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Abstract

Deep machine learning has received significant attention over the past decade, espe-

cially in terms of dealing with information that may span large scales. By employing a

hierarchical architecture, consisting of simple computational nodes of similar charac-

teristic, such a network helps to partition large data structures into relatively smaller,

more manageable units, and to discover any dependencies that may exist between

the resulting units. However, the process of running this type of network which

has a layered structure, to perform tasks such as feature extraction, and subsequent

feature pattern-based recognition, typically involves significant computation. To

tackle this problem, two approaches are proposed in this thesis. The first novel

approach developed is for image classification, by integrating deep learning and

feature interpolation, supported with advanced learning classification techniques.

The recently introduced Deep Spatio-Temporal Inference Network (DeSTIN) is em-

ployed to carry out limited original feature extraction. Simple interpolation is then

employed to artificially increase the dimensionality of the extracted feature sets

for accurate classification, without incurring heavy computational cost. The work

is tested against the popular MNIST dataset of handwritten digits, demonstrating

the potential of the proposed work. The second approach, which is a substantially

simplified 2-layer learning network, is introduced that exploits unsupervised learning

for pattern representation, capable of extracting effective features efficiently. Experi-

mental results, in comparison with the use of popular deep learning networks, again

on the application to handwritten digit classification demonstrate that the proposed

approach is of significant potential in dealing with real-world problems.

The generation of effective feature pattern-based classification rules from data is es-

sential to the development of intelligent classifiers which are readily comprehensible

to the user. Unfortunately, a sparse rule base may be generated when there is missing

information in the experienced dataset. This hinders classification systems that work

based on such sparse knowledge effectively performing their tasks in many real-world

applications, where complete historical data cannot be assumed. This thesis further

proposes an innovative approach by integrating fuzzy rule interpolation within a

data-driven classification mechanism, such that conclusions can be approximately

derived even if no matched rule can be found from a given sparse rule base when

given a certain observation. The proposed technique is simple conceptually, directly



exploiting the recently developed fuzzy rule interpolation techniques. However,

the resulting integrated system offers a powerful means to develop robust classi-

fiers, significantly enhancing the effectiveness of intelligent classification systems,

as demonstrated by systematic comparative experimental results and also, by an

application to the challenging problem of mammographic risk analysis.
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Chapter 1

Introduction

1.1 Data-Driven Learning

The human can efficiently and robustly represent information, so mimicking this

process has been a core challenge in artificial intelligence research for decades.

Humans are exposed to myriad of sensory data received every second of the day and

are somehow able to capture critical aspects of this data in a way that allows for

its future use in a concise manner. Over 50 years ago, Richard Bellman, introduced

dynamic programming theory [1] and pioneered the field of optimal control, asserted

that high dimensionality of data is a fundamental hurdle in many science and

engineering applications.

The main difficulty that arises, particularly in the context of pattern classifica-

tion applications, is that the learning complexity grows exponentially with a linear

increase in the dimensionality of the data, this phenomenon is known as the curse

of dimensionality. The mainstream approach of overcoming "the curse" has been

to pre-process the data in a manner that would reduce its dimensionality to that

which can be effectively processed, for example by a classification engine. One

dimensionality reduction scheme often referred to is feature extraction. It can be

argued that the intelligence behind many pattern recognition systems has shifted to

the human-engineered feature extraction process, which at times can be challenging

and highly application-dependent. Moreover, if incomplete or erroneous features

are extracted, the classification process is inherently limited in performance.

1



1.2. Fuzzy Rule-Based Classification

Recent neuroscience findings have provided insight into the principles governing

information representation in the mammalian brain, leading to ideas for designing

systems that represent information. One of the key findings has been that the

neocortex, which is associated with many cognitive abilities, does not explicitly

pre-process sensory signals, but rather allows them to propagate through a complex

hierarchy of modules that, over time, learn to represent observations based on the

regularities they exhibit. This discovery motivated the emergence of the sub-field

of deep machine learning, which focuses on computational models for information

representation that exhibit similar characteristics to that of the neocortex.

A number of influential and successful deep learning models have been proposed,

including Deep Belief Networks (DBNs) [2], Stacked Autoencoders (SAEs) [3],

Convolutional Neural Nets (CNNs) [4], and Deep Spatio-Temporal Inference Network

(DeSTIN) [5]. Unfortunately, the process of running this type of network for feature

extraction typically involves information processing and passing through a good

number of layers, demanding significant computational effort. For example, as

a representative application of DeSTIN, the existing work for handwritten digit

recognition employs a network of 4 layers [6]. This may introduce considerable

overheads on computation and therefore, may offset the potential benefit on the

efficiency gained by the entire feature extraction process. An alternative approach is

desirable.

1.2 Fuzzy Rule-Based Classification

1.2.1 Fuzzy Inference Systems

A fuzzy inference system (FIS) is a way of formulating the mapping from given

inputs to an output using fuzzy logic. The mapping then provides a basis from which

decisions can be made, or patterns can be discerned. The concept of FISs is based

on fuzzy logic, fuzzy IF-THEN rules [7] and fuzzy reasoning, which jointly enable

modelling complex systems in a way naturally used by humans [8]. The general

architecture of an FIS is well-known in the literature [9, 10, 11], consisting of four

conceptual components: fuzzifier, rule base, inference engine and defuzzifier.

• fuzzifier: Converting the crisp input to a linguistic variable using the member-

ship functions stored in the fuzzy knowledge base.
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• rule base: Containing a selection of fuzzy IF-THEN rules.

• inference engine: Performing the inference procedure upon the rules and given

facts to derive an inferred output or conclusion.

• defuzzifier: Converting the fuzzy output of the inference engine to a crisp value

using membership functions analogous to the ones used by the fuzzifier.

With crisp inputs and output, an FIS implements a non-linear mapping from its

inputs space to output space. This mapping is achieved by a number of fuzzy IF-THEN

rules, each of which describes the local behaviour of the mapping. In particular,

the antecedent of a rule represents a fuzzy region in the input space, while the

consequence indicates the inferred consequent in the output region.

There are two ways to construct a fuzzy rule base for a given problem. The first

class of FISs directly translates expert knowledge to fuzzy rules, so that these FISs are

called fuzzy expert systems or fuzzy controllers [12, 13, 14]. Since rules are fuzzy

representations of expert knowledge, these FISs may offer a high semantic level and a

good generalisation capability. However, the complexity of large real-world problems

may lead to an insufficient accuracy in the solutions found. Such drawback leads

to the other class of FISs, which is a data-driven fuzzy system. The fuzzy rules are

obtained from data by machine learning techniques rather than expert knowledge

[15, 16, 17, 18].

1.2.2 Fuzzy Rule Interpolation

Given a fuzzy rule base generated in either of the above two ways, there are a number

of fuzzy inference mechanisms, such as compositional rule of inference [19] and

similarity-based fuzzy reasoning [20, 21, 22, 23, 24], that can be utilised for deriving

a conclusion from a given observation. However, dense rule bases are compulsory

for these methods. Briefly, a dense rule base is a rule base where the input universe

of discourse is covered completely. Given such a rule base and an observation that

is at least partially covered by the rule base, the conclusion can be inferred from

certain rules that intersect with the observation. However, for the case where a fuzzy

rule base (termed: sparse rule base [25]) contains "gaps", if a given observation

has no overlap with the antecedent values of any rule, conventional fuzzy inference

methods cannot derive a conclusion. A system implemented with such an incomplete
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rule base is hereafter referred to as a sparse rule based system. Obviously, classical

fuzzy reasoning methods can no longer be applied in certain cases due to the fact

that a traditional rule-based inference mechanism will fail when no fuzzy rule may

be found to match the given observation. This becomes a major drawback from

the viewpoint of using fuzzy systems in solving many real-world problems where

typically past data and knowledge learned do contain significant gaps.

Fuzzy rule interpolation (FRI) [26, 27, 28, 29, 30, 31] is of particular significance

to support reasoning in the presence of insufficient knowledge. Given a sparse rule

base, if an observation has no overlap with the antecedent of any rules, no rule can

be invoked in classical fuzzy inference and therefore, no consequence can be derived.

Fortunately, the use of FRI techniques enables inference to be performed in such

cases. Moreover, with the help of FRI, the complexity of a rule base can be reduced

by omitting fuzzy rules which may be approximated from their neighbouring rules.

1.3 Major Contributions

Although potentially powerful, using traditional deep learning architecture as the

underlying technique for feature extraction introduces significant computation, which

may well offset the potential benefit on the efficiency gained by the entire feature

extraction process.

An alternative approach proposed in chapter 3 is to employ DeSTIN to extract

only a small number of original features, and then to use interpolation to artificially

create a more informative feature set of a higher dimensionality, thereby improving

the representation of the underlying images to be classified. This will help increase

the classification accuracy without sacrificing the efficiency of the overall system.

Another approach as proposed in chapter 4 offers a substantially simplified 2-layer

machine learning network. This network exploits unsupervised learning for pattern

representation, and is capable of extracting effective features efficiently. In so doing,

the problem that feature extraction involves significant computation can be tackled.

In most fuzzy inference systems, the completeness of the fuzzy rule base is

required to generate meaningful output when classical fuzzy inference methods are

applied. This emphasises the need for a dense rule base for fuzzy inference that covers

all possible inputs. Regardless of the way in which a rule base is constructed, be it
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by human experts or by an automated agent, often incomplete or sparse rule bases

are available. A dense rule base is especially impracticable in a multidimensional

environment where the number of rules increases exponentially as the input variables

and the fuzzy linguistic labels associated with each variable increase. In this situation,

the classical fuzzy reasoning techniques such as compositional rule of inference (CRI)

cannot generate an acceptable output for such cases. One simple solution to handle

incomplete or sparse fuzzy rule bases and to infer reasonable output is through the

application of fuzzy rule interpolation (FRI) methods.

Inspired by this observation, chapter 5 presents a direct utilisation of FRI in

enhancing the reasoning robustness of a fuzzy rule-based classifier which utilises a

sparse rule base, namely whose explicit knowledge has been induced from limited

experienced data that does not cover the entire problem domain. The unified

approach has been successfully applied on mammographic risk analysis from images.

1.4 Thesis Structure

This section outlines the structure of the remainder of this thesis.

Chapter 2: Background

This chapter provides a review of the most recent methods for deep machine learning,

the most notable approaches such as DBNs, CNNs, DeSTIN are included for compari-

son. This chapter also provides a background introduction to fuzzy inference systems

(FISs) / fuzzy rule-based systems (FRBSs), compositional rule of inference (CRI) and

fuzzy rule interpolation (FRI). It provides a comprehensive review of typical CRI and

FRI methods that have been developed in the last two decades.

Chapter 3: Interpolating DeSTIN Features for Image

Classification

This chapter presents a novel approach for image classification, by integrating ad-

vanced machine learning techniques and the concept of feature interpolation. In

particular, a recently introduced learning architecture, the Deep Spatio-Temporal

Inference Network (DeSTIN) [5], is employed to perform feature extraction for

support vector machine (SVM) based image classification. The system is supported
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by use of a simple interpolation mechanism, which allows the improvement of the

original low-dimensionality of feature sets to a significantly higher dimensionality

with minimal computation. This in turn, improves the performance of SVM classifiers

while reducing the computation otherwise required to generate directly measured

features. The work is tested against the popular MNIST dataset of handwritten digits

[32]. Experimental results indicate that the proposed approach is highly promising,

with the integrated system generally outperforming that which makes use of pure

DeSTIN as the feature extraction preprocessor to SVM classifiers. This chapter and

parts thereof have been published initially in [33], with further and more in-depth

versions in [34, 35, 36] .

Chapter 4: Clustering Supported Learning Network for Pattern

Recognition

Deep machine learning has received significant attention over the past decade, espe-

cially in terms of dealing with information that may span large scales. By employing a

hierarchical architecture, consisting of simple computational nodes of similar charac-

teristic, the goal of such a network is to partition large data structures into relatively

smaller, more manageable units, and to discover any dependencies that may exist

between such units. However, the process of running this type of network which has

a layered structure, for feature extraction itself typically involves significant compu-

tation. To tackle this problem, a substantially simplified 2-layer machine learning

network is introduced that exploits unsupervised learning for pattern representation,

capable of extracting effective features efficiently. Experimental results on applica-

tion to handwritten digit classification demonstrate that the proposed approach is of

significant potential in dealing with real-world problems. The techniques described

in this chapter are currently under review for journal publication.

Chapter 5: Enriching Data-Driven Fuzzy Rule-Based

Classification with Fuzzy Rule Interpolation

The generation of effective feature pattern-based classification rules from data is

essential to the development of intelligent classifiers which are readily comprehensi-

ble to the user. Unfortunately, a sparse rule base may be generated when there is

missing information in the experienced dataset. This hinders classification systems

that work based on such sparse knowledge effectively performing their tasks in many
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real-world applications, where complete historical data cannot be assumed. This

chapter proposes an innovative approach by integrating fuzzy rule interpolation

within a data-driven classification mechanism such that conclusions can be approxi-

mately derived even if no matched rule can be found from a given sparse rule base

when given a certain observation. The proposed technique is conceptually simple,

but it offers a powerful means to develop robust classifiers, significantly enhancing

the effectiveness of intelligent classification systems, as demonstrated by systematic

comparative experimental results.

Mammographic risk analysis from images is an important area of research as it

provides an important indicator for the likelihood of a woman developing breast

cancer, which is the leading cause of death of women in their 40’s in the EU and US

[37, 38]. Like many areas which deal with image data, there are large amounts of

redundancy and noise in the data. With the use of feature selection, these extraneous

features can be removed. Additionally, with the aid of the proposed classifier learner, a

unified approach to mammographic risk analysis is formulated which can increase the

accuracy of risk analysis and thus reduce the potential for misdiagnoses. This unified

technique and application is also currently under review for journal publication.

Chapter 6: Conclusion

This chapter summarises the key contributions made by the thesis as well as a

discussion of topics which form the basis for future research.

Appendix A

This appendix lists the publications arising from the work presented in this thesis,

containing both published papers, and those currently under review for journal

publication.
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Chapter 2

Background

This chapter reviews the relevant literature, which sets the background of devel-

opments in this thesis. The rest of the chapter is organised as follows. Section

2.1 provides a review of typical deep machine learning methods that have been

developed in the last two decades. Section 2.2 gives a brief introduction of fuzzy set

theory. Section 2.3 explains the fuzzy inference systems (FISs) or fuzzy rule-based

systems (FRBSs). Section 2.4 briefly discusses compositional rule of inference (CRI)

which is an important part of the proposed integrated dynamic framework. Typical

CRI methods are discussed. Section 2.5 explains fuzzy rule interpolation (FRI) which

is the backbone of the proposed integrated framework. An overview of the most

popular methods for fuzzy rule interpolation are presented. Finally, Section 2.6

summarises this chapter.

2.1 Deep Machine Learning

The human can efficiently and robustly represent information. Indeed, humans

are exposed to myriads of sensory data received every second of the day and are

somehow able to capture critical aspects of this data in a way that allows for its

future use in a concise manner [39, 40, 41, 42]. Mimicking this ability has been

a core challenge in artificial and computational intelligence research for decades

[43, 44]. However, for intelligent systems, e.g., those performing autonomous pattern

classification, the learning complexity grows exponentially with a linear increase in

the data dimensionality [45]. In order to overcome this problem of so-called curse of
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dimensionality [1], the mainstream approach in machine learning and related areas

has been to pre-process the data in a manner that would reduce its dimensionality

[2, 46, 47, 48]. After pre-processing, the data can be effectively processed for

a given application. As a result, the intelligence behind many pattern recognition

systems has shifted to human-engineered feature extraction processes, which at times

can be themselves computationally challenging and highly application-dependent

[49, 50, 51, 52].

Recent neuroscience research has found that the neocortex, which is associated

with many cognitive abilities, does not explicitly pre-process sensory signals, but

rather allows them to propagate through a hierarchy of modules, where each module

tries to capture the regularities in the observations it exhibits [53, 54]. This important

finding has provided insight into principles governing information representation in

the mammalian brain, paving an innovative way for the ideas of designing intelligent

systems that represent and process information. The research field of deep machine

learning subsequently emerges, focussing on computational models for information

representation that exhibits similar characteristics to that of the neocortex [55, 56,

57]. In such work, apart from the spatial information of real-life data, the temporal

component can also play a key role.

A sequence of observed data patterns often conveys a certain meaning to the

observer, whereby independent fragments of this sequence may be hard to decipher

in isolation. Meaning is often inferred from events or observations that are received

closely in time [58, 59, 60]. Therefore, modelling the temporal component of the

observations is important for effective information representation and processing.

Capturing spatio-temporal dependencies, based on regularities in the observations,

is regarded as a fundamental goal for deep learning systems [61]. Following this

approach, it would be possible to train a hierarchically structured network, on a

given set of observations, and then to extract signals from this network to a relatively

simple classification engine for the purpose of robust pattern recognition [62, 63].

Robustness here refers to the ability to exhibit classification invariance to a diverse

range of uncertainty and imprecision, including noise and distortions involving scale,

rotation, displacement, etc.

2.1.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [4, 64] are the first truly successful deep

learning approach particularly designed to process two-dimensional data, such as
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images and videos. CNNs are inspired by the time-delay neural networks (TDNNs).

TDNNs are designed for use on speech and time-series processing [65]. TDNNs reduce

learning computation requirements by sharing weights in a temporal dimension.

The choice of topology or architecture provides a CNN with the ability of using

spatial relationships to reduce the number of parameters which must be learned and

improving general feed forward back propagation training.

In CNNs, the inputs to the lowest layer of the hierarchical structure are small

patches of the image (dubbed a local receptive field). CNNs allow information

to propagate through the network, layer by layer, whereby at each layer digital

filtering is applied in order to obtain salient features of the data observed. As the

local receptive field allows the processing unit access to elementary features such

as oriented edges or corners, CNNs provide a level of invariance to shift, scale and

rotation.

Figure 2.1: Convolution and subsampling process

Figure 2.1 shows the convolution and sub-sampling process. Essentially, a set

of N small filters is convolved with the input image, the coefficients of N small

filters are either trained or pre-determined using some criteria. The convolution

process consists of convolving an input with a trainable filter fx then adding a

trainable bias bx to produce the convolution layer Cx . This initial stage is followed

by a sub-sampling (typically a 2× 2 averaging operation) that further reduces the

dimensionality and offer some robustness to spatial shifts. The sub-sampling consists

of summing a neighbourhood (four pixels), weighing by scalar wx+1, adding trainable

bias bx+1, and passing through a sigmoid function to produce a roughly 2x smaller
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Figure 2.2: Conceptual example of convolutional neural network

feature map Sx+1. Some variants of this exist with as few as one map per layer [66]

or summations of multiple maps [4].

The activation function is nearly linear when the weighting is small; other weight-

ing can cause the activation output to resemble an AND or OR function. The new

feature map is then passed through another sequence of convolution, sub-sampling

and activation function flow, this process can be repeated an arbitrary number of

times, as illustrated in Figure 2.2. The input image is convolved with three trainable

filters and biases as in Figure 2.1 to produce three feature maps at the C1 level. Each

group of four pixels in the feature maps are added, weighted, combined with a bias,

and passed through a sigmoid function to produce the three maps at S2. The outputs

of S2 are again filtered to produce the C3 level. The hierarchy then produces S4 in a

manner analogous to S2. Finally these pixel values are rasterized and presented as a

single vector input to the conventional neural network at the output.

Note that one or more of the previous layers can be combined to feed to the

subsequent layers; for example, in [4] the initial six feature maps are combined to

form 16 feature maps in the subsequent layer. A method dubbed "feature pooling"

(the S layers in Figure 2.2) allows CNNs invariance to object translations [54].

However, feature pooling is not trained or learned by the system, it is hand crafted

by the network organizer.
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The intimate relationship between the layers and spatial information in CNNs

renders them well suited for image processing and understanding, and they generally

perform well at autonomously extracting salient features from images. In some

cases Gabor filters have been used as an initial pre-processing step to emulate the

human visual response to visual excitation [67]. In more recent work, researchers

have applied CNNs to various machine learning problems including face detection

[66, 68], document analysis [69], and speech detection [70]. CNNs have recently

been trained with a temporal coherence objective to leverage the frame-to-frame

coherence found in videos, though this objective need not be specific to CNNs [71].

The strength of CNNs is reflected in the fact that it can deliver high accuracy

in image recognition problems. The main limitation of CNNs is it involves high

computational cost. They are quite slow to train (for complex tasks) and a lot of

training data are needed.

2.1.2 Deep Belief Networks

Deep Belief Networks (DBNs), as probabilistic generative models, were initially

introduced in [2]. Generative models provide a joint probability distribution over

observation and labels and both P(Observation|Label) and P(Label|Observation) can

be estimated. While traditional neural nets, as discriminative models, are limited to

estimate P(Label|Observation). Furthermore, DBNs tackle the weaknesses of deeply-

layered neural networks that back-propagation are applied, namely: (1) labelled

data are needed for training, (2) time consuming (i.e. slow convergence), (3) poor

local optima are obtained when parameter selection are inadequate.

Restricted Boltsmann Machines (RBMs) [72], a type of neural network, form

several layers of DBNs (see Figure 2.3). RBMs are composed of a visible layer and a

hidden layer, connections are formed between these two layers, while units within a

layer are not connected. The outputs of the visible units are used to train the hidden

units that try to capture the correlations in the observation data. The top two layers

form an associative memory. Aside from associative memory, directed top-down

generative weights connect the layers of a DBN. An unsupervised greedy layer-by-

layer manner, enabled by contrastive divergence [73], occurs during the pre-training

to obtain generative weights. Due to the ease of learning these connection weights,

RBMs are chosen as a building block over more traditional and deeply layered sigmoid
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Figure 2.3: Deep belief network

belief networks. The training phase of contrastive divergence can be illustrated as

following: the visible units receive ~v, the observation data, and forward values to

hidden units. Then the visible unit inputs are stochastically found in an attempt to

reconstruct the original input. Finally, hidden unit activations, ~h, can be reconstructed

one step based on the new visible neuron activations. Performing these back and

forth steps is a process known as Gibbs sampling. The weight update is based on

the difference in the correlation of visible inputs and the hidden activations. Note

that only a single step is needed to approximate maximum likelihood learning, so

the training time is significantly reduced. Each layer added to the network improves

the log-probability of the training data, which means true representation power

increases.

The detection weights and generative weights are tied together at the top two

layers. The top layer receives the output of the lower layer as a reference clue or
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link to associate with its memory contents. Discriminative performance is of great

concern in classification tasks. By utilizing labelled data through back-propagation,

the discriminative performance can be improved after pre-training. A set of labels is

attached to the top layer, and the associative memory is expanded, this helps to clarify

category boundaries in the network. A new set of bottom-up recognition weights

are learned through the category boundaries. A DBN may be fine tuned, and such

networks often perform better than those trained exclusively with back-propagation

[74]. In contrast to traditional feed-forward neural networks, back-propagation for

DBNs is only required to perform a local search on the weight space (parameter

space). This fact intuitively explains that DBN can speed training and convergence

in less time.

A more thorough analysis of DBNs’ use with unsupervised tasks as well as contin-

uous valued inputs was presented in [3] shortly after DBNs were introduced. Further

testing had been carried out to illustrate the resilience of DBNs on problems with

increasing variation [48, 75].

Recently, Convolutional Deep Belief Networks (CDBNs) [52] were introduced to

expand the flexibility of DBNs. DBNs lack the ability to inherently embed information

about 2D structure of an input image, i.e. an image matrix is simply vectorized

to act as the inputs. In contrast, with the introduction of convolutional RBMs, the

spatial relationship of neighbouring pixels is utilized by CDBNs, so CDBNs as a

translation invariant generative model scales well with high dimensional images.

Another shortcoming of DBNs is the temporal relationships between observation

vectors can not be explicitly learned. Currently, stacking temporal RBMs [76] or

generalizations of these, dubbed temporal convolution machines [77] have been

proposed to learn sequences. Audio signal processing problems offer an important

application area of such sequence learner [78].

Recent works pertaining to DBNs include the use of stacked auto-encoders in

place of RBMs in traditional DBNs [3, 48, 79]. This effort produced deep multi-

layer neural network architectures that can be trained with the same principles as

DBNs but are less strict in the parameterization of the layers. Unlike DBNs, auto-

encoders use discriminative models from which the input sample space cannot be

sampled by the architecture, making it more difficult to interpret what the network is

capturing in its internal representation. However, it has been shown that denoising

autoencoders, which utilize stochastic corruption during training, can be stacked to
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yield generalization performance that is comparable to (and in some cases better than)

traditional DBNs [79]. The training procedure for a single denoising autoencoder

corresponds to the goals used for generative models such as RBMs.

2.1.3 Recently Proposed Deep Learning Architectures

Several computational architectures have been introduced to try to model the neo-

cortex. Inspired by sources such as [80], these models attempt to map various

computational phases in image understanding to areas in the cortex. Although these

models have been refined over time, a hierarchical structure has remained, because

the hierarchical structure is the core component in the central concept of visual pro-

cessing. Based on studies of visual cortical cells of cats, Hubel and Weisel proposed

the simple-to-complex cell organization [81]. CNNs as well as other deep-layered

models (such as Neocognitron [82, 83, 84] and HMAX [63, 85]), utilize similar orga-

nizations, yet a stronger mapping of their architecture to biologically-inspired models

yields more "explicit" cortical modes. Diverse mechanisms have been attempted

to solve problems of learning and invariance. In particular, temporal analysis, in

which temporal information is considered an important element of learning pro-

cess, is utilized by Numenta Corporation to create Hierachical Temporal Memory

(HTM)[54].

Based on concepts described in [86], HTMs are designed as a hierarchical struc-

ture. Essentially, an input image feeds to the lowest level of the hierarchy, each unit in

the lowest layer receives a small region of the image as its input and tries to represent

the visual information. Higher levels of the hierarchy incorporate the representation

constructs of multiple lowest receptive fields, so higher levels correspond to larger

regions. HTMs bear similarities to other deeply-layered models in terms of the visual

information representation. In addition to the visual information representation

across layers of hierarchy, temporal information is created by translation or scanning

of the input itself to each layer. With a specific focus on the learning phase, the

lowest layer compiles the most common input patterns and indices are assigned to the

input patterns, probability transitions from one input sequence to another form the

temporal relationships. Then graph partitioning techniques are used to cluster these

temporal relations. When the learning stage concludes in the first layer, the second

layer assigns the indices to the inputs from its child modules in the first layer and

learns the most common input patterns at a higher level. Characterization obtained
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in the higher layer can then be provided to the lower level as the feed back. In turn,

the inference formulation in lower level incorporates this boarder representation

information. This process is repeated at each layer of the hierarchical structure until

the network is trained. Given the beliefs at the top layer of the hierarchy, image

recognition can be performed, a Bayesian belief propagation algorithm [42] is used

to identify the most likely input pattern.

There are other architectures that share this similar idea, such as Hierarchical

Quilted SOMs of Miller Lommel [62] and Neural Abstraction Pyramid of Behnke

[87].

In order to achieve robust information representation, a framework called the

Deep Spatial-Temporal Inference Network (DeSTIN) [5] was recently introduced.

The entire hierarchy is composed of a common cortical circuit (or node). The node

in each layer is independent to all other nodes and operates in parallel. This kind of

structure makes DeSTIN highly suitable for implementation on parallel processing

platforms.

As the hierarchy is presented with data, each node tries to capture the patterns in

the data independently. A belief state is used to represent a possible pattern, and is

incrementally updated as new data comes in. Two constructs are used to implement

the belief state update: P(observation|state), which represents how likely system

states are for segments of the observation, is constructed unsupervised and driven

purely by observations. Another construct P(subsequent state|current state, feedback),

which represents how likely state to state transitions are given feedback from above,

modulates P(observation|state) and embeds the dynamics in the pattern observations.

To estimate the observation distribution, an on-line clustering method is carefully

applied. Based on the frequency, state transitions can be obtained. Unfortunately,

training this type of network demands significant computational effort.

2.1.4 Deep Learning Applications

The effectiveness of deep learning methods in a variety of application domains have

been demonstrated in several studies [32, 64, 67, 70, 78, 88]. Much research has been

done in the following area: MNIST handwriting challenge, face detection, speech

recognition and detection, general object recognition, natural language processing,

robotics.
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Interest in deep machine learning has not been limited to academic research.

Recently, the Defense Advanced Research Projects Agency (DARPA) has announced a

research program exclusively focused on deep learning. Several private organizations,

including Numenta and Binatix, have focused their attention on commercializing

deep learning technologies with applications to broad domains.

2.1.5 Summary of Comparison of Typical Deep Learning

Methods

For all the outlined typical deep learning methods, comparisons are summarised

based on the identified criteria in Table 2.1. This comparison shows that DeSTIN can

explicitly capture temporal and spatial information, supervised learning is not needed

and can be updated online. Two criteria: spatial mapping, and supervised learning

are fulfilled by CNN. Updating online and temporal mapping are not supported by

CNN The DBN method combines both supervised and unsupervised learning.

Table 2.1: Summary of Typical Deep Learning Methods with regards to Evaluation
Criteria

Temporal Mapping Spatial Mapping Supervised Learning Online

DeSTIN Explicit Explicit None Yes

CNN None Explicit SL No

DBN None None SL and UL No

2.2 Fuzzy Set Theory

The modelling of imprecise and qualitative knowledge, as well as the transmission

and handling of uncertainty at various stages are possible through the use of Fuzzy

Sets (FSs) [89]. Fuzzy logic is capable of supporting human type reasoning in natural

form [90]. It is the earliest and most widely reported constituent of soft computing

(SC). The development of fuzzy logic has led to the emergence of soft computing

[91].

Fuzzy sets are a further development of the mathematical concept of a set. A

fuzzy set is an extension of a crisp set, where the latter allows only full membership

or no membership at all, whereas the former allows partial membership. In a crisp
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(a) Crisp characteristic function

(b) Fuzzy membership function

Figure 2.4: Fuzzy membership functions for variable "height"

set, membership or non-membership of an element is described by a characteristic

function in the binary pair {0, 1}. Fuzzy set theory extends this concept by defining

partial membership. A fuzzy set is characterised by a membership function (MF) that

takes values in the interval [0, 1]. In this case, a given element can be a member of

more than one fuzzy set at a time.

As an example, consider the concept tall. In a crisp set, all of the people with

height 180 cm or more are considered tall, and all of the people with height of

less than 180 cm are considered not tall. The crisp set characteristic function is

shown in Figure 2.4a, while the corresponding fuzzy set with a smooth membership

function is shown in Figure 2.4b, where X and Y axes denote the height and its

corresponding membership value, respectively. The membership function curve

defines the transition from not tall and shows the degree of membership for any

given height.
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Let X be the universe, a fuzzy set, A, in X is a set of ordered pairs

A= {(x ,µA(x))|µA(x) ∈ [0, 1], x ∈ X } (2.1)

Such a fuzzy set is a collection of objects with graded membership, where µA(x)

is termed the grade of membership of x in A. The closer the value of µA(x) is to 1,

the more x belongs to the set A.

Essentially, a membership function is a function that defines how each point in

the input space is mapped to a membership value between 0 and 1. Various types

of membership functions can be used, including triangular, trapezoidal, Gaussian

curves, polynomial curves, etc. In particular, due to the fact that triangular and

trapezoidal fuzzy sets are commonly used in many fuzzy rule interpolation (FRI)

approaches [26, 27, 30, 31, 92]. Triangular and trapezoidal membership functions

are defined respectively by three and four parameters and given by

f (x : a, b, c) =























0 i f x < a
x − a

b− a
i f a ≤ x ≤ b

c − x

c − b
i f b ≤ x ≤ c

0 i f x > c

(2.2)

where a and c denote the left and right extreme points (with membership values of

0), and b denotes the normal point (with a membership value of 1).

f (x : a, b, c, d) =























0 i f x < a
x − a

b− a
i f a ≤ x < b

1 i f b ≤ x ≤ c

d − x

d − c
i f c < x ≤ d

0 i f x > d

(2.3)

where a and d denote the left and right extreme points (with membership values of

0), and b and c denote the normal points (with membership values of 1).
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2.2. Fuzzy Set Theory

Figure 2.5: A triangular membership function example

Figure 2.6: A trapezoidal membership function example

The support of a fuzzy set A is defined by

supp(A) = {x ∈ X |µA(x)> 0} (2.4)

and the core of a fuzzy set A is defined by

core(A) = {x ∈ X |µA(x) = 1} (2.5)

An important property of fuzzy sets is their convexity. A fuzzy set A on X is convex

if and only if

µA(λx1 + (1−λ)x2)≥ min(µA(x1),µA(x2)) (2.6)

for all x1, x2 ∈ X and all λ ∈ [0, 1].

An equivalent representation to the above standard definition is: a fuzzy set A is

said to be convex if and only if

µA(z)≥ min(µA(x),µA(y)),∀(x , y, z) ∈ X and z ∈ [x , y] (2.7)
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2.3. Fuzzy Inference System

Figure 2.7: Generic fuzzy inference system

where z is a point between x and y .

A fuzzy set A is said to be normal if and only if

µA(x) = 1,∃x ∈ X (2.8)

2.3 Fuzzy Inference System

The process of fuzzy inference is basically an iteration of a computer paradigm based

on fuzzy set theory, fuzzy IF-THEN rules and logical operations. Each iteration takes

inputs which can be an observation or a previously inferred crisp or fuzzy result.

These inputs are then used to "fire" the rules in a given rule base. From this, the

output is the aggregation of the inferred results from all of the fired rules. The

general structure of fuzzy inference is illustrated in Figure 2.7.

The fuzzifier maps discrete or real-valued inputs into corresponding fuzzy mem-

berships. This is required in order to build rules that can be considered in terms of

linguistic variables. The fuzzifier takes input values and determines the degree to

which they belong to each of the fuzzy sets by means of membership functions.
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2.4. Compositional Rule of Inference (CRI)

The rule base contains linguistic rules that are provided by experts. It is also

possible to extract rules from numerical data. Once the rules have been established,

the fuzzy inference system (FIS) can be viewed as a system that maps an input vector

to an output vector.

The inference engine defines the mapping from input fuzzy sets into output fuzzy

sets. It determines the degree to which the antecedent is satisfied for each rule. If

the antecedent of a given rule has more than one part, fuzzy operators are applied to

obtain a number that represents the result of the antecedents for that particular rule.

Furthermore, if one or more rules fire simultaneously, outputs for all rules are then

aggregated. During the aggregation process, fuzzy sets that represent the output of

each rule are combined into a single fuzzy set.

The defuzzifier maps output fuzzy sets into a crisp or discrete output. Given

a fuzzy set that encompasses a range of output values, the defuzzifier returns a

single value. Several methods for defuzzification can be used in practice, including:

centroid, maximum, etc.

2.4 Compositional Rule of Inference (CRI)

Fuzzy systems use a fuzzy rule base (set of rules) to contain knowledge that is

exploited to make inference by the inference mechanism. A fuzzy rule base is fully

covered at level α, if all input universes are covered by rules at level α. Such fuzzy

rule bases are also called dense or complete rule bases. In practice, it means that for

all the possible observations there exists at least one rule, whose antecedent part

overlaps the input data at least partially at level α. If this condition is not satisfied,

the rule base is considered sparse, i.e. containing gaps.

In order to draw conclusions from a dense rule base, one needs a mechanism that

can produce an output from a collection of rules. The most commonly used inference

process for dense rule bases is the compositional rule of inference (CRI) [19, 89],

as shown in Figure 2.8. For a given observation, in order to obtain a meaningful

inference result based on CRI, there are two basic approaches: First Infer - Then

Aggregate (FITA) and First Aggregate - Then Infer (FATI). In the FITA approach, for

a given observation, first inference is performed using CRI on each of the rules in

the rule base, and then combine all these intermediate results. Whereas, in the FATI
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2.4. Compositional Rule of Inference (CRI)

Figure 2.8: Compositional rule of inference system

Figure 2.9: Compositional rule of inference example

approach, all the rules are first aggregated by forming an overall fuzzy relation R

which is the combination of all the fuzzy implication relations and then inference

is performed on the given observation, so compared with FITA, FATI performs the

inference only once.

An inference process based on CRI changes the membership function grades of

the right hand sides of the corresponding rules either by reducing or by increasing
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2.4. Compositional Rule of Inference (CRI)

the membership grades [93]. CRI is also called generalised modus ponens (GMP).

For example, here reasoning is performed with one rule using CRI based on FATI.

With a single rule and an observation, an inference result can be deduced as follows:

Rule : If x is A, then y is B

Observation : x is A
′

Consequence : y is B
′

where A, A
′
⊂ X , B ⊂ Y are fuzzy sets defined in the universes of discourse X and Y ,

x ∈ X , and y ∈ Y . The fuzzy rule is interpreted as an implication:

R: A→ B

When input observation A
′
is given to the inference system, the output consequence

would be calculated:

B
′
= A

′
o R= A

′
o (A→ B)

Where o is the composition operator. This inference procedure is called composi-

tional rule of inference as shown in Figure 2.9. Here the inference mechanism is

determined by two factors: 1. implication operators such as min, product, etc. and 2.

composition operator such as max-min, max-product, etc. Therefore, it is clear that an

inference process based on CRI includes several stages. More specifically, it includes

implication, composition and combination for FITA, and implication, combination

and composition for FATI.

There are many methods to select from in order to implement the required

implication, composition and combination operators to perform CRI. The most

common fuzzy inference methods based on CRI are Mamdani and Takagi-Sugeno-

Kang (TSK) fuzzy inference methods. The Mamdani fuzzy inference is the most

commonly seen. This method was introduced by Mamdani and Assilian in 1975 [14].

Another well-known inference method is Takagi-Sugeno-Kang (TSK) method. This

inference method was introduced by Takagi,Sugeno and Kang in 1985 [94, 95].

The main difference between the two popular Mamdani inference method and

TSK inference method is the way the crisp output is generated from the fuzzy inputs.
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While Mamdani system uses the technique of defuzzification of a fuzzy output, TSK

system uses weighted average to compute the crisp output. The expressive power

and interpretability of Mamdani output is reduced in the TSK systems since the

consequents of the rules are not fuzzy [96]. However, TSK has better processing

time since the weighted average replaces the time consuming defuzzification process.

Due to the interpretable and intuitive nature of the rule base, Mamdani inference

systems are widely used in particular for decision support applications [96].

2.4.1 Mamdani Fuzzy Inference Systems

From the introduction of fuzzy sets by Zadeh in 1965 [89], fuzzy logic has become

a significant area of interest for researchers in artificial intelligence. In particular,

Mamdani was the pioneer who investigated the use of fuzzy logic for interpreting

the human derived control rules, and therefore his work was considered a milestone

application of this theory [97]. The original Mamdani fuzzy inference system was

proposed as the first attempt to control a steam engine and boiler combination by a

set of linguistic control rules obtained from experienced human operators. A fuzzy

system with two inputs x and y (antecedents) and a single output z (consequent) is

described by a linguistic IF-THEN rule in Mamdani form as [14]:

If x is A and y is B, then z is C

where A and B are fuzzy sets in the antecedent and C is a fuzzy set in the consequent.

Figure 2.10 is an illustration of how a two-rule Mamdani fuzzy inference system

derives the overall output z when subjected to two crisp inputs x and y. If min

and max are chosen as the T-norm and T-conorm operators, respectively, and use

the original max-min composition, then the resulting fuzzy reasoning is shown in

Figure 2.10, where the inferred output of each rule is a fuzzy set scaled down by its

firing strength via max. Other variations are possible if different T-norm and T-conorm

operators are used. For example, using product and max for T-norm and T-conorm

operators, respectively results in the max-product composition.

In general, to compute the output for the given input observation, a Mamdani

inference system follows the following steps:

1. Determining a set of fuzzy rules
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2.4. Compositional Rule of Inference (CRI)

Figure 2.10: Mamdani fuzzy inference system

2. Fuzzifying the inputs using the input membership functions

3. Combining the fuzzified inputs according to the fuzzy rules to establish a rule

strength

4. Finding the consequence of the rule by combining the rule strength and the

output membership function

5. Combining the consequences to get an membership function

6. Defuzzifying the output distribution (this step is involved only if a crisp output

(class) is needed, if it’s a prediction or regression problem, this step is not needed)
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Figure 2.11: Takagi-Sugeno-Kang (TSK) fuzzy inference system

2.4.2 Other Types of Fuzzy Inference Systems

2.4.2.1 Takagi-Sugeno-Kang (TSK) Fuzzy Inference Systems

Tagaki, Sugeno, and Kang [94, 95] investigated a new approach to fuzzy inference

models with the emphasis upon systematic methods of generating fuzzy rules from

given sets of input-output data. A fuzzy system with two inputs x and y (antecedents)

and a single output z (consequent) is described by a linguistic If-Then rule in Takagi-

Sugeno-Kang form as:

If x is A and y is B, then z = f(x,y)

where fuzzy antecedent variables A and B, give rise to the consequent crisp function

z = f (x , y).

The first-order TSK fuzzy inference procedure is shown in Figure 2.11. Here,

both rules have crisp outputs so the final output can be calculated through weighted
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average, therefore Mamdani model’s time-consuming process of defuzzification can

be avoided. Conversely, this generalization could lead to the loss of MF linguistic

meanings except the sum of firing strengths (that is,
∑

i wi) is close to unity [98].

A TSK fuzzy inference model is not a strict compositional rule of inference model,

where the matching of fuzzy sets can still be used to find the firing strength of each

rule [98] which is shown in the antecedent part of Figure 2.11. While the final

output is always a crisp output whether it is based on weighted average or weighted

sum; this does not seem logically correct because a fuzzy model should be able to

transmit the fuzziness from inputs to outputs. Nevertheless, TSK fuzzy inference is a

common option for data-oriented fuzzy modelling when simplified defuzzification is

required.

2.4.2.2 Type-2 Fuzzy Inference Systems

Quite often, the knowledge used to construct rules in a fuzzy inference system (FIS)

is uncertain. This uncertainty leads to rules having uncertain antecedents and/or

consequences, which in turn translates into uncertain antecedent and/or consequent

membership functions (MFs).

Most of these types of uncertainty translate into difficulties about fuzzy set MFs.

Type-1 fuzzy sets are not able to model such types of uncertainty because their MFs

are crisp. On the contrary, type-2 fuzzy sets are able to model such uncertainty,

because their MFs are themselves fuzzy.

The structure of a type-2 FIS is very similar to the structure of a type-1 FIS, which

is shown in Figure 2.12. A type-2 FIS is characterised by IF-THEN rules, but its

antecedent and/or consequent sets are now type-2 fuzzy sets. It includes fuzzifier,

rule base, inference engine, and output processing. For a type-1 FIS, the output

processing block only contains the defuzzifier.

The fuzzifier maps the crisp input into a fuzzy set. In general, this fuzzy set can

be a type-2 set or a singleton where the input fuzzy set only has a single point of

non-zero membership.

For the rule base, the distinction between type-1 and type-2 is associated with

the nature of the MFs, which is not important while forming rules. For this reason,

the structure of the rules remains exactly the same in type-2 FIS, the only difference
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Figure 2.12: Type-2 fuzzy inference system

being that some or all of the involved sets are of type-2. However, it is not necessary

that all the antecedents and consequences be type-2 fuzzy sets. As long as one

antecedent or the consequent set is type-2, it is a type-2 FIS.

The inference engine in a type-1 FIS combines rules and gives a mapping from

input type-1 fuzzy sets to output type-1 fuzzy sets. Multiple antecedents in rules

and multiple rules are connected by the T-norm (corresponding to intersection of

sets) and the T-conorm (corresponding to the union of sets), respectively. Similarly,

the inference engine in a type-2 FIS combines rules and gives a mapping from input

type-2 fuzzy sets to output type-2 fuzzy sets with the use of intersections and unions

of type-2 fuzzy sets.

In a type-1 FIS, the defuzzifier produces a crisp output from the fuzzy set that

is the output of the inference engine, i.e., a type-0 (crisp) output is obtained from

a type-1 set. In the type-2 case, an operation analogous to type-1 defuzzification

results in a type-1 set from a type-2 set, which is the output of the inference engine.

This operator is called type-reducer and the resultant set is called a "type-reduced set".

This type-reduced set can be further defuzzified by the defuzzifier to obtain a crisp

output. The most natural way of doing this seems to be by finding the centroid of

the type-reduced set [99, 100], however, there exist other possibilities like choosing

the highest membership point in the type-reduced set [101, 102].
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2.5. Interpolative Reasoning Methods

2.5 Interpolative Reasoning Methods

Fuzzy systems use fuzzy rule bases to make inference. If the input domain is covered

completely by the rule bases, such fuzzy rule bases are called dense rule bases [103].

In dense rule bases, for all the possible observations there exists at least one (at

least partially) fired rule, whose antecedent part overlaps the input data. When

an observation occurs, a consequence can be inferred by using conventional fuzzy

reasoning methods such as Mamdani [14, 104] and TSK [94, 95]. On the contrary,

for a sparse rule base, that is, the input domain is covered incompletely by the rule

base, there is an empty space between two membership functions of antecedents

[105]. In this case, conventional fuzzy reasoning methods may encounter difficulty

if an observation occurs in the empty space (which is also termed a "gap"), resulting

in no rule fired and thus, no consequence derived. In general, the "empty space" is

above a certain minimum confidence threshold if membership functions like Gaussian

are used.

The reasons for sparse or incomplete rule bases are various but have several

aspects [25]: Originally, fuzzy systems were constructed from IF-THEN rules pro-

vided by human experts. More recently, learning techniques have increasingly been

developed and applied to the construction of fuzzy IF-THEN rules from numerical

data. However, both ways of constructing rule bases can result in sparse rule bases.

In the former case, an incomplete rule base may be the consequence of missing

expertise for certain system configurations. In the latter case, it may be that data

used in the construction of the rule base does not sufficiently represent the input

parameters. Fuzzy inference methods are often criticised when the number of inputs

is large. The size of the rule base and the complexity of the inference algorithm

grow exponentially with the number of inputs. A possible solution to reduce com-

plexity is to omit redundant rules. This can, however, lead to incomplete rule bases

[106]. "Gaps" can be defined between rule bases intentionally, in order to avoid high

complexity in large systems.

In the case where a fuzzy rule base contains "gaps", conventional fuzzy reasoning

methods can no longer be used. This fact is due to the failure of traditional inference

mechanisms in the case when observations find no fuzzy rule to fire. This cannot be

allowed when using a fuzzy system in any practical application and such a system is

considered useless. This problem was initially outlined in the "tomato classification"

problem [107], shown in Figure 2.13.
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Figure 2.13: Fuzzy reasoning assumption of the tomato classification problem

Rule 1 : If a tomato is red, then the tomato is ripe.

Rule 2 : If a tomato is green, then the tomato is unripe.

Observation : This tomato is yellow.

Conclusion : ???

The intuitive consequence of a human being would be that this tomato is half ripe.

However, the membership function "yellow" has no overlap with the membership

functions "red" or "green". Therefore, none of the conventional fuzzy inference

mechanisms is able to reach such a conclusion.

Motivated by this, fuzzy interpolative reasoning mechanisms are proposed for

performing fuzzy inference with systems comprising insufficient knowledge or sparse

rule bases. Even when a given observation has no overlap with the antecedent values

of any existing rules, FRI may still derive a useful conclusion. The techniques of FRI

not only support inference in such situations, but also help to reduce the complexity
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of fuzzy models by eliminating the rules which may be approximated from their

neighbouring rules.

A number of important FRI approaches have been proposed in the literature

[108, 109, 110]. In terms of the underlying methodology, most of these approaches

can be divided into two groups: single step rule interpolation and intermediate

rule-based interpolation.

The first group of approaches directly interpolates a rule whose antecedent is

identical to the given observation and thus, the consequence of the interpolated rule

is the logical result of the observation. The most typical approach in this group is

the first proposed FRI technique [28], denoted the KH (Kóczy and Hirota) approach,

which is based on the Decomposition Principle [10, 111, 112]. According to these

principles, each fuzzy set can be represented by a series of α-cuts α ∈ (0, 1]. Given α,

the α-cut of the interpolated consequent fuzzy set can be calculated from the α-cuts

of the (newly observed) antecedent fuzzy sets and all of the fuzzy sets involved in

the rules used for interpolation. Having found the α-cuts of the consequent fuzzy

set for all α ∈ (0,1], the consequent fuzzy set is then assembled by applying the

Resolution Principle.

The second group of approaches reaches the target in two steps. In the first

step these approaches interpolate an artificial intermediate rule. The antecedent of

this intermediate rule is expected to be very close to the given observation. As a

result, the interpolation problem becomes similarity reasoning [24, 113, 114]. The

estimated conclusion is then derived in the second step according to the similarity

between the observation and the antecedent of the artificial intermediate rule. The

scale and move transformation-based FRI approach (T-FRI) [30, 31], which has been

adopted as the foundation for the work in this thesis, belongs to this group.

As the two representatives for these two groups, the KH and T-FRI approaches

are respectively reviewed in the following sections, with a focus on the T-FRI method

as it is to be used as the basis in the implementation of this work due to its popularity.

Other approaches are also to be outlined below..

2.5.1 The KH Approach

The KH approach [28] determines the conclusion by its α-cuts in such a way that the

proportional distance between the estimated conclusion and the consequent sets of
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the rules which are used should be the same as the distance between the observation

and the antecedents of those rules, for all important α-cuts. The α-cut Aα of an fuzzy

set A is a crisp set, denoted: Aα = {x |A(x)≥ α,α ∈ (0, 1]}.

2.5.1.1 Base Case of the KH Approach

The starting ideas are the Extension Principle and Resolution Principle. The former

states that the solution of a problem for fuzzy sets can be found in the form of solving

first for arbitrary α-cuts that are crisp sets and then extending the solution to the

fuzzy case. The latter describes the decomposition of fuzzy sets to α-cuts

µA(x) = sup{α : x ∈ Aα} (2.9)

Every fuzzy set can be approximated with the use of the family of its α-cuts.

Theoretically, all infinite cuts should be treated separately. In most practical cases,

however, if the membership function is piecewise linear, it is often sufficient to

calculate its α-cuts for only a few important or typical values [105], e.g., α = 0 and

α= 1.

An important concept in the KH approach is the "less than" relation between

two convex and normal fuzzy sets. Fuzzy set A1 is said to be less than fuzzy set A2,

denoted by A1 ≺ A2, if ∀α ∈ (0, 1], the following conditions hold:

in f {A1α}< in f {A2α}, sup{A1α}< sup{A2α} (2.10)

where A1α and A2α are the α-cut sets of A1 and A2, respectively, in f {Aiα} is the

infimum of Aiα, and sup{Aiα} is the supremum of Aiα, i = 1, 2.

For simplicity, suppose that two single-antecedent fuzzy rules are given as follows:

R1 : If x is A1, then y is B1

R2 : If x is A2, then y is B2

They are said to be neighbouring rules if and only if: (1) A1 ≺ A2 or A2 ≺ A1;

and (2) there is no individual rule "If x is A
′
, then y is B

′
" such that A1 ≺ A

′
≺ A2 if

A1 ≺ A2, or A2 ≺ A
′
≺ A1 if A2 ≺ A1.

To implement interpolation in the region between the antecedents of these two

rules, i.e., to generate an approximated conclusion when an observation A∗ located
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between fuzzy sets A1 and A2 is hereby given. The neighbouring rules in a given rule

base are therefore said to flank the observation. For the above two rules, this means

that A1 ≺ A∗ ≺ A2 or A2 ≺ A∗ ≺ A1.

The KH approach uses the following equation to determine the interpolated

result:
d(A∗, A1)

d(A∗, A2)
=

d(B∗, B1)

d(B∗, B2)
(2.11)

where A1, A2 are the antecedents of the two flanking rules, A∗ is a given observation,

B1, B2 are the consequences of those rules, B∗ is the estimated conclusion, and d(., .)

is typically the Euclidean distance between two fuzzy sets (though other distance

metrics may be also used).

According to the Decomposition Principle, a convex and normal fuzzy set A can

be represented by a series of α-cut intervals, each denoted as Aα,α ∈ (0, 1]. In this

case, Equation 2.11 can be written as:

d(A∗
α
, A1α)

d(A∗
α
, A2α)

=
d(B∗

α
, B1α)

d(B∗
α
, B2α)

(2.12)

where given any α(α ∈ (0,1]), the lower and upper distances between α-cuts A1α

and A2α are defined:






dL(A1α, A2α) = d(in f {A1α}, in f {A2α})

dU(A1α, A2α) = d(sup{A1α}, sup{A2α})
(2.13)

Note that the Euclidean distance between intervals can be defined in different

ways but they all lie between dL(A1α, A2α) and dU(A1α, A2α). From Equation 2.13,

Equation 2.12 can be rewritten as

dL(A
∗
α
, A1α)

dL(A∗α, A2α)
=

dL(B
∗
α
, B1α)

dL(B∗α, B2α)

=
dL(in f {B∗

α
}, in f {B1α})

dL(in f {B∗
α
}, in f {B2α})

=
in f {B∗

α
} − in f {B1α}

in f {B2α} − in f {B∗
α
}

(2.14)
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Equation 2.14 can then be solved as follows:

in f {B∗
α
}=

in f {B1α}dL(A
∗
α
, A2α) + in f {B2α}dL(A

∗
α
, A1α)

dL(A∗α, A2α) + dL(A∗α, A1α)

=

in f {B1α}

dL(A∗α, A1α)
+

in f {B2α}
dL(A∗α, A2α)

1

dL(A∗α, A1α)
+

1

dL(A∗α, A2α)

(2.15)

where sup{B∗
α
} can be calculated in the same way, resulting in

































in f {B∗
α
}=

in f {B1α}

dL(A∗α, A1α)
+

in f {B2α}
dL(A∗α, A2α)

1

dL(A∗α, A1α)
+

1

dL(A∗α, A2α)

sup{B∗
α
}=

sup{B1α}

dU(A∗α, A1α)
+

sup{B2α}
dU(A∗α, A2α)

1

dU(A∗α, A1α)
+

1

dU(A∗α, A2α)

(2.16)

Alternatively, let














λL =
dL(A

∗
α
, A1α)

dL(A2α, A1α)

λU =
dU(A

∗
α
, A1α)

dU(A2α, A1α)

(2.17)

The same solution can then be obtained but represented differently as follows:






in f {B∗
α
}= (1−λL)in f {B1α}+λL in f {B2α}

sup{B∗
α
}= (1−λU)sup{B1α}+λU in f {B2α}

(2.18)

From this, B∗
α
= [in f {B∗

α
}, sup{B∗

α
}] results. The estimated conclusion B∗ can then

be constructed by using the representation principle of fuzzy sets:

B∗ =
⋃

α∈(0,1]

αB∗
α

(2.19)

The most important advantage of the KH approach is its low computational complex-

ity that ensures the fast response performance for real-time applications. Despite the

rapid development of α-cut based FRI, there is a drawback in this group of methods.

35



2.5. Interpolative Reasoning Methods

Theoretically, all possible α-cuts (an infinite number) should be considered in per-

forming the interpolation. However, the existing approaches in this group only take

a finite number of α-cuts into consideration (usually 3 or 4). The resulting points

are then connected by linear pieces to produce an approximation of the accurate

conclusion.

2.5.2 The T-FRI Approach

The T-FRI approach [30, 31] can handle both interpolation and extrapolation of

multiple multi-antecedent rules with triangular, complex polygon, Gaussian and

bell-shaped fuzzy MFs. It has the following properties:

• It can handle both interpolation and extrapolation which involve multiple fuzzy

rules, with each rule consisting of multiple antecedents.

• It guarantees the uniqueness as well as normality and convexity of the resulting

interpolated fuzzy sets.

• It preserves piece-wise linearity such that interpolation can be computed using

only characteristic points which describe a given polygonal convex fuzzy set, thereby

ignoring any non-characteristic points and saving computation effort.

• It has been applied to problems such as truck backer-upper control and computer

activity prediction.

2.5.2.1 Representative Value

A key concept used in the T-FRI approach is the representative value (Rep) of a given

fuzzy set, it captures important information such as the overall location of a fuzzy

set. Consider an arbitrary polygonal convex fuzzy set A with k points, which can be

denoted as A= (a0, . . . , ak−1). Given such an arbitrary polygonal convex fuzzy set,

its general Rep is defined by

Rep(A) =

k−1
∑

i=0

wiai (2.20)

where wi is the weight assigned to the point ai.

In general, the specification of the weights is necessary for a given application.

Different definitions can be adopted for deriving different Rep values. The simplest
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case is that all points take the same weighting value, i.e.,

Rep(A) =
1

k

k−1
∑

i=0

ai (2.21)

An alternative is the weighted average Rep, where the weights increase upwards

from the bottom support to the top support, to reflect the relative significance of

the fuzzy membership values. For instance, assuming the weights increase upwards

from 0.5 to 1, such a Rep is defined by

Rep(A) =

∑⌈ k
2 ⌉−1

i=0
1+µi

2 (ai + ak−i−1)
∑⌈ k

2 ⌉−1
i=0

1+µi

2

(2.22)

where µi is the membership value of ai. Note that artificial odd points can be created

to construct evenly paired odd points (as indicated previously), so µi = µk−i−1 can

always be assumed.

One of the most widely used defuzzification methods, the centre of core, can also

be utilised as an alternative. The centre of core Rep is solely determined by those

points with a fuzzy membership value of 1:

Rep(A) =
1

2
(a⌈ k

2 ⌉−1 + ak−⌈ k
2 ⌉
) (2.23)

Based on the generated Rep values, the interpolation process is discussed in

the following three cases. For simplicity, only rules involving triangular-shaped

membership functions are considered.

2.5.2.2 The T-FRI Approach with Two Single-Antecedent Rules

Suppose that two neighbouring rules A1⇒ B1, A2⇒ B2 and an observation A∗, which

is located between fuzzy sets A1 and A2, are given as follows:

R1 : If x1 is A1, then y1 is B1

R2 : If x2 is A2, then y2 is B2

O : x is A∗

C : y is B∗
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Figure 2.14: T-FRI with two single-antecedent rules

The desired conclusion B∗ can be derived by interpolation. An intermediate rule A
′
⇒

B
′
is first constructed by manipulating these two given rules, where the intermediate

term A
′

and the observation A∗ have the same Rep, and so do the intermediate

term B
′

and the desired B∗. Then B
′

is converted into B∗ using scale and move

transformations, which have been used to transform A
′
to A∗.

The interpolation process is illustrated in Figure 2.14. Given fuzzy sets A∗, A1 and

A2, three parameters Rep(A∗), Rep(A1) and Rep(A2) are produced with the function f1.

Next, the relative placement relation between the observation A∗ and the antecedents

(A1 and A2) of the two neighbouring rules is calculated by the function f2, resulting

in λ. From this, an intermediate rule A
′
⇒ B

′
is generated by applying the function

f3 with parameter λ to both the antecedents and consequences of the neighbouring

rules. Then, the similarity degree between A
′
and A∗ is computed by a predefined

similarity measure. Specifically, scale rate s and move ratioM are exploited in scale

and move transformation-based interpolation to represent the similarity degree,

which is achieved by the function f4. Finally, the estimated conclusion B∗ is obtained

by applying the function f5 to B
′
while imposing the same similarity degree.

Intermediate Rule
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The relative placement factor λ of the observation A∗, with respect to its two

neighbouring rule antecedents A1 and A2, is defined by

λ =
d(A1, A∗)

d(A1, A2)

=
d(Rep(A1), Rep(A∗))

d(Rep(A1), Rep(A2))

(2.24)

where d(A1, A2) = d(Rep(A1), Rep(A2)) represents the distance between two fuzzy

sets A1 and A2, which is defined by

d(A1, A2) = d(Rep(A1), Rep(A2))

= Rep(A2)− Rep(A1)
(2.25)

where Rep(A1) 6= Rep(A2) because A1 ≺ A2 or A2 ≺ A1. Such a factor reflects the

relative location of the interpolated rule regarding the two neighbouring rules.

By using the simplest linear interpolation, the antecedent of the intermediate

rule A
′
= (a

′

0, a
′

1, a
′

2) can be calculated as follows:











a
′

0 = (1−λ)a10 +λa20

a
′

1 = (1−λ)a11 +λa21

a
′

2 = (1−λ)a12 +λa22

(2.26)

which are collectively abbreviated to

A
′
= (1−λ)A1 +λA2 (2.27)

In so doing, the Rep of the calculated A
′

is guaranteed to be equal to that of

A∗. The consequence of the intermediate rule B
′
= (b

′

0, b
′

1, b
′

2) can then be obtained

similar to the calculation of A
′
using the same λ:










b
′

0 = (1−λ)b10 +λb20

b
′

1 = (1−λ)b11 +λb21

b
′

2 = (1−λ)b12 +λb22

(2.28)

with abbreviated notation

B
′
= (1−λ)B1 +λB2 (2.29)

Scale and Move Transformations
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As A
′
⇒ B

′
is derived from A1⇒ B1 and A2⇒ B2, it is feasible to perform fuzzy

reasoning with this new rule without further reference to its originals. Given such an

intermediate rule and an observation, the conclusion can be calculated with respect

to the following intuition:

The more similar A
′
to A∗, the more similar B

′
to B∗.

Suppose that a certain degree of similarity between the antecedent parts A
′
and A∗ is

established, it is intuitive to require that the consequent parts B
′
and B∗ attain the

same similarity degree. Hence, the following two transformations are used to ensure

this.

Scale Transformation The similarity degree between A
′
and A∗ is first measured by

scale rate s, which is defined by

s =
a∗2 − a∗0

a
′

2 − a
′

0

(2.30)

Let A
′′
= (a

′′

0, a
′′

1, a
′′

2) denote the second intermediate term generated by the scale

transformation. By using s, the current support (a
′

0, a
′

2) is transformed into a new

support (a
′′

0, a
′′

2), while keeping the Rep and the ratio of the left-support (a
′′

0, a
′′

1) to

the right-support (a
′′

1, a
′′

2) of A
′′

the same as those of its original, such that



























a
′′

2 − a
′′

0 = s(a
′

2 − a
′

0)

a
′′

0 + a
′′

1 + a
′′

2

3
=

a
′

0 + a
′

1 + a
′

2

3

a
′′

1 − a
′′

0

a
′′

2 − a
′′

1

=
a
′

1 − a
′

0

a
′

2 − a
′

1

(2.31)

A
′′

can then be calculated by solving Equation 2.31:

















a
′′

0 =
a
′

0(1+ 2s) + a
′

1(1− s) + a
′

2(1− s)

3

a
′′

1 =
a
′

0(1− s) + a
′

1(1+ 2s) + a
′

2(1− s)

3

a
′′

2 =
a
′

0(1− s) + a
′

1(1− s) + a
′

2(1+ 2s)

3

(2.32)
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This measure reflects the similarity degree between A
′
and A∗: the closer is s to 1,

the more similar is A
′

to A∗. It is therefore used to act as, or to contribute to, the

desirable similarity degree in order to transform B
′
to B∗.

Move Transformation The similarity degree is further measured by move ratioM.

By usingM, the current support (a
′′

0, a
′′

2) of A
′′

is moved to (a∗0, a∗2) while keeping its

Rep, resulting in the observation A∗. The move ratioM is defined by

M =

























a∗0 − a
′′

0

a
′′

1 − a
′′

0

3

i f a∗0 ≥ a
′′

0

a∗0 − a
′′

0

a
′′

2 − a
′′

1

3

otherwise

(2.33)

GivenM, A∗ can then be retrieved as:




























































a∗0 = a
′′

0 +M
a
′′

1 − a
′′

0

3

a∗1 = a
′′

1 − 2M
a
′′

1 − a
′′

0

3
i f M ≥ 0

a∗2 = a
′′

2 +M
a
′′

1 − a
′′

0

3

















a∗0 = a
′′

0 +M
a
′′

2 − a
′′

1

3

a∗1 = a
′′

1 − 2M
a
′′

2 − a
′′

1

3
otherwise

a∗2 = a
′′

2 +M
a
′′

2 − a
′′

1

3

(2.34)

This reflects the similarity degree between A
′
and A∗: the closer is M to 0, the

more similar is A
′
to A∗.

Having obtained the similarity degree between A
′
and A∗, the interpolated con-

clusion B∗ can therefore be obtained by transforming B
′
with the same scale rate s

and move ratioM.
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2.5.2.3 The T-FRI Approach with Two Multi-Antecedent Rules

Two multi-antecedent rules interpolation is a generalisation of the two single an-

tecedent rules interpolation. Given an observation such that

O : x1 is A∗1, · · · , x j is A∗
j
, · · · , xM is A∗

M

Suppose that two neighbouring rules are used for interpolation with respect to the

given observation, which are represented by

R1 : If x1 is A11, · · · , x j is A1 j, · · · , xM is A1M , then y is B1

R2 : If x1 is A21, · · · , x j is A2 j, · · · , xM is A2M , then y is B2

where M is the number of antecedent variables.

When one rule involves multiple antecedent variables, each antecedent dimen-

sion will have its own parameter values for λ, s andM. Obviously, all these values

contribute to the construction of the intermediate term B
′
and the desired B∗. The

following equations aggregate all of these values in order to construct the intermedi-

ate term B
′
. The interpolated conclusion B∗ can then be obtained by using s

′
andM

′
,

where

λ
′
=

1

M

M
∑

j=1

λ j (2.35)

B
′
= (1−λ

′
)B1 +λ

′
B2 (2.36)

s
′
=

1

M

M
∑

j=1

s j (2.37)

M
′
=

1

M

M
∑

j=1

M j (2.38)

and M is the number of antecedent variables.

The process of the T-FRI with two multi-antecedent rules is illustrated in Fig-

ure 2.15. In this figure, there are M repeated components which are identical to

the core of the two single-antecedent rules interpolation (as shown in Figure 2.14).

Each of these components does exactly the same as the common core of the single-

antecedent situation. That is, the relative placement factors λ j( j = 1, ..., M) are
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Figure 2.15: T-FRI with two multi-antecedent rules

calculated from each term of the observation A∗
j
and the corresponding two fuzzy

sets A1 j and A2 j . The function f3 is then introduced to combine all these λ j to a

single parameter λ
′
, resulting in the consequence of the intermediate rule. Similarly,

the scale rates s j and the move ratiosM j( j = 1, ..., M) are combined to s
′
andM

′
by

using the function f6.

2.5.2.4 The T-FRI Approach with Multiple Multi-Antecedent Rules

In order to implement interpolation or extrapolation with multiple multi-antecedent

rules, the first step is to choose N(N ≥ 2) rules from a given rule base. Then, an

intermediate rule is constructed based on the selected rules. Once the intermediate

rule is worked out, the remainder of the process remains the same as that described

in the previous sections. The key steps in generating an intermediate rule are briefly

introduced as follows.

Closest N Rules Selection
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Without loss of generality, suppose that a rule Ri and an observation O are

represented by

Ri : If x1 is Ai1, · · · , x j is Ai j, · · · , xM is AiM , then y is Bi

O : x1 is A∗1, · · · , x j is A∗
j
, · · · , xM is A∗

M

where Ai j denotes the j-th antecedent fuzzy set of Rule Ri , A∗
j
denotes the observed

fuzzy set of variable x j , and Bi denotes the consequent fuzzy set of Rule Ri with

j ∈ {1, . . . , M}, M being the number of antecedent variables.

The distances di j between the pairs of Ai j and A∗
j
can be calculated as follows:

di j = d(Ai j, A∗
j
)

= d(Rep(Ai j), Rep(A∗
j
))

(2.39)

The distance di between the rule Ri and the observation O is deemed to be the

average of all antecedent variables’ distances:

d
′

i j
=

di j

max j −min j

(2.40)

di =

√

√

√

√

M
∑

j=1

d
′

i j

2
(2.41)

where max j and min j are the maximum and minimum values of x j, j ∈ {1, . . . , M}.

Each distance measure di j is normalised into the range [0,1], denoted by d
′

i j
, to

make the absolute distances compatible with each other over different domains.

Note that if max j −min j = 0, then max j = min j. That is, A∗
j
of O is identical with

Ai j of Ri, j ∈ {1, . . . , M}. In this case, d
′

i j
= 0.

Intermediate Rule Construction

Suppose N(N ≥ 2) closest rules have been chosen from the observation. Such

rules are represented as Ri, i ∈ {1, . . . , N}, each has M antecedents Ai j, j ∈ {1, . . . , M}.

Let wAi j
denote the weight to which the j-th antecedent of the i-th rule contributes

to the intermediate rule. The normalised weight w
′

Ai j
can be defined as:

wAi j
=

1

di j

(2.42)
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w
′

Ai j
=

wAi j

∑N

i=1 wAi j

(2.43)

Note that if di j = 0, then Rep(Ai j) = Rep(A∗
j
). In this case, the antecedent of the

observation is considered to be identical to the corresponding antecedent of the rule

Ri, in terms of the currently applied definition of Rep. Thus, wAi j
= 1 for the identical

ones, while wAi j
= 0 for the remainder.

The antecedent of the so-called intermediate fuzzy term A
′′

j
is constructed from

the antecedents of these closest rules. Another process shi f t is then introduced to

modify A
′′

j
to the antecedent of the intermediate rule A

′

j
so that it will have the same

Rep as A∗
j
:

A
′′

j
=

N
∑

i=1

wA
′
i j
Ai j (2.44)

A
′

j
= A

′′

j
+δA j

(max j −min j) (2.45)

where δA j
is a constant defined by

δA j
=

Rep(A∗
j
)− Rep(A

′′

j
)

max j −min j

(2.46)

Note that if max j −min j = 0, then max j = min j . That is, A∗
j
is identical with A

′′

j
, j ∈

{1, . . . , M}. In this case, δA j
= 1. Regarding the consequence of the intermediate

rule B
′
, it can be calculated by analogy to the computation of the antecedent, such

that

B
′′
=

N
∑

i=1

w
′

Bi
Bi (2.47)

B
′
= B

′′
+δB(max −min) (2.48)

where B
′′

is the consequence of the intermediate fuzzy term, max and min are the

maximum and minimum values of consequent variable, w
′

Bi
and δB are the means of

w
′

Ai j
and δA j

, i ∈ {1, . . . , N}, j ∈ {1, . . . , M}, respectively, which are defined as:

w
′

Bi
=

1

M

M
∑

j=1

wA
′
i j

(2.49)

δB =
1

M

M
∑

j=1

δA j
(2.50)

Then, the intermediate rule is constructed as
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Figure 2.16: T-FRI with mutilple multi-antecedent rules

If x1 is A
′

1, · · · , x j is A
′

j
, · · · , xM is A

′

M
, then y is B

′

Having generated the required intermediate rule, the rest of the interpolation involves

firing this rule by the given observation, which is the same as that of interpolation

with two rules described previously. The process of the T-FRI with multiple multi-

antecedent rules is illustrated in Figure 2.16. In addition, extrapolation is a special

case of interpolation when all the N closest rules lie on one side of the given ob-

servation. However, the processes of choosing the closest rules and constructing

the intermediate rule are carried out in exactly the same way as the procedures for

interpolation.

2.5.3 Other Approaches

In addition to the aforementioned approaches, a number of other existing approaches

have also been reported in the literature [92, 103, 115, 116, 117, 118], several of

them are reviewed in the following sections. For details of other implementations,

refer to the corresponding references given.
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Figure 2.17: HCL interpolation

2.5.3.1 HCL Interpolation

The HCL (Hsiao, Chen, and Lee) approach [92] eliminates the abnormal problem by

fixing the core of the consequence generated by the KH approach and shifting its

support along with the consequent variable axis. It represents both slopes of each

fuzzy set as a linear function. The slopes of the consequent fuzzy set are also linear

functions whose parameters are interpolated from those of the observation and the

fuzzy sets involved in the rule bases. A ratio between the left slope and the right

slope of the consequence is then calculated and utilised to shift the support of the

generated consequence by the KH approach in reference to the normal point of the

consequence. Unfortunately, this approach is only applicable to triangular fuzzy sets.

The typical interpolation problem is shown in Figure 2.17, where k1, t1, k, t, k2, t2,

h1, m1, h, m, h2, and m2 represent the slopes of the corresponding fuzzy sets. The

HCL approach calculates the support of B∗ in the same way as the KH approach but
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the top point is calculated in a different way. The process to determine the top point

of B∗ is described below.

The slopes h and m of B∗ are calculated first. Let:






k = k1 x + k2 y

t = t1 x + t2 y
(2.51)

where x and y are real numbers. If k1
t1
6= k2

t2
, then x and y are computed by Equa-

tion 2.51. Let: 





h= c|h1 x + h2 y |

m= −c|m1 x +m2 y |
(2.52)

where c is a constant. Otherwise, let:






h= ck

m= c t
(2.53)

where c is a constant.

The position of the top point of B∗ is then decided by

C P(B∗)− sup(B∗)

C P(B∗)− in f (B∗)
=

h

m
(2.54)

where C P(B∗) denotes the centre point of core of B∗. Equation 2.54 can be recalcu-

lated as

C P(B∗) =
sup(B∗)m− in f (B∗)h

m− h
(2.55)

Not that if m = h, then sup(B∗) = in f (B∗) can be derived from Equation 2.54. In

this case, C P(B∗) = sup(B∗) = in f (B∗).

2.5.3.2 CCL Interpolation

The CCL (Chang, Chen, and Liau) approach [26] can be seen as an improvement of

the HCL approach. This approach first determines the core of the consequence by

using the KH approach, which is calculated as follows:

b∗ = b1 +
(a∗ − a1)(b2 − b1)

a2 − a1

(2.56)
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where a1, a2, a∗, b1, b2, and b∗ are the normal points of the involved triangular fuzzy

sets A1, A2, A∗, B1, B2, and B∗, respectively.

The areas of the two sides of the core are then calculated from the corresponding

areas of the given observation and all the fuzzy sets involved in the rules used for

interpolation in a manner of linear interpolation.

SK(B
∗) =







SK(A
∗)
∑2

i=1 Wi

SK(Bi)

SK(Ai)
i f ∃i SK(Ai)> 0

SK(A
∗) i f ∀i SK(Ai) = 0

(2.57)

where K ∈ L, R, SL(B
∗) and SR(B

∗) denote the left and right area of B∗, respectively,

and






W1 = 1−
a∗ − a1

a2 − a1

W2 = 1−W1

(2.58)

The interpolated result B∗ is therefore derived by

B∗ = (b∗ − 2SL(B
∗), b∗, b∗ + 2SR(B

∗)) (2.59)

Unlike the HCL approach, this approach is able to deal with interpolation and

extrapolation with multiple multi-antecedent rules, with each rule involving any

shape of fuzzy sets.

2.5.3.3 QMY Interpolation

The QMY (Qiao, Mizumoto, and Yan) approach [118] employs the same mechanism

for generating intermediate rules as the T-FRI approach, but the Rep is restricted to

being the centre point of core. The similarity degree between the observation A∗ and

the antecedent A
′
of the intermediate rule is captured using the so-called parameters

lower similarity and upper similarity, which are defined by










SL(A∗,A′ )(α) =
d(in f (A∗

α
), C P(A∗))

d(in f (A′
α
), C P(A∗))

SU(A∗,A′ )(α) =
d(sup(A∗

α
), C P(A∗))

d(sup(A′
α
), C P(A∗))

(2.60)

where α ∈ (0, 1].

With reference to the centre point of the core, a convex and normal fuzzy set

can be divided into two parts, namely, the lower part and the upper part. The lower
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similarity measures the difference of the lower parts of two fuzzy sets, by comparing

the lengths of a certain level cut, and the upper similarity does that of the upper

parts.

In so doing, the consequence B∗ is derived from the following equations:











C P(B∗) = C P(B
′
)

SL(B∗,B′ )(α) = SL(A∗,A′ )(α)

SU(B∗,B′ )(α) = SU(A∗,A′ )(α)

(2.61)

Combining Equations 2.60 and 2.61 gives






in f (B∗
α
) = SL(A∗,A′ )d(in f (B

′

α
), C P(B

′
)) + C P(B

′
)

sup(B∗
α
) = SU(A∗,A′ )d(sup(B

′

α
), C P(B

′
)) + C P(B

′
)

(2.62)

Thus B∗ can be calculated with the representation principle of fuzzy sets.

2.5.3.4 CK Interpolation

The CK (Chen and Ko) approach [119] ensures that the core of each fuzzy set of

a created intermediate rule is equal to that of the corresponding fuzzy set of the

resultant interpolated rule.

First, the Reps of all the involved fuzzy sets are obtained by the T-FRI approach,

resulting in the parameter λ. The values of la
′

0,1 and la
′

1,2 are then calculated:







la
′

0,1 = (1−λ)la10,1
+λla20,1

la
′

1,2 = (1−λ)la11,2
+λla21,2

(2.63)

where la
′

0,1 and la
′

1,2 denote the left and the right support length of the antecedent

of the intermediate rule. The values of l b
′

0,1 and l b
′

1,2 can be calculated in the same

way.

Next, the antecedent of the intermediate rule is constructed:










a
′

0 = a
′

1 − la
′

0,1

a
′

1 = a1

a
′

2 = a
′

1 + la
′

1,2

(2.64)
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Similarly, the consequence of the intermediate rule can be constructed by means

of the previously obtained l b
′

0,1 and l b
′

1,2











b
′

0 = b
′

1 − l b
′

0,1

b
′

1 = b1

b
′

2 = b
′

1 + l b
′

1,2

(2.65)

where b1 is the core of the estimated interpolated conclusion, which is determined

as follows:

b1 = (1−λa1
)Rep(B1) +λa1

Rep(B2) (2.66)

where

λa1
=

d(A1, a1)

d(A1, A2)

=
a1 − Rep(A1)

Rep(A2)− Rep(A1)

(2.67)

Note that Rep(A1) 6= Rep(A2) because A1 ≺ A2 or A2 ≺ A1

In order to measure the similarity degree between two fuzzy sets with the same

core, only their left slopes and right slopes need to be compared. Two transformations,

i.e., increment transformation and ratio transformation are then utilised for this

purpose, with one aiming to increase the length of a certain level cut of a slope during

the transformation, and the other to decrease the length. From this, B∗ = (b∗0, b∗1, b∗2)

can be derived, where b0 and b2 are calculated as

b0 =

















b1 − la0,1
a20 − a12

b20 − b12

+ la
′

0,1

a20 − a12

b20 − b12

− l b
′

0,1 i f la0,1 ≥ la
′

0.1

b1 −
la0,1l b

′

0,1

la
′

0,1

otherwise

(2.68)

b2 =

















b1 − la1,2
a20 − a12

b20 − b12

+ la
′

1,2

a20 − a12

b20 − b12

− l b
′

1,2 i f la1,2 ≥ la
′

1,2

b1 −
la1,2l b

′

1,2

la
′

1,2

otherwise

(2.69)
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2.5.4 Summary of Comparison of Typical Interpolation Methods

For all the outlined typical interpolation methods, comparisons are summarised

based on the identified criteria in Table 2.2. This comparison shows that all the

methods satisfy the following key criteria: preservation of neighbouring quality

(PNQ), mapping similarity (MS), multiple rules for support (MRS), rule-base preser-

vation/ modus ponens validity (RBP), approximation capability (AC), and fuzziness

of inferred result (FIR). Two criteria: avoidance of abnormal conclusion (AAC), and

preservation of convexity and normality (CNF) are fulfilled by : HCL, QMY, T-FRI

and CK. Multiple antecedent variables for support (MAVS) is not supported by HCL

The KH method has the lowest computational complexity.

Table 2.2: Summary of Typical Interpolation Methods with regards to Evaluation
Criteria

PNQ MS MRS MAVS RBP AC FIR AAC CNF

KH Yes Yes Yes Yes Yes Yes Yes NO No

HCL Yes Yes Yes No Yes Yes Yes Yes Yes

T-FRI Yes Yes Yes Yes Yes Yes Yes Yes Yes

QMY Yes Yes Yes Yes Yes Yes Yes Yes Yes

CK Yes Yes Yes Yes Yes Yes Yes Yes Yes

2.6 Summary

This chapter has presented a systematic review of typical deep machine learning

architectures and also lists their real world applications as on-going research. This

chapter has also introduced basic concepts of and recent developments in fuzzy

inference systems. Generally the implementations of fuzzy inference techniques can

be categorised into two groups: CRI and FRI. The former works on a dense rule

base and a number of typical methods have been reviewed. The latter can tackle

the problem that CRI can not be used when a sparse rule base is presented. FRI can

be categorised into two groups: one interpolating the consequence directly from a

given observation, and the other following a two step approach. The latter approach

first generates an intermediate rule such that its antecedent part is as close to the

given observation as possible, and then this intermediate rule is fired by the given

observation through similarity-based fuzzy reasoning. The original KH approach
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and the T-FRI approach have been taken as representatives of the two groups in this

chapter. The implementations of both approaches have been discussed, including

the basic case, multiple antecedents case, and multiple rules case. Further, a review

has been provided for the typical techniques that were developed in order to modify

and improve the KH approach that may arrive a result which is not an fuzzy set.
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Chapter 3

Interpolating DeSTIN Features for

Image Classification

One critical step to successfully build an image classifier is to extract and use infor-

mative features from given images [43, 44]. However, generating more features

increases computational complexity, which will cause practical difficulties, especially

in the need of performing real-time classification tasks. It is desirable to develop a

method that can work with limited generation of necessary features without causing

a problem in conducting accurate classification.

A possible way to do this is to take a biologically-inspired approach, based on

the argument that the neo-cortex does not explicitly pre-process sensory signals, but

rather allows them to propagate through a hierarchy of modules which incrementally

learn to represent observed regularities they exhibit [39, 40, 50, 51, 58]. Under

this assumption, it would be possible to train such a hierarchical network on a

large set of observations and later extract features from the network to be fed to

a classification system for the purpose of robust pattern recognition. Deep Spatio-

Temporal Inference Network (DeSTIN) [5, 120, 121] is a good example of this

approach. Note that robustness here refers to the ability to exhibit invariance to a

diverse range of transformations and distortions, including noise, scale, rotation,

and lighting conditions.

The extracted features minimise the computational complexity to a certain extent.

Unfortunately, the underlying technique itself introduces significant computation,
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3.1. Deep Spatio-Temporal Inference Network

which may well offset the potential benefit on the efficiency in performing the

entire feature extraction process by the use of DeSTIN. An alternative approach is

to employ interpolation to produce a more informative feature set, which improves

the representation of the underlying images to be classified, thereby increasing the

classification accuracy without sacrificing the efficiency.

This chapter presents a novel discriminative deep learning architecture that

combines DeSTIN with interpolation, in an attempt to implement the above idea.

This architecture, which is referred to DESTINI hereafter, leads to a highly scalable

modelling system which is capable of extracting image features effectively and

efficiently. Simulation results demonstrate that the framework is highly promising.

The rest of this chapter is organised as follows. Section 3.1 outlines the back-

ground of DeSTIN. Section 3.2 details the DESTINI approach, including an outline of

the resulting computational algorithm for feature extraction. Section 3.3 gives a brief

overview of Support Vector Machines (SVMs) that will be used to implement the

image classifiers for experimental evaluation. Section 3.4 shows the experimental

results, supported by comparative studies. This chapter is summarised in Section 3.5.

3.1 Deep Spatio-Temporal Inference Network

Deep Spatio-Temporal Inference Network (DeSTIN) [5] provides a scalable mod-

elling system which is capable of effectively dealing with high-dimensional signals.

Figure 3.1 shows the generic architecture of such a network. A DeSTIN comprises

multiple instantiations of an identical cortical circuit (or node) which populate all lay-

ers of the network. Each node is tasked with characterising the sequences of patterns

that are presented to it. In the very lowest layer of the hierarchy, the nodes receive

as input the raw data (e.g., pixel values of the image), which is a high-dimensional

signal

Mn×m =











a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

. . .
...

an1 an2 · · · anm











(3.1)
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3.1. Deep Spatio-Temporal Inference Network

Figure 3.1: Topological architecture of DeSTIN

Each node continuously constructs a belief state that attempts to characterise

the sequence of patterns received. The second layer, and each of those above it,

receives the belief states of those nodes in the layer right below, and attempts to

construct belief states that capture regularities in their inputs. The spatio-temporal

dependencies that exist within different observations are modelled inherently in an

unsupervised manner. Each node of the network represents sequences it observes by

means of clustering, over the distribution of the sequences using Bayesian inference.

For completeness the theoretical foundation of DeSTIN is outlined below; further

details can be found in [5, 120, 121]. As a discriminative machine learning model,

each node in DeSTIN aims at constructing an efficient belief state for the given stimuli

it is presented with. The basic belief update rule, which governs the learning process

and is identical for every node in the architecture, is discussed next. The belief state

is a probability mass function over the sequences of stimuli that the nodes learns

to represent. Consequently, each node is allocated a predefined number of state

variables each denoting a dynamic pattern, or sequence, that is autonomously learned.

The role that parental advice plays in the processing by writing the fundamental
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3.1. Deep Spatio-Temporal Inference Network

belief update rule of DeSTIN as

b
′
(s
′
|a) =

Pr(o|s
′
)
∑

sεS Pr(s
′
|s, a)b(s)

∑

s′′εS Pr(o|s
′′)
∑

sεS Pr(s
′′ |s, c)b(s)

(3.2)

which maps the current observation o, the belief b (with argument the system

state s) and advice from a higher-layer node a, to a new (updated) belief and state

b
′
(s
′
) at the next time step, with a normalization factor in the denominator. One

interpretation of this equation is that the (static) pattern similarity metric, Pr(o|s
′
),

is modulated by a construct that reflects the system dynamics,
∑

sεS Pr(s
′
|s, a)b(s).

(For shorthand, the latter is denoted as PSSA.) These two constructs are the main

items which must be learned from the data. The dependence of the belief on the

advice from the parent, which is important for the "multiple observer" model, is also

considered. For the static pattern similarity metric, Pr(o|s
′
), online clustering and

mixture model formulations are applied. An online clustering algorithm based on the

winner-take-all competitive learning approach is employed at the heart of each node’s

static pattern learning process. The algorithm includes constructs for improving

performance and modulating the learning rate, but in this work a semi-constant

learning rate is employed across a layer of nodes, with the rate set to learn fast for

one layer and slower for subsequent (higher) layers until some stopping criteria is

reached, at which point the rate is set to 0 for the "stopped" layer and adjusted to a

fast rate for the next layer up.

For the system dynamics or PSSA, an advice generation methodology using

tabular methods is applied. In the tabular method the transitions from s to s
′
given

the advice a is simply counter. In past implementations, the advice or belief of

the parent node, a, was chosen using the selection rule of a = ar gmax b(s) , but

this was not robust to evolving belief conditions in the online learning process.

Instead an online advice generation rule where each parental node examines the

temporal sequence of input beliefs and performs unsupervised online clustering

is used. The resulting label is then passed to the child nodes who use the advice

to train the dynamic patterns. Furthermore, the clustering mechanisms described

earlier provide good generalization but do not lend themselves well to a consistent

labelling from movement to movement. The system dynamics can compensate for

this problem to some degree, but some level of consistent labelling is necessary which

is unfortunately not guaranteed with normal online clustering. Here the advice in a

multiple-observer model to formulate a set of "belief in advice states" which serves as
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a cumulative estimate of the belief in the advice state of a node is used. This allows

each node to incorporate learning from the parent node over time to generalize

the longer temporal and spatial scales, but retain a level of local knowledge and

capture sufficient variation to make good supervised learning classifiers. In this

mechanism, the system dynamics vary from movement to movement and each child

node retains a brief history of its recent observations and beliefs within a single

subject presentation. Then when the parental advice is available, the PSSA is learned

across the past observations and movements. After training, each possible advice

state is interpreted as a different observer, with multiple attempts at observation as

well (one for each movement), and thus the belief in that advice state is computed

as a cumulative prediction error B(a) =
∑

m

∑

s b(sm|a)− b(sm), where sm is the state

at movement m. When there are a total of A advice states, this produces a vector of

dimension A for the output of each node after the complete temporal sequence is

observed. The advice component is passive, meaning the value for B(a) and test for

each advice state using the model residing in each node for each different advice

state learned during the training process is simply computed. This approach is more

robust in the sense that "good" advice is not required in real-time from the parent,

and also occasional cases of near-zero probability do not cause the entire evolution

to grind to a halt.

Let n be the cardinality of the centroid set defined for the top layer, then the output

of DeSTIN can be represented by a vector of features, say, Voriginal = (O1, · · · , On)
T .

3.2 DESTINI

After propagating through a DeSTIN, the original image is converted to a vector of

features, which can be represented as

Voriginal = (O1, · · · , On)
T (3.3)

To perform effective image classification such a vector is expected to have a signif-

icant dimensionality. However, this means that the number of layers required is

significant and hence will incur considerable computation. Thus, a trade off between

subsequent classification effectiveness and computational effort in covering the orig-

inal image into the feature vector is needed. This observation leads to the present

development by applying simple interpolation methods to create additional elements
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3.2. DESTINI

in an artificially expanded feature vector. That is, interpolation can be applied to

Voriginal in order to generate additional vector elements:

Vaddit ional = (l1, · · · , lm)
T (3.4)

resulting in a final vector of features that jointly represent the original image:

VD = (O1, · · · , On, l1, · · · , lm)
T (3.5)

3.2.1 Interpolation Methods

3.2.1.1 Linear Interpolation

The simplest possible interpolation is to linearly set lk = ik (1 ≤ k ≤ m) with ik

being local sums Oj + Oj+1, 1 ≤ j ≤ n− 1, which is represented as Oj+( j+1). On

top of these local sums, the global sum sum =
∑n

i=1 Oi can also be obtained in a

straightforward manner. In so doing, the dimensionality of the additional feature

vector can be increased to a number that is up to n. Obviously, such linear addition-

based interpolation involves little computation.

Consider that if m = 2, which means that additional vectors of each contain-

ing two elements, Vaddit ional = (i1, i2)
T can be generated from the original vector

produced by DeSTIN. In particular, i1 may be set to be one element of the local

sum set {O1+2, O2+3, · · · , O(n−1)+n} or the global sum sum =
∑n

i=1 Oi. So there are

n options, after choosing the value of i1, the size of the optional set is reduced to

n− 1. For i2, there are n− 1 options. So if m = 2, there are C2
n

different types of

possible combination of the elements contained within the optional set to construct

an additional feature vector.

In general, if m = j, j ∈ {2,3, ..., n}, then j-dimensional vectors can be gen-

erated, with ik, (1 ≤ k ≤ m) representing the global sum sum =
∑n

i=1 Oi or the

local sum O1+2, O2+3, · · · , O( j−1)+ j, · · · , O(n−1)+n. There are C j
n

different options of pos-

sible combination to form such additional vectors. Thus, if necessary, a total of

C2
n
+ C3

n
+ · · ·+ Cn−1

n
+ Cn

n
possible combinations can be generated when Voriginal is

an n-dimensional vector.

3.2.1.2 Newton Interpolation

In addition to linear interpolation (that is computationally least complex), another

possible means to create artificial features is through Newton interpolation. The
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basic idea is that given the values of Voriginal = (O1, · · · , On)
T , a set of k + 1 data

points P = {(x0, y0), (x1, y1), . . . , (xk, yk)}, (k ≥ n) are created, such that the values

of {x0, x1, . . . , xk} are set to consecutively integer values, and the elements of Voriginal

are assigned as the values to a subset of {y0, y1, . . . , yk}, with the other (k+ 1− n)

missing values of this set to be generated via interpolation. To distinguish linearly

interpolated features from those produced by the Newton method, the latter are

denoted by I j (1≤ j ≤ k+ 1− n= m) below.

Formally, the Newton interpolation polynomial is of the form:

N(x) =

k
∑

j=0

a jn j (x) (3.6)

with the so-called Newton basis polynomials defined by

n j (x) =

j−1
∏

i=0

(x − x i) (3.7)

and the coefficients by

a j = [y0, . . . , y j] (3.8)

where [y0, . . . , y j] denotes divided differences.

Given k+ 1 data points (x0, y0), (x1, y1), . . . , (xk, yk), the divided differences are

defined as:

[yv] = yv, v ∈ {0, . . . , k} (3.9)

[yv, . . . , yv+ j] =
[yv+1, . . . , yv+ j]− [yv, . . . , yv+ j−1]

xv+ j − xv

(3.10)

where v ∈ {0, . . . , k− j}, j ∈ {1, . . . , k}.

Now, consider the specific case of m = 1, where additional 1-dimensional vectors

Vaddit ional = (I1)
T can be generated from the original vectors produced by DeSTIN.

In this case, the dimensionality of data points is n+ 1. First, {x0, x1, . . . , xk} are set

to integer values consecutively; without losing generality, these can be represented

as {x0 = 1, x1 = 2, . . . , xk−1 = n, xk = n+ 1}. Then, O1 is set to becoming the value

of yi, i ∈ {0,1,2, ..., k}. So, there are n+ 1 options for such an assignment. After

choosing the value of yi, the size of the optional set is reduced to n. For O2, there

are n options, and so on. Thus, if m= 1, there are C1
n+1 different kinds of possible

combination of artificial features to form an additional feature vector.
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In general, similar to the linear interpolation case, if m= j, j ∈ {2,3, ..., n+ 1},

then j-dimensional vectors can be generated, with Ik (1 ≤ k ≤ m) representing

the Newton interpolated feature value. There are C
j

n+1 different options of possible

combination to construct the additional vector. Together, if required, a total of

C1
n+1+C2

n+1+ · · ·+Cn
n+1+Cn+1

n+1 possible combinations can be generated when Voriginal

is an n-dimensional vector.

3.2.2 The DESTINI Algorithm

A given image for classification is first processed by a DeSTIN of a low complexity.

The resulting low-dimensional feature vector of the (relatively simple) DeSTIN is then

translated into a feature set of a higher dimensionality and hence of potentially more

discriminating power, through interpolation that leads to Equation 3.5. Reflecting the

above-introduced straightforward interpolation mechanisms, l j ( j ∈ {1, 2, ..., m}) in

VD stands for i j in linear interpolation and for I j in Newton interpolation. The feature

vectors so produced that consist of the original DeSTIN outputs and interpolated

additional artificially created features are regarded as the returns of the DESTINI

system, thereby computationally integrating DeSTIN and feature interpolation. From

this, any of the generated VD can be fed to an SVM (which acts as the image classifier,

see below) for the purpose of robust image classification. This integrated use of

DeSTIN and interpolation significantly increases the feature vector dimensionality

without incurring much additional computation.

The working of DESTINI can be summarised as shown in Algorithm 3.2.1. Given

a set of training data, the algorithm starts by assuming that the (initial) brief states

b are set to default values (line 1). As the main body of the algorithm, it then runs

an iteration loop (lines 2-6), in which an image is assigned to a matrix Mn×m (line

2), and then for each layer, an update is carried out to refine the brief state (line

3). Having updated all the layers, set the original features Voriginal to be the output

of DeSTIN (line 4), and interpolate it to build VD (line 5). Repeat the loop until no

image remaining to be processed (line 6). What is returned by this algorithm is the

VD constructed from a set of original features Mn×m (line 7).

The time complexity of DESTINI is mainly determined by two aspects: the time

complexity of generating Voriginal = (O1, · · · , On)
T and that of computing Vaddit ional =

(l1, · · · , lm)
T . Consider that the core calculation for Voriginal is the application of the
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Algorithm 3.2.1: The DESTINI Algorithm
1: Initialise b, with all unclassified images to buffer
2: Load an image to Mn×m

3: For each layer of DeSTIN, update b to b
′

4: Set Voriginal to the output of DeSTIN (O1, · · · , On)
T

5: Interpolate Voriginal to derive VD = (O1, · · · , On, l1, · · · , lm)
T

6: If every image has been processed go to the next, else go to Step 2
7: Return VD = (O1, · · · , On, l1, · · · , lm)

T

Euclidean distance metric, so the time complexity of computing Voriginal is O(n2).

If Vaddit ional is generated by linear interpolation, the time complexity for Vaddit ional

is O(m). Together the time complexity of producing VD = (O1, · · · , On, l1, · · · , lm)
T ,

is O(n2) +O(m). If however, Vaddit ional is generated by Newton interpolation, the

time complexity for obtaining Vaddit ional is O(m2). Together the time complexity of

producing VD is O(n2) + O(m2). Yet, to generate an original feature vector of the

same dimensionality, which is (m+n), the time complexity of DeSTIN is O((m+n)2).

Given the same dimensionality, it is clearly more efficient for DESTINI to generate

VD.

3.2.3 Generic Worked Examples

To illustrate the basic idea of DESTINI, consider the case where the output of DeSTIN

is a 3-dimensional vector:

Voriginal = (O1, O2, O3)
T (3.11)

Thus, the following additional interpolated vectors

Vaddit ional = (i1, · · · , im)
T , 2≤ m≤ 3 (3.12)

can be generated by linear interpolation, plus the global feature sum=
∑3

i=1 Oi.

If m = 2, which means additional vectors of 2 dimensions Vaddit ional = (i1, i2)
T

can be generated from the original vector. So ik, k ∈ {1, 2}, represents O1+2, O2+3 or

sum=
∑3

i=1 Oi, and there are C2
3 =3 different kinds of combination:

(i1 = O1+2, i2 = O2+3)
T (3.13)

(i1 = O1+2, i2 = sum)T (3.14)
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(i1 = O2+3, i2 = sum)T (3.15)

Consequently, the combined VD may be either of the following three:

(O1, O2, O3, O1+2, O2+3)
T (3.16)

(O1, O2, O3, O1+2, sum)T (3.17)

(O1, O2, O3, O2+3, sum)T (3.18)

If m = 3, then a 3-dimensional additional feature vector consisting of the following

can be produced: i1 = O1+2, i2 = O2+3, i3 = sum. Thus, VD represents

VD = (O1, O2, O3, O1+2, O2+3, sum)T (3.19)

Together, out of the original 3-dimensional feature vector, C2
3 + C3

3 = 4 combinations

can be created to act as the artificially generated additional features.

Now, consider an example using Newton interpolation with the same 3-dimensional

original feature vector. In this case, the following additional interpolated vectors can

be generated:

Vaddit ional = (I1, · · · , Im)
T , 1≤ m≤ 4 (3.20)

If m= 1, which means that additional vectors of 1 dimension Vaddit ional = (I1)
T

are required to be generated.

Thus, the set of data points is P = {(1, y0), (2, y1), (3, y2), (4, y3)}, which may be

either of:

{(1, I1), (2, O1), (3, O2), (4, O3)} (3.21)

{(1, O1), (2, I1), (3, O2), (4, O3)} (3.22)

{(1, O1), (2, O2), (3, I1), (4, O3)} (3.23)

{(1, O1), (2, O2), (3, O3), (4, I1)} (3.24)

There are therefore C1
4 = 4 different kinds of combination.

If m = 2, additional vectors of 2 dimensions Vaddit ional = (I1, I2)
T can be generated.

The set of artificially created data points is
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P = {(1, y0), (2, y1), (3, y2), (4, y3), (5, y4)}, which may be either of:

{(1, I1), (2, O1), (3, I2), (4, O2), (5, O3)} (3.25)

{(1, I1), (2, O1), (3, O2), (4, I2), (5, O3)} (3.26)

{(1, I1), (2, O1), (3, O2), (4, O3), (5, I2)} (3.27)

{(1, O1), (2, I1), (3, O2), (4, I2), (5, O3)} (3.28)

{(1, O1), (2, I1), (3, O2), (4, O3), (5, I2)} (3.29)

{(1, O1), (2, O2), (3, I1), (4, O3), (5, I2)} (3.30)

forming the C2
4 = 6 different kinds of combination.

If m = 3, additional feature vectors of 3 dimensions Vaddit ional = (I1, I2, I3)
T can be

created. The set of data points is P = {(1, y0), (2, y1), (3, y2), (4, y3), (5, y4), (6, y5)},

which may be either of the C3
4 =4 different kinds of combination:

{(1, I1), (2, O1), (3, I2), (4, O2), (5, I3), (6, O3)} (3.31)

{(1, I1), (2, O1), (3, I2), (4, O2), (5, O3), (6, I3)} (3.32)

{(1, I1), (2, O1), (3, O2), (4, I2), (5, O3), (6, I3)} (3.33)

{(1, O1), (2, I1), (3, O2), (4, I2), (5, O3), (6, I3)} (3.34)

If m= 4, which means that a 4-dimensional additional vector

Vaddit ional = (I1, I2, I3, I4)
T can be generated, with the set of artificial data points

being P = {(1, y0), (2, y1), (3, y2), (4, y3), (5, y4), (6, y5), (7, y6)}:

{(1, I1), (2, O1), (3, I2), (4, O2), (5, I3), (6, O3), (7, I4)} (3.35)

Altogether, C1
4 + C2

4 + C3
4 + C4

4 = 15 combinations can be produced from the

original 3-dimensional feature vector.
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3.3 Support Vector Machines

After gaining VD, Support Vector Machines (SVMs) [122] are herein used to imple-

ment the task of image classification. SVMs work by mapping input feature vectors

onto the underlying image class labels. Such a classifier seeks to find the optimal

separating hyperplane amongst different classes, by focusing on those training points

(named support vectors) which are placed at the edge of the underlying feature

vectors and whose removal will change the solution to be found.

More formally, SVMs construct a hyperplane in a space of a dimensionality higher

than that of the original, which is then used for classification (or for other tasks

such as regression and prediction). The underlying intuition is that by mapping

the original data space onto a much higher-dimensional space, the class separation

between data points will become easier in that space. SVMs use a specific mapping

such that the cross products of data points in the larger space are defined in terms

of a kernel function [123] which is selected to suit the given problem. In so doing,

the cross products may be computed in terms of the variables in the original space,

thereby minimising computational effort. In particular, a hyperplane in the higher

dimensional space is defined as the set of points whose inner product with any vector

in that space is constant. A good hyperplane is learned over a training process such

that the resulting hyperplane has the largest distance to the nearest training data

points of any given class. This is in order to increase the discriminating power of the

trained classifier.

In the following, the Radial Basis Function (RBF) kernel is adopted to implement

the SVM-based classifiers, and the sequential minimal optimisation algorithm of

[124] is used to train the SVMs. Note that in implementation, as the default settings

of SVMs are taken from the LIBSVM [125], no hyper parameters of individual SVMs

are further tuned in order to give equal footings in results comparison. Detailed

SVM learning mechanism is beyond the scope of this report, but can be found in the

literature (e.g., [122, 126]).

3.4 Experimental Results

Although the approach taken in this research is of a generic nature, the present work

concentrates on the classification of the MNIST dataset of handwritten digits [32].
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Figure 3.2: Example images in MNIST database

Figure 3.3: Example images for digit 4 and 9

The dataset consists of 60,000 training images and 10,000 test images. Each hand-

written digit was originally extracted from a larger set made available by NIST [32],

before being size-normalised and centred in a fixed-size image (28×28 pixels). Each

image is labeled by one of 10 classes corresponding to the numbers 0-9. Figure 3.2

shows a part of the MNIST database, and Figure 3.3 presents example images for

digit 4 and digit 9. The application problem for this research is to develop an image

classifier that can detect and recognise different digital numbers from such a given

hand-written figure.

The topology of the underlying DeSTIN chosen to perform this experimental

investigation consists of 4 layers, with the first layer hosting 8 × 8 nodes, each

receiving a non-overlapping 4× 4 patch of a given image that is vectorised into a

16 element input. At each subsequent layer, there are one quarter of the number of

the nodes within the preceding layer, such that layer two hosts 4× 4 nodes, layer
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three 2 × 2 nodes, and layer four just one node as depicted in Figure 3.1. The

dimensionalities of the belief states for layers one, two and three are set to 25, 16

and 12, respectively. In order to give the top layer sufficient representational capacity,

the dimensionality of its centroid set is ranged from 3 to 6. Thus, the output of the

DeSTIN can be represented as Voriginal = (O1, · · · , On)
T , 3≤ n≤ 6. Note that as the

layer index increases, the information compression rate increases, as reflected by the

corresponding reduced dimensionality of the belief space.

3.4.1 Use of DESTINI Features with Linear Interpolation

Table 3.1: Accuracy using additional interpolated features based on a 3-dimensional
original vector

Feature list Accuracy

O1, O2, O3 86.73%

O1, O2, O3, O1+2, O2+3 87.96%

O1, O2, O3, O1+2, sum 88.61%

O1, O2, O3, O2+3, sum 88.80%

O1, O2, O3, O1+2, O2+3, sum 88.92%

This experimentation is to investigate the effect of utilising linear interpolation to

enrich the representation of features extracted by the given DeSTIN. It first focuses

on the use of 3-dimensional DeSTIN outputs in order to minimise the underlying

computational complexity required: Voriginal = (O1, O2, O3)
T . Additional vectors of 2

dimensions Vaddit ional = (i1, i2)
T are generated from the original vectors, and there

are 3 different kinds of possible combination: Vaddit ional = (i1 = O1+2, i2 = O2+3)
T ,

Vaddit ional = (i1 = O1+2, i2 = sum)T , and Vaddit ional = (i1 = O2+3, i2 = sum)T , where

sum =
∑3

i=1 Oi. A further interpolated vector of 3 dimensions Vaddit ional = (i1 =

O1+2, i2 = O2+3, i3 = sum)T can also be generated. Table 3.1 lists the correct classifi-

cation rates produced by the resulting SVM classifiers, respectively using different

vectors composed by the union of the original features and certain interpolated

features. Clearly, the classification accuracy of using the DESTINI features is greater

than 86.73%, the accuracy obtained using the original features alone.

Experimentation has also been carried out for cases where more than three

original DeSTIN features are used. Table 3.2 lists the correct classification rates based
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3.4. Experimental Results

Table 3.4: Accuracy using Newton interpolated features based on a 4-dimensional
original vector

Feature list Accuracy Feature list Accuracy

I1, O1, O2, O3, O4 98.39% I1, O1, I2, O2, I3, O3, O4 98.10%

O1, I1, O2, O3, O4 97.18% I1, O1, I2, O2, O3, I3, O4 98.28%

O1, O2, I1, O3, O4 96.65% I1, O1, I2, O2, O3, O4, I3 98.58%

O1, O2, O3, I1, O4 97.34% I1, O1, O2, I2, O3, I3, O4 98.06%

O1, O2, O3, O4, I1 98.37% I1, O1, O2, I2, O3, O4, I3 98.58%

I1, O1, I2, O2, O3, O4 98.62% I1, O1, O2, O3, I2, O4, I3 98.60%

I1, O1, O2, I2, O3, O4 98.16% O1, I1, O2, I2, O3, I3, O4 96.43%

I1, O1, O2, O3, I2, O4 98.21% O1, I1, O2, I2, O3, O4, I3 98.01%

I1, O1, O2, O3, O4, I2 98.45% O1, I1, O2, O3, I2, O4, I3 98.59%

O1, I1, O2, I2, O3, O4 96.86% O1, O2, I1, O3, I2, O4, I3 98.18%

O1, I1, O2, O3, I2, O4 97.24% I1, O1, I2, O2, I3, O3, I4, O4 97.92%

O1, I1, O2, O3, O4, I2 98.59% I1, O1, I2, O2, I3, O3, O4, I4 98.65%

O1, O2, I1, O3, I2, O4 96.93% I1, O1, I2, O2, O3, I3, O4, I4 98.65%

O1, O2, I1, O3, O4, I2 98.28% I1, O1, O2, I2, O3, I3, O4, I4 98.45%

O1, O2, O3, I1, O4, I2 98.49% O1, I1, O2, I2, O3, I3, O4, I4 97.68%

I1, O1, I2, O2, I3, O3, I4, O4, I5 98.43% O1, O2, O3, O4 96.52%

on the DeSTIN outputs of a different dimensionality. It presents six performance

indicators to show the accuracy. When the output of the underlying DeSTIN is a

4-dimensional vector, the best classification accuracy of using the DESTINI features is

97.56%, while the worst is 97.03%, with the average accuracy being 97.29%, which

is significantly higher than that of using four original features (96.52%). Also, the

classification accuracy of using the DESTINI features is generally higher than that

(98.22%) of using 5-dimensional original DeSTIN features, with only one exception,

where the Vaddit ional = (i1 = O3+4, i2 = O4+5)
T . Even on this occasion, the accuracy is

98.20%, a mere 0.02% worse off. The classification accuracy of using the DESTINI

features is obviously better than that (98.25%) of using the original 6 dimensional

features, again with only one exception, where the Vaddit ional = (i1 = O4+5, i2 = O5+6)
T

involving a tiny difference in value (0.03%).

Overall, it can be seen from the above results that the classification rates using

the DESTINI features are higher than those achievable using the original DeSTIN
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3.4. Experimental Results

features alone. This shows that the classification accuracy is improved with only

very minor extra computation overheads, without the need of directly generating a

larger number of DeSTIN features which would otherwise incur substantially more

computation.

3.4.2 Use of DESTINI Features with Newton Interpolation

The second experimentation reported here deals with the use of applying Newton

interpolation to the DeSTIN outputs. The first subset of experiments involves a

4-dimensional original feature vector Voriginal = (O1, O2, O3, O4)
T . Additional vectors

of one dimension Vaddit ional = (I1)
T are artificially created using the original feature

vector. There are 5 different kinds of such artificial vector. Additional vectors of 2

dimensions Vaddit ional = (I1, I2)
T are also generated and in this case, there are Cn

n+2 =

C4
6 possible combinations with the original. Of course, many further interpolated

vectors can be generated which are shown in Table 3.4. The best classification

accuracy of using the DESTINI features is 98.65%, and the average accuracy is

98.03%. There is only one exception, where the use of VD = (O1, I1, O2, I2, O3, I3, O4)
T

fails to beat the use of just the original DeSTIN features, though the difference

between 96.43% and 96.52% is rather small.

The second subset of experiments investigates the correct classification rates

produced by the SVM classifiers through the use of different dimensional DeSTIN

outputs. The results are listed in Table 3.3. When the output of the given DeSTIN is

a 3-dimensional vector, the best classification accuracy using the DESTINI features

is 95.62%, while the average reaches 90.96%. There are 3 exceptions (out of 15

combinations), which are VD = (O1, I1, O2, O3)
T , VD = (O1, O2, I1, O3)

T , and VD =

(O1, I1, O2, I2, O3)
T where the use of the DESTINI features leads to a lower accuracy

than that (86.73%) obtainable by the use of the original DeSTIN features (with the

corresponding accuracy rates being 86.47%, 85.97% and 85.1%).

The performance of using the DESTINI features can be further improved when

the dimensionality of the original DeSTIN feature vectors is slightly increased. For

example, with 5-dimensional DeSTIN feature vectors, the accuracy rate is generally

higher than that (98.22%) of using just the original, with only two exceptions over 63

cases (where VD = (O1, O2, I1, O3, I2, O4, O5)
T and VD = (O1, O2, I1, O3, I2, O4, I3, O5)

T )

that lead to slightly lower rates (98.09% and 98.02%). However, the average accuracy

is 98.68%. Also, the classification accuracy of using the DESTINI features is obviously
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Table 3.5: Confusion matrix using interpolation aided feature sets (worse perfor-
mance)

0 1 2 3 4 5 6 7 8 9

0 1093 0 6 4 0 3 0 12 4 0
1 0 956 0 0 5 4 0 6 0 3
2 0 4 1001 0 10 0 13 0 3 0
3 4 6 0 915 9 5 11 9 22 4
4 4 0 2 0 865 0 5 5 10 9
5 9 3 0 0 0 972 0 0 0 3
6 0 4 0 0 2 0 1007 8 25 0
7 11 0 2 3 0 17 0 961 4 0
8 0 0 4 14 4 0 32 13 867 0
9 0 10 0 0 1 6 0 0 0 1006

better than that (98.25%) when using 6-dimensional feature vectors, with only one

exception (of VD = (O1, O2, O3, I1, O4, O5, O6)
T ). Even on this exceptional occasion,

the accuracy is 98.14%, a mere degradation in performance (0.11%). Overall, it is

clear that the classification rates attainable by the use of the DESTINI features are

significantly higher than those of using the original features alone.

To further investigate the above results, 3 confusion matrix have been listed

in Table 3.5,3.6,3.7,respectively. Table 3.7 shows the confusion matrix using the

original DeSTIN returned features. Table 3.6 shows the confusion matrix using

VD = I1, O1, O2, O3, O4, the classification accuracy is 98.39%. 9 out of 10 classes are

better classified using VD.The only exception is digit 1, in this case, 955 instances

are correctly classified, while 956 instances are recognized as digit 1 using DeSTIN

returned features. Table 3.5 shows the situation that applying interpolation leads to

worse performance. As shown in the table, only digit 1, digit 3 and digit 5 are better

recognized than that using original feature sets.

3.4.3 Comparison between Linear and Newton Interpolations

Clearly, both interpolation methods work well with DeSTIN. The employment of linear

interpolation helps improve the accuracy without causing much computation, while

Newton interpolation performs even better with a little extra computation. To support
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Table 3.6: Confusion matrix using interpolation aided feature sets (better perfor-
mance)

0 1 2 3 4 5 6 7 8 9

0 1115 0 0 0 0 3 4 0 0 0
1 0 955 14 0 0 0 0 0 0 5
2 0 0 1015 0 0 0 16 0 0 0
3 0 0 6 941 0 14 5 0 15 4
4 0 0 2 5 886 0 5 2 0 0
5 0 0 3 0 0 984 0 0 0 0
6 0 0 6 0 0 0 1035 0 5 0
7 6 0 0 0 5 0 3 984 0 0
8 0 0 6 0 0 0 8 5 915 0
9 1 0 10 0 0 3 0 0 0 1009

Table 3.7: Confusion matrix using DeSTIN returned features

0 1 2 3 4 5 6 7 8 9

0 1089 0 12 4 0 5 0 12 0 0
1 0 956 6 0 5 4 0 0 0 3
2 0 4 1001 0 13 0 13 0 0 0
3 0 6 0 910 9 5 11 13 27 4
4 4 0 7 0 866 0 5 4 10 4
5 9 3 0 0 0 972 0 0 0 3
6 0 4 0 0 0 4 1013 10 15 0
7 11 0 2 0 0 11 7 963 4 0
8 0 0 7 7 4 0 28 14 874 0
9 0 10 0 0 1 4 0 0 0 1008

a more direct comparison between the two versions of DESTINI, Figures 3.4, 3.5, 3.6

and 3.7 summarise the accuracy rates gained using Newton interpolation and those

using linear interpolation, for cases where the original feature set utilised is of a

dimensionality of 3, 4, 5 and 6, respectively.

The general trends across all cases are rather similar. Although the worst result

obtained using Newton interpolation is worse than that of using linear interpolation,

it is known from the previous discussions that only for few situations, using either

linear or Newton interpolation, does DESTINI show such under-performed behaviour.

For a great majority of cases, Newton interpolation-based DESTINI systems outper-

form linear interpolation-based ones. In particular, consider the case of having a
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3-dimensional original feature vector as an example. The best performance achieved

by the use of linear interpolation is 88.92% whilst its counterpart using Newton

interpolation is 95.62%. Also, the average accuracy by using Newton interpolation

is 90.96% which is also higher than 88.57% that is achievable using linear interpo-

lation. Of course, as stated earlier, Newton interpolation does incur slightly more

computation. Nevertheless, the cost is still substantially less than that required to

generate and use vectors of original features of a dimensionality which is equal to

that of the artificially expanded feature sets.

Figure 3.4: Accuracy based on a 3-dimensional original vector

3.5 Summary

This chapter has presented a novel deep learning architecture which draws upon the

fundamentals of DeSTIN, supported by feature interpolation. The resulting feature

extraction mechanism is well-suited for image classification which is implemented

using popular SVMs. This work has been tested using the MNIST dataset. Systematic

experimental results demonstrate that the approach developed in this research is

capable of efficiently extracting features suitable for input to SVM-based classifiers,

generally delivering significantly improved performance in terms of classification

accuracy.
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Figure 3.5: Accuracy based on a 4-dimensional original vector

Figure 3.6: Accuracy based on a 5-dimensional original vector
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Figure 3.7: Accuracy based on a 6-dimensional original vector
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Chapter 4

Clustering Supported Learning

Network with Application to

Handwritten Digit Recognition

Recent neuroscience findings suggest that the mammalian neocortex does not ex-

plicitly preprocess sensory signals, but rather allows them to propagate through a

complex hierarchy of processors that learn to represent observations [53, 54]. This

provides the biological inspiration for the development of deep machine learning

techniques. A number of influential and successful deep learning models have been

proposed, including Deep Belief Networks (DBNs) [2], Stacked Autoencoders (SAEs)

[3], Convolutional Neural Networks (CNNs) [4], and Deep Spatio-Temporal Inference

Network (DeSTIN) [5]. Unfortunately, the process of running this type of network for

feature extraction typically involves information processing and passing through a

good number of layers. This may introduce considerable overheads on computation

and therefore, may offset the potential benefit on the efficiency gained by the entire

feature extraction process. An alternative approach is desirable. Driven by this

observation, a substantially simplified 2-layer machine learning network is intro-

duced here, exploiting unsupervised learning for pattern representation to support

extracting effective features efficiently. Within such a network, each node models

patterns it observes by means of clustering. As an initial study, the development

reported in this work is focussed on application to handwritten digit recognition,

facilitating comparisons with the existing techniques.
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The rest of this chapter is organised as follows. Section 4.1 describes the basic

concepts and general design of the proposed clustering supported learning network

(CSLN). Section 4.2 presents an outline of different clustering techniques that may

be used to enable the learning process. Section 4.3 shows the experimental results,

supported by comparative studies, demonstrating that the proposed approach is

highly promising. The chapter is summarised in Section 4.4.

4.1 Clustering Supported Learning Network (CSLN)

This section presents the structure of CSLN and describes the generic learning

mechanisms that may be employed to support the specification of such a network

for image feature extraction.

4.1.1 CSLN Structure

Figure 4.1 presents the generic architecture of the proposed CSLN, consisting of a

simple hierarchical network of just two layers of nodes. Conceptually, the bottom

layer (Layer 1) contains multiple instantiations of an identical node (or cortical

circuit), receiving and processing the input data to the network. The input data may

be temporally varying, such as image pixel values over a sequence of frames. The

top layer (Layer 2) receives as input the outputs of the nodes within the bottom

layer. All nodes are each tasked with observing and generalising the data that are

presented to it. The resulting outputs of the top layer can be fed to a classifier, such

as a support vector machine as extracted features for subsequent processing (e.g.,

classification).

More specifically, an input to a CSLN at a given time is a digital image, represented

as a high-dimensional signal:

Hn×m =























a0,0 a0,1 · · · a0,k−1 · · · a0,m−1

a1,0 a1,1 · · · a1,k−1 · · · a1,m−1
...

...
. . .

...
. . .

...

ai−1,0 ai−1,1 · · · ai−1,k−1 · · · ai−1,m−1
...

...
. . .

...
. . .

...

an−1,0 an−1,1 · · · an−1,k−1 · · · an−1,m−1























(4.1)
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Figure 4.1: Topological architecture of a CSLN

To perform pattern recognition, the number of nodes within the bottom layer of such

a CSLN is determined by the complexity of the images it is expected to receive. In

general, the more complex the images are, the more nodes it may require, as the

nodes are intended to efficiently and effectively process and extract information from

a given image patch without losing essential contents. Given Hn×m and the number

of nodes (N) in Layer 1, the patch each node processes can be represented by

I j×k =











ax ,y ax ,y+1 · · · ax ,y+k−1

ax+1,y ax+1,y+1 · · · ax+1,y+k−1
...

...
. . .

...

ax+ j−1,y ax+ j−1,y+1 · · · ax+ j−1,y+k−1











(4.2)

where (x , y) is the displacement shift in Hn×m, which is determined by the position

of the corresponding specific node. Technically, each node encodes the possible

patterns over the patches that it learns to represent. Suppose that the i-th possible

pattern is represented by
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Pi =













p
(i)
0,0 p

(i)
0,1 · · · p

(i)

0,k−1

p
(i)
1,0 p

(i)
1,1 · · · p

(i)

1,k−1
...

...
. . .

...

p
(i)

j−1,0 p
(i)

j−1,1 · · · p
(i)

j−1,k−1













(4.3)

i = 1,2, ..., M , where M is the number of possible patterns that may be maximally

depicted by a node. Each of such patterns is further denoted by a centroid point,

thereby signalling that a cluster is created. This leads to a possible pattern space

consisting of {P1, P2, . . . , Pi, . . . , PM}. After such a clustering process is complete across

all nodes, the internal structure of each individual node in Layer 1 is determined,

empowering each node to characterise the observed data (image patch).

4.1.2 Pattern Space Construction and Updating for Network

Nodes

The question is how to construct and update the aforementioned pattern spaces for

individual nodes within Layer 1. Fortunately, many existing clustering methods can

be adopted to perform the required pattern space updating task. Broadly, these can

be divided into two categories: off-line clustering and on-line clustering.

A typical off-line clustering algorithm repeatedly sweeps through a set of data

samples in an attempt to capture their underlying structure. A stop criterion is

checked against every iteration to determine whether the process should continue or

not. Algorithm 4.1.1 shows a generalised algorithm for off-line clustering. Given a

training dataset D, the algorithm assigns each data point in D to a certain cluster

whose centroid is closest to the point. After each training data has been assigned a

cluster, the clusters are updated to determine their new centroids, based on their

current contents. The loop continues until a predefined stopping criterion has been

reached, producing the learned pattern space.

Different (slightly) from off-line clustering, the category of on-line clustering

methods assumes that at every time-step t new data samples D(t) = {X (t)1 , . . . , X
(t)
E }

are received that either form a new sequence or are a continuation of a certain

previously observed sequence. Such a clustering algorithm is expected to gradually
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4.1. Clustering Supported Learning Network (CSLN)

Algorithm 4.1.1: Generalised off-line clustering algorithm
D = {X1, . . . , XE}, the training data;
P = {P1, . . . , PM}, the possible pattern space;
M , the number of patterns

1: while stop criterion is not satisfied do

2: for all X ∈ D do

3: Assign X to closest centroid (pattern)
4: end for

5: Update P = {P1, . . . , PM}
6: end while

7: Output P = {P1, . . . , PM}

improve its centroid constructs over time. A generalised on-line clustering algorithm

is shown in Algorithm 4.1.2. At each time-step t, a new data subset D(t) is obtained,

then each data X
(t)

i in D(t) is assigned to the closest cluster, which is itself updated

at each time step. If there is no more dataset to be learned, the algorithm outputs

the last updated pattern space.

Algorithm 4.1.2: Generalised on-line clustering algorithm

D(t) = {X (t)1 , . . . , X
(t)
E }, the training data;

P = {P(t)1 , . . . , P
(t)
M }, the possible pattern space;

M , the number of patterns;
t, the time step

1: for all t = 1, . . . ,∞ do

2: Obtain new sequences D(t) = {X (t)1 , . . . , X
(t)
E }

3: for all X ∈ D(t) do

4: Assign X to closest centroid
5: Update centroids P = {P(t)1 , . . . , P

(t)
M }

6: end for

7: Output P = {P(t)1 , . . . , P
(t)
M }

8: end for

Note that a measurement function argmin si, 1≤ i ≤ M is used to assign the data

I j×k(X i or X
(t)

i ) to the nearest cluster, the similarity si between Pi and I j×k can be

obtained through the use of a distance metric, such as the Euclidean distance or the

Cosine distance. Without losing generality, suppose that the Euclidean distance is
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4.1. Clustering Supported Learning Network (CSLN)

Figure 4.2: Transformation of a CSLN

employed:

si = d(Pi, I j×k)

=
q

||p0,0 − ax ,y ||2 + ||p0,1 − ax ,y+1||2 + · · ·+ ||p j−1,k−1 − ax+ j−1,y+k−1||2
(4.4)

where 1≤ i ≤ M , M is the number of possible patterns (of the corresponding node),

and (x , y) is the displacement shift in the given image Hn×m.

As with the nodes in Layer 1, the (unique) node in Layer 2 tries to capture the

possible patterns from the inputs it receives. Thus, the clustering algorithm employed

in Layer 2 is similar to the algorithm employed by each of the nodes in Layer 1 except

that the outputs of Layer 1 are used as the input to Layer 2, in place of the raw image

that has been fed to Layer 1 as input.

Figure 4.2 summarises the learning process: Passing an image through a CSLN, the

image is processed by two layers of clustering nodes. Layer 1 computes the similarities

between image patches to reveal possible patterns and views such similarities as the

features extracted, or transformed, from the given image. Computationally, each
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4.1. Clustering Supported Learning Network (CSLN)

patch image is translated into a similarity matrix. For example, the output of the

j-th node in Layer 1 can be obtained such that

S j = (s j,1, s j,2, . . . , s j,i, . . . , s j,M)
T , 1≤ i ≤ M (4.5)

where 1 ≤ j ≤ N , N is the number of the nodes in Layer 1. After obtaining all S j,

the output of Layer 1 can be represented as

L = (S1, S2, . . . , S j, . . . , SN )
T =























s1,1 s1,2 · · · s1,M

s2,1 s2,2 · · · s2,M
...

...
. . .

...

s j,1 s j,2 · · · s j,M
...

...
. . .

...

sN ,1 sN ,2 · · · sN ,M























(4.6)

This is fed to Layer 2. The only node in Layer 2 comprises a number of centroids,

each representing a possible pattern further computed from the composed similarity

matrix (as represented in Equation 4.6). As such, any centroid Ch, 1 ≤ h ≤ Q,

where Q is the number of the centroids in (the only node of) Layer 2, has the same

dimensionality as that of the input L to this layer:

Ch =











Eh,1

Eh,2
...

Eh,N











=











eh,1,1 eh,1,2 · · · eh,1,M

eh,2,1 eh,2,2 · · · eh,2,M
...

...
. . .

...

eh,N ,1 eh,N ,2 · · · eh,N ,M











(4.7)

The similarity Oh between L and Ch can be measured by

Oh = d(L, Ch) =

N
∑

j=1

||S j − Eh, j||
2 =

N
∑

j=1

M
∑

k=1

||s j,k − eh, j,k||
2 (4.8)

From this, the centroid which L belongs to is determined by argmin Oh.

The possible pattern space of the node in Layer 2 is updated iteratively. The best

possible patterns that characterise the observed data (i.e., the similarities between
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patch images and possible patterns in Layer 1) are obtained when the clustering

process is terminated. After both Layer 1 and Layer 2 are trained, CSLN is fixed, with

each node in this architecture bears the best possible pattern space it has learned

from the input data. As such, after propagating through the CSLN, a given original

image is converted into a vector of similarity measures, which can be represented by

Voriginal = (O1, · · · , OQ)
T (4.9)

This is then, fed to a subsequent classifier for pattern recognition. The implementation

of the core part of this work is therefore, the use of a clustering algorithm to learn

the centroids in each node.

4.2 Clustering Algorithms

The following presents an overview of popular clustering algorithms that may each

be employed for updating centroids, or for contributing towards performing the

required learning process.

4.2.1 K-Means Clustering

K-means is one of the simplest unsupervised learning algorithms for clustering, which

is outlined in Algorithm 4.2.1. The procedure groups data into a presumed number

(K) of clusters [127]. The main idea is to define and learn K centroids, one for

each cluster. Here, K is preferably larger than necessary to provide each node with

sufficient representational capacity in modelling the observed information. The

centroids should be placed in a cunning way since different locations lead to different

results. The choice is to place them from each other as far away as possible. It works

by taking each point belonging to a given data set and associating it to the nearest

centroid. When no point is pending, an initial grouping is done. At this stage K new

centroids of the clusters need to be re-calculated. From these (K) new centroids, a

new binding is carried out between the same data points and their respective nearest

new centroids. This process forms a loop, following which the K centroids change

their locations iteratively until no more changes are possible as per given data.

Formally, this algorithm works by minimising an objective function, defined as

the squared error function below:

J =

K
∑

j=1

F
∑

i=1

||X ( j)i − C j||
2

(4.10)
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Algorithm 4.2.1: K-means algorithm
D = {X1, . . . , XE}, the training data;
C = {C1, . . . , CK}, the means;
K , the number of means;
t, the number of iterations

1: loop

2: for all X ∈ D do

3: C
(t)

i = {X : ||X − C
(t)

i ||
2 ≤ ||X − C

(t)

j ||
2 ∀ j, 1≤ j ≤ K}

4: end for

5: C
(t+1)
i =

1

|C (t)i |

∑

X∈C
(t)
i

X

6: end loop

where ||X ( j)i − C j|| is a chosen distance measure between a data point X
( j)

i and

the cluster centre C j, which is defined as the mean of those data points currently

belonging to the cluster, with F denoting the number of data points in the j-th cluster.

Although the procedure will always terminate, it does not necessarily find the most

optimal cluster configuration (which corresponds to the global objective function

minimum) [128]. The algorithm is sensitive to the initial randomly selected cluster

centres [129]. However, the K-means algorithm can be run multiple times to reduce

this effect.

4.2.2 Fuzzy C-Means

Fuzzy c-means (FCM) is a method of clustering which allows one piece of data to

partially belong to two or more clusters [130], as shown in Algorithm 4.2.2. This

method is based on minimisation of the following objective function:

Jm =

E
∑

i=1

C
∑

j=1

um
i j
||X i − C j||

2, (4.11)

where m is any real number greater than or equal to 1, ui j is the degree of membership

of X i in the cluster j that is of the centroid C j, and ||X i − C j|| is any norm expressing

the dissimilarity between X i and C j.

Fuzzy partitioning is carried out through an iterative optimisation process in

accordance to the above objective function, updating the membership ui j and the
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Algorithm 4.2.2: Fuzzy c-means algorithm
D = {X1, . . . , XE}, the training data;
C = {C1, . . . , CK}, the centroids;
K , the number of centroids;
t, the number of iterations

1: Initialize U =
�

ui j

�

matrix, U (0)

2: while ||U (t+1) − U (t)||> ε do

3: Calculate C (t) =
�

C j

�

with U (t)

C j =

∑E

i=1 um
i j

X i

∑E

i=1 um
i j

4: Update U (t), U (t+1)

ui j =
1

∑K

k=1

�
||X i−C j ||
||X i−Ck||

� 2
m−1

5: end while

cluster centroid C j such that

ui j =
1

∑K

k=1

�

||X i − C j||

||X i − Ck||

�

2

m− 1

(4.12)

C j =

∑E

i=1 um
i j

X i

∑E

i=1 um
i j

(4.13)

This iteration will stop when maxi j

n�

�

�u
(t+1)
i j − u

(t)

i j

�

�

�

o

< ε , where ε is the termination

threshold between 0 and 1, and t is the number of iterations.

4.2.3 Incremental Clustering

The basic idea, as presented in Algorithm 4.2.3, is that K centroids are initialised

by the first K data points available. Each centroid is associated with a counter

ni, i = 1, . . . , K , which is used to store the number of data points that belong to the

cluster of the centroid is Ci. The Euclidean distances Ei between a new data point

X and each centroid are calculated. If Ci is the closest centroid to X and Ei < ε,

which means the closest distance is less than a preset threshold ε, then the counter
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Algorithm 4.2.3: Incremental clustering algorithm
D = {X1, . . . , XE}, the training data;
C = {C1, . . . , CK}, the centroids;
N = (n1, . . . , nK), the counter set

1: Initialize C = (C1, . . . , CK) to the first K data points
2: Set ni = 1, i = 1, . . . , K

3: for all X ∈ D do

4: Calculate closest centroid i

5: if arg min Ei < ε then

6: ni = ni + 1
7: Update Ci, Ci ← Ci + (1/ni)(X − Ci)

8: else

9: K = K + 1
10: Add a new centroid Cnew = CK

11: Add a new counter nnew = 1 for Cnew

12: end if

13: end for

ni associated with the centroid Ci that is nearest to X is increased by 1, with the

others remaining unchanged. Update the centroid Ci by:

Ci ← Ci + (1/ni)(X − Ci) (4.14)

If however, argmin Ei > ε, which means even the closest distance is larger than

the threshold, a new centroid Cnew is added. This implies that a new pattern Pnew

is added and therefore, a new counter nnew is created for the new cluster of the

centroid Cnew. Consequently, the distances of the data point from each centroid are

re-calculated. Incremental clustering method is sensitive to the presentation order

of data.

4.2.4 Complexity Analysis

The time complexity of each node in a CSLN is determined by the clustering methods

it implements. Suppose that there are P data points and the maximum number

of centroids |C |max , the maximum dimension of an input is |D|max , and the max-

imum number of iterations is |I |max . The time complexity of K-means clustering

is O(P × |D|max × |C |max × |I |max). For fuzzy c-means clustering, the time complex-

ity is O(P × |D|max × |C |
2
max
× |I |max). When incremental clustering is employed,

86



4.3. Experimentation

the time complexity is O(P × |D|max × |I |max). In the CSLN, which contains 2 lay-

ers, the estimates for the time complexity of the three implementations are there-

fore: O(M × P × |D|max × |C |max × |I |max) or O(M × P × |D|max × |C |
2
max
× |I |max) or

O(M × P×|D|max ×|I |max), respectively, where M is the total number of the nodes in

the CSLN. In terms of space requirement, the complexity of a CSLN is O(M ×|C |max).

4.3 Experimentation

In this section, the results of a number of comparative experimental studies carried

out are reported to demonstrate the potential of the proposed approach.

4.3.1 Experimental Setup

4.3.1.1 Dataset and Classifier

In this work, CSLN is evaluated on a popular problem, namely, the MNIST data set

of handwritten digits, which is widely used for various machine learning and pattern

recognition algorithms. The underlying objective of this application is to develop

an image pattern classifier that can detect and recognise different digital numbers

from a given hand-written figure under noisy environments. For this reason, CSLN

is compared against DeSTIN and three other popular deep learning networks when

noise is present. In particular, two types of common noise are added to the data:

Gaussian noise and Salt-and-Pepper noise. For the former, the mean is 0 and the

variance is set to 0.01, 0.06 and 0.1, respectively. For the latter, the noise density is

set to 0.01, 0.1 and 0.5, respectively. Figure 4.3 shows a number of example images

with Gaussian or Salt-and-Pepper noise added.

As indicated previously, Support Vector Machines (SVMs) [122] are herein used

to implement the task of image classification. To have a common basis upon which

to perform comparative studies, the popular Radial Basis Function (RBF) kernel is

adopted to implement all SVM-based classifiers, and the sequential minimal optimi-

sation algorithm of [131] is used to train the SVMs. The default settings of SVMs

are directly taken from LIBSVM [132], no hyper parameters of individual SVMs are

further tuned.
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Figure 4.3: The sample of noise dataset

4.3.1.2 Deep Learning Networks Compared

In order to compare the performance of CSLN, four popular deep learning networks

are chosen to test on the same dataset.

• Deep Spatio-Temporal Inference Network (DeSTIN) [5] is proposed to deal

with complex high-dimensional data. Such a network contains a hierarchy of

layers whereby each layer consists of multiple instantiations of an identical

node. Each node is tasked with observing and learning the sequences of data

that are presented to it. The lowest layer of the hierarchy processes the input

data (that may be temporally varying) to the network, such as image pixels, and

over time continuously constructs a belief state that attempts to characterise

the data sequences received. The second layer, and each of all those above it
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receives as input the belief states of the nodes at their immediate lower layer,

attempting to construct belief states that capture any interesting regularities in

the original data. The resulting outputs can be fed to a classifier, such as an SVM

as extracted features for subsequent processing (e.g., pattern classification).

• Convolutional Neural Networks (CNNs) [4] are a family of multi-layer neural

networks designed for minimal data preprocessing, popular for application in

performing image processing tasks. When in action, small portions of an image

(dubbed local receptive fields) are treated as inputs to the lowest layer of the

hierarchical structure. Information generally propagates through the different

layers of the network where the input image is convolved with a set of digital

filters whose coefficients are either trained or pre-determined with respect

to certain criteria. In particular, the first (or lowest) layer of the network

consists of feature maps resulting from the convolution processes, with an

additive bias and possibly, a compression or normalisation of the features. This

initial stage is followed by a subsampling (typically a small-sized averaging

operation) that further reduces the dimensionality. The subsampled feature

map then receives a weighting and trainable bias and is propagated through an

activation function. The outputs form a new feature map that is then passed

through another iteration of convolution, sub-sampling and activation. Such a

process can be repeated an arbitrary number of times. The activation outcomes

at the termination of this iteration process are forwarded to a conventional

feedforward neural network that produces the final output of the system. The

intimate relationship between the layers and spatial information in CNNs makes

them suitable for image processing and understanding, generally performing

well at autonomously extracting salient features from images (but at the cost

of significant computation).

• Deep Belief Networks (DBNs) [2] are a type of probabilistic generative model,

composed of multiple layers of hidden units (namely latent variables), with

connections between the layers but not between units within each layer. When

trained on a set of examples in an unsupervised way, a DBN learns to prob-

abilistically reconstruct its inputs. As such, the layers may be seen to act as

feature detectors on inputs. After this learning step, a DBN can be further

trained in a supervised way to perform classification. In implementation, a

DBN can be seen as a composition of a set of simple Restricted Boltsmann

Machines (RBMs) [72], where nodes are categorised into two groups (named
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visible and hidden nodes respectively) such that a pair of nodes from each

of the two groups may have a symmetric link between them whilst no links

existing between the nodes within the same group.

• Stacked Autoencoders (SAEs) [3] are neural networks that are formed with

multiple layers of sparse autoencoders in which the outputs of each layer are

linked to the inputs of the successive layer. An autoencoder (or autoassociator)

is a network itself consisting of 3 layers: input, hidden and output. It is devised

for the hidden layer to learn a certain representation of a given input such that

the input can be reconstructed in the output layer. That is, the target output is

the input itself. With stochastic gradient descent the network parameters are

learned by minimising the reconstruction error. Interestingly, if the hidden layer

is linear and the mean squared error is used as the reconstruction criterion, then

the resultant autoencoder can perform principal component transformation.

Alternative strategies may be proposed to make autoencoders nonlinear which

are appropriate to build deep learning networks in order to extract meaningful

representations of data. After such unsupervised training, an SAE can be

further trained in a supervised way to perform classification, e.g., through the

use of back-propagation.

4.3.1.3 Evaluation Criteria

Owing to the popularity of using DeSTIN to performing the task of handwritten digit

recognition, the experimental investigations will first compare the proposed work

against the use of DeSTIN. The results are analysed using: both overall recognition

accuracy and the precision and recall rates of the recognition. Here, accuracy is

defined by the ratio of the number of correctly recognised images to that of the total

number of given images; precision is the ratio of the number of correctly recognised

images to that of all recognised per digit; and recall is the ratio of the number of

correctly recognised images to that of all images that represent the right digits as

those correctly recognised. For further comparisons with the other three types of

deep learning methods, to avoid redundancy, the performance is assessed using

accuracy only.

Note that as a commonly adopted test bed for many learning algorithms, MNIST

has already been divided into fixed training and testing subsets in the literature.

Thus, in the following analysis of experimental results, conventional means of cross

validation and t-test are no longer required.
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4.3.2 Experimental Results

4.3.2.1 Comparison with DeSTIN

This first experimental investigation compares the recognition accuracy of using the

present approach and that of employing the features extracted by the classical multi-

layer deep learning inference networks. A DeSTIN of 4 layers is employed (which

is the typical implementation for the same application problem in the literature),

each layer uses a different number of centroids, empirically set to 25, 16, 12 and

10, respectively. Note that the topology of the CSLN is of 2 layers with the first layer

containing 4 nodes and the top layer containing just one node. The outputs of either

of the two types of network are used as the input to an SVM-based classifier.

Table 4.1 presents the recognition accuracy with the use of CSLN-returned features

and that of DeSTIN features. No matter which clustering method is employed, the

accuracy using the CSLN-returned features is substantially higher than that achievable

using the DeSTIN-returned features [133], with much narrower error bound. For

each line in Table 4.1, the average accuracy is calculated base on all the results

achieved under 6 different noise situations. The error margin is determined by the

biggest value between the individual accuracy and the mean (average accuracy). To

further examine the relative performance, Table 4.2 and Table 4.3 list the precision

and recall results. Again, these results clearly demonstrate the effectiveness of the

proposed approach, independent of which clustering method is employed to train

the CSLN (noting that the use of incremental clustering consistently outperforms the

rest). The error margin is calculated similarly as that achieved in Table 4.1, except

that accuracy is replaced by precision or recall.

Table 4.1: Accuracy with CSLN or DeSTIN returned features on datasets with added
noise

Gauss Salt-Pepper Average Error

0.01 0.06 0.1 0.01 0.1 0.5 accuracy margin

DeSTIN 0.907 0.888 0.871 0.863 0.828 0.626 0.831 0.205

CSLN (K-means) 0.942 0.923 0.895 0.932 0.903 0.698 0.882 0.184

CSLN (Fuzzy C-means) 0.962 0.950 0.938 0.962 0.933 0.815 0.927 0.112

CSLN (Incremental) 0.978 0.973 0.964 0.979 0.971 0.920 0.964 0.044
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Table 4.2: Precision with CSLN or DeSTIN returned features on datasets with added
noise

Gauss Salt-Pepper Average Error

0.01 0.06 0.1 0.01 0.1 0.5 precision margin

DeSTIN 0.906 0.888 0.871 0.864 0.827 0.623 0.83 0.207

CSLN (K-means) 0.942 0.923 0.895 0.932 0.903 0.697 0.882 0.185

CSLN (Fuzzy C-means) 0.962 0.950 0.938 0.962 0.933 0.815 0.927 0.112

CSLN (Incremental) 0.978 0.973 0.964 0.979 0.971 0.915 0.963 0.048

Table 4.3: Recall with CSLN or DeSTIN returned features on datasets with added
noise

Gauss Salt-Pepper Average Error

0.01 0.06 0.1 0.01 0.1 0.5 recall margin

DeSTIN 0.907 0.888 0.871 0.863 0.828 0.626 0.831 0.205

CSLN (K-means) 0.943 0.923 0.895 0.932 0.903 0.698 0.882 0.184

CSLN (Fuzzy C-means) 0.962 0.950 0.938 0.962 0.933 0.815 0.927 0.112

CSLN (Incremental) 0.978 0.973 0.964 0.979 0.971 0.915 0.963 0.048

The above results are obtained with substantially simplified a network structure

as compared to the topology of the DeSTIN. This helps ensure that the learning

time is significantly saved. Table 4.4 shows the time consumed to train a CSLN or a

DeSTIN, when the experiments are sequentially carried out on the same hardware

(Inter(R) Core(TM)2 Duo 3.00 GHz×2 CPU, 4 GB RAM) supported with the same

operation system (Windows 7, 64-bit).

Table 4.4: Running time to train CSLN and DeSTIN

DeSTIN
CSLN

K-means Fuzzy C-means Incremental

169201.1(s) 1063.1(s) 2941.09(s) 496.067(s)

More formally, given a k-layer DeSTIN, which contains N = 20 + 22 + 24 + · · ·+

22×(k−1) nodes, the time complexity is O(N×P×D×C× I)+O(N×P×C× I)+O(N×

P×D× I), where P is the number of data points, D is the dimensionality of the input,

C is the number of the centroids and I is the number of iterations [5]. For the problem
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of digit recognition, the DeSTIN consists of 4 layers. Thus, N = 20+22+24+26 = 85,

and the time complexity is 85× (O(P × D× C × I) +O(P × C × I) +O(P × D× I)).

However, a CSLN only contains 5 nodes, the time complexity is 5×O(P × D× C × I),

5×O(P × D× C2 × I) or 5×O(P × D× I), depending on which clustering method

is employed. Clearly CSLN is more efficient in terms of time complexity. When

comparing the space requirement, a DeSTIN uses O(N × C) storage space, while a

CSLN only requires O(M × C) space. Since M ≪ N , the DeSTIN definitely consumes

more storage.

4.3.2.2 Comparison with Other Deep Networks

Further to the performance comparison between CSLN and DeSTIN, this section

presents the results of comparing the use of CSLN with that of three other deep

learning networks: Deep Belief Networks (DBNs), Convolutional Neural Networks

(CNNs) and Stacked Autoencoders (SAEs). In this set of experiments, the incremental

clustering method is chosen for the implementation of CSLN. Again, the output

of each of these networks is utilised as input features for the SVM-based pattern

recogniser.

Table 4.5 lists the results, which demonstrate that overall, CSLN leads to the high-

est recognition accuracy on the MNIST handwritten digit recognition problem. When

the noise level is high, CSLN and CNN perform similarly, significantly outperforming

the other two. However, it is worth noting that the computational complexity of

CNN is significantly higher than that of CSLN involving convolution amongst layers

of filters. SAEs and DBN are underperformed in this case. SAEs is comprised of

autoencoders, random small initial weights cause the training to settle into a bad

local minima or saddle point. A DBN model is considered as a number of restricted

Boltzmann machines (RBMs) stacked together, raining DBN can be simplified to train

the multiple layers of RBMs. After training RBMs, the network is fine-tuned by back

propagation (BP) algorithm, this leads to the model achieving convergence to local

optimal point.

4.4 Summary

This chapter has presented a novel approach to developing a learning network that

is of simple topological structure for pattern recognition, through the exploitation
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Table 4.5: Accuracy using different deep networks on noise dataset

Gauss Salt-Pepper Average Error

0.01 0.06 0.1 0.01 0.1 0.5 accuracy margin

DBN 0.808 0.635 0.575 0.884 0.727 0.239 0.645 0.406

CNN 0.972 0.963 0.962 0.979 0.971 0.923 0.962 0.039

SAE 0.878 0.846 0.833 0.904 0.856 0.778 0.849 0.071

CSLN 0.978 0.973 0.964 0.979 0.971 0.920 0.964 0.044

of a standard data clustering mechanism. This work has been tested using the

popular MNIST dataset, in comparison with four different deep learning techniques.

Systematic experimental results demonstrate that the proposed approach is capable

of efficiently extracting features suitable for subsequent image pattern recognition

tasks, ensuring high accuracy.
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Chapter 5

Enriching Data-Driven Fuzzy

Rule-Based Classification with Fuzzy

Rule Interpolation

Inducing explicit knowledge from data for the development of intelligent systems

has received significant attention in the last few decades. In particular, learning

classification rules from a given collection of experienced data instances forms a

major contribution made by the data mining and machine learning communities. This

type of learning, so-called rule induction or concept learning, has led to the successful

induction of different descriptions of explicit, machine-usable knowledge, including

propositional rules [134] and decision trees [135]. Although the classification rules

generated by such techniques are useful in building intelligent classifiers, they often

suffer from inadequately expressing and handling the vagueness and ambiguity

associated with human thinking and perception. To overcome these shortcomings,

a number of approaches have been proposed, ranging from direct modification of

non-fuzzy learning methods with fuzzy representation [136, 137, 138, 139, 140]

to automatic generation of fuzzy rule-based models using neural networks [141],

genetic algorithms [142, 143] or other computational intelligent techniques [14, 94,

95]. The resulting learning mechanisms allow for the creation and maintenance of a

concurrent, real time rule base for inference under imprecise conditions and have

since found many practical applications [144, 145, 146, 147].
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The fundamental assumption underlying aforementioned rule induction ap-

proaches is that classification rules learned reflect the quality of the given data.

However, the generalisation of the data through induction can only lead to knowl-

edge description of the experienced data. For situations where past data does not

cover the full problem domain, learned rules can only work for areas where the given

data covers. In other words, systems developed using classification rules induced by

such approaches are not always directly applicable to the cases where the learned

fuzzy rule base contains gaps due to missing areas of experienced data. A system im-

plemented with such an incomplete rule base is hereafter referred to as a sparse rule

based system. Obviously, classical fuzzy reasoning methods can no longer be applied

in certain cases due to the fact that a traditional rule-based inference mechanism

(e.g., compositional rule of inference [14, 94, 95]) will fail when no fuzzy rule may

be found to match the given observation. This becomes a major drawback from the

viewpoint of using fuzzy classification systems in solving many real-world problems

where typically past data and knowledge learned do contain significant gaps.

Fuzzy rule interpolation (FRI) [27, 28, 29, 31] is of particular significance to

support reasoning in the presence of insufficient knowledge. Given a sparse rule

base, if an observation has no overlap with the antecedent of any rules, no rule can

be invoked in classical fuzzy inference and therefore, no consequence can be derived.

Fortunately, the use of FRI techniques enables inference to be performed in such

cases. Inspired by this observation, this chapter presents a direct utilisation of FRI in

enhancing the reasoning robustness of a fuzzy rule-based classifier which utilises a

sparse rule base, namely whose explicit knowledge has been induced from limited

experienced data that does not cover the entire problem domain. For completeness,

the chapter will first briefly introduce the basic concepts of data-driven fuzzy rule

induction, including a simple and effective technique implementing such concepts in

Section 5.1. Then, it will describe an integrated application of compositional rule of

inference (CRI) and fuzzy rule interpolation in building classification systems that

work based on a given sparse rule base, including key computational operations

involved, as presented in Section 5.2. This is followed by comparative experimental

results of Section 5.3, demonstrating the efficacy of the proposed approach. A

successful application to mammographic risk analysis is presented in Section 5.4.

Finally, Section 5.5 summaries the work.
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5.1 A Simple Approach to Fuzzy Rule Induction

The key task of learning a fuzzy rule-based classifier is to find a finite set of fuzzy

production or IF-THEN rules capable of reproducing the input-output behaviour

of a given system. Without losing generality, the system to be modelled is herein

assumed to be of multiple inputs and a single output (or class variable). That is, the

input-output behaviour of interest is depicted by k inputs and one output which may

involve q different pattern classes. A fuzzy IF-THEN rule Ri, i = 1, 2, . . . , N , for such

a system is represented as follows:

If x1 is Ai1 , x2 is Ai2 , . . . , xk is Aik , then y is Bi with wi

where N denotes the number of fuzzy rules; x1, x2, . . . , xk are the k underlying lin-

guistic antecedent variables, jointly defining a k-dimensional pattern space; Ai j, j =

1,2, . . . , k, are the fuzzy values taken by the corresponding antecedents x j, respec-

tively; Bi, i = 1, 2, . . . , N , are the consequent class labels; and wi is the rule weight of

fuzzy rule Ri, indicating the strength that any input pattern within the fuzzy subspace

delimited by the given antecedent values is deemed to belong to the consequent

class Bi.

In order to generate an initial set of fuzzy IF-THEN rules, the pattern space is

divided into a predefined number of sub-regions. Practically speaking, this is typically

done by the domain experts. In this work, a given problem space is assumed to be

divided into Kk (K ≥ 2) fuzzy regions by using Fuzzy C-Means (FCM) clustering

[130].

Now consider one of the linguistic antecedent variables, x i, in order to build

the corresponding fuzzy value space, FCM is applied to partition the domain of x i

into K subspaces (K clusters), each of the resulting clusters represents a possible

fuzzy value Ai j. So the original k-dimensional pattern space is divided into Kk fuzzy

regions. For simplicity triangular fuzzy sets are considered in the present work. With

the resulting K clusters in each dimension, the triangular membership function of

each cluster along a certain dimension of the pattern space can be generated by three

points U(pi0,α), V (pi2,α), W (pi1, 1), i = 1,2, . . . , K, as shown in Figure 5.1, where

pi0 and pi2 represent the minimum and maximum value of a partition i (Pi), pi1

represents the value of the centre of a cluster i (Ci) or a partition i (Pi), α is used to
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Figure 5.1: Membership function

control the shape of the triangular membership function, the smaller the α is, the

narrower the shape of triangular is. Intuitively, the larger the distance from a point

x to the centre of the cluster pi1, the less membership value of x should take. To

reflect this, given U(pi0,α) and W (pi1, 1) , the membership function of the left slope

in the triangular is:

y =
1−α

pi1 − pi0

x +
pi1α− pi0

pi1 − pi0

(5.1)

Similarly, the membership function of the right slope in the triangular is generated

based on W (pi1, 1) and V (pi2,α):

y =
1−α

pi1 − pi2

x +
pi1α− pi2

pi1 − pi2

(5.2)

So given a new observation data x i, the membership µ(x i) can be obtained by:

µ(x i) =













1−α
pi1 − pi0

x i +
pi1α− pi0

pi1 − pi0

, i f
pi0 − pi1α

1−α
≤ x i ≤ pi1

1−α
pi1 − pi2

x i +
pi1α− pi2

pi1 − pi2

, i f pi1 ≤ x i ≤
pi2 − pi1α

1−α

(5.3)

If µ(x i) ≥ α in a fuzzy cluster, then x i is classified as the term this fuzzy partition

represents. In so doing, the initial input pattern is equivalently translated into a

fuzzy IF-THEN rule. Therefore, a fuzzy rule base is generated. However, in many
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real-world problems, data provided to conduct such learning may not completely

cover the entire problem space. As such, the resultant rule base may have gaps

scattered in the pattern space, leading to the situation where rule-firing by matching

a given observation with the learned clusters becomes void. In this case, as argued

previously, fuzzy rule interpolation offers a promising means to perform approximate

inference.

Note that FCM is used here as an example method for data-driven fuzzy rule

induction owing to its popularity and simplicity. However, many other techniques

(e.g., Fuzzy QSBA [148] and Fuzzy Decision Trees [136]) may be employed as

alternatives. Which rule induction mechanism is used in implementing the present

approach may affect the fuzzy rule-based reasoning accuracy, but has no implication

to the approach itself. All such a method provides is an initial fuzzy rule base.

It is due to this observation that the simple FCM is adopted here, for illustration

purpose. Also, to reduce the overall computation cost for both building the fuzzy

rule base and performing inference with the learned rule base, if a given problem

involves a large number of domain attributes, it would be helpful to pre-process the

data with a certain attribute selection technique before carrying out rule induction

[149, 150]. Given the robustness of the present approach, the possible side-effect of

using reduced datasets in producing rule bases of significant gaps can be alleviated.

5.2 Integrating Fuzzy Rule Interpolation and

Compositional Rule-Based Inference

Depending on the nature of the rule base either fuzzy inference (CRI) or interpolation

(FRI) may be employed to draw conclusions from given observations. CRI works

by employing the conventional compositional rule of inference (and hence, the

abbreviation), relying on a dense rule base in which any observation can find at least

a complete or partial matching rule. In many real-world problems, obtaining such a

complete rule base is costly or even impractical. Interpolation is more robust when

working on sparse rule bases. However, the resulting interpolated conclusions may

be not as accurate as their inferred counterparts if partial matching between a given

observation and the rule-base can be established. To compensate for the drawbacks

of these two techniques, an integrated rule-based classification system structure is

proposed, where both inference and interpolation methods can work together to

produce the conclusion for an observation, given a sparse rule base.
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5.2.1 Architecture of the Integrated System

The overall operation of the proposed integrated system is depicted by the flow-chart

of Figure 5.2.

For efficiency, the system starts by matching the α-cut sets of the rule antecedents

with a given observation, where α is a predefined confidence level. If certain rules

match the observation with at least, the confidence level then the rule whose an-

tecedent overlaps the most is determined. From that, CRI is performed using the

highest overlapped rule in general. However, for the specific application to classifica-

tion problems as the current work is concerned with, no CRI is required, but the class

can be directly derived from the rule of the highest overlap between its antecedent

and the obervation. This saves a significant amount of computation. Nevertheless,

for other reasoning problems such as prediction and regression, CRI will be required.

If no match above the confidence level is found between the observation and any

rule in the rule base, then it employs a simple distance metric (e.g., that measuring the

distance between the relevant centres of gravity), to identify rules that are the closest

to the observation in order to perform interpolation, or extrapolation. In particular,

if these closest rules are on the same side of the hyperplane of the observation, then

extrapolation is used, otherwise interpolation is used. In this research, to infer the

conclusion, the scale and move transformation interpolation (T-FRI) method [30] is

utilised due to its popularity and availability (although any other fuzzy interpolation

mechanism may act as an alternative).

The following subsections present the key components that jointly implement

the proposed fuzzy rule-based reasoning system.

5.2.2 Alpha-Cut Overlapping

Given a confidence level α, an α-cut converts a fuzzy set into a crisp set. Formally,

let A be a fuzzy set in the universe of discourse X , µ(x) is the membership function

of A and α ∈ [0, 1]. Then α-cut of A is [28]:

Aα = {x ∈ X | µA(x)≥ α} (5.4)

In general, each fuzzy rule in the rule base is assumed to consist of multiple antecedent

variables. Given: a certain rule Ri, an α-cut threshold α, the fuzzy set A= (a0, a1, a2)
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Training Data

Feature Selection

Rule Induction

Rule Base Observation Data

α-cut Overlapped?

Find the Rule Find Closest Rules

CRI

Same Side?

Interpolation Extrapolation

Conclusion

yes
no

no yes

Figure 5.2: Fuzzy rule interpolation-aided reasoning system

of an antecedent variable x j and the corresponding observation O = (o0, o1, o2),

the check for α-cut overlapping is to efficiently decide whether there is a (partial)

match between these two values. The procedure for such checking is illustrated

in Figure 5.3. For the crisp input O, o0 = o1 = o2 is obtained, in this case, O is a

singleton.

Two general situations exist in performing checks for α-cut overlapping: one is

for the antecedent fuzzy set lying on the left hand side of the observation and the

other is for the other way round. Figure 5.3 shows the former situation, where min

and max stand for the minimum and maximum operator, respectively. First of all,
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Figure 5.3: α-cut overlapping

an observation is compared with the possible antecedent values for α-cut matching

based on the given α level. In this situation, there may exist 3 different cases. In

case 1, o0 ≥ a2, which means the left extreme point of O is larger than the right

extreme point of A, there is no matching. In case 2, (o0 ≤ a2)∧(min(Oα)≥ max(Aα)),

therefore there is no matching between A and O above the confidence level α. In

case 3, min(Aα)≤ min(Oα)≤ max(Aα), the matching is above the α level. The other

situation can be checked similarly, resulting in three other mirrored cases.

Since the detection of possible overlap rules is only necessary to be run above the

α level, much calculation for rules which overlap with the observation below the α-

level is saved. If all antecedents of only one rule are matched with the corresponding

elements of the observation above the α level then the conclusion is directly inferred

on the basis of the matched rule. However, if more than one rule are matched with

the observation above the threshold then the rule that is of the highest matching
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degree is selected. The matching degree is computed by finding the sum of all areas

which are delimited by the overlap of two partially matched fuzzy sets of the rule

and the observation. The rule with the highest matching value is subsequently used

to derive the conclusion via CRI.

In summary, the α-cut overlapping process finds the best matching rule above the

α threshold for the given observation from the existing rule base. If such a (partial

or exact) matching rule is indeed found then there is no need for computationally

more expensive FRI; conventional fuzzy inference, which is well-developed in the

literature, can be performed directly to the best matched rule. Although in general

multiple matched rules may also be used instead of choosing just one, such multiple

rules based CRI unnecessarily increases the overall complexity of the system and

therefore, is not adopted here.

Algorithm 5.2.1: α-cut overlapping algorithm
R = {R1, . . . , RN}, the fuzzy rule base

1: maxArea=0, maxIndex=-1;
2: for all Ri in R do

3: if min(Aα)≤ min{Oα} ≤ max(Aα) or min(Aα)≤ max{Oα} ≤ max(Aα) then

4: overlap=overlapping area of O and A above α;
5: if overlap ≥ maxArea then

6: maxArea=overlap;
7: maxIndex=i;
8: end if

9: end if

10: end for

11: if max Index == −1 then

12: return NULL;
13: else

14: return Rmax Index ;
15: end if

5.2.3 Closest Rule Selection

If none of the rules in the rule base overlaps with the observation above the α

level, the closest rules for the given observation are selected for interpolation or

extrapolation. A proper distance metric should be defined in order to measure the

103



5.2. Integrating Fuzzy Rule Interpolation and Compositional Rule-Based Inference

Figure 5.4: Centre of gravity for triangular membership functions

closeness between a rule and the observation. The most commonly used metric for

such purposes is the centre of gravity (COG). The concept of COG represents the

algebraic average of the masses factored by their distances from a reference point.

It is popularly used since it reflects both the location and the shape of a fuzzy set.

For a triangular fuzzy set Ai j = (ai j0, ai j1, ai j2) as shown in Figure 5.4, the COG is

calculated as follows and depicted in Figure 5.4 [30]:

COG(Ai j) =
ai j0 + ai j1 + ai j2

3
(5.5)

The COG distance between two fuzzy sets Oj (say, the j-th element of the obser-

vation) and Ai j (the j-th antecedent) is calculated by

d(Oj, Ai j) = d(COG(Oj), COG(Ai j)) (5.6)

where d(Oj, Ai j) is any conventional distance metric, depicted in Figure 5.5.

For a k-dimensional observation O and the i-th rule Ri in the rule base, the COG

distance between them is defined by extension as follows:

COG(O, Ri) =

k
∑

j=1

d(COG(Oj), COG(Ai j))

rangex j

(5.7)

where COG(Oj) and COG(Ai j) are the COGs of Oj and Ai j respectively, and rangex j
=

max(x j)−min(x j) (over the domain of the variable x j).
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Figure 5.5: Distance between Ai and O

Note that if a certain antecedent of a given rule is missing, the distance between

the observation and the rule regarding this variable is treated as 0, reflecting the

intuition that any data value is very close to the null variable value. This allows for

measuring the distance between a given observation and a given rule which may not

have fuzzy sets associated with certain attributes.

With the above-defined COG metric, the distances between a given observation

and all rules in the rule base can be calculated. Those n rules which have the minimal

distances are chosen as the closest rules to the observation. It is worth noting that

the n closest rules do not necessarily flank the observation. In the extreme case, all

the chosen rules may lie on one side of the hyperplane of the observation, resulting

in the need for extrapolation rather than interpolation. However, mathematically, as

proven in [31] rule extrapolation has the identical form as rule interpolation. Thus,

the following description will focus on rule interpolation unless otherwise stated.

5.2.4 Intermediate Rule Construction

This section proposes how to construct the intermediate rule after n(n≥ 2) closest

rules have been chosen. Without losing generality these closest rules are assumed to

be:
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Algorithm 5.2.2: Find n closest rules based on COG
N , the number of rules;
R = {R1, . . . , RN}, the fuzzy rule base;
O, the observation;
D = {D1, . . . , DN}, the distance between O and Ri

1: for all Ri in R do

2: Di = COG(O, Ri);
3: end for

4: for all i = 1 to N do

5: for all j = 1 to N − 1 do

6: if Dj ≥ Dj+1 then

7: swap( Dj, Dj+1 )
8: end if

9: end for

10: end for

11: for all i = 1 to n do

12: for all j = 1 to N do

13: if Dj = Di then

14: save the i-th nearest rule R j

15: end if

16: end for

17: end for

R1 : If x1 is A11 , . . . , xk is A1k , then y is B1

R2 : If x1 is A21 , . . . , xk is A2k , then y is B2
...

Rn : If x1 is An1 , . . . , xk is Ank , then y is Bn

Given the observation being represented as:

O : If x1 is A∗1 , . . . , xk is A∗
k

, then y is B∗

the intermediate rule derived from R1 to Rn can be represented by

I : If x1 is A
′

1 , . . . , xk is A
′

k
, then y is B

′

Let Wi j, i = 1, . . . , n, j = 1, . . . , k, denote the weight to which the j-th term of the i-th

fuzzy rule contributes to constructing the j-th intermediate fuzzy term A
′

j
. Intuitively,
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the larger the distance from Ai j to A∗
j
, the less value Wi j should take. To reflect this,

the inversion of the distance is used:

Wi j =
1

d(Ai j, A∗j) + 1
(5.8)

where d(Ai j, A∗
j
) is defined in Equation 5.6. Of course, alternative non-increasing

functions such as Wi j = ex p−d(Ai j ,A
∗
j) may also be adopted to assign weights if pre-

ferred.

For each variable j, the weights Wi j, i = 1, . . . , n are used to compute the inter-

mediate fuzzy term A
′

j
. Prior to that, they are normalised as follows:

W
′

i j
=

Wi j
∑n

i=1 Wi j

(5.9)

so that their sum equals to 1. The intermediate fuzzy term A
′′

j
, j = 1,2, . . . , k, are

computed as:

A
′′

j
=

n
∑

i=1

W
′

i j
Ai j (5.10)

The A
′′

j
calculated via Equation 5.10 does not have the same COG as the observa-

tion A∗
j
. This is generally true when more than one antecedent are involved (that

is why the symbol A
′′

j
, rather than A

′

j
, is used here). As such, it fails to satisfy the

general requirement of having the same COG value, as imposed by the scale and

move transformations. To address this issue, one possible way is to modify A
′′

j
by

zooming the outcome of Equation 5.10, so that it becomes a new fuzzy intermediate

term A
′

j
which has the same COG as A∗

j
, as follows:

A
′

j
= γ jA

′′

j
(5.11)

where γ j is a constant defined as

γ j =
COG(A∗

j
)

COG(A
′′

j)
(5.12)

In so doing, the following holds

COG(A
′

j
) = COG(A∗

j
) (5.13)

107



5.2. Integrating Fuzzy Rule Interpolation and Compositional Rule-Based Inference

Similarly, regarding the consequent, the intermediate fuzzy output B
′′

can be

computed by

B
′′
=

n
∑

i=1

W
′

ai
Bi (5.14)

where W
′

ai
is the mean of W

′

i j
:

W
′

ai
=

1

k

k
∑

j=1

W
′

i j
(5.15)

B
′′

is then zoomed to B
′
as follows:

B
′
= γaB

′′
(5.16)

where γa is the mean of the zooming parameters γ j,

γa =
1

k

k
∑

j=1

γ j (5.17)

From the above an intermediate rule I can be derived from n rules, R1 to Rn. It is

then, feasible to perform fuzzy reasoning with this new rule without further reference

to its originals. Note that interpolation with just two closest rules is the simplest

case of the generalised multi-rule interpolation and is the most commonly adopted

strategy in implementing FRI in the literature (mainly due to its computational

simplicity).

As a certain degree of similarity between A
′

j
and A∗

j
has been established, it is

intuitive to require that the consequent parts B
′
and B∗ attain the same similarity

degree. The question is now how to obtain an operator which can represent the

similarity degree between fuzzy sets A
′

j
and A∗

j
, and to allow transforming B

′
to

B∗ with the desired degree of similarity. For this purpose, two transformations are

proposed as follows.

5.2.5 Scale Transformation

Given a scale rate s j(s j ≥ 0), j = 1, 2, . . . , k, in order to transform the current support

(a
′

j2 − a
′

j0), of fuzzy set A
′

j
= (a

′

j0, a
′

j1, a
′

j2), into a new support (s j ∗ (a
′

j2 − a
′

j0)) while

keeping the same centre of gravity and ratio of left-support (t j1− t j0) to right-support
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Figure 5.6: Scale transformation

(t j2− t j1) of the transformed fuzzy set, T j = (t j0, t j1, t j2), as those of its original, that

is, COG(A
′
) = COG(T ) and

a
′
j1−a

′
j0

a
′
j2−a

′
j1

=
t j1−t j0

t j2−t j1
, the new t j0, t j1, and t j2 must satisfy;

t j0 =
a
′

j0(1+ 2s j) + a
′

j1(1− s j) + a
′

j2(1− s j)

3
(5.18)

t j1 =
a
′

j0(1− s j) + a
′

j1(1+ 2s j) + a
′

j2(1− s j)

3
(5.19)

t j2 =
a
′

j0(1− s j) + a
′

j1(1− s j) + a
′

j2(1+ 2s j)

3
(5.20)

In fact, to satisfy the conditions imposed over the transformation, the linear equations

below must hold simultaneously:




























t j0 + t j1 + t j2

3
=

a
′

j0 + a
′

j1 + a
′

j2

3

t j1 − t j0

t j2 − t j1

=
a
′

j1 − a
′

j0

a
′

j2 − a
′

j1

t j2 − t j0 = s j(a
′

j2 − a
′

j0)

(5.21)

Solving these equations leads to the solutions as given in Equation 5.18, 5.19, 5.20.

Note that this scale transformation guarantees that the transformed fuzzy sets are

valid as the following holds given a
′

j0 ≤ a
′

j1 ≤ a
′

j2 and s j ≥ 0:
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t j1 − t j0 = s j(a
′

j1 − a
′

j0)≥ 0

t j2 − t j1 = s j(a
′

j2 − a
′

j1)≥ 0

The above shows how to obtain the resultant fuzzy set T j when the original fuzzy

set A
′

j
and a scale rate s j are given. Conversely, in the case where two fuzzy sets

A∗
j
= (a∗

j0, a∗
j1, a∗

j2) and A
′

j
= (a

′

j0, a
′

j1, a
′

j2) which have the same centre of gravity are

given, the scale rate is calculated as follows:

s j =
a∗

j2 − a∗
j0

a
′

j2 − a
′

j0

≥ 0 (5.22)

This measure reflects the similarity degree between A∗
j

and A
′

j
: the closer is s j to

1, the more similar is A∗
j

to A
′

j
. So s = 1

k

∑k

=1 s j is therefore used to act as, or to

contribute to, the desirable similarity degree in order to transform B
′
to B∗.

5.2.6 Move Transformation

Similar to the above scale transformation, given a moving distance l j, j = 1, 2, . . . , k,

in order to transform the current fuzzy support (t j2 − t j0) from the starting location

t j0 to a new starting position t j0 + l j while keeping the same centre of gravity and

length of support of the transformed fuzzy set as its original, i.e., COG(T ) = COG(A∗)

and t j2 − t j0 = a∗
j2 − a∗

j0, the new a∗
j0, a∗

j1 and a∗
j2 must be:

a∗
j0 = t j0 + l j, (5.23)

a∗
j1 = t j1 − 2l j, (5.24)

a∗
j2 = t j2 + l j, (5.25)

These can be obtained by solving the equations which are imposed to the transfor-

mation:






















a∗
j0 + a∗

j1 + a∗
j2

3
=

t j0 + t j1 + t j2

3

a∗
j0 = t j0 + l j

a∗
j2 − a∗

j0 = t j2 − t j0

(5.26)
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Figure 5.7: Move Transformation

To ensure A∗ to be valid, the condition of 0≤ l j ≤ lmax = (t j1 − t j0)/3 must hold.

If l j ≥ lmax , the transformation will generate invalid fuzzy sets. For instance, consider

the extreme case in which T is transformed to A∗
′
, where the left slope of A∗

′
becomes

vertical (i.e. a∗0 = a∗1) as shown in Figure 5.7. Here, l j = lmax . Any further increase

in l j will lead to the resulting transformed fuzzy set being a non-normal valid fuzzy

set. To avoid this, the move ratio m j is introduced:

m j =
l j

(t j1 − t j0)/3
(5.27)

The closer is m j to 0, the less move (in terms of moving displacement l j) is being made,

and the closer is m j to 1, the more move is being made. If move ratio m j ∈ [0,1],

then l j ≤ lmax holds. This ensures that the transformed fuzzy set A∗
j
to be normal

and valid if T j is itself a normal valid fuzzy set.

Note that the move transformation has two possible moving directions, the above

discusses the right-direction case (from the viewpoint of t j0) with l j ≥ 0, the left

direction with l j ≤ 0 should hold by symmetry:

m j =
l j

(t j2 − t j1)/3
∈ [−1, 0] (5.28)

As with the description for scale transformation, the above describes how to

calculate resultant fuzzy set A∗
j
given the original fuzzy set T j and a moving distance
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l j (or move ratio m j). Now, consider the case where two valid triangular sets

T j = (t j0, t j1, t j2) and A∗
j
= (a∗

j0, a∗
j1, a∗

j2) which have the same centre of gravity and

have the same support lengths are given, the move ratio m j can be calculated as

follows:

m j =

















3(a∗
j0 − t j0)

t j1 − t j0

, i f a∗
j0 ≥ t j0

3(a∗
j0 − t j0)

t j2 − t j1

, i f a∗
j0 ≤ t j0

(5.29)

This reflects the similarity degree between T j and A∗
j
: the closer is m j to 0, the more

similar is T j to A∗
j
. As T j and A∗

j
both are valid, m j ∈ [0,1] (when a∗

j0 ≥ t j0) or

m j ∈ [−1,0] (when a∗
j0 ≤ t j0) must hold. So m= 1

k

∑k

=1 m j is therefore used to act

as, or to contribute to, the desirable similarity degree in order to transform B
′
to B∗.

5.3 Comparison with CRI

This section details the experiments conducted and the results obtained in verification

of the proposed integrated approach, over 11 benchmark datasets taken from [151].

The system performance is evaluated by comparing the classification accuracy of

using the present approach and the accuracy achieved using only CRI over the same

rule base. These two methods are first applied on the the original learned rule base.

Then, they are tested over a sparse rule base which is generated from the original rule

base by randomly eliminating a subset of learned rules (see later for more details).

5.3.1 Experimental Setup

To perform a systematical experimental investigation, both two-fold cross validation

(2-FCV) and ten-fold cross validation (10-FCV) are employed. In two-fold cross

validation, for each run, a dataset is randomly split into a training set of 50% data

and a testing set of the remaining 50%. In ten-fold cross validation, a given data

set is partitioned into ten subsets. Of these ten subsets, nine subsets are used to

perform training, where the algorithms to be tested are used to build the rule base.

A single subset is retained as the test data. This process is then repeated ten times,

one per subset or fold being used as the test data. The advantage of ten-fold cross

validation over random subsampling is that all objects are used for both training

and testing, and each object is used for testing only once per fold. The stratification
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of the data prior to its division into different folds ensures that each class label (as

far as possible) has equal representation in all folds, thereby helping to alleviate

bias/variance problems [152].

In the following experimentation, for each dataset, in learning the rule base,

two-fold cross validation is performed 100 times and ten-fold cross validation is

performed 10 times in order to lessen the impact of random factors within the

algorithms. Such sets of validation results are then averaged to produce the final

experimental outcomes. Paired t-test is utilised to assess any statistical significance

of the differences between the algorithms’ results, with the parameter p = 0.05.

To reduce the overall computation cost for building the fuzzy rule bases and also,

for performing the inference with the learned rule bases, the feature selection tool,

including fuzzy rough feature selection (FRFS) [149], particle swarm optimization

based feature selection (PSO-FS) [153], genetic algorithm based feature selection

(GA-FS) [154], harmony search based feature selection (HS-FS) [155], is used here

to pre-process the data reducing the dataset dimensionality. Then, FCM is run

on the dimensionality-reduced training set to induce fuzzy classification rules and

membership functions.

Having obtained a learned rule base per dataset, in order to reveal the potential

of fuzzy rule interpolation, part of the rule base is randomly removed, resulting in a

sparse rule base. The number of rules removed per dataset is listed in the relevant

result tables. This rule deletion process is randomly repeated 10 times for each

learned rule base to alleviate random factors within the selection process. A reason-

able percentage of the originally learned rules are removed this way; particularly,

one third for the iris dataset, and one tenth for the remaining datasets.

5.3.2 Systematic Comparison

Table 5.1, 5.2, 5.3, 5.4 list the averaged correct classification rates over the runs on

the datasets using two-fold cross validation based on the features selected by FRFS,

PSO-FS, GA-FS, HS-FS, respectively, where the better performance over the same rule

base on each dataset is highlighted in boldface, and the sign “(v)” indicates that the

corresponding result achieved using the proposed method (CRI+FRI) is statistically

significantly (p ≤ 0.05) better than that using CRI only. Importantly, there is no

exception that the use of CRI+FRI significantly outperforms that of conventional
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5.3. Comparison with CRI

approach that works by pattern-matching given rules. It is interesting to note that

running CRI+FRI over the sparse rule bases even substantially beats the performance

of running CRI with the full learned rule bases across all datasets.

The above observation is completely mirrored in the results obtained from running

the 10× 10× 10-fold cross validation based on the selected features using different

feature selection methods, as shown in Table 5.5, 5.6, 5.7, 5.8, respectively. These

systematic comparative experiments clearly demonstrate the potential of the present

approach.

Note that in the above results, no attempt has been made to optimise either the

fuzzy rule learning mechanism or the fuzzy value definition of the domain variables.

This explains why some of the collect recognition rates are rather low. However, no

optimisation is intentionally made in order to have a fair ground for the comparative

studies reported. The removal of part of the learned rules is randomly carried

out without giving any bias to either of the approaches. Should these have been

optimised it would be expected that the performance of both CRI and the proposed

approach would be improved. However, the significant gap between using direct

pattern matching as it is done by CRI and employing FRI is expected to still remain.

5.3.2.1 Closer Examination of the Efficacy of Proposed Approach

To further illustrate the working of the proposed classification system that integrates

conventional fuzzy inference with fuzzy rule interpolation over a range of issues, the

Iris Dataset is used (for practical simplicity). This dataset contains 150 instances, 50

for each of the three species of iris flowers to be distinguished: setosa, versicolor,

and verginica. Each instance is described by four attributes: sepal width (SW), sepal

length (SL), petal width (PW), and petal length (PL). The unit for all four of the

attributes is centimetres, measured to the nearest millimetre.

Consider one loop of the 10×10×10-fold cross validation based on FRFS selected

features as an example. Table 5.9 shows the index labels of the test set randomly

taken from the dataset, involving 5 of the given data for each label class. For this

experiment the K for fuzzy c-means clustering is naturally set to 3, and α is set to

0.67. In the same order as that of the attributes appearing in the original dataset,

the derived membership functions for the four attributes are shown in Figure 5.8

and the learned fuzzy inference rules are given in Table 5.10. Table 5.11 shows the

sparse rule base generated by eliminating one third of the rules in Table 5.10.
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5.3. Comparison with CRI

Figure 5.8: Membership function of each attribute
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5.3.2.2 Use of CRI When Rules Matching the Observation

This first case shows the situation where a given observation matches with at least

one rule within the sparse rule base, above the α threshold. In this case, there is no

need for computing rule interpolation, but the compositional rule of inference (CRI)

can be applied directly. The results are listed in Table 5.12 and Table 5.13 where the

Table 5.9: Labels for test data

Label list 42, 18, 35, 1, 20, 84, 70, 93, 95, 67, 127, 128, 144, 109, 115

Table 5.10: Original fuzzy rule base

Rule NO. Sepal Width Sepal Length Petal Width Petal Length Class

Rule 1 Low High Medium Low Setosa

Rule 2 Low High Low Low Setosa

Rule 3 Low Medium Low Low Setosa

Rule 4 Medium High Low Low Setosa

Rule 5 Medium High Medium Low Setosa

Rule 6 Low Medium Medium Low Setosa

Rule 7 Medium Low High Medium Versicolor

Rule 8 Low Low Medium Medium Versicolor

Rule 9 High Low High Medium Versicolor

Rule 10 High Medium High Medium Versicolor

Rule 11 Medium Medium High Medium Versicolor

Rule 12 Low Low High Medium Versicolor

Rule 13 Medium High High Medium Versicolor

Rule 14 High High High Medium Versicolor

Rule 15 Low Medium High Medium Versicolor

Rule 16 Medium Medium High High Versicolor

Rule 17 High High High High Verginica

Rule 18 High Medium High High Verginica

Rule 19 High Medium High Medium Verginica

Rule 20 High Low High High Verginica

Rule 21 Medium Medium High High Verginica

Rule 22 Medium Low High High Verginica

Rule 23 Medium Low High Medium Verginica

Rule 24 Low Low High Medium Verginica

Rule 25 Medium High High High Verginica
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Table 5.11: Sparse fuzzy rule base

Rule NO. Sepal Width Sepal Length Petal Width Petal Length Class

Rule 1 Low High Medium Low Setosa

Rule 2 Low High Low Low Setosa

Rule 3 Low Medium Low Low Setosa

Rule 4 Medium High Medium Low Setosa

Rule 5 Medium Low High Medium Versicolor

Rule 6 Low Low Medium Medium Versicolor

Rule 7 Medium Medium High Medium Versicolor

Rule 8 Medium High High Medium Versicolor

Rule 9 High High High Medium Versicolor

Rule 10 Low Medium High Medium Versicolor

Rule 11 High High High High Verginica

Rule 12 High Medium High High Verginica

Rule 13 High Low High High Verginica

Rule 14 Medium Medium High High Verginica

Rule 15 Medium Low High Medium Verginica

Rule 16 Low Low High Medium Verginica

Rule 17 Medium High High High Verginica

Table 5.12: Illustrative example for the use of CRI (only 1 rule α-match)

INDEX
OBSERVATION MATCH RULE BASE

SW SL PW PL RULE SW SL PW PL CLASS

18 5.1 3.5 1.4 0.3 Rule 2 Low High Low Low Setosa

1 5.1 3.5 1.4 0.2 Rule 2 Low High Low Low Setosa

20 5.1 3.8 1.5 0.3 Rule 1 Low High Medium Low Setosa

84 6 2.7 5.1 1.6 Rule 7 Medium Medium High Medium Versicolor

95 5.6 2.7 4.2 1.3 Rule 7 Medium Medium High Medium Versicolor

67 5.6 3 4.5 1.5 Rule 7 Medium Medium High Medium Versicolor

127 6.2 2.8 4.8 1.8 Rule 14 Medium Medium High High Verginica

128 6.1 3 4.9 1.8 Rule 14 Medium Medium High High Verginica

144 6.8 3.2 5.9 2.3 Rule 12 High Medium High High Verginica

109 6.7 2.5 5.8 1.8 Rule 13 High Low High High Verginica

115 5.8 2.8 5.1 2.4 Rule 14 Medium Medium High High Verginica
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Table 5.13: Illustrative example for the use of CRI (more than 1 rule α-match)

INDEX
OBSERVATION

MATCH FIRE RULE
SW SL PW PL

70 5.6 2.5 3.9 1.1
Rule 5

Rule 5
Rule 15

93 5.8 2.6 4 1.2
Rule 5

Rule 5
Rule 15

first column lists the indices of the observations (in the data set), the second column

gives the actual observations (along the four dimensions), and the third column

presents the matched rules.

Table 5.12 shows all cases when only one rule is matched. Consider the first

observation O1 = [5.1, 3.5, 1.4, 0.3] in Table 5.12 , through the check of α-cut

overlapping it is known that O1 overlaps with Rule 2 (and only Rule 2):

If Sepal Width is Low and Sepal Length is High and Petal Width is Low and Petal

Length is Low then Class is Setosa.

Firing this rule leads to the class of this observation being identified to be Steosa.

There are cases when more than 1 rule are matched as shown in Table 5.13.

Consider the first observation O1 = [5.6, 2.5, 3.9, 1.1], through the check of α-cut

overlapping it is known that O1 overlaps with Rule 5 and Rule 15. The matching

degree is computed by finding the sum of all areas which are delimited by the overlap

of two partially matched fuzzy sets of the rule and the observation. The rule with the

highest matching value is Rule 5; firing this rule leads to the class of this observation

being identified to be Versicolor.

5.3.2.3 Use of FRI When No Rules Matching the Observation

This case illustrates the effectiveness of utilising fuzzy rule interpolation (FRI).

Table 5.14 shows the situations where there is no matching between observation

and any rule in the given sparse rule base. The first column lists the indices of the

observations in the data set, the second column gives the observation data (again

regarding each of the four attributes), and the third column presents the two nearest

rules determined by the use of the COG distance metric.
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5.3. Comparison with CRI

Table 5.14: Observations using fuzzy rule interpolation (FRI)

INDEX
OBSERVATION NEAREST RULE BASE

SW SL PW PL RULE SW SL PW PL CLASS

42 4.5 2.3 1.3 0.3
Rule 3 Low Medium Low Low Setosa

Rule 6 Low Low Medium Medium Versicolor

35 4.9 3.1 1.5 0.1
Rule 3 Low Medium Low Low Setosa

Rule 2 Low High Low Low Setosa

Consider the first row in Table 5.14, given the observation O = [4.5, 2.3, 1.3, 0.3],

two rules, Rule 3 and Rule 6, are selected to be the nearest rules based on COG, in

order to carry out fuzzy interpolation. For the first attribute Sepal Width (SW), the

normalised weights of SWR3 and SWR6 are computed to be 0.5 and 0.5. According

to Equation 5.10, the fuzzy term SW
′′
= (4.3, 4.89, 5.3) is obtained. As SW

′′
does

not have the same COG as the input OSW , the zoom method is applied. Suppose

that the zoom method is used. According to Equation 5.12, γSW = 0.93 is obtained.

The fuzzy term SW
′′

is zoomed by γSW to SW
′
= (4, 4.56, 4.94). Similarly, SL has

normalised weights 0.05 and 0.95 in constructing SL
′′
= (2.04, 2.43, 2.63). With

γSL = 0.97, SL
′′

is zoomed to SL
′
= (1.98, 2.36, 2.56). PW has normalised weights

0.92 and 0.08 in constructing PW
′′
= (1.04, 1.34, 1.52). With γPW = 1, PW

′′
is

zoomed to PW
′
= (1.04, 1.34, 1.52). PL has normalised weights 0.99 and 0.01 in

constructing P L
′′
= (0.11, 0.26, 0.62). With γP L = 0.91, P L

′′
is zoomed to P L

′
=

(0.1, 0.24, 0.56). The consequent fuzzy set B
′′
= (1.38, 1.38, 1.38) can therefore

be computed using the average weights of the attributes for two rules according to

Equations 5.14 and 5.15. Thus, the intermediate class B
′
= (1.32, 1.32, 1.32) can

be computed using the average of γSW , γSL, γPW and γP L, that is 0.95, with respect

to Equations 5.16 and 5.17. From this, the scale and move transformations are

applied, resulting in the required interpolated value, that is B∗ = (1.32, 1.32, 1.32).

Through defuzzification, the result indicates that the given observation stands for

the class Setosa (which correctly matches the underlying class of this observation).

As a summary, Figure 5.9 shows this interpolation progress. Consider the second

row in Table 5.14, given the observation O = [4.9, 3.1, 1.5, 0.1], two rules, Rule 3

and Rule 2, are selected to be the nearest rules based on COG, in order to carry out

fuzzy interpolation. For the first attribute Sepal Width (SW), the normalised weights

of SWR3 and SWR2 are computed to be 0.5 and 0.5. According to Equation 5.10, the
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Figure 5.9: Case 1 transformation progress
128



5.3. Comparison with CRI

Figure 5.10: Case 2 transformation progress
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fuzzy term SW
′′
= (4.3, 4.89, 5.3) is obtained. As SW

′′
does not have the same COG

as the input OSW , the zoom method is applied. Suppose that the zoom method is

used. According to Equation 5.12, γSW = 1.01 is obtained. The fuzzy term SW
′′

is

zoomed by γSW to SW
′
= (4.36, 4.96, 5.38). Similarly, SL has normalised weights

0.82 and 0.18 in constructing SL
′′
= (2.81, 3.08, 3.41). With γSL = 1, SL

′′
is zoomed

to SL
′
= (2.81, 3.08, 3.41). PW has normalised weights 0.5 and 0.5 in constructing

PW
′′
= (1, 1.32, 1.4). With γPW = 1.21, PW

′′
is zoomed to PW

′
= (1.21, 1.59, 1.7).

PL has normalised weights 0.5 and 0.5 in constructing P L
′′
= (0.1, 0.24, 0.6). With

γP L = 0.32, P L
′′

is zoomed to P L
′
= (0.03, 0.08, 0.19). The consequent fuzzy set

B
′′
= (1, 1, 1) can therefore be computed using the average weights of the attributes

for two rules according to Equations 5.14 and 5.15. Thus, the intermediate class

B
′
= (0.89, 0.89, 0.89) can be computed using the average of γSW , γSL, γPW and γP L,

that is 0.89, with respect to Equations 5.16 and 5.17. From this, the scale and move

transformations are applied, resulting in the required interpolated value, that is

B∗ = (0.89, 0.89, 0.89). Through defuzzification, the result indicates that the given

observation stands for the class Setosa (which correctly matches the underlying class

of this observation). As a summary, Figure 5.10 shows this interpolation progress.

5.4 Application to Mammographic Image Analysis

Breast cancer is a major health issue, and the most common amongst women in

the EU. It is estimated that 8-13% of all women will develop breast cancer at some

point during their lives [37, 38]. Furthermore, in the EU and US, breast cancer

is recognised as the leading cause of death of women in their 40’s [37, 38, 156].

Although increased incidence of breast cancer has been recorded, so too has the level

of early detection through the screening of potential occurrence using mammographic

imaging and expert opinion. However, even expert radiologists can sometimes fail to

detect a significant proportion of mammographic abnormalities. In addition, a large

number of detected abnormalities are usually discovered to be benign following

medical investigation.

Existing mammographic Computer Aided Diagnosis (CAD) systems [157] concen-

trate on the detection and classification of mammographic abnormalities. As breast

tissue density increases however, the effectiveness of such systems in detecting mam-

mographic abnormalities is reduced significantly. Also, there is a strong correlation

between mammographic breast tissue density and the risk of development of breast
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Figure 5.11: Example mammograms where breast tissue density increases from L-R
corresponding to BIRADS class I(far left) to class IV (far right)

cancer [158, 159, 160]. Automatic classification which has the ability to consider

tissue density when searching for mammographic abnormalities is therefore highly

desirable. It must be stressed at this point that the problem under consideration

here is mammographic risk analysis (MRA) rather than mammographic diagnosis

from images, an area where many publications have been written in terms of the

application of machine learning techniques [161, 162, 163, 164]. As such, MRA

aims to classify image data objects into one of four BIRADS categories [165] shown

in Figure 5.11 which relates to the tissue type found in each mammogram. That is,

the purpose of MRA is not to classify breast tissue abnormalities, but rather to give

an indication of the tissue density.

Knowledge discovery from images often requires the maximisation of all of the

information contained within the image. This means that initially large numbers of

features are often extracted from the image. These features typically contain high

levels of redundancy, irrelevancy, and noise. However, given that it is not known

a-priori which features are most valuable and which are not, this is a necessary step.

In the present application, the popular, and readily available, fuzzy rough feature

selection (FRFS) method is employed in an attempt to identify the most valuable

features such that the process of extracting large amounts of features can be avoided.

The selected features then fed back into the extraction phase ensuring that only

those features need to be identified. In addition to the feature selection approach,

the integrated fuzzy rule based classification system described previously is applied

to the image data. This classifier is compared with possible alternative approaches,

demonstrating a significant increase in performance.
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5.4.1 Experimental System Overview

As mentioned previously, the problem considered in this work is that of mammo-

graphic risk analysis, where mammographic breast tissue density information ex-

tracted from images is used to assess how likely a woman is to develop breast cancer.

Image Data

5 × 5 Filter

Feature Extraction

Fat Tissue Dense Tissue

Feature Set

J48 or SVM

Evaluation Expert Info

Confusion Matrices

Classification Values

CLASSIFICATION

Figure 5.12: Mammographic density classification

The implemented application process is outlined in Figure 5.12, with detailed

background described in [166]. The initial stages involve the segmentation and

filtering of the mammographic images: all mammograms are pre-processed to identify

the breast region and remove image background, labels, and pectoral muscle areas.

This segmentation step results in a very minor loss of skin-line pixels in the breast

area, however these pixels are not required for tissue estimation. Then, a feature

extraction step is performed, fuzzy c-means (FCM) algorithm [130] is employed
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5.4. Application to Mammographic Image Analysis

which results in the division of the breast into two clusters. A co-occurrence matrix

(which is essentially a 2D histogram) is next, used to derive a feature set which

results in 10 features to describe morphological characteristics and 216 for the

texture information (226 total). This feature set is labelled using the consensus

opinion of 3 experts to assign a label to each object mammogram using the BIRADS

classification [165]. This consensus is determined where the classification for a given

mammogram, which two or three radiologists agreed upon (majority vote) is selected

as the consensus class. If all experts classified a single mammogram differently, the

median value is chosen as consensus opinion. The divergence in the opinion of the

experts, is a major factor which often frustrates the use of automatic methods. This

highlights the need to remove inter-observer (inter-operator) variability through the

development of more autonomous approaches.

In this work the classification step is extended with a dimensionality reduction

phase and a classification phase. The existing feature set is used, as is the consensus

expert labelling of the data. Figure 5.13 shows the overall implementation of the

mammographic data analysis process in which knowledge can be efficiently learned

from the (mammographic) training data and applied to real-world risk assessment

problems.

In this work, the focus lies in the implementation of fuzzy techniques for the

dimensionality reduction and classifier learner steps. The approach for the feature

extraction step employed here is documented in [166], however there is no reason

why future work could not include a deep learning method to accomplish this (see

conclusion chapter for further discussion).

Efficient and accurate classification of mammographic imaging is of high impor-

tance. Any improvement in accuracy for automatic mammographic classification

systems can result in a reduction in the amount of required expert analysis thus

improving the time taken to perform breast abnormality risk assessment. The data

in mammographic imaging is real-valued and can be noisy. Any classifier employed

must therefore have the ability to deal with such data. Conventional crisp methods

require that the real-valued data be discretised and thus, may result in information

loss. The methods described in this work require no discretisation and use only the

information contained within the data.

The most common approach to developing expressive and human readable rep-

resentations of knowledge is the use of IF-THEN production rules [167]. In order
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Image Data5×5 FilterFeature Extraction

Fat Tissue Dense Tissue

Feature Set

FRFS

Rule Induction

Rule Base Observation Data

α-cut Overlapped?

Find the Rule Find Closest Rules

CRI

Same Side?

Interpolation Extrapolation

Conclusion

yes
no

no yes

Figure 5.13: Unified framework for mammographic data analysis

to speed up rule induction learning algorithms (RIA) and reduce rule complexity, a

preprocessing step is required. This is particularly important for tasks where learned

rule sets need to be regularly updated to reflect the changes in the description of

domain features. This step reduces the dimensionality of potentially very large

feature sets while minimising the loss of information needed for rule induction. It

has an advantageous side-effect in that it removes redundancy from the historical

data. This also helps to simplify the design and implementation of the actual pattern

classifier itself, by determining what features should be made available to the system.

In addition, the reduced input dimensionality increases the processing speed of the

134



5.4. Application to Mammographic Image Analysis

classifier, leading to better response times. Most significant, however, is the fact that

the technique employed here preserves the semantics of the surviving features fol-

lowing the removal of any redundancy. This is essential in satisfying the requirement

of user interpretability of the generated knowledge model, as well as ensuring the

transparency of the classification process.

A simple approach described in Section 5.1 is utilized to perform fuzzy rule

induction. In so doing, training data is equivalently translated into a fuzzy IF-THEN

rule, resulting in a fuzzy rule base. However, in many real-world problems, data

provided to conduct such learning may not completely cover the entire problem

space. As such, the resultant rule base may have gaps scattered in the problem

space, leading to the situation where rule-firing by matching a given observation

with the learned clusters becomes void. In this case, as argued previously, fuzzy rule

interpolation offers a promising means to perform approximate inference. Depending

on the nature of the rule base either fuzzy inference (CRI) or interpolation (FRI)

may be employed to draw conclusions from given unclassified images.

5.4.2 Experimentation

In this section the results of applying the previously described classifier and alternative

conventional classifiers are presented and discussed. Initially the classifiers are

applied to the unreduced extracted feature data - i.e., data on which feature selection

has not been utilised. Classification is then performed on data which has been

reduced with individual classifiers as shown in Figure 5.14.

5.4.2.1 Mammographic Risk Analysis Data

The dataset considered here is available in the public domain: the Mammographic

Image Analysis Society (MIAS) database [168], composed of Medio-Lateral-Oblique

(MLO) left and right mammograms from 161 women (322 objects). Each mammo-

gram object is represented by 281 features extracted using the process described

[166]. The spatial resolution of the images is 50µm × 50µm and quantized to 8

bits with a linear optical density in the range 0 - 3.2 (Optical density, also known as

Dynamic Range, is the scanner’s ability to "see" all tones available. The total tonal

measurement is on a scale of 0.0 (white) to 4.0 (black)).

The class labels for each mammogram are assigned by three experts’ consensus

opinion. There are four discrete labels for representing density classes, encoded as
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MIAS Data

FRFS

SVMJ48 CRI+FRI

Classification Results

Figure 5.14: Experimental setup

integers from 1 to 4 with 1 representing a breast that is entirely fatty and 4 a breast

that is extremely dense.

5.4.2.2 Experimental Setup

In systematically conducting the experiments, both two-fold cross validation (2-FCV)

and ten-fold cross validation (10-FCV) are employed. 2-FCV is performed 100 times

and 10-FCV is performed 10 times in order to lessen the impact of random factors

within the algorithms, these evaluations are then aggregated to produce the final

experimental outcomes as shown in Tables 5.15, 5.16, 5.18 and 5.19. Paired t-test is

utilised to assess any statistical significance of the differences between the algorithms’

results, with the parameter p = 0.05. To reduce the overall computation cost for

building the fuzzy rule bases and also, for performing the inference with the learned

rule bases, the feature selection tools FRFS is used here to pre-process the data

reducing the data dimensionality. Then FCM is run on the dimensionality-reduced

training set to induce fuzzy classification rules and membership functions. The

number of clusters K is set to 3, 4 and 5.

5.4.2.3 Unreduced Data

The classification accuracy results for the unreduced data are presented in this section.

This is achieved by applying each of the classifiers to the dataset, giving a background

against which to make subsequent comparative studies.
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Table 5.15 lists the averaged correct classification rates over these runs for the

given dataset in 2-FCV using different classifiers. Clearly, the accuracy using the

proposed classification system is significantly better than that achieved using J48

[169] and SVM [131, 166]. Both J48 and SVM are sensitive to the completeness of

the training dataset, if the dataset can’t cover all the possible values of the input

variables, the rule-base created from the dataset is too sparse then it affects the

prediction and result of the system due to insufficient information. Note that when

K = 5, the proposed method delivers the best performance. This is because in this

case, the rule base generated from the dataset is more dense than those achieved

when K is 3 or 4.

Considering the classification accuracy results illustrated in Table 5.16. The

proposed approach seems to have a clear advantage over J48 when K = 5. The

results achieved using CRI+FRI are much better than those achieved using SVM. In

10-FCV, the number of data used to build the rule base is larger than that used in

the 2-FCV. So the accuracy is improved compared with the accuracy achieved in the

2-FCV. Again CRI+FRI is more robust in the presence of incomplete dataset.

Table 5.15: 2-fold cross validation accuracy (%) based on unreduced dataset: The
better performance on mammographic dataset is highlighted in boldface, the sign
“(*)/(v)”indicates that corresponding result achieved using proposed method is
significantly (p ≤ 0.05) worse/better than that using other classifiers

J48 SVM CRI+FRI (K=3) CRI+FRI (K=4) CRI+FRI (K=5)

61.58±3.26 59.81±0.73 64.84±3.22 64.53±2.86 65.90±3.72(v)

Table 5.16: 10-fold cross validation accuracy (%) based on unreduced dataset: The
better performance on mammographic dataset is highlighted in boldface, the sign
“(*)/(v)”indicates that corresponding result achieved using proposed method is
significantly (p ≤ 0.05) worse/better than that using other classifiers

J48 SVM CRI+FRI (K=3) CRI+FRI (K=4) CRI+FRI (K=5)

66.15±1.73 63.85±0.64 64.02±1.23 66.05±2.65 67.50±0.83(v)

5.4.2.4 Reduced Data

In this section the results of classifying the MIAS dataset following feature selection

are presented. Classification accuracy results are provided for different classifiers in
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both 2-FCV and 10-FCV. In Table 5.17, the indices of the selected features are shown.

Note that a substantial level of dimensionality reduction (97.17%) is achieved.

Table 5.17: Indices of selected features

1, 5, 156, 200, 205, 231, 234

Table 5.18 lists the averaged correct classification rates over these runs for the

given datasets in 2-FCV. Clearly, the accuracy using the proposed classification system

is better than that achieved using J48 and SVM.

Table 5.19 lists the averaged correct classification rates over these runs for the

given datasets in 10-FCV. It is clear that the accuracy using the proposed classification

system is improved than that achieved using conventional classifiers.

The general trends across all cases are rather similar, although the accuracy is

lower than that achieved using unreduced data. In this case, feature selection leads

to the loss of useful information to some extent.

Table 5.18: 2-fold cross validation accuracy (%) based on reduced dataset: The
better performance on mammographic dataset is highlighted in boldface, the sign
“(*)/(v)”indicates that corresponding result achieved using proposed method is
significantly (p ≤ 0.05) worse/better than that using other classifiers

J48 SVM CRI+FRI (K=3) CRI+FRI (K=4) CRI+FRI (K=5)

60.00±2.53 45.96±2.54 56.15±3.95 61.33±4.39(v) 60.99±3.74

Table 5.19: 10-fold cross validation accuracy (%) based on reduced dataset: The
better performance on mammographic dataset is highlighted in boldface, the sign
“(*)/(v)”indicates that corresponding result achieved using proposed method is
significantly (p ≤ 0.05) worse/better than that using other classifiers

J48 SVM CRI+FRI (K=3) CRI+FRI (K=4) CRI+FRI (K=5)

58.75±2.29 52.17±1.00 59.44±2.3 63.00±2.09(v) 62.31±2.18
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5.5 Summary

Feature pattern-based fuzzy IF-THEN rules offer an expressive and interpretable form

of imprecise data-driven classification. However, generation of fuzzy rules that may

jointly cover the full, or at least a wide range of, problem domain from experienced

data is subject to the completeness of such data. Missing information will lead

to gaps within the resultant explicit knowledge, which would reduce the practical

effectiveness of the intelligent classifiers which rely on the use of the resulting

sparse rule bases. This chapter has presented a conceptually simple system which

supports the development of potentially powerful fuzzy rule-based classification

systems, by organically integrating conventional fuzzy rule-based inference and

fuzzy rule interpolation. To be self-complete, it has also described a rule induction

algorithm although any other fuzzy rule learning mechanism may be used as an

alternative. The work has been systematically tested on a range of benchmark

datasets, demonstrating the efficacy of the proposed approach. This chapter has

also demonstrated the application of fuzzy rule interpolation-aided classification

system for mammographic risk analysis. In particular, it has demonstrated how the

classification accuracy for mammographic risk-analysis can be increased significantly

compared with that achievable using conventional classifiers.
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Chapter 6

Conclusion

This chapter presents a summary of the research as detailed in the preceding chap-

ters. Having reviewed and compared a number of deep learning techniques in the

literature, two novel learning architectures have been proposed to minimize the

computational effort while obtaining informative features. Systematic experiments

demonstrate that the newly proposed methods perform better than traditional deep

learning networks on the popular MNIST dataset of handwritten digits. The thesis

has also demonstrated that the developed fuzzy rule interpolation-aided reasoning

system has effectively boosted the performance when applied to a challenging real-

world problem: mammographic risk analysis. The proposed approach renders the

reasoning system more accurate and faster by exploiting both CRI and FRI. The

capabilities and potential of the developed applications have been experimentally

validated, and compared with conventional rule-based inference work. The con-

clusion also presents a number of initial thoughts about the directions for future

research.

6.1 Summary of Thesis

Chapter 2 first gives a thorough review of the most influential and successful deep

learning networks, including Deep Belief Networks (DBNs) [2], Convolutional Neu-

ral Nets (CNNs) [4], and Deep Spatio-Temporal Inference Network (DeSTIN) [5].

Unfortunately, there is a main drawback among these types of network. A significant

computation effort is demanded when using them to do the feature extraction. For
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example, as a representative application of DeSTIN, the existing work for handwritten

digit recognition employs a network of 4 layers [6]. This may introduce considerable

overheads on computation and therefore, may offset the potential benefit on the

efficiency gained by the entire feature extraction process. An alternative approach is

desirable.

Chapter 3 has presented a novel approach for image classification, by integrat-

ing the concepts of deep machine learning and feature interpolation. In particular,

a recently introduced learning architecture, the Deep Spatio-Temporal Inference

Network (DeSTIN) is employed to perform feature extraction for support vector

machine (SVM) based image classification. Linear interpolation and Newton poly-

nomial interpolation are each applied to support the classification. This approach

converts feature sets of an originally low-dimensionality into those of a significantly

higher dimensionality while gaining overall computational simplification. The work

is tested against the popular MNIST dataset of handwritten digits. Experimental

results indicate that the proposed approach is highly promising.

Chapter 4 has presented a novel approach to developing a learning network that

is of simple topological structure for pattern recognition, through the exploitation

of a standard data clustering mechanism. This work has been tested using the

popular MNIST dataset, in comparison with four different deep learning techniques.

Systematic experimental results demonstrate that the proposed approach is capable

of efficiently extracting features suitable for subsequent image pattern recognition

tasks, ensuring high accuracy.

In the second part of Chapter 2, a detailed literature review that covers the

fuzzy inference systems (FIS), compositional rules of inference (CRI) and fuzzy

rule interpolation (FRI) was presented. CRI is a classical inference approach in

systems using dense rule bases and important CRI methods: Mamdani inference,

TSK inference and Type-2 inference have been outlined. However, in most real life

applications, rule bases are sparse and FRI is a quite effective approach for reasoning

with sparse rule bases. For this reason, a survey of several typical FRI approaches was

made in which the key common notions and mechanisms of the reviewed algorithms

were extracted.

Feature pattern-based fuzzy IF-THEN rules offer an expressive and interpretable

form of imprecise data-driven classification. However, the effectiveness of using fuzzy
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rules generated from experienced data is subject to the completeness of such data.

Missing information will lead to gaps within the resultant explicit knowledge, which

may reduce the accuracy of the intelligent pattern classifiers that rely on the use of

such sparse rule bases. Chapter 5 has presented a conceptually simple system which

supports the development of potentially powerful fuzzy rule-based classification

systems, by organically integrating conventional fuzzy rule-based inference and

fuzzy rule interpolation. It applies α-cut to efficiently check whether direct inference

can be performed using compositional rule of inference (CRI) in spite of the sparsity

in the rule base. If more than one α-cut match between a given observation and any

rule antecedent are found, then the rule which has the largest overlap is fired to derive

the conclusion, using CRI. As such, it employs an interpolation method only when

interpolation is essential, that is when there is no matching between the observation

and any rule in the rule-base. This helps expedite the operation of the integrated

system whilst improving the accuracy of the overall inference mechanism. The work

has been systematically tested on a range of benchmark datasets, demonstrating the

efficacy of the proposed approach.

Furthermore, an application of the proposed fuzzy rule interpolation-aided frame-

work to the problem domain of mammographic risk analysis has been presented in

Chapter 5.

6.2 Future Work

Although promising, much can be done to further improve the work presented in

this thesis.The following addresses a number of interesting issues whose success-

ful solution will go towards establishing the current research on a more robust

foundation.

6.2.1 Short Term Tasks

This section discusses extensions, enhancements or ongoing tasks that could be

readily implemented if additional time were available.

6.2.1.1 DESTINI Improvement

In this research work, either linear interpolation or Newton interpolation is applied

to the DeSTIN extracted features. It is interesting to investigate whether either of
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the two simple interpolation mechanisms will work when different original feature

extraction methods are used. Also, a combined application of both linear and

Newton interpolation may help further enrich the feature space. In addition, it is

very interesting to apply the work to more complex application domains (e.g., to

Mars images which vary significantly in terms of intensity, scale and rotation, and

are blurred with measurement and transmission noise [44]). Finally, it is worth

exploring whether imposing a certain selection of interpolated features may further

reduce the overall computation cost for classification [155, 149].

6.2.1.2 CLSN Improvement

Although CLSN delivers good results when applied to the MNIST dataset. It would

be interesting to examine whether interpolation techniques could be utilised on the

extracted features to help enrich the feature space without causing much increase

in computation. Also, it would be useful to explore the possibility of extending the

work to more complex problem domains [170, 171]. The potential of this work may

be further strengthened if dynamic movement detection would be enabled as and

when a sequence of images are presented [172].

6.2.1.3 Reasoning System Improvement

The proposed fuzzy rule interpolation-aided classification system is promising. Fur-

ther work remains in a number of aspects. In particular, it would be very interesting

to apply the proposed approach to more complex application domains (e.g., to

problems involving big data). When dealing with a complicated problem, however

sparse, the learned rule base may contain a very large number of rules. Thus, a more

efficient integration of compositional rule inference and rule interpolation may be

required that can identify certain rules to be removed without affecting the overall

classification performance (this being thanks to the power of rule interpolation). Also,

to have a common ground for fair comparison, this work has employed a standard

clustering based rule induction algorithm to generate the initial rule base, without

fine-tuning the learned rules or the membership functions that define the feature

values. Alternative learning mechanisms with optimisation [173] may be employed

to further improve the present approach. In this research work, for the purpose of

preliminary investigation and experimentation, the T-FRI approach is employed. To

further generalize the proposed reasoning system, is interesting to investigate the
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use of some different FRI techniques [27, 29, 174, 26, 175, 176, 177]. This is of

course a systematic approach that requires a lot of additional experimentation.

6.2.2 Longer Term Developments

This section proposes several future directions of research.

6.2.2.1 Dynamic Partition

There is one important assumption in the proposed reasoning system: an initial

fixed partitioning level for a given attribute. For the current implementation, this is

sufficient to evaluate the potential of proposed system. However, fixed partitioning

limits the generalised concept of this approach and also affects the accuracy of the

proposed framework. This is because it decides the number of partitions for every

attribute of instance at an early stage irrespective of all the later operations used

in the system. This may permanently direct the later operations and affect their

outcomes. It is therefore important to be able to obtain the best partitioning during

the reasoning process in order to find better quality clusters and, eventually, more

precise new rules for reasoning.

6.2.2.2 A Unified Reasoning System

The present feature extraction method adopted in the proposed work may introduce

a lot of redundant and noisy features. So a feature selection process is needed. This

step involves a considerable extra computation, which may restrict the approach

to be applied to a real-time application. The features extracted from CLSN are

effective features and the dimensionality of the feature sets is far less than that of

current approach. The benefit of adopting CSLN is that the amount of time and

computational effort required in the feature extraction phase can be reduced.

In addition, the use of fewer features means that any algorithms employed in

both the training and testing phases of the classifier are potentially more accurate

as there are fewer noisy features present. Furthermore, fewer features means less

computational overhead and hence the task is performed in less time.

Finally, a unified reasoning system is foreseen as one of the most important

further developments of this research. Such an integrated, systematic approach may

enjoy the benefits of deep learning, CRI and FRI when given a complex data domain,

fully addressing the issues from feature extraction through to data classification.
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Appendix A

Publications Arising from the Thesis

A number of publications have been generated from the research carried out within

the PhD project. Below lists the resultant publications that are in close relevance to

the thesis, including both papers already published and articles submitted for review.

A.1 Journal Articles

1. Y. Zhang and C. Shang, Combining newton interpolation and deep learning for

image classification, Electronics Letters, vol. 51, no. 1, pp. 40-42, 2014.

2. Y. Zhang, C. Shang, F. Chao, N. Naik and Q. Shen, Enriching data-driven fuzzy

rule-based classification with fuzzy rule interpolation, Under review for journal

publication.

3. Y. Zhang, C. Shang, and Q. Shen, Clustering supported learning network

with application to handwritten digit recognition, Under review for journal

publication.

A.2 Conference Papers

4. Y. Zhang, C. Shang, and Q. Shen, Interpolating destin features for image classi-

fication, Proceedings of the 2013 UK Workshop on Computational Intelligence,

pp. 292-298, 2013.
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5. Y. Zhang, C. Shang, and Q. Shen, Interpolating deep spatio-temporal infer-

ence network features for image classification, Proceedings of the 2014 IEEE

International Joint Conference on Neural Networks, pp. 1819-1826, 2014.

6. Y. Zhang, C. Shang, and Q. Shen, Interpolation aided fuzzy image classification,

Proceedings of the 2015 IEEE International Conference on Fuzzy Systems, pp.

1-7, 2015.
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