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Abstract

Fuzzy inference is an effective means for representing and handling vagueness and

imprecision. As a particular type of fuzzy inference, fuzzy rule interpolation enhances

the performance of the inference when a given observation has no overlap with the

antecedent values of any of the existing rules. In such cases, conventional fuzzy

inference methods cannot derive a conclusion, but fuzzy rule interpolation methods

can still obtain a certain conclusion. Unfortunately, very little of the existing work on

fuzzy rule interpolation can conjunctively handle more than one form of uncertainty

in the rules or observations. In particular, the difficulty in defining the required

precise-valued membership functions for the fuzzy sets that are used by conventional

fuzzy rule interpolation techniques significantly restricts their application.

In this thesis, a novel framework termed “higher order fuzzy rule interpolation”

is proposed in an attempt to address such difficulties. The proposed framework

allows the representation, handling and utilisation of different types of uncertainty

in knowledge. This allows transformation-based fuzzy rule interpolation techniques

to harness and utilise the additional uncertainty in order to implement a fuzzy

interpolative reasoning system. Final conclusions can then be derived by performing

higher order interpolation over this representation.

The techniques for the representation and handling of uncertainty are organised in

this framework such that in circumstances when different types of uncertainty are

encountered the inference process can deal with them in an appropriate way. A rough-

fuzzy set based rule interpolation approach is proposed in this work, by exploiting the

concept of rough-fuzzy sets and generalising scale and move transformation-based

fuzzy interpolation. A type-2 fuzzy set based interpolation approach is also presented

as an alternative implementation of the framework. The effectiveness of this work in

improving the robustness of fuzzy rule interpolation is demonstrated through the

practical application to the prediction of disease rates in remote villages. Moreover,

this framework is also further evaluated with application to other realistic decision

making problems. The resultant accuracy reveals the efficacy of this research.
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Chapter 1

Introduction

I N conventional (or hard) computing such as boolean logic, binary systems, nu-

merical analysis and crisp software, the prime considerations are rigour, precision

and certainty. However, inexact information involving imprecision and uncertainty

exists ubiquitously in the real world, so that such information is difficult to process

using hard computing. In contrast, as an emerging collection of methodologies and

techniques, soft computing (SC) [12, 202, 219] exploits the tolerance for imprecision,

uncertainty, partial truth and approximations in order to achieve close resemblance

with human activity and reasoning intuition. Unlike hard computing, SC aims to

represent the ambiguity in human thinking with real life uncertainty [116, 117].
Therefore, SC can be particularly beneficial for problems which are too complex to

be directly handled by human beings.

The core methodologies of SC are fuzzy logic [104, 217], neural networks [10,

68], evolutionary computation [4, 46], and probabilistic reasoning [145, 155]. Each

of these foundations provides solutions with complementary reasoning and search

methods for real-world problems. In particular, fuzzy logic is primarily concerned

with imprecision. Its main contribution is a methodology for computing with words

[113, 131, 134, 220], providing foundations for approximate reasoning [63, 216]
using imprecise propositions based on fuzzy set (FS) theory [54, 212, 214, 226]. The

importance of fuzzy logic derives from the fact that most modes of human reasoning,

especially common sense reasoning, are approximate in nature [218, 221]. Fuzzy

logic is useful for dealing with non-linear, uncertain and complex systems such as

information processing and mechanical control [17, 21, 48, 112, 118, 130, 178].

1



1.1. Fuzzy Inference Systems

This is usually implemented by fuzzy inference systems, which is the main topic of

this thesis.

1.1 Fuzzy Inference Systems

A fuzzy inference system (FIS) is a way of formulating the mapping from given

inputs to an output using fuzzy logic. The mapping then provides a basis from which

decisions can be made, or patterns can be discerned. The concept of FISs is based

on fuzzy logic, fuzzy IF-THEN rules [52] and fuzzy reasoning, which jointly enable

modelling complex systems in a way naturally used by humans [114]. The general

architecture of an FIS is well-known in the literature [49, 104, 180], consisting of

four conceptual components: fuzzifier, rule base, inference engine and defuzzifier. The

characteristic of each component will be explained later in Section 2.2.

With crisp inputs and output, an FIS implements a non-linear mapping from its

inputs space to output space. This mapping is achieved by a number of fuzzy IF-THEN

rules, each of which describes the local behaviour of the mapping. In particular,

the antecedent of a rule represents a fuzzy region in the input space, while the

consequence indicates the inferred consequent in the output region.

There are two ways to construct a fuzzy rule base for a given problem. The first

class of FISs directly translates expert knowledge to fuzzy rules, so that these FISs

are called fuzzy expert systems or fuzzy controllers [18, 128, 130]. Since rules are

fuzzy representations of expert knowledge, these FISs offer a high semantic level

and a good generalisation capability. However, the complexity of large systems may

lead to an insufficient accuracy in the simulation results. Such drawback leads to

the other class of FISs, which is a data-driven fuzzy system. The fuzzy rules are

obtained from data by machine learning techniques rather than expert knowledge

[139, 146, 179, 211].

1.2 Fuzzy Rule Interpolation

Given a fuzzy rule base generated in either of the above two ways, there are a number

of fuzzy inference mechanisms, such as compositional rule of inference [214] and

similarity-based fuzzy reasoning [31, 32, 173, 174, 210], that can be utilised for

deriving a conclusion from a given observation. However, dense rule bases are

2



1.3. Uncertainty in Fuzziness

compulsory for these methods. Briefly, a dense rule base is a rule base where the

input universe of discourse is covered completely. Given such a rule base and an

observation that is at least partially covered by the rule base, the conclusion can be

inferred from certain rules that intersect with the observation. However, for the case

where a fuzzy rule base (termed: sparse rule base [183]) contains “gaps”, if a given

observation has no overlap with the antecedent values of any rule, conventional

fuzzy inference methods cannot derive a conclusion.

Fortunately, using fuzzy rule interpolation (FRI) [106, 107], certain useful con-

clusions may still be obtained. Moreover, with the help of FRI, the complexity of

a rule base can be reduced by omitting fuzzy rules which may be approximated

from their neighbouring rules. Despite these advantages, the application of tradi-

tional FRI methods may lead to abnormal fuzzy conclusions. One particular issue

is that the convexity of the derived fuzzy values is not guaranteed [165, 205], but

convexity is often a crucial requirement for fuzzy inference in order to attain better

interpretability in the results.

In order to overcome such drawbacks, a number of significant extensions to

the original FRI methods have been proposed in the literature, including [6, 23,

34, 35, 39, 73, 76, 77, 108, 169, 183, 203, 204, 206, 208]. In particular, the scale

and move transformation-based FRI approach [75, 76, 77] (abbreviated to T-FRI

hereafter) and its generalisation [163] can handle interpolation and extrapolation

involving multiple fuzzy rules, with each rule consisting of multiple antecedents.

Such work also guarantees the uniqueness, as well as the normality and convexity

of the interpolated conclusion. This approach has recently been further enhanced

with an adaptive mechanism such that performing appropriate chaining of fuzzy

interpolative inferences is supported [206].

1.3 Uncertainty in Fuzziness

Conventional FS theory and the aforementioned FRI techniques provide a basic

means for uncertainty interpretation and uncertainty treatment. However, there

is little work in FRI that can handle uncertainty in fuzziness itself. This is because

these approaches are implemented based on conventional FS representations [212].
Whilst membership functions (MFs) play an important role in defining FSs, it is

sometimes extremely difficult, if not impossible, to precisely define such MFs. There
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may be different types of uncertainty in fuzzy rule-based systems that need to be

captured [60]: (1) The linguistic variables that are used in the antecedents and

consequences of the given rules may be indiscernible. (2) The meanings of the words

representing the values of the underlying variables may be vague because words

can mean different things to different people. (3) An object can belong to an FS

with a degree, but that degree may itself be uncertain. (4) The generated rules

may be inconsistent when personal views are provided from a group of experts. (5)

Observations attainable by inexact knowledge may be noisy and therefore randomly

distributed.

Most of these types of uncertainty can be difficult to deal with in order to deter-

mine the crisp MFs of the FSs used. For instance, certain weather conditions are

considered cold by all people, but others may be considered as cold by only certain

individuals. The MFs for different people may therefore be different, depending on

their perception, preference, experience, etc. This is shown in Figure 1.1, where

x and µ denote an element in a given concept and its corresponding membership

value, respectively. That is, both similarities and differences may exist in defining

a given perception. Therefore, the representation of a concept should satisfy the

requirements of not only the imprecise description but also both the common percep-

tion and individual perception. In this case, the membership values of a conventional

(aka., type-1) FS may not be adequately represented precisely.

1.4 Framework for Higher Order Uncertainty

In this case, different types of uncertainty may influence the determination of the

crisp MFs and thereby have different effects upon the efficacy of FRI. When fac-

ing such a higher order uncertainty, which is the uncertainty of evaluation about

uncertainty, a simple approach may be just ignoring this higher-level information.

However, an obvious drawback of this is that substantial information may be lost

from discarding such uncertain knowledge. This, in turn, may lead to unacceptable

inference conclusions. Alternative representations are needed in order to better

understand and manipulate both the first order and higher order types of uncertainty.

Yet, the way uncertainty may be represented and processed also depends on the

choice of what technique to use. There are different uncertainty representation

and handling techniques that may be exploited in devising FRI mechanisms. It is

therefore desirable to have a generic framework in which such techniques may be
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Figure 1.1: Different MFs for a common underlying concept perceived by different
people

unified and further developed. For this reason, a novel framework is proposed in

this thesis, for both representing the knowledge involving higher order uncertainty

and facilitating interpolation with such knowledge.

The proposed framework is a generalisation of the transformation-based FRI

techniques [76, 77], extending the applications of the existing mechanism to higher

order environment. It consists of two main components: higher order knowledge

representation and higher order rule interpolation. It aims to offer greater flexibility

in handling different types of uncertainty that may be present in sparse rule bases

and observations. Instead of addressing the first order uncertainty like conventional

FRI methods, the proposed framework can handle both the first order and higher

order uncertain information coherently. The work reflects the intuition that the more

useful information is involved in the interpolation process, the better interpolated

results may be obtained.

1.5 Thesis Structure

This section outlines the structure of the remainder of this thesis.
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Chapter 2: Background

This chapter first presents an overview of the existing FRI approaches, and lays out

the foundation of this project. In particular, two principal groups of FRI approaches,

namely single step FRI and intermediate rule-based FRI, are reviewed, each being

associated with a detailed description of a representative approach as well as its

extensions and improvements. Then, basic knowledge representations for charac-

terising different types of uncertainty are introduced, including rough sets (RSs)

and type-2 FSs, which are each used to implement one version of the proposed

framework. This chapter also describes the idea of information aggregation, which

is the basis for the extension of the framework. The ordered weighted averaging

(OWA) operators and the similarity measure operators are reviewed in detail.

Chapter 3: Framework for Higher Order Representation and

Interpolation

This chapter proposes a novel transformation-based framework for both representing

the knowledge involving higher order uncertainty and facilitating interpolation with

such knowledge. It allows transformation-based rule interpolation techniques to

be utilised in implementing a working fuzzy reasoning system. The framework can

handle both the first order and higher order types of uncertainty coherently. The

chapter presents the concept of higher order fuzzy sets (HOFSs) and the algorithm

for higher order interpolation. The framework works by representing the knowledge

involving uncertainty to higher order representation first and then, to derive the

final conclusions by performing higher order interpolation over this representation.

Chapter 4: Implementing Framework with Rough-Fuzzy Sets

A rough-fuzzy (RF) implementation of the framework is presented in this chapter.

Inspired by the concept of RSs, a specific definition of RF sets is proposed first in

order to describe the range of uncertainty, which is characterised by the lower and

upper approximation MFs. The proposed approach facilitates the representation

of uncertain FS MFs with RF approximations, thereby improving the flexibility of

rule interpolation in dealing with different types of uncertainty in fuzziness. An

algorithm for RF rule interpolation is explained assuming that sparse rule bases

involving RF-valued variables are available. It exploits the concept of RF sets and
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generalises the T-FRI techniques. This development has been published in [25, 26].
A proof of this generalisation is also provided.

Chapter 5: Implementing Framework with Type-2 Fuzzy Sets

This chapter describes another implementation of the framework using type-2 FSs

and compares this alternative with the RF approach. For completeness, a compar-

ison between type-2 FSs and RF sets is provided. The basic concepts involved are

introduced and the implementation with type-2 FSs is described. As with the RF

implementation, both interpolation and extrapolation involving multiple antecedent

variables and multiple rules are provided. The experimental examples demonstrate

that the proposed approach is of natural appeal for FRI while dealing with the uncer-

tainty that conventional type-1 FRI techniques may otherwise be difficult to handle.

The resultant mechanism is a useful extension of the existing type-1 FRI. The work

developed in this chapter has been published in [27].

Chapter 6: Higher Order Fuzzy Rule Interpolation: Evaluations

In this chapter, the effectiveness of the proposed framework is illustrated by a practical

application of predicting diarrhoeal disease rates in remote villages. Experts have

always attempted to model how environmental change influences disease burden

so that they can predict the disease rate. However, the models built for this are

often very complicated and usually result in a sparse rule base. Moreover, different

experts may have different kinds of expertise, resulting in similar but different expert

rules and observations. Therefore, such problems provide a potentially suitable

testbed for this framework. This application implies the potential of the framework

in enhancing the robustness of FRI. Moreover, this framework is further evaluated in

the application to other realistic decision making problems. The resultant accuracy

reveals the efficacy of the framework.

Chapter 7: Theoretical Extension

This chapter extends the original definition of RF set-based FRI to a more general

version, supported by the use of the OWA operators. The extended OWA-based

FRI approach is then applied to group decision making (GDM) problems. The goal

in GDM is to ensure that the best decision is made with respect to the available

information and knowledge possessed by all group members. However, different
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types of uncertainty may influence both the assessment of the individual views

and the derivation of the overall group-level solution. In the extended approach,

individual preferences are firstly aggregated by means of a method derived from

the use of RF set theory, and RF-based interpolation is then applied to derive the

group-level conclusion. Experimental investigations are carried out and the results

are presented to demonstrate the efficacy of the proposed work in guaranteeing

the overall decision accuracy. The techniques described in this chapter have been

published in [28].

Chapter 8: Conclusion

This chapter concludes the thesis with a summary of the achievements of the research

presented, together with a discussion of possible future directions for research and

potential areas for implementation of the work.

Appendices

Appendix A lists the publications arising from the work presented in this thesis, con-

taining both published papers, and that currently under review for journal publication.

Appendix B summaries the acronyms employed throughout this thesis.
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Chapter 2

Background

F UZZY rule interpolation (FRI) strengthens the power of fuzzy inference by en-

hancing the robustness of fuzzy inference systems (FISs) [76, 77, 206]. However,

little existing work on FRI can conjunctively handle more than one form of uncertain-

ty in the rules or observations. For instance, the difficulty in defining the required

precise-valued membership functions (MFs) of the fuzzy sets (FSs) significantly re-

stricts the application of conventional FRI techniques. To overcome such difficulties,

this thesis presents significant developments in establishing novel FRI techniques.

To set the background of these developments, this chapter reviews the relevant

literature, including the existing FRI methods, rough sets (RSs), type-2 FSs and

aggregation methods.

2.1 Fuzzy Set Theory

The modelling of imprecise and qualitative knowledge, as well as the transmission

and handling of uncertainty at various stages are possible through the use of FSs

[212]. Fuzzy logic is capable of supporting human type reasoning in natural form

[132]. It is the earliest and most widely reported constituent of soft computing (SC).

The development of fuzzy logic has led to the emergence of SC [142].

FSs are a further development of the mathematical concept of a set. An FS

is an extension of a crisp set, where the latter allows only full membership or

no membership at all, whereas the former allows partial membership. In a crisp
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set, membership or non-membership of an element is described by a characteristic

function in the binary pair {0, 1}. FS theory extends this concept by defining partial

membership. An FS is characterised by a membership function (MF) that takes values

in the interval [0,1]. In this case, a given element can be a member of more than

one FS at a time.

As an example, consider the concept tall. In a crisp set, all of the people with

height 180 cm or more are considered tall, and all of the people with height of less

than 180 cm are considered not tall. The crisp set characteristic function is shown in

Figure 2.1a, while the corresponding FS with a smooth MF is shown in Figure 2.1b,

where X and Y axes denote the height and its corresponding membership value,

respectively. The MF curve defines the transition from not tall and shows the degree

of membership for any given height.

(a) Crisp characteristic function (b) Fuzzy MF

Figure 2.1: Functions for height

Let X be the universe, an FS, A, in X is a set of ordered pairs

A= {(x , µA(x))|µA(x) ∈ [0, 1], x ∈ X } (2.1)

Such an FS is a collection of objects with graded membership, where µA(x) is termed

the grade of membership of x in A. The closer the value of µA(x) is to 1, the more x

belongs to the set A.

Essentially, an MF is a function that defines how each point in the input space

is mapped to a membership value between 0 and 1. Various types of MFs can be

used, including triangular, trapezoidal, Gaussian curves, polynomial curves, etc. In
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particular, due to the fact that triangular and trapezoidal FSs are commonly used in

many FRI approaches [23, 73, 76, 77, 206, 208], they are therefore adopted for the

work in this thesis. Other MFs (e.g., Gaussian) will be implemented in the future.

Note that as using such continuous MFs, there will be no gap between any rules.

In this case, however, FRI can still make sense above a certain minimum threshold

in performing observation and rule matching. Triangular and trapezoidal MFs are

defined respectively by three and four parameters and given by

f (x : a, b, c) =































0 if x < a
x − a
b− a

if a ≤ x ≤ b

c − x
c − b

if b < x ≤ c

0 if x > c

(2.2)

where a and c denote the left and right extreme points (with membership values of

0), and b denotes the normal point (with a membership value of 1).

f (x : a, b, c, d) =











































0 if x < a
x − a
b− a

if a ≤ x < b

1 if b ≤ x ≤ c

d − x
d − c

if c < x ≤ d

0 if x > d

(2.3)

where a and d denote the left and right extreme points (with membership values of

0), and b and c denote the normal points (with membership values of 1).

The support of an FS A is defined by

supp(A) = {x ∈ X | µA(x)> 0} (2.4)

Its core is defined by

core(A) = {x ∈ X | µA(x) = 1} (2.5)

An important property of FSs is their convexity. An FS A on X is convex if and

only if [104]
µA(λx1 + (1−λ)x2)≥min(µA(x1),µA(x2)) (2.6)

for all x1, x2 ∈ X and all λ ∈ [0,1].
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An equivalent representation to the above standard definition is: an FS A is said

to be convex if and only if

µA(z)≥min(µA(x),µA(y)), ∀(x , y, z) ∈ X and z ∈ [x , y] (2.7)

where z is a point between x and y .

A is said to be normal if and only if

µA(x) = 1, ∃x ∈ X (2.8)

An arbitrary polygonal FS with n odd points, A= (a0, . . . , an−1), is shown in Figure

2.2. It has b(n/2)c supports (horizontal intervals between every pair of odd points

which have the same membership value) and 2(d(n/2)e − 1) slopes (non-horizontal

intervals between every pair of consecutive odd points). In particular, two top points

(of full membership value) do not have to be different.

Figure 2.2: Polygonal FS

Note that although this figure explicitly assumes that evenly paired odd points are

given at each α-cut level, this does not affect the generality of the FS representation

as artificial odd points can be created to construct evenly paired odd points.
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2.2 Structure of Fuzzy Inference

The process of fuzzy inference is basically an iteration of a computer paradigm based

on FS theory, fuzzy IF-THEN rules and fuzzy reasoning. Each iteration takes inputs

which can be an observation or a previously inferred crisp or fuzzy result. These

inputs are then used to “fire” the rules in a given rule base. From this, the output

is the aggregation of the inferred results from all of the fired rules. The general

structure of fuzzy inference is illustrated in Figure 2.3.

Figure 2.3: Generic FISs

• The fuzzifier maps discrete or real-valued inputs into corresponding fuzzy

memberships. This is required in order to build rules that can be considered in

terms of linguistic variables. The fuzzifier takes input values and determines

the degree to which they belong to each of the FSs by means of MFs.

• The rule base contains linguistic rules that are provided by experts. It is

also possible to extract rules from numerical data. Once the rules have been

established, the FIS can be viewed as a system that maps an input vector to an

output vector.

• The inference engine defines the mapping from input FSs into output FSs. It

determines the degree to which the antecedent is satisfied for each rule. If

the antecedent of a given rule has more than one part, fuzzy operators are

applied to obtain a number that represents the result of the antecedents for

that particular rule. Furthermore, if one or more rules fire simultaneously,
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outputs for all rules are then aggregated. During the aggregation process, FSs

that represent the output of each rule are combined into a single FS.

• The defuzzifier maps output FSs into a crisp or discrete output. Given an FS

that encompasses a range of output values, the defuzzifier returns a single

value. Several methods for defuzzification can be used in practice, including:

centroid, maximum, etc.

2.3 Interpolative Reasoning Methods

Fuzzy systems use fuzzy rule bases to make inference. If the input domain is covered

completely by the rule bases, such fuzzy rule bases are called dense rule bases [93].
In dense rule bases, for all the possible observations there exists at least one (at

least partially) fired rule, whose antecedent part overlaps the input data. When

an observation occurs, a consequence can be inferred by using conventional fuzzy

reasoning methods such as Mamdani [129, 130] and TSK [167, 168]. On the contrary,

for a sparse rule base, that is, the input domain is covered incompletely by the rule

base, there is an empty space between two MFs of antecedents [164]. In this case,

conventional fuzzy reasoning methods may encounter difficulty if an observation

occurs in the empty space (which is also termed a “gap”), resulting in no rule fired

and thus, no consequence derived. In general, the “empty space” is above a certain

minimum confidence threshold if MFs like Gaussian are used.

The reasons for sparse or incomplete rule bases are various but have several

aspects [183]:

• Originally, fuzzy systems were constructed from IF-THEN rules provided by

human experts. More recently, learning techniques have increasingly been de-

veloped and applied to the construction of fuzzy IF-THEN rules from numerical

data. However, both ways of constructing rule bases can result in sparse rule

bases. In the former case, an incomplete rule base may be the consequence

of missing expertise for certain system configurations. In the latter case, it

may be that data used in the construction of the rule base does not sufficiently

represent the input parameters.

• Fuzzy inference methods are often criticised when the number of inputs is

large. The size of the rule base and the complexity of the inference algorithm
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grow exponentially with the number of inputs. A possible solution to reduce

complexity is to omit redundant rules. This can, however, lead to incomplete

rule bases [108].

• “Gaps” can be defined between rule bases intentionally, in order to avoid high

complexity in large systems.

In the case where a fuzzy rule base contains “gaps”, conventional fuzzy reasoning

methods can no longer be used. This fact is due to the failure of traditional inference

mechanisms in the case when observations find no fuzzy rule to fire. This cannot be

allowed when using a fuzzy system in any practical application and such a system is

considered useless. This problem was initially outlined in the “tomato classification”

problem [143], shown in Figure 2.4.

Figure 2.4: Fuzzy reasoning for the tomato problem
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Rule 1 : If a tomato is red, then the tomato is ripe.

Rule 2 : If a tomato is green, then the tomato is upripe.

Observation : This tomato is yellow.

Conclusion : ???

The intuitive consequence of a human being would be that this tomato is half

ripe. However, the MF “yellow” has no overlap with the MFs “red” or “green”.

Therefore, none of the conventional fuzzy inference mechanisms is able to reach

such a conclusion.

Motivated by this, fuzzy interpolative reasoning mechanisms are proposed for

performing fuzzy inference with systems comprising insufficient knowledge or sparse

rule bases. Even when a given observation has no overlap with the antecedent values

of any existing rules, FRI may still derive a useful conclusion. The techniques of FRI

not only support inference in such situations, but also help to reduce the complexity

of fuzzy models by eliminating the rules which may be approximated from their

neighbouring rules.

A number of important FRI approaches have been proposed in the literature

[90, 92, 156]. In terms of the underlying methodology, most of these approaches

can be divided into two groups: single step rule interpolation and intermediate

rule-based interpolation.

The first group of approaches directly interpolates a rule whose antecedent is

identical to the given observation and thus, the consequence of the interpolated rule

is the logical result of the observation. The most typical approach in this group is

the first proposed FRI technique [106, 107], denoted the KH (Kóczy and Hirota)

approach, which is based on the Decomposition Principle and Resolution Principle

[104, 158, 222]. According to these principles, each FS can be represented by a

series of α-cuts (α ∈ (0,1]). Given α, the α-cut of the interpolated consequent FS

can be calculated from the α-cuts of the (newly observed) antecedent FSs and all of

the FSs involved in the rules used for interpolation. Having found the α-cuts of the

consequent FS for all α ∈ (0,1], the consequent FS is then assembled by applying

the Resolution Principle.
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The second group of approaches reaches the target in two steps. In the first

step these approaches interpolate an artificial intermediate rule. The antecedent of

this intermediate rule is expected to be very close to the given observation. As a

result, the interpolation problem becomes similarity reasoning [56, 103, 210]. The

estimated conclusion is then derived in the second step according to the similarity

between the observation and the antecedent of the artificial intermediate rule. The

scale and move transformation-based FRI approach (T-FRI) [76, 77], which has been

adopted as the foundation for the work in this thesis, belongs to this group.

As the two representatives for these two groups, the KH and T-FRI approaches

are respectively reviewed in the following sections.

2.3.1 The KH Approach

The KH approach [106, 107] determines the conclusion by its α-cuts in such a way

that the proportional distance between the estimated conclusion and the consequent

sets of the rules which are used should be the same as the distance between the

observation and the antecedents of those rules, for all important α-cuts. The x-cut

Aα of an FS A is a crisp set, denoted: Aα = {x |A(x)≥ α,α ∈ (0, 1]}.

2.3.1.1 Base Case of the KH Approach

The starting ideas are the Extension Principle and Resolution Principle. The former

states that the solution of a problem for FSs can be found in the form of solving first

for arbitrary α-cuts that are crisp sets and then extending the solution to the fuzzy

case. The latter describes the decomposition of FSs to α-cuts

µA(x) = sup{α : x ∈ Aα} (2.9)

Every FS can be approximated with the use of the family of its α-cuts. Theoreti-

cally, all infinite cuts should be treated separately. In most practical cases, however,

if the MF is piecewise linear, it is often sufficient to calculate its α-cuts for only a few

important or typical values [164], e.g., α= 0 and α= 1.

An important concept in the KH approach is the “less than” relation between two

convex and normal FSs. FS A1 is said to be less than FS A2, denoted by A1 ≺ A2, if

∀α ∈ (0,1], the following conditions hold:

inf{A1α}< inf{A2α}, sup{A1α}< sup{A2α} (2.10)
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where A1α and A2α are the α-cut sets of A1 and A2, respectively, inf{Aiα} is the infimum

of Aiα, and sup{Aiα} is the supremum of Aiα, i = 1,2.

For simplicity, suppose that two single-antecedent fuzzy rules are given as follows:

R1 : If x is A1, then y is B1

R2 : If x is A2, then y is B2

They are said to be neighbouring rules if and only if: (1) A1 ≺ A2 or A2 ≺ A1; and (2)

there is no individual rule “If x is A′, then y is B′” such that A1 ≺ A′ ≺ A2 if A1 ≺ A2,

or A2 ≺ A′ ≺ A1 if A2 ≺ A1.

To implement interpolation in the region between the antecedents of these two

rules, i.e., to generate an approximated conclusion when an observation A∗ located

between FSs A1 and A2 is hereby given. The neighbouring rules in a given rule base

are therefore said to flank the observation. For the above two rules, this means that

A1 ≺ A∗ ≺ A2 or A2 ≺ A∗ ≺ A1.

The KH approach uses the following equation to determine the interpolated

result:
d(A∗, A1)
d(A∗, A2)

=
d(B∗, B1)
d(B∗, B2)

(2.11)

where A1, A2 are the antecedents of the two flanking rules, A∗ is a given observation,

B1, B2 are the consequences of those rules, B∗ is the estimated conclusion, and d(., .)
is typically the Euclidean distance between two FSs (though other distance metrics

may be also used).

According to the Decomposition Principle, a convex and normal FS A can be

represented by a series of α-cut intervals, each denoted as Aα, α ∈ (0, 1]. In this case,

Equation (2.11) can be written as:

d(A∗
α
, A1α)

d(A∗
α
, A2α)

=
d(B∗

α
, B1α)

d(B∗
α
, B2α)

(2.12)

where given any α (α ∈ (0,1]), the lower and upper distances between α-cuts A1α

and A2α are defined:
(

dL(A1α, A2α) = d(inf{A1α}, inf{A2α})

dU(A1α, A2α) = d(sup{A1α}, sup{A2α})
(2.13)
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Note that the Euclidean distance between intervals can be defined in different

ways but they all lie between dL(A1α, A2α) and dU(A1α, A2α). From Equation (2.13),

Equation (2.12) can be rewritten as

dL(A∗α, A1α)

dL(A∗α, A2α)
=

dL(B∗α, B1α)

dL(B∗α, B2α)

=
dL(inf{B∗

α
}, inf{B1α})

dL(inf{B∗
α
}, inf{B2α})

=
inf{B∗

α
} − inf{B1α}

inf{B2α} − inf{B∗
α
}

(2.14)

Equation (2.14) can then be solved as follows:

inf{B∗
α
}=

inf{B1α}dL(A∗α, A2α) + inf{B2α}dL(A∗α, A1α)

dL(A∗α, A2α) + dL(A∗α, A1α)

=

inf{B1α}
dL(A∗α,A1α)

+ inf{B2α}
dL(A∗α,A2α)

1
dL(A∗α,A1α)

+ 1
dL(A∗α,A2α)

(2.15)

where sup{B∗
α
} can be calculated in the same way, resulting in



























inf{B∗
α
}=

inf{B1α}
dL(A∗α,A1α)

+ inf{B2α}
dL(A∗α,A2α)

1
dL(A∗α,A1α)

+ 1
dL(A∗α,A2α)

sup{B∗
α
}=

sup{B1α}
dU (A∗α,A1α)

+ sup{B2α}
dU (A∗α,A2α)

1
dU (A∗α,A1α)

+ 1
dU (A∗α,A2α)

(2.16)

Alternatively, let














λL =
dL(A∗α, A1α)

dL(A∗2α, A1α)

λU =
dU(A∗α, A1α)

dU(A∗2α, A1α)

(2.17)

The same solution can then be obtained but represented differently as follows:
(

inf{B∗
α
}= (1−λL)inf{B1α}+λLinf{B2α}

sup{B∗
α
}= (1−λU)sup{B1α}+λUsup{B2α}

(2.18)

From this, B∗
α
= [inf{B∗

α
}, sup{B∗

α
}] results. The estimated conclusion B∗ can then be

constructed by using the representation principle of FSs:

B∗ =
⋃

α∈(0,1]

αB∗
α

(2.19)
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The most important advantage of the KH approach is its low computational

complexity that ensures the fast response performance for real-time applications.

Despite the rapid development of α-cut based FRI, there is a drawback in this group of

methods. Theoretically, all possible α-cuts (an infinite number) should be considered

in performing the interpolation. However, the existing approaches in this group only

take a finite number of α-cuts into consideration (usually 3 or 4). The resulting points

are then connected by linear pieces to produce an approximation of the accurate

conclusion.

2.3.1.2 Extensions of the KH Approach

The principle of interpolating two rules can be extended in many different ways.

A possible way to generalise the KH approach is to increase the number of the

involved fuzzy rules that are taken into consideration during the computation of the

conclusion.

Suppose that N fuzzy rules flank the observation from both sides in the sense

of ≺. Intuitively, the further a given fuzzy rule is located from the observation, the

less weight the respective consequence in the construction of the conclusion play.

This can be obtained from the solution of Equation (2.16) repeatedly for the pairs

of points and by averaging the various solutions in a weighted way. The overall

solutions are as follows:


















































min{B∗
α
}=

2N
∑

i=1

1
dL(A∗α,Aiα)

inf{Biα}

2N
∑

i=1

1
dL(A∗α,Aiα)

max{B∗
α
}=

2N
∑

i=1

1
dU (A∗α,Aiα)

sup{Biα}

2N
∑

i=1

1
dU (A∗α,Aiα)

(2.20)

2.3.1.3 Modifications of the KH Approach

One disadvantage of the KH approach is that the membership of the derived FS

is not always a function leaving alone to be a fuzzy MF, which is shown in Figure

2.5. The recognition of the “abnormal problem” of the KH approach has led to the

development of many techniques, which modify or improve the original approach.
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Figure 2.5: Abnormal conclusion generated by the KH approach

The VKK (Vass, Kalmár, and Kóczy) approach [176]modifies the distance measure

defined in the KH approach. It describes each α-cut by its centre point and its width.

The distance between two FSs is characterised by a vector which contains a set of

distances between each corresponding pair of α-cuts of the two FSs. This approach

is also applicable for interpolation with multiple antecedent rules, which is achieved

by aggregating the distances on different antecedent attributes of a certain level by

Euclidean distance and calculating the resultant width using the arithmetic average.

However, this approach is not applicable for problems with singleton observations

because the α-cut width of 0 is not considered.

The modified α-cut based interpolation (MACI) [169] solves the abnormality
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problem effectively, while it maintains the advantageous properties of the KH ap-

proach itself. This approach represents each FS with two vectors which describe

the left (lower) and the right (upper) flank by means of the technique published

in [203]. The vectors contain the break points in case of piecewise linear MFs or

endpoints of predefined α-cuts in case of smooth MFs. However, this approach also

does not preserve linearity, but the deviation of the piecewise linear conclusion from

the accurate one is less than in the case of the original approach.

2.3.2 The T-FRI Approach

The T-FRI approach [76, 77] can handle both interpolation and extrapolation of

multiple multi-antecedent rules with triangular, complex polygon, Gaussian and

bell-shaped fuzzy MFs. It has the following properties:

• It can handle both interpolation and extrapolation which involve multiple fuzzy

rules, with each rule consisting of multiple antecedents.

• It guarantees the uniqueness as well as normality and convexity of the resulting

interpolated FSs.

• It preserves piece-wise linearity such that interpolation can be computed using

only characteristic points which describe a given polygonal FS, thereby ignoring

any non-characteristic points and saving computation effort.

• It has been applied to problems such as truck backer-upper control and com-

puter activity prediction.

2.3.2.1 Representative Value

A key concept used in the T-FRI approach is the representative value (Rep) of a given

FS, it captures important information such as the overall location of an FS.

Consider an arbitrary polygonal FS A with k odd points, which can be denoted as

A= (a0, · · · , ak−1). Given such an arbitrary polygonal FSs, its general Rep is defined

by

Rep(A) =
k−1
∑

i=0

wiai (2.21)

where wi is the weight assigned to the point ai.
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In general, the specification of the weights is necessary for a given application.

Different definitions can be adopted for deriving different Rep values. The simplest

case is that all points take the same weighting value, i.e.,

Rep(A) =
1
k

k−1
∑

i=0

ai (2.22)

An alternative is the weighted average Rep, where the weights increase upwards

from the bottom support to the top support, to reflect the relative significance of

the fuzzy membership values. For instance, assuming the weights increase upwards

from 0.5 to 1, such a Rep is defined by

Rep(A) =

d k
2e−1
∑

i=0

1+µi
2 (ai + ak−i−1)

d k
2e−1
∑

i=0

1+µi
2

(2.23)

where µi is the membership value of ai.

Note that artificial odd points can be created to construct evenly paired odd

points (as indicated previously), so µi = µk−i−1 can always be assumed.

One of the most widely used defuzzification methods, the centre of core, can also

be utilised as an alternative. The centre of core Rep is solely determined by those

points with a fuzzy membership value of 1:

Rep(A) =
1
2
(ad k

2e−1 + ak−d k
2e) (2.24)

Based on the generated Rep values, the interpolation process is discussed in the

following three cases. For simplicity, only rules involving triangular-shaped MFs are

considered.

2.3.2.2 The T-FRI Approach with Two Single-antecedent Rules

Suppose that two neighbouring rules A1⇒ B1, A2⇒ B2 and an observation A∗, which

is located between FSs A1 and A2, are given as follows:

R1 : if x1 is A1, then y1 is B1

R2 : if x2 is A2, then y2 is B2

O : x is A∗

C : y is B∗
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The desired conclusion B∗ can be derived by interpolation. An intermediate rule A′⇒
B′ is first constructed by manipulating these two given rules, where the intermediate

term A′ and the observation A∗ have the same Rep, and so do the intermediate

term B′ and the desired B∗. Then B′ is converted into B∗ using scale and move

transformations, which have been used to transform A′ to A∗.

Figure 2.6: T-FRI with two single-antecedent rules

The interpolation process is illustrated in Figure 2.6. Given FSs A∗, A1 and A2,

three parameters Rep(A∗), Rep(A1) and Rep(A2) are produced with the function f1.

Next, the relative placement relation between the observation A∗ and the antecedents

(A1 and A2) of the two neighbouring rules is calculated by the function f2, resulting

in λ. From this, an intermediate rule A′⇒ B′ is generated by applying the function

f3 with parameter λ to both the antecedents and consequences of the neighbouring

rules. Then, the similarity degree between A′ and A∗ is computed by a predefined

similarity measure. Specifically, scale rate s and move ratioM are exploited in scale

and move transformation-based interpolation to represent the similarity degree,

which is achieved by the function f4. Finally, the estimated conclusion B∗ is obtained

by applying the function f5 to B′ while imposing the same similarity degree.
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Intermediate Rule

The relative placement factor λ of the observation A∗, with respect to its two neigh-

bouring rule antecedents A1 and A2, is defined by

λ=
d(A1, A∗)
d(A1, A2)

=
d(Rep(A1), Rep(A∗))
d(Rep(A1), Rep(A2))

(2.25)

where d(A1, A2) = d(Rep(A1), Rep(A2)) represents the distance between two FSs A1

and A2, which is defined by

d(A1, A2) = d(Rep(A1), Rep(A2))

= Rep(A2)−Rep(A1)
(2.26)

where Rep(A1) 6= Rep(A2) because A1 ≺ A2 or A2 ≺ A1. Such a factor reflects the

relative location of the interpolated rule regarding the two neighbouring rules.

By using the simplest linear interpolation, the antecedent of the intermediate

rule A′ = (a′0, a′1, a′2) can be calculated as follows:











a′0 = (1−λ)a10 +λa20

a′1 = (1−λ)a11 +λa21

a′2 = (1−λ)a12 +λa22

(2.27)

which are collectively abbreviated to

A′ = (1−λ)A1 +λA2 (2.28)

In so doing, the Rep of the calculated A′ is guaranteed to be equal to that of

A∗. The consequence of the intermediate rule B′ = (b′0, b′1, b′2) can then be obtained

similar to the calculation of A′ using the same λ:











b′0 = (1−λ)b10 +λb20

b′1 = (1−λ)b11 +λb21

b′2 = (1−λ)b12 +λb22

(2.29)

with abbreviated notation

B′ = (1−λ)B1 +λB2 (2.30)
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Scale and Move Transformations

As A′ ⇒ B′ is derived from A1 ⇒ B1 and A2 ⇒ B2, it is feasible to perform fuzzy

reasoning with this new rule without further reference to its originals. Given such an

intermediate rule and an observation, the conclusion can be calculated with respect

to the following intuition:

The more similar A′ to A∗, the more similar B′ to B∗.

Suppose that a certain degree of similarity between the antecedent parts A′ and

A∗ is established, it is intuitive to require that the consequent parts B′ and B∗ attain

the same similarity degree. Hence, the following two transformations are used to

ensure this.

Scale Transformation The similarity degree between A′ and A∗ is first measured

by scale rate s, which is defined by

s =
a∗2 − a∗0
a′2 − a′0

(2.31)

Let A′′ = (a′′0 , a′′1 , a′′2 ) denote the second intermediate term generated by the scale

transformation. By using s, the current support (a′0, a′2) is transformed into a new

support (a′′0 , a′′2 ), while keeping the Rep and the ratio of the left-support (a′′0 , a′′1 ) to

the right-support (a′′1 , a′′2 ) of A′′ the same as those of its original, such that


























a′′2 − a′′0 = s(a′2 − a′0)

a′′0 + a′′1 + a′′2
3

=
a′0 + a′1 + a′2

3
a′′1 − a′′0
a′′2 − a′′1

=
a′1 − a′0
a′2 − a′1

(2.32)

A′′ can then be calculated by solving Equation (2.32):


























a′′0 =
a′0(1+ 2s) + a′1(1− s) + a′2(1− s)

3

a′′1 =
a′0(1− s) + a′1(1+ 2s) + a′2(1− s)

3

a′′2 =
a′0(1− s) + a′1(1− s) + a′2(1+ 2s)

3

(2.33)

This measure reflects the similarity degree between A′ and A∗: the closer is s to

1, the more similar is A′ to A∗. It is therefore used to act as, or to contribute to, the

desirable similarity degree in order to transform B′ to B∗.
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Move Transformation The similarity degree is further measured by move ratioM.

By usingM, the current support (a′′0 , a′′2 ) of A′′ is moved to (a∗0, a∗2) while keeping its

Rep, resulting in the observation A∗. The move ratioM is defined by

M=



















a∗0 − a′′0
a′′1−a′′0

3

if a∗0 ≥ a′′0

a∗0 − a′′0
a′′2−a′′1

3

otherwise

(2.34)

GivenM, A∗ can then be retrieved as:
































































a∗0 = a′′0 +M
a′′1−a′′0

3

a∗1 = a′′1 − 2M a′′1−a′′0
3

a∗2 = a′′2 +M
a′′1−a′′0

3

ifM≥ 0 (2.35a)















a∗0 = a′′0 +M
a′′2−a′′1

3

a∗1 = a′′1 − 2M a′′2−a′′1
3

a∗2 = a′′2 +M
a′′2−a′′1

3

otherwise (2.35b)

This reflects the similarity degree between A′ and A∗: the closer is M to 0, the

more similar is A′ to A∗.

Having obtained the similarity degree between A′ and A∗, the interpolated con-

clusion B∗ can therefore be obtained by transforming B′ with the same scale rate s

and move ratioM.

General Scale and Move Transformations

The general scale and move transformations for polygonal FSs can be extended from

the previous subsection.

General Scale Transformation Consider A′ and A∗, respectively represented as

A′ = (a′0, · · · , a′k−1) and A∗ = (a∗0, · · · , a∗k−1). The following parameters, termed the

general scale rates sp (p = 0, · · · , b(k/2)c−1) rescale the pth support of A′ to approx-

imate that of A∗:

sp =
a∗k−p−1 − a∗p
a′k−p−1 − a′p

(2.36)
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From these general scale rates, the following general scale ratios Sq (q = 1, · · · ,
b(k/2)c − 1) modify the rescaled qth support of A′ to further approximate that of A∗

such that the resulting FS A′ is of the same scale as that of A∗:

Sq =







































a∗k−q−1−a∗q
a∗k−q−a∗q−1

−
a′k−q−1−a′q
a′k−q−a′q−1

1−
a′k−q−1−a′q
a′k−q−a′q−1

if sq ≥ sq−1

a∗k−q−1−a∗q
a∗k−q−a∗q−1

−
a′k−q−1−a′q
a′k−q−a′q−1

a′k−q−1−a′q
a′k−q−a′q−1

if sq−1 > sq

(2.37)

From this, by imposing the required similarities, the corresponding general scale

rates s′p that will help rescale the pth support of B̃′ into the emerging B̃∗ can be

obtained such that

s′p =







































sp if p = 0

s′p−1(sp − sp−1)(
b̃′k−p−b̃′p−1

b̃′k−p−1−b̃′p
− 1)

sp−1(
a′k−p−a′p−1

a′k−p−1−a′p
− 1)

+ s′p−1 if sp ≥ sp−1, p > 0

s′p−1sp

sp−1
if sp−1 > sp, p > 0

(2.38)

General Move Transformation The general move ratiosMr (r = 0, · · · , d(k/2)e−
2) shift the locations of supports of A(r−1) to that of A∗ (where A(r−1) is the term

obtained after the (r-1)th sub-move with initialisation A−1 = A′′):

Mr =



























a∗r − a(r−1)
r

min{
a(r−1)

r +···+a(r−1)
d(k/2)e−1

d(k/2)e−r − a(r−1)
r , a(r−1)

k−r − a(r−1)
k−r−1}

if a∗r ≥ a(r−1)
r

a∗r − a(r−1)
r

min{a(r−1)
k−r−1 −

a(r−1)
k−d(k/2)e+···+a(r−1)

k−r−1

d(k/2)e−r , a(r−1)
r − a(r−1)

r−1 }
if a(r−1)

r > a∗r

(2.39)

where a(r−1)
r is the a′′r ’s new position after the (r-1)th sub-move. Initially, when r = 0,

a(−1)
0 = a′′0 , a(r−1)

k−r − a(r−1)
k−r−1 and a(r−1)

r − a(r−1)
r−1 are not included into the calculation of

min{., .}.
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2.3.2.3 The T-FRI Approach with Two Multi-antecedent Rules

Two multi-antecedent rules interpolation is a generalisation of the two single-

antecedent rules interpolation. Given an observation such that

O : x1 is A∗1, · · · , x j is A∗j, · · · , xM is A∗M

Suppose that two neighbouring rules are used for interpolation with respect to the

given observation, which are represented by

R1 : If x1 is A11, · · · , x j is A1 j, · · · , xM is A1M , then y is B1

R2 : If x1 is A21, · · · , x j is A2 j, · · · , xM is A2M , then y is B2

where M is the number of antecedent variables.

When one rule involves multiple antecedent variables, each antecedent dimen-

sion will have its own parameter values for λ, s andM. Obviously, all these values

contribute to the construction of the intermediate term B′ and the desired B∗. The

following equations aggregate all of these values in order to construct the intermedi-

ate term B′. The interpolated conclusion B∗ can then be obtained by using s′ andM′,
where

λ′ =
1
M

M
∑

j=1

λ j (2.40)

B′ = (1−λ′)B1 +λ
′B2 (2.41)

s′ =
1
M

M
∑

j=1

s j (2.42)

M′ =
1
M

M
∑

j=1

M j (2.43)

and M is the number of antecedent variables.

The process of the T-FRI with two multi-antecedent rules is illustrated in Figure

2.7. In this figure, there are M repeated components which are identical to the core

of the two single-antecedent rules interpolation (as shown in Figure 2.6). Each of

these components does exactly the same as the common core of the single-antecedent

situation. That is, the relative placement factors λ j ( j = 1, . . . , M) are calculated

from each term of the observation A∗j and the corresponding two FSs A1 j and A2 j.

The function f6 is then introduced to combine all these λ j to a single parameter λ′,

resulting in the consequence of the intermediate rule. Similarly, the scale rates s j and

the move ratiosM j ( j = 1, . . . , M) are combined to s′ andM′ by using the function

f7.
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Figure 2.7: T-FRI with two multi-antecedent rules

2.3.2.4 The T-FRI Approach with Multiple Multi-antecedent Rules

In order to implement interpolation or extrapolation with multiple multi-antecedent

rules, the first step is to choose N (N ≥ 2) rules from a given rule base. Then, an

intermediate rule is constructed based on the selected rules. Once the intermediate

rule is worked out, the remainder of the process remains the same as that described

in the previous sections. The key steps in generating an intermediate rule are briefly

introduced as follows.

Closest N Rules Selection

Without loss of generality, suppose that a rule Ri and an observation O are represented

by

Ri : If x1 is Ai1, · · · , x j is Ai j, · · · , xM is AiM , then y is Bi

O : x1 is A∗1, · · · , x j is A∗j, · · · , xM is A∗M
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where Ai j denotes the jth antecedent FS of Rule Ri, A∗j denotes the observed FS of

variable x j, and Bi denotes the consequent FS of Rule Ri with j ∈ {1, . . . , M}, M

being the number of antecedent variables.

The distances di j between the pairs of Ai j and A∗j can be calculated as follows:

di j = d(Ai j, A∗j)

= d(Rep(Ai j), Rep(A∗j))
(2.44)

The distance di between the rule Ri and the observation O is deemed to be the

average of all antecedent variables’ distances:

d ′i j =
di j

max j −min j
(2.45)

di =

√

√

√

√

M
∑

j=1

d ′i j
2 (2.46)

where max j and min j are the maximum and minimum values of x j, j ∈ {1, . . . , M}.
Each distance measure di j is normalised into the range [0, 1], denoted by d ′i j, to make

the absolute distances compatible with each other over different domains. Note that

if max j −min j = 0, then max j = min j. That is, A∗j of O is identical with Ai j of Ri,

j ∈ {1, . . . , M}. In this case, d ′i j = 1.

Intermediate Rule Construction

Suppose N (N ≥ 2) closest rules have been chosen from the observation. Such rules

are represented as Ri, i ∈ {1, . . . , N}, each has M antecedents Ai j, j ∈ {1, . . . , M}. Let

wAi j
denote the weight to which the jth antecedent of the ith rule contributes to the

intermediate rule. The normalised weight w′Ai j
can be defined as:

wAi j
=

1
di j

(2.47)

w′Ai j
=

wAi j

N
∑

i=1
wAi j

(2.48)

Note that if di j = 0, then Rep(Ai j) = Rep(A∗j). In this case, the antecedent of the

observation is considered to be identical to the corresponding antecedent of the rule
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Ri, in terms of the currently applied definition of Rep. Thus, wAi j
= 1 for the identical

ones, while wAi j
= 0 for the remainder.

The antecedent of the so-called intermediate fuzzy term AI F T
j is constructed from

the antecedents of these closest rules. Another process shift is then introduced to

modify AI F T
j to the antecedent of the intermediate rule A′j so that it will have the

same Rep as A∗j:

AI F T
j =

N
∑

i=1

w′Ai j
Ai j (2.49)

A′j = AI F T
j +δA j

(max j −min j) (2.50)

where δA j
is a constant defined by

δA j
=

Rep(A∗j)−Rep(AI F T
j )

max j −min j
(2.51)

Note that if max j −min j = 0, then max j = min j. That is, A∗j is identical with AI F T
j ,

j ∈ {1, . . . , M}. In this case, δA j
= 1. Regarding the consequence of the intermediate

rule B′, it can be calculated by analogy to the computation of the antecedent, such

that

B I F T =
N
∑

i=1

w′Bi
Bi (2.52)

B′ = B I F T +δB(max−min) (2.53)

where B I F T is the consequence of the intermediate fuzzy term, max and min are the

maximum and minimum values of consequent variable, w′Bi
and δB are the means of

w′Ai j
and δA j

, i ∈ {1, . . . , N}, j ∈ {1, . . . , M}, respectively, which are defined as:

w′Bi
=

1
M

M
∑

j=1

w′Ai j
(2.54)

δB =
1
M

M
∑

j=1

δA j
(2.55)

Then, the intermediate rule is constructed as

If x1 is A′1, · · · , x j is A′j, · · · , xM is A′M , then y is B′.

Having generated the required intermediate rule, the rest of the interpolation

involves firing this rule by the given observation, which is the same as that of
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interpolation with two rules described previously. The process of the T-FRI with

multiple multi-antecedent rules is illustrated in Figure 2.8. In addition, extrapolation

is a special case of interpolation when all the N closest rules lie on one side of

the given observation. However, the processes of choosing the closest rules and

constructing the intermediate rule are carried out in exactly the same way as the

procedures for interpolation.

Figure 2.8: T-FRI with multiple multi-antecedent rules

2.3.3 Other Approaches

In addition to the aforementioned approaches, a number of other existing approaches

have also been reported in the literature [23, 39, 73, 84, 85, 91, 111, 157], several

of them are reviewed in the following sections. For details of other implementations,

refer to the corresponding references given.
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2.3.3.1 HCL Interpolation

The HCL (Hsiao, Chen, and Lee) approach [73] eliminates the abnormal problem by

fixing the core of the consequence generated by the KH approach and shifting its

support along with the consequent variable axis. It represents both slopes of each FS

as a linear function. The slopes of the consequent FS are also linear functions whose

parameters are interpolated from those of the observation and the FSs involved in

the rule bases. A ratio between the left slope and the right slope of the consequence

is then calculated and utilised to shift the support of the generated consequence by

the KH approach in reference to the normal point of the consequence. Unfortunately,

this approach is only applicable to triangular FSs.

The typical interpolation problem is shown in Figure 2.9, where k1, t1, k, t, k2,

t2, h1, m1, h, m, h2, and m2 represent the slopes of the corresponding FSs. The HCL

approach calculates the support of B∗ in the same way as the KH approach but the

top point is calculated in a different way. The process to determine the top point of

B∗ is described below.

Figure 2.9: HCL interpolation
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The slopes h and m of B∗ are calculated first. Let:
(

k = k1 x + k2 y

t = t1 x + t2 y
(2.56)

where x and y are real numbers. If k1
t1
6= k2

t2
, then x and y are computed by Equation

(2.56). Let:
(

h= c|h1 x + h2 y|

m= −c|m1 x +m2 y|
(2.57)

where c is a constant. Otherwise, let:
(

h= ck

m= c t
(2.58)

where c is a constant.

The position of the top point of B∗ is then decided by

CP(B∗)− sup(B∗)
CP(B∗)− inf(B∗)

=
h
m

(2.59)

where CP(B∗) denotes the centre point of core of B∗. Equation (2.59) can be refor-

mulated as

CP(B∗) =
sup(B∗)m− inf(B∗)h

m− h
(2.60)

Note that if m= h, then sup(B∗) = inf(B∗) can be derived from Equation (2.59). In

this case, CP(B∗) = sup(B∗) = inf(B∗).

2.3.3.2 CCL Interpolation

The CCL (Chang, Chen, and Liau) approach [23] can be seen as an improvement of

the HCL approach. This approach first determines the core of the consequence by

using the KH approach, which is calculated as follows:

b∗ = b1 +
(a∗ − a1)(b2 − b1)

a2 − a1
(2.61)

where a1, a2, a∗, b1, b2, and b∗ are the normal points of the involved triangular FSs

A1, A2, A∗, B1, B2, and B∗, respectively.
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The areas of the two sides of the core are then calculated from the correspond-

ing areas of the given observation and all the FSs involved in the rules used for

interpolation in a manner of linear interpolation.

SK(B
∗) =











SK(A
∗)

2
∑

i=1

Wi
SK(Bi)
SK(Ai)

if ∃i SK(Ai)> 0

SK(A
∗) if ∀i SK(Ai) = 0

(2.62)

where K ∈ {L, R}, SL(B∗) and SR(B∗) denote the left and the right area of B∗, respec-

tively, and






W1 = 1−
a∗ − a1

a2 − a1

W2 = 1−W1

(2.63)

The interpolated result B∗ is therefore derived by

B∗ = (b∗ − 2SL(B
∗), b∗, b∗ + 2SR(B

∗)) (2.64)

Unlike the HCL approach, this approach is able to deal with interpolation and

extrapolation with multiple multi-antecedent rules, with each rule involving any

shape of FSs.

2.3.3.3 QMY Interpolation

The QMY (Qiao, Mizumoto, and Yan) approach [157] employs the same mechanism

for generating intermediate rules as the T-FRI approach, but the Rep is restricted to

being the centre point of core. The similarity degree between the observation A∗ and

the antecedent A′ of the intermediate rule is captured using the so-called parameters

lower similarity and upper similarity, which are defined by















SL(A∗,A′)(α) =
d(inf(A∗

α
), CP(A∗))

d(inf(A′
α
), CP(A∗))

SU(A∗,A′)(α) =
d(sup(A∗

α
), CP(A∗))

d(sup(A′
α
), CP(A∗))

(2.65)

where α ∈ (0, 1].

With reference to the centre point of the core, a convex and normal FS can

be divided into two parts, namely, the lower part and the upper part. The lower
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similarity measures the difference of the lower parts of two FSs, by comparing the

lengths of a certain level cut, and the upper similarity does that of the upper parts.

In so doing, the consequence B∗ is derived from the following equations:











CP(B∗) = CP(B′)

SL(B∗,B′)(α) = SL(A∗,A′)(α)

SU(B∗,B′)(α) = SU(A∗,A′)(α)

(2.66)

Combining Equations (2.65) and (2.66) gives
(

inf(B∗
α
) = SL(A∗,A′)(α)d(inf(B′

α
), CP(B′)) +CP(B′)

sup(B∗
α
) = SU(A∗,A′)(α)d(sup(B′

α
), CP(B′)) +CP(B′)

(2.67)

Thus B∗ can be calculated with the representation principle of FSs.

2.3.3.4 CK Interpolation

The CK (Chen and Ko) approach [39] ensures that the core of each FS of a created

intermediate rule is equal to that of the corresponding FS of the resultant interpolated

rule.

First, the Reps of all the involved FSs are obtained by the T-FRI approach, resulting

in the parameter λ. The values of la′0,1 and la′1,2 are then calculated:

(

la′0,1 = (1−λ)la10,1
+λla20,1

la′1,2 = (1−λ)la11,2
+λla21,2

(2.68)

where la′0,1 and la′1,2 denote the left and the right support length of the antecedent

of the intermediate rule. The values of l b′0,1 and l b′1,2 can be calculated in the same

way.

Next, the antecedent of the intermediate rule is constructed:











a′0 = a′1 − la′0,1

a′1 = a1

a′2 = a′1 + la′1,2

(2.69)
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Similarly, the consequence of the intermediate rule can be constructed by means

of the previously obtained l b′0,1 and l b′1,2











b′0 = b′1 − l b′0,1

b′1 = b1

b′2 = b′1 + l b′1,2

(2.70)

where b1 is the core of the estimated interpolated conclusion, which is determined

as follows:

b1 = (1−λa1
)Rep(B1) +λa1

Rep(B2) (2.71)

where

λa1
=

d(A1, a1)
d(A1, A2)

=
a1 −Rep(A1)

Rep(A2)−Rep(A1)

(2.72)

Note that Rep(A1) 6= Rep(A2) because A1 ≺ A2 or A2 ≺ A1.

In order to measure the similarity degree between two FSs with the same core,

only their left slopes and right slopes need to be compared. Two transformations, i.e.,

increment transformation and ratio transformation are then utilised for this purpose,

with one aiming to increase the length of a certain level cut of a slope during the

transformation, and the other to decrease the length. From this, B∗ = (b∗0, b∗1, b∗2)
can be derived, where b0 and b2 are calculated as

b0 =















b1 − la0,1
a20 − a12

b20 − b12
+ la′0,1

a20 − a12

b20 − b12
− l b′0,1 if la0,1 ≥ la′0,1

b1 −
la0,1l b′0,1

la′0,1

otherwise
(2.73)

b2 =















b1 + la1,2
a20 − a12

b20 − b12
− la′1,2

a20 − a12

b20 − b12
+ l b′1,2 if la1,2 ≥ la′1,2

b1 +
la1,2l b′1,2

la′1,2

otherwise
(2.74)

2.4 Knowledge Representation

Fuzziness differs from generality, vagueness, and ambiguity in that it is not simply a

result of a one-to-many relationship between a general meaning and its specifica-

tions; nor a list of possible related interpretations derived from a vague expression
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[115]; nor a list of unrelated meanings denoted by an ambiguous expression [224].
Fuzziness is inherent in the sense that it measures the degree to which an event

occurs. It is explored for describing uncertainty.

Humans and machines represent their knowledge in many different ways and

formats, and this knowledge is often vague, ambiguous and incomplete. Efficient

communication of knowledge relies on an understanding of the representation of

uncertain information and knowledge in the problem domain [16, 22, 166]. When

knowledge is represented as a set of facts and rules, this uncertainty can be measured

by means of a number of different approaches, including those to be outlined below

as well as given previously.

2.4.1 Rough Set Theory

Dealing with incomplete or imperfect knowledge lies outside the core of much re-

search in computational intelligence and cognitive sciences. Being able to understand

and manipulate such knowledge is of fundamental significance to many theoret-

ical developments and practical applications of automation and computing [88],
particularly in the areas of decision analysis, machine learning and data-mining,

intelligent control, and pattern recognition. RS theory [50, 51, 151, 152, 153] offers

one of the most distinct and recent approaches for modelling imperfect knowledge.

Owing to the recognition of the existing and potentially important impact of this

theory, it has attracted worldwide attention of further research and development,

resulting in various extensions to the original theory and increasingly widening fields

of application [66, 86, 87, 89, 148, 149].

2.4.1.1 Information Systems

A data set can be represented as a table, where each row represents an object (a

case, an event, a person, etc.). Each column represents an attribute (a variable,

an observation, a property, etc.) that can be measured for each data object. The

attribute may be also supplied by a human expert or user. This table is called an

information system (information table) [110], as shown in Table 2.1.

An information system may be extended by the inclusion of decision attributes.

Such a system is called a decision system (decision table), columns of which are

labelled attributes, rows - by objects of interest and entries of the table are attribute
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Table 2.1: An example information system

Attributes Decision
Headache Muscle Pain Temperature Flu

p1 yes yes normal no
p2 yes yes high yes
p3 yes yes very high yes
p4 no yes normal no
p5 no no high no
p6 no yes very high yes

values. Attributes of the decision system are divided into two disjoint groups called

condition and decision attributes, respectively. A decision system is consistent if for

every set of objects whose attribute values are the same, the corresponding decision

attributes are identical [150, 154].

More formally, I = (U,A) is an information system, where U is a non-empty set of

finite objects (the universe of discourse) and A is a non-empty finite set of attributes

such that a : U→ Va for every a ∈ A. Va is the set of values that attribute a may take.

For decision systems, A = C∪D, where C is the set of input features and D is the set

of class indexes. Here, a class index d ∈ D is itself a variable d : U→ {0, 1} such that

for a ∈ U, d(a) = 1 if a has class d and d(a) = 0 otherwise [88].

2.4.1.2 Indiscernibility

RS theory is founded on the assumption that with every object of the universe

of discourse, some information (data, knowledge) is associated with it. Objects

characterised by the same information are indiscernible in view of the available

information about them. The indiscernibility relation generated in this way forms the

mathematical basis of RS theory.

Let I = (U,A) be an information system, then with any P ⊆ A there is a crisp

equivalence relation IN D(P):

IN D(P) = {(x , y) ∈ U2 | ∀a ∈ P, a(x) = a(y)} (2.75)

If (x , y) ∈ IN D(P), then x and y are indiscernible by attributes from P. The

equivalence class with respect to such an indiscernibility relation defined on P is

denoted by [x]P , x ∈ U.

40



2.4. Knowledge Representation

Any set of all indiscernible objects is called an elementary set (concept), and forms a

basic granule (atom) of knowledge about the universe. Any union of some elementary

sets is referred to as a crisp (precise) set - otherwise the set is rough (imprecise, vague).

2.4.1.3 Lower and Upper Approximations

Let X ⊆ U, X can be approximated using only the information contained within P by

constructing the P-lower and P-upper approximations of X :
(

PX = {x | [x]P ⊆ X }

PX = {x | [x]P ∩ X 6= ;}
(2.76)

The tuple < PX , PX > is called an RS.

Consider the approximation of concept X in Figure 2.10. Each square or granule

in the diagram represents an equivalence class, generated by indiscernibility between

object values. Using the features in set P, via these equivalence classes, the lower

and upper approximations of X can be constructed.

Equivalence classes contained within X belong to the lower approximation (LA).

Objects lying within this region can be said to certainly belong to concept X . Equiv-

alence classes within X and along its border form the upper approximation (UA).

Those objects in this region can only be said to possibly belong to the concept. The

difference between the LA and the UA constitutes the boundary region of the RS.

2.4.1.4 Positive, Negative and Boundary Regions

Let P and Q be sets of attributes inducing equivalence relations over U, then the

positive, negative, and boundary regions are defined as follows:

POSP(Q) =
⋃

X∈U/Q
PX

N EGP(Q) = U−
⋃

X∈U/Q
PX

BN DP(Q) =
⋃

X∈U/Q
PX −

⋃

X∈U/Q
PX

(2.77)

where U/Q is defined as the equivalence classes of the relation IN D(Q).

The positive region, POSP(Q), comprises all objects of U that can be classified to

classes of U/Q using the information contained within attributes P. The negative
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Figure 2.10: Basic concepts of RS

region, N EGP(Q), is the set of objects that cannot be classified to classes of U/Q. The

boundary region, BN DP(Q), is the set of objects that can possibly, but not certainly,

be classified in this way.

If the boundary region is the empty set, i.e., BN DP(Q) = ;, then X is crisp with

respect to P. In the opposite case, i.e., if BN DP(Q) 6= ;, X is referred to as rough

with respect to P.

2.4.2 Type-2 Fuzzy Set Theory

Type-2 FSs were first defined and discussed in [215], this work concentrated on the

notion of an FS where the membership grades of an FS are measured with linguistic

terms such as low, medium and high [94, 213]. In other words, a conventional

(type-1) FS has a grade of membership that is crisp, whereas a type-2 FS has grades

of membership that are fuzzy, so it could be called a “fuzzy-fuzzy set” [135]. Hence,
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the MF of a type-2 FS is three-dimensional, and it is the third dimension that provides

a new degree of freedom for handling uncertainty [133]. Such sets are useful in

situations where there is uncertainty about the membership grades themselves,

e.g., an uncertainty in the shape of the MF or in some of its parameters. Consider

the transition from ordinary sets to FSs. When the membership of an element in

a set cannot be determined by 0 or 1, type-1 FSs are used. Similarly, when the

circumstances are so fuzzy that determining the membership grade is difficult even

as a crisp number in [0,1], type-2 FSs are then required [100].

A view of the relationships between levels of imprecision, data and techniques

is shown in Figure 2.11. As the level of imprecision increases, type-2 fuzzy logic

provides a powerful paradigm for handling the problem. Problems that contain

crisp, precise data do not, in reality, exist. However, some problems can be solved

effectively with mathematical techniques where the assumption is that the data is

precise. Other problems use imprecise terminology that can often be effectively

modelled by using type-1 FSs. Here, perceptions are at a higher level of imprecision

and type-2 FSs can effectively model this imprecision [94].

2.4.2.1 Definitions

A type-2 FS is characterised by a fuzzy MF whose membership grade for each element

is a fuzzy number in [0, 1]. The formed definition is provided below.

Definition 2.1. [137] A type-2 FS, denoted Ã, is characterised by a type-2 MF µÃ(x , u),
where x ∈ X and u ∈ Jx ⊆ [0, 1], i.e.,

Ã= {((x , u),µÃ(x , u))|∀x ∈ X ,∀u ∈ Jx ⊆ [0, 1]} (2.78)

where Jx is the primary membership of x , Jx = {u : µÃ(x , u) ⊆ [0, 1]}. Ã can also be

expressed as:

Ã=

∫

x∈X

∫

u∈Jx

µÃ(x , u)
(x , u)

, Jx ⊆ [0,1] (2.79)

where
∫ ∫

denotes union over all admissible x and u.

In general, a type-2 FS is referred to as a general type-2 FS in order to distinguish

it from the special interval type-2 FS, which is defined below.
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Figure 2.11: Relationships between imprecision, data and techniques

Definition 2.2. [136] When all µÃ(x , u) = 1 then Ã is an interval type-2 FS, which is

expressed as:

Ã=

∫

x∈X

∫

u∈Jx

1
(x , u)

, Jx ⊆ [0, 1] (2.80)

Definition 2.3. [136] Uncertainty in the primary memberships of an interval type-2

FS, Ã, consists of a bounded region that is called the footprint of uncertainty (FOU).

It is the union of all primary memberships, i.e.,

FOU(Ã) =
⋃

x∈X

Jx (2.81)

Definition 2.4. [136] The upper MF and lower MF of Ã are two type-1 MFs that

bound the FOU. The upper MF is associated with the upper bound of FOU(Ã) and

is denoted µÃ(x), ∀x ∈ X , and the lower MF is associated with the lower bound of
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FOU(Ã) and is denoted µ
Ã
(x), ∀x ∈ X , i.e.,

(

µÃ(x) = FOU(Ã) = sup Jx , ∀x ∈ X

µ
Ã
(x) = FOU(Ã) = inf Jx , ∀x ∈ X

(2.82)

For an interval type-2 FS, its third-dimension value is the same everywhere which

means that no new information is contained in the third dimension. In this case, the

third dimension is then ignored, and only the FOU is used to describe such a set,

which is shown in Figure 2.12. Such an interval type-2 FS is completely characterised

by its FOU that is bounded by lower MF and upper MF, and, its embedded FSs are

type-1 FSs.

Figure 2.12: An interval type-2 FS

2.4.2.2 Type-2 Fuzzy Logic Systems

A fuzzy logic system (FLS) [101, 122] (also known as FIS, fuzzy controller, etc.)

includes fuzzifier, rule base, inference engine, and defuzzifier. Quite often, the

knowledge used to construct rules in an FLS is uncertain. This uncertainty leads to

rules having uncertain antecedents and/or consequences, which in turn translates

into uncertain antecedent and/or consequent MFs.

Basically, there are (at least) four types of uncertainty in type-1 FLSs [137]: (1)

The meanings of the words that are used in the antecedents and consequences of rules

can be uncertain (words mean different things to different people). (2) Consequences

may have a histogram of values associated with them, especially when knowledge
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is extracted from a group of experts who do not all agree. (3) Measurements that

activate a type-1 FLS may be noisy and therefore uncertain. (4) The data that are

used to tune the parameters of a type-1 FLS may also be noisy.

Most of these types of uncertainty translate into difficulties about FS MFs. Type-1

FSs are not able to model such types of uncertainty because their MFs are crisp. On

the contrary, type-2 FSs are able to model such uncertainty, because their MFs are

themselves fuzzy.

The structure of a type-2 FLS is very similar to the structure of a type-1 FLS,

which is shown in Figure 2.13. A type-2 FLS is characterised by IF-THEN rules, but

its antecedent and/or consequent sets are now type-2 FSs. It includes fuzzifier, rule

base, inference engine, and output processing. For a type-1 FLS, the output processing

block only contains the defuzzifier.

Figure 2.13: Type-2 FLSs

The fuzzifier maps the crisp input into an FS. In general, this FS can be a type-2

set or a singleton where the input FS only has a single point of non-zero membership.

For the rule base, the distinction between type-1 and type-2 is associated with the

nature of the MFs, which is not important while forming rules. For this reason, the

structure of the rules remains exactly the same in type-2 FLSs, the only difference

being that some or all of the involved sets are of type-2. However, it is not necessary

that all the antecedents and consequences be type-2 FSs. As long as one antecedent

or the consequent set is type-2, it is a type-2 FLS.
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The inference engine in a type-1 FLS combines rules and gives a mapping from

input type-1 FSs to output type-1 FSs. Multiple antecedents in rules and multiple

rules are connected by the t-norm (corresponding to intersection of sets) and the

t-conorm (corresponding to the union of sets), respectively. Similarly, the inference

engine in a type-2 FLS combines rules and gives a mapping from input type-2 FSs to

output type-2 FSs with the use of intersections and unions of type-2 FSs.

In a type-1 FLS, the defuzzifier produces a crisp output from the FS that is the

output of the inference engine, i.e., a type-0 (crisp) output is obtained from a type-1

set. In the type-2 case, an operation analogous to type-1 defuzzification results in

a type-1 set from a type-2 set, which is the output of the inference engine. This

operator is called type-reducer and the resultant set is called a “type-reduced set”.

This type-reduced set can be further defuzzified by the defuzzifier to obtain a crisp

output. The most natural way of doing this seems to be by finding the centroid of

the type-reduced set [99, 125], however, there exist other possibilities like choosing

the highest membership point in the type-reduced set [44, 184, 185].

2.5 Aggregation Techniques

The aggregation and fusion of information are basic concerns [47] for all kinds

of knowledge-based systems [1, 45], from image processing [82, 160] to decision

making [8, 223], from pattern recognition [9, 11] to machine learning [2, 141].
Information aggregation is a process in which information is gathered and expressed

in a summarised form. The goal of aggregation is to integrate and refine information

resulting from various sources, in order to form a better conclusion or decision

than from individual sources only, by reducing imprecision and uncertainty while

increasing completeness.

Informally, an aggregation process involves combining an n-tuple of objects all

concerning a given concept into a single object regarding the same concept. In the

case of mathematical aggregation, an aggregation operator is typically a function,

which assigns a real number y to any n-tuple (x1, x2, · · · , xn) of real numbers [47]:

y = Ag g(x1, x2, · · · , xn) (2.83)

More generally, aggregation operators are mathematical functions that reduce a

set of numbers into a unique representative number. There are a number of well-

known aggregation operators. For instance, the simplest and most common way to
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aggregate is to use the arithmetic mean, and also the weighted mean, which allows

placing weights on the arguments to be averaged. In addition, the minimum, the

maximum and the median are also commonly used aggregation operators [190].

2.5.1 OWA-based Aggregation

Apart from the aforementioned classical aggregation operators, a new information

aggregation technique was proposed based on the OWA scheme [191, 194, 195].
The OWA operator considers a wide range of averaging operators that move be-

tween the minimum and the maximum. It allows the aggregation of information in

considering the degree of optimism or pessimism that a decision maker wants to

express in the aggregation itself. OWA-based aggregation strategies have been widely

investigated and have achieved successful applications in many different domains,

such as decision making [70, 193], fuzzy control [198, 200], market analysis [201],
image compression [140], etc.

Definition 2.5. [191] An OWA operator of dimension n is a mapping Rn→ R, which

has an associated weighting vector W = (w1, w2, . . . , wn)T , where wi ∈ [0,1] and
∑n

i=1 wi = 1. An input vector (a1, a2, . . . , an), is aggregated as follows:

OWA(a1, a2, . . . , an) =
n
∑

i=1

wi bi (2.84)

where bi is the ith largest element in the vector (a1, a2, . . . , an) and b1 ≥ b2 ≥ · · · ≥ bn.

Generally speaking, the OWA-based aggregation process consists of three steps:

• Reorder the input arguments in descending order.

• Determine the weights associated with the OWA operator by using a proper

method.

• Utilise the OWA weights to aggregate these reordered arguments.

A fundamental aspect of the OWA operator is the reordering step, which makes

this a non-linear operator. During this step the arguments are ordered by their values.

In particular, the weights rather than being associated with a specific argument, as in

the case of the usual weighted average, are associated with a particular position in
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the ordering. Clearly, one key point required to implement the OWA operators is to

determine the associated weights. In general, different choices of the weight vector

W lead to different aggregation results [59, 186, 192]. Actually, the OWA operators

provide a parameterised family of mean type aggregation operators, which include

many of the classical operators. Several particular cases of the OWA operators are

listed in Table 2.2.

Table 2.2: Particular cases of OWA

OWA

Arithmetic mean wi =
1
n

for ∀i

Minimum

�

w1 = 1

wi = 0 if i 6= 1

Maximum

�

wn = 1

wi = 0 if i 6= n

Median















w n+1
2
= 1 if n is odd

w n
2
=

1
2

and w n
2+1 =

1
2

if n is even

wi = 0 if i 6= n

Apart from these, other approaches [13, 14, 138, 170, 187, 188, 189, 196, 197,

199] for obtaining the OWA weights can be classified into two categories, name-

ly: argument-independent and argument-dependent. As reflected by their respective

names, the weights derived by the former are not related to the arguments being

aggregated, while the latter determines the weights on the basis of the input argu-

ments. In particular, the second category is considered in this thesis and several

approaches in this group are reviewed.

2.5.1.1 DOWA Operator

The Dependent OWA (DOWA) operator [187] can relieve the influence of the unfair

arguments on the aggregated result(s), where a normal distribution of argument

values is assumed to determine their similarity degrees and, hence, the weights. In

particular, a high weight is given to the argument whose value is close to the centre

of all arguments (i.e., mean), whereas lower weights are assigned to those further

away.

49



2.5. Aggregation Techniques

Let (a1, a2, . . . , an) be an argument vector, and e be the average value of this

argument set: e = 1
n

∑n
i=1 ai. The similarity degree between any argument ai and

the average value e is calculated by

s(ai, e) = 1−
|ai − e|

n
∑

j=1
|a j − e|

(2.85)

Note that if
∑n

j=1 |a j − e|= 0, then a j − e = 0, j ∈ {1, . . . , n}. That is, all the values

of the arguments are the same. In this case, s(ai, e) = 1, i ∈ {1, . . . , n}.

From this, an input vector (a1, a2, . . . , an) can be aggregated by the DOWA opera-

tor as follows:

DOWA(a1, a2, . . . , an) =
n
∑

j=1

w ja j (2.86)

where the weight vector W = (w1, w2, . . . , wn)T is generated by

wi =
s(ai, e)

n
∑

j=1
s(a j, e)

, i ∈ {1, . . . , n} (2.87)

2.5.1.2 Clus-DOWA Operator

The cluster-based DOWA (Clus-DOWA) operator [13, 14] extends the DOWA operator

and applies a distributed structure of data or data clusters in order to determine

the weight vector. Those values very far from the group centre (i.e., mean) are not

assigned with low weights, if they are seemingly indifferent to their local neighbours.

An agglomerative hierarchical clustering technique [57] is then exploited to create

the clustering structure for the studied values. In essence, the distance to the nearest

cluster is employed to evaluate the reliability of each argument value and its assigned

weight.

Let (a1, a2, . . . , an) be an argument vector. For each argument a j, the concept of

its reliability r j is defined as its distance d j to the nearest cluster recorded during a

given clustering process, i.e.,

r j = 1−
d j

n
∑

i=1
di

(2.88)

Note that if
∑n

i=1 di = 0, then di = 0, i ∈ {1, . . . , n}. This is a similar case to that

mentioned previously, therefore r j = 1, j ∈ {1, . . . , n}.
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From this, a specific and powerful OWA operator can be defined as follows. The

Clus-DOWA operator is defined by

Clus-DOWA(a1, a2, . . . , an) =
n
∑

i=1

wiai (2.89)

where the weight vector is calculated from a computed vector of reliability measure-

ment (r1, r2, . . . , rn):
wi =

ri
n
∑

j=1
r j

, i ∈ {1, . . . , n} (2.90)

2.5.1.3 IOWA Operator

The induced OWA (IOWA) operator [199] takes as the argument pairs, called OWA

pairs, in which one component is used to induce an ordering over the second compo-

nents which are then aggregated. Central to this operator is the reordering of the

arguments, based upon their values. That is, the weights rather than being associated

with a specific argument, as in the case of the usual weighted average, are associated

with a particular position in the ordering.

Let (a1, a2, . . . , an) be an argument vector. The ordering of the ai (i ∈ {1, . . . , n})
is induced by the so-called order inducing variables ui (i ∈ {1, . . . , n}), where ui and

ai are the components of the OWA pairs < ui, ai >. The IOWA operator is defined as

follows:

IOWA(< u1, a1 >, . . . ,< un, an >) =
n
∑

j=1

w j b j (2.91)

where W = (w1, w2, . . . , wn)T is a weight vector such that wi ∈ [0,1],
∑n

i=1 wi = 1,

b j is the ai value of the OWA pair having the jth largest ui (i ∈ {1, . . . , n}), and ui

in < ui, ai > is referred to as the order inducing variable and ai as the argument

variable.

2.5.2 Fuzzy Set Aggregation

Group decision making (GDM) involves the process of arriving at a judgement based

upon the input and feedback of a group of individuals, which is at the same time

beyond the competence of an individual. The group works cooperatively to achieve

a satisfactory solution for all individuals concerned. As such, the solution is the one

that is the most acceptable by the group of individuals as a whole [127].
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In GDM problems, situations of partial agreement or even conflict amongst

individuals may arise. Hence, finding a group consensus to represent a common

opinion of the group is an important issue [74]. An appealing reason for using

the information provided by several individuals when solving a problem is that a

group-based approach may produce better solutions absorbing in different opinions.

When facing such a decision problem, in order to avoid the impact of individual

subjective judgement, choice and preference upon the final decision, the decision

makers should gather all available relevant information. Such information is then

aggregated so as to better form an impression of the problem and then make a

decision.

Given the nature of GDM, subjectivity, imprecision and vagueness often appear

in the assessment of the information to be aggregated. Thus, FS theory may play

an important role in dealing with the problem of aggregation [55, 74]. As argued

previously, much knowledge in the real-world is fuzzy rather than precise, and it is

often the case that while real-world GDM problems can be handled easily by humans,

they are often too difficult to be handled by machines. This observation has led to an

increasing demand to improve machines’ capability in handling fuzzy GDM problems,

where decisions are automatically made in a fuzzy environment [20, 30, 31].

In general, a fuzzy GDM problem involves a finite number of alternatives and a

finite set of experts whose opinions are concerned with imprecise data or information.

That is, each expert may have a vague information about the performance of each

alternative, and cannot estimate his/her preference with an exact numerical crisp or

discrete value. Finding a solution to such a problem often needs to deal with linguistic

assessments and natural language of the human expert, rather than exact numerical

values. Each variable involved may therefore required to be assessed by means

of linguistic terms or FSs [175]. A significant number of aggregation approaches

based on FS theory have been proposed in order to address such problems [33, 74,

119, 120, 126, 171, 182]. Several representative methods are briefly outlined in the

following subsections, which will be referred to in the subsequent development of

the work reported in this thesis.

2.5.2.1 SAM

The similarity aggregation method (SAM) [74] aggregates the individual opinions

that are subjectively estimated by experts and represented by trapezoidal fuzzy num-

bers. It first measures the degree of agreement between any two fuzzy opinions by
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using a function of pairwise similarity. For each fuzzy opinion, the degrees of agree-

ment with respect to the other opinions are averaged. From this, the average degrees

of agreement are normalised and combined linearly with the relative importance

weights of experts to obtain the final composite weights for aggregating the individual

expert opinions. However, this approach is not applicable to problems where the

fuzzy opinions of experts do not overlap. In this case, the degree of similarity is zero.

If all FSs representing opinions are disjoint, the aggregation process fails.

2.5.2.2 OAM

The optimal aggregation method (OAM) [120] aggregates the optimal consensus

of expert opinions in the fuzzy GDM environment, where the importance of each

expert is taken into consideration in the process of aggregation. This approach

minimises the sum of weighted dissimilarities between the aggregated consensus

and the individual opinions. One of the advantages of this approach is that it is valid

even in the case when fuzzy opinions are disjoint. Also, it determines the weights

using an optimisation model and is therefore optimal with respect to the criterion

of the model. However, this approach is non-linear and computationally complex,

which renders its application impractical in real-time fuzzy group decision analysis.

2.5.2.3 LSDM and DLSM

The least squares distance method (LSDM) and the defuzzification-based least squares

method (DLSM) are proposed in [182] in order to overcome the drawbacks of the

OAM. The former minimises the sum of squared distances from one weighted fuzzy

opinion to another, and the latter minimises the sum of squared differences between

the defuzzified values of any two weighted fuzzy opinions. One of the advantages of

these two approaches is their simplicity, which is due to their closed-form expressions

eliminate the need to perform the time-consuming iterative procedures. In addition,

they can be utilised for aggregating interval numbers, triangular and trapezoidal

fuzzy numbers, and even their combinations regardless of whether or not they

overlap.

2.6 Summary

This chapter has introduced basic concepts of and recent developments in fuzzy inter-

polative reasoning, which supports inference with sparse fuzzy rule bases. Generally,

53



2.6. Summary

the implementations of FRI can be categorised into two groups: one interpolating

the consequence directly from a given observation, and the other following a two-

step approach. The latter approach first generates an intermediate rule such that

its antecedent part is as close to the given observation as possible, and then this

intermediate rule is fired by the given observation through similarity-based fuzzy

reasoning. It is this approach that the work to be developed in this thesis will follow.

The original KH approach and the T-FRI approach have been taken as representa-

tives of the two groups in this chapter. The implementations of both approaches have

been discussed, including the basic case, multiple antecedents case, and multiple

rules case. Further, a review has been provided for the typical techniques that were

developed in order to modify and improve the KH approach that may arrive a result

which is not an FS.

In addition, to facilitate the establishment of a higher order framework for FRI

in the next chapter, which can cope with more sophisticated uncertain informa-

tion, underlying mathematical concepts such as RSs and type-2 FSs have also been

introduced. Furthermore, as the foundations for extending the proposed frame-

work, information aggregation techniques have been briefly reviewed, including the

OWA-based aggregation and the similarity-based aggregation.
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Chapter 3

Framework for Higher Order

Representation and Interpolation

F UZZY rule interpolation (FRI) forms an important approach for performing infer-

ence with systems comprising sparse rule bases. Even when a given observation

has no overlap with the antecedent values of any existing rules, FRI may still derive

a useful conclusion. However, little existing work on FRI can conjunctively handle

more than one form of uncertainty in the rules. As argued previously, the difficulty

in defining the required precise-valued MFs for the FSs that are used by conventional

FRI techniques significantly restricts their application.

To overcome such difficulties, a novel framework is presented in this chapter

for representing the knowledge involving higher order uncertainty and facilitating

interpolation with such knowledge. It can handle both the first order and higher order

types of uncertainty coherently. The proposed framework allows transformation-

based rule interpolative techniques to be utilised in implementing a working higher

order FRI system.

3.1 Basic Notions

The start point for the proposed framework is the requirement of being able to

represent complicated uncertain knowledge in an effort to perform FRI. When exact

membership values are no longer suitable for depicting the underlying uncertainty,

it is desirable to utilise a certain higher order representation.
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A higher order representation is a representation with the first order representation

embedded within it. In this case, higher order representations are more expressive

than the first order representation, whilst if the higher order knowledge degenerates

to the first order, the computational mechanism that deals with higher order expres-

sions is expected to naturally degenerate to the corresponding embedded first order

calculus.

Practically, the notions of the lower bound and upper bound (of the uncertainty)

are often designed for capturing and describing the ranges of uncertain knowledge.

These two bounds consider the possible uncertain information and help construct

different shaped uncertainty regions in the representation of the uncertainty.

Definition 3.1. Let X be the universe, a higher order fuzzy set (HOFS) Ã can be

represented by the lower bound ÃL and the upper bound ÃU such that

Ã=< x , [µL
Ã
(x),µU

Ã
(x)]>=< ÃL, ÃU >, ∀x ∈ X (3.1)

where 0≤ µL
Ã
(x)≤ µU

Ã
(x)≤ 1, and the lower and upper bounds are two conventional

FSs, namely, two first order FSs.

Remark 3.1. The closer the shapes of ÃL and ÃU are, the less uncertain the informa-

tion contained within Ã is. When ÃL coincides with ÃU , the HOFS degenerates to a

conventional FS, i.e., µL
Ã
(x) = µU

Ã
(x), ∀x ∈ X .

An important concept to introduce is the “less than” relation between two FSs

[106]. An ordinary (type-1) set A1 is said to be less than another ordinary FS A2,

denoted by A1 ≺ A2, if ∀α ∈ (0,1], the following conditions hold:

inf{A1α}< inf{A2α}, sup{A1α}< sup{A2α} (3.2)

where A1α and A2α are the α-cut sets of A1 and A2, respectively, inf{Aiα} is the infimum

of Aiα, and sup{Aiα} is the supremum of Aiα, i = 1,2.

Definition 3.2. An HOFS Ã1 is said to be less than another HOFS Ã2, denoted as Ã1

≺̃ Ã2, if and only if

ÃL
1 ≺ ÃL

2, ÃU
1 ≺ ÃU

2 (3.3)

From this, the notion of neighbouring rules involving HOFSs can be defined.
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Definition 3.3. Two higher order fuzzy rules

R1 : If x1 is Ã11, x2 is Ã12, · · · , xM is Ã1M , then y is B̃1

R2 : If x1 is Ã21, x2 is Ã22, · · · , xM is Ã2M , then y is B̃2

are said to be neighbouring rules if and only if: (1) Ã1 j ≺̃ Ã2 j or Ã2 j ≺̃ Ã1 j, j ∈
{1, · · · , M} (where M is the number of antecedent variables in both rules); and (2)

there is no individual rule “If x1 is Ã′1, x2 is Ã′2, · · · , xM is Ã′M , then y is B̃′” such that

Ã1 j ≺̃ Ã′j ≺̃ Ã2 j if Ã1 j ≺̃ Ã2 j, or Ã2 j ≺̃ Ã′j ≺̃ Ã1 j if Ã2 j ≺̃ Ã1 j, j ∈ {1, · · · , M}.

Higher order FRI can then be achieved by extending the conventional FRI. In

this case, the input and output of an interpolative process are HOFSs rather than

conventional FSs.

Definition 3.4. Given a higher order fuzzy rule base and a higher order observation

vector, higher order FRI is a process through which a conclusion from the given

observation vector is obtained by interpolating the identified neighbouring rules

which flank the observation that are taken from the rule base.

Note that in the above definition, two rules (e.g., the R1 and R2 given previously)

are said to flank a given observation [106], say, O = (Ã∗1, Ã∗2, · · · , Ã∗M), if Ã1 j ≺̃ Ã∗j ≺̃
Ã2 j, or Ã2 j ≺̃ Ã∗j ≺̃ Ã1 j, j ∈ {1, · · · , M}.

3.2 Representative Values

In order to support the interpolation of rules involving HOFSs, the concept of repre-

sentative value (Rep) is needed to be introduced. For simplicity, in this work, it is

assumed that only polygonal HOFSs are considered; that is, both the lower and the

upper bound are each represented by a polygonal-shaped first order FS. The Rep

value captures important information such as the overall location of a (higher order)

FS within the definition domain, and is computed and then utilised as the guide to

perform subsequent inference during the interpolation process. The definition of

Rep in HOFS follows the original definition in the existing T-FRI [76, 77], where for

an ordinary FS A, the Rep(A) is calculated by

Rep(A) =
k−1
∑

i=0

wiai (3.4)
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with A= (a0, · · · , ak−1) being a polygonal FS of k odd points, and wi denoting the

weight assigned to the point ai.

Definition 3.5. Suppose that a polygonal HOFS Ã is given, as shown in Figure 3.1,

whose lower and upper bounds are: Ã =< (ãL
0 , · · · , ãL

l−1; H̃ L
Ã1

, · · · , H̃ L
Ãl−2
), (ãU

0 , · · · ,
ãU

u−1; H̃U
Ã1

, · · · , H̃U
Ãu−2
) >. The lower and upper Reps Rep(ÃL) and Rep(ÃU) of Ã are

defined by



















Rep(ÃL)x =
l−1
∑

i=0

wL
i ãL

i

Rep(ÃL)y =
l−2
∑

i=1

wL
i H̃ L

Ãi























Rep(ÃU)x =
u−1
∑

j=0

wU
j ãU

j

Rep(ÃU)y =
u−2
∑

j=1

wU
j H̃U

Ã j

(3.5)

where wV
v (V ∈ {L, U}, v ∈ {i, j}) is the weight assigned to the point ãV

v and its cor-

responding membership value H̃V
Ãv

, and x and y denote a certain variable dimension

and the corresponding membership distribution, respectively.

Figure 3.1: Lower bound ÃL and upper bound ÃU of a polygonal HOFS Ã

In general, specifying the weights is necessary for a given application. Different

definitions can be adopted for deriving different Rep values. For instance, the

simplest case is that all points take the same weight value, i.e., wL
i = 1/l and
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3.2. Representative Values

wU
j = 1/u. The centre of core can also be used to as an alternative. In this case,

the Rep may be solely determined by those points with a membership value of 1:

Rep(ÃU)x =
1
2(ã

U
d(u/2)e−1+ ãU

u−d(u/2)e) and Rep(ÃU)y =
1
2(H̃

U
Ãd(u/2)e−1

+ H̃U
Ãu−d(u/2)e

). The lower

Reps are omitted here, which can be calculated in a similar way involving those

points of the maximum membership value. Other alternative definitions can be

found in [77].

Remark 3.2. In the existing T-FRI Rep(A)y of a given conventional FS A is a constant,

only the x value is therefore considered. However, this is no longer the case in

this framework due to the introduction of higher order uncertainty, both x and y

dimensions need to be considered. The calculation of Rep(Ã)y follows that used to

calculate Rep(Ã)x to maintain consistency.

In order to distinguish amongst different HOFS shapes, the shape diversity factor

f is herein introduced. This work follows the conventional definition of statistical

standard deviation (although this may be defined differently if desired for a particular

implementation).

Definition 3.6. The lower and upper shape diversity factors f L
Ã

and f U
Ã

are defined

by






































f L
Ã
=

√

√

√

√

√

l−1
∑

i=0
(ãL

i −Rep(ÃL)x)2

l

f U
Ã
=

√

√

√

√

√

u−1
∑

j=0
(ãU

j −Rep(ÃU)x)2

u

(3.6)

Remark 3.3. A small shape diversity factor implies that the odd points of ÃL (ÃU)

tend to be close to those of the lower (upper) Rep. That is, the smaller the shape

diversity factor, the smaller the area of the lower (upper) bound.

Extending T-FRI to FRI involving HOFSs, a single overall Rep of a given HOFS is

required. For this, the weight factor w of the lower (upper) bound is first introduced

below, which reflects the relative contribution of the lower (upper) shape diversity

in depicting the underlying HOFS. The introduction of these lower and upper shape

diversity factors helps minimise the opportunity of having the same Rep value from

the use of HOFSs of different shapes.
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Definition 3.7. The lower and upper weight factors wL
Ã

and wU
Ã

are defined as the

weights of the shape diversity factors, in terms of the areas of the lower and upper

bounds, such that:

wV
Ã
=

f V
Ã

f L
Ã
+ f U

Ã

, V = L, U (3.7)

Remark 3.4. In general, f L
Ã
+ f U

Ã
6= 0. If however, f L

Ã
+ f U

Ã
= 0, i.e., f L

Ã
= 0 and

f U
Ã
= 0, the HOFS degenerates to a singleton value, wL

Ã
= wU

Ã
= 1/2.

Definition 3.8. The overall Rep of a given HOFS Ã is defined by

Rep(Ã) =
∑

V∈{L,U}

(wV
Ã

∑

e∈{x ,y}

Rep(ÃV )e) (3.8)

where wV
Ã

is the weight assigned to Rep(ÃV ) of ÃV , V ∈ {L, U}.

As with the first order methods, in general, multiple rules with multiple an-

tecedents need to be taken into consideration in order to obtain an interpolated

conclusion. For this, the first step that needs to be considered is to choose the closest

N (N ≥ 2) rules from the rule base with respect to the given observation. A distance

measure is thus utilised to measure the proximity of the rules by exploiting such Rep

values that capture specific information embedded in HOFSs.

3.3 Selection of Closest N Rules

Without losing generality, suppose that there are n higher order fuzzy rules in a

higher order fuzzy rule base. A rule Ri, an observation O and the conclusion C are

represented by the following, respectively:

Ri : If x1 is Ãi1, · · · , x j is Ãi j, · · · , xM is ÃiM , then y is B̃i

O : x1 is Ã∗1, · · · , x j is Ã∗j, · · · , xM is Ã∗M

C : y is B̃∗

where Ãi j denotes the jth antecedent HOFS of Ri, Ã∗j is the observation of the variable

x j, B̃∗ is the desired interpolated conclusion, and B̃i denotes the consequent HOFS

of Ri with j ∈ {1, · · · , M}, with M being the number of antecedent variables.

60



3.4. Construction of Intermediate Rule

Definition 3.9. The distance di j between the pair of Ãi j and Ã∗j is defined as follows:

di j = d(Ãi j, Ã∗j) = d(Rep(Ãi j), Rep(Ã∗j)) (3.9)

where d(., .) is herein computed using the Euclidean distance metric (though any

other distance metric may be used as an alternative).

Definition 3.10. The distance di between the rule Ri and the observation O is deemed

to be the average of the distances between the HOFSs of each rule antecedent and

the corresponding variable in O:

di =

√

√

√

√

M
∑

j=1

d ′i j
2, d ′i j =

di j

max j −min j
(3.10)

where max j and min j are the maximum and minimum value in the domain of the

variable x j, j ∈ {1, . . . , M}. Each distance measure di j is normalised into the range

[0,1], denoted by d ′i j, to ensure the resulting distances to be compatible with each

other over different domains. Note that if max j −min j = 0, then max j =min j. That

is, Ã∗j is identical with Ãi j, j ∈ {1, . . . , M}. In this case, d ′i j = 1.

Given the above definition, the distances between a given observation and all

rules in the rule base can be calculated. The N rules which have minimal distances

are chosen as the closest N rules with respect to the given observation. The choice

of a larger N will help consider a wider range of neighbouring rules in performing

interpolation, thereby more likely to result in global results but requiring significantly

more computation. On the contrary, the choice of a relatively smaller N will tend

to considering only neighbouring rules and hence involving less computation time.

Since FRI is in general used to derive an approximate result in the first place, in

practical application, N can be chosen to be 2. This is the case for conventional rule

interpolation also. However, in the following theoretical development to maintain

generality, the number of closest rules is set to N (N ≥ 2) unless otherwise stated.

3.4 Construction of Intermediate Rule

As with a number of first order FRI approaches, higher order FRI is in this work

developed following the principle of analogical reasoning [15]. First, an artificially

created intermediate rule is interpolated such that the antecedent of the intermediate
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rule is as “close” to the given observation as possible. Then, a conclusion is worked

out from the given observation by firing this generated intermediate rule through a

certain analogical reasoning mechanism.

Definition 3.11. Suppose that N closest rules are chosen with respect to a given

observation. These rules are represented as Ri, i ∈ {1, . . . , N}, each having M

antecedent variables Ãi j, j ∈ {1, . . . , M} and are used to derive the intermediate

rule. Let wÃi j
denote the weight to which the jth antecedent of the ith closest rule

contributes to the emerging intermediate rule, which is defined as the reciprocal of

the corresponding distance measure:

wÃi j
=

1
di j
=

1

d(Ãi j, Ã∗j)
(3.11)

where Ã∗j denotes the observed HOFS of antecedent variable j. The normalised

weight w′
Ãi j

is then defined by

w′
Ãi j
=

wÃi j
∑N

i=1 wÃi j

(3.12)

Remark 3.5. This definition reflects the intuition that the larger the distance is, the

less relevant the corresponding attribute is to the observation. In general, di j 6= 0.

If however, di j = 0, then Rep(Ãi j) = Rep(Ã∗j). In this case, the antecedent of the

observation is considered to be identical to the corresponding antecedent of the rule

Ri, in terms of their Rep values. Thus, wÃi j
is set to 1 for the identical cases with the

rest set to 0.

The antecedent ÃI F T
j of the intermediate rule is constructed from the antecedents

of the identified closest rules. A process shift is then utilised to modify ÃI F T
j so that

the antecedent of the intermediate rule will have the same Rep as Ã∗j:

Ã′j = ÃI F T
j +δÃ j

(max j −min j), ÃI F T
j =

N
∑

i=1

w′
Ãi j

Ãi j (3.13)

where δÃ j
is a constant defined by

δÃ j
=

Rep(Ã∗j)−Rep(ÃI F T
j )

max j −min j
(3.14)

Note that if max j −min j = 0, then max j = min j. That is, Ã∗j is identical with ÃI F T
j ,

j ∈ {1, . . . , M}. In this case, δÃ j
= 1.
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The consequence of the intermediate rule B̃′ is calculated by analogy to the

computation of the antecedent, such that:

B̃′ = B̃ I F T +δB̃(max−min), B̃ I F T =
N
∑

i=1

w′
B̃i

B̃i (3.15)

where B̃ I F T is the consequence of the intermediate fuzzy rule, max and min are the

maximum and minimum values within the domain of the consequent variable, w′
B̃i

and δB̃ are the means of w′
Ãi j

and δÃ j
, i ∈ {1, . . . , N}, j ∈ {1, . . . , M}, respectively,

which are defined by

w′
B̃i
=

1
M

M
∑

j=1

w′
Ãi j

, δB̃ =
1
M

M
∑

j=1

δÃ j
(3.16)

3.5 Interpolation through Similarity-constrained

Transformations

The aforementioned artificially constructed intermediate rule is derived from the

chosen closest rules with respect to an observation. It can be used to perform

inference without further reference to its originals. Suppose that a certain degree of

similarity between the antecedent part of this rule and the observation is established,

it is intuitive to require that its consequent part and the eventual conclusion to

be drawn attain the same similarity degree. That is, for an intermediate rule: “If

x1 is Ã′1, · · · , x j is Ã′j, · · · , xM is Ã′M , then y is B̃′”, and a given observation O =
(Ã∗1, · · · , Ã∗j, · · · , Ã∗M), the shape distinguishability between B̃′ and the interpolated

consequence B̃∗ is analogous to the shape distinguishabilities between Ã′j and Ã∗j,

j = 1,2, · · · , M . In order to ensure this, the following three transformations are

designed.

Note that all three transformations are separately implemented on each dimension

and separately calculated on each of the lower and upper bound. However, the

underlying computational mechanisms are identical. For presentational simplicity,

the description of these transformations is given without the subscript j and the

superscript L or U .

3.5.1 Scale Transformation

Consider the lower (upper) bound of Ã′ and that of Ã∗, respectively represented

as Ã′ = (ã′0, · · · , ã′k−1; H̃ ′
Ã1

, · · · , H̃ ′
Ãk−2
) and Ã∗ = (ã∗0, · · · , ã∗k−1; H̃∗

Ã1
, · · · , H̃∗

Ãk−2
). The
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3.5. Interpolation through Similarity-constrained Transformations

following parameters, termed the scale rates sp (p = 0, · · · , b(k/2)c − 1) rescale the

pth support of Ã′ to approximate that of Ã∗:

sp =
ã∗k−p−1 − ã∗p
ã′k−p−1 − ã′p

(3.17)

From these scale rates, the following scale ratios Sq (q = 1, · · · , b(k/2)c − 1)

modify the rescaled qth support of Ã′ to further approximate that of Ã∗ such that the

resulting HOFS Ã′ is of the same scale as that of Ã∗:

Sq =







































ã∗k−q−1−ã∗q
ã∗k−q−ã∗q−1

−
ã′k−q−1−ã′q
ã′k−q−ã′q−1

1−
ã′k−q−1−ã′q
ã′k−q−ã′q−1

if sq ≥ sq−1

ã∗k−q−1−ã∗q
ã∗k−q−ã∗q−1

−
ã′k−q−1−ã′q
ã′k−q−ã′q−1

ã′k−q−1−ã′q
ã′k−q−ã′q−1

if sq−1 > sq

(3.18)

From this, by imposing the required similarities, the corresponding scale rates

s′p that will help rescale the pth support of B̃′ into the emerging B̃∗ can be obtained

such that

s′p =







































sp if p = 0

s′p−1(sp − sp−1)(
b̃′k−p−b̃′p−1

b̃′k−p−1−b̃′p
− 1)

sp−1(
ã′k−p−ã′p−1

ã′k−p−1−ã′p
− 1)

+ s′p−1 if sp ≥ sp−1, p > 0

s′p−1sp

sp−1
if sp−1 > sp, p > 0

(3.19)

The above shows only the situation where one antecedent variable is considered

(for either a lower bound or an upper bound). In general, for each antecedent

variable j and each bound V , V ∈ {L, U}, such a scale transformation is repeatedly

applied to transform Ã
′V
j to the intermediate terms Ã

′′V
j with sV

jp and SV
jq. B̃

′′V is then

generated from B̃
′V using the aggregated sV

B̃p
and SV

B̃q
, where sV

B̃p
= 1

M

∑M
j=1 s

′V
jp and

SV
B̃q
= 1

M

∑M
j=1 S

′V
jq .
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3.5.2 Move Transformation

The move ratiosMr (r = 0, · · · , d(k/2)e − 2) shift the locations of supports of Ã(r−1)

to that of Ã∗ (where Ã(r−1) is the term obtained after the (r-1)th sub-move with

initialisation Ã−1 = Ã′′):

Mr =



























ã∗r − ã(r−1)
r

min{
ã(r−1)

r +···+ã(r−1)
d(k/2)e−1

d(k/2)e−r − ã(r−1)
r , ã(r−1)

k−r − ã(r−1)
k−r−1}

if ã∗r ≥ ã(r−1)
r

ã∗r − ã(r−1)
r

min{ã(r−1)
k−r−1 −

ã(r−1)
k−d(k/2)e+···+ã(r−1)

k−r−1

d(k/2)e−r , ã(r−1)
r − ã(r−1)

r−1 }
if ã(r−1)

r > ã∗r

(3.20)

where ã(r−1)
r is the ã′′r ’s new position after the (r-1)th sub-move. Initially, when r = 0,

ã(−1)
0 = ã′′0 , ã(r−1)

k−r − ã(r−1)
k−r−1 and ã(r−1)

r − ã(r−1)
r−1 are not included into the calculation of

min{., .}.

In general, for each antecedent variable j and each bound V , V ∈ {L, U}, this

move transformation is repeatedly applied to obtain Ã(r)Vj = {ã(r)Vj0 , · · · , ã(r)Vj(k−1)} from

Ã(r−1)V
j using MV

jr . B̃(r)V = {b̃(r)V0 , · · · , b̃(r)Vk−1 } is then obtained from B̃(r−1)V using

the aggregated MV
B̃r

, where MV
B̃r
= 1

M

∑M
j=1M

V
jr , resulting in Ã(d(k/2)e−2)V

j = Ã∗Vj and

B̃(d(k/2)e−2)V = B̃∗V .

3.5.3 Height Transformation

Due to the higher order uncertainty, the height rates ho (o = 1, · · · , k−2) are utilised

to adjust the heights H̃
′L
Ão

of Ã
′L to the heights H̃∗L

Ão
of Ã∗L:

ho =
H̃∗L

Ão

H̃ ′L
Ão

(3.21)

where 0 < H̃∗L
Ão
≤ H̃∗U

Ão
= 1 and 0 < H̃

′L
Ão
≤ H̃

′U
Ão
= 1. This constraint applies to the

interpolated conclusion as well. That is, if the height of B̃∗L is greater than the height

of B̃∗U after the height transformation, then H̃∗L
B̃o
= H̃∗U

B̃o
.

In general, for each antecedent variable j and each bound V , V ∈ {L, U}, this

height transformation is repeatedly applied to transform the heights of Ã
′L
j to the

heights of Ã∗Lj with h jo. The height of the interpolated conclusion is then obtained

using the aggregated hB̃o
, where hB̃o

= 1
M

∑M
j=1 h jo.
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3.6. Summary

Remark 3.6. Scale transformation scales Ã′j up or down to Ã′′j retaining the ratios

between left and right slopes, but having different supports length. The closer the

scale ratios to 0, the more similar Ã′j and Ã′′j . Move transformation shifts Ã′′j to Ã∗j
which has the same support length, but having different locations for the supports.

The closer the move ratios to 0, the more similar Ã′′j and Ã∗j. Height transformation

adjusts the height of Ã′j to the height of Ã∗j while the characteristics remain the same.

The closer the height rates to 1, the more similar Ã′j and Ã∗j.

Integrally, scale, move and height transformations guarantee that the transferred

sets have the same type of shapes as that of the original. That is, these three

transformations allow the similarity degree between B̃′ and B̃∗ to be measured by

those between Ã′j and Ã∗j.

3.6 Summary

In this chapter, a novel framework that consists of higher order knowledge repre-

sentation and higher order rule interpolation has been presented. The proposed

framework is on the basis of the transformation-based interpolative technique. It

extends the application of the existing T-FRI to higher order environment, offering

greater flexibility in handling different types of uncertainty that may be present

in sparse rule bases and observations. Instead of addressing just the first order

uncertainty like conventional FRI methods, the proposed framework can handle both

the first order and higher order uncertain information coherently.

This chapter has presented a generic specification for higher order FRI in which

the concept of HOFSs and the algorithm for higher order interpolation have been

discussed. In particular, the algorithm works by first using the lower and upper

Reps to approximate the lower and upper bounds of an HOFS, and then deriving

an intermediate rule using the proportional value which is calculated by the Reps.

Next, scale, move and height transformations are utilised in transformation-based

interpolation to preserve the similarity degree between the observation and the

antecedent(s) of the artificially created intermediate rule. Finally, the interpolated

conclusion is computed by applying transformation functions to the consequence of

the intermediate rule with the same similarity degree.

66



3.6. Summary

The above framework is proposed to allow the representation and application of

higher order uncertainty knowledge for FRI. Different approaches can be implement-

ed in this framework. The following two chapters present such specifications, one

using RF sets (Chapter 4) and the other using type-2 FSs (Chapter 5).
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Chapter 4

Implementing Framework with

Rough-Fuzzy Sets

R OUGH set (RS) theory is a useful tool to deal with incomplete knowledge by the

introduction of the concepts of lower and upper approximations. This chapter

introduces a new extension to RS. Based on this, a rough-fuzzy (RF) approach to FRI

is presented to demonstrate the flexibility of the previously proposed framework, by

exploiting the concept of RF sets and generalising the T-FRI techniques. In particular,

a refinement procedure is described in order to ensure intuitive interpolated conclu-

sions. A proof is also provided to verify that the RF approach is indeed compatible

with the original T-FRI.

4.1 Rough-Fuzzy Sets

The concept of RSs [151] was originally proposed as a mathematical tool to deal

with incomplete or imperfect data and knowledge in information systems. An RS

is itself an approximation of a vague concept by a pair of precise sets, called lower

and upper approximations [150]. The lower approximation (LA) contains all of

those objects which definitely belong to a concept, and the upper approximation (UA)

contains all of those objects which possibly belong to the concept. RSs characterise

the roughness of a set using these two approximations [5].

Inspired by this observation, it is useful to integrate rule interpolation with the RF

concept in order to deal with higher order uncertainty. Such an implementation of
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4.1. Rough-Fuzzy Sets

the preceding framework is proposed here. It modifies the underlying FRI technique

to ensure intuitive interpolated conclusions. In particular, this work facilitates the

representation of uncertain fuzzy set (FS) membership functions (MFs) with RF

approximations, thereby improving the flexibility of rule interpolation in dealing

with higher order uncertainty in fuzziness.

Definition 4.1. With any P ⊆ A, an alternative equivalence relation IN D(P) to the

traditional one of Equation (2.75) can be defined by

IN D(P) = {(x , y) ∈ U2 | ∀Fg ∈ P, Fg(x) ∈ Cz, Fg(y) ∈ Cz} (4.1)

where Fg , g ∈ {1, . . . , G}, are FSs that jointly define a particular concept Cz, where

Cz, z ∈ {1, . . . , Z}, is a concept in X , i.e., X = {C1, C2, . . . , CZ}, X ⊆ U.

Equation (4.1) expresses the equivalence relation between the memberships of x

and y to different FSs of given concept. Using this equivalence relation, the lower

and upper approximations for each Cz in X can be redefined as follows.

Definition 4.2. Let IN D(P) be an equivalence relation on U and Fg , g ∈ {1, . . . , G},
be FSs in Cz (Cz ∈ X ), the lower and upper approximations are a pair of FSs with

MFs defined by the following, respectively:

µPCz
(x ∈ [x]P) = inf{µFg

(x), g ∈ {1, . . . , G}|x ∈ [x]P}

µPCz
(x ∈ [x]P) = sup{µFg

(x), g ∈ {1, . . . , G}|x ∈ [x]P}
(4.2)

The tuple < PX , PX > is called an RF set (which differs from the alternative use

of this term in the literature [5] due to parallel development of these related but

different concepts).

Reconsider the situation shown in Chapter 1, where different people may interpret

the same concept differently. As reflected in Figure 1.1, it is difficult to describe

this situation using conventional FSs. However, the newly defined RF sets can be

adopted to represent this uncertain concept by exploiting the two approximations.

The LA indicates the intersection amongst regions that are agreed by individuals,

while the UA indicates the union of the regions that are given by at least one person,

as shown in Figure 4.1. RF sets therefore utilise LAs and UAs to express the different

types of uncertainty involved in defining fuzzy memberships.
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4.2. Rough-Fuzzy Implementation of the Framework

Figure 4.1: An RF set corresponding to the situation depicted by Figure 1.1

4.2 Rough-Fuzzy Implementation of the Framework

Using RF sets, the procedure of the proposed framework can be directly implemented.

Proofs of the resulting computation methods are omitted here to save space. The

algorithm for deriving the interpolated conclusion with multiple multi-antecedent

rules is outlined below. Suppose that there are an RF rule base and an RF observation,

the inference model for RF implementation can be represented by

R1 : If x1 is Ã11 and x2 is Ã12, then y is B̃1

R2 : If x1 is Ã21 and x2 is Ã22, then y is B̃2

O : x1 is Ã∗1 and x2 is Ã∗2

where for computational simplicity Ã11, Ã12, Ã21, Ã22, Ã∗1, Ã∗2, B̃1 and B̃2 are assumed

to be trapezoidal RF sets, Ã11 ∧ Ã12⇒ B̃1 and Ã21 ∧ Ã22⇒ B̃2 are two adjacent and

disjoint RF rules with each having two antecedent variables, as shown in Figure 4.2.

4.2.1 Calculating Representative Values

The lower and upper Reps, Rep(Ã∗Vj )x and Rep(Ã∗Vj )y , are calculated first by











Rep(Ã∗Vj )x =
1
4
(ã∗Vj0 + ã∗Vj1 + ã∗Vj2 + ã∗Vj3 )

Rep(Ã∗Vj )y =
1
4
(H̃V

Ã j1
+ H̃V

Ã j2
)

(4.3)

70



4.2. Rough-Fuzzy Implementation of the Framework

Figure 4.2: RF implementation with trapezoidal RF sets

where j = 1,2 and V = L, U . As a special case of Equation (3.5), for simplicity, the

weights assigned to points are herein determined by the arithmetic average. The

shape diversity factors f ∗V
Ã j

and weight factors w∗V
Ã j

are respectively computed by

f V
Ã∗j
=

√

√

√

√

√

3
∑

k=0
(ã∗Vjk −Rep(Ã∗Vj )x)2

4
(4.4)

w∗V
Ã j
=

f ∗V
Ã j

f ∗L
Ã j
+ f ∗U

Ã j

(4.5)

where j = 1,2 and V = L, U . The overall Reps Rep(Ã∗j) are then obtained with

Rep(Ã∗j) = w∗L
Ã j
(Rep(Ã∗Lj )x +Rep(Ã∗Lj )y) +w∗U

Ã j
(Rep(Ã∗Uj )x +Rep(Ã∗Uj )y) (4.6)
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4.2. Rough-Fuzzy Implementation of the Framework

where j = 1,2. The calculations for Ãi j (i = 1,2 and j = 1,2) follow the same

procedure.

4.2.2 Choosing Two Closest Rules

The distances between a given observation O and two rules, say, R1 and R2 in the rule

base are calculated using Equation (3.10) exactly. Here, two rules are chosen as the

closest rules to perform interpolation, again for computational simplicity (although

in general, N , N ≥ 2, rules may be used).

4.2.3 Constructing Intermediate Rule

This step is exactly the same as given in the opposite number in the general framework.

That is, the weight wÃi j
of the jth antecedent of the ith chosen rule is computed by

Equation (3.11). Its normalised weight w′
Ãi j

, which is calculated by Equation (3.12),

together with the parameter δÃ j
, which is calculated by Equation (3.14), is used

in Equation (3.13) to obtain the antecedent of the intermediate rule Ã′j for each

antecedent dimension x j, i = 1, 2, j = 1, 2. From this, two parameters w′
B̃i

and δB̃ are

computed using Equation (3.16), and are then utilised to construct B̃′ from Equation

(3.15), resulting in the intermediate rule Ã′1 ∧ Ã′2⇒ B̃′.

4.2.4 Making Scale, Move and Height Transformations

The scale rates sV
jp ( j = 1, 2, p = 0, 1) for scaling the support and nucleus of Ã

′V
j with

respect to Ã∗Vj are calculated by

sV
j0 =

ã∗Vj3 − ã∗Vj0

ã′Vj3 − ã′Vj0
, sV

j1 =
ã∗Vj2 − ã∗Vj1

ã′Vj2 − ã′Vj1
(4.7)

resulting in Ã
′′V
j , V = L, U . The scale ratios SV

jq ( j = 1, 2, q = 1), which represent the

actual increase of the ratio between the support and the nucleus, are then utilised to

further modify Ã
′′V
j to avoid the nucleus of the resultant set becoming wider than the
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4.2. Rough-Fuzzy Implementation of the Framework

support by

SV
j1 =











































ã∗Vj2 −ã∗Vj1

ã∗Vj3 −ã∗Vj0
−

ã
′V
j2−ã

′V
j1

ã′Vj3−ã′Vj0

1−
ã′Vj2−ã′Vj1
ã′Vj3−ã′Vj0

if sV
j1 ≥ sV

j0

ã∗Vj2 −ã∗Vj1

ã∗Vj3 −ã∗Vj0
−

ã
′V
j2−ã

′V
j1

ã′Vj3−ã′Vj0

ã′Vj2−ã′Vj1
ã′Vj3−ã′Vj0

if sV
j0 > sV

j1

(4.8)

where j = 1, 2, V = L, U . Scale transformation is then applied to generate B̃
′′V from

B̃
′V using s

′V
j0 and s

′V
j1 under the conditions S

′V
j1 = S

V
j1 and s

′V
j0 = sV

j0. The scale rates s
′V
j1

of the nucleus of B̃
′V are calculated by

s
′V
j1 =











s
′V
j0 ∗ (S

V
j1 ∗

b̃
′V
3 − b̃

′V
0

b̃′V2 − b̃′V1
− SV

j1 + 1) if sV
j1 ≥ sV

j0

sV
j1 if sV

j0 > sV
j1

(4.9)

where j = 1,2, V = L, U .

The similarity degree is then measured by the use of the move ratiosMV
jr ( j = 1, 2,

r = 0). By the use ofMV
j0, Ã

′′V
j is moved so that the transformed set exactly matches

the shape of Ã∗Vj . Since r = 0, there are no sub-moves in the transformation process,

Equation (3.20) is thus not able to be used for calculation. Instead, the move ratios

MV
j0 ( j = 1, 2) are computed as follows:

MV
j0 =



























ã∗Vj0 − ã
′′V
j0

ã′′Vj1 −ã′′Vj0

3

if ã∗Vj0 ≥ ã
′′V
j0

ã∗Vj0 − ã
′′V
j0

ã′′Vj3 −ã′′Vj2

3

if ã
′′V
j0 > ã∗Vj0

(4.10)

where j = 1,2, V = L, U .

The similarity degree is further reinforced using the height rates h jo ( j = 1,2,

o = 1, 2), which are calculated by

h j1 =
H̃∗L

Ã j1

H̃ ′L
Ã j1

, h j2 =
H̃∗L

Ã j2

H̃ ′L
Ã j2

(4.11)

where j = 1,2.
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4.3. Modified Procedure

4.2.5 Deriving Interpolated Conclusion

Finally, the interpolated conclusion B̃∗ is estimated using the aggregated parameters

sV
B̃0

, sV
B̃1

, SV
B̃1

,MV
B̃0

, hB̃1
and hB̃2

, V = L, U , where

sV
B̃0
=

1
2
(s
′V
10 + s

′V
20), sV

B̃1
=

1
2
(s
′V
11 + s

′V
21), S

V
B̃1
=

1
2
(S
′V
11 + S

′V
21) (4.12)

MV
B̃0
=

1
2
(MV

10 +M
V
20), hB̃1

=
1
2
(h11 + h21), hB̃2

=
1
2
(h12 + h22) (4.13)

4.3 Modified Procedure

A key concept in T-FRI is the Rep of a given conventional FS. In RF rule interpolation,

the overall location of an RF set is not just based on both the location of the LA

and that of the UA. Intuitively, the shape of the LA should not violate the shape of

the UA. Unfortunately, this is not guaranteed in cases where the normal points or

base points are identical, where non-intuitive results may be interpolated using the

above algorithm. As illustrated in Figure 4.3, the LA of the interpolated result is

sometimes greater than its UA. Having recognised this, in order to obtain intuitive

interpolated conclusions for RF sets when implementing the framework, the relative

location between the LA and UA should also be taken into consideration. Therefore,

a modified procedure is introduced below.

(a) Interpolation with identical normal points (b) Interpolation with identical right base points

Figure 4.3: Two interpolated results

For simplicity, only rules involving trapezoidal-shaped RF sets with single an-

tecedents are discussed here (though the work is applicable to multi-antecedent
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4.3. Modified Procedure

rules as to be shown later). Suppose that an intermediate rule Ã′ ⇒ B̃′ and the

similarity degree between Ã′ and the observation Ã∗ have already been calculated,

resulting in the scaled intermediate term Ã′′. The scaled intermediate term B̃′′ is

then obtained from B̃′ by the use of the parameters s
′V
0 , s

′V
1 and S

′V
1 in the existing

algorithm. The following procedure is used to modify B̃′′ into B̃′′c by an aggregation

operation. This offers combined information about the temporary values B̃
′′L and

B̃
′′U that are obtained by two reversed processes, using s

′V
0 , s

′V
1 and S

′V
1 , V ∈ {L, U}.

4.3.1 Scale Transformation

These scale rates are employed to transform B̃
′L and B̃

′U into B̃
′′L and B̃

′′U , respectively.

The relative location between B̃
′L and B̃

′U of B̃′ is defined by the relative location

factor θ :

θ =
B̃
′L

B̃′U
(4.14)

which is computed by

θk =
b̃
′L
k

b̃′Uk
, k = 0, · · · , 3 (4.15)

Note that the relative location between B̃
′′L and B̃

′′U should be associated with that

between B̃
′L and B̃

′U . Otherwise, it will result in the non-intuitive interpolated

conclusions, i.e., B̃
′′L/B̃

′′U 6= θ . The relative location factor θ is thus used to maintain

the relative location both before and after the scale transformation.

4.3.2 Modification

The modification process is applied such that:

θ =
B̃
′′L

B̃′′Un

=
B̃
′′L
n

B̃′′U
(4.16)

Given B̃
′′L, B̃

′′U can be modified into a “new” B̃
′′U
n using θ (where the subscript n

stands for “new”). Similarly, given B̃
′′U , B̃

′′L can be modified into a “new” B̃
′′L
n by the

same θ . These two reversed processes are described as follows:










B̃
′L

s
′ L
0 , s

′ L
1 , S

′ L
1−−−−−−→ B̃

′′L θ
−→ B̃

′′U
n

B̃
′U

s
′U
0 , s

′U
1 , S

′U
1−−−−−−→ B̃

′′U θ
−→ B̃

′′L
n

(4.17)

which result in two pairs of fuzzy terms. An aggregation is then used to obtain the

combined scaled intermediate term B̃′′c .
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4.3. Modified Procedure

4.3.3 Aggregation

The combined B̃
′′L
c and B̃

′′U
c of B̃′′c (where the subscript c stands for “combined”) are

then computed as the average of the corresponding two terms, respectively, such

that

B̃
′′V
c =

B̃
′′V + B̃

′′V
n

2
, V = L, U (4.18)

Note that the aggregation is herein defined this way because both terms are equally

important. However, alternative definitions may be introduced for this, but they

may complicate the calculation involved. The relative location between B̃
′′L
c and

B̃
′′U
c remains the same θ , i.e., B̃

′′L
c /B̃

′′U
c = θ . Therefore, the intuitive interpolated

conclusions can be ensured with the use of the relative location factor θ .

Proof. With Equations (4.16) and (4.18),

B̃
′′L
c

B̃′′Uc

=
1
2(B̃

′′L + B̃
′′L
n )

1
2(B̃

′′U + B̃′′Un )

=
1
2(θ B̃

′′U
n + θ B̃

′′U)
1
2(B̃

′′U + B̃′′Un )

= θ

Similarly, the final interpolated conclusion can also be modified from B̃∗ to

B̃∗c using the same θ to maintain the relative location both before and after the

move transformation. In order to avoid duplication, the mathematical details of

the modification of the move transformation are omitted here. An example that

considers an extreme case is given here to show the improvement as compared to

the non-intuitive result of Figure 4.3a.

Example 4.1. The observation and the two closest rules associated with a single

antecedent variable are described as follows, where each triangular RF set under

consideration has identical normal points. The involved RF sets are listed in Table

4.1.

The antecedent and consequent of the intermediate rule Ã′ =< (6.74, 8.46, 8.46,

8.96;1,1), (5.74,8.46,8.46,9.70;1,1) > and B̃′ =< (6.46,6.96,6.96,7.70;1,1),
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4.3. Modified Procedure

Table 4.1: Involved RF sets for Example 4.1

Attribute values

Ã1 =< (1,3.5, 3.5,4; 1,1), (0,3.5, 3.5,5; 1,1)>

Ã2 =< (12,13, 13,13.5; 1,1), (11,13, 13,14; 1,1)>

B̃1 =< (1.5,2, 2,3; 1,1), (0, 2,2, 5;1, 1)>

B̃2 =< (11,11.5, 11.5,12; 1,1), (10, 11.5,11.5, 13;1,1)>

Observation Ã∗ =< (6.5, 8,8, 9.5;1, 1), (6, 8,8, 10;1, 1)>

(5.22, 6.96, 6.96, 9.18; 1, 1)> are calculated first. For scale transformation, the sup-

port scale rates s
′L
0 = 1.35 and s

′U
0 = 1.01 are computed in the first instance by trans-

forming Ã′ to Ã′′, and are then used to construct B̃′′. The parameters θ0 = 1.24, θ1 = 1,

θ2 = 1 and θ3 = 0.84 are calculated using Equation (4.15), resulting in the newly

modified B̃′′n . The combined B̃′′c =< (6.34,6.95,6.95,7.83;1,1), (5.13,6.95,6.95,

9.33; 1, 1)> is then obtained from the average of B̃′′ and B̃′′n , using Equations (4.16)

and (4.18). Similarly, the same θ0, θ1, θ2 and θ3 are used to modify B̃∗, which is

constructed from B̃′′c using the move transformation, resulting in the final interpolat-

ed conclusion B̃∗c =< (6.49,6.70,6.70,7.93;1,1), (5.24,6.70,6.70,9.45;1,1)>, as

shown in Figure 4.4.

It can be seen that the normal points of the interpolated result are identical also.

In contrast, it is not the case in Figure 4.3a. This shows that the modified procedure

is an effective improvement for avoiding non-intuitive interpolated conclusions.

In order to further explain the computation involved, a general example which

concerns an interpolation using multiple rules with multiple antecedent variables is

also provided below.

Example 4.2. Suppose that four rules each involving three antecedents have been

chosen as the closest rules to determine the interpolated result. All conditions are

shown in Table 4.2. For the first antecedent, the distances between Ãk1, k = 1, 2, 3, 4

and the observed Ã∗1 are calculated by Equation (3.9). The weights are respectively

calculated and normalised using Equations (3.11) and (3.12), resulting in the new

weights of 0.38, 0.17, 0.11 and 0.34. The normalised weights together with the

parameter δÃ1
= −0.14, which is computed by Equation (3.14), are then used to

generate the required intermediate FS Ã′1 =< (5.55, 6.36, 7.27, 7.91; 0.7, 0.7), (4.63,

5.91, 7.74, 9.10;1,1)> according to Equation (3.13). Ã′2 and Ã′3 can then be calcu-

lated in the same way. For the consequence, the average weights of 0.37, 0.21, 0.21
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Figure 4.4: Example for triangular RF sets with identical normal points

and 0.21, and the average parameter δB̃ = −0.15 can be calculated using Equation

(3.16). From this, the intermediate output B̃′ =< (6.61,7.71,8.80,9.40;0.6,0.6),
(6.11,7.61,9.01,10.11;1,1) > is obtained with respect to Equation (3.15). The

average of three support scale rates (0.63, 1.01 and 0.83) of the LAs and the average

of three nucleus scale rates (0.55, 0.47 and 0.55) of the LAs are computed according

to Equations (4.7), (4.8) and (4.9), resulting in sL
B̃0
= 0.82 and sL

B̃1
= 0.52, forming

the aggregated scale rates of the LA. The aggregated scale rates of the UA sU
B̃0
= 0.92

and sU
B̃1
= 0.33 can then be generated following the same procedure. Similarly, the

aggregated move ratiosML
B̃0
= 0.49 andMU

B̃0
= −0.04 are calculated from three move

ratios (0.06, 0.91 and 0.50) of the LAs and three move ratios (0.27, −0.37 and−0.02)

of the UAs using Equation (4.10). These, together with the aggregated height rates,

namely, the average hB̃1
= 1 and hB̃2

= 1 of the two pairs of height rates (1, 1 and 1)

and (1, 1 and 1) from Equation (4.11), are employed to transform B̃′ to achieve the

final result B̃∗c =< (6.90,7.90,8.26,9.30;0.6,0.6), (6.38,7.80,8.46,10.00;1,1) >,

with θ0 = 1.08, θ1 = 1.01, θ2 = 0.98 and θ3 = 0.93. The interpolated result is

illustrated in Figure 4.5. The resultant interpolated RF value has a clear intuitive

appeal.
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4.4. Extrapolation
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Figure 4.5: Example for RF interpolation with multiple rules

4.4 Extrapolation

The extension of the above to perform extrapolation is readily attainable. If all

the chosen closest rules lie on one side of the observation, the interpolation prob-

lem becomes extrapolation. Both choosing the closest rules and constructing the

intermediate rule are carried out in the exactly same way as those procedures for

interpolation as described in Section 4.2.
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4.5. Compatibility with T-FRI

An example follows to explain the process of RF rule extrapolation, which in

essence is the same as that for RF rule interpolation. Suppose that only the second,

third and fourth rules in Example 4.2 are considered, given the case the interpolation

process becomes extrapolation using three rules.

Example 4.3. Three rules Ãk1 ∧ Ãk2 ∧ Ãk3 ⇒ B̃k, k = 2,3,4 and the observations

Ã∗1, Ã∗2, Ã∗3 as given in Table 4.2 are used to carry out fuzzy extrapolation in this

example. For the first attribute Ã1, the normalised weights of Ãk1, k = 2,3,4

are computed to become 0.27, 0.18 and 0.55. They are used to obtain an RF

term ÃI F T
1 by Equation (3.13). According to Equation (3.14), δÃ1

= −0.45 is ob-

tained. ÃI F T
1 and δÃ1

are then utilised to generate the intermediate RF set Ã′1 =<
(5.45,6.45,7.31,8.04;0.7,0.7), (4.59,6.04,7.77,9.04;1,1)>. Similarly, Ã′2 and Ã′3
can be constructed following the above procedure. For the consequence, the interme-

diate output B̃′ =< (7.50, 8.66, 9.49, 10.16; 0.6, 0.6), (7.00, 8.50, 9.83, 10.99; 1, 1)>
is computed using the average weights of 0.34, 0.33 and 0.33, and the average

δB̃ of −0.47, with respect to Equations (3.15) and (3.16). The average sL
B̃0
= 0.81,

sL
B̃1
= 0.42, sU

B̃0
= 0.92 and sU

B̃1
= 0.40 are calculated in terms of Equations (4.7),

(4.8) and (4.9). According to Equations (4.10) and (4.11), the averageML
B̃0
= 0.43,

MU
B̃0
= 0.003, hB̃1

= 1 and hB̃2
= 1 can then be obtained as well. The final result

B̃∗c =< (7.80, 8.81, 9.00, 10.05; 0.6, 0.6), (7.28, 8.64, 9.32, 10.87; 1, 1)> is therefore

constructed with θ0 = 1.07, θ1 = 1.02, θ2 = 0.97 and θ3 = 0.92, which are computed

by Equation (4.15), as shown in Figure 4.6. Again, the result has an intuitive appeal.

Note that the result in Figure 4.6 is closer to the right three rules than the result in

Figure 4.5. This is because the left rule is not considered in Example 4.3, resulting in

higher weights being assigned to the three rules on the right side of the observation.

4.5 Compatibility with T-FRI

As the concept of RF sets extends from conventional FSs, the RF interpolation extends

from the existing T-FRI. When the involved higher order uncertainty disappears,

namely, the LA coincides with the LU, an RF set degenerates to a conventional FS.

If all the considered sets in the implementation of interpolation/extrapolation are

conventional FSs, the results obtained by the proposed approach should therefore be
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Figure 4.6: Example for RF extrapolation with multiple rules

identical to those by T-FRI. For this reason, theorems are provided in this section in

order to verify that the RF approach is indeed compatible with the original one.

The differences between the RF approach and the T-FRI are reflected from three

aspects: the calculation of Rep, the height transformation and the modified procedure.

In order to ensure that identical conclusion is retained when all RF sets degenerate

to conventional (type-1) FSs, the key point is to ensure that an identical intermediate
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4.5. Compatibility with T-FRI

rule is obtained accordingly. Similarly, in order to ensure the identical intermediate

rule, the key point is to have an identical distance measure result between two types

of representation. For simplicity, only trapezoidal sets are considered here.

4.5.1 Initial Condition

Assume a trapezoidal RF set Ã is represented as Ã =< ÃL, ÃU >, where ÃL =
(ãL

0 , ãL
1 , ãL

2 , ãL
3 ; H̃ L

Ã1
, H̃ L

Ã2
), ÃU = (ãU

0 , ãU
1 , ãU

2 , ãU
3 ; H̃U

Ã1
, H̃U

Ã2
). ÃL coincides with ÃU , name-

ly, ãL
i = ãU

i (i = 0, · · · , 3) and H̃ L
ÃE
= H̃U

ÃE
(E = 1, 2). That is, all the considered sets in

this subsection are conventional FSs. The conclusion derived from T-FRI is denoted

by B∗T , and this subscript applies to other intermediate results as well. The purpose

of the comparison is to show that the same conclusions will be obtained from these

two approaches, i.e., if Ãi j = Ai j, Ã∗j = A∗j and B̃i = Bi, then B̃∗ = B∗T , i ∈ {1, · · · , N},
j ∈ {1, · · · , M}.

Theorem 4.1. For two HOFSs Ã1 and Ã2, if ÃL
1 = ÃU

1 and ÃL
2 = ÃU

2 , then the distance

measure d(Ã1, Ã2) = d(A1, A2)T .

Proof. The weight is herein determined by the arithmetic average operator. With

Equation (3.5),

Rep(ÃL
1)x = Rep(ÃU

1 )x = Rep(A1)T , Rep(ÃL
1)y = Rep(ÃU

1 )y = 1/4

With Equations (3.6) and (3.7),

f L
A1
= f U

A1
, wL

A1
= wU

A1
= 1/2

With Equation (3.8),

Rep(Ã1) = Rep(ÃL
1)x + 1/4

The calculation for A2 follows the same procedure. In this case, with Equation (3.9),

d(Ã1, Ã2) = d(Rep(Ã1), Rep(Ã2))

= Rep(ÃL
1)x + 1/4−Rep(ÃL

2)x − 1/4

= Rep(A1)T −Rep(A2)T

= d(A1, A2)T
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4.5. Compatibility with T-FRI

4.5.2 Intermediate Rule

The implementation of the intermediate rule can then be verified using Theorem 4.1.

Theorem 4.2. Given the observation A∗j, if Ri is a rule involving M antecedent

variables in the rule base, then the distance di = (di)T .

Proof. With Equation (3.9) and Theorem 4.1,

di j = d(Ãi j, Ã∗j)

= d(Ai j, A∗j)T = (di j)T

where j ∈ {1, · · · , M}. With Equation (3.10),

di =

√

√

√

√

M
∑

j=1

(
di j

max j −min j
)

2

=

√

√

√

√

M
∑

j=1

(
(di j)T

max j −min j
)

2

= (di)T

The above proof shows that the identical N (N ≥ 2) rules which have minimal

distances will be chosen as the closest N rules from these two approaches.

Theorem 4.3. Given Ã∗1 ∧ · · · Ã
∗
j ∧ · · · Ã

∗
M , if Ãi1 ∧ · · · Ãi j ∧ · · · ÃiM ⇒ B̃i, i ∈ {1, · · · , N},

j ∈ {1, · · · , M}, are N chosen closest rules, then the intermediate rule Ã′1 ∧ · · · Ã
′
j ∧

· · · Ã′M ⇒ B̃′ is identical to that of T-FRI.

Proof. With Equations (3.13), (3.14) and (3.12),

w′
Ãi j
=

1
di j

∑N
i=1

1
di j

=
1

(di j)T
∑N

i=1
1

(di j)T

= (w′Ai j
)T ,

ÃI F T
j =

N
∑

i=1

w′
Ãi j

Ãi j =
N
∑

i=1

(w′Ai j
)T Ai j = (A

I F T
j )T ,

δÃ j
=

Rep(Ã∗j)−Rep(ÃI F T
j )

max j −min j
=

Rep(A∗j)−Rep(AI F T
j )T

max j −min j
= (δA j

)T ,

∴ Ã′j = ÃI F T
j +δÃ j

(max j −min j)

= (AI F T
j )T + (δA j

)T (max j −min j) = (A
′
j)T
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4.5. Compatibility with T-FRI

Similarly, with Equations (3.15) and (3.16),

w′
B̃i
=

1
M

M
∑

j=1

w′
Ãi j
=

1
M

M
∑

j=1

(w′Ai j
)T = (w

′
Bi
)T ,

B̃ I F T =
N
∑

i=1

w′
B̃i

B̃i =
N
∑

i=1

(w′Bi
)T Bi = B I F T

T ,

δB̃ =
1
M

M
∑

j=1

δÃ j
=

1
M

M
∑

j=1

(δA j
)T = (δB)T ,

∴ B̃′ = B̃ I F T +δB̃(max−min)

= B I F T
T + (δB)T (max−min) = B′T

4.5.3 Height Transformation

When RF sets degenerate to conventional FSs, the heights of the LA are 1 owing to

the normality. The purpose of the height transformation is now to keep the heights

of the resulting consequence the same. Note that for the sake of simplicity, only

fuzzy terms involving one single antecedent variable are considered in Theorem 4.4

(and also in Theorem 4.5 to be presented in the next subsection). However, the

underlying ideas can be easily used to address more general cases.

Theorem 4.4. Given two adjacent rules Ã1⇒ B̃1 and Ã2⇒ B̃2, and an observation

Ã∗, if H̃V
Ã1E
= H̃V

Ã2E
= H̃V

B̃1E
= H̃V

B̃2E
= H̃∗V

ÃE
= 1, V = L, U , E = 1, 2, then H̃∗

B̃
= (H∗B)T .

Proof. With Equations (3.13) and (3.15),

H̃
′V
ÃE
= (H

′V
AE
)T = 1

With Equation (3.21),

H̃∗V
B̃
= (H∗VB )T = 1

4.5.4 Modified Procedure

Since the algorithms for scale transformation are the same in the proposed approach

and T-FRI, it can be seen that the second intermediate terms Ã′′ = A′′T and B̃′′ = B′′T .

The combined result B̃′′c can then be verified that it is the same as B′′T by the following

theorem.
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4.5. Compatibility with T-FRI

Theorem 4.5. Given Ã′′ ⇒ B̃′′ and A′′T ⇒ B′′T , if Ã′′ = A′′T and B̃′′ = B′′T , then the

combined B̃′′c = B′′T .

Proof. With Equation (4.14),

θ =
B̃
′L

B̃′U
= 1

With Equation (4.16),

B̃
′′L = B̃

′′U
n = B̃

′′L
n = B̃

′′U

With Equation (4.18),

B̃
′′L
c =

B̃
′′L + B̃

′′L
n

2
= B̃

′′L

B̃
′′U
c =

B̃
′′U + B̃

′′U
n

2
= B̃

′′U

∴ B̃′′c = B̃′′ = B′′T

The modified procedure for move transformation can be similarly verified as well.

The proof is omitted here to avoid duplication.

4.5.5 Illustrative Example

Consequently, the above theorems jointly show that the RF approach collapses to the

existing T-FRI if higher order uncertainty degenerates to type-1 fuzziness. That is,

the proposed RF interpolation and extrapolation extends T-FRI, addressing both the

first order and higher order types of uncertainty coherently. The following example

illustrates this.

Example 4.4. Consider a specific case where all of the RF sets degenerate to con-

ventional FSs, i.e., Ã∗L = Ã∗U , ÃL
k = ÃU

k and B̃L
k = B̃U

k , k = 1,2. Let Ã∗, Ã1, Ã2, B̃1 and

B̃2 be RF sets, as listed in Table 4.3.

Using the proposed approach, the interpolated conclusion B̃∗c =< (5.23,5.23,

7.61,8.32;1,1), (5.23,5.23,7.61,8.32;1,1)> can be obtained, as shown in Figure

4.7. The details of the calculation are omitted here to avoid repetition. It follows

that if all given sets are conventional FSs, then the interpolated result is the same as

that achieved using the classical T-FRI.
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Figure 4.7: Example for conventional FSs case

Table 4.3: Involved RF sets for Example 4.4

Attribute values

Ã1 =< (0, 4,5, 6;1, 1), (0,4, 5,6; 1,1)>

Ã2 =< (11, 12,13, 14;1, 1), (11,12, 13,14; 1,1)>

B̃1 =< (0,2, 3,4; 1,1), (0, 2,3, 4;1, 1)>

B̃2 =< (10,11, 12,13; 1,1), (10, 11,12, 13;1, 1)>

Observation Ã∗ =< (6,6, 9,10; 1,1), (6,6, 9,10; 1,1)>

4.6 Summary

This chapter has described an implementation of the proposed framework with the

use of RF sets. It has introduced the concepts of lower and upper approximation

MFs and presented an algorithm for RF rule interpolation, assuming that sparse

rules involving RF-valued variables are available. A refinement procedure to ensure

intuitive interpolated conclusions has been explained. Also, a proof has been provided

to verify that the proposed approach is compatible with the original T-FRI.
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Chapter 5

Implementing Framework with

Type-2 Fuzzy Sets

A S an extension of the conventional (type-1) FSs, type-2 FSs are finding wide

applicability in rule-based fuzzy systems because of their extended power in

expressing uncertainty in fuzzy modelling. Interval type-2 FSs, which are a special

and simple category of type-2 FSs, are computationally simple and therefore are used

in this work, to develop a type-2 FRI technique as an alternative implementation

of the framework introduced in Chapter 3. First, the basic concepts involved are

introduced and an algorithm for type-2 FRI is proposed. Several illustrative examples

are provided to demonstrate the use of this alternative in performing interpolation

and extrapolation. Then, a comparison between type-2 FSs and RF sets is discussed.

The differences between them are explained in detail. This is followed by an example

that illustrates the differences amongst the interpolated results that are obtained by

conventional FRI, type-2 FRI, and RF interpolation.

5.1 Implementation with Type-2 Fuzzy Sets

There have been several recent independent developments, e.g., [29, 36, 37, 38,

40, 41, 121, 207] in dealing with FRI using interval type-2 FSs. As an alternative

approach, here the preceding framework is implemented using interval type-2 FSs

also. In particular, the lower MFs and upper MFs are utilised for describing the

uncertainty bounds, with FOU capturing the higher order uncertainty involved.
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5.1. Implementation with Type-2 Fuzzy Sets

For rule interpolation, the method calculates an Rep to represent an interval type-

2 FS, then derives the interpolated results with transformation techniques. The

results are guaranteed to be still interval type-2 FSs to maintain representational

consistency. This approach enables interpolation not only for type-2 FSs, but covers

the interpolation for conventional FSs as a special case.

Being another realisation of the proposed framework, this implementation with

interval type-2 FSs is straightforward and similar to that of using RF sets. For

illustration interpolation with rules involving triangular interval type-2 FSs with a

single antecedent are outlined here.

Note that a comparative study between RF sets and type-2 FSs will be explained

later in Section 5.3. In particular, different calculations for the MFs of RF sets and

type-2 FSs will be discussed with an illustrative example in Section 5.3.2.

5.1.1 Representative Values Calculation

The lower and upper Reps and shape diversity factors are respectively calculated

following Equations (3.5) and (3.6), such that

Rep(Ã∗V )x =
1
3
(ã∗V0 + ã∗V1 + ã∗V2 ), Rep(Ã∗V )y =

1
3

H̃V
Ã1

(5.1)

f V
Ã∗
=

√

√

√

√

√

2
∑

k=0
(ã∗Vk −Rep(Ã∗V )x)2

3
(5.2)

where V = L, U . The weight factors and overall Reps are respectively computed

following Equations (4.5) and (4.6). The calculations for Ã1 and Ã2 follow the same

procedure.

5.1.2 Closest Rules Selection

The selection of closest rules simply follows Equations (3.9) and (3.10).

5.1.3 Intermediate Rule Construction

The intermediate rule is then constructed following Equations (3.11) - (3.16).
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5.2. Illustrative Examples

5.1.4 Transformations Implementation

Note that when triangles are used, only three kinds of parameters are needed (sV
0 ,

MV
0 and h1, V = L, U). They are calculated as follows:

sV
0 =

ã∗V2 − ã∗V0

ã′V2 − ã′V0
(5.3)

MV
0 =























ã∗V0 − ã
′′V
0

ã′′V1 −ã′′V0
3

if ã∗V0 ≥ ã
′′V
0

ã∗V0 − ã
′′V
0

ã′′V2 −ã′′V1
3

if ã
′′V
0 > ã∗V0

(5.4)

h1 =
H̃∗L

Ã1

H̃ ′L
Ã1

(5.5)

5.1.5 Interpolated Conclusion Derivation

The final interpolated conclusion B̃∗ is obtained using sV
B̃0

, MV
B̃0

and hB̃1
, V = L, U ,

where

sV
B̃0
= sV

0 , MV
B̃0
=MV

0 , hB̃1
= h1 (5.6)

5.2 Illustrative Examples

In this section, several examples are used to illustrate the interpolation process,

where the observations fall into the rule base “gaps”, using interval type-2 FSs.

However, if the observations partially overlap with the rule antecedents and such

matches are above a certain confidence level, no interpolation will be required

(as conventional compositional rule of inference can then be applied). Otherwise,

identical interpolation method can be applied.

5.2.1 Singleton-valued Case

Example 5.1. This case considers one single antecedent variable involving singleton-

valued conditions. The involved interval type-2 FSs are listed in Table 5.1.
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Table 5.1: Singleton-valued interval type-2 FSs for Example 5.1

Attribute values

Ã1 =< (3,3, 3;1), (3, 3,3; 1)>

Ã2 =< (12,13, 13.5;0.6), (11,13, 14;1)>

B̃1 =< (4,4, 4;1), (4,4, 4;1)>

B̃2 =< (10.5,11.5, 12;0.5), (10,11.5, 13;1)>

Observation Ã∗ =< (6, 7,8; 0.6), (5,7, 9;1)>

Firstly, the lower and upper Reps, shape diversity factors and weight factors

are calculated according to Equations (5.1), (5.2) and (4.5). Secondly, the over-

all Reps Rep(Ã1) = 3.333, Rep(Ã∗) = 7.289, Rep(Ã2) = 13.011 are calculated

from Equation (4.6). Ã′ =< (6.68,7.09,7.29;0.84), (6.27,7.09,7.50;1) > and

B̃′ =< (6.66,7.07,7.27;0.80), (6.45,7.07,7.68;1) > are then calculated, respec-

tively. Thirdly, the scale rates sL
0 = 3.26, sU

0 = 3.26, the move ratios ML
0 = 0.09,

MU
0 = 0.20 and the height rate h1 = 0.72 in the integrated transformation from

Ã′ and Ã∗ are calculated with regard to Equations (5.3), (5.4) and (5.5). Finally,

the scale rates, move ratios and height rate are used to transform B̃′ to the inter-

polated conclusion B̃∗c =< (5.98,7.04,7.98;0.57), (5.27,6.66,9.27;1)>, as shown

in Figure 5.1. It follows that if certain components involved in the given rules are

singleton-valued, the interpolated conclusion remains an interval type-2 FS.

5.2.2 Multiple Antecedents Case

Example 5.2. This example concerns an interpolation using rules with multiple

antecedent variables. In particular, two rules each involving two antecedents Ã11 ∧
Ã12⇒ B̃1, Ã21 ∧ Ã22⇒ B̃2 and the observations Ã∗1, Ã∗2 are given in order to illustrate

the interpolative process to determine the result B̃∗c . All the conditions are shown in

Table 5.2.

In this case, the normalised weight w′
B̃1

for the first antecedent variable is 0.49

and w′
B̃2

for the second is 0.51, they are used to calculate the intermediate rule

result B̃′ =< (6.13,6.87,7.61;0.5), (5.13,6.61,9.10;1) > according to Equations

(3.15) and (3.16). The average of two lower scale rates (0.68 and 0.89) and the

average of two upper scale rates (1.01 and 0.78) are then computed, resulting

in sL
0 = 0.78 and sU

0 = 0.90, forming the combined scale rates. Similarly, the
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Figure 5.1: Example for a single antecedent case with singleton-valued conditions

Table 5.2: Multiple antecedents case for Example 5.2

Attribute values

Ã11 =< (1,3.5, 4;0.7), (0, 4,5; 1)>

Ã21 =< (12,13, 13.5;0.7), (11, 13,14; 1)>

Ã12 =< (1.5,3.5, 4.5;0.6), (0, 3.5,6; 1)>

Ã22 =< (12.5,13.5, 14;0.6), (11.5,13.5, 14.5;1)>

B̃1 =< (1,2, 3;0.5), (0,2, 5;1)>

B̃2 =< (11,11.5, 12;0.5), (10, 11,13; 1)>

Observation
Ã∗1 =< (7.5,8, 9;0.7), (6, 8,10; 1)>

Ã∗2 =< (7.5,8, 9.5;0.6), (6.5, 8,10; 1)>

combined move ratios ML
0 = 0.79 and MU

0 = 0.27 are calculated from two lower

move ratios (0.84 and 0.75) and two upper move ratios (0.28 and 0.26). These,

together with the combined height rate, namely the average h1 = 1 of the two

height rates (1 and 1), are employed to transform B̃′ to achieve the final result

B̃∗c =< (6.47, 6.61, 7.57;0.5), (5.41, 6.37, 9.04;1)>, with δ0 = 1.20, δ1 = 1.04 and

δ2 = 0.84, as shown in Figure 5.2.
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Figure 5.2: Example for a multiple antecedents case

5.2.3 Multiple Rules Case

Example 5.3. This example considers a general multiple multi-antecedent rules

case, where four rules with three antecedents are selected as the neighbouring rules.

In particular, two antecedents of a given observation are located between these

rules, whereas one antecedent is located beyond them. This relates to a hybrid case,

including interpolation and extrapolation. All the involved FSs are listed in Table

5.3.

For the antecedent dimension x1, the normalised weight of Rule 1 is 0.37. Another

two weights for x2 and x3 can be computed in the same way, resulting in 0.12 and
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Figure 5.3: Example for a multiple rules case

0.47. In this case, the weight that Rule 1 contributes to the intermediate rule is

0.32. The intermediate rule can then be constructed by implementing the weight

calculation on each rule. After this, the scale rates sL
0 = 1.27 and sU

0 = 1.14 are

generated according to Equation 5.3. Similarly, the move ratios ML
0 = −0.09 and

MU
0 = −0.02 are obtained with respect to Equation 5.4, while the height rate h1 = 1

is obtained with respect to Equation 5.5. Finally, these parameters are utilised

to achieve the conclusion B̃∗c =< (7.52,8.72,9.77;0.6), (6.61,8.86,10.71;1)>, as

shown in Figure 5.3. It can be seen that the interpolation and extrapolation hybrid

performs well.
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5.2.4 Non-general Case

Example 5.4. This example demonstrates the use of the proposed approach involving

only type-1 FSs. All the terms are listed in Table 5.4, where the type-1 FSs are still

represented in the form of interval type-2 FSs.

Table 5.4: Involved interval type-2 FSs for Example 5.4

Attribute values

Ã1 =< (0, 5,6; 1), (0, 5,6; 1)>

Ã2 =< (11, 13,14; 1), (11,13, 14;1)>

B̃1 =< (0,2, 4;1), (0,2, 4;1)>

B̃2 =< (10,11, 13;1), (10, 11,13; 1)>

Observation Ã∗ =< (7,8, 9;1), (7,8, 9;1)>

The final interpolated conclusion B̃∗c =< (5.83, 6.26, 7.38; 1), (5.83, 6.26, 7.38; 1)
> can be derived, as shown in Figure 5.4. The same result can be found in [76].
This implies the compatibility to the original T-FRI. However, the proof is omitted

here in order to avoid repetition. Similar description can be found in Section 4.5.

5.3 Comparison to Rough-Fuzzy-based

Implementation

A comparative study is provided in this section. Conceptual comparison between

type-2 FSs and RF sets is given first. Experimental comparison is then presented to

show the differences amongst the interpolated results obtained by different means.

5.3.1 Type-2 Fuzzy Sets vs. Rough-Fuzzy Sets

A general type-2 FS replaces the crisp valued membership grades of a type-1 FS

with those of FS(s). For each value of the primary variable, the membership is a

function (the secondary MF), whose domain (the primary membership) is in the

interval [0, 1], and whose range (secondary membership grades) may also be in the

interval [0,1]. Therefore, the MF of a general type-2 FS is three-dimensional, and

it is the new third-dimension that provides an additional degree of freedom that

makes it possible to directly handle higher order uncertainty [133]. Unfortunately,
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Figure 5.4: Example for a non-general (type-1 FSs) case

the secondary MF is still described using crisp values. The task of determining these

values becomes a new dilemma, which has it roots in the same dilemma as that of

using conventional FSs. This dilemma still exists even when using type-n FSs (n> 2).

This seems to be a recursive problem that gives rise to other problems, while the

original problem is at best reduced but not removed.

Type-2 FSs also include a specific group of FSs that are referred to as interval

type-2 FSs [136], where all the values of the secondary membership grades are the

same. In this case, the third-dimension is no longer needed because it conveys no

new information. Although general type-2 FSs have one extra degree of freedom

than interval type-2 FSs, it is not yet known how to best choose their secondary

MFs [135]. The third-dimension is therefore often ignored in order to reduce the

computational complexity, however this may result in a non-intuitive lack of the

desirable degree of freedom.

Note that uncertainty in the primary memberships of a general type-2 FS consists

of a region FOU that is bounded by the upper and lower MFs. Because the secondary

membership grades convey no new information, the FOU is a complete description of
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an interval type-2 FS [136]. Thus, it is only this single region that is used to describe

uncertainty in interval type-2 FSs.

In contrast, an RF set describes the representation of uncertain FS MFs through

the use of RF approximations. The upper and lower approximations are derived by

the given FSs, which are known to belong exactly to a given concept. In particular,

the UA is defined by the union of all elements of the given sets, while the LA is defined

by the intersection of all the given sets. Hence, the calculus of RF sets can be applied

in a purely data-driven manner, no additional subjective definitions or thresholds

are needed. Importantly, the approximation MF of an RF set is two-dimensional

because both approximations are directly derived from the MFs of FSs of a two-

dimensional space. Since there is no need for the third dimension, no unknown

uncertain information is added. Thus, the computational complexity can be lower

than that required to deal with general type-2 FSs.

The concept of RF sets is based on the definition of RSs. An RF set is constructed

by the upper and lower approximation MFs. The UA indicates the individual region

that is given by at least one person (uncertainty + certainty), and the LA indicates

the common region that is agreed by all persons (certainty). Moreover, the boundary

region, bounded by the two approximations, indicates the region that can possibly,

but not always certainly, be partitioned in this way (uncertainty). If the boundary

region is an empty set, namely, the LA coincides with the UA, then the RF set

degenerates to a conventional FS. In this case, all uncertainty disappears. The area of

the boundary region determines the degree of uncertainty involved in such an RF set.

That is, the closer the shapes of the lower and upper approximations, the lower the

uncertainty of the set. Therefore, two regions (three if the boundary region which

can be determined by the UA and LA is considered as a separate one) are utilised to

describe uncertainty in RF sets.

The UA plays the same role as the interval in interval-valued FSs [19, 53, 172].
They both involve all possibilities, but it is not possible to tell which values are given

by all people who interpret an uncertain concept. This important information is

lost as a result of interval-valued FSs. Interval type-2 FSs share the same problem,

as the FOU is similar to the interval, because the FOU is the union of all primary

memberships (intervals) [136]. The third-dimension of general type-2 FSs has the

ability to provide this information, but as aforementioned, it is not known how

this can be computationally implemented in an efficient way. Furthermore, the
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third-dimension is set to value 1 in order to reduce the computational complexity.

In contrast, this information can be easily captured by means of the LA of RF sets.

The LA indicates a region that is definitely covered by the MF defining an uncertain

concept. That is, if a conventional FS is used to describe an uncertain concept,

the representation of the FS MF must contain the region of the LA. Similarly, the

representation should not go beyond the region of the UA.

As a consequence, RF sets and type-2 FSs are two different extensions of conven-

tional FSs. The differences between them are listed in Tables 5.5 and 5.6. Also, an

example is provided to show the generation process below.

Table 5.5: Comparison with general type-2 FSs

General type-2 FSs RF sets

Foundation Fuzzy-fuzzy sets RF approximations

Definition spaces Three-dimensional Two-dimensional

Computational

complexity

High, additional definitions

required for third-dimension

Low, data-driven, no additional

subjective definitions required

Table 5.6: Comparison with interval type-2 FSs

Interval type-2 FSs RF sets

Foundation
General type-2 FSs

ignored the third-dimension
RF approximations

Definition spaces Two-dimensional Two-dimensional

Computational

complexity

Low, but may result in a lack of

additional degrees of freedom
Low, data-driven

Regions used for

uncertainty describing
One: FOU Two: LA and UA

5.3.2 Illustrative Example and Discussion

Suppose that the concept of interest is eye contact [133], denoted by x with x

belonging to the intensity range of [0, 10], where 0 indicates no eye contact and 10

represents maximum eye contact. One of the terms that may characterise the amount

of perceived eye contact is “some eye contact”. Suppose that 10 people are surveyed,

and are asked to locate the distribution for some eye contact on the scale 0-10, as

listed in Table 5.7. It is reasonable to assume that the same results are not obtained
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from 10 individuals. Instead, different MFs to depict such a fuzzy concept are likely

to be given. The question is how such diverse information about the underlying

concept may be captured and described conjunctively.

Table 5.7: Data from 10 people

10 individuals P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Preferred degrees 3.5 5 4.5 5.5 4 5 6 4.5 6 5

Acceptable ranges 1-6 1-9 1.5-7.5 1.5-9.5 2-6 2-8 2.5-9.5 3-6 3-9 3.5-6.5

One approach might be to construct a type-1 FS with triangular-shaped MF whose

base endpoints (on the x-axis) are at the two average endpoint values and whose

apex is midway between these two endpoints. Such a conventional FS is derived in

two dimensions, as shown in Figure 5.5. However, this approach completely ignores

the uncertainty associated with the different results.

Figure 5.5: MF of a conventional FS

An alternative approach is to make use of the average endpoint values and the

standard deviation of each endpoint to establish an uncertainty interval about each

average endpoint value. By doing this, for each x , the MF is no longer a single value,

instead, it is itself a function. A general type-2 FS with three-dimensional MF is

created this way for all x , as shown in Figure 5.6, where two endpoints have two

uncertainty intervals associated with them, and the apex point is assumed to have a

full certainty value. However, in general, the apex point can also have an uncertainty

interval associated with it, which cannot be modelled in this approach.

A third approach is to calculate the union and intersection of all the given FSs to

decide the common and individual regions about the uncertain concept of interest.
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Figure 5.6: MF of a general type-2 FS

For each x , the MF of the union of 10 sets is defined as the maximum of the 10

individual MFs. Similarly, the membership of the intersection of 10 sets is defined as

the minimum of the 10 individual MFs. The resulting two MFs are together referred

to as an RF set. Such an RF set is defined in two-dimensional space, as shown in

Figure 5.7.

Figure 5.7: MF of an RF set

5.3.3 Illustrative Example for Interpolation with Different

Representations

Given the above obtained conventional representation, type-2 representation, and RF

representation, an example is presented in this subsection in order to further evaluate
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the differences between their use in performing interpolation. Three neighbouring

rules with each having three antecedent variables are considered. Each of the three

representations is used to express the observation in the antecedent. This is feasible

because the preceding framework provides an unified realisation for this experiment.

All the involving rules are listed in Table 5.8. Note that the LA and UA of the

RF representation are simulated using triangular MFs in order to make consistent

with the other two representations (although this will lead to the loss of certain

information for the resultant UA). The three interpolated processes and results are

shown in Figures 5.8, 5.9, and 5.10, respectively.

Table 5.8: Three neighbouring rules

Rule 1

Ã11 =< (10.5,12, 14;1), (10.5, 12,14; 1)>

Ã12 =< (21,22.5, 24;1), (21, 22.5,24; 1)>

Ã13 =< (16,18.5, 19.5;1), (16,18.5, 19.5;1)>

B̃1 =< (11,13.5, 15.5;1), (11, 13.5,15.5; 1)>

Rule 2

Ã21 =< (20,22, 25;1), (20, 22,25; 1)>

Ã22 =< (15,18, 20;1), (15, 18,20; 1)>

Ã23 =< (11,13, 15;1), (11, 13,15; 1)>

B̃2 =< (16,17.5, 19.5;1), (16, 17.5,19.5; 1)>

Rule 3

Ã31 =< (15,17.5, 20;1), (15, 17.5,20; 1)>

Ã32 =< (10,13, 15;1), (10, 13,15; 1)>

Ã33 =< (20,22, 23.5;1), (20, 22,23.5; 1)>

B̃3 =< (20.5,23, 24;1), (20.5, 23,24; 1)>

It is obvious that these results are different in detail. That is to say, different

representations lead to different interpolated conclusions. However, the results

achieved by type-2-based and RF-based are similar, and both cover the conventional

result as their specific case. In particular, the left (right) endpoint of the conventional

representation is located between the two left (right) endpoints of the type-2 and

RF representations. This is reasonable as the uncertain information is reserved in

the type-2 and RF representations and therefore reflected in the interpolated results.

Intuitively, more useful information, which is involved in the interpolation process,
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Figure 5.8: Interpolated result of the conventional representation

may obtain better interpolated results. This will be evaluated and discussed with

application to realistic decision making problems in Chapter 6.

5.4 Summary

This chapter has presented an alternative implementation of the proposed framework

using type-2 FSs. Thanks to the generality of the framework, the type-2 FRI method

can be built in a straightforward manner having developed the RF version. Examples

have been presented to demonstrate this successful alternative implementation,

103



5.4. Summary

1

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25 x1

µ A
~

11
A
~

21
A
~

31
A
~

1

*

1

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25 x2

µ A
~

12
A
~

22
A
~

32
A
~

2

*

1

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25 x3

µ A
~

13
A
~

23
A
~

33
A
~

3

*

1

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25 y

µ B
~

1
B
~

2
B
~

3
B
~

c

*

Figure 5.9: Interpolated result of the type-2 representation

including singleton-valued, multiple antecedents, multiple rules, and non-general

cases. These examples indicate that the type-2 FRI is also a useful extension of the

existing type-1 FRI. A comparison between type-2 FSs and RF sets has been provided.

Discussion concerning general type-2 FSs and interval type-2 FSs has also been given,

supported with an illustrative example.
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Figure 5.10: Interpolated result of the RF representation
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Chapter 6

Higher Order Fuzzy Rule

Interpolation: Evaluations

E XPERTS have always attempted to model how environmental change may influ-

ence disease burden so that they can predict the relevant disease rate. However,

the models built for this are often very complicated and due to typically very so-

phisticated situations, usually result in a sparse knowledge or rule base. Moreover,

different experts may have different kinds of expertise, leading to similar but differ-

ent expert rules and observations. Therefore, such problems provide a potentially

suitable testbed for the framework proposed earlier and their implementations. To

further evaluate the work, the UCI datasets [3] are also utilised for verifying the

efficacy of the proposed RF approach.

6.1 Application to Diarrhoeal Disease Prediction

In this section, the effectiveness of the proposed framework in improving the ro-

bustness of FRI is demonstrated by a practical application of predicting diarrhoeal

disease rates in remote villages.

6.1.1 Problem Overview

Environmental change influences disease burden [42, 144]. Intensive studies have

been made in an effort to identify logical relationships underlying such influences so
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6.1. Application to Diarrhoeal Disease Prediction

that the consequences of a certain environmental change may be predicted. This is

of significant importance in the assessment of potential impact of such changes upon

the environment and society, before the starting of any large-scale infrastructure

projects.

One particular application problem in this area has recently been investigated in

[206, 208], which is based on the study of [58]. It addresses the issue of measuring

how the construction of a new road or railway in a previously roadless area may affect

the epidemiology of infectious diseases in northern coastal Ecuador. A predictive

model has been built where many involved factors are not linearly related, but

interact with each other in a grid network. Addressing this application problem, an

illustrative example is presented here to show the working of the higher order FRI,

especially that of using RF sets and type-2 FSs in the implementation. The original

problem of [206] is simplified such that all the studied factors are linearly connected.

The resulting simpler causal model is shown in Figure 6.1.

Figure 6.1: Causal diagram of a simplified application problem

This causal diagram shows that the diarrhoeal disease rate of a remote village

is directly affected by two factors. First, low social connectedness tends to failure

in creating adequate water and sanitation infrastructure because the residents are

unlikely to know one another well and share social norms [7, 65], thereby usually
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6.1. Application to Diarrhoeal Disease Prediction

resulting in a high diarrhoeal disease rate. Second, more frequent contact between the

residents within a village and those outside tends to increase the rate of introduction

of pathogens, thereby also raising the diarrhoeal disease rate.

All factors considered in this example are represented as system variables and

each relation between two directly connected factors is represented as a rule asso-

ciating the relevant variables. In summary, there are five variables in the problem:

contact outside of the village, reintroduction of pathogenic strains, social connect-

edness, hygiene and sanitation infrastructure, and infections disease rate, denoted

as x1, . . . , x5, respectively. Note that different variables are defined on different

domains. To simplify knowledge representation, variable domains are mapped onto

the real line and normalised.

In order to evaluate the final disease rate, a group of experts are selected to

express their views on each factor. Suppose that the opinions from six experts,

denoted as T1, . . . , T6, in the group are shown in Figure 6.2, where subsets of rules

(one subset per causal implication): A→ B, C → D and B ∧ D→ E are established

by the experts with each supported by two of them.

6.1.2 Experimentation and Discussion

Given different expert rules and observations, one way to resolve the problem might

be to use a conventional FRI approach, say T-FRI to implement required interpolation

separately. Suppose that two pairs of expert rules are contained in a sub-rule base:

A1 → B1 and A2 → B2, where A11 → B11 and A21 → B21 are provided by expert

T1, while A12 → B12 and A22 → B22 are provided by expert T2. Note that A = x1,

B = x2, C = x3, D = x4 and E = x5. Presented with two observations A∗1 and A∗2,

the interpolated result by the use of T-FRI is a set which contains 4 elements. The

computation with respect to the remainder of the subsets of rules follows the same

procedure, resulting in a consequence set of 32 interpolated results, as listed in Table

6.1.

Note that the cardinality of the set of interpolated consequent results increases

rapidly along with the increase of the cardinality of rule subsets and the number

of observations. Suppose that there are m1 rules in A → B, m2 rules in C → D,

m3 rules in B ∧ D → E, n1 observations in A∗, and n2 observations in C∗. Then

the cardinality of the consequence set is |m1n1m2n2m3|. This not only leads to
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Figure 6.2: Interpolated results from conventional FRI
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6.1. Application to Diarrhoeal Disease Prediction

difficulty in interpreting the results, but also causes high computational complexity.

As outlined previously, the first step of interpolation requires the computation of the

closest rules from a given rule base. A distance measure needs to be calculated in

order to estimate the proximity between each rule antecedent and the observation.

This implies a time complexity of O(x yz), where x is the number of observations to

be interpolated, y is the number of antecedent variables, and z is the number of fuzzy

rules involved in a rule subset. From this, the time complexities for the rule subsets

depicting the relations A→ B, C → D and B ∧ D → E are O(m1n1), O(m2n2) and

O(m1n1m2n2m3), respectively. Besides, this leads to difficulty in determining the final

result. For example, consider two interpolated results E∗15 = (0.710,0.812,0.917)
and E∗17 = (0.598, 0.636, 0.717). Using the method in [147], the similarity between

these two FSs is 0.002. In this case, it is difficult to make a choice whilst they are

almost completely different conclusions.

Fortunately, the proposed RF approach can be applied without suffering from this

difficulty. All the uncertain relations can be captured using RF sets and the conclusion

can be derived by RF interpolation. The interpolated results following the present

work are illustrated in Figure 6.3. These results reflect the distribution of those

results shown in Figure 6.2. In particular, the shape of the resultant RF set is similar

to the shape distribution of those 32 interpolated sets, whereas the computational

complexity of the former is much lower than that of the latter. This can be noticed by

comparing the calculated time complexities of the former, which are O(m1), O(m2)
and O(m3), respectively. It is obvious that the reduction in computation complexity is

significant, especially when the number of observations becomes large. In addition,

since a majority of the 32 results are closer to the right rule, the resultant RF set is

also closer to it. The reason for this is that the RF sets are defined based on both

common and personal information.

Similarly, the proposed type-2 implementation can also be used for this prob-

lem. The result is shown in Figure 6.4. It can be seen that the two resultant sets

have similar locations. This implies that both approaches are effective in finding

approximate solutions for this problem. The difference between them is the shape

of the interpolated results. In particular, the LA area of the RF set is smaller. As

indicated previously, E∗15 and E∗17 have less overlapping. This situation is reflected

by the RF approach and therefore results in the smaller LA. Unfortunately, since

the mean and the standard deviation cannot represent the overlapping, this is not
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6.1. Application to Diarrhoeal Disease Prediction

showed in the type-2 approach. Nevertheless, both results do seem to reveal that

both implementations perform reasonably well.
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Figure 6.3: Interpolated results from RF interpolation
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Figure 6.4: Interpolated results from type-2 interpolation

113



6.2. Application to Other Realistic Data

As a consequence, the proposed framework is useful for representing higher order

uncertain information, in terms of both data and knowledge, and helps address such

types of higher order uncertainty to perform interpolation in a uniformed way.

6.2 Application to Other Realistic Data

In this section, the framework is further evaluated in the application to real datasets

for decision making problems. The resultant accuracy reflects the efficacy of this

framework.

6.2.1 Decision Making Techniques

Decision making [24, 83, 124] is one of the most important activities for real-world

applications of intelligent systems [78]. With given domain knowledge, the task of

decision making is to get an optimal or a near optimal solution from input information

using an inference procedure. That is, the subject of decision making is the study of

how decisions are actually made and how they can be made more successfully [104].
Generally, there are three ways to make a decision in a complex environment [72]:

• by building a mathematical model;

• by seeking human expert advice;

• by building a computational model or an expert system.

Among these, building an accurate mathematical model to describe the complex

environment is a good way. However, accurate mathematical models almost always

neither exist nor can be derived for all complex environments because the domain

may not be thoroughly understood. The first method is therefore limited and when

it fails, an alternative for making a good decision is to seek human expert help.

However, the cost of querying an expert at any time may be high, and there may be

no human experts available when the decision must be made.

Expert systems have been widely used in domains for which the first two meth-

ods are not suitable [64, 123]. The knowledge base in an expert system can grow

incrementally and can be updated dynamically, so that the performance of an ex-

pert system will become better and better as it develops. Also, the expert system

approach can integrate expertise from many fields, reduce the cost of query, lower

and probability of danger occurring, and provide quicker response [61].
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6.2.2 Uncertainty in Decision Process

FS theory is more and more frequently used in expert systems, because of its simplicity

and similarity to human reasoning. Most fuzzy expert systems can be seen as special

rule-based systems that use fuzzy logic. A fuzzy rule-based expert system contains

fuzzy rules in its knowledge base and derives conclusions from the inputs and the

fuzzy reasoning process [159, 225]. It usually predefines MFs and fuzzy inference

rules to map numerical data onto linguistic variables and to make fuzzy reasoning

work, where the linguistic variables are usually defined as FSs with appropriate MFs.

The generation of fuzzy rules from numerical data consists of two phases: the

partition of the input spaces into fuzzy subspaces and the determination of the shapes

of MFs [80]. This procedure can be achieved by performing a fuzzy partition of the

input spaces dividing each universe of discourse into a number of equal or unequal

partitions, selecting a type of MF, and assigning one FS to each subspace [43, 95].
For example, these FSs may have linguistic variables such as S: small; MS: medium

small; M: medium; ML: medium large and L: large, as shown in Figure 6.5.

Figure 6.5: Linguistic variables associated with FSs

For a fuzzy partition, an element does not need to be associated with a single

region, but has a set of MFs that indicate the extent to which it is regarded as

belonging to each of the regions [62]. Usually, the partition can be generated

from the advice of human experts. Experts can define a number of FSs for each

variable, which are interpreted as linguistic variables and shared by all of the rules
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[67]. However, this procedure relies heavily on the opinions of experts, who must

have a comprehensive and detailed understanding of the problem at hand. Such

opinions are often subjective and/or inconsistent between different individuals. In

this case, individuals may have a different understanding for the same information

and different experiences in the area of a current problem, so that different kinds of

expertise may be obtained from different experts.

Reconsider the popular tomato problem: three experts are required to give their

opinions on the concepts “colour” and “ripeness”, and their relations, and provide

the corresponding fuzzy regions. For simplicity, all of the relevant variable values are

normalised into the interval [0, 1]. Figure 6.6 shows this example where the domain

intervals of x and y are divided into five regions, respectively. Each region of x in

turn denotes “green”, “green-yellow”, “yellow”, “yellow-red”, and “red”, while each

region of y in turn denotes “unripe”, “almost unripe”, “half ripe”, “almost ripe”, and

“ripe”. Here, the adopted fuzzy regions for the consequent variable are the same as

those of the antecedent variable, and the shape of each MF is triangular. Of course,

other divisions of the domain regions and other shapes of MFs are also possible.

Given a pair of input-output data “x is 0.75, y is 0.7”, the degrees of this data

pair can be determined by calculating the intersections of each fuzzy region. Since

an element can belong to different regions with different degrees, the maximum

degree is then chosen to assign a data pair. As a result, one rule can be obtained

from one pair of desired input-output data. For the given data pair, a fuzzy rule is

therefore generated as

If a tomato is yellow-red, then the tomato is almost ripe.

Note that the same rule can be derived from the partitions that are provided

by all three experts, however, this rule may have different meanings for different

experts. As shown in Figure 6.7, three similar but different fuzzy regions indicate

the uncertain opinions with respect to personal understanding. Obviously, this

inconsistency reveals the underlying uncertainty involved in the decision process. As

discussed previously, words can mean different things to different people, so that

a concept may have an uncertain profile for human opinions. In addition, when a

phenomena or an event is too complex or too ill to be expressed, experts would be

forced to make unclear judgements. Consequently, the decision process is usually
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(a) Antecedent variable “colour” (b) Consequence variable “ripeness”

Figure 6.6: Divisions of fuzzy regions and the corresponding MFs obtained from
three experts

accompanied by imprecision and uncertainty that characterise expert judgements or

opinions.

Since different partitions of the same set of elements are usually provided, it

is relevant to consider obtaining a single consensus partition which summarises

the information contained in the separate partitions. Such a consensus partition

provides a way of simplifying this information and obtaining an overall view of

the relationships within the set of elements. The reason for doing this is that each

partition leads to a single decision result, resulting in difficulty with the consensual

decision.

Inspired by this observation, it is beneficial to adopt the proposed higher order

framework for modelling the underlying uncertainty. The framework can be applied

117



6.2. Application to Other Realistic Data

Figure 6.7: Different opinions for the concept “yellow-red”

to construct a consensus representation for characterising a given concept, where the

representation can be in the form of RF sets or type-2 FSs. Then, higher order FRI

can be implemented to derive the resultant solution. Due to the fact that insufficient

training data may result in insufficient rule sets, “gaps” will therefore exist in the

generated rule base. As shown in Figure 6.8, when testing data occurs in the middle

block, no classical inference methods can derive a result. Therefore, the FRI technique

is utilised here.

6.2.3 Performance Evaluation

In order to evaluate the proposed framework, an application to real datasets is pro-

vided. In this subsection, a systematic analysis of the performance of the framework

for training data and testing data is examined by the UCI servo dataset [3], which

is made up of 167 instances with four antecedent variables and one consequent

variable. The proposed RF sets and RF interpolation are utilised for problem solving

here. Further experimental results on other datasets will be presented in Section

6.2.5.

6.2.3.1 Partition of Problem Space

The task of generating and learning fuzzy rules from numerical data is to model the

input-output behaviour of a certain system. Without loss of generality, the system
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Figure 6.8: An example of the fuzzy partition with “gaps”

to be modelled here is assumed to be a multiple-input-single-output system with M

inputs, {x j| j = 1, · · · , M}, and a single output y. A fuzzy rule Ri, i = 1, · · · , N , for

such a system is represented as

If x1 is Ai1, · · · , x j is Ai j, · · · , xM is AiM , then y is Bi.

where x1, · · · , xM are the underlying linguistic variables, jointly defining an M -

dimensional input space. Ai j is the FS of the corresponding antecedent x j, while Bi

is the FS of the consequent y .

In order to generate a set of fuzzy rules, each input/output space is divided into

K (K ≥ 2) subspaces. For simplicity, each variable is normalised into real numbers in

the unit interval [0, 1] and divided into K fuzzy regions with the corresponding FSs

calculated by the triangular-shaped or trapezoidal-shaped MFs. This is illustrated in
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6.2. Application to Other Realistic Data

Figure 6.9: Partitioning of each input/output space

Figure 6.9, where le and re denote the left and right extreme values of variable x j,

respectively. The vertex location of a triangle is determined by its position in the K

partition. Any membership value of x j in a new input below le or above re is set to

1.

Suppose that three experts are required to provide their opinions for partitioning

the input/output space. Due to the fact that all the antecedent variables are categor-

ical data, the number of partitions is determined by the corresponding number of

categories. Thus, the antecedent variables x1, x2 and x4 are divided into five regions,

while x3 is divided into four regions. For simplicity, no uncertainty is assumed to

be involved in these variables. That is, the opinions of partitions from all three

experts are assumed to be identical. On the other hand, the range of the consequent

variable is from 0.13 to 7.10, so uncertainty is considered in this variable. Three

kinds of expertise are therefore chosen for representing different partitions, which

are decided by










le = 0, re = 1

le = 0.05, re = 0.95

le = 0.1, re = 0.9

(6.1)

resulting in three types of fuzzy regions, as shown in Figure 6.10. These partitions

are then used to determine a set of fuzzy rules that model the relationships between

the input-output data pairs.
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6.2. Application to Other Realistic Data

Figure 6.10: Fuzzy regions provided by three experts

Note that only the consequent is regarded as involving uncertainty, this is for

the purpose of computational simplicity in the experimental illustration. However,

once the uncertainty is included in a certain system, the proposed framework can

be applied for representing the underlying uncertainty and deriving a consensual

outcome. In this case, the efficacy of the framework is evaluated by comparing

the obtainable result with those from three human experts. In order to reflect

the gradualness in the improvement of fuzzy partition quality, six different fuzzy

partitions are tested where the consequent is each divided into K (K = 2, . . . , 7)

fuzzy subsets, where K = 2 represents a very rough partition, while K = 7 represents
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6.2. Application to Other Realistic Data

a very detailed partition for the servo dataset, which contains only 167 instances.

The purpose of investigating the use of different dataset partitions is to examine the

performance of the proposed framework for fine fuzzy partitions as well as coarse

fuzzy partitions.

6.2.3.2 Generation of Fuzzy Rules

Given data pairs, a fuzzy rule base can be formed by creating a rule that best covers

a certain input-output data pair [179]. This work uses this method owing to its

technical maturity and conceptual simplicity, where the region with maximum degree

is assigned to each input-output data pair.

As a result, three rule bases can be constructed from the opinions of each expert.

Next, an RF rule base can be built on top of these rule bases. That is, each fuzzy

region triple is aggregated into an RF set, where the uncertainty is described by the

lower and upper approximations. Based on the membership of LA, a given datum

is then allocated to the region with maximum membership degree. Since the LA

characterises the grade of certainty, a higher degree indicates a higher certainty. Such

a rule base includes the first and higher order types of uncertainty and represents

them as RF sets. Also, they are considered in the process of interpolation in order to

obtain better inference conclusions.

Note that the rules generated in this way are logical conjunctive rules, i.e., rules

in which the conditions of the IF part must be met simultaneously in order for the

result of the THEN part to occur. For the problem considered here, only conjunctive

rules are required since the antecedents are different components of a single input

vector.

6.2.3.3 Implementation of Interpolation

The original T-FRI approach is adopted for interpolation in the single expert rule

base, while the proposed RF interpolation is used for the RF rule base. This process

is implemented repeatedly for each partition.

In addition, N (N = 2, . . . , 6) fuzzy rules are chosen as the closest rules to

respectively interpolate the conclusions. The purpose of using different numbers of

closest rules is to analyse their influence on the construction of the outcome.
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6.2.3.4 Evaluation of Accuracy

In order to make a comprehensive comparison, each resultant set is defuzzified to a

crisp value using its Rep. Root-mean-square error (RMSE) is adopted to calculate

the accuracy:

εRMSE =

√

√

√1
n

n
∑

k=1

(Ok − Gk)2 (6.2)

where Ok and Gk denote the kth testing output value and its corresponding ground

truth (the consequent of the testing data), respectively.

Ten times 10-fold cross-validation [109, 162] is then employed to evaluate the

generalisation ability of the proposed approach. The servo dataset with 167 instances

is randomly divided into 10 subsets for similar size, where three of which contain 16

instances and seven of which contain 17 instances. One single subset is maintained

as the validation data for testing, while the remaining 9 subsets are used for training.

This is then repeated 10 times with each of the subsets used as the testing data, and

the rest as the training data. The 10 results from the folds are averaged to produce a

single accuracy value. The process is then repeated 10 times by initialising different,

randomly assigned initial 10 subsets.

6.2.4 Discussion of Results

Tables 6.2, 6.3 and 6.4 list the results of the averaged RMSE in terms of 10 times

10-fold cross-validation in relation to K partitions and N closest rules. Paired t-test

results with significance level of 0.05 are also identified in these tables with the

achieved accuracies of the RF approach as reference, those significantly better, worse

and no difference are marked with “(v)”, “(*)” and “(-)”, respectively.

As reflected in these tables, the accuracies from three separate expert rule bases

are unstable. That is, the opinions from an expert can perform well in certain

partitions, and badly in others. Theoretically, this is acceptable as someone is only an

expert in a particular field, namely, the necessary expertise may be only available for

a certain concept. However, this leads to difficulty for making decisions in practical

applications. Since different opinions result in better or worse accuracy, it is difficult

to conclude which one should be chosen.

However, it is obvious that the accuracy obtained by the proposed RF approach

is generally higher than the use of T-FRI directly over the three single-expert rule
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bases. This reflects an important advantage of the proposed framework in that more

considered information produces better results. The uncertainty provides useful

information on depicting a concept. Instead of discarding the uncertainty, it is better

to capture and represent such uncertainty.

In addition, the effect of the numbers of K and N can also be seen in the tables.

First, when K = 2, the accuracies from all four rule bases are very low. This shows

that a rough partition will lead to difficulty in identifying the difference between

similar training data, resulting in poor accuracy. As K increases, more detailed

partitions are generated for better differentiating data pairs. This is verified by the

results in that the errors fall as the value of K is increased, as shown in Figure 6.11.

Figure 6.11: Accuracies of RF approach for different partitions when S = 2

In contrast to the trend for the increase of K , the change of the value for N only

slightly affects the accuracy. As noted previously, interpolation requires at least two

closest neighbouring rules. Here, the “closest” ensures that a given observation is

as close to the antecedents of the neighbouring rules as possible, as well as the

interpolated result to the consequents of those rules. Naturally, for more than two

rules, results are expected to be better. However, proximity is measured by the

averaged distance for all the antecedent variables. That is to say, the chosen rules

are not the “closest” ones for every antecedent variable. This causes a variation for

the resultant accuracies, as shown in Figure 6.12.
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Figure 6.12: Accuracies for different numbers of selected rules when K = 5

6.2.5 Further Applications with More Datasets

The work is also evaluated on the Yacht Hydrodynamics dataset, Airfoil Self-Noise

dataset, Concrete Compressive Strength dataset, and Housing dataset [3]. In general,

the uncertainty is considered in every attribute. The details of the calculation are

omitted here. The obtainable results are listed in Tables 6.5 - 6.16, respectively.

Generally, the accuracies from the RF approach are better or at least comparable to

the single-expert ones. These results also reflect the effectiveness of the work.

Consequently, according to the experiment results, the proposed framework can

not only help to represent the uncertainty in knowledge, but can also assure the

decision accuracy by exploiting the uncertain information.

6.2.6 Further Applications with More Experts

This work is further evaluated with more experts generated using a flexible approach

than that proposed in Figures 6.9 and 6.10. In particular, Expert 1 is defined as

a generator using Equation (6.1) (i.e., le = 0, re = 1), while the others are not

predefined. Instead, they are randomly constructed from Expert 1 (i.e., le ∈ (0,1),
re = 1− le ∈ (0, 1)), resulting in four other different fuzzy regions. The obtainable
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6.3. Summary

results, which are calculated from the Servo dataset, Yacht Hydrodynamics dataset,

and Housing dataset [3], are listed in Tables 6.17 - 6.19, respectively.

Table 6.17: Accuracies (RMSE×100) of the servo data

Partition = 2

Closest rules Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 RF

2 20.75(*) 20.41(*) 20.10(*) 20.58(*) 20.25(*) 19.88

4 22.38(*) 22.07(*) 21.78(*) 22.22(*) 21.92(*) 21.22

6 22.08(*) 21.75(*) 21.44(*) 21.92(*) 21.59(*) 20.75

Partition = 4

Closest rules Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 RF

2 10.72(*) 10.50(-) 10.71(*) 10.70(*) 10.65(-) 10.54

4 12.67(-) 12.95(*) 13.15(*) 12.82(*) 13.04(*) 12.71

6 11.88(-) 12.10(*) 12.35(*) 12.02(*) 12.25(*) 11.91

Partition = 6

Closest rules Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 RF

2 10.00(*) 9.90(*) 10.09(*) 10.12(*) 9.92(*) 9.74

4 11.86(-) 11.98(-) 12.37(*) 11.89(-) 12.08(*) 12.00

6 10.94(v) 11.05(-) 11.52(*) 10.96(v) 11.22(*) 11.14

Again, the accuracies from the RF approach are generally better or at least compa-

rable to the other five single-expert ones. These results also reflect the effectiveness

of this work.

6.3 Summary

For evaluation purposes, the proposed framework has been applied to a realistic

problem of predicting diarrhoeal disease rates in roadless villages in this chapter.

This problem presents itself as a suitable testbed due to its nature of lacking detailed
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6.3. Summary

information and comprehensive knowledge. Although different kinds of expertise

generally lead to difficulty in determining the final inference outcome, application of

the higher order framework consistently results in good performance. This demon-

strates the potential of this work in improving the effectiveness of FRI.

To further evaluate the present work, application to other datasets have also been

provided in this chapter. A rule-based fuzzy system works on the generation of fuzzy

rules from numerical data. However, different expert opinions on fuzzy partitions

may result in uncertainty in the overall domain knowledge. The proposed framework

provides a good solution by including the uncertainty into the inference process.

Experimental results have shown that the exploitation of uncertain knowledge across

multiple opinions offered by different experts generates better results than the use

of just the expertise offered by a single expert.
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6.3. Summary

Table 6.18: Accuracies (RMSE×100) of the yacht data

Partition = 2

Closest rules Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 RF

2 32.07(*) 31.74(*) 31.42(*) 31.91(*) 31.58(*) 30.83

4 31.31(*) 30.89(*) 30.49(*) 31.10(*) 30.69(*) 29.70

6 31.10(*) 30.66(*) 30.23(*) 30.88(*) 30.45(*) 29.40

Partition = 4

Closest rules Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 RF

2 15.46(v) 16.03(*) 19.75(*) 15.79(*) 16.05(*) 15.67

4 17.05(*) 17.80(*) 20.32(*) 16.79(*) 17.80(*) 16.41

6 18.13(*) 19.22(*) 20.56(*) 17.68(*) 19.22(*) 17.38

Partition = 6

Closest rules Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 RF

2 14.49(v) 14.71(-) 17.49(*) 14.52(v) 16.99(*) 14.85

4 16.50(v) 17.09(-) 18.04(*) 17.15(-) 17.60(*) 17.09

6 15.42(-) 15.79(*) 17.46(*) 15.51(*) 16.24(*) 15.23
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6.3. Summary

Table 6.19: Accuracies (RMSE×100) of the housing data

Partition = 2

Closest rules Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 RF

2 18.68(*) 18.83(*) 18.76(*) 18.69(*) 18.73(*) 18.60

4 17.72(*) 17.71(*) 17.59(*) 17.68(*) 17.61(*) 17.49

6 17.62(*) 17.59(*) 17.44(*) 17.57(*) 17.47(*) 17.34

Partition = 4

Closest rules Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 RF

2 15.80(*) 15.00(-) 14.22(v) 15.50(*) 14.37(v) 15.14

4 14.96(*) 14.37(*) 13.91(v) 14.68(*) 14.14(-) 14.25

6 14.87(*) 14.30(-) 13.97(v) 14.58(*) 14.11(-) 14.22

Partition = 6

Closest rules Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 RF

2 13.38(*) 12.99(-) 13.51(*) 13.32(*) 13.43(*) 12.95

4 12.88(-) 12.77(-) 13.00(*) 12.91(-) 12.96(*) 12.82

6 13.06(-) 13.09(*) 13.12(*) 13.19(*) 13.16(*) 12.98
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Chapter 7

Theoretical Extension

T HE goal in group decision making (GDM) is to ensure that the best decision

is made with respect to the available information and knowledge possessed

by all group members. However, different types of uncertainty may influence both

the assessment of the individual views and the derivation of the overall group-level

solution. The difficulty in such decision-making may escalate if the views of all

individuals only cover part of the problem space. Systems capable of reasoning

through fuzzy interpolation can help in this, as argued previously.

This chapter presents an extended approach for achieving GDM via fuzzy inter-

polation. Individual preferences are firstly aggregated by means of a method learned

on RF set theory, and RF interpolation is then applied to derive the group-level

conclusion. Experimental investigations are carried out and the results are presented

to demonstrate the efficacy of the proposed work in guaranteeing the overall decision

accuracy.

7.1 Group Decision Making Problem

GDM [69, 97] is a process where a number of individuals attempt to reach a consensus

on a certain decision. A group solution is the one that is the most acceptable to all

the individuals concerned as a whole. In GDM, both the individuals in the group and

the group at large jointly make decisions. To do this, individuals need to express their

judgements among a set of alternative opinions. Different types of uncertainty may
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7.1. Group Decision Making Problem

however, influence both the assessment of the individual views and the derivation of

the overall group-level solution [127]. These include the following factors: (1) An

individual’s role (weight) in the generation of the group solutions, since there may be

a group leader or leaders who play more important roles in a particular GDM process.

(2) An individual’s preference for possible decision alternatives, since individuals may

have a different understanding for the same information and different experiences in

the area of current decision problems. (3) An individual’s use of criteria for assessing

alternatives, since individuals may often have different judgements in comparing

the importance between those criteria. All such types of uncertainty translate into

difficulties in determining the final solution by the group. In addition, there are

many situations where the potential decision alternatives may be ordered and even

depicted on an underlying continuum [98]. Each individual may have an optimum or

most preferred position on the continuum. Obviously, the closer any given alternative

lies to the optimum, the more it may be preferred over another. Sometimes, an

individual’s optimum may be located between two distinct alternatives. That is, a

different preference may appear beyond given alternatives, leading to the difficulty

of making a consensual decision.

It is well-known that human judgement including preferences is often subjective,

vague and imprecise. Fuzzy systems play an important role in decision making and

offer a flexible framework for GDM. Indeed, fuzzy rules are often employed by human

beings to make decisions. Such rules use a series of IF-THEN statements to describe

what action should be taken in terms of the currently observed information. They

are widely used in FISs to perform decision making according to given individuals’

preferences.

The compositional rule of inference [214] offers an effective mechanism to deal

with fuzzy inference for dense rule bases. Given such a rule base and an observation

that is at least partially covered by the rule base, the conclusion can be inferred from

certain rules that intersect with the observation. However, for the case where a fuzzy

rule base contains “gaps” (termed: sparse rule base [183]), if a given observation

has no overlap with the antecedent values of any rule, conventional fuzzy inference

methods cannot derive a conclusion. This is of particular significance when a given

preference lies between two known alternatives in GDM. Fortunately, using FRI,

certain decisions may still be reached. However, different types of uncertainty may

influence both the assessment of the individual views and the derivation of the
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7.2. Extended Rough-Fuzzy Set Representation

overall group-level solution in GDM. To cope with such uncertain information and

knowledge, the proposed higher order fuzzy representation may be helpful.

An FRI technique for GDM is herein proposed in order to better address the

underlying relative uncertainty, thereby determining appropriate decisions. For each

criterion, the OWA operator [191] is employed to decide each individual’s role. Then,

aggregation of individuals’ preferences is performed by means of the proposed RF

set theoretic approach. Finally, the RF interpolation is utilised to enable required

interpolative reasoning.

7.2 Extended Rough-Fuzzy Set Representation

The objective of aggregation is to combine individuals’ preferences into an overall

aggregated value so that the final decision takes into account all individuals’ con-

tributions. Different but similar opinions are usually aggregated to provide more

robust solutions. The particular concern of this work is to deal with the situations

where conclusions cannot be inferred but may be interpolated when given uncertain

observations have no overlap with any rules.

One possible approach is to interpolate all the conclusions separately with respect

to each given observation first and then, to derive the final solution by aggregating

all the individual conclusions. This approach is hereafter denoted as the IA method,

standing for interpolation before aggregation. However, as outlined previously,

the first step of interpolation requires the computation of the closest rules from a

given rule base. A distance measure needs to be calculated in order to estimate

the proximity between each rule antecedent and observation antecedent. This

implies a time complexity of O(xmn), where x is the number of observations to

be interpolated, m is the number of antecedent variables, and n is the number of

fuzzy rules involved in a rule base. An alternative approach creates an artificial

observation by aggregating all the observations first and then, to derive the final

solution by performing interpolation over this artificial observation. For obvious

reasons, this approach is hereafter denoted as the AI method, which has an overall

time complexity of O(mn). The reduction in computation complexity is significant,

especially when the number of observations becomes large. Consequently, the AI

method is employed herein for problem solving while the results are compared to

those obtainable by the IA method. The following presents the theoretical extension

of the RF sets that used for AI approach.
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7.2. Extended Rough-Fuzzy Set Representation

In dealing with individuals’ preferences, the pessimistic means is to aggregate

such preferences by an intersection operation, in order to ensure that all preferences

are satisfied. Opposite to this, the optimistic means is to create the artificial overall

preference by performing a union operation in an effort to satisfy at least a single

preference. To enable the representation of different types of uncertainty, RF sets can

be used to support the aggregation. Thus, Definition 4.2 can be applied for situations

where all opinions share a common point. Unfortunately, for many instances, individ-

uals may attempt to conceal their preferences for purposes of taking certain strategic

advantages or simply misrepresent their own preferences due to lack of sufficient

information [98]. This may lead to preferences that are distinct from the others,

resulting in an empty intersection (although it will not affect the union). However,

all of the individuals should contribute to the outcome, although one outlier should

not affect the overall result. This work therefore extends the original definition of RF

sets to a more general version with the use of the OWA operators, which is defined

as follows.

Definition 7.1. Let P be an equivalence relation on X and Fl , l ∈ {1, . . . , J}, be FSs

in Co (Co ∈ X ), the LA and UA are a pair of FSs with MFs defined by the following,

respectively:

µPCo
(x ∈ [x]P) = OWA{µFl

(x)|x ∈ [x]P}=
J
∑

l=1

wlµFl
(x)

µPCo
(x ∈ [x]P) = OWA{µFl

(x)|x ∈ [x]P}=
J
∑

l=1

wlµFl
(x)

(7.1)

where the weight vector W = (w1, w2, . . . , wJ)T can be computed using different

operators as mentioned before.

Note that when using the Min and Max operators for the calculation of LAs and

UAs respectively, the results remain the same as those in Definition 4.2. That is, the

original is a specific case of this new definition.

The FSs are aggregated using a partitioning-based method to discretise the

input space in this work. The domain of each observed variable x j, j = 1, . . . , M , is

partitioned into a set of discretised values Dj = {F j1, . . . , F j|Dj |}, where |Dj| denotes the

cardinality of this set. Therefore, given J observations of a variable x j, the aggregated
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observation of this variable is calculated using the following OWA operator:

FOWA j
= sup

k∈{0,...,|Dj |}

J
∑

l=1

wklµFl
(minx j

+ k ∗
maxx j

−minx j

|Dj|
) (7.2)

where maxx j
and minx j

are the maximum and minimum values of the jth observed

values F jl , l = 1, . . . , J .

7.3 Experiment and Evaluation

A simulated example is used in this section to validate the efficacy of the proposed

work. The results obtainable by the proposed AI method are utilised to compare

with those by the two IA methods (the proposed and an existing technique).

7.3.1 Experimental Set-up

Individuals may represent their opinions in the form of crisp or fuzzy terms. Occa-

sionally, when only crisp numbers are provided, a fuzzification process is needed.

In this simulation-based experimentation, a base function of three crisp input vari-

ables, shown in Equation (7.3) is chosen to establish a sparse rule base. A fuzzy

rule is generated by fuzzifying the crisp inputs and their associated function out-

put, where a numerical value a is converted to an FS A with a random function f :

A= ((a− f )− f , a− f , a+ f , (a+ f )+ f ). This provides a simple non-linear (sparse)

rule base suitable for the purpose of current investigation.

y = 1+
p

x1 +
1
x2
+

1
Æ

x3
3

(7.3)

To evaluate the proposed approach, the output y which is computed from the

base function, is assumed to be the ground truth for interpolated results. Without

losing generality, the arithmetic mean is used for the OWA operator and regarded as

the ground truth for the outcome of the aggregation process.

The first comparison is between the proposed AI and IA methods. In this compar-

ison, the extended RF sets are applied to aggregate the derived individuals’ solutions

in IA and the observed opinions in AI, respectively. The Max operator is selected to

calculate LAs, while the DOWA and Clus-DOWA operators are used to compute UAs

in order to ensure a purely data-driven implementation. For the sake of reducing
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7.3. Experiment and Evaluation

computational complexity, the aggregated results are simulated with trapezoidal

MFs. The proposed RF interpolation is employed in both IA and AI methods. Thus,

two opposite processes are implemented with the proposed approach.

The comparison is also carried out between the proposed AI method and an

existing IA method where T-FRI is used for interpolation and the DLSM [182] for

aggregation. The weight function used in the existing work of [182] is defined by

wq =
1/Rep(Oq)

∑Q
q=1 1/Rep(Oq)

, q = 1, . . . ,Q (7.4)

where Rep(Oq) is the Rep of the qth computed output value Oq.

In the present simulation-based experimental evaluation, the Reps of the resultant

sets of using IA or AI are recorded. They are then compared against their corre-

sponding ground truth calculated using the base function. The range error (RE) and

the root-mean-square error (RMSE) are adopted here to analyse the accuracy of the

three different approaches:

εRE =
|Oq − Gq|

maxy −miny
, q = 1, . . . ,Q

εRMSE =

√

√

√

√

1
Q

Q
∑

q=1

(Oq − Gq)2
(7.5)

where maxy and miny are the maximum and minimum values of the consequent

variable, and Oq and Gq denote the qth computed output value and its corresponding

ground truth, respectively.

7.3.2 Results and Discussion

Since stochastic elements are presented in the generation of observations, the evalua-

tion process is repeated 100 times. Tables 7.1, 7.2 and 7.3 list the percentage results

of the averaged RE and RMSE, where AN is the number of antecedent variables and

O is the number of individual observations. The former two tables show the first

comparison with the DOWA operator being used in Table 7.1 and the Clus-DOWA

operator in Table 7.2, while the results of using the proposed AI method that obtained

in the first comparison are also utilised for the second comparison as listed in Table

7.3.

150



7.3. Experiment and Evaluation

Ta
bl

e
7.

1:
C

om
pa

ri
so

n
of

ac
cu

ra
ci

es
-D

O
W

A
op

er
at

or

A
N
=

1
A

N
=

2
A

N
=

3

A
cc

ur
ac

ie
s

O
=

5
O
=

20
O
=

50
O
=

5
O
=

20
O
=

50
O
=

5
O
=

20
O
=

50

IA
ε

%
R

E
1.

13
0.

87
0.

82
1.

56
1.

59
2.

06
1.

51
1.

18
1.

19

ε
%

R
M

S
E

10
.8

6
8.

41
7.

58
15

.1
4

15
.2

2
18

.5
9

14
.2

6
11

.3
4

11
.0

2

A
I

ε
%

R
E

1.
44

0.
80

0.
59

1.
44

0.
80

0.
57

1.
28

0.
98

0.
62

ε
%

R
M

S
E

12
.7

8
7.

49
5.

37
14

.7
2

7.
83

5.
29

12
.1

3
10

.1
5

6.
01

151



7.3. Experiment and Evaluation

Ta
bl

e
7.

2:
C

om
pa

ri
so

n
of

ac
cu

ra
ci

es
-C

lu
s-

D
O

W
A

op
er

at
or

A
N
=

1
A

N
=

2
A

N
=

3

A
cc

ur
ac

ie
s

O
=

5
O
=

20
O
=

50
O
=

5
O
=

20
O
=

50
O
=

5
O
=

20
O
=

50

IA
ε

%
R

E
0.

85
0.

78
0.

74
1.

15
1.

28
1.

64
1.

00
1.

06
1.

04

ε
%

R
M

S
E

7.
85

7.
28

6.
95

10
.7

7
12

.3
3

15
.4

8
10

.1
5

9.
97

9.
75

A
I

ε
%

R
E

1.
01

0.
79

0.
56

1.
27

0.
72

0.
55

1.
19

0.
95

0.
59

ε
%

R
M

S
E

9.
72

7.
27

5.
14

12
.8

5
7.

04
5.

14
11

.0
4

10
.2

0
5.

69

152



7.3. Experiment and Evaluation

Ta
bl

e
7.

3:
C

om
pa

ri
so

n
of

ac
cu

ra
ci

es
-T

-F
R

I
an

d
D

LS
M

A
N
=

1
A

N
=

2
A

N
=

3

A
cc

ur
ac

ie
s

O
=

5
O
=

20
O
=

50
O
=

5
O
=

20
O
=

50
O
=

5
O
=

20
O
=

50

IA
ε

%
R

E
0.

71
0.

60
0.

51
1.

10
0.

80
0.

69
0.

79
0.

55
0.

53

ε
%

R
M

S
E

6.
45

5.
23

4.
37

10
.3

2
7.

28
5.

71
7.

44
4.

98
4.

55

A
I

(D
)

ε
%

R
E

1.
44

0.
80

0.
59

1.
44

0.
80

0.
57

1.
28

0.
98

0.
62

ε
%

R
M

S
E

12
.7

8
7.

49
5.

37
14

.7
2

7.
83

5.
29

12
.1

3
10

.1
5

6.
01

A
I

(C
)

ε
%

R
E

1.
01

0.
79

0.
56

1.
27

0.
72

0.
55

1.
19

0.
95

0.
59

ε
%

R
M

S
E

9.
72

7.
27

5.
14

12
.8

5
7.

04
5.

14
11

.0
4

10
.2

0
5.

69

153



7.4. Summary

It is obvious that for the first comparison, overall, the AI method outperforms the

IA method, especially when the number of observations becomes large. The accuracy

of the proposed approach is generally higher than that of its opposite process. This

is achieved with less computational complexity (as pointed out previously).

Note that the accuracy attainable by the AI method is not so good as its counterpart

in the second comparison when the number of observations is small. However, it is

important to point out that the computational overheads of IA is significantly greater

than that of AI. Thus, IA may be difficult for particular GDM applications with a larger

number of opinions or where a timely generation of solutions is required. This is

verified by the result in that the accuracy of AI improves and becomes comparable to

that of IA as the number of observations is increased. This implies that the proposed

approach is suitable for complex systems in GDM. In addition, the accuracy of using

the Clus-DOWA operator is consistently (with just one exception) higher than that of

utilising the DOWA operator.

7.4 Summary

This chapter has presented an OWA-based FRI technique for GDM. In order to better

represent the underlying uncertainty, the proposed RF set representation has been

extended to a more general version with the use of the OWA operator. Also, the

extended RF sets are utilised in an GDM problem to evaluate the efficacy of the

extended work.

The extended RF set theoretic approach and the proposed T-FRI approach are

employed for aggregating individuals’ preferences and interpolating the final decision

in a purely data-driven manner. According to the simulated experimentation, the

proposed technique can reduce the system processing time, while assuring the

decision accuracy. This demonstrates that the proposed work is useful for GDM in

complex systems.
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Chapter 8

Conclusion

T HIS chapter concludes the thesis. A summary of the research as detailed in

the preceding chapters is presented, with a focus on the main contribution:

exploiting the uncertain information in the knowledge for FRI. The thesis has demon-

strated that the developed higher order FRI framework has utilised HOFSs effectively

for the task of representing and handling uncertainty. The proposed extension to

HOFS further enhances the efficacy of the framework. Future developments of the

higher order FRI techniques which have been suggested throughout the thesis are

enumerated with preliminary suggestions as to how to approach such further work.

8.1 Summary of Thesis

This thesis is concerned primarily with the representation and handling of knowledge

with uncertain information in the context of FRI. FRI is a special type of fuzzy

inference where the rule bases are sparse. Fuzzy inference was originally proposed

in order to handle the inexactness during information processing. Indeed, as a

special type of fuzzy inference, FRI not only inherits the properties of fuzzy inference,

but also has its own property. That is, FRI is able to deal with inference with an

incomplete knowledge base, which is epitomised by the sparse rule bases used in

FRI.

However, due to different types of uncertainty involved in FRI, the difficulty in

defining the required precise-valued MFs of the FSs significantly restricts the applica-

tion of conventional FRI techniques. When facing such a higher order uncertainty, a
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8.1. Summary of Thesis

simple approach may be just ignoring this higher-level information. Yet, an obvious

drawback of this is that significant information may be lost, resulting in unaccept-

able inference conclusions. However, the way uncertainty may be represented and

processed also depends on the choice of what technique to use. There are different

uncertainty representation and handling techniques that may be exploited in devising

FRI mechanisms. It is therefore desirable to have a generic framework in which

such techniques may be unified and further developed. A higher order framework

has been proposed here for both representing the knowledge involving higher order

uncertainty and facilitating interpolation and extrapolation with such knowledge.

Before introducing the higher order framework, a thorough review of the existing

body of literature on FRI has been given in Chapter 2. In particular, the majority

of the existing FRI approaches are categorised into two groups: one-step FRI and

two-step FRI. Each group has been examined with a representative approach as

well as its extensions and improvements in detail. Besides FRI, basic knowledge

representations for characterising different types of uncertainty have also been

systematically introduced, including RSs and type-2 FSs. Also, as the basis for

the extension of the framework, the OWA and similarity measure operators for

information aggregation have been outlined.

The proposed higher order framework is a generalisation of the transformation-

based FRI techniques. It aims to offer greater flexibility in handling different types

of uncertainty that may be represent in sparse rule bases and observations. Two

main components: higher order knowledge representation and higher order rule

interpolation have been detailed in Chapter 3. The HOFSs in particular have been

designed to capture and represent such uncertainty, in which the lower and upper

bounds characterise the range of uncertainty. Then, higher order interpolation has

also been designed to perform interpolation and extrapolation in terms of HOFSs.

In order to realise the proposed higher order framework, two implementations

have been carried out. First, the implementation based on the use of RF sets has been

presented in Chapter 4. Inspired by the concept of RSs, a new definition of RF sets has

been proposed in order to establish this implementation, which is characterised by

the lower and upper approximation MFs. An algorithm for RF rule interpolation has

been subsequently explained assuming that sparse rule bases involving RF variables

are available. Then, a proof has been provided in order to verify that the RF approach

is indeed compatible with the original T-FRI.
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8.2. Future Work

A type-2 FRI technique has been presented as an alternative implementation of the

proposed framework in Chapter 5. As an extension to the conventional (type-1) FSs,

type-2 FSs are useful for handling uncertainty. The basic concepts involved have been

depicted and an approach for type-2 FRI has been presented. Illustrative examples

have shown that as with the RF-based implementation this approach is of natural

appeal for FRI. A comparison between type-2 FSs and RF sets has been provided.

Discussion concerning general type-2 FSs and interval type-2 FSs has also been

given, supported with an illustrative example, which has shown different but similar

resultant interpolated conclusions between them, both subsuming conventional

type-1 FS-based implementation as a specific case.

The effectiveness of the proposed framework has been evaluated in Chapter 6 by

employing a practical application of predicting diarrhoeal disease rates in remote

villages. Experts have attempted to model how environmental change may influence

disease burden so that they can predict the relevant disease rate. However, such

modelling can be a great challenge for experts due to the inexactness of the acquired

information and the incompleteness of the obtained knowledge. Moreover, different

experts may have different kinds of expertise, resulting in similar but different expert

rules and observations. The experimental work has shown that such problems can

be dealt with the use of the proposed work. Chapter 6 has also included further

application of the framework to real datasets concerning decision making problems,

supporting the derivation of consensual and consistent decisions.

Finally, a theoretical extension to the proposed RF sets has been described in

Chapter 7. The original definition of RF sets has been extended to a more general

version with the use of the OWA operator, leading to an OWA-based FRI method

that has then been applied to group decision making. This helps ensure that the

best decision can be made with respect to the available information and knowledge

possessed by all group members. Experimental results have demonstrated the efficacy

of the proposed work in producing interpolated results that entail overall decision

accuracy.

8.2 Future Work

Although promising, much can be done to further improve the work presented in

the thesis. The following subsections address a number of interesting issues whose

successful solutions will help to strengthen the current research and approaches.
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8.2.1 Short-term Developments

This subsection discusses on extensions and tasks that could be readily implemented

if additional time were available.

8.2.1.1 Framework Implementation with Gaussian Membership Functions

One of the significant steps in the higher order framework is defining fuzzy MFs

and the corresponding values. There are many choices for the types of MF which

may be used, such as triangular, trapezoidal, or Gaussian. The current framework

only considers polygonal MFs. In addition, Gaussian MF is another popular method

for specifying an FS for two reasons. Firstly, a fuzzy system with Gaussian MF has

been shown to be a universal approximator of any non-linear functions on a compact

set [177, 178]. Secondly, a multi-dimensional Gaussian MF generated during the

learning process can be decomposed into the product of one-dimensional Gaussian

MFs [96]. Also, Gaussian MFs are usually preferred for their smooth transition and

simple adaptability. A Gaussian MF is entirely specified by the two parameters: the

mean and the standard deviation. As such, it would be interesting to implement the

framework with the use of Gaussian MFs.

8.2.1.2 Framework Implementation with Weighted Fuzzy Rules

Improving the generalised capability of fuzzy IF-THEN rules extracted from training

data is very important for a rule-based fuzzy system [181]. In practice, a priori

information may exist about the data pairs [179]. Certain data may be very useful and

crucial, but others may be less useful and may even contain misleading information

or measurement errors. A degree can therefore be assigned to each data pair that

expresses the belief of its usefulness. When taking into account belief degrees in

fuzzy rules, the relative weight of each rule among all rules (the rule weight) and

the relative weight of each antecedent variable (the antecedent weight), jointly

constitute the weight that may be associated with the resulting fuzzy rules. However,

the framework presented in this thesis implements fuzzy inference without the use

of such rule weight information. It would be helpful to investigate the performance

of the framework by learning weights on the underlying constructed rule bases in an

effort to maximise the utilisation of uncertain information. Heuristic or evolutionary

algorithms [71, 79, 81, 102] could offer a solution for this task.
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8.2.1.3 Evaluation on More Realistic Data

The datasets employed in this thesis are public benchmark data, available through

the UCI machine learning repository [3]. They have been sourced from real-world

problem scenarios. Even though the utilised datasets reflect the high performance of

the proposed framework, it would be interesting to evaluate the framework on other

real-world problems. Application to such datasets would help to further demonstrate

the applicability and versatility of the framework.

8.2.2 Long-term Developments

This subsection proposes two future directions that could each form the basis of a

much more significant piece of research.

8.2.2.1 Generalisation of the Framework for Other Interpolation Techniques

The higher order framework proposed in this work presents itself only in terms

of the transformation-based interpolation technique, but this is not fundamentally

restricted by the underlying framework. Since certain existing higher order FRI

methods (e.g., [37, 38, 40, 41]) are based on non-transformation techniques, a more

general framework might be useful to incorporate the consideration of different

techniques. The generalisation of the development of this framework will substan-

tially improve the applicability of the work. Also, the framework targets uncertainty

problems encountered during FRI only. It would be interesting to investigate how

this framework can help with conventional fuzzy inference systems given the fact

that they also face the issue of dealing with different types of uncertain information.

It would be worthwhile developing a unified uncertainty representation and handling

platform that implements both conventional fuzzy inference and FRI. This is of great

importance since FRI techniques and conventional fuzzy inference may be applied

to a single complex problem in order to make inference possible for both dense and

sparse rule bases [208].

8.2.2.2 Fuzzy Rule Base Simplification

If the essential information contained in a rule base can be extracted and represented

by a subset of the original rules, the new compressed rule base can still be used for

calculating approximately the same conclusions [105, 161, 209]. In particular, for

fuzzy rule-based models acquired from numerical data, redundancy may be present in
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the form of similar FSs or rules that represent compatible concepts and their relations.

This results in an unnecessarily complex and more opaque linguistic description of

the system. Thus, it is potentially very useful to apply the proposed framework to

reduce the number of FSs in the rule base through a reverse engineering process.

That is, neighbouring rules may be replaced by an interpolate rule [76, 77]. Also,

close and similar FSs are merged to create a common HOFS to replace them. If the

redundancy in the rule base is high, merging close and similar FSs may result in

equal rules that can also be merged, thereby reducing the total number of rules. The

reduced rule base may be computationally more efficient and linguistically more

interpretable.
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Appendix A

Publications Arising from the Thesis

All publications are presented in chronological order.

• C. Chen and Q. Shen. Towards rough-fuzzy rule interpolation. Proceedings of

the 11th UK Workshop on Computational Intelligence, 2011.

• C. Chen and Q. Shen. A new method for rule interpolation inspired by rough-

fuzzy sets. Proceedings of the 21st International Conference on Fuzzy Systems.

pp. 1098-1105, 2012.

• C. Chen, C. Quek and Q. Shen. Scale and move transformation-based fuzzy

rule interpolation with interval type-2 fuzzy sets. Proceedings of the 22nd

International Conference on Fuzzy Systems. pp. 1-8, 2013.

• C. Chen and Q. Shen. OWA-based fuzzy rule interpolation for group decision

making. Proceedings of the 23rd International Conference on Fuzzy Systems. pp.

1319-1326, 2014.

• L. Yang, C. Chen, N. Jin, X. Fu and Q. Shen. Closed form fuzzy interpolation

with interval type-2 fuzzy sets. Proceedings of the 23rd International Conference

on Fuzzy Systems. pp. 2184-2191, 2014.

• C. Chen, S. Jin, Y. Li and Q. Shen. Backward rough-fuzzy rule interpolation.

To appear in Proceedings of the 24th International Conference on Fuzzy Systems.

• C. Chen, N. Mac Parthaláin, C. Quek and Q. Shen. Rough-fuzzy rule interpola-

tion. Under review for journal publication.

161



Appendix B

List of Acronyms

CCL Chang, Chen, and Liau

CK Chen and Ko

Clus-DOWA Cluster-based DOWA

DLSM Defuzzification-based least squares method

DOWA Dependent OWA

FIS Fuzzy inference system

FLS Fuzzy logic system

FOU Footprint of uncertainty

FRI Fuzzy rule interpolation

FS Fuzzy set

GDM Group decision making

HCL Hsiao, Chen, and Lee

HOFS Higher order fuzzy set

IOWA Induced OWA

KH Kóczy and Hirota

LA Lower approximation

LSDM Least squares distance method
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MACI Modified α-cut based interpolation

MF Membership function

OAM Optimal aggregation method

OWA Ordered weighted averaging

QMY Qiao, Mizumoto, and Yan

Rep Representative value

RF Rough-fuzzy

RS Rough set

SAM Similarity aggregation method

SC Soft computing

T-FRI Scale and move transformation-based FRI approach

UA Upper approximation

VKK Vass, Kalmár, and Kóczy
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