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Abstract

The assessment of academic journals is becoming more and more critical to many

scientific activities. Such assessment can have a significant influence upon many

issues ranging from publishing articles in academic journals to determining which

universities are qualified to undertake major research projects in a country. Recently,

journal ranking has been introduced as an official research assessment tool in many

countries. Both peer review and indicator based methods have been exploited

for this task in an effort to provide quantitative tools for ranking, evaluating and

comparing academic journals. A number of data-driven evaluation measures have

been developed based on citations, downloads and other statistical aspects of journals,

which have the advantages of being more objective, while consuming less time and

finance compared with assessments which based on peer review by human experts.

In this thesis, several intelligent system based methods for journal ranking are pre-

sented. The proposed approaches mainly utilise data-driven techniques including:

1) clustering algorithms, which are able to detect groups of academic journals that

have similar indicator scores; 2) fuzzy aggregations, which provide more flexible and

reliable aggregation of impact indicators than the use of Euclidean and Manhattan

distances in journal ranking; and 3) clustering ensembles, by which linguistic vari-

ables are introduced to support interpretive clustering of journals. In addition, the

mathematical properties of Ordered Weighed Averaging (OWA) aggregation of fuzzy

relations are exploited to enhance their application in clustering. Also, link-based

fuzzy clustering ensembles are proposed to improve the accuracy and robustness of

fuzzy clustering. A method for expediting fuzzy clustering ensembles is introduced to

reduce the effort in dealing with the growth of data volumes. Systematic experimen-

tal results demonstrated that these methods are not only flexible and interpretable,

but also accurate in capturing and reflecting the impact of academic journals.

The proposed approaches lead to a number of further developments. These include:

selecting and grouping journal impact indicators; learning the weighting vector

of OWA aggregation of fuzzy relations; applying fuzzy similarities to explore the

boundary region of rough sets; and using the link-based fuzzy consensus function

to support re-sampling based clustering ensemble. The proposed approaches for

journal ranking can also be employed to solve clustering or ranking problems in

applications other than journal assessment.
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Chapter 1

Introduction

W
ITH the fast development of Information Technology (IT) and wide application

of data acquisition equipment, a huge volume of data in various formats can

be collected in daily business and scientific activities. Nowadays, more and more

people have recognised that important and valuable information which can assist

humans in decision-making is embedded in such data. Therefore, how to make full

and effective use of the huge amount of data is becoming a critical challenge in

every fields of profession. Data mining and knowledge discovery, together with other

database technologies, provide an effective way to solve this problem. Data mining

is a computational process which is mainly based on artificial intelligence, machine

learning, and statistical techniques. It is capable of providing highly automated

analysis of the original data, making inductive reasoning, and extracting abstract

knowledge. In business activities for instance, data mining can help decision makers

to predict customer behaviors, adjust marketing strategies, reduce their risks, and

make the right decisions [20].

Since data mining can bring competitive advantages and economic benefits to

businesses, a large number of educational organisations and IT companies worldwide

have launched relevant research. Many classic algorithms and softwares have been

developed, and such techniques can be categorised according to different criteria.

For example, according to the representation of data, data mining techniques may

be categorised to: relational, transactional, object-oriented, object-relationship, and

data warehouse. According to the specific formats of the processed data, they can

be categorised to: text, multimedia, time series, Internet, etc. Based on different

1



1.1. Intelligent Data-driven Learning

types of targeting knowledge, they can be categorised to: association, classification,

clustering, feature analysis, etc. Also, data mining techniques can be divided into

two categories based on their range of application: domain-specific techniques and

common techniques. Domain-specific data mining can only provide solutions to a

specific area and is usually based on expert knowledge from that area.

As the volume of data grows rapidly, the traditional, manual knowledge discovery

process becomes increasingly time-consuming and expensive in many tasks [64].

This is especially the case for problem domains where classic approaches rely heavily

on the opinions of domain experts, who must have an intricate understanding of the

problem at hand [50], such as the task of assessing academic journals that this thesis

is focussed on. When assessing the quality of an academic journal, expert opinions

are often subjective and/or inconsistent between different individuals [164]. More

importantly, with the development of online academic databases, the bibliographic

data in its present form may contain a large number of objects (scholars, publications,

etc.) and links (co-authors, citations, etc.), which are impractical (if not impossible)

in most cases for human beings to analyse.

Classification and clustering techniques present possible approaches that attempt

to reduce the overall burden of human experts in assessing academic journals. Clas-

sification methods typically work by transforming the underlying human knowledge

and criteria for assessing journal qualities into rules, decision trees, and many other

forms of classifiers through learning from the ranking results of experts [11]. Clus-

tering approaches, being the main focus of this thesis, can search for and identify

groups of journals so that the qualities of academic journals in each group are similar

to each other.

1.1 Intelligent Data-driven Learning

Both classification and clustering algorithms can automatically build models for

making predictions or decisions by learning useful information from data, and the

effectiveness of both classification and clustering analysis is strongly dependent on

the quality of data to which they are applied. For example, noisy data may affect the

accuracy of the resulting data models [139]. To conduct classification analysis, it is

required that the available data contains a certain amount of labelled examples, while

in clustering analysis, only unlabelled examples are required. With most (if not all)
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of the existing data-driven methods, it is true that the training examples will be more

useful if they reflect the real problem. In terms of machine learning, classification

and clustering are within the frameworks of supervised and unsupervised learning,

respectively.

1.1.1 Supervised Learning

In supervised learning [117], examples with inputs and outputs are presented as

the training set, and an algorithm is required to return a mapping from the inputs

to outputs, which fits the observed training set. Formally, given a training set of N

examples, each of which is in the form (xa ∈ X , ya ∈ Y ), a = 1, · · · , N , a function

g : X → Y is to be learnt, where X represents the input space and Y is the output

space. In classification analysis, Y usually represents a set of discrete, non-ordered

labels of examples. The function g is an element of a set of possible functions G

that can be learnt by an algorithm, usually called the hypothesis space. The learnt

function is evaluated based upon how well it predicts the labels for a particular set

of examples, which is named as the testing set. The testing set can be a separate set

of labelled examples or can be generated from all available labelled examples by

using the cross-validation [15].

The training model described above is the discriminative training. The other

model in the supervised learning framework is the generative training. The dis-

criminative model merely performs classification or regression based upon labelled

examples, while the generative model also explains how the data were generated.

In this thesis, only the discriminative model of supervised learning is discussed.

Examples of the discriminative model include decision trees, neural networks, and

support vector machines.

1.1.2 Unsupervised Learning

Unlike in the supervised learning, algorithms of unsupervised learning are given only

unlabelled examples, and they can show the hidden structure of data in the sense of

how the examples are organised. Many algorithms developed in the unsupervised

learning framework are based on data mining methods used to preprocess data such

as the clustering analysis and principal component analysis. Clustering analysis is the

task of grouping or segmenting a collection of examples into subsets (called clusters)

such that those within each cluster are more similar to each other than examples
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assigned to other clusters. An example can be described by a set of features, or by

its similarities to other examples in the dataset [91].

Central to all the factors of clustering analysis is the notion of the degree of

similarity (or dissimilarity) between the examples. A clustering algorithm attempts

to group the examples into the same cluster when the degree of defined similarity

between them is high. However, the notion of a “cluster” cannot be precisely defined

[60]. Different clustering algorithms usually form different models of clusters even

when they work on the same set of examples. Typical models of clustering analysis

include: connectivity model, centroid model, density model, and so on. Normally,

each example can only belong to one cluster in a clustering result. However, in

fuzzy clustering, each example can belong to each cluster to a certain degree (called

membership).

By contrast to classification, there are no explicit target outputs associated with

each input in clustering. However, it is possible to develop from the formal framework

of unsupervised learning that the goal of clustering is to build representations of

the input that can be used for decision making, predicting future inputs, etc. In

other words, the resulting groups of examples are usually the matter of interest in

clustering analysis, while in terms of classification, the resulting discriminative power

of grouping examples is of interest.

1.2 Research Quality Assessment

Bringing influential and significant research output to society is one of the key

objectives of many universities and institutes, and also the life-long pursuit of scholars.

Additionally, the assessment of research quality is becoming more and more critical

to many scientific activities. Such assessment can have impact upon many issues

ranging from publishing articles in academic journals/conferences to determining

which universities are qualified to undertake major research projects in a country.

According to [31, 32], if in the words of the old song “money makes the world go

round”, it is research quality assessment which, in the higher education context at

least, makes the money go round.
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1.2.1 National Projects of Research Quality Assessment

Recently, many countries have implemented their national projects for academic

outputs evaluation and quantitative assessment, such as the Research Excellence

Framework (REF) in UK and the Excellence in Research for Australia (ERA). Generally

speaking, the projects organised nation-wide are abundant in funding and human

resource. In such cases, inviting expert panels to accomplish a comprehensive

peer review is probably the most reliable methodology to make an unbiased result.

Although the results from national projects could be more sophisticated than other

assessment projects, the huge time and financial costs make this approach difficult

to carry out frequently.

Research Excellence Framework in UK

The Research Excellence Framework (REF) is the new system for assessing the quality

of research in UK Higher Education Institutions (HEIs) [160]. Its original project is

the Research Assessment Exercise (RAE). The primary purpose of REF is to produce

assessment outcomes for each submission made by HEIs. The final outcomes of REF

can have a profound influence on many aspects of research activities in the UK. For

example, the funding bodies intend to use the assessment outcomes to inform the

selective allocation of their research funding to HEIs. The assessment can provide

accountability for public investment in research and produces evidence of the benefits

of this investment.

Technically, REF is a process of expert review. HEIs are invited to make submis-

sions which will be assessed by expert sub-panels, working under the guidance of

main panels. Sub-panels can apply a set of generic assessment criteria and level

definitions, to produce an overall quality profile for each submission. The primary

outcome of the assessment will be an overall quality profile awarded to each submis-

sion, showing the proportion of the submission that meets each of the starred levels

ranging from: “four-star” which indicates “quality that is world-leading in terms of

originality, significance and rigour” to “Unclassified” which indicates “quality that

falls below the standard of nationally recognised work. Or work which does not

meet the published definition of research for the purposes of this assessment”.

5



1.2. Research Quality Assessment

Excellence in Research for Australia

The Excellence in Research for Australia (ERA) is conducted by the Australian Re-

search Council (ARC), with objectives which include: establish an evaluation frame-

work that gives government, industry, business and the wider community assurance

of the excellence of research conducted in Australian higher education institutions;

provide a national stocktake of discipline level areas of research strength and areas

where there is opportunity for development in Australian higher education institu-

tions; and so on. ERA evaluates research undertaken in higher education institutions

using measures of research volume and indicators of research quality, application

and recognition. It outlines performance in each of the disciplines evaluated at each

institution.

One of the main outcomes of ERA is the Ranked Journal List [90, 186]. The ARC

spent several years on preparation and consultations related to journal ranking, and

released its full ranked lists of more than 20,000 unique peer-reviewed journals in

ERA 2010 and ERA 2012, respectively. Over 700 experts are involved to assist the

ARC in developing this journal ranking list in which each journal has a single quality

rating and is assigned to one or more disciplines defined by its research topic [11].

1.2.2 Journal Ranking

Generally, the assessment of research quality is mainly implemented as the evaluation

of research outputs in various forms. Taking computer science as an example, the

research outputs can be presented as prototype, software, research paper, etc. It can

be seen from those national research assessments that no matter in which research

fields, three common entities are critical to the evaluation of research outputs. They

are academic journals, researchers (organised by universities or departments) and

their publications. The evaluating tasks on the three entities are interlinked and

sometimes circular. For example, the quality of a research publication potentially

reflects, and is affected by, the prestige of that journal and the authors’ research

experience. Therefore, the existing assessment projects and methods usually have

certain aims and scales.

Journal ranking is widely used in a number of research fields to evaluate an

academic journal’s impact and quality. The aim of journal rankings is to reflect the

place of a journal within the research field, which has impact on the prestige of the

6



1.3. Thesis Structure

journal and the relative difficulty of getting a paper published in it. Recently, journal

ranking has been introduced as an official research evaluation tool in some countries

such as Norway, Australia and France [154].

Assessment of journal quality offers various benefits to the academic community.

The assessment outcomes help researchers to demonstrate their accomplishments to

colleagues, administrators and tenure and promotion committee members, especially

those not familiar with the research domain. By knowing the ranks of journals,

researchers may be more willing to submit their stronger works to the journals with

a higher rank. And also, libraries may consider the assessment outcomes of journals

to decide which journals should be future subscription. Students may consult the

ranking lists to identify the most credible sources for theories, ideas, and research

methods [169]. However, every coin has two sides. Some universities pay too

much attention to journal rankings so that their research members are required to

publish papers only in a very limited number of top journals [177]. In some newly

emerging research areas, there are few journals can be the top-listed ones amongst

journals whose topics are in mainstreams, which makes researchers from those areas

feel difficult to get their works published. Furthermore, By only concentrating on

publishing papers in a small set of journals, some researchers will dedicate their

effort to meeting the reviewers’ requirements rather than making truly contribution

to a research field. Therefore, some researchers just reject journal rankings and

choose to submit their papers to the best journals from their own perspective.

In conclusion, the essential scientific value is embedded in the content rather

than the location of publications. Top-ranked journals may still contain works of low

quality and contribution. In this thesis, several intelligent data-driven methods are

developed and applied to the assessment of journals, which allow more objective,

interpretable, and intuitive ranking of journals.

1.3 Thesis Structure

This section outlines the structure of the remainder of this thesis. The relationships

between the technical chapters are illustrated in Figure 1.1. The dependencies

between these chapters are denoted as solid arrows. The chapters which mainly

concern the intelligent methods for journal assessments are shown in blue boxes,

while the other chapters discuss general problems of intelligent methods extended
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from the journal assessments, which are shown in pink boxes. A comprehensive list

of publications arising from the work of the thesis is provided in Appendix A.

Figure 1.1: Relationships between Thesis Chapters

Chapter 2: Background

This chapter provides a background introduction to modern techniques involved

in the assessment of academic journals, which is organised into two core parts:

academic publication database and journal impact indicators. This chapter has

firstly introduced the concept and development of academic publication database.

Secondly, several well-known representatives of these such as: IEEE Xplore, AMiner,

and Web of Science have been explained in detail, as they are the main examples

adopted to demonstrate the publisher-oriented, researcher-oriented, and index-

oriented databases, respectively. More importantly, a selection of popular journal

impact indicators are reviewed. Their underlying respective inspirations span a wide

range of techniques, including bibliometrics, machine learning, and data mining.
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The methods which investigate the correlation and aggregation of existing indicators

are reviewed, on which the establishment of journal clustering methods proposed in

this thesis is based.

In addition, a link-based framework of bibliographic data is identified. Those

reviewed journal impact indicators are uniformly categorised by the sets of links

based on which they are calculated.

Chapter 3: Fused-link: Distance-based Aggregation of Journal

Indicators

In this chapter, an approach based on links between journals is proposed for the

capturing and fusion of various journal impact indicators. In particular, a number of

popular indicators are combined and transformed to fused-links between academic

journals, and two distance metrics: Euclidean and Manhattan distances are utilised

to support the development and analysis of the fused-links. The approach is applied

to both supervised and unsupervised learning, in an effort to estimate the impact

and therefore the assessment of journals.

This chapter also presents the details of experimental design for demonstrating

the performance of fused-link. The construction of datasets and the evaluation

criteria are also used in other relative chapters. Results of systematic experimental

evaluation demonstrate that by exploiting the fused-links, simple algorithms such as

k Nearest Neighbours (kNN), and especially the clustering methods such as k-means,

can perform as well as advanced techniques like support vector machines, in terms

of accuracy and within-1 accuracy, while exhibiting the advantage of being more

intuitive and interpretable.

Chapter 4: OWA-based Aggregation of Fuzzy Relations for

Journal Ranking

Fuzzy relations form the basis for many developments and applications of fuzzy

systems. Measures of fuzzy similarity have been proposed in the literature for com-

paring objects. In this chapter, aggregated fuzzy relations are generated between

academic journals to compare their performance with respect to different journal

impact indicators. In particular, various indicators may be employed to construct

several distinctive fuzzy similarity relations, which may be subsequently combined
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via the use of the Ordered Weighted Average (OWA) operator. This OWA-aggregated

measure preserves reflexivity and symmetry, with T -transitivity conditionally pre-

served if appropriate weighting vectors are selected. Different similarity measures

and weighting vectors are compared for the task of journal clustering, in an effort to

estimate the ranking of academic journals.

Besides the original OWA aggregation operator, a nearest neighbour guided

induced OWA operator (abbreviated as kNN-IOWA), is also proposed in this chapter.

kNN-IOWA is a special case of the generic induced OWA where the input arguments

are ordered by the average distances to their k nearest neighbours. The weighting

vectors in kNN-IOWA are defined, which are used to interpret the overall behaviour

of the operator’s reliability. kNN-IOWA is also applied for building aggregated

fuzzy relations between academic journals, based on their indicator scores. Its

result is compared against different types of aggregation operator and tested on six

bibliometric datasets.

The results of experimental evaluation demonstrate that by using OWA-based

aggregation of fuzzy similarity relations, simple techniques such as k-means can

perform well in terms of standard accuracy and within-1 accuracy.

Chapter 5: T -transitivity on Ordered Weighted Aggregation of

Fuzzy Relations

In the application of OWA-based aggregation of fuzzy similarity to support journal

ranking and other decision making processes, a key question relates to what un-

derlying mathematical properties of the model can be preserved in the process of

constructing or aggregating similarity relations. In this chapter, the properties of

OWA aggregated fuzzy similarity have been studied from a mathematical point of

view. In particular, two types of aggregation are investigated: 1) for component

relations defined by minimum T -norm, the min-max operators are employed to

aggregate them; and 2) for component relations defined by Łukasiewicz T -norm, the

sum-product operators are employed. The condition of when the proposed aggre-

gated relations preserve T -transitivity is examined, and its impact upon clustering

procedures is experimentally investigated.

Fuzzy similarity relations generated from different feature patterns are aggregated

via the use of the respective proposed aggregators. The aggregated fuzzy relations are
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employed as measures of similarity amongst feature patterns to perform hierarchical

clustering. Results on UCI benchmarks demonstrate that the aggregated similarities

following the proposed approach produce better hierarchical clusters than those of

classic aggregators (e.g., min, max, and average).

Chapter 6: Ensemble of Fuzzy Clusters for Journal Ranking

Fuzzy techniques, such as fuzzy aggregations and fuzzy clustering, have been proven

effective for many applications of decision making and multi-criteria evaluation.

In this chapter, fuzzy aggregation techniques, the OWA operators in particular, are

further applied to aggregate the scores of academic journals under different impact

indicators. A fuzzy aggregation based fuzzy clustering ensemble method is proposed

for ranking academic journals. Specifically, several distinctive fuzzy clusters of

journals are constructed based on their performance with respect to different journal

impact indicators, which may be subsequently combined via the use of various OWA

operators. A rank can therefore be generated based on the memberships of journals to

those combined fuzzy clusters. The nearest neighbour guided aggregation operators

can enhance the reliability while the fuzzy clustering enhances interpretability of the

ranking procedure.

The ranking results of academic journals from six subjects are compared with the

journal list published in Excellence in Research for Australia (ERA). The fuzzy aggre-

gation and clustering ensemble based approach shows its advantage in providing

ranking results that are generally more accurate with a linguistic interpretation.

Chapter 7: Link-based Fuzzy Clustering Ensembles

This chapter further studies the clustering ensemble techniques for aggregating fuzzy

clusters. Besides its effectiveness in journal ranking, clustering ensemble offers a

general approach for aggregating multiple clustering results in order to improve the

overall clustering robustness and stability. It also helps improve accuracy by combing

clustering results from component methods that utilise different parameters (e.g.,

number of clusters), avoiding the need for carefully pre-setting the values of such

parameters in a single clustering process. Link-based consensus methods for the

ensemble of fuzzy c-means are proposed in this chapter. They employ a fuzzy graph

to represent the relationships between component clusters upon which to derive the

final ensemble clustering results.
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The proposed methods are tested against typical traditional methods on various

benchmark datasets. The experimental results demonstrate that the proposed fuzzy

link-based clustering ensemble approach generally outperforms the others in terms

of accuracy.

Chapter 8: Computational Considerations of Fuzzy Clustering

Ensemble

To reinforce such link-based fuzzy clustering ensemble, this chapter presents another

ensemble approach for fuzzy clustering, with an aim to be applied for clustering of

a larger scale of data. The proposed algorithm first generates fuzzy base-clusters

with respect to each data feature and then, employs a fuzzy hierarchical graph to

represent the relationships between the resulting base-clusters. Whilst the work

employs fuzzy c-means and hierarchical clustering in generating base-cluster and

implementing consensus function respectively, when applied to large datasets it has

lower time complexity than the original fuzzy c-means and hierarchical clustering.

The resultant ensemble clustering mechanism is tested against traditional cluster-

ing methods on various benchmark datasets. Experimental results demonstrate that

it generally outperforms its crisp counterparts and the single linkage agglomerative

clustering, in terms of accuracy in conjunction with time efficiency, thereby showing

that it has the potential for application in clustering big data.

Chapter 9: Conclusion

This chapter summarises the key contributions made by the thesis as well as a

discussion of topics which form the basis for future research.

Appendices

Appendix A lists the publications arising from the work presented in this thesis,

containing both published papers, and those currently under review for journal

publication. Appendix B provides information regarding the UCI benchmark datasets

employed in the thesis. Appendix C summaries the acronyms employed throughout

this thesis.
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Chapter 2

Background

T
HE evolution of the electronic age has led to the development of numerous aca-

demic publication data on the Internet, offering search facilities on a particular

subject and the ability to perform research quality analysis. Scientific journals may

differ with respect to their importance, status and prestige in a specific academic

area. With the development of online resources of academic publications, journal

impact indicators are designed to assess significance and performance of individual

journals, their role and position in the international formal communication network,

their quality or prestige as perceived by scholars, by analysing citations, downloads

and comments of individual journals.

Concerning the common approaches for journal quality assessment, there are

two general methodologies: 1) peer review, which is a judgment based on expert

opinion; and 2) indicator measure, which is a judgment that is based on quantitative

data. Each of these approaches expresses its inherent and specific strengths and

weaknesses. Although peer review can integrate more complexity of human opinions

into evaluation assessments, it also creates a potential for subjectivity of peer panels

[36]. The indicator-based assessment of journals relies on the development in com-

puter and information technologies. Many academic organisations and commercial

publishing institutions maintain large publication/indexing databases, enabling the

calculation of citations and other possible journal impact indicators. These indicator-

based assessments are not only more objective, but also use less time and finance

compared with those assessments based on peer review by human experts.
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Generally speaking, a digital bibliographic system involves several components,

and each component has its specific functions. An illustrative diagram of these com-

ponents and the dependence between them are shown in Figure 2.1 [85]. Similar

to many other information systems, the core in Figure 2.1 is the data source. In

the digital bibliographic system, most of the electronic versions of academic arti-

cles are provided by publishing companies themselves. Abstracting and indexing

system summarises the essential contents of documents. The main function of an

indexing system is to facilitate the speedy location of specific items of publications.

The indexing system is able to rearrange the abstracted materials, bring together

distributed articles to a topic and arrange them in classified order. A good index

sometimes is a valuable aid for scholars to select the publishing place of their scien-

tific works. The outside layer of the diagram shown in Figure 2.1 is the application

layer. Typical applications of a digital bibliographic system include: 1) search engine,

which allows users to search the database with keywords and find relevant academic

publications very quickly; 2) quality report, which provides indicator-based analysis

about citations of a single publication or a set of publications (such as a journal or a

proceeding). Note that not all the three layers are necessarily included in modern

digital bibliographic systems. For example, Google Scholar [88] uses its powerful

search technique to collect useful indexing information from the Internet rather than

providing data source by itself. Meanwhile, a number of publishing companies also

provide highly integrated indexing and searching services.

The implementation of such an bibliographic system specifically for assessment

of journals is also practical. For example, BibNetMiner is an system designed for

sophisticated information network mining for bibliographic data. It also contains a

multi-level architecture [180]. The bottom level contains the information extraction

and analysis engine which provide the data source for the system. The middle layer

is the functional module layer, which implements the major assessment algorithms

based on the clustering and ranking information derived from the information

network analysis. The top layer contains a user-friendly and visualization-enhanced

interface, which interacts with users and responds to their requests. For ease of

explanation and organisation, in this thesis, the term Academic Publication Database

(APD) is adopted to describe all the relevant services of collecting, indexing, searching,

analysing, and other manipulating of academic publication data.

The remainder of this chapter is structured as follows. The detailed introduction

of APD and several representative ones of APDs are presented in Section 2.1. The
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Figure 2.1: Components of a Digital Bibliographic System

main focus of this thesis lies in the use of indicator-based journal quality evaluation.

Therefore, the statistical-based and learning-based assessments of academic journal

quality are of significant importance to the development of the present work. They

are covered in Section 2.2 in detail. A comprehensive description of a link-based

framework of bibliometric data is given in Section 2.3, based on which the indicators

can be re-defined and categorised. Finally, Section 2.4 summarises this chapter.

2.1 Academic Publication Databases (APDs)

An APD is a database of bibliographic records, an organised digital collection of

references to published literature, including journal and newspaper articles, con-

ference proceedings, reports, government and legal publications, patents, books,

etc. In contrast to library catalogue entries, a large proportion of the bibliographic

records in APD contain very rich subject descriptions in the form of keywords, subject

classification terms, or abstracts [65]. APDs are mainly used to find journal articles,

while some databases will also index other types of material, such as book chapters,

theses, conferences, patents, etc. An APD may be general in scope or cover a specific

academic discipline, and a significant number of bibliographic databases are still
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proprietary, available by licensing agreement from vendors, or directly from the

indexing and abstracting services that create them.

A number of APDs are established by publishing companies and evolve into digital

libraries, providing the full-text of the indexed contents. Others may cover citations,

scholars, and research topics to create more complete disciplinary search engine

systems. Nowadays, the distinction between a database and a search engine is unclear

for many online APDs as they are providing integrated services to users. Several

typical APDs that cover the research area of computer science are outlined below,

in which IEEE Xplore represents publisher-oriented, AMiner represents researcher-

oriented, and Web of Science, Scopus, Google Scholar represent index-oriented APDs,

respectively.

2.1.1 IEEE Xplore

IEEE Xplore (http://ieeexplore.ieee.org/) is a typical publisher-oriented APD. It

indexes, abstracts, and provides full-text for articles and papers mainly from the Insti-

tute of Electrical and Electronics Engineers (IEEE) and the Institution of Engineering

and Technology (IET). Many of the materials covered by IEEE Xplore are on com-

puter science, electronics and relevant engineering. The IEEE Xplore digital library

provides online access to more than three million full-text documents from some of

the world’s most highly cited publications in electrical engineering, computer science

and electronics. The IEEE Xplore provides access to many highly cited journals in

computer science such as: IEEE Transactions on Fuzzy Systems, IEEE Transactions on

Pattern Analysis and Machine Intelligence and IEEE Transactions on Neural Networks

and Learning Systems. Guests can only have access to basic abstracts of academic

articles and conduct free keyword searches based on content of abstracts. Full-text

access rights and advanced search options are based on institution’s subscription.

Similar to IEEE Xplore, ScienceDirect (http://www.sciencedirect.com/) is also a

full-text APD owned by another main international publisher of scientific publications,

the Elsevier. It covers over 2,500 journals and more than 33,000 book titles published

by Elsevier.

2.1.2 AMiner

AMiner (http://aminer.org/), previously named as ArnetMiner, is a free online service

used to index and search academic social networks. It was firstly initiated and created
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by Professor Jie Tang from Tsinghua University, China, and its relevant research

was funded by the Chinese National High-tech R&D Program and the National

Science Foundation of China. AMiner is designed to search and perform data mining

operations against academic publications on the Internet. In addition to this, it also

uses social network analysis to identify connections between researchers through

their publications [182]. This allows it to provide a series of researcher-oriented

services such as expert finding, reviewer recommendation, academic performance

evaluation, and so on.

AMiner was created as a research project in social influence analysis, social

network ranking, and social network extraction. AMiner is famous in academia for

its ability of identifying relationships between and drawing statistical correlations

about research and researchers. It solves the problem of how to extract researcher

profiles from the Internet and integrate the extracted information from different

sources. A powerful search service based on the integrated information is also

provided for users. So far, the statistics from the website of AMiner indicate that

about 40 million researchers and about 80 million publications are indexed.

ResearchGate (http://www.researchgate.net/) is another social networking site,

which is designed for scientists and engineers to share papers, ask and answer

questions, and find collaborators. Similar to AMiner, it is also a researcher-oriented

APD. However, ResearchGate has many of the features that are typical amongst

social network sites, such as updating user profiles, finding other users with similar

interests and sharing/reviewing academic papers like blogs. It differs from other

social networks in that it is designed for researchers and scientists. From 2009 to

2011, the site grew from 25,000 users to more than 1 million [47].

2.1.3 Web of Science

Web of Science (WoS), previously known as Web of Knowledge, is an online subscription-

based scientific citation indexing service maintained by Thomson Reuters that pro-

vides a comprehensive citation search. Its most noteworthy and enduring output is

its indexing-oriented products covering the disciplines of arts and humanities, social

sciences and science and its in-depth exploration of specialised subfields within these

disciplines [4].
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Science Citation Index Expanded

WoS consists of several core sub-APDs, one of which is the famous Science Citation

Index Expanded (SCI-E) known by many scholars in the research area in science and

engineering. SCI-E is a larger version of the Science Citation Index (SCI) which is a

citation index originally produced by the Institute for Scientific Information (ISI) in

1964. SCI-E covers more than 6,500 journals ranged from 1900 to the present, across

150 disciplines [92]. Due to the reputation of WoS and its rigorous selection process

of journals, those journals indexed by SCI-E are ususally described as the world’s

leading ones of science and technology. More importantly, getting papers published

in these journals is becoming one of the requirements for many universities to offer

tenure to their research staff.

Journal Citation Reports

Journal Citation Reports (JCR) is an annual publication of bibliometric analysis

provided by WoS. It reports valuable information about academic journal citations

in the sciences and social sciences, including indicator-based analysis of journals

such as the Journal Impact Factor (JIF). The JCR was originally published based on

Science Citation Index only. Currently, JCR has become a distinct service of WoS,

which is based on citations compiled from both the SCI-E and the Social Science

Citation Index (SSCI) [78].

As with other bibliometric approaches, the JCR has its own limitations. Recently,

much debate has surrounded the overuse of JCR pointing out certain deficiencies

of the calculation processes of JIF and other indicators reported in WoS. These

criticisms were mainly around that several indicators, especially the JIF, are field-

specific and can be easily manipulated by editors, self-citations or by changing the

editorial policies, which makes the entire process essentially nontransparent [164].

In spite of the criticisms, the general contribution of the WoS to the development

of indexing services and to the establishment of bibliometrics and scientometrics

is considerable. JCR also has a significant influence on the behaviour of both the

scholars who need to get their research findings published (for example, in research

performance or promotion reviews, many universities make direct reference to staff’s

publication record in journals reported in JCR) and the librarians who seek for

sources of publications.
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2.1.4 Scopus

Besides the full-text APD, Elsevier also provides an abstract and citation indexing

APD which is named as Scopus (http://www.scopus.com/). Instead of depending

only on Elsevier’s publications, Scopus established a content selection and advisory

board to maintain an open and transparent content coverage policy regardless of

publisher. It covers over 55 million records from more than 5,000 international

publishers and also evaluates journals by using indicators.

Compared with WoS, Scopus is easy to navigate, even for the novice user. Its

ability to search both forward and backward from a particular citation can be found

to be helpful to users. Besides, the multidisciplinary aspect allows users to easily

search outside of their discipline. One advantage of WoS over Scopus is the depth of

coverage, with the full WoS database going back to 1945 and Scopus going back to

1966. However, Scopus and WOS complement each other as neither resource is all

inclusive. Libraries which are able to afford them usually will subscribe to both tools

[34].

2.1.5 Google Scholar

Google Scholar (http://scholar.google.com/) is a freely accessible web search engine

that indexes the metadata of scholarly literature across disciplines produced by

Google. The Google Scholar index includes most peer-reviewed journals around the

world, plus scholarly books and other non-peer online documents. While Google

does not publish the size of Google Scholar’s database, it is estimated in [146] that

Google Scholar contains roughly 160 million documents as of May 2014. Google

Scholar resembles the subscription-based APDs including Scopus, WoS, and etc. Free

users of the relevant APDs will be able to access only an abstract and the citation

details of an article.

Besides its competitive indexing and searching services, Google Scholar also

provides convenient personalised services for users who have Google accounts. It

allows users to save search results into the “Google Scholar library”, a personal

collection which the user can search separately and organise by tags. It also allows

individual scholars to create personal “Scholar Citations profiles”, public scholar

profiles that are editable by scholars themselves. Google Scholar can automatically

calculate and display the scholar’s total citation count, h-index [6], and i10-index

[104].
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In spite of the WoS, Scopus, and Google Scholar which generally have cover-

age on multiple research areas, there are a good number of index-oriented APDs

which mainly cover a specific research area. In the field of computer science,

such well-known APDs include DBLP (http://dblp.uni-trier.de/) and the CiteSeerX

(http://citeseer.ist.psu.edu/).

2.2 Indicators for Assessment of Journal Quality

Journal impact indicators provide quantitative tools for ranking, evaluating and

comparing academic journals. Formally, such an indicator is a mapping from an

academic journal to a real number which usually represents the score of the journal.

Journals with higher indicator scores are usually deemed to be more important than

those with lower ones. However, each indicator has its strengths and limitations,

and their ranking results can be quite different [164, 173]. The following section

reviews several well-known statistical journal indicators.

2.2.1 Statistical-based Indicators

As pointed out in Section 2.1, with the development in computer and information

technologies, many organisations and commercial institutions are able to maintain

very large publication databases, upon which the calculation of citations and many

complex journal impact statistics are available. Indeed, various indicators of journal

impact have been designed for different purposes via the use of different databases.

For examples, WoS has several measures of journals included in its annual citation

report, and Scopus provides the Source Normalized Impact per Paper (SNIP) [124]

based on its own database. Amongst these, the most well-known and perhaps, the

most utilised is the journal impact factor provided by WoS.

2.2.1.1 Journal Impact Factor

The Journal Impact Factor (often abbreviated as JIF) of a journal is a non-negative

number which indicates the average count of citations to the source items published

in that journal. It was devised by Eugene Garfield who is also the founder of SCI and

JCR. Formally, the JIF of a journal is calculated by dividing the number of current

year citations to the articles published in that journal during the previous two years.

For example, the 1992 JIF score of a journal is calculated as:
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• A = total cites in 1992

• B = 1992 cites to articles published in that journal during 1990-91 (this is a

subset of A)

• C = number of articles published in that journal during 1990-91

• D = B/C = 1992 JIF score

The standard JIF relates to a specific two-year time period; it is possible to

calculate it for any desired period. The JCR also includes a 5-year JIF which is the

average number of times articles from the journal published in the past five years

have been cited in the current year. It is calculated by dividing the number of citations

in the JCR year by the total number of articles published in the five previous years.

For example, the 1992 5-year JIF score of a journal is calculated as:

• A = total cites in 1992

• B = 1992 cites to articles published in that journal during 1987-91 (this is a

subset of A)

• C = number of articles published in that journal during 1987-91

• D = B/C = 1992 5-year JIF score

The 5-year JIF complements very well the standard 2-year JIF for indicating the

prestige, reputation and influence of the journals through the ratio of the citation

counts of articles published in the journals to average productivity of journals for a

longer time span [103]. A detailed comparison between 2-year and 5-year JIFs, and

an example of how they change the rank order journals can be found in [77].

JIF and 5-year JIF eliminate some of the bias of such counts which favor large

journals over small ones, or frequently issued journals over less frequently issued ones

[76]. For a long time, JIF is usually recognised as a metric for the relative importance

of a journal within a research field. However, much debate has surrounded the

overuse of the JIF, which include that citation behavior varies among fields of science

and JIF cannot tell this systematic differences, self-citations are not excluded, and

several other unreflected matters can affect the value of JIF heavily.
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2.2.1.2 Source Normalised Impact per Paper

Recently, Scopus introduced an indicator named Source Normalised Impact per Paper

(SNIP). It tries to solve the problem that citation frequencies in some research fields

are on average significantly lower than in others, so that its scores can be explained

without a field classification system in which the boundaries of fields are explicitly

defined [124]. SNIP employs a source normalised approach to correct for differences

in citation practices between scientific fields.

A key concept in SNIP is called Raw Impact per Paper (RIP) published in the

journal, which is not essentially different from a three-year JIF, but the citing and

cited publications are included only if they are indexed by the Scopus rather than

WoS. Another key concept in SNIP is called citation potential which indicates how

frequently papers in a subject field cite other papers. It is defined as the average

number of cited references per paper in a set of papers. For example, there is a set

of four citing papers, and their citation relationships with three cited articles of a

journal are shown in Figure 2.2. The numbers in the upper squares indicate the

number of cited references contained in each source paper. The citation potential

in a set of source articles is defined as the average number of cited references per

source article, which amounts in this example (3+ 2+ 1+ 2)/4= 2.

The calculation of citation potential of a journal starts by delineating the journal’s

subject field. The subject field of a journal is defined as the set of all papers in the year

of analysis with at least one reference to the journal. Since the SNIP is calculated by

Scopus and each APD has its own coverage, the calculation of the citation potential

does not count the total number of cited references in a paper, but the number of

cited references published in journals processed for the Scopus database. The result

of a database-dependent citation potential is renamed as Database Citation Potential

(DCP), which is further normalised to Relative Database Citation Potential (RDCP)

as:

RDCP=
DCP

median(DCP)
. (2.1)

where median(DCP) denotes the median DCP value of all journals in the Scopus

database. For example, the Journal of Electronic Materials gained the median DCP

in the Scopus database of the year 2007, which is 6.87. Therefore, when calculating

the RDCP of 2007, all journals’ DCP values are divided by the same number 6.87. As
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Figure 2.2: Example of Citation Potential

a consequence, half of the journals in the Scopus database have a RDCP value that is

higher than 1.0 and half of them have a RDCP value that is lower than 1.0. Based

on RIP and RDCP, the SNIP is defined as:

SNIP=
RIP

RDCP
. (2.2)

Since there is no normalisation for field differences, the RIP indicator can only

reflect the average citation impact of the publications of a journal, without correcting

for differences in citation behaviours between scientific fields. By using the ratio

of a journal’s RIP value to its RDCP value, the SNIP indicator is able to provide a

measure of citation impact that allows for meaningful comparisons between journals

from different research fields [193].

After the original definition and implementation of the SNIP by Scopus, a number

of modifications were recently made to the indicator. Although some systematic
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differences can be observed between the revised and original version, the differences

of ranking journals between them turn out to be relatively small [193]. The details

of these modifications and discussions can be found in [124, 159, 193].

2.2.1.3 Researcher Behaviour based Indicators

Besides the citations amongst papers and journals, the behaviour of researchers is

also very informative in reflecting the impact and quality of academia journals. In

[95], an approach which examines the publishing behaviour of full-time, tenured

faculty members from leading universities is proposed with an aim to rating journals.

It is assumed that those Selected Influential Scholars (SIS) can have a positive impact

on their collective publications, and hence the data extracted from them could be

indicative of the reputation of academic journals. Based on this assumption, four

behaviour measurements have been proposed:

• Publishing Breadth (PB) which reflects that if a high percentage of SIS have

authored articles in a journal, then that journal is better than other ones in

which smaller percentages of SIS have authored:

PB=
Number of SIS who have published in this journal

Number of SIS
; (2.3)

• Publishing Mode (PM) which reflects that if a journal is the most frequent

publication outlet for a higher percentage of SIS than that of other journals,

its PM score is higher than others’ PM scores accordingly:

PM=
Number of SIS whose most frequently publishing place is this journal

Number of SIS
;

(2.4)

• Publishing Intensity (PI) which reflects that the most important journals are

those with the highest average number of articles authored by SIS:

PI=
Number of papers authored by SIS in this journal

Number of SIS
; (2.5)

• Publishing Weight (PW) defined as the average number of papers authored by

those SIS who have published at least one paper in this journal. A high PW

score for a journal suggests that those who have published there find it to be

an appropriate publishing place:

PW=
Number of papers authored by SIS in this journal

Number of SIS who have published in this journal
. (2.6)
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These behaviour-based indicators opened an avenue of evaluating the impact of

a journal based on the contribution influential scholars have made to that journal.

However, this approach may contain subjective factors in the selection of those

investigating scholars. In the research of [95], the implementation of the behaviour

based approach is based on a project which covers 106 scholars from 31 leading

universities in USA. To avoid possible bias in the selection of influential scholars,

it is crucial to have an independent entity to identify those leading universities

and scholars, which makes its implementation much more complicated than the

citation-based indicators.

It is worth noticing that these behaviour-based indicators rely on the assumption

that scholars have significant impacts on journals. However, its reversed way which

uses the citations between journals and papers to assess scholars is more popular in

the literature, such as the h-index [6], g-index [59] and i10-index [104]. The h-index

was originally proposed to evaluate scholars according to their citation distributions

and was extended to evaluate journals in [30]. It is defined as: a journal has index

h if h of its papers have at least h citations each. Considering the number and

recognition degrees of these statistical-based indicators, it can be concluded that

the analysis of citations is the mainstream for the assessments of both journals and

scholars.

2.2.2 Recent Developments of Learning-based Evaluation

The statistical-based indicators usually have intuitive and simple definitions, and

some of them have achieved dominant positions with the popularity of APDs by

which those indicators are provided. However, with the developments of APDs, many

new types of informative data for journal assessment other than total number of

citations are also available now. Accordingly, it is necessary to revise and improve

those traditional statistical-based indicators, and many achievements in machine

learning and data mining have becoming more and more popular in measuring the

impact of academic publications.

To better capture the impact of academic journals in the huge publishing data, a

variety of assessments have been proposed based on more complex approaches. Here,

the term “complex approaches” refers to those computational methods borrowed

from the algorithms in machine learning or data mining which usually contain a

procedure of learning weight, importance and correlation amongst instances from
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sizeable data. Those computational methods include PageRank [123], Social Network

Analysis (SNA) [200], Principal Component Analysis (PCA) [204], and so on.

2.2.2.1 Eigenfactor

Similar to JIF and SNIP, the Eigenfactor is another citation-based impact indicator

for scientific journals. Borrowing methods from Google’s PageRank algorithm which

ranks the influence of web pages [33], the Eigenfactor rates journals according to

the number of their incoming citations, with citations from highly ranked journals

weighted to make a larger contribution to the Eigenfactor than those from poorly

ranked journals [18]. In other words, for two journals which received the same

number of citations, the one which has citations from more significant journals will

result in a higher Eigenfactor score than the other one.

The calculation of Eigenfactor is based on a citation matrix in which each entry ei j

indicates the number of citations from the j-th journal in the year of interest to articles

published in the i-th journal during the preceding five years. When constructing the

citation matrix for Eigenfactor, all self-citations are omitted. It helps the Eigenfactor

to avoid the criticism which is commonly received by JIF that “it is easily operated

by self-citations”. The constructed citation matrix is then normalised by the total

number of outgoing citations from each journal to create a matrix Z where each

entry zi j is defined as:

zi j =
ei j∑
k ek j

. (2.7)

The citation matrix Z is then normalised by dividing each entry in a column by the

sum of that column to form a new matrix H. Similar to the Google’s PageRank

approach, the journal influence vector V is defined as the leading eigenvector of a

modified matrix based on H. The i-th element in V is employed to weight citations

from the i-th journal, i.e., the importance of journals is learned from the citations

between them. Formally, the vector containing all journals’ Eigenfactor scores is

calculated as:

Eigenfactor= 100
H · V∑

i[H · V ]i
, (2.8)

where [H · V ]i indicates the i-th element in resultant vector of H · V , and the Eigen-

factor score of the i-th journal (denoted as Efi) is the i-th element in the resultant

vector of Equation (2.8).
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The Eigenfactor score provides a measure of the influence of total articles in a

journal, rather than the influence per article in that journal. To make the results

of Eigenfactor comparable to the JIF, an indicator named Article Influence is also

proposed. The score of Article Influence for the i-th journal is calculated as:

AIi = 0.01
Efi

ai

, (2.9)

where ai is the number of articles published by the i-th journal during the preceding

five years divided by the total number of articles published by all journals of interest

during the same time window. In both Eigenfactor and Article Influence, larger

scores are gained by journals generating higher impact on their research fields.

Although the Eigenfactor and Article Influence are not directly maintained by

WoS, they are already included by JCR as two measures of journal importance

together with those indicators maintained by WoS. The Scopus has an indicator

which is similar to the Eigenfactor, named as SCImago Journal Rank (SJR) [63].

The calculation of SJR is very similar to that of Eigenfactor, with the former being

based on the Scopus database while the latter on the WoS. It also worth noticing that

the idea of using the eigenvector to represent the importance of nodes in a network

was firstly suggested in 1976 for ranking scientific journals [152], before it is widely

known as the PageRank algorithm with Google. Ramifications of this idea for journal

ranking can be found in [58] and [190].

2.2.2.2 Social Network Analysis

Social network analysis (SNA) is a type of techniques which are originally designed

for investigating social structures through the use of network and graph theories

[200]. It characterises structures of networks and graphs with a set of nodes (actors)

and a set of links (relationships) that connect them. Since it has been founded, SNA

is extensively applied to a wide range of disciplines including marketing and anti-

terrorism. As the Eigenfactor is derived from web mining, recently many methods

derived from SNA are employed to analysis the bibliographic data.

In [25], a set of connections amongst journals which named as the Reader Gener-

ated Network (RGN) is extracted from a digital library download log, and the journal

impact rankings are calculated based on several social networking centrality metrics.

The inter-connections in RGN are defined on the basis of the user download sequence
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of publications in the library. The main assumptions underlying the generation of the

RGN are: 1) if publications from a pair of journals are downloaded within a short

time sequence by one user, a close relation between the pair of journals is expected;

2) the more frequently a certain pair of publications are downloaded by users, the

greater degree of connection is assumed between the two journals in which this pair

of publications are published. The indicators of journal impact are then calculated

from the resulting networks using various social networking centrality metrics which

include:

• Degree centrality: the sum of the degrees of edges connecting to a journal,

normalised by the total degree of connections in the RGN;

• Closeness centrality: the average distance of shortest paths from a journal to

all other journals in the RGN;

• Betweenness centrality: the frequency by which a journal is part of the shortest

path between any pair of journals in the RGN.

An empirical study in [25] showed that its final ranking list deviates strongly from

that of JIF, which indicates that the indicators derived from the RGN reflect different

views from conventional journal impact. Another concept which is similar to RGN is

the “Co-readership” [119]. This co-readership between two documents is established

when at least one user has added the two documents to one user cart.

In machine learning and data mining, clustering and ranking are often regarded

as two different techniques, each of which is usually individually employed to solve

different problems. However, the RankClus framework can generate clusters as

well as ranks for both journals and their authors based on a heterogeneous cita-

tion/publication network [179]. The RankClus algorithm starts from a random

initialisation of clusters, and then it goes into an iteration with three steps: 1) rank

journals/authors within each cluster; 2) estimate the current result based on objective

functions; 3) adjust journals/authors to form new clusters. Not only the technical

facet of RankClus is sophisticated, the underlying heuristics of this framework is also

very enlightening and can be used in many other types of social network. These

heuristics are [180]:
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• A conference/journal is highly ranked if it publishes many papers from a good

number of highly ranked scholars;

• A scholar is highly ranked if he/she has many publications in highly ranked

conferences/journals;

• Scholars who have publications in the same conferences/journals are very

likely in the same research field;

• A conference/journal belongs to one research field if it publishes papers of

scholars who are in that research field;

• A group of conferences/journals belong to the same field if they mainly publish

papers in that research field.

The quality of clustering and ranking in RankClus are mutually enhanced, and the

clusters are getting more accurate and the ranking is getting more meaningful in each

iteration. Moreover, its rank with clustering results can provide more informative

views of bibliographic data.

2.2.2.3 Principal Component Analysis

Since many indicators for ranking, evaluation and comparison of academic journals

have been proposed in the literatures, it is interesting to investigate which ones of

them are most suitable for the measurement of journal impact. Besides the researches

which directly compare the coverage of APDs [102, 142, 192] and compare the scores

of a set of journals under different indicators [88, 89], a Principal Component Analysis

(PCA) of existing journal impact indicators is reported in [24].

PCA is an orthogonal transformation which converts possibly correlated variables

into linearly uncorrelated variables. These uncorrelated variables are called principal

components. After the transformation, the first principal component has the largest

possible variance, so that the original data points are separated as much as possible

on that dimension; the second principal component in turn has the highest variance

possible under the constraint that it is orthogonal to the first component, and so on

[108].

About forty indicators that were calculated on the basis of both citation and

user-log data are investigated in [24]. The Spearman rank correlations [93] are
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calculated between journal ranking results provided by each pair of indicators. When

these indicators are ranked by their average correlation to all other indicators, the

JIF and SJR are very lowly-ranked (34 and 38 respectively), which indicates that they

are isolated from other indicators. The resultant correlation matrix of all indicators is

then subjected to a PCA process in which an eigenvalue decomposition is employed to

identify the principal components [108]. By the analysis of PCA results, the authors

of [24] concluded that:

• The group of user-log-based indicators are more strongly correlated to each

other than the group of citation-based indicators;

• The indicators based on user-log represent more about a journal’s prestige

(long-term impact) than the citation-based indicators, while the JIF and SJR

represent more about a journal’s popularity (short-term impact);

• Some citation-based indicators are more closely related to their user-log-based

counterparts than they are to other citation-based indicators.

Besides these interesting conclusions, the authors also revealed two critical

challenges in the research of interaction between indicators: 1) an indicator is

usually closely related to an APD, so it is difficult to distinguish the properties of an

indicator from properties of the APD from which that indicator score was calculated;

2) there is no such universally accepted, gold standard of impact measure to calibrate

new indicators to.

2.2.2.4 Aggregation of Existing APDs/Indicators

Apart from the research of correlations between those existing journal impact indi-

cators, another promising direction is the integration of information provided by

various indicators and APDs. In [118], an integration of multiple citation sources

which include Google Scholar, Google Books, Google Blogs, PowerPoint presentations

and course reading lists are investigated for two selected journals. The citation count

of proposed integration (named as Integrated Online Impact) was nearly twice as

high as those of both WoS and Scopus, which confirms that online citations are

sufficiently numerous to be useful for the impact assessment of research.

The integration of citation sources is more like a technique of information acqui-

sition. In order to make full use of the existing rankings of journals and compensate
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for limitations of any individual ranking, a promising direction is combining several

rankings into a single ranking [96, 161]. Following this appeal, one distinguishing

approach which is based on the fuzzy measures and fuzzy integrals [135] has been

proposed recently for the problem of combining existing indicators [11].

The importance of fuzzy integrals toward applications is its capability to express

the possible interaction amongst members of the universe. This phenomenon cannot

be captured by the standard Lebesgue integral, though it always plays a prominent

role [135]. When solving the problem of aggregating journal impact indicators,

the fuzzy integral can provide a model through which the citation statistics can be

integrated in an understandable way, which in turn might contribute to the judicial

use of such indicators in decision-making processes for experts in general. In [11],

different indicator scores which are reported in the JCR are treated as features

of journals while journal ranks published by the ERA are employed as labels to

conduct supervised learning in the form of fuzzy integral. Their findings show that

it is difficult to model the interactions between journal impact indicators due to

inconsistencies and lack of monotonicity, but that the Choquet integral still performs

well as a classifier.

Whilst such an initial approach of combining the fuzzy integral with journal

assessment is very promising, so far there have only been a limited number of

application papers concerning this direction. Much remains to be done in enabling

machine learning techniques, especially the fuzzy-based learning models, to become

robust and generic techniques in order to support journal quality assessments.

2.3 Link-based Framework of Bibliometric Data

Mining and anlysis of link-based data are emerging research areas in machine learning

and knowledge discovery. Compared with traditional data mining tasks, link mining

focusses on applications where the datasets have rich structures, patterns, and

linkages between objects [79]. Such a type of datasets are usually represented as

networks or graphs. Also, those networks and graphs can be heterogeneous, that

is, the nodes and links in such data structure can be of different types and hence

have different attributes or features. Clearly, this is a very common issue in the

bibliometric data where journals, papers, and scholars are involved. As indicated

by the Bibliometric Information Retrieval System (BIRS), APD users like both the
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graphical nature of information organisation and multi-level browsing systems [53].

However, existing researches in this direction often focus on particular datasets

such as the news of Reuters [38], encyclopaedia articles [143], and blogs [23]. In

this section, a link-based data structure for the assessments of academic journals

is introduced, with demonstrations of its abilities in categorising journal impact

indicators.

2.3.1 Link-based Framework

Generally, three categories of real-world entities are involved when referring to APDs:

the journal, the publication (i.e., the paper) and the author(s). Amongst these, there

are usually two types of direct relationships:

1) A paper can only be submitted to one journal, whilst a journal issue includes

several accepted papers. This implies that the publication-journal relation is

many-to-one.

2) A publication can be co-authored by more than one scholar and a scholar

can have a number of publications. Thus, the publication-scholar relation is

many-to-many.

Other than the above two types of straightforward relation, indirect and non-obvious

relationships underlying the publication domain may also exist. For example, these

may include the situation where well-known scholars are selected as reviewers or

editors for certain journals. However, such links are not as many as the publication-

journal links and publication-scholars in an APD, hence they are not considered in

the present definition for simplicity. To describe both the three categories of entities

and the two types of relationships between such entities in a formal representation

the following link-based framework is introduced:

Definition 1. Let J, P, and S denote three sets of nodes which represent the three

categories of entities typically involved in an APD , respectively: J = { jx |x = 1, · · · , N J},
jx is a journal and N J is the number of journals covered by the APD; P = {py |y =
1, · · · , N P}, py is a paper and N P is the number of papers covered by the APD; R =

{sz|z = 1, · · · , N S}, sz is a scholar and N S is the number of scholars covered by the

APD. The relationships between these entities, which are binary relations, can be readily
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grouped into three subsets of links such that LPJ = {(px , jy)|(px , jy) ∈ P × J}, if px

is published in jy ; LPS = {(px , sy)|(px , sy) ∈ P × R}, if px is authored by sy ; LPP =

{(px , py)|(px , py) ∈ P × P}, if px is cited by py . The bibliographic framework of the

APD is herein defined as a network: 〈J ∪ P ∪ S, LPJ ∪ LPS ∪ LPP〉.

Such a link-based framework can be illustrated in Figure 2.3. In particular, a set

of nodes of the same type and the links between these nodes are called a layer. Links

between nodes that belong to different layers are termed inter-layer links and those

within a given layer are termed intra-layer links.

Given a data source of journal articles, the implementation of such a framework

is feasible. Most of the links involved can be established by observations such as

reference lists and author lists in papers, which are accessible from APDs. For example,

Digital Bibliographic Library Browser (DBL-Browser) is one of the bibliographical

data browsers which implement the link-based framework. It provides a user-friendly

interface which is able to search authors and publications by analysing social networks

on the basis of LPJ , LPP and LPS [113]. Note that the dissemination of academic

research can be achieved in different ways. However, most of these are in the

form of articles published in journals, proceedings, books, and theses. In particular,

academic journals typically present the archived version of a certain research outcome,

normally safeguarded by peer-reviews. It is because of this observation that journals

are herein considered as the primary medium for academic publications. Other forms

of publication can be investigated similarly with the link-based framework.

The nodes in different subsets can have different attributes. For example, jx ∈ J

indicates a journal, thus it can have attributes such as publisher, ISSN number, age

and so on; py ∈ P can have attributes such as accepted time, published time, title,

etc. Similarly, the links can also have different interpretations. However, certain

attributes and links can be derived from a given framework. In this case, they can

and should be omitted from the definition. For example, a citation count between

two given journals can be derived as the aggregation of the defined links on the

publication layer:

Citation( jx , jy) = |{(pi, p j)|(pi, p j) ∈ LPP , (pi, jx) ∈ LPJ , (p j, jy) ∈ LPJ}| (2.10)

where jx , jy ∈ J , Citation( jx , jy) ∈ N indicates the number of citations from journal

jy to jx . Note that citations between journals are non-symmetric. If jx 6= jy , it is
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Figure 2.3: Link-based Framework of Bibliographic Data

not necessary that Citation( jx , jy) = Citation( jy , jx). Note also that Citation( jx , jx)

indicates the number of self-citations for jx .

The link-based framework has an intuitive appeal in capturing potentially useful

knowledge for the evaluation of journal impacts. Although self-citation may be

a controversial issue in research output assessment, the frequency of citations is

generally a useful metric for demonstrating journal impact. Most of the conventional

journal impact indicators are based on citations between journal articles. Therefore,

it is interesting to note that existing journal impact indicators can normally be re-

defined by manipulating the intra-layer and inter-layer links. For example, the JIF

is defined as the ratio of the number of current year citations to the number of all

articles published in that journal during the previous two years. Under the link-based
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framework, the JIF value of a journal jx ∈ J in year t can be reformulated as:

JIFt( jx) =
|{(pi, p j)|(pi, p j) ∈ LPP , (pi, jx) ∈ LPJ}|

|{pi|(pi, jx) ∈ LPJ}| (2.11)

where pi is defined on years t − 2 to t − 1; p j is defined on year t. Thus, if pi is an

article published in 2010-2011, and p j is an article published in 2012, then the above

denotes the 2012 JIF value of a journal jx , JIF2012( jx). The alternative of 5-year

JIF can also be calculated similarly. Indeed, the above reformulation of JIF is able

to represent the 5-year JIF only with a minor modification by extending the time

constraint on the citation source to 5 years, that is, pi is defined on years t − 5 to

t − 1.

Apart from the paper layer, the scholar layer also contains useful information of

journal impact such as the researcher behaviour based indicators [95]. The provided

four indicators described in Equations (2.3)-(2.6) can be redefined on the scholar

layer. For simplicity, only the reformulation of the PB indicator is shown here, though

the other three can easily be done in the same way. The publishing breadth of a

journal indicates that: if a high percentage of selected authors have published articles

in a certain journal, then that journal is rated higher than the others in which smaller

percentages of those selected authors have authored articles. Given a journal jx ∈ J ,

this concept is captured in the framework as:

PB( jx) =
|{sz|(py , sz) ∈ LPR, (py , jx) ∈ LPJ}|

|S| (2.12)

where S is a set of selected influential scholars.

In addition to the typical indicators illustrated above, many other forms of knowl-

edge can be captured using the link-based framework. They may be designed from

different perspectives and hence, different links may be involved and aggregated

in describing the knowledge. Taking the CiteSpace [40] as an example, the link-

based framework is employed to create visualised knowledge for characterising and

interpreting the structure and dynamics of co-citation clusters.

2.3.2 Categorisation of Journal Indicators

Since many indicators have been proposed in the literature, their categorisation is

very helpful for studying their different characters and usages. However, most of
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the researching works in the literature did not cover this problem, except a two-

dimensional space is proposed to categorise the existing indicators in [25] (as shown

in Figure 2.4).

In this two-dimensional space, one axis indicates whether the raw data is defined

by readers or by authors. The other axis corresponds to whether the calculation

is based on frequency or structural metrics. Following this taxonomy, the JIF is

categorised to the author-frequency quadrant while the RGN should be deemed as a

reader-structural one. However, since the calculations of the indicators are becoming

more complex and integrated, making the decision of frequency or structural based

is sometimes difficult. If one considers SNIP and Eigenfactor as examples, they could

be accepted as frequency-based indicators since it counts the number of citations

from other journals to the considered journal; but they also could be accepted as

structural ones since their weights of subject field and citation source are defined in

a more structural way.

Another issue of the two-dimensional space is its inability in distinguishing the

citation-based methods with the author-defined methods. Although the references

of a publication are listed by its author(s), the citations from one citing paper to the

cited papers should be treated as linkages between publications which are different

from linkages between scholars and publications. The concept of “author-defined”

can be more used to describe those indicators which are based on the reputations

of authors, such as the PB, PM, PI, and PW. Therefore, the citation-based methods

should not be mixed with the author defined ones when categorising journal impact

indicators.

Besides distinguishing the statistical-based and learning-based indicators, by

which the indicators reviewed in this chapter are organised, an additional link-based

categorisation is employed here to further differentiate journal impact indicators.

From such a link-based perspective, those existing indicators are classified by sets of

links from which they are calculated. For examples, both the JIF and PB are author-

oriented and frequency-based in the two-dimensional categorisation. However in the

link-based categorisation, the JIF is based on the intra-layer links LPP and inter-layer

links LPJ , while the PB is defined on LPS and LPJ . The link-based categorisation of

the indicators described in this chapter is given in Table 2.1, where LJJ denotes a

set of intra-links amongst journals. In the Eigenfactor and SJR, LJJ is the citation
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Figure 2.4: Frequency vs. Structure and Author vs. Reader Impact Indicators

Table 2.1: Link-based Categorisation of Indicators

Indicator LPP LJJ LPS LPJ

JIF, 5-year JIF Ø Ø

RIP, RDCP, SNIP Ø Ø

h-index for journal Ø Ø

PB, PM, PI, PW Ø Ø

RankClus Ø Ø Ø

Eigenfactor, SJR Ø Ø

RGN Ø Ø

count between journals which is defined by Equation (2.10); while in the RGN, LJJ

is defined by the user logs.

By aggregating various indicators which are defined on different sets of links,

the resultant assessment can produce an overall estimate of journal impact which

considers a wider range of journal influence than that produced by each individual

indicator.
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2.4 Summary

This chapter has firstly introduced the concept and development of APD for the

purpose of supporting the assessment of academic journals. The components and

their functions of an APD have been described. Several well-known representatives

of APDs: IEEE Xplore, ArnetMiner, WoS, Scopus, and Google Scholar have been

explained in detail.

More importantly, this chapter has presented a review of several famous journal

impact indicators. Their underlying respective inspirations span a wide range of

techniques, including bibliometrics, machine learning, and data mining. Furthermore,

to facilitate the establishment of a fusion of existing indicators for journal clustering

in the next chapter, methods which investigate the correlation and aggregation of

existing indicators have been briefly reviewed.

In addition, to illustrate the information contained by APDs in a uniform manner, a

link-based framework of bibliographic data has also been identified. Existing journal

impact indicators, irrespective of whether they are statistical-based or learning-based,

are uniformly categorised by the sets of links based on which they are calculated. If an

indicator is already introduced in this chapter, its name will be directly used without

any interpretation in the remainder of this thesis. Otherwise, a brief introduction

will be given for any newly encountered indicator.
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Chapter 3

Fused-link: Distance-based

Aggregation of Journal Indicators

E
ACH indicator has its strengths and limitations and their ranking results can be

different. A promising direction which can compensate the shortcomings of an

individual indicator, is the integration of existing indicators. This chapter presents

an approach for link-based indicator fusion as an alternative for analysing the quality

of academic journals. Journals are evaluated in a multi-dimension space which is

constructed by various impact indicators. The strength of a fused-link between two

given journals is defined as the inverse of distance between those two journals. Two

distance metrics: Euclidean and Manhattan distances are utilised to support the

development and analysis of the fused-links.

Both classification and clustering algorithms built upon the basis of fused-links

are tested against five datasets of journals from the area of computer science and

informatics. Through comparisons with the use of advanced learning mechanisms

such as support vector machines and decision trees, the systematic experimental

results demonstrate that the proposed fused-link based approach helps to capture and

reflect the impact of academic journals and consequently, their qualities effectively.

The structure of this chapter is organised as follows. Section 3.1 describes the

concept of the fused-links between journals. Section 3.2 presents their application to

both classification and clustering for journal ranking. Sections 3.3 and 3.4 present

experimental evaluation of the proposed approach, combined with a discussion of

the results. Finally, Section 3.5 summarises the chapter.
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3.1 Fused-links

With the aid of on-line APDs such as WoS and Scopus, the calculation of individual

journal impact indicator may be carried out efficiently and updated with the time. A

number of indicators are indeed widely accepted and applied by scholars. Unfortu-

nately, none of them is powerful enough to characterise all aspects of journal impact

in the real-world. To compensate the potential bias of using single indicators, thereby

enriching links in the journal layer, the following fused-link approach is proposed

that integrates the results of various indicators.

The calculation of journal impact indicators depends mainly on the links between

publications LPP and the links between publications and scholars LPS (see Table

2.1 and Figure 2.3). This is supported by the argument that citations between

publications is often the single most significant link between journals, in assessing

the impact of a certain journal. However, since journal ranking is in essence to

compare the quality of journals, the links on the journal layer are important for

discerning an impact indicator. An indicator that employs journal links typically

aims to evaluate a single journal and usually focusses on one particular aspect of

journal impact, such as the Eigenfactor and RGN. When human experts assess the

quality of journals, peer-comparison is commonly and sensibly used to support their

judgement.

Although a journal is a collection of articles and its impact is heavily affected

by the quality of its articles, journals also possess properties that cannot be simply

extracted from their collected publications or their authors/readers. As shown in

Section 2.3, most of the existing journal impact indicators can be reformulated as

calculations defined over links. These indicators describe different features of the

links regarding a certain journal. Journals which have similar impact indicator scores

can be expected to exhibit similar features of their links.

Note that different indicators may have different ranges of values. For example,

most of the journals have JIF scores between 0 to 5, while their Eigenfactor scores are

from 0 to 0.1. Thus, to ease comparisons between different journals with multiple

features, a data-driven normalisation is adopted to unify the representation of the

individual underlying indicators. That is, given a set of journals J , for each indicator

I ′, the score of a journal I ′( jx) ∈ R is normalised to I( jx) ∈ [0, 1] as:

I( jx) =

I ′( jx)−min
ji∈J
(I ′( ji))

max
ji∈J
(I ′( ji))−min

ji∈J
(I ′( ji))

. (3.1)
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To assess the quality of journals with respect to multiple indicators, a concept

termed fused-link is introduced here, which measures how similar two journals

are in terms of multiple indicators collectively. The more similar the stronger the

corresponding fused-link. Formally, the strength of a fused-link between two journals

is defined as follows:

Definition 2. Given ‘m’ normalised journal impact indicators I1, · · · , Im, a journal jx

is evaluated by them:
−→
I jx
= (I1( jx), · · · , Im( jx)). The strength of a fused-link between

two journals jx , jy ∈ J , x 6= y is defined as:

Fused( jx , jy) =






m

d(
−→
I jx

,
−→
I jy
)

, if d(
−→
I jx

,
−→
I jy
) 6= 0

∞ , otherwise.

(3.2)

where d(
−→
I jx

,
−→
I jy
) is the distance between

−→
I jx

and
−→
I jy

with respect to a distance metric d.

The employment of a distance metric in defining the fused-link strengths helps

to capture the intuition that two journals linked by a strong connection should have

similar scores with respect to the same given indicators. That is, the impact of such

linked journals on the relevant academic research should be similar. Conventional

methods evaluate journals with regard to individual features. The fused-links allow

not only for the assessment of journal impact by considering multiple indicators

together, but also for the use of the neighbourhood information on the link strengths

to determine the impact of a journal if it is less known to a certain researcher or

community.

To illustrate the concept of fused-links, a set of five journals are individually

evaluated using two separate indicators of JIF and Eigenfactor, as listed in Table 3.1.

The fused-links between these journals are evaluated by the use of the Euclidean

distance metric, that is, a fused-link between two journals is defined as:

E-Fused( jx , jy) =






m
�

m∑
i=1

�
Ii( jx)− Ii( jy)
�2�

1
2

, if

m∑

i=1

�
Ii( jx)− Ii( jy)
�2 6= 0

∞ , otherwise.

(3.3)

41



3.1. Fused-links

Table 3.1: Examples of Journals: Fused-link

J I ′
1

(JIF) I1 I ′
2

(Eigenfactor) I2

j1 7.806 1.000 0.00571 0.074

j2 5.027 0.554 0.05002 1.000

j3 2.683 0.178 0.00895 0.141

j4 2.674 0.177 0.01409 0.249

j5 1.574 0.000 0.00219 0.000

The resulting fused-links and their strengths are shown in Figure 3.1. Each point

in Figure 3.1 has two coordinates, representing the normalised Eigenfactor and JIF

scores. The distance between any two points indicates the dissimilarity of the pair

of journals with respect to the given two impact indicators. For instance, j4 has a

stronger fused-link to j3 as compared to j2 and j1, since the position of j4 is closer

to that of j3 than to either the position of j2 or that of j1, within the feature space

constructed by the two impact indicators. This situation can be easily generalised to

situations of a higher dimensionality. Although the Euclidean metric is employed in

this definition, any other distance metric may be used as alternative.

To build the fused-links, both Euclidean and Manhattan distance metrics are

employed in order to facilitate comparisons as different distances measures may

have significant influence of ranking. The Manhattan distance is chosen because it

is well used in performing path-finding and many other tasks [150, 176], and also

because it is computationally simple. It is defined as the sum of absolute differences

of two objects on each dimension. Formally, given two journals jx , jy ∈ J , x 6= y , the

strength of their fused-link using Manhattan distance is:

M-Fused( jx , jy) =






m
m∑

i=1

|Ii( jx)− Ii( jy)|
,if

m∑

i=1

|Ii( jx)− Ii( jy)| 6= 0

∞ ,otherwise.

(3.4)

Note that in the following presentation, the “M-” prefix represents the cases where

Manhattan distance metric is used to calculate fused-links while “E-” prefix represents

the cases where Euclidean distance is employed.
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Figure 3.1: Example of Fused-links between Journals

3.2 Applications of Fused-links

Fused-links are designed to aid in assessing the ranking of different journals with

respect to different performance indicators. If a-priori knowledge of the impact of

those journals of interest is acknowledged (for example, with a small set of journals

having been labelled as “A*-class”, “A-class” or “B-class”), fused-links can be used

to classify the rank of other unlabelled journals. If however, the background of

journal ranking is not available, fused-links are useful to detect groups of journals

which have impacts of a similar strength. These two types of potential application

correspond to the classical problems of classification and clustering, as presented

below.

3.2.1 Classification

This is to identify which class a new or unseen observation belongs to, on the basis of a

training set of data containing instances whose class labels are known. For the journal

ranking problem where a ranking list is available, the aim is to determine the quality
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position of journals which have not yet been ranked. Unfortunately, sometimes

the number of journals on a given ranking list is very small and incomplete. For

example, only a “top-10” list is provided. In this case classification results can be

rather poor. However, fused-links between journals indicate the similarity of the

impact of individual journals, the ranks of two journals with strong links are likely

to be ‘close’ to each other. This provides an intuitive means to estimate the rank

of one journal using those of its neighbours. From this observation, the k Nearest

Neighbours (kNN) classifier [46] is herein combined with fused-links to classify

journal ranks.

To classify an unlabelled object (or journal in the present problem), the k nearest

objects of the unlabelled are selected to vote for which class it belongs. By “nearest” it

refers to those objects within a feature space whose distance to the unlabelled object

is measured to be the shortest. The fused-link strength between any two journals

is defined in a feature space constructed by various impact indicators, so that it is

readily applicable to kNN as a distance metric. Intuitively, journals with a close

distance between them are more likely to have a similar impact. Thus, the ranking

of those nearest neighbours offer more useful information than the ranks of their

far neighbours. Inspired by this observation, the Distance-weighted kNN (D-kNN)

method [56] is modified here to classify the ranks of journals, where the votes of the

nearest neighbours are weighted by their corresponding fused-link strengths to the

journal under consideration. This leads to the following fused-link based method for

journal ranking classification.

Suppose that a set of journal ranks C is given, and µ′(c, jx) ∈ {1, 0}, c ∈ C , jx ∈ J

is a binary membership function which satisfies that if jx is of rank c then µ′(c, jx) = 1,

else µ′(c, jx) = 0. The rank µ( jx) ∈ C of an originally unranked journal jx ∈ J is

determined by:

µ( jx) = argmax
c∈C

k∑

i=1

Fused( jx , j x
i
) ·µ′(c, j x

i
) (3.5)

where j x
i
∈ J , i = 1, · · · , k is the i-th nearest neighbour of jx .

The implementation of this classification method is straightforward. The simplest,

brute-force way to find an object’s nearest neighbours is to compute its distance to

all the training examples. Such an implementation has a test time complexity of

O(N J) [201], where N J is the size of dataset.
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3.2.2 Clustering

In general, the task of clustering is to assign a set of objects into groups (namely

clusters) such that the objects in the same group are similar to each other, and

dissimilar to those in the other clusters [105]. In this chapter, journal clustering

attempts to seek a partition of a collection of academic journals J , using fused-link

strengths as the similarity measures between any two given journals. There are

a number of generic clustering methods that may be employed to implement the

approach. Among them, the k-means algorithm is popular due to its simplicity [105]

and success in solving real-world problems [42, 83, 167]. Having noticed this, this

algorithm is herein integrated with fused-links to demonstrate the proposed ideas.

The pseudo-code for the implementation of fused-link-based k-means algorithm is

showed in Algorithm 3.2.1.

k : the number of clusters;

J = { jx |x = 1, · · · , N J}: a set of journals represented by their indicator scores;

C = {ci|i = 1, · · · , k}: k centroids of the k clusters;

µ( jx) ∈ {1, · · · , k}: the cluster label of jx , jx ∈ J .

1: for i = 1, · · · , k do

2: randomly pick ci from J

3: µ(ci) = i

4: end for

5: repeat

6: for x = 1, · · · , N J do

7: µ( jx) = argmax
i∈{1,··· ,k}

Fused( jx , ci)

8: end for

9: for i = 1, · · · , k do

10: ci = average of { jx |µ( jx) = i}
11: end for

12: until none of ci ∈ C changed

13: return
Algorithm 3.2.1: Fused-link-based k-means for Journal Clustering

The time complexity of k-means is O(N J kl), where N J is the number of journals

in the journal layer, k is the number of clusters, and l is the number of iterations

taken by the algorithm to converge. Usually, k and l are fixed in advance and so the

algorithm has linear time complexity in the size of the data: O(N J) [105].
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3.3 Experimental Setup

This section reports on the work carried out for evaluation of proposed fused-link to

journal ranking with classification and clustering. The design of the experiments is

first presented, including the construction of datasets and the performance criteria

employed.

3.3.1 Datasets

A credible demonstration of the ranking ability of the link-based methods is to

compare their ranking results with human expert opinion. The Ranked Journal List

(RJL) provided by the ERA 2010 has involved a large group of scholars to rank a

large number of academic journals. Although many debates surrounded the end

result of RJL [44], it has been employed by researchers as a benchmark to compare

journal ranking outcomes produced by automated mechanisms versus human experts

[11]. In the present experiments, to evaluate the ranking results of clustering and

classification based on the proposed fused-link based approach, the result of RJL

is also assumed to be the ground truth in comparing the “accuracy” of different

methods. Each journal in RJL has a rank in the domain Ranks = {A*, A, B, C}, where

rank A* indicates top journals in a certain research area, and the significance and

popularity of journals are decreasing, while the percentage of amount increases from

rank A* down to rank C. Following this, each journal studied in the experiments

below is assigned a label taken from the domain Ranks.

Seven indicators that are reported in the JCR (2010) are selected as base-

indicators to compute fused-link strengths between journals. These are: Total

Cites (number of times the journal being cited in 2010); JIF; 5-year JIF; Immediacy

Index (ratio of cites to the current articles over the number of those articles); Cited

Half-Life (median age of the articles cited); Eigenfactor; and Article Influence (ratio

of the Eigenfactor score to the total number of articles considered). JCR has a long

history of applications for researchers and librarians in choosing their reading lists.

All indicator score calculations in JCR are based on the same range of journals, i.e.,

journals which are indexed by WoS. A screenshot of the JCR that showing journals

from one of the subject categories: Computer Science–Artificial Intelligence of year

2010 is given in Figure 3.2.
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Figure 3.2: Screenshot of JCR

Note that in this work, it is the method that integrates individual impact indicators

together with fused-links that is investigated, rather than the selection of base

indicators themselves. In fact, experts from different research areas may select

different base-indicators or journal-sets reflecting their own preferences to compare

journals. This is different from classifier/clustering ensemble, where diversity in

base-classifiers/clustering members is an important factor to consider in building a

robust ensemble [170].

In collecting sets of journals for the experiments, five research branches of com-

puter science in the JCR are selected: Artificial Intelligence (AI), Information Systems

(IS), Interdisciplinary Applications (IA), Software Engineering (SE), and Theories &

Methods (TM). Amongst them, only those journals that are ranked both in RJL and

indexed by the JCR are considered as a valid data object (in order to have the ground

truth to entail comparison). If a journal contains missing values in the JCR, then its

whole data record is removed from the experimental data. The resulting datasets

are then grouped with respect to the above five subdisciplines. A summary of the

datasets is shown in Table 3.2. In RJL, journals are allocated a rank with respect to a

47



3.4. Results and Discussion

discipline group, so that the A* rank accounts for the top 5%, the A rank accounts

for the next 15%, the B rank accounts for the next 30%, and the bottom 50% is rank

C. Since ranges of journals and divisions of research branches are different in RJL

and JCR, unlike in the use of JCR, journals ranked from A* down to C-graded are no

longer evenly distributed, but nonlinearly.

Table 3.2: Summary of Datasets: Fused-link

Dataset A* A B C Total

Artificial Intelligence (AI) 11 24 31 21 87

Information Systems (IS) 15 19 32 20 86

Interdisciplinary Applications (IA) 7 27 25 24 83

Software Engineering (SE) 10 19 32 8 69

Theories & Methods (TM) 13 31 16 12 72

3.3.2 Evaluation Criteria

Accuracy is used to indicate the consistency between the proposed link-based meth-

ods and RJL, which is defined as the ratio of correctly classified or clustered ob-

jects to the total number of objects in the dataset. As the outcomes of applying

link-based approach are compared with the ranking results of RJL, the “correctly

classified/clustered objects” are deemed to be the journals whose assigned ranks

are consistent with their ranks in expert-devised RJL. The within-1 accuracy [11] is

another criterion used, which is often adopted in classification or clustering problems

where the classes/clusters of the objects are ordered (as they are for the present

journal ranking task). Following this criterion, an A*-ranked journal is a “correctly

classified object” if it is classified into either A* or A; an A-ranked journal is also

deemed as correctly classified if the result is A*, A, or B; etc.

3.4 Results and Discussion

In this set of experiments, each dataset is split into subsets for 3-fold cross validation

[16]. This helps to make both the training and the testing sets contain enough

amount of data [115]. The reported results are based on an average of 50 times of

the 3-fold cross validation.
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For comparison, the standard (non distance weighted) kNN and D-kNN are

implemented and run, with each having an Euclidean distance-based version and a

Manhattan distance-based version. That is, four different methods are considered. In

addition, the number of nearest-neighbours k for each method is set from 3 to 7 over

different runs. The difference between kNN and D-kNN is that the standard kNN

gives all nearest-neighbours equal weights when assigning the rank of an unlabelled

object. In this case, the Fused( jx , j x
i
) in equation (3.5) is replaced by 1. In response

to the different values of k, all of the results show a consistent trend for the four

methods on every dataset. Thus, the accuracies and within-1 accuracies measured

on these datasets are averaged respectively to represent their overall performances.

The trends of their accuracies and within-1 accuracies are shown in Figures 3.3 and

3.4, respectively.

Generally, all these four methods increase their accuracy and with-1 accuracy

along with the increase of k. This indicates that when ranking a journal by the

ranks of its neighbours, considering more references will generate a more accurate

rank. It is shown that for both kNN and D-kNN, the use of Manhattan distance

metric leads to a better result than using the popular Euclidean distance, in terms of

both accuracy and with-1 accuracy. One possible reason for having achieved such

results is the use of limited journal datasets, each of which has less than one hundred

journals (instances), whilst consisting of seven base-indicators (dimensions). This

also conforms to the finding obtained in [3] that the Manhattan distance metric is

preferable for high dimensional data mining applications.

Importantly, the results also show that for both Manhattan and Euclidean based

methods, D-kNN has a better performance than kNN. In particular, the Manhattan

distance based D-kNN performed the best amongst all four methods (while the largest

number of nearest neighbours employed, k = 7, leads to the highest performance).

This reflects the advantage of utilising fused-link strengths as a weighting parameter

for journal rank classification.

To further analyse the results achievable by the link-based methods, advanced

classification techniques such as the Support Vector Machines (SVM) [181] and

decision trees [157] are also tested. The Sequential Minimal Optimization (SMO)

[153] and J481 [158] algorithms released with the Weka software [203] are used to

1J48 is a Java implementation of the C4.5 decision tree in the Weka software.
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Figure 3.3: Trend of Accuracy against an Increase in k

Figure 3.4: Trend of Within-1 Accuracy against an Increase in k

50



3.4. Results and Discussion

represent these two classical classification approaches, with the polynomial kernel

selected to implement SMO. The resultant accuracy (%) and the within-1 accuracy

(%) are shown in Tables 3.3 and 3.4, respectively. To validate the significance of the

experiment results, the paired-t tests are carried out between M-D-kNN and the rest

on each dataset.

Table 3.3: Comparison of Classification Accuracy (%): Fused-link. The best two

performances on each dataset are highlighted in boldface, the sign “(*)/(v)” indicates

that the corresponding result is significantly (p < 0.05) worse/better than that

achieved by M-D-kNN

Dataset J48 SMO E-D-kNN M-D-kNN

AI 41.47±4.73(*) 44.02±2.29(*) 44.64±3.54 45.20±5.11

IS 38.37±4.98(*) 39.72±1.65(*) 43.14±3.93 43.70±3.91

IA 33.37±4.12(*) 37.54±3.70 39.33±3.46(v) 38.41±3.73

SE 47.01±4.25(v) 53.16±1.36(v) 43.30±4.89 43.77±4.38

TM 43.78±5.69 44.86±1.82 43.28±4.11(*) 44.92±4.37

Avg. 40.80 43.86 42.74 43.20

Table 3.4: Comparison of Classification Within-1 Accuracy (%): Fused-link. The best

two performances on each dataset are highlighted in boldface, the sign “(*)/(v)”

indicates that the corresponding result is significantly (p < 0.05) worse/better than

that achieved by M-D-kNN

Dataset J48 SMO E-D-kNN M-D-kNN

AI 89.86±3.27(*) 97.45±0.99(v) 96.02±2.00 96.14±1.70

IS 83.72±3.18(*) 87.05±1.80(*) 88.70±3.00(*) 89.37±2.61

IA 80.00±3.63(*) 83.37±3.53 81.57±2.75(*) 82.55±2.93

SE 90.09±2.35(*) 92.12±1.53(v) 89.94±2.44(*) 91.36±2.23

TM 84.08±3.85(*) 83.36±0.20(*) 87.42±3.01 87.56±2.90

Avg. 85.55 88.67 88.73 89.40

In terms of accuracy, the results show that M-D-kNN outperforms J48 and SMO

on all the datasets investigated except SE. Moreover, M-D-kNN is able to achieve a

higher within-1 accuracy than all other methods. This demonstrates that fused-link
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based approach is capable of classifying journals effectively by combining the existing

impact indicators in an intuitive way.

More particularly, J48 has a lower accuracy/within-1 accuracy compared with

other methods and it is significantly worse than M-D-kNN on most tested dataset.

This is likely due to its being overfitted to the observed journals [11]. One possible

explanation for the less ideal performance of link-based methods on the dataset SE

is that B-ranked journals are dominant in the number in dataset and the number

of journals belonging to each rank is rather unbalanced. In this case, a classifier

biased to the dominant class may happen to have a higher accuracy than un-biased

ones. SVM has shown its robust classification ability in many problems [55, 75].

However, the main disadvantage of SVM is that it works more like a “black-box”;

its training procedure is less intuitively interpretable [17]. In situations where an

interpretable result is required, an intuitive way such as direct integration of journal

impact factors for ranking (which is what fused-links approach basically does) will

be more welcomed by scholars, than function-based methods like SVM. As such, the

link-based approach clearly offers more promising application to the journal ranking

problem, given their generally high accuracy and easy interpretability.

Similar to the classification application, Euclidean-distance-based and Manhattan-

distance-based k-means are compared for clustering. The number of clusters is set to

the number of ranks (k = 4). The label of majority journals in each cluster is deemed

as the rank of the journals within it. 50 times random centroid initialisation are

tested for both methods [149]. The overall averaged and best-10 averaged results

are reported respectively in Tables 3.5 and 3.6 for the k-means approach.

The first result to note is that in terms of accuracy, when applied to the k-means

algorithm, the difference due to the use of two different distance metrics is not

so obvious as with the case of D-kNN. Overall, the accuracies of the proposed

clustering methods are better than that achievable by J48 and are only slightly lower

than those attainable with fused-link-based classification. However, the clustering

results in terms of within-1 accuracy are not so good as those obtained by the

classification methods. A likely reason is that the k-means algorithm is sensitive

to initial partitioning. Nevertheless, the best-10 averaged results outperform the

overall averaged ones significantly. This demonstrates with the initial centroids

appropriately selected, k-means may result in very good performance. The results
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Table 3.5: Comparison of Clustering Accuracy (%): Fused-link. The results which are

better than the best achievable by their classification counterparts are highlighted

in boldface, the sign “(*)/(v)” indicates the corresponding result is significantly

(p<0.05) worse/better than that achieved by M-k-means

Dataset E-k-means M-k-means E-best-10 M-best-10

AI 44.28±3.03(*) 49.26±2.06 47.82±1.23 51.95±0.48

IS 43.15±2.79(v) 41.19±3.06 45.58±0.74 45.23±1.16

IA 39.47±3.30 39.40±1.78 42.77±1.02 42.17±1.39

SE 42.67±2.27 42.23±4.39 45.80±1.40 48.12±3.79

TM 42.83±2.69 43.21±2.81 45.56±1.28 46.53±2.95

Avg. 42.48 43.06 45.50 46.80

Table 3.6: Comparison of Clustering Within-1 Accuracy (%): Fused-link. The results

which are better than the best achievable by their classification counterparts are

highlighted in boldface, the sign “(*)/(v)” indicates the corresponding result is

significantly (p<0.05) worse/better than that achieved by M-k-means

Dataset E-k-means M-k-means E-best-10 M-best-10

AI 89.15±3.55(*) 92.01±2.06 93.10±0.00 94.02±0.48

IS 80.84±4.32 81.82±2.23 83.72±3.10 86.16±1.69

IA 79.25±2.72(*) 80.41±2.55 83.61±2.06 83.49±0.58

SE 88.37±3.88(v) 83.86±4.39 93.62±1.56 91.01±2.54

TM 82.13±3.31 82.81±4.78 85.83±1.71 87.50±1.60

Avg. 83.95 84.18 87.98 88.44

also show that the clusters formed by following the fused-link based approach reflect

the distribution of journal ranks in RJL.

To further appreciate the appropriate determination of journal ranks using the

proposed method, a particular example of generated ranks is provided in Table

3.7. Journals which have top-10 JIF values in dataset AI are selected and their

ranks with fused-link are given by voting, from the 50 times the results obtained

using Manhattan-distance-based clustering. The table shows that even the journals

which have a very high JIF value can have a corresponding B or C-rank in RJL. This

indicates that the result of journal ranking by JIF itself may significantly deviate from
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that returned by human experts. All the journals listed in Table 3.7 are ranked at

least to the level of B by fused-link clustering and 6 of the 10 ranks are identical to

those given by RJL. It is also interesting to note that two journals that are not in the

top-10 JIF list, but usually highly commended by the research community: Artificial

Intelligence (JIF: 2.533, JIF-rank: 20) and Machine Learning (JIF: 1.967, JIF-rank:

33) are ranked to A* by both the RJL and the proposed method.

Table 3.7: Example of Ranks by JIF, RJL and Fused-link

JIF-rank Title JIF RJL Fused-link

1 IEEE T PATTERN ANAL 5.308 A* A*

2 INT J COMPUT VISION 5.151 A A*

3 SIAM J IMAGING SCI 4.500 not given –

4 IEEE T EVOLUT COMPUT 4.403 A* A*

5 MED IMAGE ANAL 4.364 A* A*

6 INT J NEURAL SYST 4.237 B B

7 INT J INF TECH DECIS 3.139 C B

8 J MACH LEARN RES 2.974 A A*

9 COMPUT LINGUIST 2.971 A* A*

10 IEEE T IMAGE PROCESS 2.918 A* A*

11 IEEE COMPUT INTELL M 2.905 C B

Although the link-based methods are better than the SMO and J48 in terms of

accuracy, the general results for accuracy regarding the journal ranks is low. This may

be caused by the (no) selection of indicators. If selected indicators are not sufficiently

different amongst themselves or they do not offer sufficient discriminative power

over the quality of journals, the journals of different ranks may be heavily overlapped.

This will obviously lead to poor performance, especially when the cluster number

k is set to a small number. Another reason may be that most of the journals are

not obviously better or worse than others, thus their ranks are more likely to be

affected by the subjective bias of the experts. For example, the journal ranking list

produced by one country is likely to involve higher ranks for the journals published in

that country. Despite these observations, the experiments conducted have generally

demonstrated that the fused-link approach works well overall in performing the task

of ranking academic journals.
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3.5 Summary

This chapter has presented a link-based framework for classification and clustering,

with a focussed application to the problem of journal ranking. It has proposed a

fused-link based representation between journals, which allows for fusion of different

journal impact indicators to support the assessment of academic journal quality. Both

classification and clustering algorithms built upon the basis of fused-links are tested

against five datasets of journals from the area of computer science and informatics.

Experimental results have shown that the ranking results of the fused-link methods

are consistent with RJL, which is produced by a large group of journal-ranking

specialists. Through comparisons with the use of advanced learning mechanism

such as support vector machines and decision trees, the systematic experimental

results demonstrate that the proposed fused-link based approach helps to capture

and reflect the impact of academic journals while being more interpretable.

The proposed work is very promising. However, it also opens up an avenue

for significant further investigation. For instance, it may be useful to establish a

more flexible way to control the aggregation of indicator scores other than the

employment of distance metrics in an effort to further strengthen the ability of

creating interpretable outcomes. It is also interesting to use linguistic terms rather

than precise scores to evaluate a journal’s performance on each individual impact

indicator as they may be more intuitive and closer to experts’ cognitive concept of

journal quality. Chapters 4 and 6 will focus on these issues, respectively.
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Chapter 4

OWA-based Aggregation of Fuzzy

Relations for Journal Ranking

A
GGREGATION of several input values into a single output value is an indispensable

tool in a wide range of applications such as human resource management [37],

group decision making [207] , industrial problems [223], etc. Different types of

aggregation operator have been proposed in the literature. A popular aggregation

method is the Ordered Weighted Averaging (OWA) operator originally introduced

in [209]. It provides a parameterised family of aggregation operators, including as

special cases the maximum, the minimum and the average calculus [35].

Academic journal ranking is a specific application problem addressed here in

which OWA may also play a significant role. Instead of direct aggregation of the

individual scores, Chapter 3 introduced another direction which employs the dis-

tance metrics over journals that are placed in a multi-dimensional space with each

dimension representing a certain impact indicator. In this chapter, OWA operators are

employed to aggregate fuzzy similarities between journals in terms of their impact in-

dicators, thereby generating clusters of journals that reflect their individual indicator

scores. For each indicator, a fuzzy similarity relation amongst journals is generated,

the OWA operator is then employed to aggregate the resulting similarity relations.

The OWA-aggregated relation is applied to support the classic k-means clustering

algorithm in order to generate clusters of journals according to their indicator scores.

As pointed out in [136]: “the solution (of journal assessments) appears to be in

a combination of peer review and objective indicators. These indicators should be
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assessed for relevance and reliability”. It is therefore useful to enhance the reliability

in performing aggregation of publication impact indicators for the task of academic

journal ranking. Inspired by this observation, the present chapter also proposes a

nearest neighbour guided induced OWA operator, denoted as kNN-IOWA hereafter,

for developing aggregated fuzzy relations between journals, based on their impact

indicator scores. The proposed operator is a special case of the Induced OWA (IOWA)

[12, 134, 213], with two characters that distinguish it from other IOWA operators:

1) the elements of the order inducing vector represent the relative reliabilities of

the associated arguments, and 2) the value of the reliability measure depends on

the distribution of the arguments. That is, for each individual argument, its average

distance to the other k nearest arguments is calculated and transformed into its

corresponding element in the order inducing vector.

The remainder of this chapter is structured as follows. Section 4.1 introduces

the concepts of fuzzy similarity relations and the basics of the OWA and IOWA

aggregation operators. Section 4.2 describes the definition of OWA-aggregated fuzzy

relations among journals and its application to k-means clustering for journal ranking.

The experimental evaluation of the proposed approach, along with a discussion of the

results is also provided in this section. Sections 4.3 defines kNN-IOWA and presents

the experimental analysis of its application to k-means clustering for journal ranking.

Finally, Section 4.4 summarises this chapter.

4.1 Preliminaries

The modelling of imprecise and qualitative knowledge, as well as the handling

of uncertainty at various stages are possible through the use of fuzzy sets [216].

Traditional crisp sets allow only full membership or no membership at all. As an

extension of the classic set theory, fuzzy sets allow partial membership. In other

words, membership or non-membership of an element to a crisp set is described

by a characteristic function in the binary pair {0,1}, while that to a fuzzy set is

characterised by an membership function that takes values in the interval [0, 1] . In

this case, a given element can be a member of more than one fuzzy set. Fuzzy logic,

which is based on the theory of fuzzy sets is capable of supporting humans in a wide

range of applications [114]. This section introduces several key notions from the

fields of fuzzy sets and fuzzy logic.
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4.1.1 Fuzzy Relation

The concept of similarity is a basic concept in human cognition. Similarity plays an

essential role in taxonomy, recognition, case-based reasoning and many other fields.

Particularly, fuzzy relations [217] and their properties play an important role in both

theoretical development and practical application of constructing similarity metrics.

Definition 3. Let X be a nonempty universe. A fuzzy relation R: X × X → [0, 1] is

• reflexive iff ∀a ∈ X , R(a, a) = 1;

• symmetric iff ∀a, b ∈ X , R(a, b) = R(b, a);

• T-transitive iff ∀a, b, c ∈ X , R(a, b)≥ T (R(a, c), R(c, b)).

Here, T is a T -norm [168] e.g., a mapping T (x , y) : [0,1]× [0,1]→ [0,1] which

satisfies

• commutativity: T (x , y) = T (y, x);

• monotonicity: T (x , y)≤ T (x ′, y ′), if x ≤ x ′ and y ≤ y ′;

• associativity: T (x , T (y, z)) = T (T (x , y), z); and

• the boundary condition T (x , 1) = x .

A number of T -norms are proposed in the literature, the common ones include:

• the minimum T -norm: Tmin(x , y) =min(x , y),

• the product T -norm: Tp(x , y) = x · y , and

• the Łukasiewicz’s T -norm: TŁ(x , y) =max(x + y − 1, 0).

If T is the min operator, the above definition coincides with the definition of

similarity relations in [217]. There exist many different definitions of similarity

metrics which have been employed with success for different purposes such as cluster

analysis, classification, recognition and diagnostics and most of the similarity metrics

are defined by using T -norms. However, formulation of a valid, general-purpose
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definition of similarity is a challenging problem [7]. In this chapter, the proposed

aggregation methods focus on the use of fuzzy relations as similarity metrics in

clustering academic journals according to their indicator scores.

Given a set of journals J = { j1, · · · , jN J } and a journal impact indicator I : J → R,

many functions proposed in the literature can be employed to perform pairwise

comparison of journal indicator scores into fuzzy similarity relations. For example:

RI( jx , jy) = 1−
|I( jx)− I( jy)|

max{I( ji)| ji ∈ J} −min{I( ji)| ji ∈ J} , (4.1)

RI( jx , jy) = exp

�
−
(I( jx)− I( jy))

2

2δ2

�
, (4.2)

RI( jx , jy) =max

�
min

�
I( jy)− (I( jx)−δ)
I( jx)− (I( jx)−δ)

,
(I( jx) +δ)− I( jy)

(I( jx) +δ)− I( jx)

�
, 0

�
. (4.3)

where I( jx) and I( jy) denote the scores of journal jx , jy ∈ J respectively, and δ2 is

the variance of the scores {I( jx)| jx ∈ J}. Other definitions for implementing the

similarity between objects can be found in [166, 195].

The matrix representation of a fuzzy similarity relation R is called a fuzzy pairwise

similarity matrix, denoted as M(R) with elements in [1, 0] and “1” is on the diagonal

if such fuzzy relation functions satisfy reflexivity. A 3-D representation of the three

examples of fuzzy similarity relations is shown in Figure 4.1. For example, given a set

of four journals { j1, j2, j3, j4} whose scores under an indicator I are {1.0, 2.0, 3.0, 4.0},
and the fuzzy similarity relation RI between them is evaluated by Equation (4.1),

then the resulting fuzzy similarity matrix is:

M(RI) =





1.0 0.66 0.33 0.0

0.66 1.0 0.66 0.33

0.33 0.66 1.0 0.66

0.0 0.33 0.66 1.0





where each entry mx y in M(RI) indicates the membership of a journal pair ( jx , jy) to

the fuzzy relation RI , for instance, m12 represents that journals j1 and j2 are deemed

to be of a similarity degree of 0.66.
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Figure 4.1: Examples of Similarity Relation Function

4.1.2 Ordered Weighted Averaging (OWA) Aggregation

When dealing with real-world problems, the opinions of different experts are usually

aggregated in order to provide more accurate and reliable solutions. Similarly,

numeric measures of certain properties are also typically aggregated when addressing

a given problem, with the weighted average being popularly used. Apart from the

classical aggregation operators (such as average, maximum and minimum), another

interesting and more general type of aggregation operator is the Ordered Weighted

Averaging (OWA) operator [131, 163, 209]. OWA is a family of aggregation operators

which are parameterised based on the ordering of the inputs. The fundamental aspect

of this family of operators is the reordering step in which the inputs are rearranged

in descending order and then integrated into a single aggregated value. Formally, a

mapping Aowa : Rm→ R is called an OWA operator if:

Aowa(a1, · · · , am) =

m∑

i=1

wiaπ(i) (4.4)

where aπ(i) is a permutation of ai ∈ R, i = 1, · · · , m, which satisfies aπ(i) is the i-th

largest of the a1, · · · , am, and wi ∈ [0, 1], i = 1, · · · , m is a collection of weights that

satisfies
∑m

i=1
wi = 1.

For presentational simplicity, the weights of an OWA operator are hereafter

denoted as a weighting vector W = (w1, · · · , wm), in which the i-th component is wi.

Different choices of the weighting vector W can lead to different aggregation results.

The ordering of inputs gives OWA the normally nonlinear feature. Three special
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cases of the OWA operator are the classical mean, max and min. The mean operator

results by setting wi = 1/m, the max by w1 = 1 and wi = 0 for i 6= 1, and the min by

wm = 1 and wi = 0 for i 6= m. These weighting vectors are denoted as Wmean, Wmax

and Wmin respectively in the remainder of the thesis. Obviously, an important feature

of the OWA operator is that it is a mean operator which satisfies:

min{a1, · · · , am} ≤
m∑

i=1

wiaπ(i) ≤max{a1, · · · , am}. (4.5)

Such an operator provides aggregation between the maximum and the minimum

of the arguments. This boundedness implies that it is idempotent; that is, if all

ai = a, a ∈ R, then Aowa(a1, · · · , am) = a.

Different weighting vectors can be used to express the different aggregation

behaviours of OWA operator. A measure which is used to interpret the overall be-

haviour of an OWA operator is the Attitudinal Character (A-C) [211] (usually called

as the measure of “orness” [57]). It gives an idea of whether an aggregation opera-

tor behaves similarly to conjunction (influenced by smaller inputs) or disjunction

(influenced by larger inputs). In particular, the orness measure (A-C measure) of an

OWA operator with the weighting vector W is defined by:

orness(W ) = A-C(W ) =
1

m− 1

m∑

i=1

((m− i)wi). (4.6)

A higher orness value indicates the aggregation is more similar to disjunction. It can

be calculated that orness(Wmean) = 0.5, orness(Wmax) = 1 and orness(Wmin) = 0. It

has been proven that if an OWA weighting vector satisfies the buoyancy property

[13], wi ≥ w j for i < j, (i, j = 1, · · · , m), the related OWA operator displays the

properties of a norm, and hence it can be used to provide distance measures [212].

The generated distance measure has been applied to solve group decision making

[208] and semi-supervised clustering [13].

A useful method for generating the OWA weights is by the use of a so-called stress

function [211], enabling formal characterisation of the resulting OWA aggregation

operator. This can be accomplished using a function h : [0,1] → R+ to stress

the places where to obtain significant values for the weighting vector. Formally, a

weighting vector of OWA is defined by a stress function h as follows.
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Definition 4. [211] Let h : [0, 1]→ R+ be a non-negative function on the unit interval.

The OWA weights W = (w1, · · · , wi, · · · , wm) can be defined as:

wi =
h( i

m
)
∑m

j=1
h(

j

m
)
. (4.7)

This method of obtaining the OWA weighting vector has a number of useful features.

For instance, the h(x) values associated with the lower portion of the left side of

[0,1] reflect those weights associated with the larger argument values, while the

values associated with the right side of the unit interval reflect the weights associated

with the smaller values in the aggregation. Other properties are omitted here but

can be found in [211].

4.1.3 Induced OWA

A key step of OWA aggregation is the ordering of the arguments which transforms

the original argument vector (a1, · · · , ai, · · · , am) into an ordered argument vector

(aπ(1), · · · , aπ(i), · · · , aπ(m)). The ordering used in OWA depends upon the actual value

of the arguments as aπ(i) is the i-th largest of the arguments. A more general strategy

towards the ordering of the arguments has been proposed in [213]. This has led to

the development of a generalised approach to OWA aggregation, termed the Induced

OWA (IOWA). In IOWA, each of the input values is represented as a two-tuple 〈ui, ai〉
that is referred to as an OWA pair. The input arguments (a1, · · · , ai, · · · , am) are

ordered on the basis of the values ui. In particular, the procedure for calculating the

IOWA aggregation over these OWA pairs is defined by:

Aiowa(〈u1, a1〉, · · · , 〈um, am〉) =
m∑

i=1

wiaπ′(i)

where aπ′(i) is from the permutation of 〈ui, ai〉 which satisfies that 〈uπ′(i), aπ′(i)〉 has

the i-th largest amongst all ui, and wi ∈ [0, 1], i = 1, · · · , m is a collection of weights

which satisfies that
∑m

i=1
wi = 1. U = (u1, · · · , um) is called the order inducing vec-

tor. The bounding property exhibited by IOWA aggregation is similar to that by

OWA: min{a1, · · · , am} ≤ Aiowa(〈u1, a1〉, · · · , 〈um, am〉) ≤ max{a1, · · · , am}. Idempo-

tency also holds in IOWA: If all ai = a, a ∈ R, then Aiowa(〈u1, a1〉, · · · , 〈um, am〉) = a,

no matter which order inducing vector U and weighting vector W are used. Note
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that if two or more OWA pairs have identical values of ui, their argument values are

averaged firstly before aggregation.

The introduction of inducing vector helps improve the flexibility of the ordering

process in OWA aggregation. OWA operators can be rephrased as special cases of

IOWA operators where ui = ai for all i = 1, · · · , m. In IOWA, different order inducing

vectors can lead to different results of aggregation. Hence, the interpretation of orness

of the weighing vectors is also dependent on the choice of a given order-inducing

vector.

4.1.4 OWA Aggregation with Dependent Weights

When combining multiple arguments using pre-defined weighting vectors in OWA

and IOWA, the weights in aggregation are normally argument-independent as they

are not necessarily related to the inputs they are applied to. In such cases, unduly

high or low weights might be given by false or biased judgments and hence, a typical

OWA operator would suffer drastically from giving the highest priority to either

the highest or the lowest value [26]. To achieve more reliable outcomes, a type of

OWA operators with dependent weights have been introduced in the literature, in

which the normal-distribution of argument values is used to determine the weight

vector. This type of OWA operators considers a strong intuitive appeal for deriving

the weighting vectors of aggregation to the concept of data reliability, aiming to

decrease the effect of potential outliers in input arguments.

In particular, the Dependent OWA (DOWA) operators [206] utilise weighting

vectors that are derived in accordance with the average of arguments. Let (a1, · · · , am)

be the argument vector, and µ be the average value of this argument set, where

µ = 1
m

∑m
i=1

ai. The similarity between any argument ai and the average value µ can

be calculated as follows:

s(ai,µ) = 1− |ai −µ|∑m
j=1
|a j −µ|

. (4.8)

From this, a weighing vector can be generated by applying the following:

wi =
s(ai,µ)∑m
j=1

s(a j,µ)
(4.9)
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Adowa(a1, · · · , am) =

m∑

i=1

wiai (4.10)

Besides measuring reliability of arguments by their distances to the average

value, there are other alternatives. In kNN-DOWA [27] for example, the reliability

of an argument is based on its nearest neighbours. This type of reliability helps

differentiate amongst a collection of arguments such that an argument whose value

is similar to its k neighbours [10] is deemed reliable and can be assigned with a

higher weight. In contrast, an argument that is largely different from its neighbours

is discriminated as an unreliable member. Formally, the reliability measure of an

argument ai, i = 1, · · · , m in kNN-DOWA is defined as:

rk(ai) = 1−

k∑
t=1

|ai − n
ai

t |

max
j, j′∈{1,··· ,m}

|a j − a j′ |
(4.11)

where n
ai

t , t = 1, · · · , k is the t-th nearest neighbour of the argument ai, and the

distance measure d used to perform neighbour-searching is d(a j, a j′) = |a j − a j′ |,
j, j′ = 1, · · · , m. Note that other distance metrics may be used for this. However, for

computational simplicity, the absolute distance metric is used here.

Having obtained the reliability values of all arguments concerned, they are

normalised to form the weighing vectors in kNN-DOWA. Given the reliability value

rk(ai) of each argument ai,i = 1, · · · , m, the corresponding kNN-DOWA operator

Ak
dowa

: Rm→ R can be specified by:

Ak
dowa
(a1, · · · , am) =

m∑

i=1

wk
i
ai (4.12)

where wk
i
= rk(ai)/
∑m

j=1
rk(a j). kNN-DOWA and DOWA are order independent

(termed neat in the literature) [210], as they generate the same outcome regardless

of the order of argument values. kNN-DOWA has been applied to the task of alien

detection, where different similarity measures of textual entities are combined.

Similar to kNN-DOWA, the Cluster-DOWA forms cluster of arguments to detect

outliers [26]. One crucial assumption in all these methods is that arguments which

have high reliability values should be highly weighted.
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4.2 OWA Aggregation of Fuzzy Relations for Journal

Ranking

Whilst the application of fused-link to cluster journals is promising, there is much

further research to be carried out in making these techniques more flexible in order to

support activities in journal quality assessment. Direct use of distance metrics makes

it difficult for human experts to choose appropriate similarity measures in order

to compare journals. It may be impossible to decide the degree of “orness” in the

aggregation. To compensate for the potential bias of using fixed and equaled weights

on indicators, as well as enriching the flexibility of measuring similarity relations

amongst journals, an OWA-aggregated fuzzy relation is proposed to integrate fuzzy

similarity measures for the assessment of journals.

4.2.1 OWA Aggregation of Fuzzy Relations

Formally, given a set of journals J = { j1, · · · , jN J }, and a set of journal impact indica-

tors I = {I1, · · · , Im}, the fuzzy similarity between two journals jx , jy ∈ J with respect

to the indicator Ii,i = 1, · · · , m is represented by RIi
( jx , jy), and the OWA-aggregated

fuzzy relation between jx and jy is defined by:

Rowa( jx , jy) = Aowa(RI1
( jx , jy), · · · , RIm

( jx , jy)) =

m∑

i=1

wiRi( jx , jy) (4.13)

where wi is the weighting vector which satisfies
∑m

i=1
wi = 1, and Ri( jx , jy) is the

i-th largest in {RI1
( jx , jy), · · · , RIm

( jx , jy)}. The transformation from single indicator

scores Ii( jx) and Ii( jy) to the similarity relation RIi
( jx , jy) can be achieved using

either of Equations (4.1)–(4.3).

In so doing, the OWA-aggregated relation Rowa implements a mapping from

multiple similarity relations to one relation: Rm → R. Obviously, the aggregated

relation also preserves the reflexivity and symmetry if all RI1
, · · · , RIm

are fuzzy

similarities. The aggregated relation does not always display T -transitivity however.

One special case is when the weight vector Wmin = (0, · · · , 0, 1), where the aggregation

operator can be formed as Rowa( jx , jy) =min{RI1
( jx , jy), · · · , RIm

( jx , jy)}, which has

been shown to preserve T -transitivity [191]. For problems where it is important to

preserve T -transitivity , fuzzy transitive closure must be computed [48].
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Table 4.1: Examples of Journals: OWA

I1 I2 I3 I4

j1 7.806 10.716 0.00571 0.867

j2 5.027 7.228 0.05002 0.591

j3 2.683 3.752 0.00895 0.387

j4 2.674 3.255 0.01409 0.299

j5 1.574 1.454 0.00219 0.287

δ 2.45342 3.68844 0.02028 0.24523

To illustrate the concept of OWA-aggregated fuzzy relations, assume that five

journals are individually evaluated using four separate indicators: JIF (I1), 5-year

JIF (I2), Eigenfactor (I3) and Immediacy Index (I4), as listed in Table 4.1. The fuzzy

similarity relation with respect to each indicator is evaluated by the use of Equation

(4.2). The resulting fuzzy similarity relations are shown in Equations (4.14)–(4.17).

Suppose that the weighting vector in Rowa is W = (0.1, 0.2, 0.3, 0.4), the aggregated

fuzzy relation amongst these journals is shown in Equation (4.18). Each entry in the

relation indicates the degree of aggregated relation between the corresponding pair

of journals, with respect to the four given impact indicators in a joint manner. For

instance, the impact of j4 is more similar to that of j3 as compared to those of j2 and

j1.

M(RI1
) =





1.0 0.526 0.113 0.112 0.048

0.526 1.0 0.634 0.631 0.411

0.113 0.634 1.0 1.0 0.931

0.112 0.631 1.0 1.0 0.932

0.048 0.411 0.931 0.932 1.0




(4.14)

M(RI2
) =





1.0 0.639 0.168 0.129 0.043

0.639 1.0 0.641 0.560 0.294

0.168 0.641 1.0 0.991 0.824

0.129 0.560 0.991 1.0 0.888

0.043 0.294 0.824 0.888 1.0




(4.15)
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M(RI3
) =





1.0 0.074 0.987 0.918 0.985

0.074 1.0 0.105 0.174 0.049

0.987 0.105 1.0 0.968 0.946

0.918 0.174 0.968 1.0 0.842

0.985 0.049 0.946 0.842 1.0




(4.16)

M(RI4
) =





1.0 0.531 0.147 0.068 0.061

0.531 1.0 0.708 0.492 0.464

0.147 0.708 1.0 0.936 0.920

0.068 0.492 0.936 1.0 0.999

0.061 0.464 0.920 0.999 1.0




(4.17)

M(Rowa) =





1.0 0.528 0.486 0.435 0.426

0.528 1.0 0.613 0.536 0.372

0.486 0.613 1.0 0.985 0.924

0.435 0.536 0.985 1.0 0.941

0.426 0.372 0.924 0.941 1.0




(4.18)

Similar to the fused-link, the OWA-aggregated fuzzy relation can also be applied

to the task of journal ranking by combining with existing distance/similarity based

algorithms. If a-priori ranks of certain journals that are of interest are acknowledged,

supervised learning techniques can be used to model the relation between indicators

and labels or to classify the rank of other unlabelled journals. However, in many

applications, expert assessors may prefer to rank journals in an objective way where

only the impact indicators are considered, rather than any a-priori published ranks.

In this case, unsupervised learning techniques are very useful for detecting groups of

journals which may have similar impact measures. In this section, the aggregated

fuzzy relations are employed to aid in assessing the clustering of different journals

with respect to different indicators, with an aim to partition a collection of academic

journals. Particularly, the k-mean clustering algorithm is employed, in which the

similarity measures between any two given journals are evaluated by the proposed

OWA-aggregated fuzzy relations.

The integrated approach is shown in Figure 4.2. The indicator scores of journals

are firstly collected from APDs such as JCR, and then transformed into entries in the
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fuzzy similarity relations between journals. As indicated previously, any of Equations

(4.1)–(4.3) may be used in order to perform such calculation. The OWA weighting

vector may be given by expert assessors or derived from stress functions [211].

Note that for k-means (and other clustering algorithms where only the similarity

to clustering centroids is considered), the complete specification of the similarity

relations for each pair of objects may be not necessary.

The pseudo-code for the implementation of the integrated k-means algorithm is

shown in Algorithm 4.2.1. The time complexity of the classical k-means is O(N J kl)

[105], where N J is the number of journals to be clustered, k is the number of clusters,

and l is the number of iterations taken by the algorithm before termination. For the

calculation of OWA-aggregated fuzzy relation between two journals, an additional

sorting process is required. Since the number of indicators is usually far smaller

than the number of journals, a basic sorting algorithm is acceptable in terms of

its complexity, and the resulting overall time complexity is O(N J m2kl), where m is

number of indicators of interest. Usually, k, m and l are fixed in advance and so the

algorithm has linear O(N J) time complexity with respect to dataset size.

k : the number of clusters;

J = { jx |x = 1, · · · , N J}: a set of journals evaluated by m indicators;

C = {ci|i = 1, · · · , k}: k centroids of the k clusters;

µ( jx) ∈ {1, · · · , k}: the cluster label of jx , jx ∈ J .

1: choose a similarity measure for calculation of R1, · · · , Rm

2: decide the weighting vector W = (w1, · · · , wm) for Rowa

3: for i = 1, · · · , k do

4: randomly pick ci from J

5: µ(ci) = i

6: end for

7: repeat

8: for x = 1, · · · , N J do

9: µ( jx) = argmax
i∈{1,··· ,k}

Rowa( jx , ci)

10: end for

11: for i = 1, · · · , k do

12: ci = average of { jx |µ( jx) = i}
13: end for

14: until none of ci ∈ C changed

15: return
Algorithm 4.2.1: OWA-based k-means for Journal Clustering
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Figure 4.2: OWA-based Journal Clustering Procedure
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Finally, it is worth indicating that the degree of “orness” in aggregating the journal

impact indicators are easier to interpret than distance metrics, owing to the use of

OWA aggregator. This is of particular significance to performing journal ranking

and assessment tasks, where human experts and users tend to prefer interpretable

descriptions. Also, the use of OWA aggregation of fuzzy similarity relations between

journals allows the results to reflect better intuition behind common practice in

journal ranking, where multiple indicators are necessary whilst only one overall

impact value is ultimately employed when judging a journal’s standing.

4.2.2 Experimentation

This section presents an experimental evaluation of the proposed work. It shows the

setup of the experiments carried out and also discusses the results obtained. In order

to demonstrate the journal ranking results generated using the proposed methods

in a credible fashion, they are compared with human expert opinion. The Ranked

Journal List (RJL) provided by the ERA 2010 has invited a group of scholars to rank a

very large number of academic journals. Similar to Chapter 3, to evaluate the ranking

results of proposed approach, RJL is assumed to be the ground truth when comparing

different similarity measures and weighing vectors in the present experiments. The

“accuracy” and “within-1 accuracy” are adopted in order to analyse the consistency

between the proposed approach and RJL. The details of the construction of datasets

and the evaluation criteria which are used in this experiment are described in Section

3.3. A summary of these datasets is given in Table 3.2.

All three equations listed in Equations (4.1)–(4.3) are employed to carry out clus-

tering. For each similarity measure, five different weighting vectors for aggregating

the similarities relations are tested:

Wmin = (0.0, 0.0,0.0, 0.0,0.0, 0.0,1.0),

Wand = (0.036, 0.071, 0.107, 0.143, 0.179, 0.214, 0.250),

Wmean = (1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7),

Wor = (0.250, 0.214, 0.179, 0.143, 0.107, 0.071, 0.036),

Wmax = (1.0, 0.0,0.0, 0.0,0.0, 0.0,0.0).

Wand and Wor are derived from the linear stress function and linearly decreasing stress

function, respectively (as shown in Figure 4.3) [211]. Besides the aggregated fuzzy
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Figure 4.3: Two Linear Stress Function Used in Deriving Wand and Wor

relations, the Euclidean distance based k-means is also implemented and compared.

The number of clusters is set to the number of ranks (k = 4). 50 times random

centroid initialisation are tested. The overall averaged and best-10 averaged results

[149] are reported in Tables 4.2 and 4.3 respectively.

The results show that for all three similarity measures, the weighting vector Wor

achieved the best in terms of both accuracy and within-1 accuracy when applied to

the k-means algorithm. This indicates that the weighting vector which shows an

orness behaviour (namely, inputs with high values dominate the aggregation result)

is more preferable when OWA operators are used. However, the performance of

the extreme orness case as of Wmax is slightly worse compared with the remainder.

This implies that the general impact scores of journals are similar if they have high

similarities for more than one indicator.

Note that Wor is selected for all three fuzzy similarity measures and with its

use, Equation (4.3) has achieved the best average accuracy and within-1 accuracy.

Compared with the other two measures, it contains a threshold to ignore insignificant

similarity values between two journals, while emphasising high similarity values.

Generally, for the proposed approach, the best accuracy is achieved if both the

similarity measure and the weighting vector are focused on high similarity values.

In classical clustering, measures implemented with the Euclidean and Manhattan

distance metrics are more commonly used. For the present journal ranking problem,

the OWA-aggregated fuzzy relation has shown higher accuracy and within-1 accuracy.

It is worth noting that if the fuzzy similarity for each indicator is generated using
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Equation (4.1) and the OWA weighing vector is set to Wmean, the resulting k-means

is just identical to the Manhattan distance based k-means.

Note that journals of a certain rank may often be heavily overlapped with jour-

nals of other ranks. Therefore, the low accuracy of journal ranks using classifica-

tion/clustering is not unexpected. After all, most of the journals are not obviously

better or worse than others, although their ranks are more likely to be affected by

the preference of the human assessors. Besides, the assumed ground truth is itself

not accurate. In light of this, it may be interesting to develop an reliable means for

determining the relative ranking positions of academic journals using OWA-based

fuzzy relations.

4.3 Nearest Neighbour Guided Induced OWA and

Journal Ranking

The weighting vectors in OWA and IOWA are normally argument-independent as

they are not necessarily related to the inputs they are applied to. However, with

the argument-dependent OWA, weights are indeed determined on the basis of the

input arguments. Particularly, in kNN-DOWA [27] for example, the reliability of an

argument is defined as the appropriateness of using that argument as the aggregated

outcome, aiming to decrease the effect of potential outliers in input arguments.

kNN-DOWA has been applied to the task of alien detection, where different similarity

measures of textual entities are combined [27]. One crucial assumption in kNN-

DOWA is that arguments which have high reliability values should be highly weighted.

However, empirical results have shown that in certain situations, dependent weights

do not always perform as expected. Besides, retaining more diversity of base members

in the aggregated output is sometimes preferable [122, 51]. Inspired by these

observations, and in order to generalise the dependent determination of the weighting

vectors in kNN-DOWA, the k Nearest Neighbour Induced OWA (kNN-IOWA) is herein

proposed.

4.3.1 k Nearest Neighbour Induced OWA

kNN-IOWA is designed to be a special case of IOWA, where each input two-tuple is

〈rk(ai), ai〉 with rk(ai) representing the reliability measure of ai as with kNN-DOWA

defined in Equation (4.11), where k is a predefined number of nearest neighbours
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to be considered. Particularly, the input arguments (a1, · · · , ai, · · · , am) are ordered

with respect to their induced values (rk(a1), · · · , rk(ai), · · · , rk(am)). Formally, kNN-

IOWA is a mapping Ak
iowa

: Rm→ R and the kNN-IOWA aggregation over the given

arguments is calculated as follows:

Ak
iowa
(a1, · · · , am) = Aiowa(〈rk(a1), a1〉, · · · , 〈rk(am), am〉)

=

m∑

i=1

wiaπk(i)

(4.19)

where aπk(i) is from the permutation of OWA pairs 〈rπk(i), aπk(i)〉 which satisfies that

rπk(i) has the i-th largest amongst rk(ai), i = 1, · · · , m, and wi ∈ [0, 1] is a collection

of weights that satisfies
∑m

i=1
wi = 1.

As a special case of IOWA, the bounding property of kNN-IOWA is similar to that

of the IOWA operators: min{a1, · · · , am} ≤ Ak
iowa
(a1, · · · , am)≤max{a1, · · · , am}. The

idempotency also holds: If all ai = a then Ak
iowa
(a1, · · · , am) = a. Note that if two or

more arguments have an identical value of the reliability measure, their argument

values are averaged before being aggregated.

Interestingly, the weights in kNN-IOWA are independent of the argument values.

Any weights that satisfy
∑m

i=1
wi = 1 can be employed in the process of aggregating

the sorted arguments. This flexibility in weight determination offers a degree of

freedom to control the behaviour of the resulting kNN-IOWA aggregation operator.

The stress function which is designed for obtaining weights in OWA can be employed

in kNN-IOWA in a similar way as with the existing work, in implementing the control

of the reliablility of kNN-IOWA. This work has an intuitive appeal in that high weights

are associated with large reliability values. The reverse holds also; if high weights

are associated with small reliability values the aggregated outcome will then be not

reliable or trustworthy. In the situation where users do not have a-priori knowledge

of weight settings, both the weights of high reliability (such as kNN-DOWA) and

those of low reliability can be tested, then the one with better performance can be

selected. To compensate for the potential bias of using single indicators, thereby

enriching the reliability of fuzzy similarity relations amongst journals, kNN-IOWA

is herein employed to integrate fuzzy similarity measures. This also offers a useful

testbed to examine the utility of the above-proposed kNN-IOWA aggregation.

Given a set of academic journals J = { j1, · · · , jN J } and a journal impact indicator I :

J → R, fuzzy similarity measures defined in Equations (4.1)–(4.3) can be employed
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to perform pairwise comparison of journal indicator scores into a similarity relation

RI : R×R→ [0,1]. More generally, given J and a set of journal impact indicators

I = {I1, · · · , Im}, the fuzzy similarity between two journals jx , jy ∈ J with respect to

the indicator Ii ∈ I is represented by RIi
( jx , jy), and the kNN-IOWA aggregation of

these similarities between jx and jy can be computed by:

Rk
iowa
( jx , jy) = Ak

iowa
(RI1
( jx , jy), · · · , RIm

( jx , jy)) (4.20)

where the weighting vector may be defined offline (say, by the user) or learned

from historical data, and RIi
( jx , jy) are ordered with respect to their reliability values

which are subsequently based on their k nearest neighbours.

To illustrate the computation process of Rk
iowa
( jx , jy), suppose that three journals

are individually evaluated using four separate indicators: JIF (I1), 5-year JIF (I2),

Eigenfactor (I3) and Immediacy Index (I4), as listed in Table 4.4. Also, without

losing generality, suppose that the fuzzy similarity relation with respect to each

indicator is evaluated by the use of Equation (4.1). This leads to the following simi-

larities between journal j1 and j2, which are each assigned with respect to one of the

four individual indicators: RI1
( j1, j2) = 0.46, RI2

( j1, j2) = 0.50, RI3
( j1, j2) = 0, and

RI4
( j1, j2) = 0.43. Suppose that 2NN-IOWA (i.e., k = 2) is adopted to perform aggre-

gation. Two nearest neighbours are therefore considered in calculating the reliability

of arguments. This results in the ordered argument vector of (0.46,0.43,0.50,0),

with the corresponding order inducing vector (0.92,0.87,0,0.88). Given that the

weighting vector in A2
iowa

is W = (0.40, 0.30, 0.20, 0.10), the aggregation result of the

four fuzzy similarities between j1 and j2 is R2( j1, j2) = 0.410. Comparatively, with

the same W , the aggregated similarity between j1 and j2 using the original OWA

operator is 0.422, which is closer to the argument of largest value (0.50, given by the

5-year JIF) rather than the argument which has the largest reliability (0.46, given

by the JIF). Intuitively, in the tasks such as journal ranking, a reliable aggregated

output is preferable to the aggregated output that is simply close to a single extreme

argument.

It is worth indicating that the computational results from applying the proposed

aggregation operator are easier to interpret than the concept of orness, owing to

the use of the reliability measure for order inducing. This is of importance when

performing journal ranking and assessment, as it mirrors the way that human experts

75



4.3. Nearest Neighbour Guided Induced OWA and Journal Ranking

Table 4.4: Examples of Journals: kNN-IOWA

I1 I2 I3 I4

j1 7.806 10.716 0.00571 0.867

j2 5.027 7.228 0.05002 0.591

j3 2.683 3.752 0.00895 0.387

make such decisions, where multiple indicators are necessary whilst only one overall

impact value (that takes into consideration of the multiple indicators) is ultimately

employed when judging a journal’s standing.

4.3.2 Experimentation

Generally speaking, the pairwise relations obtained by the application of kNN-IOWA

can be utilised in a variety of similarity/distance-based learning algorithms. To keep

consistency with Section 3.3 and Section 4.2.2, the k-means is herein integrated

with kNN-IOWA to perform academic journal clustering.

In order to evaluate the performance of different aggregation operators for

journal ranking, their clustering results are compared with human expert decisions

as reflected in the Ranked Journal List (RJL) that is provided by the ERA 2010

[11]. Following the setup of previous experimentations, the result of RJL (2010) is

assumed to be the ground truth in comparing the “accuracy” of different methods

in this section. Each journal in RJL has a rank in the domain Ranks = {A*, A, B,

C}, where the label A* indicates top journals in a certain research area, and the

significance of journals decreases from it down to the label C. Each journal studied

in the experiments below is therefore assigned a label also taken from this domain.

The collection of datasets is similar to that described in Section 3.3. However,

the number of journals in each dataset are increased where journals from six main

areas in the JCR Science Edition 2010 are selected:

• Agriculture (Agricultural Economics & Policy, Agricultural Engineering, Dairy

& Animal Science, Multidisciplinary);

• Chemistry (Analytical, Applied, Inorganic & Nuclear, Medicinal, Multidisci-

plinary, Organic, Physical);
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• Computer Science (Artificial Intelligence, Cybernetics, Hardware & Architec-

ture, Information Systems, Interdisciplinary Applications, Software Engineer-

ing, Theories & Methods);

• Materials Science (Biomaterials, Ceramics, Characterization & Testing, Coatings

& Films, Composites, Multidisciplinary, Paper & Wood, Textiles);

• Medicine (General & Internal, Legal, Research & Experimental, Medical Ethics,

Medical Informatics, Medical Laboratory Technology);

• Physics (Applied, Atomic, Molecular & Chemical, Condensed Matter, Fluids &

Plasmas, Mathematical, Multidisciplinary, Nuclear, Particles & Fields).

Amongst them, only those journals that are both ranked in RJL and indexed by

the JCR are considered as valid data objects (in order to have the ground truth to

entail comparison). If a journal is missed from the JCR, then it is removed from

the experimental data. A summary of the resulting datasets is shown in Table 4.5.

Scores for seven indicators as reported in the JCR Science Edition 2010 are selected

to generate fuzzy similarities amongst journals. These indicators are: Total Cites,

JIF, 5-year JIF, Immediacy Index, Cited Half-Life; Eigenfactor and Article Influence.

All these indicators are normalised to [0, 1] by using Equation (3.1) before they are

employed to generate similarity relations between journals. Two criteria, “accuracy”

and “within-1 accuracy” are adopted in order to analyse the consistency between the

proposed kNN-IOWA based clustering and RJL.

Table 4.5: Summary of Datasets: kNN-IOWA

Number of Instances A* A B C Total

Agriculture 3 35 39 31 108

Chemistry 37 70 95 143 345

Computer Science 44 101 108 67 320

Material Science 26 61 80 61 228

Medicine 20 39 73 107 239

Physics 30 50 73 56 209

To examine the relationship between journal clustering accuracy and the reliability

of the weighting vectors for kNN-IOWA (that is equivalent to the orness of OWA),
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Figure 4.4: Linear Stress Functions for Weighting Vector Generation. h1(x), h2(x),

and h3(x) (solid lines) are the stress functions whose corresponding weighting vectors

have orness equal to 0, 0.5, and 1, respectively; other eighteen functions (dot lines)

are selected to generate the weighting vectors whose orness are in the intervals

(0, 0.5) and (0.5,1)

twenty-one weighting vectors are generated using linear stress functions with the

orness values approximately uniformly distributed from zero to one (see Figure 4.4).

Figure 4.5 shows the change of accuracy (Y-axis) with respect to the orness(W ) of

the weighing vectors (X-axis) in both kNN-IOWA and OWA. Each point in Figure

4.5 is an averaged value of 50 random centroid initialisation, and Equation (4.1) is

employed to generate the similarity between journals regarding each indicator.

To facilitate comparison, DOWA [206] and kNN-DOWA are also implemented,

with their results shown in Figure 4.5 as straight dot-lines. For the alternatives

of similarity measure, Equations (4.2) and (4.3) are also employed to carry out

clustering to enrich the comparison. The best achieved results on the selected

datasets are reported in Table 4.6.

For five of the six datasets, the accuracies achieved by the use of non-dependent

aggregation operators (kNN-IOWA and OWA) generally increase with the increase

of the reliability/orness of the weighting vectors. The performance of kNN-IOWA in

relation to the weighting vectors of extreme reliability values is more stable than that

of OWA. This indicates that the use of nearest neighbours as guidance for ordering

arguments entails more reliable output in aggregation operators, which in turn allows

the generation of better results in journal ranking. Figure 4.5 also shows that the
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Figure 4.5: Trend of Accuracy against Reliability
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4.4. Summary

performance of the kNN-IOWA is not very sensitive to the selection of k in the most

of the tested dataset. Except on the Agriculture dataset, the results of k = 1,3,5

start to show difference when orness(W )≈ 0.75.

Note that the outcomes of using dependent weighting vectors in DOWA are not

so good as those of using dependent weighting vectors in kNN-DOWA. This may

be due to the fact that the kNN-based operators, including both kNN-DOWA and

kNN-IOWA, are able to assign high weights to arguments which are close to the other

relevant arguments, while DOWA only emphasises on the arguments close to their

means. Thus, if individual journal indicators focus on rather different aspects, say the

calculation of JIF and 5-year JIF includes self-citations while that of Eigenfactor and

Article Influence excludes self-citations, then kNN-based methods can achieve better

results than DOWA. However, the accuracy reachable by using dependent weighting

vectors is not so high as that achievable by the use of carefully selected weighting

vectors. This shows that although dependent methods can help aggregation operators

to learn weights from arguments, human intervention for carefully choosing the

weights is still necessary in situations where higher accuracies are required.

Generally, the weighting vectors which have orness(W )> 0.5 achieved the best

results in terms of both the standard accuracy and within-1 accuracy. This indicates

that the weighting vectors that exhibit a high reliability are preferable when kNN-

IOWA/OWA operators are used for journal clustering. The results also show that if

journals have high similarities for more than one indicator, the aggregated impact

scores of journals may also be similar. This may be expected as there are only seven

individual indicators considered.

It is interesting to note that the aggregated fuzzy relation has shown a higher

accuracy and within-1 accuracy when compared with the use of Manhattan distance

(which is commonly adopted in classical clustering algorithms). In fact, if the fuzzy

similarity for each indicator is generated using Equation (4.1) with orness(W ) = 0.5,

the accuracies of all non-dependent aggregation operators are identical to those

obtained using Manhattan distance-based k-means, which is clearly reflected by the

intersections on orness(W ) = 0.5 in Figure 4.5.

4.4 Summary

This chapter has presented two techniques for computing OWA-aggregated fuzzy

relations amongst academic journals. Firstly, the OWA-aggregated fuzzy relation is
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4.4. Summary

proposed and applied to the conventional k-means algorithm for clustering journals

according to their impact indicators. Secondly, a nearest neighbour guided induced

OWA operator: kNN-IOWA is proposed. The resultant aggregation operators have

the strength of controlling the degree of orness and reliability of the aggregated

output, respectively. They also have been applied for building aggregated fuzzy

relations between academic journals, on the basis of the individual indicator scores

of the journals concerned. Experimental results indicate that the proposed methods

are more consistent with the trend in the RJL than their counterparts which employ

the Euclidean and Manhattan distances.
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Chapter 5

T -transitivity on Ordered Weighted

Aggregation of Fuzzy Relations

A
GGREGATION of several input values into a single output value is an indispensable

tool not only for theoretical researches such as mathematics or physics, but for

many real-world applications in engineering, economical, social, and other fields. The

problem of aggregation is indeed very broad and heterogeneous, with a good number

of aggregation operators having been developed, ranging from the simple arithmetic

mean to more complicated fuzzy methods, including minimum/maximum, uninorm,

and other alternative T -norm/T -conorm [14]. In particular, a parameterised mean-

like aggregation operator, namely the ordered weighted averaging (OWA), has

been introduced [209] and successfully applied in different areas [41, 133, 208].

Essentially, by selecting an appropriate weighting vector, an OWA operator helps to

capture and reflect the uncertain nature of human judgments in problem-solving,

generating an aggregated result that lies between the (conventional) two extremes

of minimum or maximum combination of multi-featured data objects [212].

In general, relations holding amongst data points form the basis for many de-

velopments and applications of fuzzy systems. The construction of fuzzy relations

and the mathematical treatment of fuzzy similarity have been studied from different

points of view, with many papers stressing the close relationship between the concept

of similarities and that of distance measures [22, 120]. In fact, similarity between

fuzzy values can be directly measured using distance or pseudo distance functions
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[28, 43]. However, in their applications to supporting multicriteria decision making

[202], which forms a major challenge for practical fuzzy systems, a key question is

what underlying properties of the data can be preserved in the process of constructing

or aggregating similarity relations. For certain applications such as prototype-based

reasoning where clusters of objects that are similar to certain prototypical samples

are sought [151], properties such as reflexivity and transitivity [183] may not be

necessary. Yet, there are many other situations in which it is desirable to maintain

the symmetry and a degree of transitivity over the homogeneous similarity classes

or granules whose members possess these properties. Also, from a practical point

of view, symmetric and transitive classes or granules are easy to interpret, which

generally facilitates the clustering process [166].

To enhance the aggregation of fuzzy relations with such desired properties en-

tailed, this chapter discusses the properties of two OWA-based aggregations of fuzzy

relations. It is theoretically proven that these ordered weighted aggregations of fuzzy

relations allow the aggregated results to retain the Tmin-transitive and TŁ-transitive

properties respectively, if their weights are ascendant ordered. To demonstrate the ef-

fectiveness of such ordered weighted aggregation of fuzzy relations, they are applied

to cluster data patterns by using hierarchical clustering. The similarities between

data points are measured using the ordered weighted aggregation of component

fuzzy relations held over individual features. Experimental results on several UCI

datasets demonstrate that the aggregated similarities following the proposed ap-

proach produce better hierarchical clusters than the application of classic aggregators

(e.g., min, max and average).

The rest of this chapter is organised as follows. Section 5.1 introduces the basic

concepts of the aggregation of fuzzy relations Section 5.2 presents the two modified

types of ordered weighted aggregation of similarity measures, including a discussion

of their properties. The decision on the weighting vectors for the proposed OWA

operators using stress functions is investigated in Section 5.3. Section 5.4 describes

the application of these aggregated fuzzy relations as similarity measures in clustering

problems, supported by experimental results. The chapter is summarised in Section

5.5.
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5.1. Preliminaries

5.1 Preliminaries

Let X denote a finite set, Ri : X × X → [0, 1], i = 1, · · · , m denotes m fuzzy relations

(named as component relations) on X , and w1, · · · , wm ∈ [0,1] denote weights,

associated to these relations. The aggregation process aims at providing a relation

R summarising the data R1, · · · , Rm together with the weights w1, · · · , wm. Here,

the aggregated degree of fuzzy relation R(a, b) ∈ [0,1], a, b ∈ X depends on the

local comparisons R1(a, b), · · · , Rm(a, b) between the two patterns. The component

relations usually represent the similarities of patterns from different perspectives

such as opinions from different experts, multiple criteria of evaluation and different

features of describing data.

Definition 5. [70] The aggregation of the component relations R1, · · · , Rm, with weights

w1, · · · , wm is a relation R over X such that:

R(a, b) = A(R1(a, b), · · · , Rm(a, b), w1, · · · , wm) (5.1)

where A is a mapping [0,1]2m → [0,1], non-decreasing in the first m places, with

A(0, · · · , 0, w1, · · · , wm) = 0 and A(1, · · · , 1, w1, · · · , wm) = 1.

Both the weighted and non-weighted aggregation procedures have been studied

in the literature, with several of them focus on mathematical properties while others

focus on the effectiveness of applications to real applications [14]. For the purposes

of aggregating fuzzy relations, both the norm-conorm and sum-product operators are

investigated in existing methods. Usually, the norm-conorm operators are employed

to aggregate a more general type of fuzzy relations while the sum-product operators

are usually applied to fuzzy relations which preserve TŁ-transitivity [70, 178]. In the

following, several definitions and properties about aggregations of fuzzy relations

are introduced.

Definition 6. [70] The optimistic aggregated fuzzy relation is:

Ropt(a, b) = Si=1,··· ,mT (wi, Ri(a, b)). (5.2)

The pessimistic aggregated fuzzy relation is:

Rpess(a, b) = Ti=1,··· ,mS(N(wi), Ri(a, b)). (5.3)
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Here, S is a T -conorm and N is a strong negation. T -conorms are dual to T -norms.

Given a T -norm, the complementary conorm is defined by:

S(x , y) = 1− T (1− x , 1− y). (5.4)

In order to have the intuitive explanation of the two aggregators, all the m weights can

be assumed to be either 0 or 1. Hence, Equations (5.2) and (5.3) can be rewritten as

Ropt(a, b) = S{i|wi=1}Ri(a, b) and Rpess(a, b) = T{i|wi=1}Ri(a, b) respectively, by which

Ropt(a, b) can be viewed as the degree of truth of the statement “there exists at least

one significant criterion for which a is in relation with b” and Rpess(a, b) as the degree

of truth of the statement “a is in relation with b for all significant criteria” [70]. It has

been proved that Ropt ≥ Rpess. If the minimum, maximum and the standard negation

N(x) = 1− x are selected as the T -norm, T -conorm and negation in definition 6

respectively, then

Ropt(a, b) = max
i=1,··· ,m

min(wi, Ri(a, b)) (5.5)

and

Rpess(a, b) = min
i=1,··· ,m

max(1− wi, Ri(a, b)) (5.6)

Theorem 1. [70] If R1, · · · , Rm are Tmin-transitive fuzzy relations, and f1, · · · , fm are

non-decreasing mappings from [0, 1] into [0, 1], then R = min
i=1,··· ,m

fi(Ri) is Tmin-transitive.

It is easy to conclude from theorem 1 that if R1, · · · , Rm are Tmin-transitivity, then

Equation (5.6) preserves Tmin-transitivity.

Theorem 2. [178] The weighted average R of m TŁ-transitive fuzzy relations R(a, b) =∑m
i=1

wiRi(a, b) with wi ≥ 0 and
∑m

i=1
wi = 1 is also TŁ-transitive.

Theorem 3. [165] Let R1, · · · , Rm be m TŁ-transitive fuzzy relations then, R = A(R1,

· · · , Rm) is TŁ-transitive iff the De Morgan’s dual of R = A(a), defined as A′(a) =

1 − A(1 − a1, · · · , 1 − am), satisfies the following condition: ∀a, b, c ∈ [0,1]m|c =
a+ b; A′(c)≤ A′(a) + A′(b).

Based on the pessimistic aggregated fuzzy relation using min-max and the sum-

product weighted aggregation of TŁ-transitive relations, this chapter investigates two

types of ordered weighted aggregation of fuzzy relations accordingly. The definitions

and properties of the two types of aggregation are introduced in the following section.
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5.2 Ordered Weighted Aggregation of Fuzzy

Relations

As mentioned earlier, the relationships between fuzzy relations and similarity/distance

metrics have been widely studied. According to [8], aggregating operations can

also be interpreted in terms of distance. The utility of these operators and their

weighted counterparts for modelling compensatory aggregation situations have been

proven in fuzzy decision making. More recently, [13] and [212] show that when

appropriate weights are selected, an OWA operator can also perform as a distance

metric, e.g., a positive mapping which satisfies identity, symmetry, and triangle in-

equality. In essence, OWA is a family of aggregation operators which is a special

weighted average based on the ordering of the inputs. The fundamental aspect of

this family of operators is the reordering step in which the inputs are rearranged in

descending order and then integrated into a single aggregated value. Inspired by the

OWA aggregation, two types of ordered weighted aggregation of fuzzy relations are

studied in this chapter. The two types of aggregation are based on min-max operator

and sum-product operators, respectively.

Definition 7. The ordered weighted aggregation of the local relations R1, · · · , Rm, with

the weighting vector (w1, · · · , wm) based on min-max operator is a relation Rmin over X

such that:

Rmin(a, b) = min
i=1,··· ,m

max(1− wi, Rπ(i)(a, b)) (5.7)

where Rπ(i)(a, b) is a permutation of Ri(a, b), i = 1, · · · , m, which satisfies Rπ(i)(a, b)

being the i-th largest of the Ri(a, b), and wi ∈ [0,1], i = 1, · · · , m is a collection of

weights that satisfies max
i=1,··· ,m

wi = 1.

Definition 8. The ordered weighted aggregation of the local relations R1, · · · , Rm, with

the weighting vector (w1, · · · , wm) based on sum-product operator is a relation RŁ over

X such that:

RŁ(a, b) =

m∑

i=1

wiRπ(i)(a, b) (5.8)

where Rπ(i)(a, b) is a permutation of Ri(a, b), i = 1, · · · , m, which satisfies Rπ(i)(a, b)

is the i-th largest of the Ri(a, b), and wi ∈ [0, 1], i = 1, · · · , m is a collection of weights

that satisfies
∑m

i=1
wi = 1.
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In so doing, the two OWA-like aggregated relations Rmin and RŁ implement two

mappings from multiple similarity relations to one relation: Rm→ R respectively. It

worth noticing that the constraint on the weights in Rmin is different from RŁ. This is

due to the requirement of Definition 5 (Section 5.1) that when all the component

relations R1, · · · , Rm are zero, the constraint max
i=1,··· ,m

wi = 1 can assure Rmin = 0.

Obviously, both Rmin and RŁ are “mean” operators which satisfy the boundedness:

min
i=1,··· ,m

Ri(a, b)≤ Rmin(a, b), RŁ(a, b)≤ max
i=1,··· ,m

Ri(a, b).

Since these two aggregators are designed for combining fuzzy relations, the

reflexivity, symmetry, and the T -transitivity are also considered here. It is easy to

prove that the aggregated relations Rmin and RŁ preserve the reflexivity and symmetry

if R1, · · · , Rm are reflexive and symmetric. However, the aggregated relation does not

always display T -transitivity.

The discussion of transitivity and symmetry on fuzzy relations has drawn much

attention, especially its effectiveness and interpretation in real applications. When a

reasoning process is prototype-based, such as generating clusters of patterns that are

similar to certain prototypical samples, it seems that the transitivity and symmetry

properties do not have to be a necessary requirement. However, there may be other

situations that require homogeneous similarities and clusters/granules whose mem-

bers satisfy symmetry and transitive property. Such clusters are easy to distinguish

from a practical point of view, and the knowledge extracted from one of these clusters

can also be applied in the same fashion to all the others of these clusters. There-

fore, symmetry and transitivity in similarity relations can be considered to be useful

properties for knowledge extraction in many scenarios. Following such a desirable

direction, the Tmin-transitivity and TŁ-transitivity of the proposed Rmin and RŁ are

investigated, respectively. Although transitivity is not always preserved in the above

two forms of aggregation in nature, it is proven that transitive aggregated results

can also be obtained by them if their weighting vectors satisfy certain constraints.

Theorem 4. Let R1, · · · , Rm be Tmin-transitive relations, (w1, · · · , wm) be the weighting

vector in Rmin such that wi ≤ w j for i < j, then Rmin is Tmin-transitive.

Proof. Assume that π1( j), π2( j) and π3( j) are three permutations of j = 1, · · · , m

which satisfies Rπ1( j)(a, b), Rπ2( j)(a, c) and Rπ3( j)(c, b) are the j-th largest value in

88



5.2. Ordered Weighted Aggregation of Fuzzy Relations

R1,··· ,m(a, b), R1,··· ,m(a, c) and R1,··· ,m(c, b), respectively. w′
j
= 1−w j. For all a, b, c ∈ X ,

since R1, · · · , Rm are Tmin-transitive, then

Rmin(a, b) = min
j=1,··· ,m

max(w′
j
, Rπ1( j)(a, b))≥

min
j=1,··· ,m

max
�
w′

j
, min(Rπ1( j)(a, c), Rπ1( j)(c, b))

�
. (5.9)

Since the operator max distributes over the min operator and the associativity of

min, the right side of Equation (5.9) equals to:

min
j=1,··· ,m

min
�

max(w′
j
, Rπ1( j)(a, c)),max(w′

j
, Rπ1( j)(c, b))
�
=

min
�

min
j=1,··· ,m

max(w′
j
, Rπ1( j)(a, c)), min

j=1,··· ,m
max(w′

j
, Rπ1( j)(c, b))
�
. (5.10)

Given that wi ≤ w j ⇒ w′
i
≥ w′

j
and Rπ2(i)(a, c)≥ Rπ2( j)(a, c) for i < j, then Rmin(a, c)

= min
j=1,··· ,m

max(w′
j
, Rπ2( j)(a, c)) is equal to max(w′

m
, Rπ2(m)(a, c)), which is the min-

imum value amongst all the permutations of R1,··· ,m(a, c) combined with w′
1,··· , j,

w′
i
≥ w′

j
for i < j. Then,

Rmin(a, c) = min
j=1,··· ,m

max(w′
j
, Rπ2( j)(a, c))≤ min

j=1,··· ,m
max(w′

j
, Rπ1( j)(a, c)),

and similarly,

Rmin(c, b) = min
j=1,··· ,m

max(w′
j
, Rπ3( j)(c, b))≤ min

j=1,··· ,m
max(w′

j
, Rπ1( j)(c, b)).

It can be implied that Equation (5.10) is greater or equals to

min
�

min
j=1,··· ,m

max(w′
j
, Rπ2( j)(a, c)), min

j=1,··· ,m
max(w′

j
, Rπ3( j)(c, b))
�
=

min(Rmin(a, c), Rmin(c, b)).

In fact, with the assist of Theorem 3, it can be proven that when the component

relations are TŁ-transitive in RŁ(a, b), the aggregated relation is TŁ-transitive if and

only if the weighting vector satisfy the additional condition that wi ≤ w j for i < j.

Theorem 5. Let R1, · · · , Rm be TŁ-transitive relations, (w1, · · · , wm) be the weighting

vector in TŁ, RŁ is TŁ-transitive iff when wi ≤ w j for i < j.
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Proof. It can be concluded from Theorem 3 that RŁ is TŁ-transitive ⇐⇒ its De

Morgan’s dual N(a) satisfies ∀a, b, c ∈ [0,1]m|a = b + c; N(c) ≤ N(a) + N(b).

Assume that a′ = 1− a, then N(a) = 1−
∑m

i=1
wia
′
π′(i) where a′

π′(i) is a permutation

of a′
i
∈ [0,1], i = 1, · · · , m, which satisfies a′

π′(i) is the i-th largest of the a′
i
. Since

a′ = 1− a, the descent permutation of a′: (1− a)π′(i) can be replaced by an ascent

permutation of a: aπ(i) where aπ(i) ≤ aπ( j) for i < j, so that (1− a)π′(i) = 1− aπ(i).

Then:

N(a) =1−
m∑

i=1

wia
′
π′(i) = 1−

m∑

i=1

wi(1− a)π′(i)

=1−
m∑

i=1

wi(1− aπ(i))

=1−
m∑

i=1

(wi − wiaπ(i))

=1−
m∑

i=1

wi +

m∑

i=1

wiaπ(i)

=

m∑

i=1

wiaπ(i).

Hence, the De Morgan’s dual of RŁ, N(a) can be seen as an OWA aggregation of

a ∈ [0,1]m with a increasingly ordered. According to [212], an OWA aggregation

is a norm (which satisfies the triangle inequality f (a) + f (b) = f (a + b)) if and

only if the OWA weighting vector satisfy the additional condition that wi ≥ w j for

i < j. In the case of N(a), both the input arguments and the weighting vector are

reversely ordered as they were in the original OWA operator, so that it satisfies

∀a, b, c ∈ [0,1]m|c = a+ b; N(c) ≤ N(a) + N(b) ⇐⇒ the weighting vector satisfy

the additional condition that wi ≤ w j for i < j.

Theorem 6. Let R1, · · · , Rm be TŁ-transitive relations, (w1, · · · , wm) be the weighting

vector in TŁ such that wi ≤ w j for i < j, then RŁ is TŁ-transitive.

Proof. Assume that π1( j), π2( j) and π3( j) are three permutations of j = 1, · · · , m

which satisfies Rπ1( j)(a, b), Rπ2( j)(a, c) and Rπ3( j)(c, b) are the j-th largest value

in R1,··· ,m(a, b), R1,··· ,m(a, c) and R1,··· ,m(c, b) respectively. For all a, b, c ∈ X , since
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R1, · · · , Rm are TŁ-transitive, then

RŁ(a, b) =

m∑

j=1

w jRπ1( j)(a, b)≥

m∑

j=1

w j ·max
�
Rπ1( j)(a, c) + Rπ1( j)(c, b)− 1, 0

�
≥

m∑

j=1

max
�
w jRπ1( j)(a, c) + w jRπ1( j)(c, b)− w j, 0

�
≥

max

� m∑

j=1

�
w jRπ1( j)(a, c) +w jRπ1( j)(c, b)− w j

�
, 0

�
≥

max
� m∑

j=1

w jRπ1( j)(a, c) +

m∑

j=1

w jRπ1( j)(c, b)− 1, 0
�

e.g.,

RŁ(a, b)≥ TŁ(

m∑

j=1

w jRπ1( j)(a, c),

m∑

j=1

w jRπ1( j)(c, b)) (5.11)

Since the sum-product
∑m

j=1
w jRπ( j)(a, c) with wi ≤ w j for i < j attains its min-

imal value amongst all the permutations of R1,··· ,m(a, c) when π( j) = π2( j) e.g.,

the R1,··· ,m(a, c) are descent ordered and w j=1,··· ,m are ascend ordered. Therefore,∑m
j=1

w jRπ1( j)(a, c)≥
∑m

j=1
w jRπ2( j)(a, c) and similarly,

m∑

j=1

w jRπ1( j)(c, b)≥
m∑

j=1

w jRπ3( j)(c, b).

Then, the right side of Equation (5.11) is greater than or equal to

TŁ(

m∑

j=1

w jRπ2( j)(a, c),

m∑

j=1

w jRπ3( j)(c, b)) = TŁ(R
Ł(a, c), RŁ(c, a)).

Theorem 7. Let R1, · · · , Rm be m component fuzzy relations, (w1, · · · , wm) be the

weighting vector in Rmin such that wi ≤ w j for i < j, then Rmin(a, b) = min
i=1,··· ,m

Ri(a, b).

Proof. From the definition of Rmin, it can be obtained that Rπ(i)(a, b) ≥ Rπ( j)(a, b)

for i < j, and Rπ(m)(a, b) = min
j=1,··· ,m

R j(a, b). Assume w′
j
= 1− w j for j = 1, · · · , m,
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then w′
i
≥ w′

j
for i < j. Since Rπ(i)(a, b) ≥ Rπ( j)(a, b) and w′

i
≥ w′

j
, for i < j, then

max(w′
1
, Rπ(1)(a, b))≥ · · · ≥max(w′

m
, Rπ(m)(a, b)). Therefore,

Rmin(a, b) = min
i=1,··· ,m

max(1− wi, Rπ(i)(a, b))

=max(w′
m

, Rπ(m)(a, b))

=max(1− wm, Rπ(m)(a, b))

According to the definition of Rmin, max
i=1,··· ,m

wi = 1 and since wi ≤ w j for i < j then

wm = 1.

Rmin(a, b) =max(1− wm, Rπ(m)(a, b))

=max(0, Rπ(m)(a, b))

= Rπ(m)(a, b)) = min
i=1,··· ,m

Ri(a, b)

It is worth noticing that the purpose of adding the constraint max
i=1,··· ,m

wi = 1 on Rmin

is to make it satisfy the requirement of Agg(0, · · · , 0, w1, · · · , wm) = 0 in Definition

5. If the constraint is removed from the definition of Rmin, Theorem 4 still holds

while the result of Rmin(a, b) will not equal to min
i=1,··· ,m

Ri(a, b), but only equals to

max(1− wm, Rπ(m)(a, b)).

Note that the proposed two aggregations can also be employed to define similarity

measures between two fuzzy sets. If a and b are two fuzzy sets defined on a non-

empty universe X , the component fuzzy relation Ri(a, b) is deemed as a component

similarity of the two fuzzy sets measured by the observation of element x i ∈ X , then

the similarity between a and b can be expressed as the aggregation of component

similarities over all elements in X [195] and hence, can be calculated by Definitions

7 or 8.

5.3 Weighting Vectors

A common pitfall with existing aggregation operators is the inability to provide an

explanatory means by which a user can utilise to enhance the individual perception

of arguments’ importance. To resolve this shortcoming, the stress function has

been introduced [211] as a simple mechanism for attaining interpretability in OWA
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aggregations, which formalises characterisation of the resulting OWA aggregation

operator. This can be accomplished using a function h : [0,1]→ R+ to stress the

places where to obtain significant values for the weighting vector (see Equation

(4.7)). This method of obtaining the OWA weighting vector has a number of useful

features. For instance, the h(x) values associated with the lower portion of the

left side of [0,1] reflect those weights associated with the larger argument values,

while the values associated with the right side of the unit interval reflect the weights

associated with the smaller values in the aggregation. Different types of stress

function can be used to express the distribution of weights and hence, different

aggregation behaviours. A measure which is used to interpret the overall behaviour

of an aggregation operator is the Attitudinal Character (see Equation (4.6)). It gives

an idea of whether an aggregation operator behaves similarly to conjunction/andness

(influenced by smaller inputs) or disjunction/orness (influenced by larger inputs).

The concepts of attitudinal character and stress function can also be applied

to the proposed two aggregations of fuzzy relation. Similar to other argument-

independent methods, this approach is practical under the circumstances where

human experience is relevant. However, since the constraint on weighting vector

in Rmin(a, b) is different to that of the original OWA aggregation, a modification of

the normalisation in Equation (4.7) is needed. The resultant weighting vector of

Rmin(a, b) is defined as:

wi =
h( i

m
)

max
j=1,··· ,m

h(
j

m
)
, (5.12)

where h is a stress function h : [0, 1]→ R+. Accordingly, the measure of attitudinal

character for Rmin(a, b) is normalised as:

A-C′(W ) =
A-C(W )∑m

i=1
wi

. (5.13)

Since the weighting vector of RŁ satisfy that
∑m

i=1
wi = 1, then A-C′(W ) = A-C(W )

for RŁ.

For instance, considering a, b, c ∈ X are three patterns, A1,··· ,4 are four fuzzy sets

based on which the component similarity relations between the three patterns are

built, with µ1,··· ,4(a) = (0.63,0.94,0.97,0.62), µ1,··· ,4(b) = (0.01,0.49,0.25,0.97)

and µ1,··· ,4(c) = (0.68, 0.91, 0.62, 0.68), respectively. Given that for ∀a, b ∈ X , a 6= b
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the Tmin-transitive and TŁ-transitive fuzzy relations are defined by the Tmin and

TŁ norms as: Rmin
i
(a, b) = min(µi(a),µi(b)) and RŁ

i
(a, b) = 1 − |µi(a) − µi(b)|,

i = 1, · · · , 4, respectively. The corresponding Tmin-transitive similarity relations are

then: Rmin
1,··· ,4(a, b) = (0.01,0.49, 0.25,0.62), Rmin

1,··· ,4(a, c) = (0.63,0.91,0.62,0.62),

Rmin
1,··· ,4(c, b) = (0.01, 0.49, 0.25, 0.68), and the TŁ-transitive ones over the three exam-

ples are: RŁ
1,··· ,4(a, b) = (0.38, 0.55, 0.28, 0.65), RŁ

1,··· ,4(a, c) = (0.95, 0.97, 0.65, 0.94),

RŁ
1,··· ,4(c, b) = (0.33,0.58,0.63,0.71). Table 5.1 presents the resulting weights ob-

tained from the application of stress functions, while Table 5.2 shows the aggregated

results of Rmin
1,··· ,4 and RŁ

1,··· ,4 by using Equation (5.7) and (5.8) respectively.

Table 5.1: Example of Stress Function

h(x) = Weighting Vector A-C′(W )

W1 1, for x = 0; Rmin : (1.00, 0.00, 0.00, 0.00) 1.00

0, otherwise. RŁ : (1.00, 0.00, 0.00, 0.00)

W2 1.25− x Rmin : (1.00, 0.75, 0.50, 0.25) 0.63

RŁ : (0.40, 0.30, 0.20, 0.10)

W3 c, c ∈ (0, 1] Rmin : (1.00, 1.00, 1.00, 1.00) 0.50

RŁ : (0.25, 0.25, 0.25, 0.25)

W4 x Rmin : (0.25, 0.50, 0.75, 1.00) 0.33

RŁ : (0.10, 0.20, 0.30, 0.40)

W5 0, for x = 0; Rmin : (0.00, 0.00, 0.00, 1.00) 0.00

1, otherwise. RŁ : (0.00, 0.00, 0.00, 1.00)

Table 5.2: Aggregated Result of Examples

W W1 W2 W3 W4 W5

Rmin(a, b) 0.6200 0.4900 0.0100 0.0100 0.0100

Rmin(a, c) 0.9100 0.6200 0.6200 0.6200 0.6200

Rmin(c, b) 0.6800 0.4900 0.0100 0.0100 0.0100

RŁ(a, b) 0.6500 0.5290 0.4650 0.4010 0.2800

RŁ(a, c) 0.9700 0.9260 0.8775 0.8290 0.6500

RŁ(c, b) 0.7100 0.6220 0.5625 0.5030 0.3300
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It can be seen from the given example that generally, the results of aggregated

relations are impacted by the stress functions. Higher attitudinal character values

will result in higher-valued aggregated similarities. However, due to the aggregations

based on min-max operators are more easily to produce discrete results than the ones

based on sum-product operators, Rmin is not as sensitive as RŁ to the change of weights.

It also worth noticing that the example also demonstrates that Rmin dose not pre-

serve Tmin-transitive under W1 by validating Rmin(a, b)<min(Rmin(a, c), Rmin(c, b)).

Similarly, under W1 and W2, RŁ(a, b) is less than TŁ(R
Ł(a, c), RŁ(c, b)), which means

that RŁ dose not preserve TŁ-transitive neither.

To further demonstrate how the changing of weighting vectors has impact on the

behaviours of Rmin and RŁ aggregations respectively, an example of a two dimensional

dataset is employed. The two dimensions represent the membership values of

patterns to the two fuzzy sets A1 and A2, respectively. The Z-axis in Figure 5.1

and 5.2 indicates the aggregated similarities of all the patterns in the space to

the pattern p, with µ1(p) = 0.5 and µ2(p) = 0.5 being the memberships of p

to A1 and A2, respectively. It can be seen from Figure 5.1 that the Z-axis values of

p ∈ [0.5, 1]×[0.5, 1] are equal to 0.5, which forms a flat area in that subspace. When

W = (1,1) or A-C′(W ) < 0.5, two slopes are adjacent to that flat area. When non-

transitive weighting vectors (A-C′(W )> 0.5) are employed, two “stairs” are raised

up from the bottom of the slopes, and the “heights” of those stairs are influenced

by the weighting vectors. It is worth noticing that the “stairs” project non-convex

contour lines in Figure 5.1, which reflects the non-transitivity of the aggregated

similarity.

Since RŁ
i
(a, b) = 1 − |µi(a) − µi(b)| is a distance-like component relation, the

contour lines are symmetric about (0.5, 0.5) in RŁ aggregation (as shown in Figure

5.2). When W = (0, 1), a pyramid-like surface is formed with (0.5, 0.5) reaches the

peak value 1 and the contour lines are squares. With the value of A-C′(W ) moving

from 0 to 1, ridges are raising up from the four slopes of the pyramid-like surface, and

the straight boundaries of those square contours reaching out accordingly. Similar

to the situation of using Rmin aggregation, when non-transitive weighting vectors

(A-C′(W )> 0.5) are employed, the contour lines in Figure 5.2 are non-convex (see

the “star” shape in Figure 5.2 when W = (0.8, 0.2)).

It can be seen from the above examples that not only the T -transitivity but also

the behaviours of the Rmin and RŁ aggregation can be controlled by tuning the stress
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Figure 5.1: Change of Rmin Aggregated Relation against Weighting Vector

function and in turn, tuning the weights in the weighting vector. Inspired by the

success with OWA aggregation in real applications, the proposed ordered weighted

aggregations of fuzzy relations are herein applied to the problem of hierarchical clus-

tering where different weighting vectors are tested in the proposed two aggregations

and the resultant fuzzy relations are employed as similarity metrics.

5.4 Application to Cluster UCI Datasets

In order to investigate the effectiveness of proposed ordered weighted aggregation

of fuzzy relations in clustering patterns as well as demonstrate their potential in

solving real problems, an application of the aggregated relation to the hierarchical

clustering is presented. Clustering is useful in several exploratory decision making

and machine learning situations, including data mining, document retrieval, image

segmentation, and pattern classification. Generally, the task of clustering is to assign
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Figure 5.2: Change of RŁ Aggregated Relation against Weighting Vector

a set of patterns into groups (namely clusters) such that the patterns in the same

group are similar to each other, and dissimilar to those in the other clusters. Since the

likeness amongst members is fundamental to the definition of a cluster, a measure of

the similarity between two patterns is essential to most clustering procedures. This

application uses the proposed aggregated fuzzy relations to justify the similarity of

each pair of patterns and grouping similar patterns into the same cluster by using

the hierarchical clustering algorithm. Its performance is assessed over a number of

benchmark datasets from the UCI Machine Learning Repository [71].

5.4.1 Hierarchical Clustering

Hierarchical clustering is one of the most significant developments in clustering

algorithms. In particular, hierarchical clustering builds a cluster hierarchy or a

tree/dendrogram of clusters. Every cluster node contains child clusters; sibling

clusters partition the points covered by their common parent. Such an approach
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allows exploring data on different levels of granularity. Hierarchical clustering

methods are categorised into agglomerative (bottom-up) and divisive (top-down)

[19, 205]. An agglomerative clustering starts with one-point (singleton) clusters and

recursively merges two or more most appropriate clusters. A divisive clustering starts

with one cluster of all patterns and recursively splits the most appropriate cluster.

The process continues until a stopping criterion (frequently, the requested number k

of clusters) is achieved.

The reason for using the hierarchical clustering to test the proposed aggregated

fuzzy relations is that any forms of similarity or distance can be applied to the

hierarchical clustering directly. Consequently, the clustering results are mainly

dependent on the weights employed in the proposed aggregations of similarities.

Many hierarchical clustering algorithms are variants of the single-link, complete-link,

and minimum-variance algorithms. Amongst these, the single-link and complete-

link algorithms are commonly seen. These two algorithms differ in the way they

characterise the similarity between a pair of clusters. In the single-link method,

the distance between two clusters is the minimum of the distances between all

pairs of patterns drawn from the two clusters (one pattern from the first cluster,

the other from the second). In the complete-link algorithm, the distance between

two clusters is the maximum of all pairwise distances between patterns in the two

clusters. In either case, two clusters are merged to form a larger cluster based on

minimum distance (maximum similarity) criteria. Both the single-link and compete-

link algorithms do not contain the step of random initialisation, which makes their

outputs more stable than the classic k-means. However, the complete-link algorithm

produces tightly bound or compact clusters while the single-link algorithm suffers

from a chaining effect [105]. Due to these reasons, the complete-link hierarchical

clustering is selected herein to test the performance of the proposed aggregation of

fuzzy relations in clustering analysis.

5.4.2 Aggregated Similarity based Hierarchical Clustering

A component fuzzy relation can be regarded as the similarity/dissimilarity metric

of patterns based on a certain feature. The resulting aggregated relation reflects

the overall estimation of similarity between patterns based on all considered fea-

tures. In many clustering and classification problems, a more general type of fuzzy

data other than the example in Section 5.3 is often considered. In such a kind
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of fuzzy data, each feature does not represent a set of memberships to a single

fuzzy set, but multiple sets of memberships with regard to several linguistic labels.

These labels provide qualitative descriptions of a feature such as “very large”, “nor-

mal”,“very small”, etc. In so doing, each feature is described by a fuzzy partition

rather than a single fuzzy set. Formally, given a data set of N patterns {p1, · · · , pN},
each pattern pa, a = 1, · · · , N is described by m features, and the i-th feature is

expressed by a set of memberships µil , l = 1, · · · , Li to Li grades of linguistic labels

(for simplicity in the notation, the number of linguistic labels Li for all features is

assumed to be L), each pattern pa can be characterised by the following values:

pa = ((µ
11
a

, · · · ,µ1L
a
), · · · , (µi1

a
, · · · ,µil

a
, · · · ,µi L

a
), · · · , (µm1

a
, · · · , µmL

a
)), l = 1, · · · , L. In

this case, the fuzzy relation between each pair of patterns are firstly built “within”

each individual feature, and then the proposed ordered weighted aggregation is em-

ployed to aggregate the similarities evaluated by different features. This is formally

summarised as follows:

• Step 1. Acquire the fuzzy similarity relations Ri(pa, pb) based on the i-th

feature. According to [166], the Tmin-transitive and TŁ-transitive similarity

relations based on L linguistic labels can be obtained by the following two

equations, respectively:

Rmin
i
(pa, pb) =






inf
l∈L i

ab

(min(µil
a
,µil

b
)), if L i

ab
6= ;

1, otherwise

(5.14)

where L i
ab
= {l|µil

a
6= µil

b
}.

RŁ
i
(pa, pb) = inf

l=1,··· ,L
(1− |µil

a
−µil

b
|) (5.15)

• Step 2. Aggregate Rmin
i

or RŁ
i
, i = 1, · · · , m by using Rmin or RŁ, i.e., Equation

(5.7) or Equation (5.8), respectively.

• Step 3. Apply complete-link hierarchical clustering to the dataset based on the

aggregated fuzzy relation.

5.4.3 Empirical Evaluation

To evaluate the performance of proposed methods, they are experimentally tested

over six datasets obtained from UCI benchmark repository [71], where true labels
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of patterns are known but are not explicitly used in the clustering process. In order

to easily convert the feature values to the fuzzy memberships belongs to linguistic

terms, all the feature values in the selected datasets are treated as numeric values.

The details of these datasets are summarised in Table 5.3.

Table 5.3: Summary of Datasets: T -transitivity

Datasets Instances Attributes Classes

Iris 150 4 3

Sonar 208 60 2

Glass 214 9 6

Wine 178 13 3

Ecoli 336 7 8

Ionosphere 351 34 2

Both the normalisation and fuzzification of original datasets are implemented

to entail a comparison. For each pattern pa, a = 1, · · · , N , its i-th feature value

Fi(pa) ∈ R, i = 1, · · · , m is normalised to F ′
i
(pa) ∈ [0, 1] by:

F ′
i
(pa) =

Fi(pa)− min
j=1,··· ,N

(Fi(p j))

max
j=1,··· ,N

(Fi(p j))− min
j=1,··· ,N

(Fi(p j))
. (5.16)

For the fuzzification, each normalised feature value is further transformed to five

membership degrees with regard to the linguistic terms defined in Figure 5.3 [166].

It is worth noticing that the normalisation employed here can be viewed as a special

case of the fuzzification in which only one linguistic term “High” is defined as F ′
i
(pa).

For the hierarchical clustering algorithm, the complete-link is selected to estimate

the similarity between two clusters, and the number of clusters is set to the number

of known classes of each dataset. The resulting clusters are evaluated in terms of

accuracy since the group truth for each dataset is known. In order to examine the

relationship between clustering accuracy and the attitudinal character of weighting

vectors in the proposed aggregations, 21 weighting vectors are generated using linear

stress functions with their attitudinal character values distributed from zero to one.

There are ten weighting vectors (A-C′(W ) ∈ [0, 0.5]) preserve transitivity while the
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5.4. Application to Cluster UCI Datasets

Figure 5.3: Fuzzification of Feature Value

other eleven weighting vectors (A-C′(W ) ∈ (0.5,1]) do not. The clustering process

runs only one time for each weighting vector on each dataset, since the complete-

link hierarchical clustering does not contain random parameters and multiple runs

only produce identical results. Figure 5.4 shows the change of accuracy (Y-axis)

with respect to the attitudinal character value of weighting vector (X-axis). In

Figure 5.4 and the following tables, “N/F-” represents normalisation/fuzzification of

datasets, and “Rmin/RL” represents Rmin/RŁ aggregations, respectively. The resultant

clustering accuracy rates are also summarised in Table 5.4, where the average,

standard deviation, and highest/lowest value achieved by each method are reported.

In order to validate the significance of the experimental results, paired-t tests are

carried out amongst the four methods, in which the weighting vectors are the same

in each pair. The winners are listed in cells of Table 5.5, with “-” indicating that

the difference between the compared methods is “not significant” (p > 0.05). Since

on each dataset there are only 21 pairs of weighting vectors tested (the number of

observations is usually beyond 30 in the paired t-test), the results from all datasets

are collected together to form a relatively large set of observations for the paired-t

test, and the according paired t-test results are indicated as “overall” in Table 5.5.

5.4.4 Results and Discussion

Firstly, the results achieved by the T -transitive aggregations and those by the not

T -transitive aggregations are compared. Since it is difficult to define a non-transitive
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Figure 5.4: Trend of Accuracy against Normalised Attitudinal Character
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Table 5.5: Comparison of Accuracy: Paired t-test

N-Rmin vs. N-RŁ F-Rmin vs. F-RŁ N-Rmin vs. F-Rmin N-RŁ vs. F-RŁ

Iris N-RŁ F-RŁ - N-RŁ

Sonar - - - N-RŁ

Glass N-RŁ F-RŁ - -

Wine N-RŁ F-RŁ - N-RŁ

Ecoli N-RŁ F-RŁ - N-RŁ

Ionosphere N-RŁ F-RŁ - -

Overall N-RŁ F-RŁ - N-RŁ

Table 5.6: Comparison of Accuracy (%) of N-Rmin: T min-transitive vs. Not T min-

transitive

Average±Standard Deviation Best-accuracy (A-C′(W ))

Tmin-transitive Not Tmin-transitive Tmin-transitive Not Tmin-transitive

Iris 34.67±0.00 58.47±13.17 34.67 ([0.00, 0.50]) 66.67 ([0.67, 1.00])

Sonar 53.37±0.00 57.50±4.39 53.37 ([0.00, 0.50]) 65.87 (0.52)

Glass 36.92±0.00 44.81±5.06 36.92 ([0.00, 0.50]) 51.40 (0.89)

Wine 39.89±0.00 57.13±9.41 39.89 ([0.00, 0.50]) 64.61 (0.67, 0.74)

Ecoli 44.64±0.00 50.86±8.66 44.64 ([0.00, 0.50]) 64.29 (0.96, 1.00)

Ionosphere 50.44±0.00 54.04±4.31 50.44 ([0.00, 0.50]) 62.17 (1.00)

counterpart for a transitive aggregation, the paired t-test is not available in this

comparison. In this case, the average accuracy (with standard deviation) and the

highest accuracy (with the attitudinal character value(s) where it is achieved) are

reported in Tables 5.6-5.9. If the highest accuracy is obtained by more than two

weighting vectors, their attitudinal character values are given by intervals. It is worth

noticing that not all the values in the interval are tested in this experiments, but only

those discrete points which are shown in Figure 5.4.

The results show that for the application of Rmin aggregation to the complete-

link hierarchical clustering, the use of non-transitive weighting vectors leads to the

better average and highest accuracy on most of the datasets then those of transitive
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5.4. Application to Cluster UCI Datasets

Table 5.7: Comparison of Accuracy (%) of F-Rmin: T min-transitive vs. Not T min-

transitive

Average±Standard Deviation Best-accuracy (A-C′(W ))

Tmin-transitive Not Tmin-transitive Tmin-transitive Not Tmin-transitive

Iris 34.67±0.00 57.33±12.70 34.67 ([0.00, 0.50]) 82.67 (0.91)

Sonar 53.37±0.00 56.06±3.39 53.37 ([0.00, 0.50]) 62.98 (0.87)

Glass 36.92±0.00 48.79±2.28 36.92 ([0.00, 0.50]) 53.27 (0.52)

Wine 41.01±0.00 54.21±8.26 41.01 ([0.00, 0.50]) 67.42 (0.88)

Ecoli 44.64±0.00 52.11±7.90 44.64 ([0.00, 0.50]) 63.10 (0.62)

Ionosphere 50.44±0.00 56.04±3.87 50.44 ([0.00, 0.50]) 63.48 (0.94)

Table 5.8: Comparison of Accuracy (%) of N-RŁ: T Ł-transitive vs. Not T Ł-transitive

Average±Standard Deviation Best-accuracy (A-C′(W ))

TŁ-transitive Not TŁ-transitive TŁ-transitive Not TŁ-transitive

Iris 78.85±9.17 82.47±3.44 88.00 (0.38) 88.67 (0.75)

Sonar 54.68±2.37 53.95±1.03 60.58 (0.00) 56.25 (1.00)

Glass 47.20±3.22 50.23±2.76 49.53 (0.11, 0.42) 55.61 (0.52)

Wine 84.63±12.91 83.09±16.50 96.63 (0.39) 96.63 (0.57)

Ecoli 78.84±3.63 66.76±13.15 83.63 (0.33) 78.87 (0.62)

Ionosphere 54.98±6.06 58.43±6.26 69.13 (0.20) 68.26 (0.52)

Table 5.9: Comparison of Accuracy (%) of F-RŁ: T Ł-transitive vs. Not T Ł-transitive

Average±Standard Deviation Best-accuracy (A-C′(W ))

TŁ-transitive Not TŁ-transitive TŁ-transitive Not TŁ-transitive

Iris 67.09±17.09 74.27±9.66 82.67 ([0.38,0.45]) 84.67 (0.83)

Sonar 56.34±3.64 56.30±3.73 62.50 (0.46) 64.42 (1.00)

Glass 49.24±4.68 50.56±3.00 53.74 (0.42,0.46) 55.61 (0.52)

Wine 61.59±13.22 75.06±9.07 79.21 (0.50) 91.01 (0.61)

Ecoli 63.18±9.99 60.53±10.62 75.00 (0.50) 70.24 (0.82)

Ionosphere 57.87±7.34 62.26±10.82 74.35 (0.50) 76.96 ([0.52, 0.57])
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5.4. Application to Cluster UCI Datasets

weighting vectors. The main reason is that when the weighting vectors employed in

the Rmin aggregation satisfy the constraint in Theorem 4 to retain transitivity, the Rmin

aggregation will behave as the classic min operator, and its aggregated results will be

min
i=1,··· ,m

Ri(a, b) (see Theorem 7). The extreme pessimistic behaviour of min operator

undermines the quality of clustering on these tested datasets. The results also imply

that preserving Tmin-transitivity for Rmin aggregation does not necessarily provide a

good performance of it in hierarchical clustering effectively. Generally, both N-Rmin

and F-Rmin achieve their highest accuracies when the attitudinal character values of

weighting vectors are closed to 1, suggesting that the weighting vectors which show

orness (namely, inputs with high values dominate the aggregation result) are more

preferable when Rmin operators are employed for conducting hierarchical clustering.

However, the performance of the extreme orness case, i.e., Wmax is slightly worse

then the best one achievable. This implies that the Rmin aggregator can produce

better result than the classic max and min operators in the aggregation of Tmin-based

fuzzy similarities on different features.

The performance of non-T Ł-transitive aggregations is not obviously better than

that of T Ł-transitive aggregations in general. In fact, the component similarity

relation used in N-RŁ (Equation (5.15) with only one linguistic term defined by

Equation (5.16)) is just the negation to the classic Euclidean/Manhattan distance

metric on [0,1]. Particularly, when Wmean is applied to N-RŁ aggregation, its resultant

hierarchical clustering is identical to the Manhattan (“city block”) distance based

hierarchical clustering (see the points on the line N-RŁ with A-C′(W ) = 0.5 in Figure

5.4). By comparing the position of where the N-RŁ aggregated similarity relation

obtain its highest accuracy, it can be concluded that the proposed RŁ aggregated

similarity has the potential of providing better clusters than the classic Manhattan

distance in terms of hierarchical clustering. It also can be seen from Tables 5.7 and

5.9 that the RŁ aggregator can outperform the classic max and min operators in the

aggregation of fuzzy similarities with appropriate weighting vectors.

Secondly, a comparison is made between the quality of the clusters generated

by Rmin and that of RŁ. For both the normalisation and fuzzification of datasets, the

accuracies of the RŁ aggregations are significantly better than those achieved by the

Rmin aggregations in five of the six datasets (see the second and third columns in

Table 5.5). This indicates that the application of RŁ aggregated fuzzy relations to

hierarchical clustering entails more effective information for comparing patterns.
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This is mainly because the component similarities employed in RŁ is symmetric about

a fixed pattern on each dimension, while the component similarities employed in

Rmin tend to assign small similarity values to patterns with low memberships. As a

consequence in the hierarchical clustering, patterns which have low memberships

are difficult to merge with other patterns and cause “singleton” clusters. Another

possible reason is that the RŁ aggregation produces continuous valued results while

Rmin aggregation leads to the result that many patterns may have the same degree of

similarity to a certain pattern), which in turn allows RŁ generates better results than

Rmin.

Finally, this is to compare the results on normalised datasets and those on fuzzified

datasets of using the proposed two aggregations in the hierarchical clustering. It

can be seen from Table 5.5 that when RŁ aggregation is applied, the accuracies

achieved on three normalised datasets are significantly better than those achieved

on their fuzzified counterparts. One possible explanation is that the component

similarity relation defined in Equation (5.15) is too “pessimistic”, which means that

many patterns have RŁ
i
(pa, pb) = 0 after the fuzzification. Intuitively, fuzzification

can help the min-based similarity metric to eliminate the effect of always assigning

small similarity values to patterns with low memberships and hence, improve the

performance of F-Rmin. However, the paired t-test in the experimental results failed

to show that. One possible explanation is that the membership functions showed in

Figure 5.3 are not suitable for defining the linguistic terms on some of the tested

datasets.

5.5 Summary

This chapter has studied the T -transitivity of ordered weighted aggregation of fuzzy

relations and their applications as pairwise similarity matrices for hierarchical clus-

tering. The proposed aggregated similarities take the advantage of OWA-like aggre-

gators in that the behaviour of the aggregations can be controlled by stress functions.

Furthermore, the conditions regarding when the aggregated similarity may preserve

T -transitivity are also investigated. Experimental results on six UCI datasets indi-

cate that the proposed ordered weighted aggregations generally outperform the

conventional aggregators/distances in hierarchical clustering.
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Chapter 6

Ensemble of Fuzzy Clusters for

Journal Ranking

T
O avoid the bias which is caused by using a single impact indicator, ensemble

of multiple indicators is a promising method to produce a more robust ranking

result. Besides fuzzy aggregation, other fuzzy techniques such as fuzzy clustering,

have proven to be effective for many applications of decision making and multi-

criteria evaluation [5, 39, 81]. In this chapter, a fuzzy aggregation based fuzzy

clustering ensemble method is proposed for ranking academic journals. In particular,

the OWA operators with dependent weights, are applied to aggregate the scores of

academic journals.

Distinctive fuzzy clusters of journals are constructed based on their performance

with respect to different journal impact indicators. These may be subsequently

combined via the use of various OWA operators. For each individual indicator, fuzzy

clusters of journals which are labelled with linguistic terms are generated. The OWA

operators are then employed to aggregate various fuzzy clusters according to their

linguistic labels, and the final fuzzy clusters are formed. Two refinement methods

are also introduced to support the evaluation in order to generate a rank of journals

according to their memberships to those fuzzy clusters. The overall ranking process

is not only more reliable and interpretable than ranking by the original indicator

scores but also very intuitive. The kNN-DOWA can enhance the reliability while the

fuzzy clustering improves the interpretability of the ranking procedure. The ranking
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results of academic journals from six subjects are compared with the RJL published

in ERA (2010).

The remainder of this chapter is organised as follows. Section 6.1 introduces the

basics of clustering ensemble and fuzzy clustering ensemble. Section 6.2 describes

the details of the proposed fuzzy aggregation and clustering ensemble based method

for journal ranking. Section 6.3 presents the experimental evaluation of the proposed

approach, along with a discussion of the results. Finally, Section 6.4 concludes the

chapter.

6.1 Preliminaries

Clustering is one of the important approaches within the framework of unsupervised

learning, which is helpful for finding the hidden structure of unlabelled datasets. In

general, the task of clustering is to assign objects to groups (namely clusters) such

that objects in the same group are similar to each other, and dissimilar to those in the

other clusters [105]. A good number of clustering algorithms have been proposed

in the literature and have been successfully applied to many datasets [121]. For

a given problem, different algorithms, and indeed even the same algorithm with

different parameter settings (e.g., the number of clusters assumed), typically lead to

different solutions [100]. Hence, an inexperienced user runs the risk of fetching an

inappropriate clustering method. Also, in unsupervised learning, there is usually no

ground truth against which the result can be evaluated. Therefore, it is extremely

difficult for users to decide which algorithm is appropriate for a certain problem

domain [87].

To overcome the aforementioned limitations, improving the accuracy as well as

robustness of individual clustering methods, clustering ensembles have emerged

as effective solutions. Similar to the classifier ensemble [51] and feature selection

ensemble [170], the clustering ensemble combines results of various clustering

algorithms and may do so in different ways. One of the main objectives of the

combination is to achieve accuracy superior to those of individual clustering [175].

By combining multiple partitions of a set of data points into a single consolidated

clustering, the performance of clustering ensembles generally depends on both the

quality of ensemble components and the methods of aggregating those components.

This has been empirically verified in [87, 121].
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6.1.1 Clustering Ensemble

Formally, the clustering ensemble problem can be described as follows. Let X =

{x1, · · · , xN} be a set of N data points and Π = {π1, · · · ,πi, · · · ,πm} be m base-

clustering members. Each base-clustering member returns a set of clusters πi =

{C i
1
, · · · , C i

Ki
} such that
⋃Ki

k=1
C i

k
= X , where Ki is the number of clusters constructed

by that member. For each x ∈ X and each base-clustering member πi, C i(x) ∈ πm

denotes the cluster label to which the data point x belongs in πi. The task of

clustering ensemble is to find a new clustering result π∗ for the given dataset X ,

which summarises the information embedded in the whole clustering ensemble Π

[100].

Two key procedures are involved in the development of a clustering ensemble

technique. First, base-clustering members are generated, typically by artificially

diversifying methods for parameter settings and data re-sampling. Second, a consen-

sus function is then applied to those base-clustering members to generate the final

clustering result. The procedure of clustering ensemble is illustrated in Figure 6.1.

A number of methods have been proposed that have helped to address these issues.

For example, in order to ensure diversity of component clustering members, different

parameter configurations of a given clustering algorithm have been tested [73, 80];

re-sampling techniques have also been applied to diverse base-clusters [54, 112].

Regarding the techniques for the issue of consensus, existing methods include:

feature-based approaches where each base-clustering member provides cluster labels

as a feature describing data points, the resultant new dataset is then utilised to

formulate the final solution [141, 184]; pairwise similarity based approaches which

create a matrix, containing the pairwise similarity measures amongst data points,

then any similarity-based clustering algorithm (say, hierarchical clustering) can be

applied [73]; graph-based approaches which manipulate data partitions by exploiting

the graph representation [68, 175, 215].

A consensus function can be generally viewed as a map from a set of base-

clustering members to one final partition of the original data f : Π → π. Once

the base-clusters are generated from the data, a variety of consensus functions that

are readily available may be applied to derive the final data partition. Most of the

consensus functions utilise an ensemble-information matrix which aggregates the

base-clustering members. Given the ensemble of Figure 6.2, two types of such a
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Figure 6.1: Clustering Ensemble

Figure 6.2: Example of Clustering Ensemble

matrix: the label-assignment matrix and the binary cluster-association matrix are

illustrated in Tables 6.1 and 6.2, respectively.

Usually, a categorical data clustering algorithm is further applied to this type

of ensemble-information matrix to achieve the final partition of the original data.

Alternatively, an ensemble may be represented as a graph, where the nodes are

base-clusters or data points and links between them define the relationships holding

amongst the clusters and data points [189].

6.1.2 Fuzzy Clustering Ensemble

If a crisp clustering algorithm such as k-means [128] is used in the generation of

clusters, the association degree of a data point belonging to a specific cluster is either
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Table 6.1: Label-assignment Matrix

π1 π2 π3

x1 C1
1

C2
1

C3
1

x2 C1
1

C2
1

C3
1

x3 C1
1

C2
1

C3
1

x4 C1
1

C2
2

C3
1

x5 C1
2

C2
2

C3
1

x6 C1
2

C2
1

C3
2

x7 C1
2

C2
1

C3
2

Table 6.2: Binary Cluster-association Matrix

C1
1

C1
2

C2
1

C2
2

C3
1

C3
2

x1 1 0 1 0 1 0

x2 1 0 1 0 1 0

x3 1 0 1 0 1 0

x4 1 0 0 1 1 0

x5 0 1 0 1 1 0

x6 0 1 1 0 0 1

x7 0 1 1 0 0 1

1 or 0. However, there are other popular clustering algorithms such as fuzzy c-means

[21] that naturally produce clusters of data with uncertain boundaries. In other

words, fuzzy c-means can generate fuzzy partitions for a given dataset. It has been

successfully applied to image segmentation [126], chemical structures clustering

[94], and many scenarios in medicine and healthcare [2, 130]. Each cluster in a fuzzy

partition eπ is a fuzzy set eCk, k = 1, · · · , K where eCk(x) ∈ [0, 1] represents the degree

of a data point x ∈ X belonging to the corresponding fuzzy cluster. Usually, this

degree is normalised with all the clusters in a partition to satisfy that
∑K

k=1
eCk(x) = 1.

Formally, a fuzzy (or soft) clustering ensemble can be described as follows [156].

Let X = {x1, · · · , xN} be a set of N objects and Π = {eπ1, · · · , eπi, · · · , eπm} be m

fuzzy ensemble members. Each ensemble member returns a set of fuzzy clusters

eπi = {eC i
1
, · · · , eC i

Ki
} such that for each x ∈ X ,

∑Ki

k=1
eC i

k
(x) = 1, where Ki is the number
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of fuzzy clusters constructed by that member, and eC i
k
(x) ∈ [0, 1] denotes the degree

of which the data point x belongs to the fuzzy cluster eC i
k
.

The fuzzy clusters generated by all ensemble members together form a set of

fuzzy base-clusters for the ensemble: {eC1, · · · , eCM} =
⋃m

i=1
eπi, where M =

∑m
i=1

Ki.

An example of the so-called instance-cluster matrix of a fuzzy clustering ensemble is

shown in Table 6.3. The task of a fuzzy clustering ensemble is: for a given dataset

X , find a new fuzzy partition eπ∗ (or a crisp partition π∗) which summarises the

information embedded in the whole clustering ensemble Π.

Table 6.3: Fuzzy Cluster-association Matrix

C1
1

C1
2

C2
1

C2
2

C3
1

C3
2

x1 0.6 0.4 0.6 0.4 0.6 0.4

x2 0.8 0.2 0.8 0.2 0.8 0.2

x3 0.5 0.5 0.9 0.1 0.8 0.2

x4 0.7 0.3 0.2 0.8 0.8 0.2

x5 0.2 0.8 0.4 0.6 0.6 0.4

x6 0.4 0.6 0.6 0.4 0.1 0.9

x7 0.0 1.0 0.7 0.3 0.1 0.9

Note that a key difference between crisp and fuzzy clustering ensemble is that

the latter works on fuzzy clusters. If the fuzzy base-clusters are defuzzified into crisp

clusters, many of the consensus functions designed for crisp clustering ensemble

can be borrowed for building clustering ensembles of fuzzy base-clusters. However,

valuable information may be lost in defuzzification and hence, the quality of the

ensemble may be adversely affected [156]. For example, in the crisp clustering

ensemble, the instance-cluster matrix is sparse and its contained information for a

clustering ensemble is incomplete [100]. Thus, although fuzzy base-clusters contain

more information, conventional consensus functions for crisp clustering ensemble

cannot directly make use of such information. It is due to this observation that

fuzzy or soft clustering ensembles have been introduced in the literature [156, 214]

and followed on herein. Inspired by these observations, and in order to utilise the

interpretability of fuzzy linguistic terms, a fuzzy aggregation based fuzzy clustering

ensemble method is proposed in this chapter for ranking academic journals.
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6.2 Fuzzy Aggregation and Clustering Ensemble

based Journal Ranking

A number of indicators have been widely accepted and applied by scholars, which

typically focus on one particular aspect of academic journals such as citations. Scores

of journals gained under various indicators can be directly integrated by using the

aggregation methods introduced in Section 4.1. However, when human experts

assess the quality of academic journals, linguistic terms are commonly and sensibly

used to support their judgement. Therefore, the interpretable estimation of journals’

quality with respect to labelled fuzzy clusters (rather than the pure scores) under

each indicator is utilised in this chapter in order to conduct journal ranking. In

particular, a linguistic term based consensus method is proposed to regroup the

fuzzy clusters generated by different indicators and OWA operators with dependent

weights are applied to integrate fuzzy memberships.

The proposed journal ranking method is nicknamed FACE to reflect the fact

that it is based on fuzzy aggregation and cluster ensemble. Briefly, its working

process starts by creating ensemble members using fuzzy c-means on each of the

journal impact indicators which are available (and selected) from on-line databases

of academic publications. The resultant (fixed number of) fuzzy clusters, termed

base clusters for easy reference, are associated with predefined linguistic labels. The

preference relation amongst linguistic terms is then employed to group the base

clusters. The OWA operators are used to group base clusters belonging to different

cluster ensemble members, forming the final fuzzy clusters. The method may also

involve the following two optional steps: 1) defuzzifying the resultant fuzzy clusters

such that each data point (i.e., journal) belongs to just one final crisp cluster (which

may still be associated with a linguistic label) and hence, introducing a weak ranking

amongst all journals; and 2) combining the memberships of a given journal to all

fuzzy clusters into a single index of rank, thereby giving an absolute rank amongst

all journals. An illustrative flowchart of the FACE algorithm is showed in Figure 6.3

and the following subsections detail its key operations.

6.2.1 Indicator-based Generation of Fuzzy Base-clusters

When translating a set of real-valued scores into a linguistic term which is closer

to the use of natural language, it is a common practice to employ fuzzification
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Figure 6.3: Fuzzy Aggregation and Clustering Ensemble based Journal Ranking

techniques. For the present work, fuzzy c-means, which is able to retain the non-

binary memberships of each data point to all clusters, is adopted to translate the

numerical indicator scores into predefined linguistic terms. Without losing generality,

suppose that a set of journals J is evaluated with regard to m impact indicators

I1, · · · , Im, and that each indicator Ii, i = 1, · · · , m is a mapping Ii : J → R. Also, it is

naturally presumed that the higher impact indicator score is assigned to a journal

the higher impact that journal is believed to possess. For each indicator Ii, fuzzy

c-means is then utilised to form clusters for J with respect to {Ii( j)| j ∈ J} and a

pre-specified number K (which indicates the number of fuzzy subsets of J that are

required to be constructed). From this, K fuzzy sets are formed with eC i
1
( j), · · · , eC i

K
( j)

representing the memberships of a journal j ∈ J belonging to the resulting individual

fuzzy clusters, respectively.

When linguistic terms are employed to describe a variable, a preference ordering

relation is usually defined on the set of linguistic terms such as Bad ≺ Acceptable ≺
Good or Low ≺ Medium ≺ High. In general application of fuzzy clustering, such

an ordered labelling scheme over the clusters is not necessary. However, in FACE,

labelling the clusters is not only helpful to understand the relative quality of journals

in a cluster, but also important to organise base clusters in the subsequent aggregation
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process. The required labelling may be accomplished by consulting human experts in

the field. Yet, since the fuzzy clusters are herein generated according to an individual

impact indicator whose values are totally ordered, the value of each cluster centre

can be employed to signify the overall relative quality of that cluster. Thus, given

a set of K pre-defined set of linguistic terms L = {L1, · · · , LK} which satisfy that

L1 ≺ · · · ≺ LK , the fuzzy clusters eC i
1
, · · · , eC i

K
can be readily sorted in ascending order

with regard to their cluster centres and then, are labelled with L1, · · · , LK respectively.

Note that a possible drawback of employing fuzzy c-means to implement fuzzifi-

cation is that a data point’s membership to a cluster is not monotonically decreasing

with its distance to the cluster centre. This is caused by the mechanism of normal-

isation which is inherent in the fuzzy c-means algorithm. If the fuzzy clusters are

defuzzified into crisp clusters by assigning each object to the cluster with which it

obtains the maximum membership, the non-maximum (and non-monotonic) mem-

berships will have no impact on the final crisp result and hence, will be ignored.

However, in FACE, memberships of a journal to all those linguistically labelled clus-

ters are useful in the subsequent aggregation. Therefore, a filtering precess is applied

to the resultant fuzzy memberships to ensure that the membership of a journal to a

cluster is monotonically decreasing with its distance to the cluster centre. Such a

filtering process can be implemented using the following two steps:

1. For each labelled fuzzy cluster eC i
Lk

, k = 2, · · · , K , set membership eC i
Lk
( j) = 0 for

each j ∈ J where Ii( j) is smaller than the centre of eC i
Lk−1

; and for each labelled

fuzzy cluster eC i
Lk

, k = 1, · · · , K − 1, set membership eC i
Lk
( j) = 0 for each j ∈ J

where Ii( j) is greater than the centre of eC i
Lk+1

;

2. For each journal j ∈ J , update its memberships to all the clusters by normalisa-

tion:

eC i
Lk
( j) =

eC i
Lk
( j)
∑K

t=1
eC t

Lk
( j)

. (6.1)

Figure 6.4 shows an example of such a filtering precess. Figure 6.4(a) is the fuzzy

c-means result on a selective set of journals in Computer Science which are evaluated

by the Impact Factor of 2010. Figure 6.4(b) is the filtered result using the above

method.
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Figure 6.4: Filtering the Fuzzy c-means Result

6.2.2 Base-cluster Grouping and Aggregation of Memberships

Having gone through the fuzzification process as described in the preceding sub-

section, m× K fuzzy clusters are generated and labelled. In this step, the m× K

fuzzy base clusters are grouped into K final clusters which are again labelled by the

pre-defined set of linguistic terms L. Generally, cluster ensemble algorithms involve
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unsupervised grouping of base clusters, with many working methods available in

the literature to implement such grouping, including: feature-based, graph-based,

voting-based, and so on [98]. However, since the fuzzy clusters of journals generated

in FACE are automatically labelled (though using predefined linguistic terms), an

intuitive “supervised” grouping of them becomes feasible (which is less challenge

than using the unsupervised approaches). This is described below.

Given the m× K labelled base clusters eC1
L1

, · · · , eC1
LK

, eC2
L1
· · · , eCm−1

LK
, eCm

L1
, · · · , eCm

LK
,

owing to their inherent ordering, they can be (re-)categorised into K groups C1 =

{eC i
Lk
|k = 1, i = 1, · · · , m}, · · · , CK = {eC i

Lk
|k = K , i = 1, · · · , m}. Each Ck, k = 1, · · · , K

contains all the clusters with label Lk and eC i
Lk

is the fuzzy cluster which is generated

by impact factor Ii.

To illustrate the construction of Ck, for simplicity, a crisp counterpart of CK is

addressed first. Consider a voting system in which each indicator votes for the top-

rated “excellent” journals, for example. Those in C i
LK

(i.e., the crisp counterpart of

eC i
LK

) are the journals voted by Ii and hence, CK contains all the journals that are each

regarded as an “excellent journal" by at least one of I1, · · · , Im. Similarly, in general,

Ck contains all those journals in the vote which are deemed to be of the quality level

expressed by Lk. In such a crisp voting system, the votes can be summed for each

journal and the winners can be ranked by how many ballots they have attracted.

In FACE, however, each journal is not necessarily voted to having just one single

quality level in a boolean way, but can have multiple explicit partial memberships

assigned, indicating that it may be of different quality levels (though to various

degrees). To make the best use of such information contained within such a voting

system, more advanced aggregation operators rather than the simple sum/average

are employed here to summarise the (both full and partial) votes, thereby deriving

the final membership of a journal to a certain labelled fuzzy cluster Ck.

From this, given the K groups C1 = {eC i
Lk
|k = 1, i = 1, · · · , m}, · · · , CK = {eC i

Lk
|k =

K , i = 1, · · · , m}, the memberships of a journal j ∈ J to the final labelled fuzzy

clusters eC∗
Lk

, k = 1, · · · , K can be computed by:

eC∗
Lk
( j) = A(eC1

Lk
, · · · , eCm

Lk
). (6.2)

where A is an aggregation operator. Then, the memberships of j to all the final fuzzy

clusters are normalised by eC∗
Lk
( j) = eC∗

Lk
( j)/
∑K

k=1
eC∗

Lk
( j). The full algorithm of FACE

is shown in Algorithm 6.2.1.
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Inputs: J = { j1, · · · , jx , · · · , jN J }: a dataset of N J journals, where

jx = (I1( jx), · · · , Ii( jx), · · · , Im( jx)) ∈ Rm and Ii( jx) is the score of journal jx
evaluated by impact indictor Ii;

L = {L1 ≺ · · · ≺ Lk ≺ · · · ≺ LK}: a set of K linguistic terms with a preference

relation;

Outputs: eπ∗ = {eC∗
1
, · · · , eC∗

K
}: a fuzzy partition of J with linguistic label L.

1: for i = 1 : m do

2: create sub-dataset Ji = {Ii( j1), · · · , Ii( jN J )}
3: create ensemble member eπi = {eC i

1
, · · · , eC i

K
} using fuzzy c-means on Ji

4: sort eC i
1
, · · · , eC i

K
to eC i

π(1)
, · · · , eC i

π(K)
so that the cluster center of eC i

π(k)
is smaller

than the cluster center of eC i
π(k′), for k < k′ (k, k′ = 1, · · · , K)

5: label eC i
1
, · · · , eC i

K
with L1, · · · , LK , respectively

6: end for

7: regroup all the fuzzy clusters
⋃m

i=1
eπi to create K groups of fuzzy base clusters

C1 = {eC1
π(1)

, · · · , eCm
π(1)
}, · · · , CK = {eC1

π(K)
, · · · , eCm

π(K)
}

8: for k = 1 : K do

9: for x = 1 : N J do

10: eC ′
k
( jx) = A(eC1

π(k)
( jx), · · · , eCm

π(k)
( jx)) where A is an aggregation operator

11: end for

12: end for

13: for k = 1 : K do

14: for x = 1 : N J do

15: normalise eC∗
k
( jx) by

eC∗
k
( jx) = eC ′k( jx)/
∑K

k=1
eC ′

k
( jx), such that
∑K

k=1
eC∗

k
( jx) = 1

16: end for

17: end for

18: label eC∗
1
, · · · , eC∗

K
with L1, · · · , LK , respectively

Algorithm 6.2.1: Fuzzy Aggregation and Clustering Ensemble based Journal Rank-

ing (FACE)

What is required now is the choice of a method to implement the aggregation

operator A. As one of the possible mechanisms to perform the task of information

aggregation, the concept of data reliability has been introduced [26], with successful

extended applications for classification and feature selection. It works by exploiting

the proximity to clusters of arguments and hence, can be rather inefficient. Recently,

an enhanced version, termed kNN-DOWA, has been proposed in [27], where a

hierarchical clustering process required by the original approach is replaced by a

search of nearest neighbours. Although a number of aggregation operators are

available in the literature and many of them have been applied to decision making

[14, 35], they typically require subjective specification of the aggregation weights.
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Here, kNN-DOWA is adopted to aggregate the memberships of journals voted by

different impact indicators. This is feasible because: 1) the weights used in the

aggregation are learned from the arguments automatically; and 2) the weights

assigned to the arguments represent their reliability, which can be collected as useful

“by-products” to further analyse and interpret the reliability of the underlying impact

indicators.

For a dataset with n points and m features, the time complexity of the original

fuzzy c-means is O(nmK), where K is the number of clusters [116]. Since FACE

employs fuzzy c-means on one dimension dataset for m (the number of impact

indicators) times, the time complexity of FACE in generating the base clusters is

also O(N J mK). The time complexity of consensus step depends on the aggregation

operator A. Suppose that the complexity of consensus is O(A), then the overall time

complexity of FACE is O(N J mK) +O(A). Take kNN-DOWA as an example, the time

complexity of kNN-DOWA is O(m2) [27]. Therefore, if it is adopted to aggregate the

memberships of journals, the complexity of the consensus step is O(N J m2K), and

the overall time complexity of FACE is O(N J mK) +O(N J m2K) = O(N J m2K).

6.2.3 Refinement for Ranking

Consider an example where the pre-defined set of linguistic terms is {Acceptable,

Good, Ver yGood, Excel lent} and the preference ordering relation is Acceptable ≺
Good ≺ Ver yGood ≺ Excel lent. Suppose that the evaluation result of a journal

using FACE is represented as a vector such as (0.1,0.1,0.3,0.5), whose elements

denote the degrees of the journal belonging to the four (quality level) clusters,

respectively. This form of result gives a “soft” evaluation of the quality of journals

and is generally more informative than simply assigning journals to just one crisp

cluster. Nevertheless, in many practical research quality assessment scenarios, it is

not the absolute classification of journal qualities that is sought after, but the relative

ranking amongst possible competitors. In order to decide on a rank over journals,

using the information contained within the evaluation result vectors, two methods

of transforming soft partition to ranks are provided here.

The first is to assign a journal to the cluster(s) in which it has the maximum

membership. That is, taking the strategy of winners taking all. In so doing, the

linguistic label associated with the final fuzzy cluster that possesses the maximum
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membership degree becomes the quality level of that journal, i.e.,

rank of j = argmax
Lk∈L

eC∗
Lk
( j). (6.3)

Noted that LK is the highest rank available for all journals while L1 represents the

lowest rank. Obviously, this method can only provide a fixed number of (i.e., K)

ranks amongst the journals.

The alternative method is to assign a significance score to each of the linguistic

terms and then, to sort the journals with respect to the weighted sum of the scores

and journal (quality level) cluster memberships. For example, the scores can be set

to Lk = k, reflecting the order of these quality levels. Then, the ranking over a set of

journals can be obtained by sorting the journals in a descending order, according to:

rank index of j =

K∑

k=1

keC∗
Lk
( j). (6.4)

Compared against the first method, this second approach can provide a more

detailed rank over journals. Note that the final ranks produced by the two methods

are however, not necessarily in the same order. That is, journal j may be ranked

higher than j′ using the first method, but it may be ranked lower than j′ if the second

method is applied. The actual ranking outcomes depend on which method is used

which in turn, depends on the results of the cluster ensemble. For example, suppose

that the fuzzy evaluation of j is (0.4, 0, 0, 0, 6) and that of j′ is (0, 0, 0.6, 0, 4), then j

is ranked higher than j′ using Eqn. (6.3) and lower using Eqn. (6.4). This is not a

surprise, as these methods reflect different focus of attention, similar to the use of

conventional defuzzification techniques, where a different defuzzification method

may well result in a different defuzzified inference outcome. In real application, so

long as an approach is consistently utilised throughout, the ranking results will be

consistent.

6.3 Experiment and Evaluation

This section presents an experimental evaluation of the proposed FACE algorithm for

journal ranking. It shows the setup of the experiments carried out and then discusses

the results obtained.
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6.3.1 Experiment Setup

In order to demonstrate the journal ranking results generated using the proposed

FACE algorithm in a credible fashion, six indicators that are reported in the JCR

(2010) are selected as base-indicators, and the RJL (2010) is assumed to be the

ground truth. The employed six indicators include: Total Cites (TC), Journal Impact

Factor (JIF), 5-year JIF (5-JIF), Immediacy Index (II), Eigenfactor (Ei), and Article

Influence (AI). A summary of the resultant datasets is shown in Table 6.4. Each of

these datasets contains over two hundred journals. The details of these indicators

and the construction of datasets can be found in Section 3.3.

It is worth noticing that all these six indicators assign higher scores to journals

with more citations to varying degrees. Such measurement generally indicates

higher scores imply finer ranks for each of the indicators mentioned. Besides the

indicators included in JCR, many other indicators are available from various academic

publication databases. Note that in this work, it is the methods which aggregate

individual impact indicators together with data reliability that are investigated, rather

than the selection of base indicators themselves. Despite that more various indicators

could be carefully selected for different disciplines by experts, only the indicators

reported in JCR are tested here without losing generality.

Table 6.4: Summary of Datasets: FACE

Number of Instances A* A B C Total

Chemistry 37 70 95 143 345

Computer Science 44 101 108 67 320

Material Science 26 61 80 61 228

Mathematics 52 84 127 69 332

Medicine 20 39 73 107 239

Physics 30 50 73 56 209

In statistics, Spearman’s rank correlation coefficient rs is a nonparametric measure

of statistical dependence between two given variables [45]. It assesses how well the

relationship between the two variables can be described using a monotonic function.

If there are no identical data points, a perfect Spearman correlation of +1 or -1 occurs

when each of the variables is a perfect monotonic function of the other. The sign of
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rs indicates the direction of association between one variable, say x (calling it the

independent variable) and the other, say y (the dependent variable). If y tends to

increase when x increases, rs is positive, and if y tends to decrease when x increases,

rs is negative. rs = 0 indicates that there is no tendency for y to either increase or

decrease as x increases. The rs between scores of each individual indicator and the

RJL ranks are listed in Table 6.5.

Table 6.5: rs between Scores of Individual Indicator and RJL Rank

Indicators TC JIF 5-JIF II Ei AI

Chemistry 0.6665 0.7962 0.8152 0.7557 0.7019 0.8125

Computer Science 0.4914 0.4603 0.5023 0.3188 0.4130 0.5480

Material Science 0.6463 0.6153 0.6413 0.6045 0.6634 0.7185

Mathematics 0.5923 0.5610 0.5884 0.5262 0.6427 0.7287

Medicine 0.5401 0.4961 0.5010 0.5083 0.5368 0.5375

Physics 0.4501 0.6659 0.7299 0.5586 0.5095 0.7614

Average 0.5645 0.5991 0.6297 0.5454 0.5779 0.6844

Table 6.5 shows that all these indicators have a positive rs value with respect

to the RJL scores. This indicates that generally, if the scores of a journal on these

indicators tend to increase, then their ranks in RJL increase also. However, for each

indicator, its correlation levels to RJL are different from dataset to dateset. From their

average performance on these datasets it can be seen that AI is the most correlated

indicator to the rank of RJL, while II is the least relevant indictor. IF and 5-IF, which

are commonly used in many real-world quality assessment scenarios, are more highly

relevant to the results of RJL, as compared to TC and Ei.

To support systematic comparison, the quality levels of the journals that are

awarded with respect to each of the individual indicators are aggregated using five

different operators, namely: DOWA, kNN-DOWA and OWA with Wmean, Wandness

and Worness. Scores of each indicator are (separately) normalised to [0,1] before

clustering and aggregation. The weighting vectors in the OWA operators are not

weight-dependent, thus a pre-definition of them are required. Instead of using the sim-

ple Wmax and Wmin, Worness and Wandness are employed (which are derived from linear

stress functions in Figure 4.3). In particular, Worness = (0.29, 0.24, 0.19, 0.14, 0.09, 0.05),
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Wandness = (0.05, 0.09, 0.14, 0.19, 0.24, 0.29) and Wmean = (1/6, 1/6, 1/6, 1/6, 1/6, 1/6),

given that there are six indicators to be aggregated in each of the experiments carried

out. Note that Wandness is directly implemented as the reverse of Worness.

6.3.2 Results and Discussion

Both DOWA and kNN-DOWA use dependent weighting vectors, the resulting weights

represent the reliability of the corresponding arguments. In DOWA, the reliability is

measured by the similarity of an argument to the average of all arguments, while in

kNN-DOWA, the reliability is done by the similarity of an argument to its k nearest

neighbours. Since there are six indicators to be aggregated, the k in kNN-DOWA

is set to 3, indicating that the majority of all 5 neighbours are considered. Tables

6.6-6.8 show the average weights that are computed for each impact indicator in

OWA with Wandness, DOWA and 3NN-DOWA, respectively. Every entry in these tables

is subtracted by 1/6 (the average weight of each indicator) from its real value, so

that a positive number means that the indicator is more highly weighted than the

average, and that a negative one means that it is weighted lower than the average.

Table 6.6: Averaging Weight of Indicator in OWA with Andness Weighting Vector

Indicators TC JIF 5-JIF II Ei AI

Chemistry 0.0002 -0.0045 -0.0478 -0.0194 0.0349 0.0366

Computer Science 0.0470 -0.0045 -0.0333 0.0043 0.0061 -0.0196

Material Science -0.0152 -0.0073 -0.0081 -0.0119 0.0080 0.0345

Mathematics -0.0011 -0.0023 0.0010 -0.0009 0.0072 -0.0039

Medicine 0.0021 0.0174 -0.0362 -0.0162 0.0214 0.0115

Physics -0.0083 -0.0015 -0.0183 0.0156 0.0161 -0.0036

Average 0.0041 -0.0005 -0.0238 -0.0048 0.0156 0.0093

It can be seen from Table 6.6 that Ei, AI and TC have positive weights, while 5-JIF,

II and JIF have negative weights when a conjunctive aggregation is run. These results

indicate that on most journals, Ei, AI and TC tend to give lower scores compared

with the other three indicators. Both DOWA and 3NN-DOWA weighted JIF, 5-JIF and

AI higher than the other three indicators, which shows that they are considered more
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Table 6.7: Averaging Weight of Indicator in DOWA

Indicators TC JIF 5-JIF II Ei AI

Chemistry -0.0062 -0.0055 -0.0018 0.0096 -0.0090 0.0129

Computer Science -0.0098 0.0099 0.0140 -0.0173 -0.0063 0.0095

Material Science -0.0097 0.0048 0.0003 0.0030 -0.0058 0.0074

Mathematics -0.0076 0.0078 0.0059 0.0029 -0.0036 -0.0054

Medicine -0.0080 0.0053 0.0033 -0.0045 -0.0117 0.0156

Physics -0.0072 0.0159 0.0110 -0.0210 -0.0054 0.0067

Average -0.0081 0.0064 0.0055 -0.0046 -0.0070 0.0078

Table 6.8: Averaging Weight of Indicator in 3NN-DOWA

Indicators TC JIF 5-JIF II Ei AI

Chemistry -0.0040 -0.0015 0.0029 0.0075 -0.0063 0.0014

Computer Science -0.0046 0.0114 0.0162 -0.0312 -0.0011 0.0093

Material Science -0.0172 0.0092 0.0062 0.0050 -0.0111 0.0079

Mathematics -0.0093 0.0120 0.0094 0.0060 -0.0050 -0.0131

Medicine -0.0100 0.0119 0.0120 -0.0087 -0.0152 0.0100

Physics -0.0069 0.0174 0.0157 -0.0345 -0.0017 0.0100

Average -0.0087 0.0101 0.0104 -0.0093 -0.0067 0.0043

“reliable” when used with these two aggregation operators. Note that individually,

each of these three indicators also gains a relatively high rs coefficient to the RJL

result (see Table 6.5).

The rs coefficients between the aggregated scores and the RJL results are depicted

as the dot-lines in Fig. 6.5. On five out of the six datasets, 3NN-DOWA achieves the

best or second best rs results amongst all the five aggregation operators. However, its

performance on the Mathematics dataset is not so good as those obtained using other

aggregation operators. A possible reason is that the most RJL-relevant indicators are

Ei, AI and TC on the Mathematics dataset while 3NN-DOWA puts more weight on

JIF, 5-JIF and II. Similar to 3NN-DOWA, OWA with Wandness also shows good results

on these datasets, which indicates that the ranks produced by RJL are more like

conjunctive of the impact indicators rather than the disjunctive of them.
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Figure 6.5: Spearman’s Correlation to RJL Results

The solid lines in Fig. 6.5 show the rs coefficients between journal ranks obtained

with FACE and those by RJL. The number of base clusters on each impact indicator

is consecutively set from 2 to 11 (to support a wide range of tests). Since the
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direct aggregation of pure scores can provide a detailed rank, to entail an unbiased

comparison, Eqn. (6.4) is employed to produce a ranking of the journals based on

the final fuzzy clusters returned by FACE. As the fuzzy c-means algorithm starts with

a random initialisation, each point on the solid lines is the average of 30 independent

runs. However, as the impact of the initialisation of fuzzy c-means to any one

dimensional dataset is small, the standard deviation of the results is very small.

Therefore, standard deviations are not presented in Fig. 6.5.

In general, the rs coefficient between the result of FACE and RJL is increased

when the number of base-clusters is increased. The first result to notice is that on

five out of the six datasets, the solid lines can reach above the highest dot lines. This

indicates that using an appropriately selected number of base clusters, FACE can

outperform the direct aggregation of individual indicator scores. These results also

show that when FACE is employed, the highest rs values on five out of the six datasets

are achieved by the use of 3NN-DOWA. Overall, the results of 3NN-DOWA are better

than those achievable using other aggregation operators on the following datasets:

Computer Science, Medicine and Physics. Unfortunately, similar to the situation

when 3NN-DOWA is applied to directly aggregate indicator scores, its performance

on the Mathematics dataset is not so good as those obtained using other aggregation

operators. Nevertheless, 3NN-DOWA generally achieves better results than DOWA

both in direct aggregation and in FACE.

6.4 Summary

This chapter has presented a fuzzy aggregation and clustering ensemble based method

for academic journal ranking, with a focussed application to aggregating indicators

from the JCR provided by Web of Science. The proposed method works by exploiting

data-reliability based aggregation of fuzzy clusters that are generated from scores

returned by individual impact indicators. It helps strengthen the interpretability of

the assessment outcomes for academic journals, thanks to the use of quality level

terms with inherent linguistic meaning. Experimental results on real-world journals

from six subject areas have shown that the ranking results of the proposed method are

consistent with those by RJL, which are produced by a large group of journal-ranking

specialists. Compared with the direct aggregation of individual indicator scores, the

present work has an advantage in producing ranking results that are closer to the

ground truth.
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Chapter 7

Link-based Fuzzy Clustering

Ensembles

A
LTHOUGH much effort has been made in the development of clustering ensem-

bles, modelling a mechanism that is effective for integrating multiple data

partitions in a clustering ensemble is far from trivial. The development and appli-

cation of clustering ensembles are still at an early stage [98]. Most of the existing

clustering ensemble methods are based on crisp base-clusterings. However, inter-

esting departures from the traditional work have recently been reported, such as

that reported in [155, 214] where the problem of aggregating “soft” base-clustering

members is defined.

Following this desirable trend, in this chapter, link-based consensus approaches

for building ensembles of fuzzy c-means are proposed. Different from ensembles

of crisp clusters, the proposed methods are able to handle fuzzy components. The

work also differs from the link-based crisp clustering ensemble [99, 100], since

it employs a graph with fuzzy links to represent the relationships between base-

clusters and to refine the pairwise similarity matrix for generating the ensembles.

With a number of UCI benchmark datasets [71], the proposed methods are tested

against their crisp counterparts and those that utilise a fuzzy co-association matrix

without link-based refinement. The experimental results demonstrate that the fuzzy

link-based clustering ensemble methods developed herein perform better than their

counterparts in terms of accuracy.
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7.1. Preliminaries

The remainder of this chapter is organised as follows. Section 7.1 introduces the

basics of pairwise similarity matrices as a type of consensus function for clustering

ensemble. Section 7.2 defines fuzzy co-association matrix and link-based pairwise

similarity matrices, and presents their applications to agglomerative clustering in an

attempt to create ensembles of fuzzy clusters. Section 7.3 reports on the experimental

evaluation of the proposed approach and discuss the results. Finally, Section 7.4

concludes this chapter.

7.1 Preliminaries

Apart from the consensus functions described in Section 6.1, pairwise similarity

matrices form another type of consensus method which creates a matrix, containing

the pairwise similarity among data points. Any similarity-based clustering algorithm

(e.g., hierarchical clustering) can be applied on such a pairwise similarity matric to

form the final clusters. There have been various approaches for this [73, 99]. Using

the co-association (CO) matrix [72, 73] as an example: given a set X of N data

points and let Π = {π1, · · · ,πm} be m base-clustering members, the functionality of

each base-clustering member πi ∈ Π, i = 1, · · · , m is equivalent to transferring the

data into an N × N similarity matrix, using Equation (7.1):

Si(xa, xb) =

(
1, if C i(xa) = C i(xb)

0, otherwise.
(7.1)

where C i(x) denotes the cluster label to which the data point x belongs in πi. Having

obtained all the m similarity matrices regarding the base-clustering members, they

are aggregated to form the so-called co-association matrix using Equation (7.2). An

illustrative example of such a matrix is shown in Figure 7.1.

CO(xa, xb) =
1

m

m∑

i=1

Si(xa, xb). (7.2)

The entries in a CO matrix therefore capture the similarities between data points xa

and xb(xa, xb ∈ X ).

With the co-association matrix used as the similarity measure between data points,

the consensus partition can be obtained by applying similarity based clustering
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7.1. Preliminaries

Figure 7.1: Example of Pairwise Similarity Matrices for Clustering Ensemble

algorithms. In [73], an algorithm is applied to find a minimum spanning tree after

obtaining the co-association matrix. The co-association matrix is deemed as an

adjacency matrix of a graph, a tree that contains all the nodes of the graph and the

minimum weights in their edges is searched. Then, the weak links between nodes are

cut with respect to a given threshold. This is equivalent to cutting the dendrogram

produced by the single link agglomerative hierarchical clustering [105] using the

threshold.

Based on the original co-association matrix, several modifications have been

proposed to refine the similarity between data points for clustering ensemble. In

[125], a new hierarchical clustering algorithm is applied to the co-association matrix

to improve the quality of the consensus partition. This algorithm is based on the

development of the concept of normalised edges to measure similarity between

clusters.

In the definition of co-association matrix, Equation (7.1) takes only the values 0

or 1. The resultant new similarity between data points is computed only by taking

into account whether the two objects belong to the same cluster or not [189]. The

main drawback of using such a CO matrix is that many entries of it are zeros, which

implies that two corresponding data points are assigned to different clusters by all

base-clustering members. Investigations revealed that the zero-similarity values can

be as much as 75% in some UCI datasets [99]. Unfortunately, this characteristic is

commonly encountered with the crisp clustering ensembles, thereby significantly

limiting the quality of the final data partition that is to be generated by any given

consensus function [100].
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To solve this problem, two similarity matrixes: Connected-Triple Based Similarity

(CTS) and SimRank Based Similarity (SRS) are proposed in [99]. The CTS works on

the basis that if two objects share a link with a third object, then this is indicative of

similarity between those two data points. The SRS reflects the underlying assumption

that neighbors are similar if their neighbors are similar as well. Also, [188] presented

a weighted co-association matrix, which considers the similarity using the sizes of the

clusters, the number of clusters in each partition and the original similarity values

between the data points. Furthermore, [196] introduced the concept of probability

accumulation matrix. These matrices take into account more information than the

traditional co-association and can measure the pair-wise correlation between objects

in higher resolution [189].

7.2 New Pairwise Similarity Matrices for Fuzzy

Clustering Ensemble

The link-based refining methods proposed in [99] are herein extended for the en-

semble of fuzzy clustering with an aim to refine the underlying sparse-information

ensemble matrices. In particular, fuzzy c-means are employed to generate base-

clustering members. This leads to the following CO matrix-based method which is

named as FCO, and two link-based methods, named as F Link and FC TS respectively,

for fuzzy clustering ensemble.

7.2.1 FCO: Co-association Matrix for Fuzzy c-means

Fuzzy c-means is an effective method to generate a fuzzy partition of a given data set.

Each cluster in a partition eπi is a fuzzy set eC i
k
, k = 1, · · · , Ki where eC i

k
(xa) ∈ [0,1]

represents the degree of a data point xa ∈ X belongs to the corresponding fuzzy

cluster. Usually, this degree is normalised with all the clusters in a partition to satisfy

that
∑Ki

i=1
eC i

k
(xa) = 1.

Following the representational form used in crisp clustering ensemble (for no-

tational consistency), the similarity measure of two objects xa, xb ∈ X with respect

to each base-clustering member, Sei(xa, xb) and subsequently, the FCO matrix are

defined in Equation (7.3) and Equation (7.4) respectively:

Sei(xa, xb) =

Ki∑

k=1

min(eC i
k
(xa), eC i

k
(xb)) (7.3)
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FCO(xa, xb) =
1

m

m∑

i=1

Sei(xa, xb). (7.4)

Since
∑Ki

k=1
eC i

k
(xa) is normalised to 1, it follows that Sei(xa, xb) ∈ [0, 1] and FCO(xa, xb)

∈ [0,1]. Note that Equation (7.3) is a generalised version of Equation (7.1). If the

degree of a data point belongs to a crisp cluster is represented as eC i
k
(xa) ∈ {0,1},

then Equation (7.3) can also be applied to crisp clustering ensemble equivalently.

One of the properties of fuzzy c-means is that most of the data points have

non-zero memberships to many or even all clusters. This feature is very helpful for

clustering ensemble helping to retain more details of the base-clustering members in

the pairwise similarity matrix. Even two data points which are not assigned in the

same cluster in crisp clustering can also have non-zero values in the FCO matrix with

regard to the definition Equation (7.4). This gives potentially finer discrimination of

the data points.

7.2.2 F Link: Link-based Pairwise Similarity Matrix for Fuzzy

c-means

In clustering ensemble, base-clustering members are usually generated from the

same dataset. Hence, the resulting base-clusters in a clustering ensemble may

share common data points. These shared data points create the linkage amongst

base-clusters and therefore, it is possible to estimate the similarity of any base-

cluster pair by exploring the underlying link information. Note that the concept of a

graph formulated from a set of base-clusters and a set of weighted links between

them has been introduced previously, as of [99]. Given a clustering ensemble as

defined in Section 6.1, a graph < V, L > can be constructed where V =
⋃m

i=1
πi =

{C1, · · · , CM}, M =
∑m

i=1
Ki is the set of vertices each representing a base-cluster,

and L is a set of weighted links between the clusters. The weighted links between

base-clusters Ca and Cb, a, b = 1, · · · , M is defined as:

w(Ca, Cb) =
|Ca ∩ Cb|
|Ca ∪ Cb|

(7.5)

where |X | stands for the cardinality of a set X .

In crisp clustering ensemble, however, base-clusters within the same base-clustering

member do not have common data points with each other, that is, ∀C i
k
, C i

k′ ∈ πi, if
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k 6= k′, then C i
k
∩ C i

k′ = ; for k, k′ = 1, · · · , Ki. The weights of those links between

the clusters within the same base-clustering member are of a value of zero. Further

refinement will therefore be necessary before they can be used in the emerging

ensemble. In order to retain more information from base-clustering members and

refine the FCO matrix for fuzzy c-means ensembles, a fuzzy graph of fuzzy c-means

ensemble is proposed.

Formally, given a set of fuzzy base-clusters C = {eC1, · · · , eCM} on a dataset {x1, · · · ,
xN}, a fuzzy graph < C ,eL > is defined on the set of the fuzzy base-clusters where eL
is a fuzzy set of links defined on C × C . The membership of a link between eCa and

eCb), a, b = 1, · · · , M to the fuzzy set eL is computed by:

eL(eCa, eCb) =

∑N
t=1

min(eCa(x t), eCb(x t))∑N
t=1

max(eCa(x t), eCb(x t))
(7.6)

where eCa(x t) indicates the degree of a data point x t belonging to a fuzzy cluster eCa.

Obviously, eL(eCa, eCb) ∈ [0,1], eL(eCa, eCa) = 1 and eL(eCa, eCb) = eL(eCb, eCa). The degree

assigned to the link connecting fuzzy clusters eCa and eCb is thus defined in accordance

with the proportion of their overlapping degree on all data points in X . In so doing,

even for two fuzzy base-clusters within the same base-clustering member, the weight

of the link between them is possible to be of a non-zero value. As such, in general,

each base-cluster may have a link to all the other base-clusters, and the fuzzy degree

of a given link represents the similarity between the corresponding two base-clusters.

Given a fuzzy graph, link-based pairwise similarity matrix of data points can

be introduced using the fuzzy weights associated with the links. In particular, for

a clustering member eπi, the link-based similarity of data points xa and xb, a, b =

1, · · · , N can be estimated by:

LSei(xa, xb) =

(
1, if a = b

eL(arg eC i
max
(xa), arg eC i

max
(xb))×min(eC i

max
(xa), eC i

max
(xb)), otherwise

(7.7)

where eC i
max
(xa) = max

k=1,··· ,Ki

eC i
k
(xa) and arg eC i

max
(xa) ∈ πi representing the fuzzy cluster

in which xa has the maximum membership. In case of a draw, a random pick is

made amongst those even clusters. From this, it has a natural appeal to define the

similarity of two data points in the overall fuzzy c-means clustering ensemble as:

F Link(xa, xb) =

∑m
i=1

LSei(xa, xb)

m
. (7.8)
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Different from FCO, the link-based similarity defined in Equation (7.7) only

associates a data point xa to the cluster of which xa has the maximum membership

degree. If two data points happen to have the maximum degrees in the same cluster,

then their similarity values assigned by LSei is deemed to be the smaller degree value

of the two, since eL(eCa, eCa) = 1, a = 1, · · · , M . Otherwise, the link-based similarity of

two data points xa and xb is defined as the smaller value of their respective maximum

degrees times the weight of the link between those two base-clusters where xa and

xb have the maximum degree values.

Note that non-zero weighted links may exist not only between base-clusters within

a single base-clustering member, e.g., ∃eL(eC i
k
, eC i

k′)> 0, but also between base-clusters

cross base-clustering members, e.g., ∃eL(eC i
k
, eC j

k′) > 0 for i 6= j and i, j = 1, · · · , m.

As LSei does not employ links across base-clustering members, it can be computed

efficiently in terms of both time and memory space required. However, in crisp

clustering ensemble, links across base-clustering members are employed to estimate

the similarity within base-clustering members using means such as the connected-

triple [113], thereby improving the quality of the final ensemble result. Inspired by

this observation, and to test whether the across links may indeed help refine F Link

further while allowing for consistent comparison with link-based crisp clustering

ensemble, the connected-triple is also applied to eL in the present work as will be

described next.

7.2.3 FC TS: Connected-triple-based Pairwise Similarity Matrix

for Fuzzy c-means

The connected-triple approach has been used in a bibliographic dataset to assess the

similarity amongst author names and identify possible duplicates [113]. It assumes

that if two nodes are both connected to a third node then it is indicative of similarity

between those two nodes. The connected-triple is also applied to the weighted crisp

clustering ensemble graph < V, L > of Equation (7.5) to generate the similarity of

nodes within clustering members [99]. Specifically, the weighted connected-triple

deems the similarity of two base-clusters Ca and Cb, a, b = 1, · · · , M as the sum of

the minimum weights to every common neighbour of theirs:

w′(Ca, Cb) =

M∑

t=1

min(w(Ca, Ct), w(Cb, Ct)) (7.9)
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where M =
∑m

i=1
Ki denotes the total number of base-clusters of all base-clustering

members. w′(Ca, Cb) may also be normalised such that:

n_w′(Ca, Cb) =
w′(Ca, Cb)

w′
max

(7.10)

where w′
max

is the maximum w′(Ca, Cb) value of any two base-clusters Ca and Cb.

Having obtained this, the similarity of two data points xa and xb, a, b = 1, · · · , N

with base-clustering member C i, i = 1, · · · , m can be defined by:

S′
i
(xa, xb) =

(
1, if C i(xa) = C i(xb)

n_w′(C i(xa), C i(xb))× DC , otherwise
(7.11)

where DC ∈ [0, 1] is a constant decay factor. The connected-triple-based similarity

matrix for base-clusters is defined the same as Equation (7.2):

C TS(xa, xb) =

∑m
i=1

S′
i
(xa, xb)

m
. (7.12)

In a similar way, the fuzzy version of C TS can be introduced, where eL(eCa, eCb),

a, b = 1, · · · , M is refined using the connected-triple to become:

L′(eCa, eCb) =

M∑

t=1

min(eL(eCa, eCt),eL(eCb, eCt)) (7.13)

and then normalised to:

n_L′(eCa, eCb) =
L′(eCa, eCb)

L′
max

(7.14)

where L′
max

is the maximum L′(eCa, eCb) value of any two fuzzy base-clusters eCa and

eCb. Therefore, the similarity of two data points xa and xb, a, b = 1, · · · , N with

base-clustering member eC i can be modified to:

LS′ei(xa, xb) =

(
1, if a = b

L′(arg eC i
max
(xa), arg eC i

max
(xb))×min(eC i

max
(xa), eC i

max
(xb)), otherwise

(7.15)
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where eCm
max
(xa) = max

k=1,··· ,Ki

eC i
k
(xa) and arg eC i

max
(xa) ∈ πi represents the fuzzy cluster

of which xa has the maximum membership. As before, if a draw incurs, one of those

even clusters is randomly taken. The similarity of two data points in the overall fuzzy

c-means clustering ensemble is computed by:

FC TS(xa, xb) =

∑m
i=1

LS′ei(xa, xb)

m
. (7.16)

Besides the C TS, other link-based methods such as the SimRank-based similarity

matrix [99] can also be modified to ensemble fuzzy c-means clustering members.

However, in spite of their effectiveness, the implementation of link-based similarity

methods (even the FC TS) similarly suffer from high computational time require-

ments. This drawback originates within the algorithms, whose simplified variation

may not be able to maintain the original performance [101]. Hence, the FC TS,

which requires less computational time compared with other link-based methods is

presented in this chapter.

7.2.4 Fuzzy c-means Ensemble based on Similarity Matrix

The overall process of using the proposed matrices in building clustering ensembles

is similar to that of the existing work that uses pairwise similarity matrices (e.g.,

[80]). To save space only the two main steps are outlined below:

1. Fuzzy c-means are used on the dataset X for M times to generate fuzzy base-

clusters. The diversity of base-clustering members is ensured by a combination

of re-sampling the original datasets, different numbers of learned clusters, and

different initial centroids for fuzzy c-means. Note that in theory, many other

methods used in crisp clustering ensemble can also be used in place of fuzzy

c-means ensemble, though the current work only uses the latter for simplicity.

2. Any of the three proposed methods (FCO, F Link, FC TS) can be used to

generate a pairwise similarity matrix of data points, exploiting the information

embedded in base-clustering members. From this, a pairwise similarity based

clustering algorithm, such as hierarchical clustering, can then be employed to

generate the final partition of the dataset as the output of clustering ensemble.
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7.3 Experimentation

This section presents an experimental evaluation of the proposed work. It first

outlines the setup of the experiments carried out and then discusses the results

obtained. One experiment is designed to test the trend of accuracy when the diversity

of base-clustering members is changed, and the other to compare the performances

of different methods.

7.3.1 Experimental Setup

To evaluate the performance of proposed methods, they are experimentally tested

over six datasets obtained from UCI benchmark repository [71], where true labels of

instances are known but are not explicitly used in the clustering ensemble learning

process. The details of these datasets are summarised in Table 7.1. The final results

of the resulting clustering ensembles are evaluated in terms of accuracy as the group

truth for each dataset is known.

Table 7.1: Summary of Datasets: Link-based Fuzzy Clustering Ensemble

Datasets Instances Attributes Classes

Iris 150 4 3

Wine 178 13 3

Parkinsons 195 22 2

Glass (Identification) 214 9 6

Ecoli 336 7 8

Ionosphere 351 34 2

The fuzzy c-means clustering algorithm is used to generate the base-clustering

members. Thirty clustering-members are created (m = 30) and the cluster centroids

are randomly initialised in each run. Two agglomerative clustering approaches

(complete-linkage and average-linkage) [80] are selected to implement the consen-

sus function. These consensus functions divide data points into clusters using the

underlying similarity matrix F Link, FCO, FC TS, or C TS. For a fair comparison, the

number of final clusters on each dataset is set to that of its true classes and the decay

factor (DC) of C TS is commonly set to 0.5 [99], and the base-clustering results used

in C TS are defuzzified from the base fuzzy c-means used in the other three fuzzy

methods.
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7.3.2 Results and Discussion

Sensitivity of proposed methods

This is to check the robustness of the approach against the diversity of base-clustering

members. To vary the base-clustering members, the maximum number of base-

clusters Kmax in each test is set from 3 to 30 with an increment step of 3, and the

number of base-clusters in each clustering-member Ki is randomly chosen from

[3, Kmax]. Figure 7.2 shows the change of accuracy with respect to the increase of

diversity in base-clustering members where agglomerative clustering with average-

linkage is used as the consensus function. Each point in Figure 7.2 is an averaged

value of 50 runs.

For five of the six datasets, the accuracies of the three proposed methods (F Link,

FC TS and C TS) generally increase along with the increase of diversity. This in-

dicates that the use of link-based pairwise similarity matrices in fuzzy c-means

ensemble entails more differences in base-clustering members, which in turn allows

the generation of better results. The outcome of using FCO seems to be more stable

as compared with link-based methods. This indicates that FCO is not sensitive to

the number of clusters in each base-clustering member. An intuitive explanation is

that in fuzzy c-means, each data point has gained a certain membership to all the

clusters. Thus, the base-clustering members which have a smaller number of clusters

can retain as much information as the ones of a larger cluster number. However,

the accuracy of FCO is not so high as that achievable by the link-based methods in

general. This shows that although fuzzy c-means can help FCO to keep more infor-

mation for building ensembles, the link-based refinements are helpful in generating

more effective pairwise similarity matrices.

Accuracy comparison between link-based methods

This is to further analyse the results achievable by the link-based methods, using

a fixed number (Ki = ⌈
p

N⌉) or a random number (Ki ∈ [3, ⌈
p

N⌉]) of clusters in

each base-clustering member. The resultant accuracies are shown in Tables 3 and 4

respectively, where each number in these tables is an averaged value based on 50

runs. To validate the significance of the experimental results, the paired-t tests are

carried out between F Link and the rest on each dataset. In each “pair” of results,
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Figure 7.2: Trend of Accuracy against Diversity
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7.4. Summary

the generation of base-clustering members is based on the same number of clusters

and same initialisation centroids.

The results show that for both fixed and random Ki, the use of link-based pairwise

similarity matrix F Link leads to the best average accuracy over the six datasets,

in building fuzzy c-means ensembles. However, the performance of FC TS is not

significantly better than F Link in general. This implies that the connected-tripe

method does not necessarily further refine F Link effectively. Note that both F Link

and FC TS achieve a better accuracy than C TS on most of the datasets. Although the

C TS which employs the connected-triple to infer the similarities amongst clusters

within each base-clustering member, it seems that the inferred similarities are not as

effective as those generated by the fuzzy links eL in F Link and FC TS. Particularly,

F Link can use the fuzzy links eL(eC i
k
, eC i

k′) where k, k′ = 1, · · · , Ki directly without

inferring them from eL(eC i
k
, eC j

k′), i 6= j, the time for running the connected-triple

method (or the other similar refinement) is saved. In conclusion, F Link entails

higher accuracy but lower time-consumption than C TS.

7.4 Summary

This chapter has presented the notion of link-based pairwise similarity matrices for

fuzzy c-means ensemble. The proposed methods are based on the co-association

matrix and its link-based refinements for crisp clustering ensemble. The proposed

matrices take the advantage of fuzzy c-means in that each data point can have a

membership to all clusters. A set of fuzzy links between base-clusters is defined and a

fuzzy graph is employed to generate the link-based similarity matrices. Experimental

results on six UCI datasets indicate that the proposed approach generally outperforms

the conventional C TS. Furthermore, the link-based methods also help to build better

pairwise similarity matrices as compared to the non-link based matrix FCO.
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Chapter 8

Computational Considerations of

Fuzzy Clustering Ensemble

C
LUSTERING ensembles organically integrate individual component methods

which may utilise different parameter settings and features, and which may

themselves be generated on the basis of different representations and learning mecha-

nisms. Such a technique offers an effective means for aggregating multiple clustering

results in order to improve the overall clustering accuracy and robustness. To rein-

force such development, this chapter presents another clustering ensemble approach

for fuzzy clustering, with an aim to be applied for clustering of big data. The proposed

algorithm first generates fuzzy base-clusters with respect to each data feature and

then, employs a fuzzy hierarchical graph to represent the relationships between the

resulting base-clusters. Whilst the work employs fuzzy c-means and hierarchical clus-

tering in generating base-cluster and implementing consensus function respectively,

when applied to large datasets it has lower time complexity than the original fuzzy

c-means and hierarchical clustering. The resultant ensemble clustering mechanism is

tested against traditional clustering methods on various benchmark datasets. Experi-

mental results demonstrate that it generally outperforms crisp clustering ensembles

and single linkage agglomerative clustering, in terms of accuracy in conjunction with

time efficiency, thereby showing that it has the potential for application in clustering

big data.

The rest of this chapter is organised as follows. Section 8.1 introduces the

background of the clustering algorithms designed for big data. Section 8.2 presents
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8.1. Background

the proposed Hierarchical Fuzzy Clustering Ensemble (HFCE) approach in detail,

including a discussion of its advantages over the existing clustering ensemble methods.

In addition to the theoretical development of this fuzzy clustering ensemble approach,

its potential application to clustering big data is also introduced. In Section 8.3, the

potential to exploit this method as a clustering tool for big data through parallel

implementation is described. Section 8.4 reports on the experimental set up and

analyses the results. The chapter is summarised in Section 8.5.

8.1 Background

Dealing with big data has become inevitable in many real-world problems. Recently,

a new trend of and indeed challenge for data mining has arisen with the exponential

growth and also availability of large amount of complex data. Applying conventional

data mining techniques directly to big data is difficult or even impossible due to

its intolerable computational time. Besides, the high dimensional and multi-model

features may degrade the performance of conventional learning algorithms [194]. A

number of research directions have been proposed in the literature to overcome such

difficulties, including re-sampling data and distributing or parallelising conventional

algorithms [132].

Clustering algorithms have emerged as an alternative powerful meta-learning tool

to accurately analyse the massive volume of data generated by modern applications

[62]. In general, the task of clustering is to assign objects to groups (namely clusters)

such that data points in the same group are similar to each other, and dissimilar

to those in the other clusters [105]. A good number of clustering algorithms have

been proposed in the literature, and successfully applied to a range of problems

[1, 29, 129, 174]. However, clustering big data is more challenging than dealing with

traditional data modelling and analysis problems. Many of the existing clustering

methods such as the k-means and fuzzy c-means are NP-hard, and hence they are

very time consuming for handling big data.

To tackle the aforementioned problem feasible techniques have been proposed.

Most of which work by extending the existing approaches (that have been developed

for non big data) through analysing a selected, manageable amount of samples of the

original data [197] and then, exploiting the sample-based modelling results to derive

a partition for the overall data. These methods differ usually only in terms of how the
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8.2. Feature-based Hierarchical Fuzzy Clustering Ensemble

sample-based analysis is carried out, including the CLARA algorithm [111] and the

CLARANS algorithm [140]. Clustering big data has also led to distributed and parallel

implementations [145]. One such approach is to directly extend existing clustering

methods by taking advantage of distributed network environments in which the

overall computation effort is shared by collaborative computing facilities [225].

Whilst these promising results have been reported, much remains to be done in order

to have a more efficient and effective fuzzy clustering approach that is suitable for big

data. Inspired by this observation, a hierarchical fuzzy clustering ensemble (HFCE)

method (which is applicable for distributed and parallel application) is proposed in

this chapter.

8.2 Feature-based Hierarchical Fuzzy Clustering

Ensemble

Apart from conventional clustering algorithms whose outputs are hard partitions

of data, there are alternative approaches such as EM [49] and fuzzy c-means [21],

which generate soft or fuzzy partitions of data with a natural appeal. In order to

take advantage of the aforementioned ensemble techniques over fuzzy clustering, an

additional “hardening” process would be required for the fuzzy cluster assignments.

This process may result in loss of information that is conveyed by the uncertainty

measures of the relevant cluster assignments. This is particularly true for application

settings where the underlying clustering algorithms access only a partial view of the

data, such as in distributed data mining [156]. Yet, most of the existing clustering

ensemble methods are based on crisp clusters. However, interesting departures from

such work have recently been reported, including sCSPA, sMCLA and sHBGF (which

are the fuzzy versions of the graph/hypergraph-based algorithms CSPA, MCLA and

HBGF, respectively) [156].

Following such recent development, this section presents a link-based hierarchical

consensus-based approach for building ensembles of fuzzy c-means. The proposed

hierarchical clustering ensemble algorithm starts by creating ensemble members

using fuzzy c-means on each feature in dataset. The resulting fuzzy base-clusters and

the links between them are represented in a fuzzy graph. The idea of hierarchical

clustering is then employed to iteratively group the nodes based on the fuzzy links,

in order to create the hierarchical structure that leads to the final clusters. It also
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8.2. Feature-based Hierarchical Fuzzy Clustering Ensemble

yields instance-wise fuzzy cluster membership estimation, which may be defuzzified

such that each data point belongs to just one final cluster if required. The following

details the key operations of this algorithm.

8.2.1 Feature-based Generation of Ensemble Members

In general, no constraints are necessarily imposed over the generation procedure

through which the clustering partitions are obtained. In fact, different (component)

clustering algorithms or the same algorithm with different parameter settings can be

applied. If so desired, even different representations for data points, different subsets

of data points or their projections on different subspaces may be used [67, 215]. To

perform a conventional clustering ensemble task, a moderate-sized dataset can be

clustered several times in order to obtain ensemble members.

In dealing with big data, however, the computational overheads of running

a single clustering procedure on a complete dataset may already be intolerable,

multiple executions of clustering on the whole dataset are impractical. Reducing

the complexity of dataset for each clustering member offers a reasonable way of

solving this problem. In this work, an m-dimensional dataset is divided into M

one-dimensional subsets, and m times of fuzzy c-means are carried out on those

one-dimensional subsets.

In practice, projecting data onto different subspaces or choosing different subsets

of features may lose information (e.g., correlations between features) which can be

important to detect the underlying patterns of the data [106]. Unfortunately, this

is also true in the proposed method where the qualities of the resulting individual

ensemble members are generally not so good as those created from the direct use

of all accessible features. Despite this observation, as demonstrated in the existing

ensemble leaning frameworks [199, 221], relatively weak component results are

still commonly used. Whilst individual ensemble members may be simple, if jointly

utilised in conjunction with an appropriate consensus function, weak base-clusters

are capable of producing high quality ensemble results.

Such an individual feature-based partition strategy however, has further limita-

tions in dealing with datasets that have redundant or interactive features. If the

features are redundant, HFCE may produce redundant base-clusters accordingly.

Also, if certain individual features are interactive with each other, the useful informa-

tion embedded in the interactions will be lost. A possible approach to solving these
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8.2. Feature-based Hierarchical Fuzzy Clustering Ensemble

problems is to use feature selection or grouping techniques [52, 222, 224] in guiding

the partition of the original data. However, the assessment of any redundancy and

interaction amongst features incurs additional computational cost in the generation

of base-clusters and therefore, improvement over these issues can be rather time-

consuming when dealing with datasets with a high dimensionality. Thus, in the

current design and implementation of HFCE, advanced feature partition strategies

are sacrificed to compensate for its execution speed. Finding a rapid feature partition

algorithm to support HFCE remains active as further research.

It may be difficult to know a-priori which base-clustering algorithm(s) will be

appropriate for a given clustering problem. It is generally advisable and also, a

common practice to employ those clustering algorithms that are known to be able to

reflect and make use of most information embedded in the data. This is obvious as

the more information each clustering member holds, the more information there is

for the consensus function to work on. Based on this understanding, fuzzy c-means,

which is able to retain the non-binary memberships of each data point to all clusters

is adopted as the base algorithm for the generation of ensemble members in this

work.

8.2.2 Similarity between Fuzzy Base-clusters

In the above proposed strategy for ensemble member generation the base-clusters

are created by partitioning the dataset with respect to different individual features.

However, all data points used come from the same original dataset. As such, the

resulting base-clusters may share certain points. These shared data points naturally

create linkages amongst base-clusters and therefore, it is possible to estimate the

similarity of any base-cluster pair by exploring the underlying link information [224].

Note that the concept of a graph formulated from a set of base-clusters and

a set of weighted links between them has been introduced previously, as in Sec-

tion 7.2.2. In order to retain more information from fuzzy clustering compo-

nents and reflect the interactions between different features which are embed-

ded in the original dataset, a fuzzy graph of fuzzy c-means ensemble is employed

here. Given a clustering ensemble, a graph < C ,eL > can be constructed where

C =
⋃m

i=1
πi = {C1, · · · , CM}, M =

∑m
i=1

Ki is the set of vertices each representing a

base-cluster, and eL is a fuzzy set of links between the clusters. The membership of a
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8.2. Feature-based Hierarchical Fuzzy Clustering Ensemble

link (eCa, eCb), a, b = 1, · · · , M to the fuzzy set that represents the fuzzy relation eL is

defined as given in Equation (7.6):

µeL(eCa, eCb) =

∑N
t=1

min(eCa(x t), eCb(x t))∑N
t=1

max(eCa(x t), eCb(x t))

Therefore, each fuzzy base-cluster can be represented as a node and the member-

ship of a link to eL can be represented as the strength or weight of that link. Obviously,

µeL(eCa, eCb) ∈ [0, 1], µeL(eCa, eCa) = 1 and µeL(eCa, eCb) = µeL(eCb, eCa). The degree assigned

to the link connecting fuzzy clusters eCa and eCb is thus defined in accordance with

the proportion of their overlapping degree on all data points in X . In so doing, for

two fuzzy base-clusters within the same ensemble member, the weight on the link

between them is possible to be of a non-zero value. As such, in general, each fuzzy

base-cluster may have a link to all the other fuzzy base-clusters.

The defined fuzzy degree of each given link intuitively captures the underlying

similarity between the corresponding two fuzzy base-clusters. These fuzzy links are

of particular significance in this work. Since the ensemble members are generated

from one-dimensional subsets, information on the interactions or correlations be-

tween features is lost in compromise with the gain of computing time. However, by

employing a link-based consensus function that makes use of similarities between

base-clusters, such information can be (re-)captured.

The similarities between base-clusters carry the information of how close they are

to one another, and this information is useful to merge redundant base-clusters. In

crisp clustering ensembles, further refinement will have to be carried out in an effort

to estimate the similarities between base-clusters within the same ensemble member.

As indicated in Section 7.2.3, connected-triple links cross ensemble members are

computed. Fortunately, in fuzzy c-means ensemble, non-zero weighted links exist not

only between those base-clusters within a single base-clustering member, but also

between base-clusters cross different base-clustering members. Since no additional

refinement is needed (as otherwise needed for the crisp case), the similarity measures

can be readily computed, making significant savings in time and memory space.

8.2.3 Base-cluster Grouping via Hierarchical Clustering

In this step, fuzzy base-clusters are grouped into a certain number of final clusters to

become the output of the ensemble. Fuzzy base-clusters are artificially treated as
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data instances and those original data points given in the dataset that belong to a

base-cluster are regarded as a feature for the artificial data instance. In other words,

the “instance-cluster matrix” in Table 6.3 is transposed to a “cluster-instance matrix”,

which generally speaking, has a large number of features but a relatively smaller

number of instances involved than the real instance-cluster matrix.

In the existing work on fuzzy clustering ensembles, each base-cluster maintains

the non-binary membership values of all those data points belonging to it. This makes

fuzzy base-clusters more informative but more storage-consuming than their crisp

counterparts. Fortunately, link-based clustering approaches such as single-linkage

clustering do not need to re-access the original memberships of the data points once

the similarity matrix is obtained, making them less sensitive to high-dimensional

data. This is important in an effort to deal with the grouping of base-clusters, since

otherwise iteratively visiting fuzzy base-clusters directly can be very time-consuming,

if not prohibitive.

By using single-linkage hierarchical clustering algorithm, grouping fuzzy base-

clusters can be achieved without the need of updating the cluster centroids. A

matrix L = [l(a, b)]M×M can be constructed with the indices of its rows and columns

representing the indices of base-clusters, and each entry l(a, b), a, b = 1, · · · , M ,

of the matrix representing the similarity value of the corresponding base-clusters,

e.g., µeL(eCa, eCb). From this, the grouping of the base-clusters depends upon L only,

rather than upon the memberships of the original data points belonging to these

base-clusters. The subsequent steps of single-linkage clustering are quite simple

after the similarities amongst base-clusters are known: Applying a simple sorting

procedure over those similarity values and then using a threshold or a given number

of total clusters required to merge the clusters. Therefore, both the time and memory

resources required for iteratively visiting instance-cluster matrix or the pair-wised

similarity matrix are saved. Note that single-linkage clustering obtains exactly the

same results by agglomerating small clusters into larger ones (bottom up) as by

dividing larger clusters into smaller ones (top down) [84]. In the following, this

method is referred to as single-linkage agglomerative clustering (SLAC).

Apart from SLAC, a multilevel scheme for partitioning irregular graphs, METIS

[110] has been used to group base-clusters in sMCLA. However, METIS can only

produce a given number of balanced groups of clusters. Since each group is required

to contain the same number of base-clusters, this method is not suitable for use in
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the present approach where one-dimensional individual feature-based partition of

the dataset is assumed. For example, in the situation where the dataset contains

certain outlier values in one feature, a base-cluster consists of only the outliers can

be generated. Such a cluster should be grouped with itself rather than with any

other normal ones. Therefore, algorithms which return absolutely balanced groups

of clusters may damage the overall quality of the resultant cluster groups. In light

of this observation and considering both the time complexity and the quality of

clustering, SLAC is selected to group base-clusters in HFCE.

Recall the basic idea of hierarchical clustering, that is to build a tree of data

clusters that are successively merged into similar groups, with each level of the

resulting tree being a segmentation of the original data [107]. By applying SLAC to

group fuzzy base-clusters rather than data points or crisp clusters, each level of the

resulting tree comprises groups of base fuzzy clusters. In order to obtain the overall

data partition by the ensemble, an additional step which transforms the groups of

fuzzy base-clusters into the final fuzzy clusters of the original data points is needed.

8.2.4 Final Assignment of Data Points

At each level of the resultant hierarchical tree, all those base-clusters contained

within a certain cluster-group are collapsed to form one single fuzzy cluster. At the

leaf level of the tree each fuzzy base-cluster contains a membership value for every

data point that is deemed to belong to the cluster. Such a membership for a given

final fuzzy cluster is computed as the normalised mean of its memberships to all

those base-clusters that are grouped together. To produce a crisp final partition of the

original data, each point is assigned to the cluster group to which it has the highest

membership. Note that if so desired, other aggregation operators rather than the

average may also be employed to implement this of course.

Summarising the above development, the proposed hierarchical fuzzy clustering

ensemble (HFCE) learning algorithm is given in Algorithm 8.2.1.

8.3 Initial Application to Big Data

Although much effort has been made in the development of clustering ensembles,

the application of clustering ensemble techniques is still at an early stage [98]. Little
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Inputs: X = {x1, · · · , x t , · · · , xN}, x t = (a
t
1
, · · · , at

m
) ∈ Rm: a dataset of N

instances and m features;

K1, · · · , Ki, · · · , Km: number of base-clusters in each ensemble member;

K : final number of clusters.

Outputs: eπ∗ = {eC∗
1
, · · · , eC∗

K
}: a fuzzy partition of X .

1: for i = 1 : m do

2: create sub-dataset X i = {a1
i
, · · · , aN

i
}

3: create ensemble member eπi = {eC i
1
, · · · , eC i

Ki
} using fuzzy c-means on X i

4: end for

5: merge the ensemble members to create a set of fuzzy base-clusters

C = {eC1, · · · , eCM}=
⋃m

i=1
πi,

where M =
∑m

i=1
Ki

6: for a = 1 : n− 1 do

7: for b = i + 1 : n do

8: µeL(eCa, eCb) =
∑N

t=1 min(eCa(x t ),eCb(x t ))∑N
t=1 max(eCa(x t ),eCb(x t ))

9: end for

10: end for

11: create a partition πC = {CC
1

, · · · , CC
k

, · · ·CC
K
} on C based on eL using hierarchical

clustering

12: for k = 1 : K do

13: µ′eC∗
k

(x t) = average of {eCi(x t)|eCi ∈ CV
k
}

14: end for

15: normalise µ′eC∗
k

(x t) to µeC∗
k
(x t),

such that
∑K

k=1
µeC∗

k
(x t) = 1

Algorithm 8.2.1: Hierarchical Fuzzy Clustering Ensemble (HFCE)

has been successfully done for big data. This section proposes an initial idea as to

how HFCE may be potentially utilised to handle big data clustering, based on an

investigation into its time complexity.

For a dataset with N data points and m features, the time complexity of the

original fuzzy c-means is O(mNK) where K is the number of clusters [116]. The

hierarchical agglomerative clustering has a time complexity of O(N 2 log N) [105].

Since the agglomerative clustering is employed only for grouping base-clusters in

HFCE, its use leads to a complexity of O(M2 log M), where M =
∑m

i=1
Ki is the total

number of fuzzy base-clusters generated. To calculate the final fuzzy partition the

algorithm also involves an additional time complexity of O(MNK).

For big data it may be difficult to expect that Algorithm 8.2.1 can be implemented

on a single computer of moderate computational power. However, HFCE can be
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implemented in a parallel way. Suppose that there are P + 1 computers within a

certain parallel computer network. One computer acts as the host node, which is in

charge of assigning tasks and collecting results [218], and the other P computers

work as the real computing nodes. Then, such a parallel computation network can

be applied to implement the three main components of HFCE, reducing its overall

time complexity. The parallelisation is outlined below:

1) Generation of ensemble members: Each ensemble member is denoted by

πi, where i = 1, · · · , m and each πi corresponds to a certain feature of the dataset.

If P < m, then the host node first assigns π1, · · · ,πP to the P computing nodes.

Once any of the P ensemble member is generated, the host node assigns the next

component of πP+1,πP+2, · · · in order to the free computing nodes. This process

iterates until πm is reached. If P ≥ m, the assignment is straightforward. Since fuzzy

c-means only takes a few iterations to converge on one-dimensional data, the burden

of each computing node is very low.

2) Single-linkage-based grouping of fuzzy base-clusters: A number of parallel ver-

sions of SLAC have been proposed in the literature (e.g., [145, 162]). For simplicity,

an intuitive parallel method (not the best time-saving one) is introduced here. As any

pair of fuzzy base-clusters have in general, a fuzzy link between them, the member-

ship values of all the links µeL(eCa, eCb) can be collectively represented as a pair-wise

similarity matrix LM×M . Since this matrix is symmetric and the similarity of one

element to itself is not considered in SLAC,
M(M−1)

2
similarity values are needed to be

computed. The host node decomposes the task of calculating these similarity values

into the P computing nodes. Note that only a limited number of fuzzy base-clusters

are generated for each feature, and that this number is generally much smaller

than the number of data points. Thus, after LM×M is obtained, the parallelisation of

following steps in SLAC for base-cluster grouping may not be necessary, but optional

for a powerful computing node.

3) Computation of the memberships of data points to the final clusters: similar to

the working of step 1), the final clustering result can be represented as a matrix AN×K .

Given that N > P, p = ⌊N/P⌋, the host node can decompose AN×K into P disjointed

sub-matrices A[1,··· ,p]×K , A[p+1,··· ,2p]×K , · · · , A[p×(P−1),··· ,N]×K . The required membership

calculations regarding the resulting P sub-matrices can then be assigned to the P

computing nodes, respectively.
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8.4 Experimentation and Evaluation

This section presents an experimental evaluation of the proposed work. It first

outlines the setup of the experiments carried out and then discusses the results

obtained. One experimentation is designed to test the quality of clusters which are

generated using HFCE, in comparison to those produced by the use of alternative

approaches, and another to show the time efficiency of HFCE in contrast with the

original fuzzy c-means and single-linkage agglomerative clustering.

8.4.1 Experimental Setup

To evaluate the performance of the proposed approach, the algorithm is tested over

nine datasets with continuous attributes [198] obtained from the UCI benchmark

repository [71], where the underlying true labels of the data points are known

(which are not explicitly used in the clustering ensemble learning process but in the

computation of clustering accuracy). The details of these datasets are summarised

in Table 8.1.

Table 8.1: Summary of Datasets: HFCE

Datasets Instances Attributes Classes

Iris 150 4 3

Sonar 208 60 2

Statlog Heart 270 13 2

Parkinsons 195 22 2

Ionosphere 351 34 2

Pima Indians Diabetes 768 8 2

Yeast 1484 8 10

Statlog Landsat Satellite 4435 36 6

Spambase 4601 57 2

In HFCE, fuzzy c-means is used to implement fuzzy ensemble members. In each

ensemble member, the number of base-clusters Ki, i = 1, 2, · · · , m is set to the number

of given classes of the dataset. The cluster centroids are randomly initialised in each

run. The single-linkage clustering technique is selected to implement base-cluster
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grouping. It organises base-clusters into a hierarchical tree using the underlying

similarity matrix. For comparison, an ensemble of crisp clusters (HCCE) with a

similar underlying mechanism to that of HFCE is also implemented. To have a

common ground for this comparative study, the base-clusters used in HCCE are

those defuzzified from the base fuzzy c-means used in HFCE and the number of final

clusters on each dataset is again set to that of its true classes. The output of HFCE is

defuzzified by assigning a data point to the cluster to which it reaches the maximum

membership.

8.4.2 Clustering Quality

In order to gauge clustering quality, two types of criterion are usually employed,

measuring how well a clustering partitions the given data into the underlying group-

ings, namely, the internal and external criteria [98]. In particular, the goodness of a

clustering ensemble is estimated using the averaged Silhoutte index which measures

the compactness of resultant clusters without referring to the ground truth (internal).

If however, the class labels are available for all the data involved in the experiments,

the final clustering results can be evaluated using the accuracy which measures how

well the clusters match the given true labels of the data points (external). In this

experiment, the quality of the final clustering outcomes is also assessed using these

two criteria.

The resultant averaged Silhoutte index and clustering accuracy rates are shown

in Tables 8.2 and 8.3 respectively, where each number in these tables is an averaged

value based on 50 runs. In order to compare the ensemble-based clustering methods

with the conventional clustering methods, the results of fuzzy c-means (FCMC) and

single-linkage agglomerative clustering (SLAC) are also included. To validate the

significance of the experimental results, paired-t tests are carried out. The baseline

for comparison is the result of running HFCE.

Experimental results show that HFCE achieves better compactness and accuracy

than HCCE on most of the datasets. This indicates that the information embedded

in fuzzy base-clusters are more effective to generate final ensemble partitions than

that embedded in crisp base-clusters. Also, the final clusters generated by HFCE

lead to better accuracies than SLAC over seven datasets. However, the performance

of HFCE is not significantly better than FCMC in general. A likely reason is that
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8.4. Experimentation and Evaluation

Figure 8.1: Time Cost vs. Increase of Features

the tested datasets are sensitive to the interaction of features, while the similarities

amongst fuzzy base-clusters cannot completely capture the interaction of features in

those datasets. Importantly, HFCE only employs ensemble members which generate

base-clusters each involving just one feature.

8.4.3 Time Efficiency

This set of experiments is to empirically check the time efficiency of HFCE, as com-

pared to that of the original SLAC and FCMC. To ensure that the results are easy to

analyse, the simple iris dataset is used. However, to vary the scale of each experiment,

the original dataset is artificially enlarged either horizontally (by duplicating fea-

tures), or vertically instances (by duplicating data points), or both. In the following

presentation, the original dataset is denoted as [D], its horizontally double-sized

dataset [D D] is denoted as [D]×2, and its vertically double-sized dataset

�
D

D

�
is

denoted as [D]×2, etc. The experiments are carried out on a computer with Intel(R)

Core(TM)2 Duo 3.00 GHz × 2 CPU, 4 GB RAM, and Windows 7 (64-bit) Operating
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8.4. Experimentation and Evaluation

Figure 8.2: Time Cost vs. Increase of Instances

Figure 8.3: Time Cost vs. Increase of both Features and Instances

system. All three methods under comparison are implemented in series with Matlab

7.11 win64 version. Each point in these figures is an averaged value of 50 runs.
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Figures 8.1-8.3 present the time cost of running each of the aforementioned three

methods (HFCE, SLAC and FCMC) in response to the increase of the number of

features, the number of data points and the number of both factors, respectively.

It is clear that the execution time of these methods generally increases along with

the increase of data size. However, HFCE shows a more stable performance than

its counterparts when both the number of features and instances are increased (see

Figure 8.3). This shows that the use of feature-based partition of dataset and the

pairwise similarity matrices entails more time efficiency in the proposed hierarchical

fuzzy c-means ensemble, which in turn indicates the potential of HFCE in dealing

with big data.

Note that the outcome of using HFCE on datasets with increased features seems to

be more stable as compared with FCMC (Figure 8.1). An intuitive explanation is that

HFCE only computes the one-dimension distance between data points, which makes

it far less sensitive to the “curse of dimensionality”. However, HFCE still suffers

from the increase of data points to a certain extent. Nevertheless, it is not so drastic

as the algorithms which have a time complexity of O(N 2) or above, as reflected in

Figure 8.2. Thus, the proposed HFCE takes the advantage of SLAC when dealing

with an increasing number of features and that of fuzzy c-means when dealing with

an increasing number of data points. The downside is that although reasonable, the

accuracy of HFCE is not so high as that achievable by the original fuzzy c-means in

general. Nevertheless, HFCE allows for higher time efficiency than fuzzy c-means

without a drastic loss of clustering quality.

8.5 Summary

This chapter has presented an approach for feature-based ensemble member genera-

tion and for link-based hierarchical base-clusters grouping, in building hierarchical

fuzzy (c-means) clustering ensembles. The proposed work takes the advantage of

the fast speed of generating fuzzy base-clusters on one dimension data by using

fuzzy c-means, and it consider the links between base-clusters to (re-)capture the

interactions between features. It also takes the advantage of hierarchical clustering

in that the iterative access of data points is replaced by the computation of pair-wised

similarity measures. Experimental results on nine popular benchmark datasets indi-

cate that the proposed approach generally outperforms its crisp counterparts (HCCE

and single-linkage agglomerative clustering). Furthermore, it also has the potential
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8.5. Summary

to process big data as the approach entails a higher time efficiency compared to

the original fuzzy c-means and hierarchical clustering. It would be therefore useful

to examine the effects of the suggested parallel implementation in a real problem

setting which involves big data.
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Chapter 9

Conclusion

T
HIS chapter presents a summary of the proposed intelligent assessments of

academic journals and their extensions as detailed in the preceding chapters.

Having reviewed the existing information technologies applied to journal rankings

in the literature, the thesis has demonstrated that the developed aggregations of

similarities and the clustering ensemble methods have effectively improved the

accuracy, interpretability and reliability in the aggregation of impact indicators for

the assessments of academic journals. The extended study of the T -transitivity of

the OWA-aggregated fuzzy relations enhances the theoretical aspect of the thesis,

providing both the proofs and applications of the T -transitive OWA-aggregated

fuzzy relations. Several modifications of the existing clustering ensembles have also

been proposed, which exploits the link-based and speeding-up of fuzzy clustering

ensemble. The capabilities and potential of the developed applications have been

experimentally validated, and compared with either the original approaches, or

relevant techniques in the literature.

9.1 Summary of Thesis

A number of famous APDs and journal impact indicators have been reviewed in

Chapter 2. Their underlying respective inspirations span a wide range of research

areas, including bibliometrics, machine learning, and data mining. Furthermore, to

facilitate the aggregation of existing indicators for intelligent assessments of journals,

methods which investigate the correlation and aggregation of existing indicators have
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9.1. Summary of Thesis

been briefly reviewed. A link-based framework of bibliographic data has also been

identified, by which the existing journal impact indicators are uniformly categorised

by the sets of links based on which they are calculated.

The fused-link and its application to classification and clustering of journals are

described in Chapter 3. It allows for fusion of different journal impact indicators

to support the assessment of academic journal quality by using distance metrics.

Both classification and clustering algorithms built upon the basis of fused-links are

tested against datasets of academic journals. Through comparisons with the use of

advanced learning mechanism such as support vector machines and decision trees,

the systematic experimental results demonstrate that the proposed fused-link based

approaches help to capture and reflect the impact of academic journals while being

more interpretable.

To establish a more flexible way to control the aggregation of indicators, the OWA-

aggregated fuzzy relations amongst academic journals are proposed in Chapter 4.

Firstly, the classic OWA based aggregation of fuzzy relations is proposed and applied

to the conventional k-means algorithm for clustering journals. Secondly, a nearest

neighbour guided induced OWA operator: kNN-IOWA is proposed. The proposed

aggregation operators have been applied to build aggregated fuzzy relations between

academic journals on the basis of the individual indicator scores. The proposed

methods have the strength of controlling the degree of orness and reliability of the

aggregated output.

Chapter 5 has studied the mathematical properties of ordered weighted ag-

gregation of fuzzy relations, and its application as pairwise similarity matrices to

hierarchical clustering. The conditions of when the aggregated similarities preserve

T -transitivity are investigated by mathematical proofs. The proposed aggregated

similarities take the advantages of OWA aggregators. Not only the degree of orness

but also the T -transitivity of the aggregated fuzzy relations can be controlled by stress

functions. Furthermore, experimental results indicate that the proposed ordered

weighted aggregations generally outperform the conventional aggregators/distances

in hierarchical clustering.

In order to enhance the assessments of academic journals with the interpretability

of linguistic terms, Chapter 6 has presented a fuzzy aggregation and clustering en-

semble based method for journal ranking, with its application to aggregate indicators
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9.1. Summary of Thesis

from the JCR provide by WoS. The proposed method is developed on the basis of

data-reliability based aggregation of fuzzy clusters. Compared with direct aggrega-

tion of indicator scores, the proposed approach shows its advantage in providing

ranking results that are generally more reliable with data-driven weights as well as

more interpretable with linguistic terms.

Chapter 7 has discussed the fuzzy clustering ensemble in a more general scenario

and provided the consensus of fuzzy link-based pairwise similarity matrices. The

proposed matrices take the advantage of fuzzy c-means in which each data point

can have a membership to all clusters. A set of fuzzy links between base-clusters is

defined, and a fuzzy graph is employed to generate the link-based similarity matrices.

Experimental results indicate that the proposed approach generally outperforms

the conventional C TS which is the link-based refinements of co-association matrix

designed for crisp clustering ensemble. Furthermore, the link-based methods also

help to build better pairwise similarity matrices as compared to the non-link based

matrix FCO.

To deal with the scenarios where the volume of data may be relatively large, a

method for expediting the link-based fuzzy clustering ensemble has been devised in

Chapter 8. The proposed approach builds hierarchical fuzzy (c-means) clustering

ensembles based on the feature-based ensemble member generation and fuzzy link-

based consensus. It takes the advantage of the fast speed of using fuzzy c-means

to generate fuzzy base-clusters on one dimensional data, and considers the links

between base-clusters to (re-)capture the interactions between features. It also

takes the advantage of hierarchical clustering that the iterative access of data points

is replaced by the computation of pair-wised similarity measures (which can be

paralleled). Experimental results indicate that the proposed approach generally

outperforms its crisp counterparts. Furthermore, it also has the potential to process

big data as the approach entails a higher time efficiency compared to the original

fuzzy c-means and hierarchical clustering.

While the proposed work is promising, much can be done to strength it for

further investigation. The remainder points out several interesting issues which will

be helpful to improve the current research.
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9.2. Future Work

9.2 Future Work

As indicated previously, although the work presented in this thesis has introduced

a number of techniques potentially useful for academic journal assessment, much

remains to be further developed. This section lists several important issues that are

worth investigation.

9.2.1 On Assessments Methods

Although several methods for aggregation of impact indicators have been studied in

this thesis, allowing both the distance/similarity-based classification and clustering

algorithms to conduct the intelligent assessments of academic journals. Also, there

are many other similarity measures and clustering methods available in the literature

than what have been utilised in the present work. These may be employed as

alternatives. It would also be interesting to see this approach applied to some other

journal datasets as well, either real-world or synthetic ones to further demonstrate

its ability in assessing academic journals. Such work remains active research.

It would also be useful to develop criteria for the selection of the indicators.

As the evaluation of journal impacts is becoming popular amongst both publishing

companies and higher education institutions, a large number of newly proposed

journal impact indicators are available now. It is useful to identify and extract

patterns of the interactions amongst these indicators, with an aim to select a subset

of indicators which can effectively reflect the quality of journals. Recent advances

in feature selection techniques (e.g., [86, 224]) may offer a tool to implement such

indicator selection.

Note that a group of journals of a certain rank may often be heavily overlapped

with journals of other ranks. Therefore, the low accuracy of journal ranks using

clustering is not unexpected. After all, most of the journals are not obviously better

or worse than others, although their ranks are more likely to be affected by the

preference of the human assessors. Besides, the assumed ground truth is itself

not necessarily accurate. It has been pointed out in [108] that there is no such a

universally accepted, golden standard of impact measure to calibrate new indicators

to. In light of this, it may be interesting to develop a technique that would allow

the integration of knowledge on human preference in ranking academic journals.

Preference-based reasoning [109, 220] is a popular research area in fuzzy systems.
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An investigation into how such techniques may be utilised to support the present

work would be beneficial.

9.2.2 On OWA Aggregation

Several approaches have been developed to determine weights for aggregation of

a given set of attributes. Some of them are based on the assumption that there

exists an expert that can supply crucial information that will be used later to extract

the parameters needed to perform aggregation [144]. However, other methods

do not require the presence of an expert but the existence of a set of training

examples. From such examples, parameters can be inferred through the use of a

certain learning mechanism [9, 185]. Following this direction, it would be very

interesting to investigate how to learn the weights of the proposed aggregation from

datasets. In particular, a study would be necessary to reveal how such learning may

be carried out subject to the conditions introduced in Theorem 6 as constraints to

control the TŁ-transitivity of the learned weighting vectors.

Recently, a rough set feature selection technique [147]which uses the information

gathered from both the lower approximation dependency value and a distance metric

which considers the number of objects in the boundary region and that of those objects

from the lower approximation has been proposed. The use of this measure can result

in smaller subset sizes of selected features than those obtained using the dependency

function alone. This demonstrates that there is much valuable information to be

extracted from the boundary region. That method is a good starting point for further

work based on the distance metric for exploring the boundary region of rough sets

[147]. Following this thought, by replacing the distance metric with the more flexible

T -transitive fuzzy relation, an interesting and promising direction of demonstrating

the effectiveness of the OWA aggregated fuzzy relations may be foreseen.

9.2.3 On Fuzzy Clustering Ensemble

From the literature, it is clear that when the volume of data is far beyond the

capability of a parallel computing system in problem solving, under sampling the

original dataset is a possible way to solve that problem with acceptable time cost

[62, 132]. Sampling techniques can speed up the mining process by more than

an order of magnitude through the reduction of I/O costs and that of the number

of transactions to be considered. They may also be able to make the sampled
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database resident in main-memory. Furthermore, sampling may allow for accurate

representation of data patterns in a given database with high confidence [219]. It

has been demonstrated in Chapter 8 that the proposed feature-based fuzzy clustering

ensemble can recapture the interactions between features by the links between base-

clusters. It would be interesting to use the links between base-clusters to recapture

the patterns or structures embedded in the original dataset, even when the clustering

members are based on different subsets of the original data. Under such a further

development, the capability of the proposed method for speeding-up fuzzy clustering

ensemble may be further improved.
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Appendix A

Publications Arising from the Thesis

A number of publications have been generated from the research carried out within

the PhD project. Below lists the resultant publications that are in close relevance to

the thesis, including both papers already published and articles submitted for review.

A.1 Journal Articles

1. P. Su, C. Shang, and Q. Shen, Link-based approach for bibliometric journal

ranking, Soft Computing, vol. 17, no. 12, pp. 2399–2410, 2013.

2. P. Su, C. Shang, and Q. Shen, A hierarchical fuzzy cluster ensemble approach

and its application to big data clustering, Journal of Intelligent and Fuzzy

Systems, vol. Preprint, no. Preprint, 2015.

3. T. Chen, Q. Shen, P. Su, and C. Shang, Fuzzy rule weight modification with

particle swarm optimisation, under review.

4. P. Su, Q. Shen, T. Chen, and C. Shang, Journal ranking with data reliability and
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Appendix B

Datasets Employed in the Thesis

The UCI datasets employed in the thesis are public available benchmark data, avail-

able through the UCI machine learning repository [71] which have been drawn from

real-world problem scenarios. Their underlying problem domains are described in

detail below, where the URL of the respective data sets are also given in order to

facilitate easy access.

• Ecoli

http://archive.ics.uci.edu/ml/datasets/Ecoli

“The localization site of a protein within a cell is primarily determined by its

amino acid sequence. Rule-based expert system for classifying proteins into

their various cellular localization sites, using their amino acid sequences, in

gram-negative bacteria and in eukaryotic cells.” [97]

• Glass Identification

http://archive.ics.uci.edu/ml/datasets/Glass+Identification

This dataset contains 10 attributes which describes the chemical contents of

glass. “The study of classification of types of glass (in determining whether

the glass was a type of “float” glass or not) was motivated by criminological

investigation. At the scene of the crime, the glass left can be used as evidence

if it is correctly identified.” [61]
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• Ionosphere

http://archive.ics.uci.edu/ml/datasets/Ionosphere

“This radar data was collected by a system in Goose Bay, Labrador. This system

consists of a phased array of 16 high-frequency antennas with a total trans-

mitted power on the order of 6.4 kilowatts. The targets were free electrons

in the ionosphere. "Good" radar returns are those showing evidence of some

type of structure in the ionosphere. "Bad" returns are those that do not; their

signals pass through the ionosphere. Received signals were processed using

an autocorrelation function whose arguments are the time of a pulse and the

pulse number.” [171]

• Iris

https://archive.ics.uci.edu/ml/datasets/Iris

“This is perhaps the best known database to be found in the pattern recognition

literature. Fisher’s paper [69] is a classic in the field and is referenced frequently

to this day. The data set contains 3 classes of 50 instances each, where each

class refers to a type of iris plant. One class is linearly separable from the other

2; the latter are NOT linearly separable from each other.”

• Parkinsons

https://archive.ics.uci.edu/ml/datasets/Parkinsons

”This dataset is composed of a range of biomedical voice measurements from

31 people, 23 with Parkinson’s disease (PD). Each column in the table is a

particular voice measure, and each row corresponds one of 195 voice recording

from these individuals ("name" column). The main aim of the data is to

discriminate healthy people from those with PD, according to "status" column

which is set to 0 for healthy and 1 for PD. ” [127]

• Pima Indians Diabetes

https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes

This dataset is from National Institute of Diabetes and Digestive and Kidney

Diseases. “Several constraints were placed on the selection of these instances

from a larger database. In particular, all patients here are females at least

21 years old of Pima Indian heritage. The diagnostic, binary-valued variable

investigated is whether the patient shows signs of diabetes according to World

Health Organization criteria.” [172]
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• Sonar

http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mines

+vs.+Rocks)

“The data set contains 111 patterns obtained by bouncing sonar signals off a

metal cylinder at various angles and under various conditions, and 97 patterns

obtained from rocks under similar conditions. The transmitted sonar signal is

a frequency-modulated chirp, rising in frequency. The data set contains signals

obtained from a variety of different aspect angles, spanning 90 degrees for the

cylinder and 180 degrees for the rock. Each pattern is a set of 60 numbers in

the range 0.0 to 1.0. Each number represents the energy within a particular

frequency band, integrated over a certain period of time.” [82]

• Spambase

https://archive.ics.uci.edu/ml/datasets/Spambase

This dataset is used for classifying email as spam or non-spam. “The ‘spam’

concept is diverse: advertisements for products/web sites, make money fast

schemes, chain letters, pornography... Our collection of spam e-mails came

from our postmaster and individuals who had filed spam. Our collection of

non-spam e-mails came from filed work and personal e-mails, and hence the

word ’george’ and the area code ’650’ are indicators of non-spam. These are

useful when constructing a personalized spam filter. One would either have to

blind such non-spam indicators or get a very wide collection of non-spam to

generate a general purpose spam filter. ”

• Statlog (Heart)

http://archive.ics.uci.edu/ml/datasets/Statlog+%28Heart%29

“This data set is a heart disease database, with 6 real-valued attributes: 1, 4, 5,

8, 10, 12; 1 ordered attribute:11; 3 binary attributes: 2, 6, 9; and 3 nominal

features:7, 3, 13. The class label to be predicted: absence (1) or presence (2)

of heart disease.” [66]

• Statlog (Landsat Satellite)

https://archive.ics.uci.edu/ml/datasets/Statlog+%28Landsat+Satellite%29

“The database consists of the multi-spectral values of pixels in 3x3 neighbour-

hoods in a satellite image, and the classification associated with the central
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pixel in each neighbourhood. The aim is to predict this classification, given

the multi-spectral values. In the sample database, the class of a pixel is coded

as a number.” [66]

• Wine

http://archive.ics.uci.edu/ml/datasets/Wine

“These data are the results of a chemical analysis of wines grown in the same

region in Italy but derived from three different cultivars. The analysis deter-

mined the quantities of 13 constituents found in each of the three types of

wines.” [187]

• Yeast

https://archive.ics.uci.edu/ml/datasets/Yeast

This dataset is used for predicting the cellular localization sites of proteins

[137, 138].



Appendix C

List of Acronyms

APD Academic publication database

BIRS Bibliometric information retrieval system

CTS Connected-triple based similarity

DCP Database citation potential

DOWA Dependent ordered weighted averaging

ERA Excellence in research for Australia

IEEE Institute of electrical and electronics engineers

IET Institution of engineering and technology

IOWA Induced ordered weighted averaging

ISI Institute for scientific information

JCR Journal citation reports

JIF Journal impact factor

kNN k Nearest neighbour

OWA Ordered weighted averaging

RDCP Relative database citation potential

REF Research excellence framework

RGN Reader generated network
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RIP Raw impact per paper

SCI Science citation index

SCI-E Science citation index expanded

SJR SCImago journal rank

SMO Sequential minimal optimisation

SNIP Source normalized impact per paper

SRS SimRank based similarity

SVM Support vector machines

WoS Web of science
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