’s deviation was actually constant once they began their 

path trajectory; the vestibular input remained constant and so did the angular of path 

trajectory. This lack of variability in path trajectory can also be seen in the findings of 

previous studies such as that of Fitzpatrick, Wardman and Taylor (1999) that show 

participants producing path trajectories that deviate from the intended direction of travel, 

but do not show variability within the path trajectory that was elicited (Fitzpatrick et al., 

1999). This explanation supports the findings of the current study since there was a 

significant effect of GVS on angular error. The stimulation clearly affected the final body 

rotation that determined the heading angle, but once the participant began their final path 

trajectory, the participants generally continued in their intended direction without 

significant variability. 

 On the other hand, another explanation for a lack of significant variability in path 

trajectory across the conditions could be due to the short distance (approximately 3.6 

metres) of the final leg of the triangle. Bent and colleagues (2002) demonstrated that after 

the initial onset of GVS, there were no deviations in the execution of a forward voluntary 

step. An effect of GVS on path trajectory was not observed until the participants reached 
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a dynamic phase of locomotion (Bent, 2002). Since the final leg of the triangle was only 

3.6m long, it is possible that the participants did not spend enough time in their constant 

dynamic phase of locomotion in order to exhibit any significant variability in trajectory. 

Participants appeared to exhibit more instability at the final body rotation, the end of the 

trajectory, and step termination compared to their step initiation and locomotion prior to a 

constant dynamic phase. However, this could not be quantified based on the fact that the 

camera volume was not large enough to encompass the foot markers at the end of the 

trajectory and at the point of gait termination. It is possible that a pathway of greater 

distance would have exhibited a greater variability in path trajectory that resulted in 

significant variability during the GVS conditions. However, the current study was limited 

by both the size of the lab space and camera volume, and triangles larger than 3m x 2m 

did not fit within the available area of data collection.  

 One final explanation for the lack of path variability found across conditions and 

participants could be related to the dependent variables and how they were quantified. 

Although arrival and angular error are two values that have been frequently used to 

determine the ability of an individual to navigate throughout space during the triangle 

completion task (Berthoz et al., 1999; Loomis et al., 1993; Smith et al., 2010; Worsley et 

al., 2001), these values are not necessarily a good representation of the effects of GVS 

during the task. Although an effect of GVS was expected based on the vestibular 

system’s contributions to tasks of path integration (Campos et al., 2012; Frissen et al., 

2011), these values do not completely encompass how the body is responding to the 

perturbation. Using a weighted COM value in order to determine the trajectory of each 

participant gives a general idea of how the individual moved throughout the environment, 
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but it is not report how GVS affected the trajectory and body kinematics of the 

individual. Previous literature using GVS as a vestibular perturbation have analyzed the 

body’s response based on variables such as head roll and foot placement. A particular 

study by Bent and colleagues (2004) used these variables to quantify the effects of GVS 

when delivered across different phases of gait initiation (Bent et al., 2004). Both of these 

dependent variables have been shown to be significantly affected by GVS, and thus could 

have been a better value to measure during the current study. Head roll could have been 

more precisely measured by adding digitized points at each of the participant’s ears, and 

gait kinematics could have been determined by the foot markers. However, the main 

focus of the rigid body on the head was the visibility of the markers in the camera 

volume, in order to maintain a constant visual flow in the virtual environment to avoid 

causing motion sickness in the participants. In addition, foot marker data was collected in 

the current study, but was not clean enough to generate and study specific gait kinematics 

of each participant due to the limited lab space and camera volume. Even so, both of 

these values could have given more insight of the effects of GVS on gait kinematics and 

body trajectory during a task of spatial navigation in the absence of visual cues. These 

limitations could also have affected both arrival and angular error, even though there was 

still a significant main effect of GVS simply based on a weighted COM value. However, 

the focus of the current research was to study the general path trajectory of the 

individuals, and a weighted COM value was still sufficient in demonstrating a main effect 

of GVS on both arrival and angular error. Clearly, future research should consider 

studying the effects of GVS during the triangle completion task by analyzing the head 

roll and gait kinematics (specifically foot placement) of the participants in order to 
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develop a better understanding of the vestibular system’s contribution to spatial 

navigation. 

 Fitzpatrick and colleagues (2006) conducted a study that further supports the 

benefits of additional dependent measures. Researchers observed the path trajectories of 

individuals during blindfolded walking towards a previously seen target during a 

vestibular perturbation. A vestibular stimulus was applied when the head was in an 

upright position, tilted backwards 20-30°, and tilted forwards 20-30°. Results of the study 

demonstrated that when subjects received the vestibular stimulus when the head was 

tilted backwards or forwards, there was a greater deviation in path trajectory towards the 

anode compared to when the head was held upright. However, when the head was 

upright, there were significantly greater lateral body movements and irregular foot 

placement compared to the other two head conditions (Fitzpatrick et al., 2006). Since in 

the current study, the head was placed in an upright position in order to obtain clear 

visibility of the head markers within the camera volume, it would be expected that GVS 

would have had a more significant effect on lateral body movements and foot placement 

as opposed to path trajectory. It would be expected that, if there were a way to navigate 

throughout the virtual environment with the head pitched forwards or backwards, there 

would be an even greater effect of GVS on path trajectory. Thus, further supported by the 

research conducted by Fitzpatrick and colleagues (2006), future research should aim to 

either study head roll and foot placement during the upright head position, or manipulate 

the orientation of the head by pitching it forwards or backwards 20-30° to analyze the 

effects of GVS on path trajectory during a task of spatial navigation in the absence of 

visual cues. 
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 The second within-subject factor assessed the difference in arrival error, angular 

error, and path variability between two different triangles. The reasoning behind altering 

the pathway that the participants travelled was to analyze the effects of different angles of 

final body rotation and how they were affected by GVS, as well as to reduce learning 

effects of the spatial parameters of the study. It was predicted that there would be no 

significant difference between triangle conditions in all three dependent variables. The 

results supported this hypothesis, such that there was no effect of triangle on error or 

variability of spatial navigation in the absence of visual cues. This finding is most likely 

because the distance travelled during the final leg of the triangle was always the same 

(3.6 metres) regardless of the triangle. In addition, the angles of final body rotation 

(56.31° or 33.69°) were close enough in magnitude that the difficulty of the sharper turn 

(triangle 2) did not produce significantly greater errors. If the lab space and camera 

volume would have been large enough to allow for triangles with side lengths that created 

final angles of body rotation that were more extreme, there potentially would have been a 

significant main effect of triangle, and it is predicted that the smaller angle (triangle 2) 

would have produced greater angular errors during the task. 

 

4.2 Control Participants vs. Dancers 

 Although there is no current research focusing specifically on quantifying the 

spatial navigation abilities of dancers, previous literature suggests that expert dancers 

have special embodied representations of movement, and this information includes 

spatial parameters in an egocentric reference frame. Dancers with expert training were 

better able to match a specific ballet movement to an associated spatial parameter 
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(Blasing & Schack, 2012; Cortese and Rossi-Arnaud, 2010). Thus, it was predicted that 

these special representations of movement would reduce the errors demonstrated by the 

sample of dancers in the triangle completion task, even in the absence of visual cues. This 

prediction was further justified based on previous studies that have supported that athletes 

are better able to calibrate idiothetic cues of self-motion to more successfully navigate 

through space in the absence of vision (Bredin et al., 2005). However, there was no 

significant difference between groups in any of the dependent variables in the current 

study. Dancers did not perform significantly better than control participants in the 

triangle completion task, regardless of the GVS condition.  

 Previous work by Bredin and colleagues (2005) supported that, particularly at fast 

velocities, athletes were more accurate at performing a task of path integration. However, 

this task was simply straight-line walking in the absence of vision towards a previously 

seen target. The purpose of the current study was to determine if these previous findings 

carried over when the athletes were trained specifically in dance and when the task was 

more difficult than straight-line walking. Since the current results found that dancers 

were not more accurate than control participants during tasks of spatial navigation in the 

absence of vision, we can attempt to explain these results based on the factors discussed 

above: training or task difficulty. Smith and colleagues (2010) assessed the type of 

athletic training individuals were exposed to and how this influenced their performance in 

tasks of path integration. When comparing large to small spatial-scale athletes (rugby vs. 

martial arts) during a triangle completion task, their results revealed that rugby players 

were more accurate when selecting their heading angle than martial artists, but there was 

no difference in arrival error between groups. The results from Smith and colleagues 
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(2010) demonstrate that training at different spatial scales affects an individual’s 

accuracy of path integration, and also that the distance and heading parameters can be 

dissociated. There is also evidence that the improvements in accuracy of path integration 

in larger-scaled athletes carry over to a more difficult task. Smith and colleagues (2010) 

attributed their findings to the fact that larger-scale athletes have greater experience 

calibrating idiothetic cues during locomotion and are required to make greater inferences 

on spatial location in the absence of visual input. Dancers are required to not only focus 

on their own idiothetic cues, but must also take into account what is going on 

simultaneously around them (i.e., infer spatial parameters of the other dancers around 

them), which is why dancers can be considered both large and small spatial-scale 

athletes. Thus, if the large spatial scale training further improves the ability of rugby 

players to accurately perform a task of path integration, then it is reasonable to believe 

that dance training would cause significantly less errors in the triangle completion task 

compared to non-athletes. Since this was not the case in the current study, it is possible 

that task difficulty was not the reason for a lack of difference between groups, but rather 

the type of dance training experienced by the dancers in the current sample. However, 

based on the current study, it is unknown as to what specific element of dance training 

differentiates the ability of dancers and field athletes to accurately navigate throughout 

space in the absence of visual cues. 

 Not only were the dancers expected to have reduced arrival and angular errors 

during the triangle completion task because of their improved path integration abilities, 

but it was believed that dancers rely more heavily on their somatosensory information 

when producing a motor output. Many studies have identified dancers as being less 
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reliant on visual input than non-dancers when producing the appropriate motor output 

(Mouchnino et al., 1992). This reduced reliance on vision implies that dancers use other 

forms of sensory input (vestibular and somatosensory) in order to accurately produce a 

desired motor output. This fuelled the hypothesis in the current study that, at least in 

conditions without GVS, the removal of visual cues during a task of spatial navigation 

should have less of an effect on dancers than control participants (i.e., smaller errors in 

accuracy). In addition, previous research has demonstrated that during tasks of dynamic 

balance, dancers shift their sensorimotor reliance from vision to somatosensory input 

(Golomer et al., 1999; Golomer & Dupui, 2000; Simmons, 2005). In the current study, 

there was no manipulation of somatosensory input; in the absence of vision and with the 

manipulation of vestibular information via GVS, somatosensory information was the only 

accurate source of information available to guide locomotion. Since dancers are thought 

to rely more on their somatosensory input when producing a motor output, it was 

predicted that they would have smaller arrival and angular errors in the spatial navigation 

task compared to controls, regardless of GVS condition, because their dominant sensory 

input was still accurate. However, results from the current study did not support this 

hypothesis, because there was no significant difference in arrival error (Figure 3-1) or 

angular error (Figure 3-2) between control participants and dancers. The lack of 

significance in accuracy between the groups may be due to the variability in the structure 

and intensity of the training regimen the dancers experienced. 

 The limited body of research in this particular field makes it more difficult to 

speculate why dancers were not significantly more accurate in navigating throughout the 

environment. However, a study by Israel and colleagues (2005) could provide a possible 
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explanation as to why dancers did not demonstrate smaller angular error during the 

triangle completion task. Researchers tested both dancers and non-dancers in a study of 

whole-body return in the absence of vision to analyze both egocentric and exocentric 

methods of return. Participants were passively rotated 90, 180 or 270°, and instructed to 

return to the starting position, indicated by a previously seen target. Participants had the 

option of using egocentric cues by inverting the rotation and retracing the pathway, or 

using exocentric cues by completing the rotation and continuing the direction of the turn 

to the full 360°. Egocentric cues included vestibular and somatosensory input 

(particularly proprioceptive cues) that participants gained from the initial rotation, 

whereas the exocentric cue was the previously seen visual target. Results of the study 

showed that both control and dancer participants were more likely to use egocentric cues 

(invert the rotation) in order to find their starting position, supporting that vestibular and 

proprioceptive input largely contribute to navigational tasks in the absence of vision. 

However, there was no significant difference between groups with respect to the accuracy 

of the task (Israel et al., 2005). Dancers were not significantly more accurate than 

untrained participants in using egocentric cues from the vestibular and somatosensory 

system to complete a task of whole-body return in the absence of vision. It is possible 

that there was no significant difference between the control group and the dancers in the 

current study because dancers are not any more efficient at using vestibular or 

proprioceptive input to update their movement throughout space than untrained 

individuals. Israel and colleagues suggest that there is a deficiency in the integration of 

vestibular information for updating one’s egocentric representation with respect to an 

external visual target during these passive whole-body rotations (Israel et. al, 2005). 
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Although previous research supports that active navigation increases the amount of 

idiothetic information received and improves spatial learning (Chrastil & Warren; Grant 

& Magee, 1998), this proposed deficiency in passive body rotations could still affect the 

integration of information during active body rotations, and may have influenced the lack 

of significant difference between the control participants and dancers in the current study. 

If dancers are not sufficiently better at integrating vestibular information to update their 

position in space with respect to body rotations, then this justifies why dancers did not 

have significantly less angular error during the triangle completion task. 

 Prior to the triangle completion task, baseline testing was conducted in order to 

analyze any possible difference in somatosensory inputs between control participants and 

dancers. These tests were completed in order to potentially explain any possible group 

differences based on dance training. Dancers have been found to rely more heavily on 

their somatosensory input during locomotion (Golomer et al., 1999; Golomer & Dupui, 

2000; Simmons, 2005), but very few studies have actually teased out if this shift in 

reliance on somatosensory information is a product of enhanced cutaneous 

mechanoreceptor or proprioceptive inputs. However, a particular study by Simmons 

(2005) controlled for cutaneous sensitivity between samples, and demonstrated that 

dynamic balance in dancers was more affected by proprioceptive perturbations than the 

control participants. These findings support the idea that when dancers shift their reliance 

to their somatosensory input, they are more specifically relying on proprioceptive input 

from their joint receptors to produce the appropriate motor output for the task at hand 

(Simmons, 2005). In addition, Kiefer and colleagues demonstrated that dancers have 

superior proprioceptive awareness compared to control participants at the hip, knee, and 
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ankle joints (Kiefer et al., 2013).  

 In order to examine if improved proprioception was in fact the reason that dancers 

were expected to demonstrate greater accuracy in spatial navigation, two tests were 

conducted measuring both cutaneous mechanoreceptor sensitivity and proprioceptive 

awareness. These tests were meant to determine not only if somatosensory differences 

existed between control participants and dancers, but whether those differences were due 

to mechanoreceptors and/or proprioceptive inputs. The monofilament test was used to 

quantify the cutaneous receptor sensitivity of the participants on the plantar surface of the 

feet. Previous research has revealed that dancers do not significantly differ from control 

participants with respect to cutaneous sensitivity (Simmons, 2005). Likewise, it was 

expected that dancers in the current study would not demonstrate more sensitive 

mechanoreceptor thresholds compared to the control participants. Results of the current 

study were in agreement with Simmons (2005), showing no difference between groups in 

average plantar cutaneous sensitivity (Table 3-1), suggesting that this particular sample of 

dancers did not have increased cutaneous mechanoreceptor input compared to the control 

group during the spatial navigation task.  

 The second somatosensory baseline test was conducted in order to quantify the 

proprioceptive awareness of both the dancers and control participants. Dancers were 

expected to have increased proprioceptive awareness based on their training alone. The 

essence behind dance is to produce movements and positions of the body that have 

extremely specific joint placement, particularly in the legs. Dancers must constantly use 

their awareness of the location of their limbs in space, without visual input, to manipulate 

their bodies into the required joint positions. There is even an emphasis when performing 
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in a group that your movements and joint positions must match the other dancers around 

you. Based on these demands, and the fact that dancers have these experiences during 

both training and performance, it would be expected that they would have increased 

awareness of where their joints were positioned in space. To assess this hypothesis, the 

joint angle-matching task was used to determine the proprioceptive awareness of 

participants by measuring their error in reproducing a target joint position in the absence 

of vision, similar to the task conducted by Kiefer and colleagues (2013). As previously 

stated, their results revealed that dancers were more accurate in reproducing joint angle 

positions than non-dancers, and this difference was the most pronounced at the ankle 

joint, indicating that dancers are better able to use proprioceptive information to sense 

and reproduce specific limb positions (Kiefer et al., 2013). Therefore, it was predicted 

that dancers would have improved proprioceptive awareness compared to control 

participants, demonstrating smaller errors in estimating the target joint position. 

However, results of the current study showed no significant difference between control 

participants and dancers in the joint-angle matching task, suggesting that the two groups 

have similar proprioceptive awareness of their ankle and knee joint positions in space 

(Table 3-1). This lack of significance in baseline somatosensory testing of cutaneous 

sensitivity and proprioception could explain why there was no significant difference 

between control participants and dancers during the task of spatial navigation. If the 

reduction of arrival and angular errors was expected based on differences in 

somatosensory input (cutaneous mechanoreceptor or proprioceptive) between the two 

groups, then we would expect that there would be no significant main effect of training 

when there was no difference between groups during baseline testing.  
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 This overall lack of significance between groups during the triangle completion 

task could be directly related to the sample of dancers used in the study. The dancer 

group was a convenience sample selected based on available dancers in the appropriate 

age group that fit the inclusion criteria and lived in Waterloo, Ontario. This limited the 

sample of dancers to individuals in an area where there is no option of a standard 

professional training regimen. Thus, the variability in training technique, intensity, 

quality, and style of the dancers in the sample most likely nullified any group effects with 

respect to their performance in both the baseline tests and the triangle completion task. 

The sample group of dancers was heterogeneous with respect to the characteristics of 

their training regimen.  In addition, all of the dancers in the current sample trained at a 

competitive level; no participant in the current study trained professionally, which is at a 

much higher intensity than competitive dance training. Thus, the quality of training may 

not have been at a high enough level to elicit a significant difference between groups as 

expected. 

 Another explanation as to why the current study did not find a significant main 

effect of training could be related to the power of the study. A post-hoc power analysis 

between groups generated power values of .098, .255, and .063 for arrival error, angular 

error and path variability, respectively. It is possible that there is limited statistical power 

between groups because of the sample sizes in this study (ncontrol= 18, ndancer = 16), and 

this may have influenced the statistical significance of the main effect of training. A 

higher sample size for each group would most likely improve the power of the analysis, 

and increase the statistical significance between groups. The current study may not 

demonstrate a significant effect of dance training on the performance of the triangle 



  85 

completion task, but this does not necessarily mean a difference does not exist. It is 

possible that a greater sample size may have generated the power necessary to create 

statistical significance between groups with respect to the task in the current study. Future 

research should aim to include larger sample sizes, of dancers in particular, with 

increased homogeneity in order to study the main effects of training on tasks of spatial 

navigation in the absence of visual cues. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  86 

5.0 Conclusion 

 The current experiment combined spatial navigation, galvanic vestibular 

stimulation, and virtual reality (VR) to determine if dance training improves an 

individual’s ability to overcome vestibular perturbation in the absence of vision during 

spatial navigation tasks.  

 Regardless of training experience, galvanic vestibular stimulation significantly 

decreased the accuracy of spatial navigation in the absence of visual cues in all 

participants. The effect of GVS on spatial accuracy can be attributed to the fact that 

vestibular system plays a major role in locomotion, particularly in estimating the distance 

travelled in the absence of vision. Thus, GVS caused this navigational sensory input to 

become inaccurate, which produced an increase in both the arrival and angular errors in 

the triangle completion task. However, GVS did not significantly increase variability of 

the path trajectory during the return to the initial position. A larger data collection space 

and camera volume would allow for larger triangles of greater distances to be studied, 

which would allow individuals to reach a constant dynamic phase of movement that 

might be more strongly affected by the vestibular perturbation. A larger camera volume 

would also allow for better data collection of the foot kinematics, which would allow for 

the investigation of how GVS affects gait characteristics such as step length, width, 

variability, etc. during a task of spatial navigation. This application of the methodology 

would allow for a better understanding of how GVS affects the gait of an individual as 

they are navigating throughout the environment in the absence of visual cues. 

 Although it was expected that dancers would be more accurate at navigating 

through the environment in the absence of visual cues, there were no significant 
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differences between their results and those of the control participants. This demonstrated 

that there was no effect of dancer training on the performance of the triangle completion 

task, with or without vestibular perturbation. However, this does not necessarily mean 

that dance training does not influence spatial navigation or sensory reweighting abilities. 

This methodology could replicate findings that support previous research on dancers 

increased reliance on the somatosensory system as well as their specialized spatial 

parameters when applied to a different experimental group. These results could simply 

have been due to the variability in training characteristics of the selected sample of 

dancers. This study could produce different findings if it were tested on a professional 

group of dancers with uniform ability, structure, and style. Future studies should aim to 

recruit dancers from a professional company, such as the National Ballet of Canada, in 

order to study the effects of training on expert dancers and without any confounding 

factors. It is also a possibility that the effects of dance training on spatial navigation are 

not beneficial until a later age. Older adults who have experience in dance and are still 

currently participating in dance training may have maintained their spatial awareness and 

sensory reweighting abilities across their lifespan, which could result in significantly 

better accuracy in the current study than a group of older adults that are non-dancers. If 

these findings prove true, it would be beneficial to further investigate if these qualities 

would reduce falls in older adults, thus stressing the importance of dance training 

programs across the lifespan. Future studies should aim to replicate the methodology of 

the current study, but apply it to a sample of professional dancers with increased 

homogeneity in characteristics of their training regimen, or explore the findings it 

produces in older adults. 
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 The current study has given major insight into the effects of GVS on spatial 

navigation when visual input from the environment is removed. Future studies should 

aim to further analyze the training effects of professional populations on the accuracy of 

navigating throughout the environment, as well as the effect of GVS on gait 

characteristics during a task of spatial navigation. This methodology has potential to be 

applied to other samples and populations in order to expand the current body of 

knowledge and further understand the process of sensory reweighting during tasks of 

spatial navigation. 
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Appendices 

Table A-1. Individual Participant Demographics of Control Subjects: Inclusion criteria based on the 

participant background questionnaire for each individual in the sample (n=18). 

 
*Physical activity is defined as exercise that is not sport-specific: low (0-2 days/week), medium (3-5 

days/week) and high (6-7 days/week) frequencies are displayed. 

*Sport-specific training includes any athletic training at the varsity level or higher. 
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Table A-2. Individual Participant Demographics of Dancers: Inclusion criteria based on the participant 

background questionnaire for each individual in the sample (n=16). 

 
*Styles of dance included in the categories dance experience and current dance training: ballet, pointe, jazz, 

tap, hip-hop, contemporary, acrobatics, Highland and traditional Indian dance. 
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