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Abstract

During the last several decades, many kinds of population based Evolutionary Algo-

rithms have been developed and considerable work has been devoted to computational

methods which are inspired by biological evolution and natural selection, such as Evo-

lutionary Programming and Clonal Selection Algorithm.

The objective of these algorithms is not only to find suitable adjustments to the

current population and hence the solution, but also to perform the process efficiently.

However, a parameter setting that was optimal at the beginning of the algorithm may

become unsuitable during the evolutionary process. Thus, it is preferable to automati-

cally modify the control parameters during the runtime process. The approach required

could have a bias on the distribution towards appropriate directions of the search space,

thereby maintaining sufficient diversity among individuals in order to enable further

ability of evolution.

This thesis has offered an initial approach to developing this idea. The work starts

from a clear understanding of the literature that is of direct relevance to the aforemen-

tioned motivations. The development of this approach has been built upon the basis of

the fundamental and generic concepts of evolutionary algorithms.

The work has exploited and benefited from a range of representative evolutionary

computational mechanisms. In particular, essential issues in evolutionary algorithms

such as parameter control, including the general aspects of parameter tuning and typical

means for implementing parameter control have been investigated. Both the hyper-

heuristic algorithm and the memetic algorithm have set up a comparative work for the

present development. This work has developed several novel techniques that contribute

towards the advancement of evolutionary computation and optimization.

One such novel approach is to construct a mixed strategy based on the concept of

local fitness landscape. It exploits the concepts of fitness landscape and local fitness

landscape. Both theoretical description and experimental investigation of this local

fitness landscape âĂŞbased mixed strategy have been provided, and systematic com-

parisons with alternative approaches carried out. Another contribution of this thesis is

the innovative application of mixed strategy. This is facilitated by encompassing two



mutation operators into the mixed strategy, which are borrowed from classical differen-

tial evolution techniques. Such an improved method has been shown to be simple and

easy for implementation.

The work has been utilised to deal with the problem of protein folding in bioinfor-

matics. It is demonstrated that the proposed algorithm possesses an appropriate balance

between exploration and exploitation. The use of this improved algorithm is less likely

to fall into local optimal, entailing a faster and better convergence in resolving chal-

lenging realistic application problems.
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Chapter 1

Introduction

There are a large number of problems existing in our real life that behave as obstacles,

which people need to solve them to get to the next stage. People are always willing to

solve them in the easiest way. However, in most of time, problems are quite different,

and even the same problem may demand different solutions when we encounter it in

variable situations. It may require a great deal of effort by only considering one ap-

proach or strategy, which might be most conventional one. In light of this, people try

to consider the nature of the problem itself, carefully setting the target, the Objective,

and looking for the most suitable way to tackle it.

With an investigation of the problem’s nature characteristic, people try to find the

exact strategy which exactly fits to the problem. But this is only the most desired situ-

ation, which may require people devoting unexpected huge time when facing different

problems. Therefore, it would be more efficient to categorise problems into a selec-

tion of different types, and design the most suitable strategy for certain category. By

allocating different strategy to each categories, a reserved pool of strategies are created.

1.1 Evolutionary Algorithms

Evolutionary algorithms are a group of bio-inspired algorithms often employed as op-

timisation techniques that attempt to search for the best solution it could find, if not the

optimal one, to a difficult problems which are conventionally time-consuming prob-

lems if using a greedy search. It is the process of repeatedly generating a population

1



1.2. Mixed Strategy

of solutions to the target problems, of which unfavourable solutions with worse result

or unstable performance are eliminated. By iterating the process including generation

of potential solutions, such as mutation and crossover, selection of solutions by re-

moving unhelpful ones, and adjustment to automatically adapt to the current situation,

significant computing time can be saved and models can also be built to generate better

solutions.

1.2 Mixed Strategy

The aim of this project is to develop a self-adaptive method that draws from game theory

to make evolutionary algorithms get better performance to varied problems. There

have been many approaches of adjusting evolutionary algorithms, but most of these

have been focused on specific applications and thus tend to address one single pure

task. It is interesting to explore a mixed strategy that can support not only continuous

domain, primarily on numeric optimization, but also discrete problems, while these

issues are usually conducted in rather different areas. It is important that this is to be

examined logically to what extent the mixed strategy can adapt for the algorithms that

could support learning.

This project is set to investigate and understand the main design issues that may

be involved in integrating significant different algorithms, including different types of

evolutionary algorithms. This will help make clear any underlying assumptions and

exposing any essential conditions upon which to successfully develop a robust and ef-

ficient mechanism, the mixed strategy, whereby different problems could be solved

follow this idea.

The performance of evolutionary algorithms is affected by many factors (e.g. mu-

tation operators and selection strategies). Take Evolutionary Programming (EP) as an

example, although the conventional approach with Gaussian mutation operator may be

efficient, the initial scale of the whole population can be very large. This may lead to

the conventional EP taking too long to reach convergence. To combat this problem, EP

has been modified in various ways. In particular, modifications of the mutation operator

may significantly improve the performance of EP.

Several mutation operators, Gaussian, Cauchy and Lévy mutations [1][2][3] have

been developed in evolutionary programming (EP in short). However, according to the

2



1.3. Thesis Structure

no free lunch theorem [4], none of them is efficient in solving all optimization problems.

In other words, each mutation is efficient only for some specific fitness landscapes.

Experiments have also confirmed this point. For example, Gaussian mutation has a

good performance for some uni-modal functions and multi-modal functions with only

a few local optimal points; Cauchy mutation works well on multi-modal functions with

many local optimal points [1].

An approach to improve conventional EP using single a mutation operator is to ap-

ply different mutation operators simultaneously and integrate their advantages together.

Such a strategy can be called a mixed mutation strategy in terms of game theory. There

are different ways to design a mixed strategy. For example, an early implementation is a

linear combination of Gaussian and Cauchy distributions [5]. Improved fast EP (IFEP)

[1, 3] takes on another technique: Each individual implements Cauchy and Gaussian

mutations simultaneously and generates two individuals; the better one will be chosen

in the next generation. The advantage of these two mixed mutation strategies is their

simplicity in implementation. A mixed strategy is inspired from game theory [6],[7],

which chooses a mutation operator according to a probability distribution. Reinforce-

ment learning theory is also used to learn individual mutation operators [8].

In previous studies [7][9], the design of a mixed strategy mainly utilizes the reward

of each operator (i.e. an operator which produces a higher fitness will receive a better

reward), but little is relevant to the fitness landscape. However, the performance of

each mutation operator is strongly linked to the the fitness landscape, so it is important

to deal with the local fitness landscape where an population is located.

In this project the mixed strategy is proposed to adapt to the local fitness landscape.

Firstly a measure about the local fitness landscape on the multi-modality is introduced;

and then the new mixed strategy is adjusted with respect to the above measure value.

1.3 Thesis Structure

This section outlines the structure of the remainder of the thesis.

Chapter 2: This chapter provides a background overview of the literature directly rele-

vant to the work carried out in the subsequent chapters. First, it briefly introduces

3



1.3. Thesis Structure

the fundamental and generic concepts of evolutionary algorithms, including the

basic representation of population and individuals and the commonly used key

evolutionary computational operations such as mutation, crossover and selection.

This is followed by a description of representative evolutionary computational

mechanisms, including evolutionary programming, ant colony optimization, and

clonal immune algorithm from artificial immune systems. The chapter then ad-

dresses the essential issue of parameter control in evolutionary algorithms, ex-

amining the general aspects of parameter tuning and typical means for imple-

menting parameter control. It then moves on to the technical aspects of self-

adaptive parameter control where the idea of combining different algorithms to-

gether is shown. This hybrid algorithm is conceived to be self-guided that is able

to choose the right method in a given situation. Two established algorithms on

this idea, hyper-heuristic algorithm and memetic algorithm are then introduced

later in the chapter. Finally, the review focuses on the motivation and the use of

mixed strategies in evolutionary algorithms, setting the foundation for the follow-

ing developments.

Chapter 3: This chapter presents a novel approach to constructing a mixed strategy

based on the concept of local fitness landscape. It first introduces the underlying

concept of fitness landscape, and its local version. Then, the chapter develops

a novel mixed strategy that strengthens conventional evolutionary programming

with two important improvements: a) applying local fitness landscapes to aid

in the determination of the behaviour of mutations in evolutionary programming;

and b) proposing a training procedure that makes use of typical learning functions

to determine the preferable probability distribution of mixed mutation operators,

in response to various types of local fitness landscape. Both theoretical descrip-

tion and experimental investigation of these are given. Systematic comparisons

with alternative approaches are carried out, supported with an analysis of the

experimental results. The results demonstrate that the proposed approach suc-

cessfully addresses and therefore, avoids a number of major drawbacks of using

conventional evolutionary programming methods that employ a single mutation

operator.

Chapter 4: This chapter presents a different approach to the development of a mixed

strategy, by exploiting game theory with the use of incomplete information. The

work results in a modified mixed strategy which combines different mutation op-

erators. This new approach is compared to the strategy shown in the preceding

4



1.3. Thesis Structure

chapter through systematic experimental evaluation, using the same test func-

tions previously adopted. The results once again demonstrate that this newly

introduced algorithm can successfully combat the shortcomings of conventional

evolutionary programming methods that employ a single mutation operator. The

new approach has proven to perform at least as well as the best of different con-

ventional strategies with single mutations. Furthermore, the test results also il-

lustrate that the approach enables a more stable performance while in use.

Chapter 5: This chapter presents an innovative application of mixed strategy by ex-

tending the domain of usage of mixed strategy to discrete problems. Given simi-

lar features to those associated with numerical function optimisation that is based

on the different types of local fitness landscape, this work applies the mixed strat-

egy to immune algorithms, by encompassing two mutation operators borrowed

from classical differential evolution techniques. This leads to a potentially pow-

erful optimisation algorithm with simple and easy implementation. The work is

applied to addressing the problem of protein folding in bioinformatics. Experi-

mental results demonstrate that the proposed algorithm possesses an appropriate

balance between exploration and exploitation, such that it is less likely to fall into

local optimal and has a faster and better convergence, in resolving challenging re-

alistic application problems.

Chapter 6: This chapter summarises the achievements of the work carried out in the

preceding chapters and points out lessons learned so far in developing evolution-

ary algorithms with mixed strategy and their application. It also discusses possi-

ble improvements over the present research, including ideas for both long-term

and short-term developments.

5



Chapter 2

Background and Literature Review

Since the advent of the exploitation of bio-inspired computation and implications, it

is seen an significantly increasing interest in research on the utilization of those novel

bio-inspired technologies in the context of designing effective optimisation procedures

for the important components of those more complex recognition problems. A particu-

larly successful domain in recently rising research interests, as previously stated within

the categorizing framework of meta-heuristic algorithms, is the application of evolu-

tionary computation in optimisation, both in continuous problems and discrete ones.

Evolutionary algorithms are usually reported to deliver good results, but exceptions

have been reported where simpler (and faster) algorithms result in higher accuracy on

particular data sets.

In particular, the exploitation of bio-inspired computation has given rise to the prob-

ability of advancing optimisation techniques. It is owing to this observation: evolution-

ary algorithm methods are considered herein to serve the foundation upon which to

develop hybrid algorithms for optimisation domain. A brief overview of the basic evo-

lutionary computation mechanisms is provided below.

2.1 Evolutionary Algorithms

Upon the their first introduction, evolutionary algorithm techniques have increasingly

grown as a problem solving mechanism based on the principle of evolution. Systems

6
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built using such techniques typically maintain a population of potential solutions. They

all employ a certain selection process based on the fitness of the individual solutions,

and certain "genetic" operators [10]. There are several different types of such systems.

The three most popular are genetic algorithms (GAs) [11], evolutionary programming

(EP) [12] and evolution strategies (ESs) [13] [14]. Genetic algorithms are usually re-

ported to deliver good results, but exceptions have been reported where simpler (and

faster) algorithms result in higher accuracy on particular data sets. Evolutionary com-

putation differs from traditional optimization techniques in that it involves a parallel

search through the population of solutions.

2.1.1 Mechanism of Evolutionary Algorithms

An evolutionary algorithm is a stochastic procedure which maintains a population of in-

dividuals for a potential iteration t, P(t)= {xt
1, . . . ,x

t
n}. Each individual xi(i= 1,2, . . . ,n)

represents a potential solution to the given problem, and, the individual is implemented

using a certain data structure S which could possibly be rather complex. Each solution

xt
i is evaluated to measure its quality, namely the "fitness". Then, the system generates

the population (iteration t + 1) anew with the aid of selecting the more fit individuals

subject to an evaluation function (select step).

Some randomly chosen members of the new population undergo transformations

(alter step) by means of genetic operators to form new solutions, the offspring. In

implementing the alter step, there are unitary transformations mi (mutation type), which

create new individuals by a small change, a flip between number 1 and 0 in conventional

evolutionary, in a single individual, (mi : S → S) and higher order transformations c j

(crossover type), which create new individuals by combining parts from several (two

or more) individuals (c j : S × . . .× S → S). After a certain number of generations,

the program would come to a convergence. The best individual then is supposed to

represent an acceptable near-optimum solution.

2.1.2 Representation of individuals

Genetic algorithms started and still mainly operate with binary strings for representing

individuals, that is, their genotype. If the evaluation function is not pseudo-Boolean,
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each string has to be decoded into a set of appropriate decision variables, namely the

phenotype, before the fitness of the individuals can be evaluated.

Evolution strategies started with integer variables as an experimental optimum-

seeking method, but turned to real variables when used in practical problem-solving

systems. The individuals are not only represented by the set of decision or object vari-

ables, but also by a set of strategic parameters controlling the variation process, i.e.

variances and covariances. This latter parameter set is learned on-line during the search

for optima.

EP in its current form relies upon real variables, both for the object variables and

the strategy parameters, which are adapted according to exogenous rules.

2.1.3 Genetic Operators

Following the construction of the problem domain into a string of variables, the initial-

isation step then generates a group of these strings (individuals), typically containing

several hundreds or thousands of them. They collectively form the entire population

of potential solutions. Then the generation of the next generation population of solu-

tions is carried out on the next step, through a combination of genetic operators, most

importantly, including mutation and crossover.

Mutation

In the bit-string world of genetic algorithms, mutations are purely random bit inver-

sions, occurring with low frequencies generally. Evolution strategies and evolutionary

programming both use Gaussian noise with zero mean to perturb all object variables.

Evolution strategies additionally assumes logarithmic normal distribution for the stan-

dard deviations of the mutation step sizes and normal distributions for changing the

covariances which may lead to correlated mutations.

Crossover

It is very interesting to observe that genetic algorithms emphasize the role of recom-

bination, e.g. in the form of two-point or multi-point crossover, whereas EP rejects this

form of variation as useless or sometimes even harmful. An explanation can be found

if probability distributions are examined for changes of the object variables at the level
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of phenotypes, i.e., after decoding the bit strings. Indeed, crossover in GAs may lead to

recombinant which lie outside of the hypercube spanned by their parental positions.

Evolution strategies rely on both mutation and recombination. In particular, discrete

recombination is similar to uniform crossover if the crossover points lie on the bound-

aries of the partial bit strings, which encode the different phenotype object variables.

Intermediate recombination, recommended for strategy parameters, helps to avoid over-

adaptation, but may lead to a loss of diversity of internal models of the individuals and

must be counterbalanced by mutation.

2.1.4 Selection

The most striking differences exist between genetic algorithms and evolutionary pro-

gramming on the one hand and evolution strategies on the other hand with respect to

the selection procedures. However, it is not merely the scheme of assessing the indi-

viduals for their fitness that plays a role here. Two other processes are intermingled the

generation transition and the mating behaviour.

If elitist variants are excluded, namely good parental positions cannot get lost,

which is good for proving global convergence, all three classes of canonical evolu-

tionary computation methods give their individuals a life span of one generation. In

general, Genetic algorithms and evolutionary programming produce just one descen-

dant on average per generation. This is true for genetic algorithms with crossover as

well, since only one of the two recombinant is used later on, generally at random, i.e.

without comparing fitness. Only evolution strategies operate with a surplus of descen-

dants, with the (µ; λ ) version where µ(> λ ) children are reproduced from λ parents.

This helps in handling inequality constraints, the violation of which leads to infeasible

descendants.

With proportional selection as well as most other forms like (linear) ranking, all

individuals produced during generation t within genetic algorithms and evolutionary

programming have a chance to have offspring themselves in the next generation t + 1.

Evolution strategies, however, discard the λ − µ worst descendants. The remaining µ

individuals become parents of the next generation and possess equal chances to mate

and have children. Genetic algorithms and evolutionary programming allocate mating

as well as reproduction probabilities to their individuals according to the relative fitness

values or the relative position in the ranking process.
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2.2 Examples of Evolutionary Algorithms

2.2.1 Evolutionary Programming

Evolutionary programming (EP) is a branch, alongside other notable research areas

such as genetic algorithms and evolution strategy, of evolutionary computation that

stems from natural biological evolution [12]. Evolutionary programming operates on

the basis of populations. The objective is not only to find suitable adjustments to the

current population and hence the solution, but also to perform the process efficiently.

Figure 2.1: General procedure of evolutionary programming

Basic Operations of Evolutionary Programming
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Evolutionary programming is a powerful algorithm for numerical optimization [1],

where it is used to find a minimum~xmin of a continuous function f (~x), that is,

f (~xmin)≤ f (~x), ~x ∈ D, (2.1)

where D is a hypercube in R
n, n is the dimension.

The general procedure of conventional evolutionary programming uses a single mu-

tation operator is shown on Fig. 2.1, which can be described as follows [1]:

1. Initialization: Generate an initial population consisting of µ individuals at ran-

dom. Each individual is represented by a set of real vectors (~xi,~σi), for, i =

1, · · · ,µ

~xi = (xi(1),xi(2), · · · ,xi(n)),

~σi = (σi(1),σi(2), · · · ,σi(n)).

2. Mutation: For each parent (~x
(t)
i ,~σ

(t)
i ) (where t represents generation), create an

offspring (~x′i,~σ
′
i ) as follows: for j = 1, · · · ,n,

σ ′
i ( j) = σ

(t)
i ( j)exp{τN(0,1)+ τ ′N j(0,1)}, (2.2)

x′i( j) = x
(t)
i ( j)+σ

(t+1)
i ( j)X j, (2.3)

where N(0,1) stands for a Gaussian random variable generated for a given i,

N j(0,1) is a Gaussian random variable generated for each j, and X j is a random

variable generated for each j. The parameter τ ′ controls the global search step

size, whereas τ is the factor for individual search step size. They are chosen as

the same as in [1]:

τ = (

√

2
√

n)−1,

τ ′ = (
√

2n)−1.

3. Fitness Evaluation: For µ parents and their µ offspring, calculate their fitness

values f1, f2, · · · , f2µ .
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4. Selection: Define and initialize a winning function for every individual in parent

and offspring population as wi = 0, i = 1,2, · · · ,2µ . For each individual i, select

one fitness function, say f j and compare the two fitness functions. If fi is less

than f j, then let wi = wi +1. Perform this procedure q times for each individual.

Select µ individuals that have the largest winning values to be the parents of the

next generation.

5. Repeat steps 2-4, until the stopping criteria are satisfied. The stopping criteria

defines the termination condition of the running of the process. It is set to a fixed

number of generations reached in this algorithm. The number should be large

enough such that the process is usually not able to produce significantly better

results.

Thus, the general process of Evolutionary Programming includes four major steps:

Initialization, Mutation, Fitness Evaluation and Selection, as shown in Fig. 2.1.

In addition, to avoid the step size σ falling too low, a lower bound σmin should be

put on σ [15]. So a revised scheme of updating σ is given by:

σ ′
i ( j) = (σmin +σ

(t)
i ( j))exp{τN(0,1)+ τ ′X j}.

where σmin > 0 is the minimum value of step size σ .

2.2.2 Ant Colony Optimization

Ant Colony Optimization (ACO) was initially introduced in the early 1990’s as a novel

nature-inspired metaheuristic for the solution of hard combinatorial optimization (CO)

problems [16, 17]. This algorithm is based on the behaviour of real ant colonies in

which ants are capable of finding the shortest route between a food source and that,

more significantly, adapting to changes in the environment.

Informally, the ACO algorithm can be summarized as follows: A group of ants

randomly search the space surrounding their nest in order to explore a location rich in

foods. The origin of the ability of ants to find out the shortest routes to any foods source

lies in the deposits of the chemical pheromone. As soon as an ant finds a food source, it
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evaluates the quantity and the quality of the food and carries some of it back to the nest.

During the return trip, the ant deposits a chemical pheromone trail on the ground. The

quantity of pheromone deposited (and also evaporated) over time, which may depend

on the quantity and quality of the food as well as the number of ants, will guide other

ants to the food source.

Computationally, an ant is a simple computational agent, which iteratively con-

structs a solution to the given problem. Partial problem solutions are seen as states. At

the core of an ACO algorithm lies a loop, where at each iteration, each ant moves from

a state ι to another Ψ, corresponding to a more complete partial solution. That is, at

each step σ , each ant k computes a set Aσ
k (ι) of feasible expansions to its current state,

and moves to one of these in probability. The probability distribution is specified as

follows. For ant k, the probability pk
ιΨ of moving from state ι to state Ψ depends on the

combination of two values [18]:

• The attractiveness η of the move, as computed by some heuristic indicating the

desirability of that move apriori; and

• The trail τ of the move, indicating how proficient it has been in the past to make

that particular move: it is therefore indicative of the desirability of that move a

posteriori.

Trails are updated usually when all ants have completed their solution, increasing

or decreasing the level of trails corresponding to moves that are part of "good" or "bad"

solutions, respectively.

2.2.3 Immune Algorithms

Artificial immune system (AIS) has emerged as a biologically-inspired approach that

imitated the human immune systems for solving various types of computational prob-

lems such as optimization, classification and a large variety of real-world applications

[19, 20]. Over the last decade of the development, the research of AIS has been divided

into three types of models: clonal selection, negative selection theories, and immune

networks [21, 22].
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2.2.3.1 The Biological Immune System

The immune system protects an animal from being attacked by foreign micro-organisms.

When an antigen (virus, bacteria etc.) first exposed to the system, it can extract infor-

mation from the antigen and use that information in future cases of re-infection by the

same or similar antigens. From a computational point of view, this ability makes the

immune system useful [19].

The immune system can be divided into two tiers of defence: the innate immune

system and the adaptive immune system. In the innate immune system, granulocytes

and macrophages play a mediate role. With these two cells the system can immediately

fight antigens without requiring any previous exposure to them. Some cells in the innate

immune system ingest and digest micro-organisms and antigenic particles and some

mediate interactions between the antigen and other immune cells [19].

In the adaptive immune system, the mediate cells called lymphocytes. B cells and

T cells are the two types of it. There is a principle called clonal selection principle

or clonal expansion principle, which describes the response of the adaptive immune

system to antigens. The theory of it is that only cells that can recognise the antigen

are selected and clone. Both B-cells and T-cells undergo clonal expansion, but only B

cells experience somatic mutation. It is because B cells is mutation of the gene region

responsible for recognising antigens [19].

When a mammal is exposed to an antigen, the B cells produce antibodies. The B

cell is stimulated by the antigen binding with its receptors and by signals from other

immune cells. With this stimulation, the B cells proliferate (clone) and most of the new

cells mature into non-dividing plasma cells. Some mature cells became B-memory cells

that circulate through the blood and tissues. When it is exposed to the antigen again,

plasma cells proliferate with high antigen affinity [19].

2.2.3.2 Clonal Selection Algorithm

A large proportion of studies in AIS have been focused on clonal selection algorithm

which could be utilized as efficient algorithm for optimization problems [23]. Although

initially thought by someone as genetic algorithm (GA) without crossover [24], clonal

selection algorithm, with the features of affinity proportional reproduction and hyper-

mutation, has been seen as a robust algorithm in the research field of Evolutionary
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Algorithm (EA) alongside other approaches, such as genetic algorithm and swarm in-

telligence algorithm [25, 26].

The clonal selection theory [27] in an immune system describes the phenomenon

that the immune system performs a natural response when binding an antigenic stim-

ulus, where the B cells are able to recognize the antigens, and start to proliferate to

provide solution to the antigens. Several types of algorithms such as CLONal selection

ALGorithm (CLONALG) [26] and optimization Immune Algorithm (opt-IA) [28], have

been proposed to tackle the optimization problems using the basic processes involved

in clonal selection.

Basic Operations of Clonal Selection Algorithm

The basic idea of Clonal Selection Algorithm (CSA) involves two populations: a

population of antigens, and a population of antibodies, where the antigens represent the

problems to be solved, and the antibodies are the current candidate solutions

1. Initialization: A basic process of CSA starts with a randomly initialization of

the population of individuals (M). The affinity (fitness function value) of all anti-

bodies (individuals) in population M are determined with respect to the antigens

(the given objective function).

2. Cloning: The cloning operator will then select n best individuals with highest

affinity from population M and generate n copies of these individuals proportion-

ally to their affinity with the antigen, forming the clone population Pclo. The

higher the affinity, the higher the number of Pclo, and vice-versa.

3. Mutation: Then the hypermutation operator performs mutation to all these n

individual in Pclo with a rate inversely proportional to their fitness values, gener-

ating the Phyp. After computing the affinity of the antigen, CLONALG randomly

creates new antibodies that replace the antibodies with lowest fitness in the cur-

rent population.

4. Afterwards, the algorithm repeat these process until the stopping criteria ter-

minates the iteration, which is typically a predefined number of generations is

reached.
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2.3 Parameter Control in Evolutionary Algorithms

In applying any heuristic search algorithm like evolutionary algorithm, there are ba-

sically two major steps under consideration, one being the choice of representation

and the other being the fitness function. Based on the specification of representation

and fitness function, one can go on to determine which component should be tech-

nically required or better fitted in for the chosen representation and fitness function.

As for evolutionary algorithm, one would typically consider components such as mu-

tation/recombination operators for its representation, selection strategy for selecting

parents, survivors as well as initial population. Each component may have parameters

involved, which would greatly influence the performance as to whether a more optimal

solution will be achieved or a solution will be find within efficient time. However, find-

ing such parameters have long been challenging yet promising task among evolutionary

algorithms researchers and practitioners.

Figure 2.2: Taxonomy of different parameter setting methods

In [29], Eiben et al. successfully introduced a taxonomy for classification of dif-

ferent parameter setting methods, which we will adopt in this thesis as shown in figure

2.2. On the topmost level they firstly separate all kinds of parameter strategies into 2

branches, namely parameter tuning and parameter control, which is based on an early

taxonomy of Angeline [30].
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2.3.1 Parameter Tuning

By parameter tuning we mean that parameters involved in a particular evolutionary

algorithm problem are pre-fixed and remain static without change during optimisation

processes. For example, population sizes can be initially fixed to be a value. Over the

past decade considerable effort have been made to discover a general set of parameter

values. Here "general" means the targeted set of parameter values can be applied to a

wide range of applications across different tasks.

2.3.1.1 Tune by Hand

In earliest work evolutionary algorithm parameters are manually tuned, which to some

extent is still true for many cases in contemporary applications. Historically mutation

operators are mostly discussed in parameter tuning. Some famous work in this area

was done by De Jong, in his doctoral thesis [31], he recommended the probability of

mutation pm = 0.01 and the probability of crossover pc = 0.6. In other literature, Schaf-

fer and other researchers [32] recommended 0.005 <= pm <= 0.01, and Grefenstette

[33] recommended pm = 0/01, While in [34] pm = 1/l was suggested where l denotes

the the representation’s length. Each set of values proposed in different papers has its

own arguments which seems to help achieve optimal results in their targeted problems,

where different representation and fitness function are being used.

2.3.1.2 Design of Experiments

In modern days, systematic design of experiments has been conducted in order to find

optimal sets of parameters in evolutionary algorithm tasks. A comprehensive introduc-

tion to the experimental design of evolutionary computation was given in [35]. Such

experiments follow the pattern of statistical experiments in terms of the inspection of

parameters.

An example of this can be illustrated that, if a evolutionary algorithm is applied in

a problem, then parameters involved in this program such as mutation rate are defined

as factors, results or of the program such as fitness values at a prefixed generation or

performance indicators such as convergence speed are defined as response, which act as

a indicator as to whether the given parameters (factors) will result in better performance
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in this problem. Typically in one set of experiments, all but one parameters would be

kept fixed, so the resultant response is a direct reflection of this specific choice of factor.

A well developed parameter tuning method called Sequential Parameter Optimization

(SPO) was described in [36, 37] and has successfully been applied in many applications.

Preuss and his colleagues [38] further extended SPO to be used for self-adaptation for

binary representation evolutionary algorithm.

2.3.1.3 Meta-evolution

Another category of algorithms under the parameter tuning branch in our taxonomy

is the meta-evolutionary algorithms, also know as nested evolutionary algorithms. In

essence, meta-evolutionary algorithms include 2 levels of parameter optimisation [39],

where the outer algorithm tunes the parameters of an embedded/nested inner algorithm,

and the inner algorithm is responsible the optimisation of the objective function of the

whole problem. Such algorithms are capable of tuning the parameters of evolutionary

algorithms but can be efficient, since the outer algorithm have to be tuned first then the

inner algorithms follows. An isolation time is defined to represent how much time the

inner algorithms is allowed to optimise the objective function.

Meta-evolutionary algorithms was early investigated in [33], where the parameters

of a classical genetic algorithm as the outer algorithm which was hence used for other

problems. Coello [40] uses meta-evolutionary algorithm for determining the parame-

ters of penalty function in a constrained optimisation problem. Later a method called

relevance estimation and value calibration (REVAC) was proposed in [41, 42, 43] for

estimation of the outcome obtained by selecting different parameters. They start with

a uniform joint probability density distribution over possible parameter vectors and

examine the expected performance of the evolutionary algorithm when applying new

parameter vectors chosen from the distribution. And the distribution is iteratively up-

dated according to the performance so vectors which results in better performance are

more likely to be chosen over new iterations.

2.3.2 Parameter Control

In contrast with static parameters, changing parameters while evolutionary algorithms

are running is more flexible and reasonable, especially if the fitness landscape changes

during the optimisation process. This is called parameter control.
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2.3.2.1 Deterministic Parameter Control

Earliest parameter control is deterministic, which means that the parameters are chang-

ing according the number of generations t while an evolutionary algorithm is running

and searching its solutions. Under this consideration it may be a good practice to change

the mutation rate during the search. Since desirably over the course of the search the

algorithm will gradually concentrate its searching region more around the optimal so-

lution, so it would be reasonable to constrain the mutation rate. [44] proposed that the

mutation rate:

pm(t) =
1

240
+

11.375

t2
(2.4)

where t denotes the number of generation. Since in the right hand side of the equation

t appears in the denominator, it will make mutation rate pm gradually decrease as the

search of the algorithm carries on. Later more flexible schemes were proposed, such

as [45], however they used 3 constants which must be determined with respect to their

specific target problem. An updated and more successful deterministic approach was

given in [46]:

pm(t) = (2+
1−2

T −1
· t) (2.5)

where the T denotes the overall number of generations of the running of the evolution-

ary algorithm.

Similar approach is also proposed for problems with constraint where dynamic

penalty functions naturally find their applications. Typical uses are increasing dynamic

penalties as the number of generation grows so as to reduce the searching region to

more centre on feasible solutions. An example of such approach is proposed in [47]:

f̃ (x) := f (x)+(C · t)α ·G(x) (2.6)

where f (x) is the fitness function of an individual x in a population and G(x) is the

constraint violation measure function while C and α are parameters.

2.3.2.2 Adaptive Parameter Control

While deterministic parameter control use a predefined deterministic equation, adaptive

parameter control allows evolutionary algorithms to update parameters according to a
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set of heuristic rules. An example of adaptive control is given in [14] in which the mu-

tation strength is updated by a 1/5 success rule. The mutation steps sigma used in their

approach will be increased if the ration of successful candidate solution is higher than

1/5 in order to make progress faster, and the steps to be decreased if the success ratio is

below 1/5. This approach is not dependent on a deterministic predefined equation, but

rather adapting its value according to the characteristics of the actual problems such as

fitness landscape.

2.3.2.3 Self-adaptation

If no knowledge as to how to define the set of heuristic parameter updating rules is

known in advance, then an evolutionary algorithm should be able to search and find the

parameters settings itself. In the taxonomy we are using this is called self adaptation

and will be discussed in next section.

2.4 Self-adaptive Parameter Control

Approaches belong to self-adaptive parameter control are reviewed in this section, with

emphasis on self-adaptation of mutation operator, which is most related to this thesis.

2.4.1 Self-adaptive Evolutionary Algorithm

Early self-adaptation parameter control in evolutionary algorithms can be dated back to

1974, when Schwefel [48] introduced it into evolutionary strategy. Later self-adaptation

was introduced into evolutionary programming [49]. It seems quite common that self-

adaptation of mutation parameters with continuous representations while for binary

representation evolutionary algorithms there seems no established standard in terms of

how to applying self-adaptation. But some instances of attempts exists such as [50, 51]

and [52].

The cumulative path-length control, a de-randomized approach to self-adaptation

of evolutionary parameters, was introduced by Ostermeier [53], and gave rise to certain

other algorithmic variants, e.g., the cumulative step-size adaptation (CSA) [54] and
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the covariance matrix adaptation evolution strategy (CMA-ES) [55]. The latter has

stood as the state-of-the-art evolutionary algorithm for many years and many successful

applications can be found in literature such as in [56] [57]. Later a self-adaptive variant

of the latter was given in [58].

The covariance matrix adaptation approaches such as CMA-ES computes the co-

variance matrix of difference of the best solutions in current generation and its parental

generation. The CMSA-ES algorithm as described in [58] uses an algorithm as fol-

lows: let a = (x,σ) be an individual in the population of an evolutionary algorithm,

where x denotes the solution and σ the self-adaptive step size which is the mutation

strength parameter concerned in this case. Firstly after initialisation, the algorithm uses

the following steps to produce λ candidate solutions:

1. Firstly, using a global self-adaptive step size σ to produce log-normally dis-

tributed step size for each individual:

σi = σ̂ exp(τNi(0,1)) (2.7)

where τ is the learning parameter, Ni(0,1) is a random value from the Gaussian

distribution and the global step size λ̂ is obtained by computing the average value

of the step sizes from the µ best parental solutions:

τ̂ =
1

µ

µ

∑
j=1

σ j (2.8)

2. Then correlated directions Si are computed randomly for each individual by using

a covariance matrix C as follows:

si =
√

CNi(0,1) (2.9)

Then the random direction is scaled with the self-adaptive step size σi, and added

to global parent solution y to generate

yi = y+σisi. (2.10)

3. The above steps are repeated λ times, and hence the λ candidate solutions are

obtained for this generation. Now the algorithm can calculate µ best solutions

according to their fitness value.
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4. After recombination The covariance matrix of the random directions of this gen-

eration will be generated, which is

S =
1

µ
ssT (2.11)

With the help of a balance parameter τc, the new covariance matrix of difference

of the parental and current generations is computed by linear combination:

C = (1− 1

τc
)C+

1

τc
S (2.12)

In [58] it is suggested that

τc =
N(N +1)

2µ
(2.13)

5. The algorithm terminates when the iteration of the above steps meets prede-

fined termination conditions. The CMSA-ES algorithm is a typical case of self-

adaptive parameter control in a sense that it updates its mutation strength pa-

rameter σ with the help of the covariance matrix of the difference of 2 adjacent

generations.

2.4.2 Mutation Strengths

Most significant success of self-adaptation of parameters come from adapting mutation

strengths, largely because mutation strength is arguably the most influential parameter

in terms of the change in solution of a evolution optimisation algorithm. Increased mu-

tation strength allows the optimisation process to search in larger solution spaces, while

small mutation strength make the algorithm focus more on current solution generations.

2.4.2.1 Real-valued Mutation Strength

The above mentioned CMSA-ES algorithm is one of the example to demonstrate how

the continuous mutation strength parameters are updated during the process of an self-

adaptive evolutionary search. Experiments have shown such algorithms are able to

change the mutation strength as the fitness landscape is changing during the evolution-

ary search [58][59].
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An introduction to the step size σ in real-valued evolutionary algorithm is given in

[60]. Other continuous mutation parameters can also be self-adapted. Self-adaptation

of the skewness of the mutation distribution is given in [61] [62]. Such asymmetric

mutation shows advantages in certain problem although classical approaches often as-

sume the mutation operators is unbiased [60]. Another biased mutation is proposed in

[63], where the mutation ellipsoids is self-adapted by shifting with a bias vector and

shows improved performance in problem with constraint. A correlated mutation op-

erator is proposed in [64], in which the axes of the Gaussian mutation distribution is

rotated self-adaptively according the changing fitness landscape. This approach is sim-

ilar to the above mentioned CMSA-ES in a sense that the adapted covariance matrix in

CMSA-ES also rotate the axes of the mutation parameter distribution.

2.4.2.2 Discrete Mutation Strengths

There seems rather limited approaches for self-adaptation in evolutionary algorithms

in discrete solution spaces. There are certain approaches with regard to crossover con-

trolling for combinatoric problems using evolutionary algorithms have been proposed.

Using binary string to represent crossover points for parameter control was introduced

by Schaffer and Morishima [65]. A similar approach was proposed by Spears [66]. An-

other approach making use of integer value represented crossover points was introduced

by Kramer [67]. A comparison of performance of self-adaptive inversion mutation and

static inversion mutation for GR666, a library of travelling salesman problem, is con-

ducted in [68].

2.4.3 Crossover Parameters

Though as an standard operator in evolutionary algorithms, crossover have not been in-

vestigated thoroughly enough compared mutation operator. One can argue it brings in

diversity in searching space while others believe it simply maintains and exploits exist-

ing solutions. For example in [69, 70], it is assumed that crossover recombines different

building blocks of parental generation while in [71, 60] assumes common blocks of par-

ents are mixed. Attempts to finding self-adaptive schemes for crossover operators have

been made in the project. However, approaches in this thesis, evolutionary program-

ming for function optimisation and immune algorithm for protein folding, do not take

significant advantages of crossover operator, the parameter control of crossover will not

be covered in details in this section.
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2.4.3.1 Crossover Probabilities

Just as the name implies, crossover probability pc controls how often the crossover is

applied. It seems not many approaches concerns the self-adaptation of crossover prob-

abilities as it is usually set as a fixed value. For example in evolutionary strategy, the

crossover operator is always applied for every solution. But in [72] it is argued that

the crossover probability should be adapted during the process of evolutionary optimi-

sation. Later an approach to self-adaptation of the crossover probability is proposed

and results in several combinatorial optimisation problems was successfully reported

[73]. As with the mutation strengths of mutation operators, experiments shows that

self-adaptive process of an evolutionary algorithm will decrease the crossover proba-

bilities over the course of evolutionary search. The interpretation of this might be that

crossover tend to contribute in the finding of optimal solution in early stage of the search

while in later stage big changes in solution spaces are not desirable.

2.4.3.2 Crossover points

Consider a solution in an evolutionary algorithms is represented as a vector string, then

the crossover point is the place within the string where the solution is split into a left

part and right part. Then crossover operation is done by recombining the left part and

right part of two parental solutions. Instead of choosing a fixed point of the parents to be

the crossover point, there have been efforts on self-adaptation of the place of crossover

points. The first approach is punctuated crossover, which outperform classic genetic

algorithm on 4 bench mark functions [65]. Smith and Fogarty Proposed the linkage

evolving genetic operator (LEGO) algorithm, which makes use of the analogy from

biology that closely located genes are more likely to be recombined. Similar approach

in learning linkage was also investigated in [74] and techniques based on probabilistic

modelling of the linkage learning was proposed [75].

Consider a simple case in which crossover is only applied on 1 point of the parental

solutions vector strings with N bits of elements, then parameter σ ∈ [1,N −1] denotes

the crossover point which determine the crossover will be applied between the σ th and

(σ +1)th element.
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Given two parental solutions

a1 = ((p1
1, . . . , p1

N),σ)

a2 = ((p2
1, . . . , p2

N),σ)

and σ as the accompanying crossover point parameters. Then initially σ are randomly

chosen, then over the course of evolutionary optimisation, the algorithm will update the

σ to be the new point σ∗ where higher fitness value can be obtained after crossover two

parents and produce the following two offspring:

a1 = ((p1
1, . . . , p1

σ , p2
σ+1, . . . , p2

N)σ∗),

a2 = ((p2
1, . . . , p2

σ , p1
σ+1, . . . , p1

N)σ∗),

2.4.4 Global Parameters

Apart from mutation parameters and crossover parameters, evolutionary algorithms

also involve global parameters such as selection pressure and population size. Pa-

rameters such as mutation strengths and crossover points are local parameters which

belong to individuals in a solution population. But such local information can be added

together to produce global parameters. Such an approach to self-adaptation of global

parameters is proposed in [76]. In the aforementioned CMSA-ES algorithm, the learn-

ing rate τc is just another example of self-adaptive parameter since it is computed by

vote of individuals:

τc =
1

µ

µ

∑
i=1

σio (2.14)

This clearly shows the learning rate τc is an aggregation of self-adaptive parameters of

individuals. In [59] the self-adaptation of population size µ , λ of CMSA-ES as well as

the learning rate τc is examined and tested, and they argue that self-adaptation of global

parameters may help the algorithm search recover from a bad initialisation but there is

no definitive conclusion as to whether it is overall beneficial subject to the nature of

targeted optimisation problems.
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2.5 Hyper-heuristic Algorithm

The word ’heuristic’ is a term used to demonstrate a whole search algorithm. It also

refer to a particular decision process sitting within some repetitive control structure

in some circumstances. Before the proposal of "No Free Lunch Theorem" [4], some

researchers have tried to argue for the absolute superiority of one heuristic over another.

But later on researchers convinced that when averaged over all problems are defined on

a finite search space, all search algorithms had the same average performance. The

result can be seen as an intuitively natural result. The reason is that the majority of

problems have no exploitable structure. Only a complete lookup table can be used in

the process of defining. With the theory of "No Free Lunch Theorem", the question

of what sorts of problems any given algorithm might be particularly useful will be

continuously noticed.

2.5.1 Motives of Hyper-heuristic

Although researches have put forward the heuristic search methods in real-world com-

putational search, there are still difficulties in its application. The difficulties are mainly

about the significant range of parameter or algorithm choices involved. Moreover, peo-

ple are lack of guidance in selecting type of approaches. The goal of hyper-heuristics

is to automate the design and tune of heuristic methods, which can be used to solve

hard computational search problems. The hyper-heuristics develops more applicable

algorithms, which are better than many of the current implementations. It can produces

generic methods based on low-level heuristics, which are much easier to implement. A

hyper-heuristic can automatically produces an intelligent combination of the provided

components.

The term hyper-heuristics was put forward in the early 2000s [77]. There are two

fundamental ideas of hyper-heuristics. Firstly, selecting and designing efficient hybrid

and cooperative heuristics is a computational search problem. Secondly, the search

methodologies still need to be improved by the incorporation of learning mechanisms.

More recently, the research on hyper-heuristics are mainly focus on generating heuris-

tics automatically, which are suited to the given problems.

The ideas hyper-heuristics are derived from the early 1960s [78]. The pioneering

work in 1960s proposed a method of combining scheduling rules using ’probabilistic
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Figure 2.3: Process of hyper-heuristics

learning’. After three decades’ development, hyper-heuristics were widely used. To

design a good combination of problem-specific (fast) heuristics is a research problem.

Researches have produced a subset of solutions in this new research by perturbing the

heuristic combination and the problem data [79, 80]. In the context of the open-shop

scheduling, the space of sequences of heuristic choices was researched by using a ge-

netic algorithm. In other experiments of 1990s, researches have solved a real-world

scheduling problem by using a genetic algorithm approach. Norenkov and Goodman

[81] conduct a set of experiments using evolutionary algorithms. The solutions obtained

were strongly affected by the subset of heuristics used.

2.5.2 Classification of Hyper-heuristics

The classification of hyper-heuristics is based on two dimensions: the nature of the

heuristic search space and the source of feedback during learning. There are several

types of hyper-heuristics. In this part, three approaches will be discussed: Heuristics to

choose heuristics based on constructive heuristics, heuristics to choose heuristics based

on perturbative heuristics and heuristics to generate heuristics.
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2.5.2.1 Heuristics to choose heuristics based on constructive heuristics

These approaches are able to select and use constructive intelligently. They start with

an empty solution, and build a complete solution gradually. The hyper-heuristic frame-

work are built up with a set of pre-existing constructive heuristics. The challenge is to

select the most suitable heuristic for the current problem state. When a complete solu-

tion is being reached, the process will come to the final state. Because of the complete

solution, the sequence of heuristic choices is finite. They are determined by the size of

the underlying combinatorial problem.

In the investigation of the application domain, five applications of the approaches

have been put forward: Graph-colouring heuristics in timetabling, dispatching rules in

production scheduling, packing heuristics in 1D packing problems, packing heuristics

in 2D packing and cutting stock problems and variable ordering heuristics in constraint

satisfaction. For example, Terashima-Marin et al [82] solve 2D-regular cutting stock

problems by using the messy genetic algorithm hyper-heuristic. Garrido and Riff [83,

84] also propose a genetic algorithm hyper-heuristic to solve the 2-D strip packing

problems.

2.5.2.2 Heuristics to choose heuristics based on perturbative heuristics

The search of a perturbative hyper-heuristic is conducted iteratively. It selects and ap-

plies a low-level heuristic or its subset to the current solutions to meet a set of stopping

conditions. Recent proposed perturbative hyper-heuristics perform a single point. It

processes a single candidate solution at each iteration.

In the recent years, perturbative hyper-heuristics have been applied in the combi-

natorial optimisation problems. The application of perturbative hyper-heuristics have

been involved in a wide rage. For example, Kendall and Mohamad [85, 86] put pertur-

bative hyper-heuristics into the practice of the channel assignment. Other applications

include component placement, personnel scheduling, packing, planning, shelf space

allocation, timetabling and vehicle routing problems.

2.5.2.3 Heuristics to Generate Heuristics

Hyper-heuristics searches a space of heuristics constructed from components, rather

than a space of complete, pre-defined, heuristics. Not only it produces a solution, but
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also outputs the new heuristic that produced the solution. Genetic programming [87],

an evolutionary algorithm used for generating a executable computer program from a

population of potential computer program, can be considered as one of the most com-

mon methodology of automatically generated heuristics.

The purpose of automatically generated heuristics is to reuse on new unseen prob-

lems of a certain class. Generally, all heuristics generated by a hyper-heuristic are

reusable. They are used in a new instance to come out a legal solution. It will perform

well only if being designed with re-usability. The automated heuristic design process

makes human resources and time less demanding. A generated heuristic can produce a

better solution than the current human created heuristic.

The research on a variety of optimisation problems of heuristics to generate heuris-

tics has reached promising results, which are based on human-generated heuristics.

Researches have shown that evolutionary computation methods are being applied in the

automatically generate heuristics [88].

Different from the methodology that operates directly on the solution space, the

evolutionary heuristic generation process is computationally expensive. When results

are not be required for future problems, the computationally expensive can be seen

as the only disadvantages of the evolutionary heuristic generation process in the short

term. The evolutionary algorithm can be directly applied to the problem space. If the

output or the solution are required for future problems, the entire evolutionary algorithm

must be run for the second time. But if the evolutionary process can generate a quick

reusable heuristic, then only one run is needed. Under the circumstance, the heuristic

will perform far more quickly than an evolutionary algorithm when obtain a comparable

result on the future problems.

Although the evolutionary heuristic generation process is a long process, it is quicker

than manual heuristic generation. Furthermore, humans are the only sources of the po-

tential components of the evolved heuristics. The human created heuristics is the only

inspiration of the successful sets of potential components. A research has shown that

the human ingenuity cannot be totally replaced by the automatic heuristic generation.

2.5.3 Hyper-heuristic and Parameter Control

As introduced in Section 2.3.2 parameter control is a different way to view self-adaptive

configuration of evolutionary algorithm. It tunes algorithm parameters on-line at exe-
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cution time. It is used in the evolution strategies. Feedback from the search process

is used to control the mutation step size. Later in 1999, a useful classification into

adaptive and self-adaptive approaches was proposed [29]. Researches also surveyed

previous work on parameter control that is applied in evolutionary algorithms.

In the research of hyper-heuristics, both online and offline approaches are valuable

directions. On the one hand, to find a search algorithm requires a big search effort in

offline approaches. Once the algorithm has been found, the approaches will become

much cheaper and faster in their application. It can be seen as a reusable method. On

the other hand, online approaches are more suitable for the newly encountered instances

or problems. Heuristics provide researchers with an advantageous structure. Compared

with searching directly on the underlying problem space, it is much more effective to

search on a space of heuristics.

An on-line methodology called reactive search advocates the integration of sub-

symbolic machine learning techniques into search heuristics for solving complex op-

timisation problems. The purpose of the machine learning component is to let the

algorithm automatically tune its operating parameters during the search operation. In a

reactive feedback scheme, the learning component increases its efficiency and efficacy.

The outcome of the research has been applied in the Tabu search meta-heuristic. Bat-

titi and Brunato [89] came up with other techniques related to reactive search such as

model based search, guided local search, colony optimisation and dynamic local search.

In 2007, researchers exploit the search power of multiple neighbourhoods, intro-

ducing an adaptive mechanism is Variable Neighbourhood search (VNS) [90]. VNS

is employed to systematically switch neighbourboods in a predefined sequence. The

research is going to explore increasing distant neighbourhoods of the current solution.

Another way of automating the design of search techniques is the algorithm portfo-

lio method. It is firstly proposed in 1997, which obtain different return-risk profiles in

the stock market by combining different stocks. An algorithm portfolio can allocate a

fraction of all CPU cycles to each of them. In this way, different algorithms can be run

concurrently. Most of the algorithms are immediately stopped, but the first algorithm

determines the completion time of the portfolio.
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2.5.4 Hyper-heuristics and Memetic Algorithms

Another approach called adaptive memetic algorithms (MAs) [91] is also closely related

to the improvement of hyper-heuristics [92]. Memetic algorithms has been contributed

to the improvement of hyper-heuristics. Different from memetic algorithms, the hyper-

heuristics concentrates on searching in the heuristic space. Two populations, memes

and genes, are maintained in the latest search simultaneously on both spaces.

2.6 Hybrid Evolutionary Algorithms

In the research area of computer sciences and technology, hybrid algorithms has been an

interesting topic in recent years [93]. Nowadays researchers are paying more attention

on hybrid algorithms. In order to solve difficult problems, hybrid algorithms are being

used to get more powerful tools. The algorithms following this way of hybridization

have been being designed by many researchers. And they are trying to design more

effective algorithms to solve complex problems. A recent research has shown that

hybrid algorithms are more powerful and efficient than pure algorithms.

To solve real-world problems, doing exhaustive search is not the best idea. There

are still a large space to be searched, and enumerate the search space is not an efficient

approach. A feasible solution is always complex. A heuristic approach can be used to

help finding an optimal solution which contributes to raise the search speed, while it is

also being used for obtaining at least an acceptable quality. In the last few years, a large

number of heuristics have been developed. They are derived from experimental results

or the arguments based on the specific problem class.

2.6.1 Motives of Hybrid Evolutionary Algorithms

The combination of global search of evolutionary algorithms and local search or other

methods can bring a lot of benefits. It improves or refines an individual solution. There

are many motivations to the hybridization of evolutionary algorithms.

1. Many complicated problems can be divided into several parts, in which exact

methods or excellent heuristics can be used. A combination of the most appro-

priate methods is applicable for different sub-problems.
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Figure 2.4: Hybridization in evolutionary algorithms

2. Successful and efficient all-purpose problem solvers do not exist. The No Free

Lunch theorem [4], one of the theoretical results, has given a strong support to this

view. In the perspective of Evolutionary Computing, it indicates that evolutionary

algorithms are not the most excellent for global search. The competence of an

evolutionary algorithm is decided by the amount of problem-specific knowledge

incorporated within it.

3. The performance of evolutionary algorithms at refining near-optimal solutions

are not as good as rapidly identifying good areas of the search space. By incor-

porating a more systematic search, EA hybrids can search good solutions in a
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more efficient way. Fourthly, many problems have some constraints associated

with them. Local search and other heuristics can "repair" infeasible solutions

generated by standard variation operators.

2.6.2 Memetic Algorithm

Memetic Algorithms (MAs) are stochastic global search heuristics [91], which combine

Evolutionary Algorithms-based approaches and local search techniques together. With

the combination, the quality of the solutions created by evolution will be improved.

Memetic algorithms have played an important role in many areas such as combinatorial

optimization, optimization of non-stationary functions and multi-objective optimiza-

tion. There are many different ways to name the methods for hybridizing EAs. For

instance, hybrid genetic algorithms, Lamarckian EAs and genetic local search algo-

rithms. Memetic algorithms covers a range of techniques which have strong relation to

evolutionary-based search.

Dawkin’s concept of the meme has been used as a motivation for hybridization. The

application of hybridization within evolutionary algorithms could fit Dawkin’s idea by

using one or more phases of improvement to individual members of the population

within each generation of an evolutionary algorithm.

2.6.3 Memetic Algorithm and Local Search

Local search iteratively examines the set of points in a neighbourhood of the current

solution and replace the current solution with a better neighbour where possible. It is a

research method. It is related to memetic algorithms. The workings of local search can

be affected by three principal components.

1. The pivot rule. It gives the criteria for accepting an improving point. Both a

steepest ascent and a greedy ascent pivot rule can terminate the inner loop. A

steepest ascent works only after the entire neighbourhood has been searched. A

greedy ascent works as soon as an improvement is found.

2. The depth of the local search. It defines the termination condition for the outer

loop.
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3. The neighbourhood generating function. It defines a set of points that can be

reached by the application of some move operator to the point. Among the most

successful global search methods, local search is the most important idea. Iterated

local search makes it possible traverse a succession of "nearby" local optima. It

is effective when putting into practice. Tabu Search and Simulated Annealing are

the most popular heuristics based on local search. Both of them are improvement

methods in the area of memetic algorithms.

2.7 Mixed Strategy in Evolutionary Algorithms

Evolutionary algorithms have been widely used and proved to be effective in a large

variety of optimization domains and real-world applications. Evolutionary algorithms

operate on the basis of populations, in which the objective is not only to find suitable

adjustments to the current population and hence the solution, but also to perform the

process efficiently.

An evolutionary algorithms is commonly designed and influenced by a set of pa-

rameters in order to provide flexibility to a specific problem [94]. Therefore, when

designing an evolutionary algorithm, one should carefully choose a set of parameter for

its components, which is a really time-consuming task and may fall into a optimization

problem itself [29]. Furthermore, for a single problem, a parameter setting that was op-

timal at the beginning of a search run may become unsuitable during the evolutionary

process. Thus, it is desirable to automatically modify the control parameters during the

run of an evolutionary algorithms. The control of different parameters can be of various

forms, ranging from mutation rates, recombination probabilities, and population size to

selection operators.

In light of this, self-adaptation techniques [95, 96] have been introduced to imple-

ment such parameter control. The approach has a bias on the distribution towards ap-

propriate directions of the search space, thereby maintaining sufficient diversity among

individuals in order to enable further ability of evolution.

2.8 Mixed Strategy for Evolutionary Programming

Evolutionary programming (EP) is a branch, alongside other notable research areas

such as genetic algorithms and evolution strategy, of evolutionary computation that
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stems from natural biological evolution, though the differences between each branches

has seen a decrease in the last two decades [12, 94]. The self-adaptive control of mu-

tation step sizes was originally realized in the community of evolution strategy [14].

Because of its successful performance, its use gradually spread to other branches of

evolutionary computation.

2.8.1 Evolutionary Programming with Self-adaptive Mutation

Operators

As a key element in evolutionary programming, mutation operators have attracted sig-

nificant attention in research, where the implementation of controlling mutation step

sizes was further discussed on finite state machines [2], flexible molecular docking

[97], as well as the optimization of numerical functions. In this project, we focus evo-

lutionary programming on numerical function.

Figure 2.5: Established mutation operators available for evolutionary programming

The original mutation operator for evolutionary programming is typically Gaussian,

which usually lacks robustness when applied to multi-modal functions. Therefore, con-
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siderable research has been devoted to determining new mutation operator thereby pre-

venting the search from being premature. A substitute of Gaussian mutation in fast

evolutionary programming (FEP) which takes the Cauchy distribution to generate the

probabilities for updating mutation operator as reported in [1], entails better perfor-

mance regarding many multivariate functions. However, it is less efficient on some

unimodal functions. By generalizing FEP further using mutation based on the Lévy

probability distribution, further improvement can be achieved, which also establishes

the relationship between the two former mutation schemes [3].

As aforementioned in the previous paragraph and shown in Fig. 2.5, there are sev-

eral mutation operators which have been developed for specific problems. Unfortu-

nately, it has been demonstrated that it is, in evolutionary algorithms, impossible to

design a single algorithm or operator which always gives an efficient performance on

average for a large number of problems [4], be they self-adaptation or not. The main

reason is that the local fitness landscape would be changing when facing different opti-

mization problems. More important, it can also vary at the different stage of the search

process when finding the global optimal.

2.8.2 Evolutionary Programming with Mixed Strategy

An approach for enhancing the conventional EP that uses a single mutation operator is

to apply different mutation operators simultaneously and integrate their advantages to-

gether. Such a strategy is called a mixed mutation strategy (borrowing the concept from

game theory [6]). The employment of a mixed strategy stems from the need to explore

a unified approach for maximizing the ability of various self-adaptive strategies, while

assuming no prior knowledge of the problems at hand. The conception of mixed strat-

egy came from the early work that attempted to combine different strategies together.

For example, an early implementation is a linear combination of Gaussian and Cauchy

distributions [5]. The drawback of this approach is that the ratio of different strategies

used is short of flexibility.

An alternative approach is the improved fast EP (IFEP) [1, 3] which works by: 1)

each individual of a population implementing Cauchy and Gaussian mutations simulta-

neously and generating two offspring; and 2) the better one being chosen to construct

the next generation. Reinforcement learning theory may also be used to learn individual

36



2.8. Mixed Strategy for Evolutionary Programming

Figure 2.6: Mixed Strategy - taking advantages of both mutations

mutation operators [8]. These approaches aforementioned are simple in implementa-

tion, while all of them ignore the real-time interaction between different strategies.

Some progress has recently been made in an effort to adjust mutation strategies in

evolutionary programming [6, 7], where different strategies are allowed to be used in

a portion of the population in each generation of the process. Those strategies which

exhibit better performance would be chosen by more individuals of the population in

the next generation. The mixed strategy can thereby adapt to different optimization

problem with an improved efficiency in comparison to pure strategy that uses only

one single mutation operator. Since its inception, the mixed strategy has also been

incorporated into other operator or even other branches of evolutionary algorithms. In

[98], it is used in the crossover operator in genetic algorithms, while in [99], differential

evolution is taken into account and it is also proved to be highly effective.

Figure 2.7 is an illustrative example of the process of applying the mixed strategy,

in which the generations are only symbolic numbers. The general process can be de-

scribed as follows:
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Figure 2.7: Dynamic evolution over the process of applying Mixed Strategy

• At each generation, an individual chooses one mutation operator based on a dy-

namic selection of probability distribution.

• This distribution will change over generations.

• At the 50th generation, Gaussian mutation may play a major role. That is, most of

the individuals in the population choose Gaussian mutation and the others choose

Cauchy mutation.

• However, when it comes to 100th generation, Cauchy mutation may dominate the

process.

• As the number of iterations reaches 500, the probability of choosing Gaussian

mutation is once again larger than the Cauchy ones.

2.8.3 A Novel Design for Mixed Strategy

In previous studies [7, 9], the design of a mixed strategy mainly utilizes the reward of

each operator (i.e. an operator which produces a higher fitness will receive a better

reward). However, the performance of each mutation operator is strongly linked to the

fitness landscape, which could be highly dynamic at different stages of the search pro-

cess. Therefore, it is important to adaptively adjust the algorithm such that the designed

mixed strategy could change accordingly once the local fitness landscape changes.
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In light of this, a novel mixed strategy is proposed in this project, entitled local

fitness Landscape based Mixed Strategy Evolutionary Programming (LMSEP), in order

for the strategy to adapt to the given fitness landscape. In this project, we give a feature

to represent the ruggedness of the variety of fitness landscape. Observed from different

fitness landscape, different feature value are extracted and calculated. Then a mapping

is established between those value and the mixed strategy.

Two schemes for establishing the mapping are considered in this project. In the first

approach, the in-line learning method, a certain mixed strategy is manually assigned

to a feature value directly that is mainly on the basis of a linear mapping between

strategies and features. A more advanced approach is presented afterwards, in which

a training mechanism is conducted beforehand to learn the relation between features

and mixed strategies. This second approach is called off-line learning in this project

and employs a simplified version of K-Nearest neighbourhood method to train several

training functions to automatically generate the mapping scheme.

2.9 Mixed Strategy for Clonal Selection Algorithm

A great deal of research aiming at improving the performance of CSA has been made

over the last decade. Several parameters in CSA are required to define manually: an-

tibody population size, memory pool size, selection pool size, remainder replacement

size, clonal factor, number of generations, and the random number generator seed.

2.9.1 Self-adaptive Clonal Selection Algorithm

To make the search process much more automatically, an adaptive CSA (Adaptive

Clonal Selection) is developed as an parameter version, which is tested on real-valued

function optimization [100].

The ability of local search also attracts many research studies. For example, Lamar-

ckian learning theory are introduced to enhance the local search of CSA in the Lamar-

ckian Clonal Selection Algorithm in which recombination operator is also utilized to

provide enough diversity for antibody population. [101, 102] Like this study, adding

learning to the process are very common approaches to assist CSA. Baldwinian Clonal
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Selection Algorithm is another CSA-based algorithm developed alongside a learning

theory. It takes advantage of the Baldwin effect in immune system to employ informa-

tion between individual (antibodies) such that the search could be better directed. It

differs from Lamarckian learning theory in that the use of the exploration performed by

the antigens could lead to a better guidance in the search space [103].

2.9.2 Clonal Selection Algorithm with Various Mutation

Operators

Potential improvements of the existing operator in the basic algorithm are also a major

focus since the inception of CSA, especially as an powerful optimization approach.

Since significance of the mutation operator in CSA which does not posses a crossover

operator and relies exclusively on the mutation operator to generate new antigens, a

diversity of modifications of mutation strategy has been proposed.

An idea to solve complex problem is employing more mutation operators. The

first thought is to implement different mutation strategies consecutively. This idea is

investigated as a new approach to solve hybrid flow shop scheduling problems, in which

two phased mutation procedure is implemented [104]. The generated clones undergo

an inverse mutation procedure at first, then pairwise interchange mutation method is

applied if the result is not favourable in the first phase. Gaussian mutation strategy,

charactered with the capacity of exploitation in the local neighbourhood, is introduced

in another proposed algorithm for real-valued function optimization, together with a

rank based selection [105].

Cauchy mutation is used in Improved CSA (IMCSA) in order to avoid premature

convergence and exhibits ability of performing fast in search of the solution for job

shop scheduling problem [106]. This idea is then further extended in the Fast clonal al-

gorithm [107] that borrows the idea from fast evolutionary programming [1], in which

a parallel mutation operator comprising of Gaussian and Cauchy mutation strategy are

incorporated to present an adaptive search. A chaos generator are employed to allo-

cate both mutations aforementioned dynamically. The Cauchy mutation strategy are

able to make large jumps in the search space, able to prevent the search falling into lo-

cal optimum, while the Gaussian mutation shows higher probability in searching local

neighbourhood, providing fine tuning ability in search of the global optima. Likewise,
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another study on CLONALG for constrained optimization also consider Gaussian and

Cauchy random distribution as a helpful mutation scheme that make the search more

efficient [108].

Furthermore, three coding schemes are investigated in the study, including binary,

gray coding as well as real-valued version. Another mutation scheme is proposed in

a novel CLONALG paradigm called Artificial Immune System with Mutation Multi-

plicity (AISMM) where multiple mutation operators are employed simultaneously to

take advantage of the information gained over a number of previous generations. The

fitness gain achieved in every generation is stored and used in the selection step to de-

termine the operator selection probabilities [109]. A CSA with binary flip mutation is

implemented to solve economic load dispatch problem. The mutation rate is inversely

proportional to the fitness value, with the probability of mutation varying from 0.035 to

0.010 [110].

It is also worthwhile taking into account of combining mutation and other types of

operators together such that the modification of genes is in accordance with the infor-

mation gained in previous generations. Like in other evolutionary algorithms, a deter-

ministic approach was first proposed to adjust the selection of antibodies, individuals

to survive and to proliferate for creating the offspring generation.

However, it is obvious that those antibodies selected by a deterministic selection

operator are only those who exhibited best performance in the previous iteration, which

could result in the search space falling into a relative small area and lead to a premature

convergence. In light of the idea to overcome this drawback, research in CSA has been

gradually turning into other thoughts of selection, especially a roulette wheel based

selection mechanism. This type of selection mechanism provides helpful information

in assisting the procedure of mutation while maintaining the diversity of antibodies to

avoid premature convergence. A special version of roulette wheel selection in [104] is

proposed in cloning process followed by a two phased mutation procedure.

Another idea is considered to apply a super mutation operator as well as a vacci-

nation operator to modify each individual so as to maintain the diversity of antibodies

[111]. Another method proposed to extend the conventional CSA is the "psychoclonal

algorithm" algorithm [112] in which Maslow’s need hierarchy theory is implemented

in to solve the assembly-planning problem. Needs for mutation operator and are cate-

gorized into different level, alongside the employment of immune memory, and affinity
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maturation, such that the solution are better guided to the global minimum rather than

local ones while also preserve the ability to remove infeasible solutions.
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Chapter 3

Mixed Strategy based on Local Fitness

Landscape for Functional

Optimisation

Every optimisation problem has its own natural characteristic, which results in the dif-

ferent performance and results shown by using different algorithms. In order to analyse

this natural characteristic, certain approach needs to be employed that it has strong

impact on the behaviour of the algorithm.

3.1 Fitness Landscape

Fitness landscape is a way of analysing various kind of situations in optimisation prob-

lems. When a meta-heuristic algorithm is running for an optimization problem, a va-

riety of fitness are created. When those fitness are taken into account together, there

are better ones and poorer ones. Among these fitness, the better ones are considered

solutions and the best one is the best solution. To visualise the entirety of these fitness,

the fitness landscape is constructed [113]. The solutions with better fitness are seen as

peaks and those with poor fitness are valleys. Therefore, solutions are generated with

those peaks and the best solution is the highest peak. The process of the search can be

seen as hill climbing, where the adaptation of the algorithm can be seen as gradually

moving towards the top of the hill.
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3.1. Fitness Landscape

3.1.1 Fitness Landscape in Biology

The idea of fitness landscape, along with genotype and phenotype, are borrowed from

biology, where each genotype encodes a phenotype, and the offspring represents the

productiveness [113]. In computational optimisation problems, each phenotype is as-

signed a fitness value according to its performance. That is, they have numerical values

indicating how well the phenotype performs. Although the overall target performance

is counted by the mean number of the collective of the population, each genotype is still

associated with one fitness value regardless of the entire system.

If all the possible genotypes are encoded to phenotype, a fitness landscape can be

generated, where the fitness of each phenotype defines the height of the landscape and

each genotype defines the location with the fitness. In this way, the fitness equals to

the height of the landscape, while similar genotypes are placed close to each other. In

contract, those genotypes with distinct performance are placed far from each other as

they would be associated with fitness values that are much more different [114].

Therefore, fitness landscapes is utilized as the idea whereby the relationship be-

tween genotypes and phenotypes can be visualised. In reality, fitness landscapes are

highly dimensional and impossible to visualise. But the set of all possible genotypes,

and more specifically, the degree of their similarity, and their related fitness values can

still be seen as a fitness landscape.

In the concept of landscape, there are peaks and valleys, by which it can be imag-

ined that the direction of a genotype may evolve. The genotype alters its location in a

little manner in the fitness landscape every time when it performs a mutation. In the

meantime, a new fitness value is assigned to its new genotype when it moves towards

the next position. The higher the fitness value, the better the genotype performs, and

the more likely it will create offspring which could be kept alive into the next gener-

ation. By continuing this process (search) over many generations, the genotype will

eventually end up with a peak in the landscape.

3.1.2 Fitness Landscape for Meta-heuristic

Bringing the idea of fitness landscape from biology science, the ultimate target of the

search is to find the highest peak of the fitness landscape, that is, the best solution,
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3.2. Local Fitness Landscape

thus solutions with more adapted condition are always preferable to less adaptive ones.

However, there might be a number of local optima and a global optimum depending on

the features of the landscape. It is possible that a certain search might move towards

some lower peaks, from which there are no available route leading to higher peaks. In

such cases, the populations get stuck in the local optima and may not move upwards to

find the global one. The individuals within the population may gather around certain lo-

cal optimum, wandering around this area. Therefore, further self-adaptation approaches

are necessary to prevent this and help to release the population. The population would

then drift down from the local peaks and start searching across the fitness landscape

again.

Figure 3.1 is an example of a one dimensional function optimisation. It shows that

the process of search could jump into another valley easier, or generate a different path

entirely if mutations allow the genotype to make large steps across the landscape. For

example, more than one point mutation in each generation are perform. This would

lead to the genotype encoding with the highest possible fitness value. The shape (or

view) of the entire landscape and how far mutations can move the genotype across it

will determine the evolutionary direction and the final peak (global optimum) in which

the genotype will going to terminate.

3.2 Local Fitness Landscape

In this section we introduce the definition of local fitness landscapes and the calcu-

lation of the number of optima. The concept of fitness landscape is one of the most

commonly used metaphors to describe the behaviour of EAs in optimisation. However

to give an exact definition of the concept sometimes is not easy while several different

explanations exist [114].

Consider a continuous function f (~x),~x ∈ Rn, where n is the dimension. The fitness

landscape in a continuous space is represented by the triple (Rn, f ,d), where d(~x,~y) is

the Euclidean distance between two points ~x and ~y. In a three dimensional space, it is

easy to describe characteristics of a fitness landscape using intuitive words like ridges,

valleys and basins etc. Nevertheless it becomes more difficult to describes the features

of a fitness landscape in a higher dimensional space. Reeves [114] summarises three ap-

proaches to illustrate the features of a fitness landscape: mathematical characterisation,

statistic measures and practical studies.
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3.2. Local Fitness Landscape

We adopt a statistic measure: the number of optima on a fitness landscape (including

both local and global optima). A fitness landscape with many local optima is called

rugged, which intuitively means the landscape is uneven. The number of optima is

strongly related to the difficulty of a fitness landscape. Usually the more number of

optimal, the harder a fitness landscape. Reeves and Eremeev [115] proposed three

statistical models for estimating the number of optima: waiting-time model, counting-

model, and non-parametric estimation.

Either counting the exact number of optima or obtaining a statistical estimation

needs a long computation time. Instead we seek a simplified approach whose compu-

tation cost is relatively low. Given a population of points X = x(1), · · · ,x(µ), a local

fitness landscape is a part of the fitness landscape which contains the population. The

purpose of introducing local fitness landscapes is that a complex fitness landscape usu-

ally consists of different local fitness landscapes such as ridges, valleys and basins.

When a population resides in different areas of the fitness landscapes, its local fitness

landscapes are different.

Counting the number of optima in a local fitness landscape still needs a large amount

of sampling points. To simplify the computation, a new concept has been proposed

[116] [117], called the observation of a local fitness landscape, which is exactly the

population itself. It is represented by (X , f ,d). The fitness landscape observation is only

an approximation of the real fitness landscape or an observation from limited sampling

points. The observation will approach the real fitness landscape as the number of points

in a population increases

As can be seen in Figure 3.1, it is difficult to define whether the global fitness

landscape is a unimodal or a multimodal one. However, in certain area the global fit-

ness landscape can be seen as constructed by a great number of local ones. These

local fitness landscape can be approximated by counting the population of points X =

x(1), · · · ,x(µ) within a predefined window. In Figure 3.1, if individuals are distributed

within Window A, then the local fitness landscape can be treated as multimodal. Sim-

ilarly, different fitness landscapes also have their counterparts. When those points are

located in Window B or C, the local fitness landscape is characteristic as a unimodal

one.
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3.3. Mixed strategy adapting to local fitness landscape

3.3 Mixed strategy adapting to local fitness landscape

In previous studies [7, 9], the design of a mixed strategy mainly utilizes the reward of

each operator (i.e. an operator which produces a higher fitness will receive a better

reward). Little existing work is directly relevant to the information of local fitness

landscapes. However, the performance of each mutation operator is strongly linked to

the fitness landscape, so it is important to deal with the local fitness landscape where

an population is located. To deal with this drawback, this project is firstly devoted to

propose a novel mixed strategy in order for the strategy to adapt to the given fitness

landscape.

This section describes a novel mixed strategy that is developed in order to improve

the conventional evolutionary programming by two major techniques:

1. A mixed mutation strategy, based on the observation that local fitness landscapes

form a key factor in the determination of the behaviour of mutations in evolution-

ary programming.

2. A training procedure, where several typical learning functions are introduced (as

the training dataset) in order to determine the preferable probability distribution

of mixed mutation operators with respect to different types of local fitness land-

scape.

These two tasks will be addressed below, which are then combined to deal with a

set of target functions.

In evolutionary programming, a mutation operator is determined by the random

variable X j given in Eq. (2.2), which satisfies the probability distribution function Fs.

A mutation operator is denoted by s. Currently, the set of mutation operators consists

of Cauchy, Gaussian, Lévy and other probability distributions, and the set is denoted by

S = {s1, · · · ,sL}.

With this notion in mind, a mixed strategy based on the probability distribution

can be developed. The mixed strategy can be described as follows: at each genera-

tion, an individual chooses one mutation operator s from its strategy set based on a

selection probability distribution ρ(s). A mixed strategy distribution is determined by

π = (ρ(s1), · · · ,ρ(sL)).
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3.3. Mixed strategy adapting to local fitness landscape

Figure 3.2: Relation between unimodal landscape and gaussian mutation

The key problem in the mixed strategy is to find out a good, if possible an op-

timal, probability distribution (ρ(s1), · · · ,ρ(sL)) for every individual. This distribu-

tion is dynamic, which changes over generations. The problem can be formalized

as follows: Given the t-th generation population, decide a probability distribution of

π = (ρ(s1), · · · ,ρ(sL)) which maximizes the drift towards the global optima, i.e.,

max
π

{d(~x(t),~y); ~y ∈ Smin)}, (3.1)

where Smin is the global optimal set, and d(~x,~y) is the Euclidean distance.

In theory, such an optimal mixed strategy π always exists, but in practice it is im-

possible to find out the optimal strategy π since the optimal set Smin is unknown.
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3.3. Mixed strategy adapting to local fitness landscape

Figure 3.3: Relation between multimodal landscape and cauchy mutation

Instead, the mixed strategy is designed on the basis of following assumption that

the mixed strategy should adapt to local fitness landscape. In this chapter the following

principle is taken from previous experiments [6]: 1) If the local fitness landscape looks

like uni-modal landscape, Gaussian mutation should be applied with a higher proba-

bility; 2) if the local fitness landscape looks like a multi-modal fitness landscape, then

Cauchy mutation is applied with a higher probability.

3.3.1 Creating the Feature for Illustrating Local Fitness

Landscape

There are two tasks in designing the above mixed strategy: (1) given an individual~x in

the real space Rn, determine what type of local fitness landscape it looks like; (2) based
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3.3. Mixed strategy adapting to local fitness landscape

Figure 3.4: Calculate the euclidean distance between best individuals and others

on the characteristics of local fitness landscape, assign a probability distribution for the

mixed strategy.

3.3.1.1 Defining the Feature Value of Local Fitness Landscapes

Consider the first task. Given an individual ~x, it is difficult to give the precise charac-

teristics of local fitness landscape and the computation cost will be very heavy. Instead

it will be better to seek a simplified approach. Since each individual is among a pop-

ulation, the population forms an observation of the local fitness landscape. A simple

feature of the local fitness landscape then is drawn from the observation. Sorting other

individuals in the population based on their distances from the best individual in the

population, then check how the fitness of each changes over the distance. If the fit-

ness is increasing with the distance, then the local fitness landscape is like a uni-modal

landscape; otherwise, it belongs to a multi-modal landscape. A simple procedure to

implement this is given as follows. For a population (x1, · · · ,xµ),

1. Find out the best individual among the population, as shown on Fig. 3.4, mark it

with xbest . Then calculate the distance between each individual xi (i = 1, · · · ,µ)
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3.3. Mixed strategy adapting to local fitness landscape

Figure 3.5: Mark the individuals with k1, · · · ,kµ

and xbest as follows:

di =

√

n

∑
j=1

(xi j
− xbest j

)2. (3.2)

2. Sort the individuals based on the distance value, as shown on Fig. 3.5, resulting

in the following in ascending order:

k1, · · · ,kµ (3.3)

Figure 3.6: Sort the individuals based on the calculated distance (multimodal)
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3.3. Mixed strategy adapting to local fitness landscape

Figure 3.7: Sort the individuals based on the calculated distance (unimodal)

3. Calculate the measure of the individual on the local fitness landscape. Denote the

measure value by χ . Assume the value to be 0 initially, then the value will be

increased by 1 if fki+1 ≤ fki
. That is, the value will be increased if there are more

peaks and valleys in local fitness landscape. The value obtained from a local

fitness landscape from Fig. 3.6 will be larger than the one based on Fig. 3.7.

4. Since the value got from the previous step are affected by the size of the popula-

tion, it needs to be normalise as follows:

ϕ =
χ

µ
. (3.4)

The second task is based on learning. Given several typical fitness landscapes,

calculate the performance of different mixed strategy on these fitness landscapes and

find the best mixed strategy for each landscape feature ϕ . As local fitness landscape

is actual a fuzzy concept, the feature ϕ can be regarded as the roughness of observed

fitness landscape.

So far, only two mutation operators are used, i.e., Gaussian and Cauchy mutation,

though it can be easily extended to multiple mutation operators. The performance of

these two mutation operators is well known [1, 6]; they behave just in an exactly op-

posite way. Therefore, to determine the mixed strategy π = (ρ(sCauchy),ρ(sGaussian)),

a straightforward approach is used: The probability of using Cauchy mutation can be
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3.3. Mixed strategy adapting to local fitness landscape

treated to be numerically equal to the feature ϕ . Likewise, the probability of Gaussian

mutation equals (1−ϕ).






ρ(sCauchy) = ϕ

ρ(sGaussian) = 1−ϕ
ϕ ∈ [0,1]. (3.5)

Hence, for mixed strategy including only Cauchy and Gaussian mutation, the probabil-

ity distribution is

π = (ϕ,(1−ϕ)), ϕ ∈ [0,1]. (3.6)

This is reasonable because: if the value of ϕ = 0, then local fitness landscape is

more like a unimodal landscape, thus it is better to use Gaussian mutation only; if the

value of ϕ = 1, then local fitness landscape is very rough, it may be good for applying

Cauchy mutation only. As the value of ϕ increases, the probability of apply Cauchy

mutations should be increased.

3.3.1.2 Procedure of New Evolutionary Programming

The details of the above mixed strategy evolutionary programming is given as follows:

1. Initialization: An initial population is generated consisting of µ individuals

at random, each of which is represented by two real vectors ~x
(0)
i and ~σ

(0)
i (i ∈

Figure 3.8: Assign the probability distribution
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3.3. Mixed strategy adapting to local fitness landscape

1,2, · · · ,µ). Each ~x
(0)
i is a random point in the search space, and each ~σ

(0)
i is a

vector of the coordinate deviations. Both vectors have n real-valued components:

for i = 1, · · · ,µ.

~x
(0)
i = (x

(0)
i (1),x

(0)
i (2), · · · ,x(0)i (n))

~σ
(0)
i = (σ

(0)
i (1),σ

(0)
i (2), · · · ,σ (0)

i (n))

For all individuals, their mixed strategy is taken to be the same one, i.e. π =

(ρ(0)(1),ρ(0)(2),), where ρ(0)(1),ρ(0)(2) represent the probabilities of choosing

Gaussian and Cauchy mutation operators respectively. In the experiment, these

are set to the same value initially, i.e. 0.5, to make each strategy has an equal

opportunity.

2. Mutation: Denote t to be the generation counter. Each individual i chooses a mu-

tation operator from its strategy set according to its mixed strategy (ρ(t)(1),ρ(t)(2)),

and uses this strategy to generate a new offspring.

The operator set includes the following two mutation operators. In each descrip-

tion individual parent i is written in the form (~x
(t)
i ,~σ

(t)
i ). The corresponding off-

spring i′ is written in the form (~x
(t)
i′ ,~σ

(t)
i′ ).

Gaussian mutation: Each parent i produces an offspring i′ as follows: for j =

1,2, · · · ,n

σ
(t)
i′ ( j) = σ

(t)
i ( j)exp{τaN(0,1)+ τbN j(0,1)} (3.7)

x
(t)
i′ ( j) = x

(t)
i ( j)+σ

(t)
i′ ( j)N j(0,1) (3.8)

where N(0,1) stands for a standard Gaussian random variable (fixed for a given

i), and N j(0,1) stands for an independent Gaussian random variable generated for

each component j. The control parameter values τa and τb are chosen as follows:

τa = 1/
√

2µ and τb = 1/
√

2
√

µ. (3.9)

Cauchy Mutation: Each parent i generates an offspring i′ as follows: for j =

1,2, · · · ,n

σ
(t)
i′ ( j) = σ

(t)
i ( j)exp{τaN(0,1)+ τbN j(0,1)}, (3.10)

x
(t)
i′ ( j) = x

(t)
i ( j)+σ

(t)
i′ ( j)δ j (3.11)
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3.3. Mixed strategy adapting to local fitness landscape

where δ j is a standard Cauchy random variable, which is generated anew for each

component j. The parameters τa and τb are set to the values used in the Gaussian

mutation.

After mutation, a total of µ new individuals are generated. The offspring popula-

tion is denoted by I′(t).

3. Fitness Evaluation: Calculate the fitness of individuals in both parent and off-

spring populations.

4. q-Tournament Selection: For every individual i ∈ 1,2, · · · ,2µ in the parent and

offspring populations, a winning function wi is initialized to zero. For each in-

dividual i, select another individual j at random and compare fitness f (i) with

f ( j). If fi < f j, then the winning function for individual i is increased by one

(wi = wi + 1). This procedure is performed q times for each individual. Based

on the winning function, µ individuals from parent and offspring population with

highest winning values are selected in the next generation, denoted by I(t +1).

5. Adjustment of Mixed Strategy: For each individual i in population I(t +1), its

mixed strategy should be adjusted as follows: Given a population (x1, · · · ,xµ),

assume (without losing generality) x1 is the best individual in the population.

First, calculate the feature value λ of the local fitness landscape given in Eq.

(3.4). Then, adjust the mixed strategy ρ(s) based on the feature value λ . Assign

the probability of using Cauchy mutation is λ .

6. Steps 2-5 are repeated until the stopping criterion is satisfied.

3.3.2 Experimental Results and Analysis

The above mixed startegy EP is evaluated on 7 test functions, which were used to

test IFEP in [1]. The description of these functions is given in Table 3.1. Among

the selection of functions, functions f1 and f2 are unimodal functions, f3 and f4 are

multimodal functions with many local minima, f5 − f7 multimodal functions with only

a few local minima.

The parameter setup in the mixed EP is taken to be the same as those in [1]. Popu-

lation size µ = 100, tournament size q = 10, and initial standard deviation is taken as

σ = 3.0. The stopping criterion is: to stop running at 1500 generations for functions f1
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¯

test functions domain fmin

f1 = ∑
30
i=1 x2

i [−100,100]30 0

f2 = ∑
30
i=1 | xi |+∏

30
i=1 | xi | [−100,100]30 0

f3 = −20exp

(

−0.2
√

1
30 ∑

30
i=1 x2

i

)

[−32,32]30 0

−exp
(

1
30 ∑

30
i=1 cos(2πxi)

)

+20+ e

f4 =
1

4000 ∑
30
i=1 x2

i −∏
30
i=1 cos(xi/

√
i)+1 [−600,600]30 0

f5 = −∑
5
i=1

(

∑
4
j=1(x j −ai j)

2 + ci

)−1
[0,10]4 -10.15

f6 = −∑
7
i=1

(

∑
4
j=1(x j −ai j)

2 + ci

)−1
[0,10]4 -10.34

f7 = −∑
10
i=1

(

∑
4
j=1(x j −ai j)

2 + ci

)−1
[0,10]4 -10.54

Table 3.1: Seven test functions, where the coefficients of f 5− f 7 are given in

and f3, 2000 generations for f2 and f4, 100 generations for f5 − f7. The lower-bound

used here is σmin = 10−5 for all functions except f4. Since f4 has a larger definition

domain than the rest, σmin is taken to be a bigger value 10−4. At the initial step, the

mixed strategy distribution is set to (0.5, 0.5). Results for f1 − f4 are averaged over 50

independent runs, and for f5 − f7 over 1000 independent trials.

The performance of EP using a mixed strategy mutation is compared with that of

MSEP, IFEP, FEP and CEP, whose results are presented in Table 3.2 and Table 3.3.

MSEP [7] is an EP with a mixed mutation strategy in which four different mutation

operartors are considered and adaptively employed according to a dynamic probabilistic

distribution. CEP is an EP using a Gaussian mutation and FEP stands for EP using a

Cauchy mutation. In addition, the EP presented in this work which is related to the

local fitness landscape is denoted by LMESP.

Table 3.2 lists the results of the mean best fitness generated in benchmark functions,

from which it is obvious that LMSEP performs much better than IFEP, FEP and CEP

over all test functions except on f4. However, LMSEP still produces a reasonable result

at a similar level of precision which reveals that the mixed strategy performs at least

as well as a pure strategy. On f1 − f3, it is observed that LMSEP performs better or

as well as that of MSEP [7]. It can be seen that, with the use of MSEP, a considerably

improved result for f4 can be obtained, which is stated in [7]. The main reason for this

is that there are four types of mutation operation applied in the mixed strategy, so that
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LMSEP MSEP [7] IFEP [1] FEP [7] CEP [7]

generations mean best mean best mean best mean best mean best

f1 1500 4.964e-5 1.0e-4 4.16e-5 2.3e-3 5.2e-4

f2 2000 1.957e-3 4.1e-4 2.44e-2 8.1e-3 2.6e-3

f3 1500 1.845e-3 1.7e-3 4.83e-3 5.2e-2 15.1

f4 2000 5.479e-2 8.5e-4 4.54e-2 3.9e-2 8.6e-2

f5 100 -9.074 -10.15 -6.49 -4.81 -5.54

f6 100 -9.688 -10.4 -7.10 -5.91 -8.84

f7 100 -9.719 -10.54 -7.80 -8.73 -9.58

Table 3.2: Comparison of mean best fitness between LMSP and MEP, IFEP, FEP, CEP

the process of the experiment has a relative higher flexibility than LMSEP presented in

this section. Note that the lower bound σmin using in the experiment is also an important

factor with respect to these results.

LMSEP MSEP [7] FEP [7] CEP [7]

generations Std. dev. Std. dev. Std. dev. Std. dev.

f1 1500 1.43e-5 1.3e-5 2.2e-3 5.4e-4

f2 2000 2.46e-4 2.1e-5 7.7e-4 1.7e-4

f3 1500 1.87e-3 4.3e-4 2.5e-2 2.6

f4 2000 3.48e-3 1.3e-3 2.3e-2 0.12

f5 1000 2.37 5.0e-5 0.18 1.48

f6 1000 1.92 4.7e-6 1.57 1.41

f7 1000 2.26 1.3e-4 0.87 0.68

Table 3.3: Comparison of standard deviation between LMESP and MEP, FEP, CEP

The standard deviation of LMSEP whose evaluation is given in Table 3.3 is also

compared with those obtained using other approaches. According to the results, LM-

SEP exhibits a better performance on f1 − f4 and a similar performance on f5 − f7 in
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comparison to a pure strategy, namely FEP or CEP. This fact indicates that LMSEP

has a more stable performance on unimodal problems, being comparable with a pure

strategy and of the a same stability on multimodal problems. However, LMSEP does

not present a better performance than MSEP. Having been illustrated previously, it is

affected by the types of mutation strategy introduced in the experiment. Furthermore,

the adjustment of the feature of local fitness landscape is fairly straightforward. The

implementation of the parameter, λ in this section, can be modified in future research

so that a better result can be expected.

3.3.3 Discussion

This section has presented a new evolutionary programming using mixed strategies,

LMSEP, to combat the drawbacks of conventional EPs that employ a single mutation

operator. Efforts have been made in order to explain why and how LMSEP works,

which is characterized by the local fitness landscape using a mixture of different muta-

tion strategies.

The performance of LMSEP is tested on a suite of 7 benchmark functions and com-

pared with previously studied EPs. The experimental results confirmed that the new

approach has the ability to perform at least as well as the best of different conventional

strategies with single mutations. Furthermore, the tests regarding to standard deviation

also demonstrated that LMSEP has a more stable performance, which helps in offering

a reasonable results in potential real world applications.

Many aspects remain to be addressed in the future. The experiment will be extended

to more types of problem and more complicated functions. A fine adjustment of local

fitness landscape remains to be considered. As a compatible satisfactory result can be

obtained using MSEP, a better implementation of λ parameter may be valuable and

lead to more stable performance. Additionally, more mutation operators can be taken

into account, (e.g. Lévy mutation). Furthermore, introducing mixed strategies to other

types of operator like crossover and selection also forms a interesting piece of future

work.
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3.4 Training Mechanism for Learning Local Fitness

Landscape

The above study shows the design of a novel mixed mutation strategy based on local

fitness landscapes. Its implementations involves the fluctuation of the proportion for

each mutation operator to be applied in every generation. As the performance of Cauchy

and Gaussian mutation is well-known (with them simply behaving in an opposite way),

the mixed strategy π can be determined by Eq. (3.5). However, this implies that an

existing mixed strategy corresponding to a certain local fitness landscape has already

been determined via human intervention. It also makes the algorithm resistant to the use

of any novel mutation operator without sufficient prior knowledge about the problems

at hand. In view of this, it is desirable if the mixed strategy Sx regarding to the given

local fitness landscape ϕx can be self-determined and generalized to similar cases.

3.4.1 Implementation of Training Process

The training can be accomplished by introducing a training procedure prior to running

the algorithm on target functions. The task of finding the global minimum in numeri-

cal function optimization is herein implemented by learning rules based on experience

gained from prior performance [118]. In particular, a suite of functions are considered

as the training examples. The set of training functions { f1, · · · , fγ} is chosen to be

the representatives of different local fitness landscapes, e.g., unimodal functions, mul-

timodal functions with many local minima, and multimodal functions with only a few

local minima.

3.4.1.1 Defining the Feature Value of Local Fitness Landscapes

Features of local fitness landscapes ϕ , as well as the corresponding mixed strategy,

are required to construct the actual training data. They can be obtained by taking the

advantage of the algorithm presented in Section 3.3. Note that, as the algorithm is used

to test the entire process of function optimization, it may be performed all along until

certain performance criteria are satisfied or the maximum execution time is reached.
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Under normal circumstances, the algorithm will terminate at a plateau state, sug-

gesting it could not find any better result. Also, prior to reaching this state, it usually

will have experienced an entire operation region involving a large number of interme-

diate states. These intermediate states may exhibit a variety of fitness landscapes that

may vary in terms of the lapse of time. Hence, if the algorithm runs on a multimodal

function, after running a large number of generations, individuals in the population may

shrank to a limit region in the vicinity of the global optimal, in favour of similar results.

Since differences between them will be considerably small, the underlying local fitness

landscape will look like a unimodal.

In order to ensure that all individuals are located uniformly and randomly in the en-

tire domain of training functions, the algorithm is slightly modified. This is achieved by

running a relative small number tT of generations by which the results of each training

function are averaged.

According to Eq. (3.4), feature ϕ can be set to a different value {ϕ1, · · · ,ϕn}, based

on a set of training functions { f1, · · · , fn}. Thus, the probability distribution of the

mutation operator is needed. For a mixed strategy involving only Cauchy and Gaussian

mutation, it can be calculated using Eq. (3.5). To be consistent with ϕ , the probability

distribution is also averaged by tT as follows:



















ρ(sCauchy) =
tT

∑
i=1

ϕi

tT

ρ(sGaussian) =
tT

∑
i=1

1−ϕi

tT

ϕi ∈ [0,1]. (3.12)

While ϕ, · · · ,ϕk are every single value obtained from every generation among tT

ones.

As γ individual functions are chosen to form the training examples, γ pairs of

features and probability distribution are calculated. The set of features {ϕ1, · · · ,ϕγ}
and probability distributions (ρ(s1), · · · ,ρ(sL)) have a one-to-one correspondence. It

is reasonable to assume that a target probability distribution, given a feature, can be

learned from the underlying correspondence by taking advantage of the existing ones,

{ϕ1, · · · ,ϕγ}.

In order to implement the learning of the correspondence between feature ϕx and

the target, πx, a distance-based approach is utilized to approximate the best πx. All
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training data as well as πx are considered as points in a line in terms of the values of

feature ϕ . Two points with a relatively low distance are regarded as neighbours. Given

a target feature ϕx whose value is in the interval [0,1], one instance ϕa among training

data {ϕ1, · · · ,ϕγ} can be found as its nearest neighbour. Therefore, this approach has an

intuitive appealing, treating πa that is associated with ϕa as the required approximation.

The probabilities of each mutation operator in the required πx are

ρx(s) = ρa(s). (3.13)

It is reasonable to adopt Eq. (3.13) when there is only one point in the vicinity of

target feature πx. However, it is possible that the target feature is given in the location

where the distances

d(ϕx,ϕi) =| ϕx −ϕi | . (3.14)

from its two neighbour value generated from training function are nearly the same.

Having taken notice of this, the approximation above is modified so that the two nearest

neighbours of the target feature (one on each side) are both taken into account. The

contribution of each neighbour is weighted according to its distance to the query point

ϕx in order to place a greater weight onto closer neighbours. Denoting the neighbour

with a smaller value as ϕa and the other as ϕb, the relative placement factor is defined

by

λ =
ϕx −ϕa

ϕb −ϕa
, λ ∈ [0,1].

The probability of each mutation operator of target πx is then considered as the linear

combination of its two neighbours:

ρx(s) = (1−λ )ρa(s)+λρb(s), λ ∈ [0,1].

Note that if the target feature ϕ happens to take a value close to 0 or 1, Eq. (3.13)

can then be used. In this case, it is obvious that Eq. (3.4.1.1) is not applicable because

there is only one existing neighbour.

In summary, the calculation of required π is carried out as follows:

Distance Rule:
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1. Given a target feature ϕx, identify its two nearest points ϕa and ϕb among γ

training features.

2. Examine the value of ϕa and that of ϕb relative to ϕx. If they are both larger

or less than ϕx, then target distribution π is generated as stated in Eq. (3.13).

Otherwise, Eq. (3.4.1.1) is adopted.

3.4.1.2 Number of Generations for Training Process

When a population of searching individuals are placed uniformly in the entire fitness

landscape of a training function, the entire fitness landscape can be considered as a

stereotype of certain local fitness landscape, Ψg, g ∈ 1, · · · ,γ . It could be of a multi-

modal, a unimodal, or a combination of multimodal and unimodal. The process will

utilise a mixed strategy probability distribution, πg, which is directly relevant to the

entire landscape, Ψg.

When the population are placed in a certain local fitness landscape similar to the

stereotype Ψg in the real test, we can assign a similar mixed strategy πg to it. Therefore,

the only thing we need to know from the training is what Ψg looks like, which means

to obtain the value of feature ϕg for the entire fitness landscape.

However, after a large number of generations, the locations of the population will

automatically concentrate in a constraint area of the landscape. λ at that stage is no

longer directly affected by the entire fitness landscape Ψg, but affected by a part of it.

Therefore, to generate the required λ , the training should be limited to the early stage

of the search process.

Moreover, the value can not be too small either. Because of the random distribution

of the initial population, the individuals might not be placed uniformly across the entire

landscape in the first generation. We need several generations to allow the population

traverse across the entire fitness landscape. As a result, the search process for each

training function will be run for only 5 generations.

3.4.1.3 Procedure for Training

With the aid of aforementioned training procedure, the mixed strategy can be approx-

imately generated automatically in relation to previously unknown local fitness land-

scapes. The details of this new mixed strategy-based evolutionary programming algo-

rithm are given as follows:
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Figure 3.9: Training - only 5 generations for every function

Training: Before applying the mixed strategy, γ functions are employed as training

examples so as to generate a set of correspondence between feature ϕ and probability

distribution π of mixed strategy.

T1: Initialization: An initial population is generated consisting of µ individuals at ran-

dom, each of which is represented by two real vectors~x
(0)
i and ~σ

(0)
i (i∈ 1,2, · · · ,µ).

Each~x
(0)
i is a random point in the search space, and each ~σ

(0)
i is a vector of the co-

ordinate deviations. Both vectors have n real-valued components: for i = 1, · · · ,µ.

~x
(0)
i = (x

(0)
i (1),x

(0)
i (2), · · · ,x(0)i (n))

~σ
(0)
i = (σ

(0)
i (1),σ

(0)
i (2), · · · ,σ (0)

i (n))

For all individuals, their mixed strategy is taken to be the same one, i.e. π =

(ρ(0)(1),ρ(0)(2),), where ρ(0)(1),ρ(0)(2) represent the probabilities of choosing

Gaussian and Cauchy mutation operators respectively.
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T2: Feature Calculation: For each individual i in the population, the feature of local

fitness landscape can be determined as follows: given a population (x1, · · · ,xµ),

assume x1, without losing generality, is the best individual in the population. Cal-

culate the feature value ϕ of the local fitness landscape given in Eq. (3.4).

T3: Adjustment of Mixed Strategy: Adjust the probability distribution πm based on

the feature value ϕ according to Eq. (3.5). Assign ϕ to the probability of using

Cauchy mutation, (1−ϕ) to Gaussian mutation.

T4: Mutation: Denote t to be the generation counter. Each individual i chooses a mu-

tation operator from its strategy set according to its mixed strategy (ρ(t)(1),ρ(t)(2)),

and uses this strategy to generate a new offspring.

The operator set includes the following two mutation operators. In each description

individual parent i is written in the form (~x
(t)
i ,~σ

(t)
i ). The corresponding offspring

i′ is written in the form (~x
(t)
i′ ,~σ

(t)
i′ ).

Gaussian mutation: Each parent i produces an offspring i′ as follows: for j =

1,2, · · · ,n

σ
(t)
i′ ( j) = σ

(t)
i ( j)exp{τaN(0,1)+ τbN j(0,1)}

x
(t)
i′ ( j) = x

(t)
i ( j)+σ

(t)
i′ ( j)N j(0,1)

where N(0,1) stands for a standard Gaussian random variable (fixed for a given

i), and N j(0,1) stands for an independent Gaussian random variable generated for

each component j. The control parameter values τa and τb are chosen as follows:

τa = 1/
√

2µ and τb = 1/
√

2
√

µ.

Cauchy Mutation: Each parent i generates an offspring i′ as follows: for j =

1,2, · · · ,n

σ
(t)
i′ ( j) = σ

(t)
i ( j)exp{τaN(0,1)+ τbN j(0,1)},

x
(t)
i′ ( j) = x

(t)
i ( j)+σ

(t)
i′ ( j)δ j

where δ j is a standard Cauchy random variable, which is generated for each com-

ponent j. The parameters τa and τb are set to be the values used in the Gaussian

mutation.
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After mutation, a total of µ new individuals are generated. The offspring popula-

tion is denoted by I′(t).

T5: Fitness Evaluation: Calculate the fitness of individuals in both parent and off-

spring populations.

T6: q-Tournament Selection: For every individual i ∈ 1,2, · · · ,2µ in the parent and

offspring populations, a winning function wi is initialized to zero. For each in-

dividual i, select another individual j at random and compare fitness f (i) with

f ( j). If fi < f j, then the winning function for individual i is increased by one

(wi = wi + 1). This procedure is performed q times for each individual. Based

on the winning function, µ individuals from parent and offspring population with

highest winning values are selected in the next generation.

T7: Establishment of Training Dataset: Steps T2-T6 are repeated for γ times which

is the stopping criterion of training procedure. Then, ϕ and πm are averaged by

following Eq. (3.12). Once this training dataset is established, no such learning

procedures are required to be repeated in real test. This is because the testing

procedures only require the use of the mixed strategies resulted from this train-

ing process. Therefore, the running cost of training procedure is excluded when

evaluating the total cost of testing target functions.

3.4.1.4 Procedure for Real Test on Target Function

Upon the completion of training, the EP with the proposed mixed strategy can be run on

various target functions, utilising the information from the already established training

dataset:

P1: The testing procedure involves a general procedure of EP combined with Feature

Calculation in preparation for the use of the mixed strategy. Several steps are to

be performed in the way that are identical to what is done during the Training

Procedure. In particular, the first two steps are identical to T1 and T2.

P2: Learning Mixed Strategy: With the knowledge of feature ϕx, the mixed strategy

related to it is then determined as follows: Find two similar features in the training

dataset using the distance defined in Eq. (3.4.1.1); Consider their relative positions

to ϕx, the probability distribution of the mixed strategy is then obtained according

to Distance Rule.
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P3: After this, the steps are also the same to the corresponding ones (T4-T6) of the

training procedure.

P4: Steps P1-P2 are repeated until the stopping criterion is satisfied.

3.4.2 Experimental Results and Analysis

For the purpose of validating the effectiveness of proposed mixed strategy based on

local fitness landscape, 23 functions which were used to test FEP in [1] are employed

as the training examples. The description of these functions is provided in Table 3.4.

They are divided into 3 classes: functions f1 − f7 are unimodal functions, functions

f8 − f13 are multimodal functions with many local minima, and functions f14 − f23 are

multimodal functions with only a few local minima. The parameter setup in the mixed

EP is taken to be the same as those in [1]. Population size µ = 100, tournament size

q = 10, and initial standard deviation is taken as σ = 3.0. The lower-bound used for

them is σmin = 10−5 for all functions except f8 and f11. Since f8 and f11 have larger

definition domains than the rest, σmin is taken to be a bigger value 10−4.

To conduct the process of training, some of the functions are chosen as training

samples which should consist of all the three types of functions. In this work, functions

f3, f5, f8, f13, f14, f17 and f20 are chosen as representatives of three classes. The

generations tT of training functions are limited to 5. These 7 training functions are

coloured in grey background in Table 3.4.

All the other functions are used as actual testing functions. The stopping criterion

is: to stop running at 1500 generations for functions f1, f6 f10 and f12, 2000 generations

for f2 and f11, 5000 generations for f4 and f9, 4000 generations for f15. The rest will

run 100 iterations. The lower-bound used for them is σmin = 10−5 for all functions

except f4. Results for f1− f15 are averaged over 50 independent runs, and for f16− f23

over 1000 independent trials.

The performance of EP using a mixed strategy mutation is compared with that of

MSEP, SPMEP, LEP, FEP and CEP, whose results are presented in Table 3.6 and Table

3.7. For simplicity, the algorithm proposed in this work (which is related to the local fit-

ness landscape) is named LMSEP hereafter. MSEP [7] is an EP with a mixed mutation

strategy in which different mutation operators are considered and adaptively employed
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Table 3.7: Comparison of standard deviation between LMESP and MSEP, LEP, FEP,
CEP

Generations LMSEP MSEP LEP FEP [1] CEP [1]

Std. dev Std. dev Std. dev Std. dev Std. dev

f1 1500 7.971e-5 1.607e-4 6.043e-3 1.3e-4 5.9e-4
f2 2000 9.37e-4 4.346e-1 3.136e-3 7.7e-4 1.7e-4
f4 5000 1.09 1 2.059e-4 0.3 0.5
f6 1500 0 126 0 0 1125.76
f7 3000 1.854e-2 1.744e-2 2.486e-3 2.6e-3 6.4e-3

f9 5000 13.18 13.8 15.127 4.6e-2 1.2e-2
f10 1500 1.762e-3 2.485 2.813e-2 2.1e-3 2.8
f11 2000 4.843e-2 11.198 1.114e-2 1.8e-2 9.2
f12 1500 2.065 2.46e-2 5.7e-5 3.6e-6 2.4

f15 4000 1.885e-4 1.090e-6 1.5e-4 1.8e-2 9.2
f16 100 4.817e-9 3.417e-8 3.247e-3 4.9e-7 4.9e-7
f18 100 4.431e-8 0 2.183e-1 0.11 0
f19 100 7.22e-8 4.568e-7 1.19e-4 1.4e-5 1.4e-2
f21 100 2.744 2.59 2.934 1.59 2.67
f22 100 2.136 2.32 1.959 2.12 2.95
f23 100 2.466 2.38 2.284 3.14 2.92

according to a dynamic probabilistic distribution. CEP is an EP using a Gaussian mu-

tation and FEP stands for EP using a Cauchy mutation which then is extended to LEP.

Table 3.6 lists the results of the mean best fitness generated in benchmark functions,

from which it is observed that LMSEP produces a reasonable result at a similar level of

precision which reveals that the mixed strategy performs at least as well as a pure strat-

egy. However, it can be seen that, with the use of LEP or FEP, a considerably improved

result for f4, f7, f9 and f12 can be obtained. By exploring the mutation mechanism

of LEP and FEP, the main reason can be considered as the relative higher flexibility

of LEP and FEP than that of LMSEP. As the feature and mixed strategy is one-to-one

correspondence in LMSEP, the update of mixed strategy would be stopped in certain

generation once there is no improvement to the feature of local fitness landscape. As a

result, the ability of producing large step jump is reduced at the later stage of the search

[1]. It would be potentially favourable to assign a parameter, expressed as percentage,

to let the process have a limit flexibility which is not in compliance with the one-to-one

correspondence.
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Figure 3.10: Comparison between LMSEP and MSEP.
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3.5. Summary

Fig. 3.10 provides a graphical comparison of average values of population found

by two mixed strategies, LMSEP and MSEP, over 50 runs, where both algorithms em-

ploy two types of mutation operator, namely Gaussian mutation and Cauchy mutation.

Two benchmark functions, f1, f11 and f22, are tested here. It is clear that LMSEP can

search further on f1 and f22 while MSEP can not find relative improved results. For

f11, LMSEP displays a faster convergence rate than MSEP. LMSEP quickly reaches

approximately 1 in around 1000 generations. After that, MSEP exhibits a substantial

descent and overtakes LMSEP. However finally, both algorithms reach approximatively

same result around 1700 generations. Take all cases into account, the curves of process

suggest a more efficient progress is introduced by LMSEP.

The standard deviation of LMSEP whose evaluation is given in Table 3.7 is also

compared with those obtained using other approaches. According to the results, LM-

SEP exhibits similar performances on most functions except f4, f7, f9 and f12. This

fact indicates that LMSEP has at least the same stability with a single pure strategy.

However, LMSEP does not present a better performance on some function to which

LEP and FEP are nicely applied. It suggests that the search of mixed strategy is some-

times not able to focus on the position where the global minimum is situated. It means

the adjustment of the feature of local fitness landscape, the implementation of ϕ in this

work, remains to be carefully modified in future research so that a better result can be

expected.

3.5 Summary

This chapter has presented a new EP, LMSEP, which is characterized by the local fitness

landscape using a mixture of different mutation strategies. The approach addresses the

drawbacks of conventional EPs that employ a single mutation operator. In addition,

a training procedure has been given to promote LMSEP in an efficient and intelligent

way, by introducing a self-learning algorithm.

The performance of LMSEP is firstly trained on 7 functions and then tested on

a suite of 16 benchmark functions, in comparison with previously studied EPs. The

experimental evaluation indicates that the new approach has the ability to produce rel-

atively more acceptable results. The tests regarding the standard deviation also demon-

strate that LMSEP has a more robust performance.
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3.5. Summary

Although the training procedure leads to a fast performance, it may occasionally

miss certain regions that should be checked for. To address this issue, a fine adjust-

ment of training procedure remains an active research. For instance, a backward jump

procedure may be potentially employed. As a compatible satisfactory result can be ob-

tained using FEP and LEP, a better implementation of the ϕ parameter may be useful.

Additionally, more mutation operators can be taken into account, (e.g. Lévy muta-

tion). Finally, introducing mixed strategies to other types of operator like crossover and

selection also forms an interesting piece of future work.
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Chapter 4

Mixed Strategy based on Game Theory

with Incomplete Information

In the previous chapter, the newly developed algorithm is primarily constructed with an

effective analysis into the local fitness landscape. In addition, there are some different

ways to design an algorithm which combines different mutation operators. One of

them which is presented in this chapter is a modified mixed strategy (IMEP) involving

a process with incomplete information. It will provide a possible comparison to the one

using local fitness landscape.

4.1 Mixed Strategy Using Game Theory with

Incomplete Information

Progress has recently been made in an effort to adjust mutation strategies [6, 7, 116,

119]. In previous studies [7, 9], the design of a mixed strategy mainly utilizes the payoff

of each operator (i.e. an operator which produces a higher fitness will receive a better

payoff). The payoffs to each individual and the history of the running process are fully

known to each individual. This chapter, in contrast, proposes a novel mixed strategy

that the payoff to each mutation is uncertain or not precisely determined beforehand.

A mixed strategy based on payoff is proposed in this chapter. Remind of the proba-

bility distribution (ρ(s1), · · · ,ρ(sL)) which maximizes the drift towards the global op-

tima, i.e.,
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4.1. Mixed Strategy Using Game Theory with Incomplete Information

Figure 4.1: Transition from Game Theory to Evolutionary Programming

max
π

{d(~x(t),~y); ~y ∈ Smin)}.

At every generation, a real number ui is assigned to individual i in terms of the result of

fitness evaluation. It is called the associated payoff to individual i. The probability dis-

tribution of strategy π is updated according to the combined payoff function u which is

assigned to each mutation operator s and denoted by a vector u(s). Previous approaches

[6],[7], in general, mainly discuss a process of complete information, where the vector

u(s) = (u1, · · · ,uL) and the payoff function are known to all mutation operators at every

generation. That is, the payoff function is explicitly determined by the performances of

different mutation operators.

Given a simultaneous-move process of incomplete information, where only part of

the payoff function assigned to each mutation operator is known, thus it is impossible

to construct the required full payoff functions. Therefore, the payoff function assigned

to strategy i is not denoted by a simple vector but by ui = (s1, · · · ,sL; pi), where pi is

named strategy i′s type and belongs to a set of possible types Pi. Each type pi corre-

sponds to a different payoff function that strategy i might have. This idea represents the
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4.1. Mixed Strategy Using Game Theory with Incomplete Information

possibility that each strategy can be updated in more than one direction corresponding

to its different types of payoff functions.

In light of this, a dynamic modification of updating the probability distribution of

the mixed strategy can be generated. Suppose that in the process with incomplete infor-

mation, strategy i′s payoff function is no longer entirely known to others. In addition

to existing well known factors, e.g. the jump distance produced by each mutation op-

erator, crossover points and mutation probability, there may be a certain interfering

element whose detailed information is unknown, such that function ui is replaced by

F(ui), where F(ui) is a small but implicitly modification of of ui. Thus, the major task

is to design a reasonable representation of F(ui).

Inspired by this observation, an Incomplete Information Factor (IIF) p is introduced

to represent the unknown factor. Given such a p the deviation between F(ui) and ui

should not be too large such that they overwhelm the entire algorithm. The construc-

tion of p and in turn the construction of F(ui) in this chapter is based on a uniform

distribution on [0,γ]. A simple procedure to adjust the mixed strategy is given as fol-

lows.

Figure 4.2: Consider the impact of history strategy
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4.1. Mixed Strategy Using Game Theory with Incomplete Information

For a population (x1, · · · ,xµ),

1. Calculate the maximum jump distance an individual makes once a mutation pro-

cess is applied successfully to it. Denote the parent individual by x
(t)
i and the

offspring by x
(t+1)
i .

d(x)
(t+1)
i =







max
1≤ j≤n

| x
(t+1)
i j

− x
(t)
i j

|,

0,

where the first function is taken if f (x(t+1)) < f (x(t)); otherwise, zero is taken.

Based on the resulting distance value, the maximum jump distance induced by

strategy s1 is generated as follows:

d(s1)
(t+1) = max

i
x
(t+1)
i ,

where x
(t+1)
i is an individual whose strategy is s1.

2. Consider the impact of history strategy which determine how much the previous

movement will kept in memory to affect the payoff function.

d(s1)
(t+1) =







d(s1)
(t+1), if d(s1)

(t+1) ≥ α ·d(s1)
(t),

α ·d(s1)
(t), otherwise.

3. Define the original payoff function ui. Since there are only two mutation opera-

tors employed in this chapter, namely Gaussian mutation s1 and Cauchy mutation

s2. u1 and u2 are determined by














u1(s1,s2) =
d(s1)

d(s2)
,

u2(s1,s2) =
d(s2)

d(s1)
.

Introduce a controlling parameter β to avoid the case that u1 or u2 reaches zero,

such that

u1(s1,s2) =































β , if
d(s1)

d(s2)
≤ β ,

1

β
, if

d(s1)

d(s2)
≥ 1/β ,

d(s1)

d(s2)
, otherwise.
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4.1. Mixed Strategy Using Game Theory with Incomplete Information

4. Construct the revised version of the payoff functions by introducing a uniform

distribution. Currently, two methods of designing and applying the IIF have been

taken into account: (1) substitute ui with pa · ui; (2) set ui to be ui + pb, where

pa and pb are independent draws from a uniform distribution on [0,γ]. As in a

process involving incomplete information, pa and pb together form a possible

type set Pi for strategy i.

5. For a mixed strategy consisting only of two mutation operators S = {s1,s2}, the

algorithm for updating the probability distribution π(ρ(s1), · · · ,ρ(sL)) can now

be established, employing a proportion of its own payoff among the total payoff

as follows:

ρ1(s1) =
F(u1)

F(u1)+F(u2)

=















pa ·u1(s1,s2)

pa ·u1(s1,s2)+ pa ·u2(s1,s2)
u1(s1,s2)+ pb

[u1(s1,s2)+ pb]+ [u2(s1,s2)+ pb]

where every pa and pb are randomly generated within [0,γ]. It means that the three pa

in the function are unlikely to take the same value.

The details of the above mixed strategy evolutionary programming is given as fol-

lows:

1. Initialization: An initial population is generated consisting of µ individuals

at random, each of which is represented by two real vectors ~x
(0)
i and ~σ

(0)
i (i ∈

1,2, · · · ,µ). Each ~x
(0)
i is a random point in the search space, and each ~σ

(0)
i is a

vector of the coordinate deviations. Both vectors have n real-valued components:

for i = 1, · · · ,µ.

~x
(0)
i = (x

(0)
i (1),x

(0)
i (2), · · · ,x(0)i (n))

~σ
(0)
i = (σ

(0)
i (1),σ

(0)
i (2), · · · ,σ (0)

i (n))

For all individuals, their mixed strategy is taken to be the same one, i.e. π =

(ρ(0)(1),ρ(0)(2),), where ρ(0)(1),ρ(0)(2) represent the probabilities of choosing

Gaussian and Cauchy mutation operators respectively. In the experiment, these

are set to the same value initially i.e. 0.5.
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4.1. Mixed Strategy Using Game Theory with Incomplete Information

2. Mutation: Denote t to be the generation counter. Each individual i chooses a mu-

tation operator from its strategy set according to its mixed strategy (ρ(t)(1),ρ(t)(2)),

and uses this strategy to generate a new offspring.

The operator set includes the following two mutation operators. In each descrip-

tion individual parent i is written in the form (~x
(t)
i ,~σ

(t)
i ). The corresponding off-

spring i′ is written in the form (~x
(t)
i′ ,~σ

(t)
i′ ).

Gaussian mutation: Each parent i produces an offspring i′ as follows: for j =

1,2, · · · ,n

σ
(t)
i′ ( j) = σ

(t)
i ( j)exp{τaN(0,1)+ τbN j(0,1)}

x
(t)
i′ ( j) = x

(t)
i ( j)+σ

(t)
i′ ( j)N j(0,1)

where N(0,1) stands for a standard Gaussian random variable (fixed for a given

i), and N j(0,1) stands for an independent Gaussian random variable generated for

each component j. The control parameter values τa and τb are chosen as follows:

τa = 1/
√

2µ and τb = 1/
√

2
√

µ.

Cauchy Mutation: Each parent i generates an offspring i′ as follows: for j =

1,2, · · · ,n

σ
(t)
i′ ( j) = σ

(t)
i ( j)exp{τaN(0,1)+ τbN j(0,1)},

x
(t)
i′ ( j) = x

(t)
i ( j)+σ

(t)
i′ ( j)δ j

where δ j is a standard Cauchy random variable, which is generated anew for each

component j. The parameters τa and τb are set to the values used in the Gaussian

mutation.

After mutation, a total of µ new individuals are generated. The offspring popula-

tion is denoted by I′(t).

3. Fitness Evaluation: Calculate the fitness of individuals in both parent and off-

spring populations.

4. q-Tournament Selection: For every individual i ∈ 1,2, · · · ,2µ in the parent and

offspring populations, a winning function wi is initialized to zero. For each in-

dividual i, select another individual j at random and compare fitness f (i) with
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4.2. Experimental Results and Analysis

f ( j). If fi < f j, then the winning function for individual i is increased by one

(wi = wi + 1). This procedure is performed q times for each individual. Based

on the winning function, µ individuals from parent and offspring population with

highest winning values are selected in the next generation, denoted by I(t +1).

5. Adjustment of Mixed Strategy: For each individual i in population I(t +1), its

mixed strategy should be adjusted as follows: Given a population (x1, · · · ,xµ),

first, identify the largest jump distance produced by a mutation operator (Gaus-

sian mutation and Cauchy mutation in this chapter). Then, apply the history

parameter α and calculate the original payoff ui. Afterwards, apply the IIF p to

ui to generate the final payoff. Based on it, the probability of mutation strategy i

of next generation is established.

6. Steps 2-5 are repeated until given stopping criterion is satisfied.

4.2 Experimental Results and Analysis

The above mixed strategy EP (IMEP) is evaluated on 7 test functions, which were used

to test IFEP in [1]. The description of these functions is given in Table 4.1. Among

them, functions f1 and f2 are unimodal functions, and f3 and f4 are multimodal func-

tions with many local minima, f5 − f7 multimodal functions with only a few local

minima.

Parameters α in Eq. (3) and β in Eq. (3) are set to 0.9 and 0.05 respectively. Other

parameter values in the mixed EP are taken to be the same as those in [1]. Population

size µ = 100, tournament size q = 10, and initial standard deviation is set to σ = 3.0.

The stopping criterion is: to stop running at 1500 generations for functions f1 and f3,

2000 generations for f2 and f4, 100 generations for f5 − f7. The lower-bound used in

this chapter is σmin = 10−5 for all functions except f4. Since f4 has a larger definition

domain than the rest, σmin is taken to be a bigger value 10−4. At the initial step, the

mixed strategy distribution is set to (0.5, 0.5). Results for f1 − f4 are averaged over 50

independent runs, and for f5 − f7 over 1000 independent trials.

The performance of IMEP is compared with that of MEP, MSEP, LEP, FEP and

CEP, whose results are presented in Table 4.2 and Table 4.3. MEP [6] is the original

algorithm of IMEP, which is inspired from the game with complete information in game
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4.2. Experimental Results and Analysis

¯

Test functions domain fmin

f1 = ∑
30
i=1 x2

i [−100,100]30 0

f2 = ∑
30
i=1 | xi |+∏

30
i=1 | xi | [−100,100]30 0

f3 = −20exp

(

−0.2
√

1
30 ∑

30
i=1 x2

i

)

[−32,32]30 0

−exp
(

1
30 ∑

30
i=1 cos(2πxi)

)

+20+ e

f4 =
1

4000 ∑
30
i=1 x2

i −∏
30
i=1 cos(xi/

√
i)+1 [−600,600]30 0

f5 = −∑
5
i=1

(

∑
4
j=1(x j −ai j)

2 + ci

)−1
[0,10]4 -10.15

f6 = −∑
7
i=1

(

∑
4
j=1(x j −ai j)

2 + ci

)−1
[0,10]4 -10.34

f7 = −∑
10
i=1

(

∑
4
j=1(x j −ai j)

2 + ci

)−1
[0,10]4 -10.54

Table 4.1: Seven test functions, where the coefficients of f 5− f 7 are given in [1].

theory. MSEP [7] is an EP with a mixed mutation strategy in which four different

mutation operators are considered and adaptively employed according to a dynamic

probabilistic distribution. CEP and FEP are two pure strategy EP using a Gaussian

mutation and a Cauchy mutation respectively.

Table 4.2 lists the results of the mean best fitness generated in benchmark functions,

from which it is obvious that IMEP performs much better than three pure strategies,

LEP, FEP and CEP, over all test functions except f3. However, IMEP still produces a

reasonable result at a similar level of precision which reveals that the mixed strategy

performs at least as well as a pure strategy. The reason is that a mixed strategy algorithm

has much higher flexibility in searching the solution space. However, when comparing

with other mixed strategy algorithms, MSEP, IMEP does not present a better result.

The main reason for this is that there are four types of mutation operation applied in the

mixed strategy, so that the process of the experiment has a relative higher flexibility than

IMEP presented in this chapter. Note that the lower bound σmin used in the experiment

is also an important factor with respect to these results.

The standard deviation of IMEP whose evaluation is given in Table 4.3, is also

compared with those obtained using other approaches. According to the results, IMEP
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4.2. Experimental Results and Analysis

γ = 1 γ = 2 γ = 5 γ = 10

generations mean best mean best mean best mean best

f1 1500 1.487e-5 3.436e-5 1.596e-5 2.563e-5

f2 2000 2.681e-3 2.871e-3 3.014e-3 5.254e-3

f3 1500 3.591e-4 3.477e-4 3.973e-4 2.858e-4

f4 2000 3.106e-2 2.695e-2 2.619e-2 1.828e-2

f5 1000 -8.711 -8.737 -9.831 -8.834

f6 1000 -9.681 -9.618 -9.596 -9.641

f7 1000 -9.725 -9.730 -9.697 -9.688

Table 4.4: Comparison of mean best fitness of IMEP(b) with respect to different γ

exhibits a better performance on f1 − f4 and a similar performance on f5 − f7 in com-

parison to a pure strategy (LEP, FEP or CEP). This indicates that IMEP has a more

stable performance on both unimodal and multimodal problems. However, IMEP does

not present a better performance than MSEP. Having been illustrated previously, it is

affected by the types of mutation strategy introduced in the experiment.

As can be seen from Table 4.2 and Table 4.3, the result of IMEP is very similar

to that of its corresponding algorithm MEP evolving complete information. Another

experiment has therefore been carried out. This attempt to trying to identify if it is

affected by the parameter γ or a problem with the current design of IMEP. 4 different

values of γ are applied to IMEP and the results of mean best fitness are presented in

Table 4.4. Note that, except for the value of γ , all other parameters are set to the values

described in the previous experiment.

As shown in the table, tests on the same function all produce results with the same

level of precision, no matter what value for γ has been applied. Therefore, the algorithm

is not sensitive to the change of IIFs. Furthermore, these results are similar to the ones

generated by MEP on same testing functions. This suggests that our modification of the

original algorithm, the introduction of IIF, did not exert a considerable influence on the

overall performance. This is because the value of IIF introduced in the initial tests is

kept within a minimum scope. The impact of the IIF will be increasingly enlarged if the

value of IIF can be further configured, possibly with parameter control with a learning

procedure.
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4.3 Summary

This chapter has presented a new EP using mixed strategies, IMEP, to combat the draw-

backs of conventional EPs that employ a single mutation operator. Efforts have been

made in order to explain why and how LMSEP works, which is characterized by the

local fitness landscape using a mixture of different mutation strategies.

The performance of IMEP is tested on a suite of 7 benchmark functions and com-

pared with previously studied EPs. The experimental results confirmed that the new

approach has the ability to perform at least as well as the best of different conventional

strategies with single mutations. Furthermore, the tests regarding standard deviation

also demonstrate that IMEP has a more stable performance.

We aim at introducing incomplete information from game theory to evolutionary

programming. Since the current work is very initial, the algorithm has not been opti-

mised. Therefore, many aspects remain to be considered. The design of a larger mod-

ification to MEP is a potential research area. In addition, a successful design of IMEP

can be treated as a framework for introducing incomplete information to the mixed

strategy algorithms. The experimental evaluation, in our next step, will be extended

to more complex functions. Furthermore, it is of interest to consider a comparison

between IMEP and a multialgorithm genetically adaptive method for single objective

optimization (AMALGAM-SO) [120], which is a multimethod algorithm blending sev-

eral evolutionary algorithms together.
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Chapter 5

Immune Algorithm with Mixed

Strategy for Protein Folding

A variety of optimization algorithms have been employed to solve different types of

optimization problems. It was particularly recognized that one of those heuristic algo-

rithms is Clonal Selection Algorithm from the Artificial Immune System (AIS) [121],

which shows an efficient performance when different hypermutation are employed to-

gether. It enables a great improvement on the performance of the AIS, especially in

local search. That is, since each operator may only be efficient on certain fitness land-

scapes, it is desired to apply multiple mutation operators simultaneously in order to

tackle different situations.

However, the mutation operators in the original clonal selection algorithm for nu-

merical optimization are used in a sequential manner that prohibits the ability of taking

advantages of more flexible mutation strategies. It takes advantages of two efficient

mutation operators, hypermutation and hypermacromutation, as well as two crossover

operators to construct a powerful optimization algorithm with simple and easy imple-

mentation. This chapter presents a mixed strategy, based on the local fitness landscape

of different types of numerical functions. Experiments show that the proposed algo-

rithm possesses adequate balance between exploration and exploitation such that it is

less likely to fall into local optimal and has a faster and better convergence.

The protein folding prediction is one of the most challenging problems in compu-

tational biology, molecular biology, biochemistry, and physics, as there are countless
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Figure 5.1: Protein molecule with sequence of amino acid

possible conformations for the backbone of a small protein [122]. Considering the

complexity of protein folding problems, many researchers [122, 123] tend to focus on

studying protein structure prediction in its simplified models or DillâĂŹs lattice models

such as hydrophobic-polar (HP) model. It is actually based on the observation that the

hydrophobic force is the main force that determines the unique native conformation and

function state of small globular proteins.

In the standard HP model, each amino acid of protein is seen as a bead, and its

connecting bonds as lines. In the HP model, proteins consist of a specific sequence

of only two types of beads- H (hydrophobic/non-poplar) and P (hydrophilic/polar),

which means the twenty amino acids can be categorized into two classes H and P.

Also, the HP model takes into account the hydrophobic interaction as the main driving
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5.1. Modelling Protein Folding

force in protein folding, which has a unique native fold with an energy gap between

the native and the first excited state Since environment inside cells are aqueous, these

hydrophobic amino acids tend to be on the inside of a protein rather than on its surface;

and meanwhile, the hydrophobicity is one of the key factors that determine how the

chain of amino acids will fold up into an active or functional protein.

5.1 Modelling Protein Folding

5.1.1 Protein Structure

Proteins are, as shown in the first part of Figure 5.1, fundamental biological blocks

which constructs every living organism. The functions of living beings are mostly

carried out by functional biological proteins, where the proteins are bio-polymers as-

sembled from a sequence of amino acid residues [124]. They are the main body, or

backbone as shown in second part of Figure 5.1, of the protein’s structure. The char-

acteristics of a protein are specifically affected by the sequence since the sequence of

amino acid is depended on the structure and the sequence. That is, the biological func-

tion of a protein is determined by the structure of the bio-polymers [125].

Figure 5.2: Amino acids

The structure of a protein, regardless of its function, is constructed by linking

many amino acid monomer units via amide bonds (peptide bonds). These amino acid

(residue) chains can vary in length, with chains of fewer than 50 residues often being

called peptides, whereas bigger chains are referred to as proteins, where the term amino

acid is shorthand for the common α-amino acid in biological living body.

89



5.1. Modelling Protein Folding

5.1.2 Protein Folding Problem

One of the fundamental problem in computational molecular biology is the predic-

tion of the protein folding and its resulting structure. The problem lies in biochemical

physics and chemical biology, therefore it not only includes statistical mechanics, but

also preserves the effects of evolution, which is one of the common features with most

biological problems. Considerations must be made, with protein evolution in order to

understand how mutational change in the amino acid sequence leads to structural and

functional change [126].

The protein folding problem is the search for the most biologically active (func-

tional) conformation of a protein (the native state), for a given sequence of amino acid

residues. Before the pro, only the knowledge of its primary amino acid sequence is ob-

served. That is, the one dimensional (1D) structure from which it is built. The problem

is the prediction of the three dimensional (3D) local spatial arrangement (secondary

structure) and the folded conformation (tertiary structure) adopted by a polypeptide

molecule. It has been shown to be an NP-hard problem, in that no efficient algorithm

can guarantee to find the native state [127]. If one is to understand how proteins fold and

ultimately highlight the sequence-activity correlation of protein molecules, the relation-

ship between sequence and structure is of critical importance and need to be analysed

carefully.

5.1.3 Bioinformatics Techniques for Protein Folding

Protein folding is the physical process in which a linear polypeptide chain can be au-

tonomously organized into a space-filling, compact, and well-defined three-dimensional

structure [128]. The correct three-dimensional protein structure is essential to its bio-

logical function [129].

Although protein structure determination by biophysical techniques such as X-ray

crystallography, cryoelectron microscopy and NMR has become highly automated and

made considerable progress, the prediction of protein structure features is still one of

major challenges in theoretical biophysics and bioinformatics [130]. The fundamental

questions related to understanding protein folding mechanism are waiting for the proper

answers, and the main problem concerning the vast potential complexity of cooperative

interaction between amino acids remains to be resolved [130].
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In order to improve the accuracy and efficiency of solving protein structure pre-

diction, many scholars and researchers, [131, 129, 130] try every effort to study and

develop some feasible algorithms or algorithmic strategies. Theoretical and computa-

tional protein folding studies in recent years have achieved some significant accom-

plishment in protein dynamics.

The reliability of natural proteins to fold to a unique, low energy, most stable state

(native state) is related to the presence of a folding funnel on the free energy landscape,

allowing mis-folded proteins to be guided towards the most energetically favourable

conformation. To achieve a greater knowledge of protein folding dynamics, the nature

of the free energy landscape must be understood. Although progress has been made

over many decades, due to the complexity of the problem, it still remains unsolved

[132].

5.1.4 Hydrophobic-Polar Model

There are a variety of protein models which differ in the way in which they approximate

the protein molecule and how they treat the interactions between amino acid residues,

and, if applicable, with solvents. Due to the enormous complexity and size of protein

hyper-surfaces, models used to study the protein folding process tend to be simplified.

Figure 5.3: Two types of amino acids: hydrophobic and hydrophilic

The most simplistic of all models, the hydrophobic-polar lattice bead model (HP),

has become one of the major tools for studying protein structure [133]. The basis of

such model is that the hydrophobic force is primarily responsible for the determination

of the unique native conformation and therefore the biological function of small globu-

lar proteins. Although simple, such models can still capture some essential features of

he protein folding problem and provide a basis for thorough theoretical studies.

Moreover, the conformations in the HP model are restricted to self-avoiding walks

on a lattice [122]. And the whole conformation is embedded in a two or three-D lattice,

which simply divides spaces into amino acid-sized units and has bond angles keep
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limited discrete values dictated by the structure of lattice like square, triangular or cubic.

For instance, a 2-dimensional square lattice is typically used in the 2D HP model, while

a 3-dimentional cubic lattice is generally applied to the 3D HP model.

Figure 5.4: Driving force: hydrophobic interaction

• Hydrophobic amino acids (H beads) tend to come together to form a compact

core that excludes water.

• hydrophilic amino acid (P beads) tend to face the outside.

• HP model involves attraction-interaction only

The twenty naturally occurring amino acids can be roughly classified into two cat-

egories based on their hydrophobicity. In the HP model, these two categories are ex-

ploited with amino acids categorised as either Hydrophobic (H) or Polar (P) residues.

The primary amino acid structure of a protein, instead of comprising sequence of the
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twenty amino acid alphabet, is therefore represented as a combination Hs and Ps, with

each amino acid represented as a uniformly sized bead. The conformations of such a

sequence are restricted to a self avoiding walk on a lattice, where lattice sites can only

be occupied by a single bead. The presence of a lattice prevents bond lengths and angles

from varying and thus both are constant throughout the use of this model.

The energy associated with any bead-bead interaction is described as a short range

contact between topological neighbours. A topological neighbour is simply a pair of

non-bonded beads that lie on adjacent lattice sites, i.e. they are not sequence neigh-

bours. Interaction values for the possible topological contacts (local interactions) are:

Figure 5.5: The H-H contacts of a protein sequence in the HP model

5.1.5 Free Protein Energy of the HP Model

The main method in HP model to evaluate the free energy of a conformation in the

HP model is to count the interactions between beads, which are topological neighbours

rather than sequential neighbours (non-local interactions). The simplest form of energy

function counts the number of H −H contacts. Each H −H topological contact, that is,

each lattice nearest neighbour H −H contact interaction, has energy value ε ≤ 0, while

all other contact interaction types like H −P, P−P contribute with ε ≥ 0 to the total

free energy. Consequently, any feasible conformation in the HP model can be assigned

a free energy level and the residues interactions can be defined. The values of H −H,

H −P and P−P interactions are:
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εHH =−1, (5.1)

εHP = εPP = 0. (5.2)

So one can have the typical interaction energy matrix for the standard HP model

accordingly. In the Dill’s lattices model the native conformation is the one maximising

the number of contacts H −H, i.e., the one that minimises the free energy function.

The total energy, E, of the conformation is found by summing the interactions [132]:

E = ∑
i≤ j

εi j∆i j (5.3)

where

∆i j =







1, if i and j are topological neighbours but not sequential neighbours,

0, Otherwise.

(5.4)

The energy value for the conformation illustrated by Figure 5.5 is E = −2. In the

process of founding the native conformation of the HP model, the number of H −H

interactions is maximised, therefore the free energy is minimised.

A solution, r =∈ {F,L,R}l−1, is represented by a sequence of relative directions

(forward, left or right). It describes a self avoiding path through the lattice.

5.2 Evolutionary Algorithms for Protein Folding

Beutler and Dill [134] has researched algorithm specifically for the HP model of protein

folding. It is called the Core-directed Growth (CG) method. Another approach is pro-

posed by Toma, in which an algorithm specifically for the problem of protein folding
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Table 5.1: Tortilla 2-D Benchmarks

Instance Protein Sequence l E

1 hphp2h2 php2hph2 p2hph 20 -9

2 h2 p2(hp2)6h2 24 -9

3 p2hp2(h2 p4)3h2 25 -8

4 p3h2 p2h2 p5h7 p2h2 p4h2 p2hp2 36 -14

5 p2h(p2h2)2 p5h10p6(h2 p2)2hp2h5 48 -23

6 h2(ph3)ph4 p(hp3)2hp4(hp3)2hph4(ph)ph2 50 -21

7 P2h3 ph8 p3h10php3h12p4h6 ph2 php 60 -36

8 h12(ph)2(p2h2)2P2h(P2h2)2P2h(P2h2)2P2(Ph)2h12 64 -42

9 h3 p2(hp)2hp2(hp)2hp2h 20 -10

10 php2hph3 ph2 ph 85 -53

11 hphph3P3h4 p2h2 100 -48

12 h2 p5h2 p3hp3hp 100 -50

13 php2hph3 ph2 ph5 18 -9

14 hphph3 p3h4 p2h2 18 -8

15 h2 p5h2 p3hp3hp 18 -4
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called Contact Interactions (CI) method [135]. It is based on the standard Monte Carlo

method and also there is something new about forming and preserving a hydrophobic

core. This algorithm performed better than others. This is done by assigning a mobil-

ity to each residue in the protein. It has a low mobility and changes to this part if the

conformation are less likely to be accepted.

An improved Pruned-Enriched-Rosenbluth Method (PERM) for the 2D HP lattice

is presented by Hsu where the algorithm PERM covers many things except the Chain

Growth (CG) method of Beutler and Dill [136].

Another usage of genetic algorithms is to find how energy conformations of HP

model sequences. Unger and Moult’s method with mutation operators was similar to a

single MC step and a crossover operator [137]. The probability of accepting a solution

is based on a cooling factor. Their research is put forward further by Konig and Danekar

[138]. They use a simple genetic algorithm with a new crossover strategy and a niching

technique. This so-called pioneer search is much faster and more reliable.

Krasnogor [129] and his colleagues proved that evolutionary algorithms optimiza-

tion methods like genetic algorithms (GAs) are ideally reasonable algorithmic options

to solve protein structure prediction problems by examining the design and applica-

tion of genetic algorithms in dealing with the intractable protein structure prediction

problems under the condition of the simple hydrophobic-hydrophilic model, which is

also called HP model. They take into account of three basic algorithmic factors that

may affect the effective application of genetic algorithms (GAs) in handling protein

structure prediction problem, such as selecting and evaluating the commonly used rep-

resentations and formulating the energy potential to secure the continuity of protein

conformations.

To compare the ability of different optimization algorithms, a benchmark set of 15

protein sequences have been used to test over 20 algorithms [123]. Those algorithms

encompass a wide range of evolutionary algorithms, from an improved ant colony op-

timization (ACO) algorithm, to some hybrid algorithms, including a genetic algorithm

with tabu search and a memetic algorithm which self-adaptively selects from a storage

of local search heuristics. It is called the Tortilla 2-D HP Benchmarks. To compare the

performance of the new algorithm, part of it is being used. In Table 5.1, l is the length

of the sequence and E∗ is the optimal or best known energy value.
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5.2.1 Hybrid Evolutionary Algorithms for Protein Folding

Liang and Wong apply a hybrid of evolutionary techniques and the Monte Carlo method

in an single algorithm for protein folding, which is called Evolutionary Monte Carlo

(EMC) [139]. EMC creates a population of candidate conformations where the prob-

ability of accepting a worse accepting a worse solution is dependent on a temperature

and the temperature is lowered following each iteration. The new candidate solutions

are created from the current population, using mutation and crossover operators based

upon genetic algorithms. The EMC algorithm managed to perform better than the ge-

netic algorithm of König and Danekar and another metropolis-based MC because of its

lower energy conformations and faster speed.

A hybrid search algorithm combining genetic algorithm and tabu search is proposed

by Jiang for the 2-dimensional HP model [140]. They argued that the proposed algo-

rithm performed better than Monte Carlo, Evolutionary Monte Carlo and simple genetic

algorithm.

Shmygelska and Hoos put forward an advanced Ant Colony Optimization (ACO)

approach to the HP lattice model [122]. It is similar to the state-of-art evolutionary and

Monte Carlo algorithms. The advance of this algorithm is long range moves to relax

compact conformations and escape from local optima and improving ants that selec-

tively take the best global solution found so far and apply a local search thus reducing

computational cost.

5.3 Immune Algorithms for Protein Folding

An novel immune algorithm is proposed by Cutello for the protein structure prediction

problem which also provided the Tortilla 2-D HP Benchmarks [123]. They use an aging

operator and two specific mutation operators based on the clonal selection principal of

the biological immune system. After testing on different circumstances such as the

2D and 3D HP square lattice model and the functional model protein, the immune

algorithm was verified a competitive state-of-art algorithm.
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5.3.1 Biological Immune System

Biological immune system acts as the major defensive line in terms of detection and

reaction of abnormal intrusion into the organism of humans. There are a variety of

different components either cooperatively or competitively contributing to the defensive

mechanism [19], which are briefly summarised as follows:

What is known as the innate immune system behaves as the first line of defence

when there exist intrusion caused by micro-organism. Two cells that forms the basic

components of innate immune system are macrophages and neutrophils, which have

structures called receptors that can be bind to specific molecular patterns commonly

found in a range of different micro-organisms. Another function of these cells is that

they also release molecules called cytokines which will signal the human body to acti-

vate inflammatory response. Certain functions of Cytokines and inflammatory are:

• Phagocytes are attracted by them to the cites of infection where a type of white

blood cells called phagocytes can ingest and digest microbes or other intrusive

materials into the human body.

• Foreign microbes are coated with protein in order for the phagocytes to digest

them.

• Blood flow to the infection site is increased so that more immune cells will be

transported to the infected area to deal with microbes or other foreign materials.

• Directly damage some foreign cells, bacteria and viruses.

• Increases in body temperature follows, as a result the activities of some pathogens

slow down while the activities of immune cell are strengthened.

Adaptive immune system operates at a more advanced level than innate immune

system, essentially formed by lymphatic system. Two types of lymphocyte are iden-

tified, B cells and T cells, which perform distinctive, but complementary roles in the

lymphatic system. It is found that Lymphocytes only respond to infections when there

is a inflammatory response from the innate immune system in presence [141].

A variety of cells are produced during clonal expansion. For example, cloned B cells

can develop into 2 types, either become plasma cells that is able to produce antibodies
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at a high rate, or memory cells, which circulate along lymphatic system through the

entire human body and is ready to proliferate if re-infection is detected. On the other

hand, T cells also differentiate themselves into different pathways [141].

5.3.2 Clonal Selection Algorithm

The clonal selection algorithm is an optimization algorithm. It is based upon the clonal

selection principle in the biological immune system. This idea has been successfully

applied to the protein structure prediction problem in [123]. In this application, the

clonal selection algorithm models the sequence of amino acids as an antigen and the

solution as B-cells.

Figure 5.6: Conventional Clonal Selection Algorithm

As a key element in Clonal Selection Algorithm for a variety of optimization prob-

lems, mutation operators have attracted significant attention in research. The original

mutation operator is typically Hypermutation, which usually lacks the ability of per-

forming further search on some certain region. Therefore, different version have been

developed, namely inversely proportional hypermutation, static hypermutation and hy-

permacromutation operators. In particular, hypermacromutation is proposed to extend

the region of the parameter surface with high success rate values [123].
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However, no single search algorithm is best on average for all problems [4], be they

self-adaptation or not, which suggests the algorithm of the previous immune algorithm

can be further improved if more effective mutation strategies could be added into the

algorithm. However, as the mutation operators are utilized in a sequential way in the

previous approach, it would be a really time-consuming task to follow this idea and

prevent the algorithm from combining more mutation strategies.

According to [123], the two new search operators introduced in this project have

both been designed to try and overcome these large energy barriers between minima.

The mixed strategy uses a probability distribution to choose between hypermutation,

hypermacromutation, one point crossover and uniform crossover. This allows for the

possibility of large jumps in the search space via crossover and hypermacromutation,

so that solutions stuck in local minima may have to opportunity to escape their current

basin of attraction.

5.4 Mixed Strategy Applied to Clonal Selection

Algorithm

The mixed strategy is inspired by different cell types in the immune system that work

competitively and co-operatively to identify and remove foreign organisms from the

host body. The mixed strategy can create an offspring from a clone by either mutations

or crossover. Which strategy is chosen is decided by a probability distribution,

p = (phyp, pmacro, p1pt , puni),

where phyp is the probability of creating offspring with the help of hypermutation,

pmacro is the probability of creating an offspring by hypermacromutation, p1pt is the

probability of creating an offspring by one point crossover and puni is the probability of

creating an offspring using uniform crossover. The probability distribution is updated

according to the fitness of recently produced solutions. In the clonal selection algorithm

the sequence of amino acids, s ∈ {h, p}l , where l is the length of the sequence, models

the antigen and the candidate solutions, r ∈ {F,L,R}l−1, models the immune cells.

The operator to create the initial population, the cloning operator, aging operator

and selection operator are the same as those used in [123]. After the initialisation step,

the mixed strategy is applied to the genetic operators, including mutation and crossover.
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The implementation of mixed strategy goes through each cell of the clone popula-

tion, P(clo), and assigns a mutation or crossover strategy according to the probability

distribution p. If assigned the inversely proportional hypermutation operator the cloned

cell is mutated in the way described in [123], whereby the number of mutations made to

the parent solution is inversely proportional to its fitness. If assigned the hypermacro-

mutation operator the number of mutations does not depend on any constant parameters

or fitness value; the number of mutations, like the newly assigned directions, are ran-

domly chosen.

If the cell is assigned the one point crossover operator it becomes the first par-

ent. The second parent is chosen by roulette wheel selection, where the probability of

choosing cell i, pi, is the fitness of cell i, fi, over the total fitness of the population:

Figure 5.7: Clonal Selection Algorithm with Mixed Mutation Strategy

The crossover point is chosen with uniform probability. If the selected crossover

point does not produce a feasible solution a new crossover point is chosen. If no point

can result in a feasible solution then a new second parent is selected; this continues until

a feasible solution is created and returned to the offspring population. It is possible that

a clone of the current solution is selected to be the second parent, however this is not

a problem because it stops the program from becoming stuck in an infinite loop if

a feasible solution can not be produced using another member of the population and

because duplicate solutions are deleted by the selection operator.

If the mixed strategy assigns uniform crossover to the cell then it becomes the first

parent. The second parent is chosen with uniform probability from the clone popula-

tion. From which parent a gene (direction) is taken from is chosen by a probability
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proportional to its fitness; the probability of taking a gene, from parent one, pone, is

equal to the fitness of parent one, fone, over the sum of the fitness of parent one and

parent two:

pone =
fone

fone + ftwo
(5.5)

As with the one point crossover operator, if uniform crossover does not produce a

feasible offspring using parent two it will choose a new second parent from the pop-

ulation. Again it s possible for a solution to be crossed with itself but this stops the

program from becoming stuck in a loop and duplicate solutions are deleted by the se-

lection operator.

All strategies are initialised with equal probability such that the probability of mixed

strategy are uniformly distributed:

p = (phyp, pmacro, p1pt , puni),

where the number of the probabilities are initialised with

p = (0.25,0.25,0.25,0.25).

From the 2nd generation onward, the strategy that produces the most offspring se-

lected for the next generation is given a payoff. This means the probability of this

particular strategy to be selected is increased whilst other strategies are assigned with

decreased probabilities. The first use of this kind of algorithms was first on real-valued

representation for optimisation problems [7].

In [7] each member of the population has its own probability distribution that chooses

between Gaussian, Cauchy, Lévy and single-point mutation operators. If the offspring

created using a particular mutation are selected for the next generation then the prob-

ability associated with that mutation is increased; if it is not selected than the strategy

is penalised and the probability reduced. Offspring inherit their parents’ probability

distribution. This technique is inspired by the immune system where the cells with the

highest affinity clone more rapidly. The technique has been adapted for this project so

that all the solutions share the same probability distribution.
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Figure 5.8: From Clonal Selection Algorithm to protein folding

When an offspring solution is created the operator used is recorded in its genotype

(i.e. hypermutation, hypermacromuation, one point crossover or uniform crossover).

Initial and new solutions are assigned an operator with uniform probability. After the

selection of the best d solutions from the offspring population, the probability of the

operator, h, that has created the most offspring, p(h), is updated using:

p(t+1)(h) = pt( j)− pt( j)γ (5.6)

The probabilities of the other operators, j, are updated using:

p(t+1)( j) = pt( j)− pt( j)γ (5.7)

The value of parameter γ ∈ (0,1), which is used to control the probability distribu-

tion ~p. It is chosen to between "0" and "1", which allows the normalisation condition

to be meet.

4

∑
k=0

p(k) = 1 (5.8)

where k includes the best strategy h and all other strategies j.

If one probability is greater than 0.65, meaning the associated operator is dominat-

ing the others, then the probability distribution is reassigned as: ~p=(0.25,0.25,0.25,0.25).

Re-setting the probabilities ensures that the probability of an operator being selected is

dependent on its recent performance and not its past performance.
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5.5 Experimental Results and Analysis

The clonal selection algorithm with the mixed strategy was tested on the Sequences

1-6, 9, and 13-15 in Table 5.1. The remaining five sequences could not be tested due to

constraints on time and the amount of computational power available.

Each experiment was repeated 30 times. The success rate (SR) is the percentage

of the 30 runs that find the lowest known energy value; the mean number of energy

function evaluations (AES) is averaged over the successful runs. The maximum life

span of a normal B cell (solution) τB = 1 and the maximum life span of a B-memory

cell τB = 5. The value of the hypermutation parameter c = 0.4 for Sequences 1, 2, 3, 4

and 15 and c = 0.5 for Sequences 5, 6, 9, 13 and 14. The maximum number of function

evaluations per run was 10,000,000 and the maximum number of generations per run

was 20,000.

The first test of the clonal selection algorithm with mixed strategy, shown in Column

B of Table 5.2, did not perform well with decreased success rate on Sequences 4 and

5, an increase in the number of energy function evaluations for Sequences 1 to 14 and

was unable to find any results for Sequence 15. The population size was d = 10 and

the cloning parameter was dup = 4. These values were based on the results from the

mini-project, which in turn were based upon [123]. For the mini project the number of

clones per solution was set to 2, one for each operator that created offspring. This was

the basis for the choice of dup under this test; there are four potential operators that

create offspring when using mixed strategy. However, because of the probabilistic way

that operators are selected when using the mixed strategy, this size of clonal population

was probably too small to allow all the operators to create offspring.

For Column C of Table 5.2 the cloning parameter dup was increased to 8 and

the population size d remained 10. These results show a large improvement of 80%

in the success rate of Sequence 5 compared to the clonal selection algorithm with

crossover (Column A) and a moderate improvement in the success rate on Sequence

6 of 6.66%. These parameter settings could find solutions to Sequence 15 without be-

coming trapped. There is also a decrease in the number of function evaluations for

Sequences 5, 6 and 13. The mixed strategy allows for large jumps between local min-

ima; increasing the number of clones that the operator acts upon increases the number

of chances for each operator to make these jumps, leading to improvements in success

rate and number of energy function evaluations.
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5.6. Summary

In the experiments shown in Columns D and E of Table 5.2 the population size and

cloning parameter were increased further. The initial intention was that by increasing

the clonal population the performance would improve further by creating even more

chances for the operators to make jumps between minima. However, increasing the

clonal population size resulted in increases in the number of energy function evalu-

ations for Sequences 2, 9, 13, 14 and 15 and a drop to zero in the success rate for

Sequences 3, 4, 5, 6. This drop in success rate is probably due to the increase in func-

tion evaluations exceeding the maximum energy evaluations allowed. It is possible that

the clonal selection algorithm with mixed strategy would perform better with a large

population size if experimental parameters, such as the maximum number of function

evaluations, were adjusted.

Table 5.3 compares the clonal selection algorithm with mixed strategy to other pub-

lished results. Comparison of Columns A and D show that Mixed Strategy decrease the

average number of function evaluations on nine out of ten sequences. The new operator

also increases the success rate by 43.33% for Sequence 5. Column B shows the results

from [132]’s genetic algorithm; the clonal selection algorithm with mixed strategy de-

creases the number of function evaluations for five out of six sequences and improves

the success rates for Sequences 4 and 5 by 30% and 87% respectively. Ant colony opti-

misation algorithm (Column C) is a very successful algorithm for the protein structure

prediction problem on the HP model. [122] The results shows that the clonal selection

algorithm with mixed strategy has matched its success rate on the six sequences, which

proves mixed strategy can at least perform at the same level of the best known pure

strategy.

5.6 Summary

This chapter focused on applying mixed strategy into the simple HP lattice model of

protein folding problem. The native conformation of a protein is postulated to corre-

spond to the shape that minimises the free energy. Because of this the protein struc-

ture prediction problem can be considered an optimisation problem. Many optimi-

sation techniques have been applied to the problem including chain growth methods,

[134, 135], variations of genetic algorithms [136, 138, 140, 142, 143, 144, 145], a

memetic algorithm [129], ant colony optimization [122] and the clonal selection algo-

rithm [123].
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5.6. Summary

Many of the optimisation techniques applied to this problem have struggled with

longer sequences in the tortilla benchmark set, especially those with tight hydrophobic

cores (e.g. Sequence 5). In this project, mixed strategy is introduced into the algorithm,

which is designed to overcome high energy barriers between local minima and increase

population diversity in order to explore new parts of the search space. Both are inspired

by processes in the biological immune system.

The mixed strategy is based upon the cell diversity in the immune system. Which

crossover or mutation technique is used to create offspring depends on a probability dis-

tribution p = (phyp, pmacro, p1 pt, puni). The technique that creates the most offspring

selected for the next generation is rewarded with a payoff that increases its probability

of being selected in the future. The mixed strategy helps overcome the large energy

barriers between low energy conformations of the HP-model proteins by allowing for

large jumps in the search space, or tunnelling, between minima.

Experimental tests show that the employment of mixed stratey improved the success

rate on Sequences 4, 5, 6 and 15 when compared to the results from the mini-project

and improved the success rate by 43% for Sequence 5 when compared to [123] and by

87% when compared with [143]. The success rate is the same as reported by [122].

The experimental results show that the clonal selection algorithm with mixed strat-

egy is suitable for long sequences where the native conformation has a tight hydropho-

bic core. For shorter sequences, without large energy barriers between the local and

global minima, the clonal selection algorithm with crossover is more suitable.
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Chapter 6

Conclusion

During the last several decades, many kinds of population based Evolutionary Algo-

rithms have been developed and considerable work has been devoted to computational

methods which are inspired by biological evolution and natural selection, such as Evo-

lutionary Programming (EP) [94], Artificial Immune System [19] and Differential Evo-

lution (DE) [146]. The objective of these algorithms is not only to find suitable adjust-

ments to the current population and hence the solution, but also to perform the process

efficiently. However, a parameter setting that was optimal at the beginning of the al-

gorithm may become unsuitable during the evolutionary process. Thus, it is preferable

to automatically modify the control parameters during the runtime process. [29]. The

approach required could have a bias on the distribution towards appropriate directions

of the search space, thereby maintaining sufficient diversity among individuals in order

to enable further ability of evolution.

6.1 Summary of Thesis

This thesis has offered an initial approach to developing this idea. The work starts from

a clear understanding of the literature that is of direct relevance to the aforementioned

motivations. The development of this approach has been built upon the basis of the fun-

damental and generic concepts of evolutionary algorithms. It shares with the common

principles underlying the existing literature, especially regarding the representation of
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6.1. Summary of Thesis

population and individuals, as well as and the key evolutionary computational opera-

tions such as mutation, crossover and selection.

The work has exploited and benefited from a range of representative evolutionary

computational mechanisms, including evolutionary programming, ant colony optimiza-

tion, and clonal immune algorithm from artificial immune systems. In particular, essen-

tial issues in evolutionary algorithms such as parameter control, including the general

aspects of parameter tuning and typical means for implementing parameter control have

been investigated. This has given rise to the recognition of the technical significance

of self-adaptive parameter control where the idea of combining different algorithms

together is exhibited.

The idea of enabling an evolutionary algorithm to be self-guided, that is, to be

capable of choosing the right method in a given situation has motivated the current

research. In particular, both the hyper-heuristic algorithm and the memetic algorithm,

which are established in the literature have set up a comparative work for the present

development. Inspired by the appreciation of the potential benefits of utilizing mixed

strategies in evolutionary algorithms, this work has developed several novel techniques

that contribute towards the advancement of evolutionary computation and optimization.

One such novel approach is to construct a mixed strategy based on the concept of

local fitness landscape. It exploits the concepts of fitness landscape and local fitness

landscape. This strategy helps reinforce conventional evolutionary programming from

two significant viewpoints. For this, the work has first applied local fitness landscapes

to aid in the determination of the behaviour of mutations in evolutionary programming.

Second, the work has introduced a training procedure that employs typical learning

functions to determine the preferable probability distribution of mixed mutation opera-

tors, with respect to various types of local fitness landscape.

Both theoretical description and experimental investigation of this local fitness land-

scape based mixed strategy have been provided, and systematic comparisons with alter-

native approaches carried out. Supported with an analysis of the experimental results,

the work has shown that the proposed approach can successfully overcome the major

limitations of using conventional evolutionary programming methods that employ just

single mutation operators.

Based on the aforementioned initial work, the thesis has presented a further im-

proved approach to the development of a mixed strategy. This has been achieved by
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6.2. Future Work

exploiting game theory with the use of incomplete information. This new approach has

been compared to the other through systematic experimental evaluation, on the same

footing using the same set of test functions.

The experimental results have once again demonstrated that this further improved

algorithm can successfully combat the shortcomings of conventional evolutionary pro-

gramming methods that employ a single mutation operator. The new approach has

proven to perform at least as well as the best of different conventional strategies with

single mutations. The results have further shown that the proposed approach is able to

possess a more stable performance while in action.

Another contribution of this thesis is the innovative application of mixed strategy.

In particular, this work has extended the domain of usage of mixed strategy to from con-

tinuous to discrete problems. Given similar features to those associated with numerical

function optimization, which is based on the different types of local fitness landscape,

mixed strategy has been applied to artificial immune algorithms. This is facilitated by

encompassing two crossover operators into the mixed strategy, one point crossover and

conventional uniform crossover.

Such an improved method has been shown to be simple and easy for implementa-

tion. The work has been utilised to deal with the problem of protein folding in bioin-

formatics. Experimental results have been given, demonstrating that the proposed algo-

rithm possesses an appropriate balance between exploration and exploitation. The use

of this improved algorithm is less likely to fall into local optimal, entailing a faster and

better convergence in resolving challenging realistic application problems.

6.2 Future Work

As indicated above, this thesis has achieved a number of important technical objectives

in improving evolutionary computation methods, via the use of mixed strategies, in-

cluding those proposed ones herein. However, the work carried out so far also gives

rise to a number of important issues that may challenge the general success in develop-

ing more effective and efficient evolutionary algorithms. This final section of the thesis

discusses several identified possible improvements over the present research, including

ideas for both short-term and long-term developments.
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6.2. Future Work

6.2.1 Short-Term Improvements

There are many aspects that still to be addressed in the future. Researchers should

extend the experiment to more types of problem and more complicated functions. Also

a fine adjustment of local fitness landscape needs to be considered as an important part.

MSEP leads to a compatible satisfactory so that a better implementation of the feature,

λ , may be valuable and might lead to more stable performance. Additionally, more

mutation operators can be taken into consideration, (e.g. Lévy mutation). Introducing

mixed strategies to other types of operator is also worth to be considered.

For Mixed Strategy discussed in Chapter 4, incomplete information from game the-

ory and evolutionary programming can be further extended in the future work. It is

because the current work we are doing is still on a basic level; the algorithm has not

been optimised. I can be aimed to consider more aspects such as the design of a larger

modification to Modified Evolutionary Programming to perfect the work. In addition,

a successful design of IMEP should be introduced as a framework for introducing in-

complete information to the mixed strategy algorithms. In our next step, the experi-

mental evaluation will be extended to more complex functions. A comparison between

IMEP and a multialgorithm genetically adaptive method for single objective optimiza-

tion (AMALGAM-SO) [120] can also be considered. It is a multimethod algorithm that

combines several evolutionary algorithms together.

The experiments in the Protein Folding can also be designed further, making mixed

strategy more adaptive to the application. To allow the algorithm sufficient opportu-

nity to find the lowest known energy values, the maximum number of function evalu-

ations should be increased. For those new operators, these longer sequences would be

a favourable test because of the tight hydrophobic cores of the known native confor-

mations. Further test of the clonal selection algorithm with mixed strategy and archive

operators should be implemented on all benchmark sequences in order to find the best

values for the algorithmâĂŹs parameters. Besides, the use of clonal selection algorithm

with better tuning can help solving the protein structure prediction problem on models

with even higher resolution.

6.2.2 Long-Term Improvements

Currently, protein folding in Chapter 5 are using conventional mixed strategy. With the

knowledge of Chapter 3, the local fitness landscape can be considered introducing into
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6.2. Future Work

protein folding. A feature extracted by observing the local fitness, λ , should be defined

first. In addition, the experiments in Chapter 5 can be extended to 3-D HP model and

functional model proteins.

Furthermore, the differences between mutation operators of different algorithms

(Eg. From Immune Algorithm and Differential Evolution) can be compared. Following

determination of their own advantages, mutation operators from different algorithms

can be potentially combined together with mixed strategy when applying to certain

complex local fitness landscapes.

It would be interesting to test the versatility of mixed strategy on other problems

and applications, especially other discrete problems. Scheduling could be an potential

domain for testing the mixed strategy, including travel salesman problem and flowshop

scheduling.
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