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ABSTRACT

Research at Aberystwyth into qualitative simulation of electrical circuits has been
word-leading for nearly two decades. During that time, the Advanced Reasoning
Group has developed a variety of electrical circuit simulators. The most successful,
CIRQ, has been deployed for more than ten years in industrially useful design
analysis systems, and has undergone a range of improvements over that time.
MCIRQ is a more advanced version of CIRQ that was developed on the Design for
the Whole Vehicle, Whole Lifecycle EPSRC Project at Aberystwyth. It is able to
reason about circuits with multiple levels of qualitative resistance, and to indicate
the different levels of current activity in the circuit. It showed great promise of
being able to assist the design analysis systems in producing improved analysis
reports, but was never deployed industrially because it was not able to analyse as
wide a set of circuits as the original CIRQ software.
This thesis describes a reimplementation of MCIRQ for use with both electrical
and fluid flow systems. It extends the theory of electrical qualitative analysis in
several ways, and makes several improvements to the original version of MCIRQ:

• It replaces the Forward-Reverse labelling system of path finding with Series-
Parallel reduction system to determine current magnitude and direction.

• It improves the Star-Delta Reduction algorithm to deal with problem cases
that do not occur in well-formed electrical circuits, but which do occur in
the circuits with failure that are dealt with in failure analysis work.

• It extends MCIRQ to deal with many bridge circuits that were impossible
to resolve in the previous version of MCIRQ.

• It introduces a principled strategy for resolving the direction of current flow
within the circuit.

The overall effect of these improvements is to transform MCIRQ into a qualitative
analysis tool that can be used for real world applications. The thesis illustrates
the kinds of analysis that can now be done by MCIRQ that was impossible before.
The new MCIRQ has been employed on the ASTRAEA project. It has made
possible applications of design analysis for engineering systems that could not have
been addressed by any of the previous circuit analysers, notably in the domain of
systems with both electrical and hydraulic aspects.
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Chapter 1

Introduction

This thesis presents a new method for determining flow in an electrical circuit

which allows multiple qualitative values for resistance, resulting in qualitatively

different values of flow in the circuit. This method is encapsulated in an algorithm

for analysing the behaviour of electrical circuits more effectively, and in a more

principled manner. This algorithm has been implemented and integrated within

a model-based reasoning system which performs automated failure modes and

effects analysis (FMEA) and diagnosis of automotive electrical systems.

The resultant system has been tested on electrical circuits which gave prob-

lems with previous algorithms, and has shown itself to be capable of overcom-

ing those problems. Furthermore, the algorithm has also been used with hybrid

hydraulic/electrical systems, and also proves effective in that domain.

The main contributions of this work are extensions to Series-Parallel Reduction to

deal with cases that are not covered by the basic theory, and replacement of an ad

hoc approach to derivation of current flow in a circuit with a principled approach

to current flow analysis that gives greater confidence that current flow results will

be correct for large, complex circuits.
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1.1 Background

The advanced reasoning research group at Aberystwyth has a long history of

successful research in model-based reasoning for electrical automotive systems

[Price and Lee, 1988, Hunt et al., 1993, Struss and Price, 2003]. One of the foun-

dations of that research is the ability to perform Qualitative Circuit Analysis.

The original algorithm to achieve this was developed by Prof Mark Lee on the

SERC Project ”DREAM” [Lee and Ormsby, 1992, Lee and Ormsby, 1993], and

was gradually refined to meet the demands of real world case studies [Lee, 1999,

Lee, 2000]. It still has some limitations which need to be addressed, primarily

with bridge circuits [Lee et al., 2001].

The work presented in this thesis addresses some of the shortcomings of the pre-

vious qualitative circuit analysers. It is based on Series-Parallel (S-P) reduc-

tion [Mauss and Neumann, 1996] rather than Forward-Reverse (F/R) pathfinding

[Lee et al., 2001], and includes the ability to perform electrical analysis on a sys-

tem with multiple levels of resistances rather than the three levels present in the

original CIRQ system [Lee and Ormsby, 1993]. This can involve the automatic

generation of new current values that do not directly map into the quantity space

that would be directly derived from the set of resistances used in the circuit. The

new current values are used when parallel current paths of different resistances

combine in such a way as to divide current unequally across two paths.

The use of multiple values for resistance, linked to the use of Series-Parallel reduc-

tion shows promise in the simulation of a wider variety of systems and domains.

The technique also shows promise for other forms of flow based simulation such

as in the fluid flow domain. The development of a new method for qualitatively

solving flows in circuits with multiple values of resistance is the main result of this

dissertation. The implementation and testing of a multiple qualitative value flow

simulator incorporating these ideas has also been achieved.

The simulator based on the work presented here now forms the core qualitative

simulation engine used for Failure Effect Analysis as part of the ASTRAEA project

both for electrical and fluid flow systems as presented at ISSRC in Singapore in

2008 [Snooke et al., 2008]. The ASTRAEA project is a £30M Technology Strategy

Board initiative to develop the safety case for unmanned aerial vehicles flying in

commercial airspace [Downes, 2007].

11



1.2 Content of this thesis

This thesis is structured in the following way:

Chapter 1 gives a brief summary of the content of the thesis, and explains where

it fits into a larger body of research at Aberystwyth. It also includes this

summary of the contents of each chapter.

Chapter 2 is a survey of relevant literature. It focuses on qualitative reasoning

and its application to engineering problems. As the main focus of this thesis

is on an improved method for simulating electrical circuits, the literature

survey concentrates on previous useful methods for qualitative simulation of

electrical circuits.

Chapter 3 gives details of the improvements that can be made to the previous

CIRQ and MCIRQ systems in order to produce better simulation results in

a more principled way.

Chapter 4 provides some details of the implementation of the improved MCIRQ

system.

Chapter 5 examines the performance of the improved MCIRQ system on circuits

which proved problematic for the previous versions of the CIRQ and MCIRQ

simulators. It also describes the successful deployment of the new simulator

within the ASTRAEA project.

Chapter 6 rounds off the thesis with conclusions and future work.
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Chapter 2

Literature Review

2.1 Model-based Reasoning

The phrase model-based reasoning has been used to refer to the task of using

models of a system to reason about the behaviour of the system being modelled

[Milne, 1991]. The types of model that are used should reflect the structure of

the domain in a fairly direct way, often modelling components and connections

between the components in the domain. Much of the early work in model-based

reasoning was for the task of diagnosis, and was specifically referred to as model-

based diagnosis (MBD). The general idea was that the model of the system predicts

what should be happening in the observed system, and that differences between

the model of the system and the observations of the real system could be used to

monitor the real system, and to perform diagnosis when there were discrepancies.

Qualitative reasoning [Bobrow, 1985] has often been used as a basis for model

based reasoning, as it gives excellent coverage of the possible behaviours of a

system [Travé-Massuyès and Milne 1995, Price et al., 2006].

[Travé-Massuyès and Milne 1995] identifies six key areas of application for quali-

tative model-based reasoning:

• continuous processes

• engineering
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• ecology

• electronic circuits

• business and commerce

• medicine

While not all of these areas are of the same type (for example, electronic circuits

could clearly be classified under engineering), they give some idea of the range of

areas where this technology is being applied.

[Price et al., 2006] is based on a roadmap for the future of qualitative reasoning

produced by the MONET Network of Excellence in Model-based and Qualitative

Reasoning funded by the European Commission, and gives a summary of the

application areas of model-based and qualitative reasoning. Looking back at the

past achievements of qualitative and model-based reasoning, it chooses to highlight

10 significant areas of development:

• Fault detection from models

This has been applied in automotive systems [Struss and Price, 2003], in

monitoring of large gas turbines [Travé-Massuyès and Milne 1997] and in

spacecraft diagnosis [Williams and Nayak, 1996].

• System simulation using virtual prototypes

The area of virtual prototyping is an important application of model-based

reasoning - it saves the significant cost of implementing actual systems in

order to identify potential problems with a design by instead performing tests

on the model-based system. [Price et al., 2006] discusses the work described

in [Ward and Price, 2001], which is one aspect of the automotive work at

Aberystwyth, along with [Bénazéra and Travé-Massuyès, 2003] which uses

models to produce efficient diagnostics before an actual satellite system has

been built.

• Process understanding and monitoring

While the models here tend to be process-based rather than structural com-

ponent based, the intuition behind the use of models is similar. Examples are

given of chemical process plants where models of the system enable improved

monitoring and control of that system.
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• Explanation of numerical simulations

[Forbus and Falkenheiner, 1991] show how qualitative and quantitative sim-

ulation can be linked to provide simulators that are capable of explaining

how they reached their results. The functional reasoning layer of the Au-

toSteve system described later in this chapter [Price, 1998] performs similar

abstraction of detail to a level understandable to the user.

• Cognitive applications

[Price et al., 2006] argues that these kinds of model can also be used to

better understand peoples’ models of real world systems, but that is outside

the considerations of this thesis.

• Compositional model-based diagnosis and state tracking

[Price et al., 2006] talks about the use of model-based systems with online

observations to track the overall state of a system, and to alert the user to

incipient problems. The work described in this thesis has been used within

ASTRAEA for this type of application (not yet published, but covered by

BAE Systems patent applications 0910145.2 and 1107160.2).

• Model-based systems provide many opportunities for re-usability

This is an advantage of model-based reasoning rather than an applica-

tion area. The work in the automotive area very much relies on this ad-

vantage, with reusability at the level of functional description, of circuit

component, and of primitives for the underlying qualitative circuit analysis

[Struss and Price, 2003].

• FMEA generated from the design description and component models

FMEA is one of the key application areas of the automotive model-based

reasoning discussed in this thesis [Price and Taylor, 2002], and the work de-

scribed in this thesis has made it possible to generate FMEA consequences

for situations that would previously been unresolved because of shortcomings

in the qualitative circuit analysis.

• QR models in the educational context

[Price et al., 2006] highlights the use of models to teach people about how

things work, but again that is outside the considerations of this thesis.

• QR to help decision making under uncertainty

QR can be used where numerical approaches are not applicable. This is

somewhat outside of the scope of this thesis, and so is not considered further.
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2.2 Structure of a Model-based FMEA system

AutoSteve is a software package that performs a number of analyses on electrical

circuits, initially developed in the Computer Science department at Aberystwyth

University and subsequently developed, marketed and sold by FirstEarth Ltd.

This section looks in detail at the way that the AutoSteve system is structured

to perform FMEA. The qualitative circuit simulator that has been designed and

implemented in this thesis forms part of the structure of the AutoSteve software.

FMEA is a design discipline normally performed by a group of engineers who,

between them, understand all of the aspects of the design of the system being

analysed. They consider the ways in which the system can fail, and they explore

the consequences of every possible failure, and assess its significance. The purpose

of this exercise is to highlight potential catastrophic failures of the system, and to

amend the design to avoid them if possible.

Automated FMEA of electrical systems considers the effects of every possible

component failure within an electrical system, exercising the behaviour of the

system containing the fault, and reporting the differences between the failure

behaviour and the correct behaviour. If the behavioural differences were reported

at the level of individual resistances or individual components, then the significance

of the report would be lost in a plethora of details. Therefore, it is necessary to

abstract the results to an appropriate level for an engineer to understand.

The automated FMEA system is made up of three layers:

1. An electrical qualitative analyser. This is the layer where the system built

as part of this thesis is included in the overall FMEA system. It takes a grid

of resistors and connections, and decides on current flow within the grid.

2. A state based component reasoner. This layer works at the level of the

components drawn by an engineer in a CAD tool. Given the state of each

component in the system, this layer interacts with the electrical qualitative

analyser to decide how the system will respond to any input.

3. A functional reasoning layer. This layer takes the results of component-based

simulation and abstracts them to the level appropriate for presentation to

an engineer.
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Figure 2.1: Layers of the Model-Based FMEA System

Figure 2.1 shows how these three layers relate for a very simple lighting cir-

cuit. The detail of how the AutoSteve system works is not germane to this

thesis, it is merely presented as context for the electrical qualitative analyser.

If the reader is interested in the details of the AutoSteve system, then a num-

ber of papers have been written on this subject, notably [Price, 1998, Price, 2000,

Price and Taylor, 2002, Price et al., 2003].

The electrical qualitative analyser is the underlying engine for all of this work —

it is exercised many thousands of times during an FMEA analysis, and needs to be

both efficient and effective. When the first prototype was built at Aberystwyth,

performing an FMEA took several days. This was improved by reimplementing

the electrical qualitative analyser in a more efficient language, and identifying

others ways that the code could be improved. The electrical qualitative analyser

also needs to be able to predict current flows for as many circuit configurations as

possible - where analysis comes up with ambiguous results for a single component

state, then producing an FMEA is not possible for that component failure.
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The original electrical qualitative analyser used in AutoSteve was CIRQ (see sec-

tion 2.4.1 for details). [Price et al., 2003] explores how CIRQ can be replaced

by other electrical circuit analysers. This is shown in Figure 2.2, taken from

[Price et al., 2003] with permission.

Figure 2.2: Use of different simulators in producing functional level reports: (a)
simulation structure for three-valued qualitative reasoning; (b) simulation struc-
ture for multi-valued qualitative reasoning; (c) simulation structure for numerical
resistance resolution; (d) simulation structure for SABER complex numerical sim-
ulation.

Part (a) of the figure shows the AutoSteve system already described, with CIRQ as

the electrical qualitative analyser. Part (b) of the figure shows CIRQ replaced by

MCIRQ (described in section 2.4.4. Some adaptation of the interface between the

state-based component reasoner and the electrical qualitative analyser is needed

in order to handle the multi-level current flows given as results from MCIRQ, but

the system is essentially unchanged. Part (c) of the figure shows the electrical

qualitative analyser being replaced by SPICE. Again, some adaptation is needed

to handle the more precise results that are available from SPICE, but the system

essentially works in the same way. Part (d) of the figure is somewhat different,

18



as the the state-based component reasoner is replaced as well as the electrical

qualitative analyser, but this configuration was always less successful than the

ones that merely replaced the electrical qualitative analyser.

The new electrical qualitative analyser would fit in as a replacement for CIRQ in

the same way as is done in parts (a,b,c) of Figure 2.2. The adaptations needed

to do so are similar to those needed for MCIRQ, as this analyser also produces

multi-level current flows.

2.3 Other Applications in Electrical Domains

One of the major advantages of building a system such as AutoSteve on top of

electrical qualitative analysis has been that the results have been general enough

that they have been applicable to a range of other analysis tasks in the automotive

domain.

A number of other analysis tools have been built by the research group at Aberys-

twyth over the years. Many of them now form part of the design analysis suite sold

by Mentor Graphics for their Harness Design tools [Mentor Graphics website, 2011],

although the latest version of several of these tools have been developed by Aberys-

twyth with more advanced functional abstraction, more complex component rep-

resentation, and using the qualitative circuit analyser described in this thesis.

2.3.1 Workshop diagnosis manual

This application does not involve any different analysis from that done for the

FMEA. Instead, it takes the FMEA results, and rearranges the results ordered

by symptom rather than component failure. It then can tell the mechanic which

possible component faults could be responsible for the failure of specific functions

such as losing the use of a main headlight. These potential causes can be shown

to an engineer on a circuit diagram, enabling him to explore what is wrong and

fix it.
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2.3.2 On-board diagnosis

This is more complex than workshop diagnosis. The task is to use on-board

measurements to monitor the system, and to detect of the occurrence of faults.

Ideally, the system would also enable isolation of the fault, as least to some degree.

The latest version of the FMEA has been used on the ASTRAEA project to

produce on-board diagnostics for the fuel system for an unmanned aerial vehicle,

as pictured in Figure 2.3. The fuel system contains hydraulic components as well

as electrical components, and both aspects of the fuel system are modelled in the

three layer system described earlier, and use the qualitative analyser described in

this thesis at the lowest level.

The diagnostics produced are integrated within a Bayesian diagnostic system built

by BAE Systems, and can be used both to implicate and to exonerate component

faults. No paper is presently available detailing this work, as it has been reserved

by BAE Systems for protection by patent. It is detailed in BAE Systems patent

application 1107160.2.

2.3.3 Detectability

This task has also been explored in the recent ASTRAEA project. The project

has produced a tool that assists engineers in deciding what sensors are needed on

a system and what observations need to be made in order to be able to detect

the occurrence of all possible component failures in that system. This enables

efficient sensor selection and observation choice. This is done in consultation with

the engineers, who know more about the reliability and availability of sensor than

is possible to express in a model-based system. The work has the potential to be

extended to make the detectability tool into a more general diagnosability tool.

The work is detailed in [Snooke and Price, 2011].

2.3.4 Virtual prototyping

Before tools such as AutoSteve were available, once a circuit design had been

drawn, it would be made into a physical prototype. Within Ford, this is known

as yellowboarding, because all of the wires and components would be pegged out
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Figure 2.3: Fuel system diagram
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on a large yellow board. The functions of the design would then be explored by

a planned set of tests which turned switches and senses in the design on and off.

The existence of a system such as AutoSteve means that most of this work is

now unnecessary. The functionality can be explored on a computer by linking

the simulation described here to the circuit design in the CAD tool used by the

engineer. The engineers can go through their set of tests that would have been done

with the physical yellowboard much more efficiently with the online simulation.

2.3.5 Sneak circuit analysis

Sneak circuit analysis detects the activation of unexpected functionality within a

system. Typically, this occurs because current in a circuit takes an unexpected

path through the circuit to activate that functionality. A classic example of a sneak

circuit is given in the paper by [Savakoor, 1993]. This paper details a problem on

a Boeing plane, as illustrated in Figure 2.4.

Figure 2.4: Aircraft sneak circuit

The cargo door and landing gear are supposed to be switched separately, with an

override on the cargo door to open it in an emergency. In fact, because of the

network that is the wiring in a modern vehicle, there is an unexpected path when

the emergency switch is engaged, and activating the emergency override on the

cargo doors also causes the landing gear to be activated.

The automated sneak circuit analysis tool [Price et al., 1996] works by declaring

the expected functionality of an electrical system, and then exercising all possible

functionality. The engineer declares the switch and sensor conditions for which
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a function should be activated. If there are any other sets of switch and sensor

combinations that activated the functionality, then they are due to a sneak circuit.

The sneak circuit tool has been tested on many of the classic sneak circuit exam-

ples, and has a good track record of finding sneak problems, while not erroneously

flagging up correct behaviour as sneak circuits (a problem with other automated

sneak circuit tools).

2.4 Qualitative Circuit Analysis

Section 2.2 discussed the different levels making up the AutoSteve FMEA system.

The lowest of these levels was made up of a qualitative circuit analyzer. This

level is given a network of resistances by the component level (QCAT), and has

to decide where current is flowing in the network, and in which direction.

This section discusses the different solutions that have been used for providing a

qualitative circuit analyser. In several cases, the different techniques have been

brought together. So, for example, later versions of CIRQ use series-parallel re-

duction to improve their performance.

2.4.1 CIRQ

CIRQ was the solution for providing qualitative circuit analysis for AutoSteve

even before it was called AutoSteve. In the early research prototypes build for

the Ford Motor Company [Hunt et al., 1993], when the FMEA software was still

known as FLAME, the qualitative circuit analysis was done by CIRQ.

CIRQ is a shortest path algorithm for qualitatively solving electrical circuits, and

was initially developed in the Computer Science Department in Aberystwyth Uni-

versity, and presented in [Lee and Ormsby, 1992] and [Lee and Ormsby, 1993] as

pathfinding algorithms based in part on Dijkstra’s shortest distance algorithm

[Dijkstra, 1959].

CIRQ uses three levels of resistance, Zero, Load and Infinite and uses pathfinding

algorithms to go in the forward (from power source to ground) and reverse (from
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ground to power source) directions. Each node in the graph representing the

circuit is labelled with its Forward and Reverse values (hereafter referred to as

F/R). These F/R labels give the number of nodes between the power source

(forward) and the ground (reverse) and the node in question.

The original CIRQ algorithm was used as the central circuit solver for the FLAME

software [Price et al., 1997] and the AutoSteve software [Price, 2000].

The performance of CIRQ was further developed through the identification supern-

odes and Series-Parallel reducibility within circuits [Lee, 1999]. The development

of supernodes was based on work on graph-theoretic methods, using rewriting

and replacement rules [Arnborg et al., 1991]. The series and parallel reduction

rules were adapted from the work of [Mauss and Neumann, 1996] which used the

transforms to reduce a circuit down to a single equivalent resistance value, and is

described in section 2.4.3.

It is worth noting that the original CIRQ algorithm does not label the direction

of current flow in wires. It identifies which parts of the circuit are active. Current

flow in some wires can then be deduced because they are connected to source

or sink. From there, flow can be propagated into other wires. Over time, the

practical version of the CIRQ software acquired empirical rules that allowed more

and more circuits to have current flow correctly labeled, but it was somewhat of

an ad hoc process. The work described in this thesis enables a much more reliable

labelling of flow in a circuit in many cases.

2.4.2 Early work at the Technical University of Munich

While reasoning about circuits has a comparatively long history in qualitative

reasoning [de Kleer, 1984], there have only really been two groups doing serious

research into qualitative modelling of automotive electrical systems: the Advanced

Reasoning Group at Aberystwyth, and the Qualitative Reasoning Research Group

at the Technical University of Munich (TUM).

Early work at TUM [Struss et al., 1995] attempted to build component based mod-

els similar to those developed by de Kleer and Brown [de Kleer and Brown, 1984]

for fluid flow.
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Connectivity Rules were given for the behaviour of each component. For example,

the rule for a wire’s connectivity was:

Ti.con − x − in = Tj.con − x − out (2.1)

The rule for a splice was more complex, as you needed to worry about connectivity

down two different paths:

Ti.con − x − in = min(Tj.con − x − out, Tk.con − x − out) (2.2)

Given connectivity through a wire, the researchers at TUM attempted to apply

rules for the current flowing through the wire;

T1.current ⊕ T2.current = 0 (2.3)

T1.voltage = T2.voltage (2.4)

These rules worked fairly well for small circuits, but became less useful when

applied to more complex automotive circuits. The TUM researchers rapidly aban-

doned this approach, and moved to using the series-parallel reduction strategy to

reduce complex circuits to a more manageable size.

2.4.3 Series-Parallel reduction

This work was orginally applied to qualitative reasoning about electrical circuits by

the Qualitative Reasoning Research Group at the Technical University of Munich

[Mauss and Neumann, 1996, Struss and Price, 2003].

Series-Parallel reduction is an analysis technique used with electrical circuits that

allows the simplification of a circuit by replacing pairs of resistances with a single

resistance. The essential insight is that when resistors are in parallel or in series,

they can be collapsed into a single resistance. When doing qualitative reason-

ing where the only resistance levels are zero, Load and ∞, then the load of the
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combined resistance is easy to calculate (see table 2.4.3).

a

b

R1

R2

(a) Resistive se-
ries circuit

a

b

R1 R2

(b) Resistive parallel circuit

For two resistances R1 and R2, the total resistance of the resistive series circuit of

Figure 2.5(a) is found by the following equation:

RT = Rab = R1 + R2 (2.5)

where RT is total resistance of the circuit, and Rab is resistance between the nodes

a and b

The total resistance of the resistive parallel circuit of Figure 2.5(b) is found by

the following equation:
1

RT

=
1

Rab

=
1

R1
+

1

R2
(2.6)

The introduction of the Series-Parallel (hereafter known as S-P) reduction trans-

formations into the qualitative circuit solvers resulted in a decrease in execution

time for three valued circuits. A three valued circuit is one that has three possible

qualitative values for all the resistances in the circuit. The values possible are

Zero, Load and Infinite, usually written 0, L, ∞. These values are ordered such

that 0 < L < ∞.

S-P reduction was initially done to simplify the circuit to make it easier to solve

using a pathfinder. When replacing of a pair of resistance values is done in order to

collapse a circuit, it depends on the structure of the two edges. If the two edges A

and B are in series, then the sum of the resistances, or qualitatively, the maximum

is taken. If the edges A and B are in parallel, then the equivalent replacement
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edge is the minimum of the two edges.

A B A & B in Series A & B in Parallel
∞ ∞ ∞ ∞
∞ Load ∞ Load
∞ 0 ∞ 0

Load ∞ ∞ Load
Load Load Load Load
Load 0 Load 0

0 ∞ ∞ 0
0 Load Load 0
0 0 0 0

Equivalent MAX MIN

Table 2.1: Qualitative reduction rules for 3 valued electrical resistance

2.4.4 MCIRQ

The motivation behind MCIRQ was that the three levels of qualitative resistance

handled by CIRQ (zero, Load and ∞) were not sufficient to be able to characterise

the behaviour of many automotive systems. For example, a trickle current through

a motor might be enough to provide an information signal, without activating the

device. This type of strategy is often used by automotive engineers, and so ideally,

a simulator would be able to differentiate between an activation current and a

trickle current.

MCIRQ [Lee et al., 2001] is the Multiple resistance level Qualitative Circuit anal-

ysis tool. Instead of three levels of resistance (zero, Load and ∞), MCIRQ is able

to work with a wider range of qualitative levels. While the theory of MCIRQ

allows for n levels of resistance, in practice, five or seven levels of resistance are

sufficient for most systems. For a five level system, the qualitative resistance levels

would be zero, low, medium, high and ∞. The engineers are often able to specify

these levels early in the design process, and so MCIRQ is able to do analysis of

circuits almost as early in the design as CIRQ can.

The presence of these five levels enables visualization of of the different levels of

activity occurring within the circuit. For a standard vehicle with a 12V battery

system, three levels of activity can be shown in a circuit. These levels correspond

to information flow (e.g. signal current to a CPU), activation flow (e.g. the current

needed for activating a relay) and power level flow (the current needed to power

a windscreen wiper).
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In order to work, there must be an order of magnitude relationship between the

different levels (so that adding resistances together does not take you to the next

level of resistance). For a five-level quantity space, the relationship between the

values zero, low, medium, high and ∞ would need to be:

zero < low < medium < high < ∞ (2.7)

MCIRQ works in the same way as the original CIRQ, by propagating F/R values

through the circuit, but first of all, it uses S-P reduction to simplify the circuit as

much as possible. The original intention of S-P reduction was that it would reduce

a circuit down to so few nodes that qualitative analysis of the circuit would be

trivial. That is not always the case, as some circuits cannot be reduced so easily.

However, the technique can often simplify a circuit to such an extent that it makes

CIRQ type analysis easier to perform, and so [Lee, 1999] integrates S-P reduction

into the way in which MCIRQ works.

The outcome of MCIRQ was a more efficient electrical qualitative reasoning tool,

able to analyse some circuits better than the previous CIRQ tool, and providing

more accurate results.

However, there were still some outstanding challenges. In particular, [Lee et al., 2001]

identifies the labelling of current flow direction and the resolution of bridge cir-

cuits as being more of a problem in MCIRQ than in CIRQ. [Lee, 1999] and an

internal memo by Mark Lee (included in this thesis as Appendix A), set out those

problems and potential solutions. The internal memo highlighted some circuits

such as Figure 2.5 as being impossible to resolve in either CIRQ or MCIRQ.

This thesis has tackled several of the proposed strategies for improvement of the

performance of MCIRQ. Professor Lee’s main strategies for potential improvement

were:

• Improvements to S-P reduction. These are discussed in detail in section 3.2,

and have been implemented as part of the work of this thesis.

• Expansion of S-P reduced circuit back into original circuit showing flow.This

is also discussed in detail in section 3.2, and has been implemented as part

of the work of this thesis.
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Figure 2.5: Complex circuit impossible to resolve in CIRQ or MCIRQ
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• Implementation of supernodes in the segment table. This has been imple-

mented in the new circuit simulator, and is discussed in section 3.2.

• Addition of star-delta transforms. These transforms assist with current flow

assignment for circuits that do not reduce using S-P reduction. These have

been added to the simulator implemented as part of this thesis since the

completion of the original work detailed here.
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Chapter 3

Improving Qualitative Simulation

for Electrical Circuits

This chapter gives details of how performance of the electrical qualitative sim-

ulators CIRQ and MCIRQ can be improved by additional analysis. It proposes

improvements to the series-parallel reduction analysis, and a much more princi-

pled, consistent approach to calculation of current flow.

The general strategy for these improvements comes from Prof. Mark Lee’s techni-

cal report [Lee, 2002], included as Appendix A of this thesis, and from [Lee et al., 2001].

3.1 Performing Series-Parallel Reduction

3.1.1 Series-Parallel reduction

An electrical circuit can at steady state be represented by a network of resistances.

This is even true of circuits containing capacitive and inductive elements as their

resistance changes with respect to the stored energy of the device, but at any

instant the component has a specific resistance. That network can be simplified

by replacing sets of resistances in parallel or in series by a single resistance.

The method for doing this, using the theory given in section 2.4.3 is as follows:
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1. Attempt to apply series reduction across the whole circuit until no more

series reductions can take place.

2. Attempt to apply parallel reduction across the whole circuit until no more

parallel reductions can take place.

3. If step 2 succeeded in performing parallel reduction, go back to step 1.

3.1.2 Series reduction

An edge E1 and an edge E2 are series reducible to a single edge S iff they share

a common vertex V and that V has only two connected edges, being E1 and E2

and vertex V is not the supply or sink vertex.

+

o

E
1

E
2

V

(a) Series circuit
before reduction

+

o

S

(b) Series circuit
after reduction

Figure 3.1: Simple example of series reduction in a circuit

Given an edge E1 and an edge S which subsumes E1 in series with another edge

E2. The resistance R() of the edge S can be given as:

R(S) = max(R(E1), R(E2)) (3.1)
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3.1.3 Parallel reduction

An edge E1 and an edge E2 are parallel reducible to a single edge P iff they share

two common vertices V1 and V2.

+

o

E
1

E
2

(a) Parallel circuit before reduc-
tion

+

o

P

(b) Parallel circuit
after reduction

Figure 3.2: Simple example of parallel reduction in a circuit

Given an edge E1 and an edge P which subsumes E1 in parallel with another edge

E2. The resistance R() of the edge P can be given as:

R(P ) = min(R(E1), R(E2)) (3.2)

3.2 Improvements to Series-Parallel Reduction

Professor Lee’s paper in Appendix A describes the use of series-parallel reduction,

intending it to be used in principled current flow analysis (see later). However,

while implementing it as part of this thesis, a further set of drawbacks were dis-

covered. The theory of Series-Parallel reduction described above works on well-

structured circuits, but the application of this simulation to FMEA means that
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all sorts of unexpected circuits are generated for analysis. This has meant that

circuits are often encountered with a number of complications that the basic S-P

reduction cannot cope with.

The algorithm has the potential to solve these by being extended to deal with

these special cases. Because of this, part of this thesis has included devising ways

of dealing with the following types of special case:

• Floating Edges - an edge E that provides the only connection to a vertex V ;

• Loops - an edge E that connects to a vertex V on both ends;

• Infinite Edges - an edge E whose resistance is infinite;

• Zero Edges - an edge E whose resistance is zero.

3.2.1 Special Cases

This section considers how S-P reduction can be extended to deal with each of

these cases that is ignored by the simple S-P reduction theory.

3.2.1.1 Floating Edges

A floating edge is an edge that provides the only connection to a single vertex.

The edge E1 in Figure 3.3 shows this diagrammatically.

In the type of single shot, direct current, simulation that is being performed by

this algorithm, floating edges can be removed as they do not provide any electrical

connectivity to any other part of the circuit. They connect to a vertex, providing

the only connection to that vertex. That vertex will be held at an electrical

potential, but no current will flow through the edge.

Edges of this type can be identified by processing all the edges in the circuit. Each

end of the edge is examined to see if the vertex it is connected to is not the source

or ground vertex. As long as it is not the source or ground vertex, if the number

of edges connected to that vertex is one, then that edge can be removed from the

circuit. The edge is labelled as being floating for current resolution later.
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E1

+

o

V

Figure 3.3: A floating edge

3.2.1.2 Loops

A loop is an edge that connects to a single vertex on both ends. The edge E2 in

Figure 3.4 shows this.

E2

+

V

o

Figure 3.4: A loop edge

This type of edge has both its ends held at the same potential, and therefore, no

current will flow through the edge. The loop contains nothing but a single edge

that represents a resistance, so there is no possibility of the edge doing anything

“useful”.

Edges of this type can be identified by processing all the edges in the circuit. Each

end of the edge is examined to see if the vertex connected to one end of the edge

is the same vertex connected to the other end of the edge. If the vertices are the
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same then the edge can be removed from the circuit. The edge is labelled as being

a loop edge for the current determination stage.

3.2.1.3 Infinite Edges

An infinite edge is one whose resistance is infinite. The edge E3 in Figure 3.5

shows this.

E3

+

o

V

r=load

r=∞

Figure 3.5: An infinite edge

This type of edge cannot carry any current. It may have been added to the

structure of the circuit representing an open switch or some other similar construct.

During simulation, all the edges can be examined in turn and if an edge’s resistance

is infinite, then the edge can be removed from the circuit. An infinite edge can

never carry any current, so this is noted for the current determination stage.

3.2.1.4 Zero Resistance Edges

A zero resistance edge can be removed from a circuit, and the two vertices that

it connects can be combined into a single vertex. This can help simplify some

otherwise non-reducible circuits by altering the topology. Figure 3.6 gives two

examples of how the collapse of a zero resistance edge can allow the S-P reduction

to continue. Both of the circuits in Figure 3.6(b) and 3.6(d) are immediately

parallel reducible allowing simplification to continue.

It should be noted that this type of circuit topology does not normally occur

in electrical circuits during normal operation, however they do quite occur when
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Figure 3.6: Zero resistance example circuits
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faults such as short circuits are introduced. As one of the main reasons for devel-

oping this new circuit simulator is for use with FMEA, these type of short circuit

faults will be required to be simulated often, making this functionality essential.

Current determination for circuits simplified in this way is a little more compli-

cated than for other cases, as in order to determine current direction through a

zero resistance edge we have to look at the other current flows into and out of the

vertices attached to the ends of that edge.

If the current flows that are known are both directed into the vertex in question,

then the current flow that is unknown must be directed out of the vertex, and

vice versa. If there are two current flows known, one into the vertex and one out

from the vertex, then the magnitude of the current flows must be examined, or the

current flows at the vertex at the other end of the connection must be examined.

3.2.2 Enhanced Series-Parallel Reduction Algorithm

The main S-P reduction loop becomes a sequence within a loop whereby the

algorithm only proceeds to the next step if the previous steps have not changed

the structure of the circuit being considered. As soon as one of the steps causes

a change to the circuit structure, execution of the loop starts again with the first

step.

Before the loop begins we can go through the graph and remove all the Infinite

Edges. If an edge has its resistance changed during a run, then the graph gets

re-generated, because a change of resistance will require the reduction process to

be re-run.

The steps in the loop are as follows:

1. Remove Floating Edges

2. Remove Loop Edges

3. Perform Series Reduction

4. Perform Parallel Reduction

5. Collapse Zero Edges
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Treatment of infinite edges, floating edges and loop edges can all be done in very

similar ways, as they all require removal of the edge in question. In none of these

cases will current be flowing across the node, and therefore there is no need to

calculate current direction for the node.

Once any floating, loop or infinite edges have been removed from the circuit, then

a series reduction of the circuit is performed, and if any pair of edges is reduced

to a single edge, an attempt must be made to remove floating edges again.

An attempt to collapse zero resistance edges is only made once Series and Parallel

reductions have failed to achieve anything. When collapsing a zero resistance edge

E, we combine the two vertices V 1 and V 2 on either end of the edge E into a new

single vertex V 3.

3.2.3 Current flow determination

A circuit that has had a full S-P reduction done on it should result in a single

resistance joining power and ground. The size of this single resistance determines

the maximum amount of current that can flow through the circuit.

It should be noted that the result of this thesis is only the central core of a simu-

lation system, therefore it is assumed that there will be a program wrapping this

engine. The complete system that has been used on the ASTRAEA project that

was developed at Aberystwyth, shown in Figure 3.7 wraps this central simulation

engine with several layers of reasoning at component level, circuit level, and sys-

tem level. These different layers add behaviour and function to the system as well

as adding the facility to be able to simulate circuits of different type that interact

with each other (an electrical system might operate valves in a fluid flow system).

Current or flow is only determined for resistances when they are requested by the

calling program. This is done to reduce the amount of unnecessary computation

that may have to be done. When current is requested for a top-level edge, the

program recursively checks if the edge has been subsumed by another during the

S-P reduction phase. At the end of this process if we arrive at a single resistance,

then we can unwind the recursion applying current determination rules as we go

depending on whether each reduction step was a series or parallel step.
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Figure 3.7: Overview of ASTRAEA software system

Short circuit determination has to be done, because if the branch that we are

interested in is in parallel with another branch of Zero resistance, then all the

current will be carried on the Zero resistance branch. The determination of short

circuiting is done during parallel phase of the S-P reduction, and sets a flag in

the short circuited edge. If an edge E1 has been short circuited by a parallel edge

E2 with a resistance of Zero, then edge E1 will pass no current.

Current determination for a single resistance is done through a simple look-up

into the quantity space, which determines how currents map onto resistances.

The default 5 value quantity space has values as shown in table 3.1. Note that

the maximum current that can be achieved is labelled as Max rather than ∞ as

non-idealised power sources cannot supply infinite current, and also that there can

be resistances that appear infinite to non-idealised power sources.

Resistance Zero Lo Med Hi Inf
Current Max I+ I i- 0

Table 3.1: Default quantity space for resistance and current, and mapping between
them.
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In the case of a series step, the current passing through the edge is the same as

the current passing through the edge that subsumed it.

Given an edge E1 and an edge S which subsumes E1 in series with another edge

E2. The current I() of the edge E1 can be given as:

I(E1) = I(S) (3.3)

Current determination for a parallel step is somewhat more complicated. If the

resistance of the edge E1 is the same as the resistance of the edge P , then the

current I() of the edge E1 is:

I(E1) = I(P ) (3.4)

If the resistance for the edge E1 is greater than the resistance of the combined

edge P , then it follows that:

I(E2) = I(P ) (3.5)

and

I(E1) < I(P ) (3.6)

In actual fact, I(E1) is the next qualitatively lower level of current than I(P ).

In the three valued version of CIRQ, the current assigned to I(E1) would be equal

to I(P ), which would provide results which were pessimistic, always reporting

the maximum current or over the maximum current that can occur, which was

acceptable as the simulations were being used to produce Failure Mode Effects

Analysis reports, therefore generating results that provide a good margin for safety.

A more accurate solution is to generate new current levels in the quantity space.

In order to do this we have to introduce new qualitative values into the quantity
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space that we use to measure current flow.

3.2.3.1 Qualitative Value Generation

A problem occurs where I(P ) is the lowest level of current above zero, in which case

we have to introduce a new qualitative value into our quantity space to indicate

that some current is flowing, but it is less current than would flow through the

highest value resistor in the quantity space if that resistor was directly connected

to power and ground. The circuit in Figure 3.8 has an example of a number of

parallel resistances that will demonstrate this functionality.

On the first occasion that we encounter such a section of circuit, the system will

introduce a new level of current flow. That flow is automatically named by append-

ing a − sign to the end of the lowest flow value in use. On subsequent occasions

that this situation is encountered, the value already existing in the quantity space

is used, and another level is only introduced if a new level is necessary.

+

o

a b c

d

z

Hi

Lo Med

Hi

Zero

e f

Lo Med Hi

Figure 3.8: Parallel circuit to demonstrate qualitative value generation
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Chapter 4

Implementation

4.1 Design decisions

The data structures to be represented were examined, and outline designs were

produced. These were used to help determine a programming paradigm for the

implementation of the software, and hence a programming language.

The object-oriented paradigm was chosen, with the Java programming language as

the implementation language. This decision was influenced by other software that

already existed that the new network solver was to integrate with. The existing

software was already implemented in Java, and whilst another language could

have been chosen, it was felt that it would be more convenient to keep a single

language throughout the system. Java version 5 was used, as the development is

primarily being done on a Macintosh platform, and the Java 6 environment is not

yet complete or mature enough to rely on for this project. Having said that, most

of the code is written such that it will run on Java 6.

The development environment chosen was the Eclipse IDE, synchronising with

a CVS server back-end run on a separate machine to ensure change and version

control throughout the project. This may only be a single developer project, but

that is no reason to sacrifice good software development practices, and the code

was check-pointed after each and every change, such that rollbacks can take place

in a controlled fashion. The Eclipse IDE makes this straightforward, and therefore

there was even less reason not to do it.
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In his internal memo on MCIRQ [Lee, 2002] (Appendix 1), Mark Lee suggests

the use of a segment table to store the data on each series or parallel branch

both before and after compression. This method might be suitable for a non O-O

language, but having chosen an O-O paradigm, it was felt that it would be more

natural to use objects to represent the edges and vertices, with an edge knowing

whether it had been compressed. If an edge knows that it has been compressed,

then the edge would also know which edge it had been compressed into, removing

the need for the segment table. A segment line and segment table object were

used to encapsulate the series and parallel reduction algorithms.

In an Object-Oriented paradigm, the circuit knows about the edges and vertices

that comprised it, and is able to perform certain actions on those vertices and

edges. The higher level program does not have to know very much about the

existence of the Edges and Vertices, as long as relevant actions could be performed

on parts of the circuit.

4.2 Implementation Process

The code was developed using a test-driven development methodology. Tests were

written in advance of any major development, and were enhanced as features de-

velop. The JUnit test suite was used to support the testing, and a number of sanity

checks were introduced throughout the code, ensuring that parameters are within

correct bounds, and verifying that the algorithm is behaving correctly. These may

actually slow down the final algorithm, by performing redundant comparisons, but

in the author’s opinion they are worth putting in, as they cut down on debugging

time. Some of these may be removed when the new simulator is integrated into

the larger system to speed up the simulations, but they have been left in for the

purposes of the thesis.

A number times during development, it was found necessary to re-factor the code

to provide a class structure that had less duplication in the code base. This also

allowed the code to implement an inheritance hierarchy and made the code more

readable and maintainable. The re-factoring tools in the Eclipse IDE made this

process a little easier, and helped expose some minor bugs that had not previously

been detected in the code base.

The initial system as implemented would only do single shot simulation. The
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system would run a simulation on a static circuit with no resistance changes to

establish current flow through each resistance in a stable state. The simulator

was built into a system that altered resistance values between runs, then the

simulation engine detected any changes in resistance and marked the circuit as

“dirty”, indicating that the circuit has changed in structure since the previous

simulation had run and the results were not applicable to the altered circuit. The

simulation core was integrated into the large system that has been developed for

the ASTRAEA project at Aberystwyth. If the calling system attempts to query

the current of an edge while the circuit is dirty, a simulation process is triggered

before results are returned.

Another small limitation of the system as implemented initially was that current

flow direction was not determined. This was a small oversight that was simply

rectified by the addition of a small amount of code to allow the querying of flow

direction. It was a very straightforward extension, as current direction is deter-

mined at the same time that current flow is determined. This can be seen in some

of the results.

4.2.1 Structural representation

A graph representation, with Edges having knowledge of connected Vertices, and

Vertices knowing about Edges. An Edge knows if it was created by an external

call - from the main program defining the structure of the circuit. If it was not

created by an external call, then it is an internal addition to the graph during the

compression phase - these are edges that are added to replace a pair of series or

parallel edges. An Edge also knows if it has been “subsumed into” another edge

by this process, and knows which edge has subsumed it, so that during current

determination, the network can be easily traced from the top level down to the

lowest possible level of the collapsed circuit.

A Circuit has a Hashtable of all the Vertices indexed by name, and an ArrayList

of all the Edges.

An Edge knows if it was created by an external call, or if it was created internally

by the S-P reduction process.

A Vertex only knows about the current edges - ones that have not been subsumed
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by Series or Parallel reduction.

4.2.2 Series-Parallel reduction

The Series-Parallel reduction is implemented with the main interaction method

in Circuit. This method doSPReduction calls series and then parallel reduction

methods, working out if any reduction has been done at this step, and then re-

peating until no reductions were done in the cycle. There is a small amount of

optimisation that does not run the method if a reduction has been done previously,

unless structural changes have been made to the circuit.

4.2.3 Current determination

The system does not perform current expansion for the complete circuit, but only

for queried Edges. This saves a lot of unnecessary labelling of Edges with current

values that are not needed. Most of the time, only a few edges are queried in order

to determine the functionality of the circuit. All that is required to determine the

current of a particular Edge is to query down through the SubsumedBy hierarchy

when the Edge is queried. The result may be able to be cached, as long as it

is nullified when any structural changes are made to the circuit, as structural

changes will invalidate any cached results. The results are not cached in the

system as currently implemented, as it was not found necessary to improve the

performance in the current environment

4.2.4 Non S-P reducible circuits

Circuits that are non S-P reducible have previously been treated with star-delta

transforms. This proved to be difficult in qualitative circuits, and did not work

for all cases. I present an alternative method of dealing with non S-P reducible

circuits.

When a query is done on an edge that is on a non S-P reducible segment of circuit,

the system then calls the registered StructureCallback. See Code Fragment 1 for

implementation detail. This method provided by the calling program is required
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to return a Current value for the given edge in the provided circuit. An empty

example call-back is shown in Code Fragment 2.

In order to implement this method, the programmer will probably need to query

the user to assist in determining the current flow through the edge specified. Some

user responses will be able to be cached, and a knowledge base could be built up

enabling the calling program to fill in values without always having to interact

with the user. This is something that will be developed more in the future, when

the simulator is integrated with a larger system.

With the introduction of the super-nodes that aggregate vertices connected by

zero resistance arcs together with the removal of hanging edges and loop edges,

non S-P reducible circuits occur much less often than was originally anticipated.

The occurrence of a non S-P reducible circuit more often indicates some form of

error in the circuit design.

Code/Data fragment 1 The StructureCallback interface.
package uk.ac.aber.rcs.mcirq;

public interface StructureCallback {

/**

* This method is called when the internal resolver is not able

* to determine current.

* The user has to provide a method that does something with

* the circuit (that contains the edge in question)

* and return a value for the current of thisOne.

* @param thisOne the edge to determine current for.

* @param circuit the circuit containing thisOne

* @return a current value for thisOne.

*/

public Current resolveEdge(Edge thisOne, Circuit circuit);

}

Code/Data fragment 2 An example (empty) structure callback.

class CallbackTest implements StructureCallback {

public Current resolveEdge(Edge thisOne, Circuit circuit) {

System.out.println("Edge to be resolved: "+thisOne.getName());

System.out.println((circuit.getSegment(thisOne)).getXML());

return null;

}

}
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Chapter 5

Results

5.1 Series Parallel reduction

Code fragment 3 is an example of the XML type output produced after S-P reduc-

tion has been carried out on the main circuit in Figure 5.7, and is represented in

a diagram in Figure 5.1. This output is taken just before the final Parallel reduc-

tion that results in a single resistance between the power and ground vertices. The

detail of how this is achieved can be seen in the copy of [Lee, 2002] in Appendix

A.

This illustrates the type of output that can be generated from the S-P reduction,

and demonstrates that a circuit seemingly as complex as Figure 5.7 can be simply

collapsed to a single resistance. The next step on from Figure 5.1 will be to

reduce the two parallel resistances to a single resistance with a resistance of med.

It should be noted that this was the result before the optimisations to remove

infinite resistances were introduced.

5.2 Automotive electrical circuits

I will illustrate the usage of the circuit analysis tool by applying the tool to analyse

a simple headlamps circuit from a car. This is a circuit that has been used to test

tools in the past, and has proved useful to ground the examples. The circuit is
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Code/Data fragment 3 Example XML output from doing S-P reduction on
main example circuit

<CIRCUIT>

<QSPACE>

<RVAL>Zero</RVAL>

<RVAL>Lo</RVAL>

<RVAL>Med</RVAL>

<RVAL>Hi</RVAL>

<RVAL>Inf</RVAL>

</QSPACE>

<STRUCTURE>

<EDGE NAME="zad=ad-|zae=ae-=xz=vx=qt=tv=+c=cf=fq|fl=lq">

<FROM>-</FROM>

<TO>+</TO>

<RESISTANCE>Inf</RESISTANCE>

</EDGE>

<EDGE NAME="wy=su=uw|uw=yaa=aa-|yab=ab-|yaa=aa-|yac=ac-=rs=+a=ad=mr=dg=gm|

nr=dh=hn|di=in|ps=+b=be=ek=kp|op=ej=jo|jo">

<FROM>-</FROM>

<TO>+</TO>

<RESISTANCE>Med</RESISTANCE>

</EDGE>

</STRUCTURE>

</CIRCUIT>

+

o

zad=ad-
|

zae=ae-
=xz=vx
=qt=tv=
+c=cf=f
q|fl=lq

wy=su=uw|uw=yaa=aa-|
yab=ab-|yaa=aa-|yac=ac-
=rs=+a=ad=mr=dg=gm|
nr=dh=hn|di=in|ps=

+b=be=ek=kp|op=ej=jo|jo

∞
med

Figure 5.1: Diagrammatic representation of the S-P reduced main example circuit.
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shown in Figure 5.2.

This circuit has been simplified to two switches, a single-pole single-throw switch

to apply power to the circuit, and a single-pole double-throw switch to change

between dipped and high-beam lamps. More usually, these will actually be relays,

operated by other switches, however the simplification is valid, as the switches in

the circuit as presented may be regarded as the poles in the relay. This is because

the simulator is not intended to address the behavioural aspects of the circuit -

that is addressed at the QCAT and higher levels of the system.

+

o

Lights On/Off

High/Low Beam
Lamp Dipped Left

Lamp Dipped Right

Lamp Main Left

Lamp Main Right

High beam Indicator

Figure 5.2: Simple headlamps circuit.

The circuit is represented by reducing it to a graph structure of vertices and edges.

Some of the edges are named, as those are ones that we will be interested in either

examining the current flowing or changing resistance. This process is usually done

automatically by a net-lister program, generating the correct input data, or net-

list from a CAD drawing tool. In this instance this has been done manually. This

results in the graph shown in Figure 5.3. Resistance values have not been included

on this diagram, but the vertices have been labelled appropriately. These labels
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would be generated by the net-lister.

+

o

Light SW
Main beam

Sw A Lamp D/L

Lamp D/R

Main beam 
Sw B

Lamp M/L

Lamp M/R

Indicator

a b c d e f

g

h h

j k

l m n o

p q

Figure 5.3: Simple headlamps circuit as vertices and edges for CIRQ.

This net-list is then translated into a data-set for the program, currently entered

directly into a JUnit test file. The setup code for the circuit is given in Code

fragment 4.

The switch positions are changed by calling methods in the circuit that set up the

correct resistances. The simulation method is then called, which performs the S-P

reductions. When the simulation completes we get a result for the current flowing

through the edges that we are interested in.

The headlamps are turned on by changing the resistance of Lightsw to Zero, and

the main beam is activated by changing the two resistances of the double throw

switch. The single pole switch is modelled as two resistances, one of which has

Zero resistance and one of which has Infinite resistance. The changing of resistance

values is handled by QCAT, at a higher level, and is not relevant to discuss in

any more detail here. The calls to make the resistance changes are shown in Code

fragment 5.

The results of running the simulation are given in Code fragment 6, where it can

be seen that there is current flowing through the Main beams of the headlamps

(LampML and LampMR) and also through the Main beam indicator lamp. These
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Code/Data fragment 4 Example JUnit test data set for headlamps circuit

c.makeEdge("+", "a", "Zero");

c.makeEdge("a", "b", "Inf", "Lightsw");

c.makeEdge("b", "c", "Zero");

c.makeEdge("c", "d", "Zero", "Dipswa");

c.makeEdge("d", "e", "Zero");

c.makeEdge("e", "f", "Med", "LampDL");

c.makeEdge("f", "g", "Zero");

c.makeEdge("d", "h", "Zero");

c.makeEdge("h", "i", "Med", "LampDR");

c.makeEdge("i", "g", "Zero");

c.makeEdge("g", "-", "Zero");

c.makeEdge("c", "l", "Inf", "Dipswb");

c.makeEdge("l", "m", "Zero");

c.makeEdge("m", "n", "Med", "LampML");

c.makeEdge("n", "o", "Zero");

c.makeEdge("l", "p", "Zero");

c.makeEdge("p", "q", "Med", "LampMR");

c.makeEdge("q", "o", "Zero");

c.makeEdge("l", "j", "Zero");

c.makeEdge("j", "k", "Hi", "Indicator");

c.makeEdge("k", "o", "Zero");

c.makeEdge("o", "-", "Zero");

Code/Data fragment 5 Changes to circuit structure

c.changeResistance("Lightsw", "Zero");

c.changeResistance("Dipswa", "Inf");

c.changeResistance("Dipswb", "Zero");
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results when integrated into the tool would actually display on the circuit diagram,

or could be used by the higher levels of the Design Analysis toolset.

Code/Data fragment 6 Results of simulating headlamps circuit and interrogat-
ing interesting edges.
LampDL 0 NONE

LampDR 0 NONE

LampML I FORWARD

LampMR I FORWARD

Indicator i- FORWARD

5.3 Current determination

Current determination is done as described in Section 3.2.3, where the example

circuit is first presented in Figure 3.8

In Figure 5.4, the results of that simluation is shown, giving current values on the

diagram. All the current values “qualitatively smaller than” i- are automatically

generated qualitative values by the system.

This circuit was deliberately designed to test the qualitative value generation code,

and is not representative of any circuit that will occur in the real world. This

circuit includes a more complex parallel topology than we have experienced in the

automotive and aerospace work [Snooke, 2007]. The qualitative value generation

only occurs in parallel circuits, so the test circuit was only needed to have multiple

parallel paths.

The results shown in Data Fragment 7 are as expected from hand-working the

algorithm, and appears to demonstrate that to at least 4 levels the current gener-

ation works predictably.

5.4 Experimental Validation

A number of test circuits are described in [Lee, 2002] and [Lee et al., 2001], and

these were used as initial validation cases for the new code. These circuits have
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Figure 5.4: Qualitative value generation circuit with flows labelled

+

o

a b c

d

z

Hi

Lo Med

Hi

Zero

e f

Lo Med Hi

i-

i-

i-

i--

i--

i---

i---

i---
i----

i---- i-----

i-----

Code/Data fragment 7 Example output from test case for flow qualitative value
generation
+a Hi Current = i-

ab Zero Current = i--

bc Zero Current = i---

cd Hi Current = i---

de Zero Current = i----

ef Zero Current = i-----

az Lo Current = i-

z- Zero Current = i-

bz Med Current = i--

dz Lo Current = i---

ez Med Current = i----

fz Hi Current = i-----
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been used in the past to prove the correctness of implementations of CIRQ and

MCIRQ, and are well understood.

The simple examples in Figure 5.5 are very basic test cases that provide some

confidence that the system is working, and by substituting different values of

resistance for a, b, c, d and e, quite a lot of functionality can be tested. If,

for example, in Figure 5.5(a), one of the edges b, d or e has the value zero for

resistance and the other two edges are non-zero, then it should be observed that

the other two edges have no current flowing as they are shorted out by the zero

resistance edge, resulting in the remaining circuit being treated as Figure 5.5(b).

A comprehensive analysis of the system using this circuit is provided in section

5.4.1.

+

o

a

b

c

d e

(a) Simple parallel circuit

+

o

a

b

c

(b) Simple series
circuit

Figure 5.5: Simple example circuits

The two circuits that encompass the main problems with the approach to collaps-

ing the circuit are the simplest of bridge circuits as shown in Figure 5.6(a) and

the simple double star, that occurs in Figure 5.6(b). These two circuits will cause

problems as they are not Series-Parallel reducible. When a non S-P reducible
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circuit is detected, a function that is part of the higher level system, that is regis-

tered with the simulator is called with the collapsed version of the circuit so far.

This call-back mechanism will operate in a way to allow simulation to proceed

when the reduction process fails at some point. The circuits in Figure 5.6 is used

to test that the call-back mechanism operates.

+

o

a b

(a) Delta circuit

+

o

p

a b

g

(b) Star circuit

Figure 5.6: Simple problematic circuits

Figure 5.7 is the primary example circuit given in [Lee, 2002], and was used as the

main general test case. It demonstrates most of the main structural issues that

can arise in a full Series-Parallel reducible circuit, including the new features of

the addition of a new level of current in one of the circuit branches.

In this example circuit names are only assigned to the vertices, and not to the

edges. When an edge is not assigned a name, it is given a name which is the

aggregate of the two vertices that it joins. This can cause two edges to have

the same name if they connect the same two vertices, but this does not affect

the performance of the Series-Parallel reduction, as the program refers to each
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Figure 5.7: Main example circuit
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instance uniquely.

When two edges are combined, either through series or parallel reduction, the re-

sulting edge is give a name that is the aggregate of the two edges names, combined

with one of two symbols representing either a series (=) or parallel (|) reduction.

These names are purely for debugging purposes, and are not used by the program

at all. They do give some indication of how the S-P reduction has been carried out

across the circuit. This can be seen in the example output in Code fragment 3.

The current flow results for the circuit in Figure 5.7 can be easily obtained using

the code in Code fragment 8 and have been formatted into table 5.8 where it can

be seen that the flows have been generated as expected for this example circuit.

5.4.1 Comprehensive analysis of the test circuit

This section details a comprehensive analysis of the performance of the algorithms

and implementation by using the circuit in Figure 5.5. The strategy is to simulate

the circuit for all possible permutations of 5 resistance levels and analyse the

results checking for the features we would expect to see for this circuit.

Initially the circuit in Figure 5.5 is created using the Circuit class API (with

default zero resistance values) using the code in Code fragment 9.

Resistances a and c are arranged such that a FORWARD flow occurs from the + to -

nodes. The parallel resistances b, d, e are connected such that a flow from + to -

creates a REVERSE flow direction. This provides for an easy manual validation of

the flow direction in the results since all the parallel resistances should have reverse

flow. Once the flow direction is seen to be correct the flow direction provides an

easy way of identifying the three parallel resistors when manually considering other

aspects.

A simple test harness runs the new MCIRQ algorithm on every permutation

of {Zero, Lo, Med, Hi, Inf } resistances for the above network of 5 resistances

and results in 3125 simulations (55) which execute in less than a second on

a modern laptop computer. This was achieved by creating the network once

and using the c.changeResistance(edge name, resistancevalue); to mod-

ify the resistance values. The circuit was then reduced for every permutation

of resistances using c.doSPReduction(); followed by a sequence of calls to
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Code/Data fragment 8 Code for generating the main example circuit in Figure
5.7
Circuit c = new Circuit();

c.makeEdge("+", "a", Resistance.get("Zero"));

c.makeEdge("a", "b", Resistance.get("Zero"));

c.makeEdge("b", "c", Resistance.get("Zero"));

c.makeEdge("a", "d", Resistance.get("Lo"));

c.makeEdge("b", "e", Resistance.get("Lo"));

c.makeEdge("c", "f", Resistance.get("Lo"));

c.makeEdge("d", "g", Resistance.get("Lo"));

c.makeEdge("d", "h", Resistance.get("Lo"));

c.makeEdge("d", "i", Resistance.get("Lo"));

c.makeEdge("e", "j", Resistance.get("Med"));

c.makeEdge("e", "k", Resistance.get("Lo"));

c.makeEdge("f", "l", Resistance.get("Med"));

c.makeEdge("g", "m", Resistance.get("Med"));

c.makeEdge("h", "n", Resistance.get("Med"));

c.makeEdge("i", "n", Resistance.get("Lo"));

c.makeEdge("j", "o", Resistance.get("Med"));

c.makeEdge("j", "o", Resistance.get("Lo"));

c.makeEdge("k", "p", Resistance.get("Med"));

c.makeEdge("o", "p", Resistance.get("Zero"));

c.makeEdge("l", "q", Resistance.get("Lo"));

c.makeEdge("f", "q", Resistance.get("Lo"));

c.makeEdge("m", "r", Resistance.get("Hi"));

c.makeEdge("n", "r", Resistance.get("Med"));

c.makeEdge("r", "s", Resistance.get("Lo"));

c.makeEdge("p", "s", Resistance.get("Hi"));

c.makeEdge("q", "t", Resistance.get("Med"));

c.makeEdge("s", "u", Resistance.get("Lo"));

c.makeEdge("t", "v", Resistance.get("Inf"));

c.makeEdge("u", "w", Resistance.get("Hi"));

c.makeEdge("u", "w", Resistance.get("Med"));

c.makeEdge("v", "x", Resistance.get("Lo"));

c.makeEdge("w", "y", Resistance.get("Lo"));

c.makeEdge("x", "z", Resistance.get("Lo"));

c.makeEdge("y", "aa", Resistance.get("Zero"));

c.makeEdge("y", "ab", Resistance.get("Lo"));

c.makeEdge("y", "ac", Resistance.get("Med"));

c.makeEdge("z", "ad", Resistance.get("Lo"));

c.makeEdge("z", "ae", Resistance.get("Med"));

c.makeEdge("aa", "-", Resistance.get("Zero"));

c.makeEdge("ab", "aa", Resistance.get("Zero"));

c.makeEdge("ac", "ab", Resistance.get("Zero"));

c.makeEdge("ad", "ac", Resistance.get("Zero"));

c.makeEdge("ae", "ad", Resistance.get("Zero"));

c.doSPReduction(Resistance.get("Inf"));

ArrayList<Edge> edges = c.getTopEdges();

for (Edge e : edges){

System.out.println(e.getName()+" "

+e.getR()+" "

+e.getV1().getName()+" "

+e.getV2().getName()+" "

+c.getCurrent(e));

}
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Edge Resistance V1 V2 Flow

E0 Zero + a+b I FORWARD

E1 Zero a b i- FORWARD

E2 Zero b c 0 NONE

E3 Lo a d I FORWARD

E4 Lo b e i- FORWARD

E5 Lo c f 0 NONE

E6 Lo d g i- FORWARD

E7 Lo d h i- FORWARD

E8 Lo d i I FORWARD

E9 Med e j i- FORWARD

E10 Lo e k i- FORWARD

E11 Med f l 0 NONE

E12 Med g m i- FORWARD

E13 Med h n i- FORWARD

E14 Lo i n I FORWARD

E15 Med j o i-- FORWARD

E16 Lo j o i- FORWARD

E17 Med k p i- FORWARD

E18 Zero o p i- FORWARD

E19 Lo l q 0 NONE

E20 Lo f q 0 NONE

E21 Hi m r i- FORWARD

E22 Med n r I FORWARD

E23 Lo r s I FORWARD

E24 Hi p s i- FORWARD

E25 Med q t 0 NONE

E26 Lo s u I FORWARD

E27 Inf t v 0 NONE

E28 Hi u w i- FORWARD

E29 Med u w I FORWARD

E30 Lo v x 0 NONE

E31 Lo w y I FORWARD

E32 Lo x z 0 NONE

E33 Zero y aa I FORWARD

E34 Lo ab+y+aa ab+y+aa 0 NONE

E35 Med ab+y+aa ac 0 NONE

E36 Lo z ad 0 NONE

E37 Med z ae 0 NONE

E38 Zero ab+y+aa - I FORWARD

E39 Zero ab y+aa 0 NONE

E40 Zero ac ab+y+aa 0 NONE

E41 Zero ad ac 0 NONE

E42 Zero ae ad 0 NONE

Figure 5.8: Flow results for circuit in Figure 5.7
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Code/Data fragment 9 Code for generating the circuit in Figure 5.5

c = new Circuit();

...

c.makeEdge("v2", "-", "Zero", "c");

c.makeEdge("+", "v1", "Zero", "a");

c.makeEdge("v2", "v1", "Zero", "b");

c.makeEdge("v2", "v1", "Zero", "d");

c.makeEdge("v2", "v1", "Zero", "e");

c.getCurrent(c.getTopEdge(edge name)) method to obtain the flows for each

edge.

While there are too many results to present explicitly for the entire set of simula-

tion, some initial observations were made by importing the results to a spreadsheet

and performing various sorting and analysis. Sorting the results by current flow

from the source provides the information in table 5.9.

Entries Flow Direction Note

112 0 NONE (FROM:v2 TO:v1) Note: a and c are both Inf

661 I FORWARD (FROM + TO -) Note single resistance is Med
931 i- FORWARD (FROM:+ TO:-) Note single resistance is Hi
331 I+ FORWARD (FROM:+ TO:-) Note single resistance is Lo
61 M FORWARD (FROM:+ TO:-) Note: a and c are both zero

and also one of b or d or e is
zero

1029 0 DISCONNECTED Note: either: a is Inf, or c is
Inf, or b,d,e are all Inf

Figure 5.9: Results of running the simulation for all permutations of resistance
value for circuit in Figure 5.5 categorised by circuit flow

An extract of the results imported to the spreadsheet is shown in Figure 5.10.

This table was sorted by the “flow, direction” column to categorise the results by

flow from the source. The table shows the first and last three entries in each of

the flow categories.

Within each category the resistance values are ordered such that all resistance

values for resistance e are shown on adjacent rows for each permutation of a-d.

This process is continued for each column moving left until for each category a set

of rows exist for resistance a for each of its values.

While it is infeasible to check each of the results manually, the observations in

table 5.9 provide some confidence that the simulator is operating correctly. The
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first row illustrates that the circuit can collapse to a single resistance that does not

connect to either of the terminal nodes only when a and c are both Inf. In this

case the circuit collapses to a single resistor, but it is not connected to either source

node and therefore can have no flow, has a floating voltage relative to either of the

source nodes. When one of a or c is Inf we obtain a disconnected circuit, such

that the collapsed circuit does not contain a single resistance between the terminal

nodes. In this case the collapsed circuit is connected to one of the terminal nodes,

unlike the previous case. The 5th case in table 5.9 provides maximal (M) level

of current (a short circuit) and it is easily seen from the full set of results (and

summarised in the table note) that this only occurs when a and c is Zero plus one

of the parallel resistances is Zero. The remaining results provide three orders of

flow magnitude and as expected these map directly to the three level of collapsed

circuit resistance, as defined by the method. Figure 5.10 shows a truncated extract

of the complete set of results from which the above observations were derived by

simple observation. The figure shows the flow in each resistance a - e in the five

leftmost columns, followed by the topology of the reduced circuit as described

by the label assigned to the fully reduced circuit edge. The rightmost columns

provide the source flow and direction together with the nodes that are connected

by the reduced circuit.

Figures 5.11 and 5.12 expand the results from the part of table 5.10 for the case

where the circuit flow level is i-. The aim of this figure is to show results for

all of of the reduced circuit topologies generated by the analysis for i- since

this is the system level flow that results from the greatest number of resistance

permutations. The i- category was chosen because it provides the largest range

of reduced circuit topologies. Several items were selected from each of the reduced

circuit topologies present. Specifically the first and last simulations (according

to the above resistance orderings) from each reduced circuit topology is shown

together with the first row that shows an i-, i--and i--- (where present).

By considering the reduced circuit column in this table together with the resistance

values shown in square brackets in the first five columns in detail we can confirm

the circuits are correctly collapsed and flows allocated. For example the first row

illustrates the removal of resistance d and e (both Inf) resulting in a simple series

circuit comprising a, b and c. The reduced circuit is actually (a=(b=c)) however

the brackets are omitted in the output since the resulting edge labels would become

unwieldy and unhelpful for human use for larger circuits if brackets were included.

The 4th and 5th non empty rows show the situation where part of the circuit

has a qualitatively lower level of current flow than the flow between the source
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Figure 5.11: simplecircuitoutputselectedtopology1

64



3
0
6
 d

e
le

t
e
d

a
 [

h
i]

  
  
 i
- 

b
 [

h
i]

  
  
 i
- 

R
E
V
E
R
S
E

c
 [

h
i]

  
  
 i
- 

d
 [

h
i]

  
  
 i
- 

R
E
V
E
R
S
E

e
 [

h
i]

  
  
 i
- 

R
E
V
E
R
S
E

a
=

c
=

e
|b

|d
 [

h
i]

  
  
 i-

 
 (

F
R
O

M
:+

 T
O

:-
)

a
 [

Z
e
ro

] 
i-

 
b
 [

In
f]

  
  
0
 N

O
N

E
c
 [

h
i]

  
  
 i
- 

d
 [

Z
e
ro

] 
0
 N

O
N

E
e
 [

Z
e
ro

] 
i-

 R
E
V
E
R
S
E

a
=

c
=

e
|d

 [
h
i]

  
  
 

i-
 

 (
F
R
O

M
:+

 T
O

:-
)

 

2
2
 d

e
le

t
e
d

a
 [

h
i]

  
  
 i
- 

b
 [

In
f]

  
  
0
 N

O
N

E
c
 [

h
i]

  
  
 i
- 

d
 [

Z
e
ro

] 
i-

 R
E
V
E
R
S
E

e
 [

h
i]

  
  
 0

 N
O

N
E

a
=

c
=

e
|d

 [
h
i]

  
  
 

i-
 

 (
F
R
O

M
:+

 T
O

:-
)

a
 [

Z
e
ro

] 
i-

 
b
 [

h
i]

  
  
 i
- 

R
E
V
E
R
S
E

c
 [

Z
e
ro

] 
i-

 
d
 [

h
i]

  
  
 i
- 

R
E
V
E
R
S
E

e
 [

h
i]

  
  
 i
- 

R
E
V
E
R
S
E

a
=

c
=

e
|d

|b
 [

h
i]

  
  
 i-

 
 (

F
R
O

M
:+

 T
O

:-
)

 

a
 [

h
i]

  
  
 i
- 

b
 [

L
o
] 

  
  
0
 N

O
N

E
c
 [

Z
e
ro

] 
i-

 
d
 [

L
o
] 

  
  
0
 N

O
N

E
e
 [

Z
e
ro

] 
i-

 R
E
V
E
R
S
E

a
=

c
=

e
|d

|b
 [

h
i]

  
  
 i-

 
 (

F
R
O

M
:+

 T
O

:-
)

a
 [

h
i]

  
  
 i
- 

b
 [

L
o
] 

  
  
i-

 R
E
V
E
R
S
E

c
 [

Z
e
ro

] 
i-

 
d
 [

L
o
] 

  
  
i-

 R
E
V
E
R
S
E

e
 [

M
e
d
] 

 i
--

 R
E
V
E
R
S
E

a
=

c
=

e
|d

|b
 [

h
i]

  
  
 i-

 
 (

F
R
O

M
:+

 T
O

:-
)

a
 [

h
i]

  
  
 i
- 

b
 [

L
o
] 

  
  
i-

 R
E
V
E
R
S
E

c
 [

Z
e
ro

] 
i-

 
d
 [

L
o
] 

  
  
i-

 R
E
V
E
R
S
E

e
 [

h
i]

  
  
 i
--

- 
R
E
V
E
R
S
E

a
=

c
=

e
|d

|b
 [

h
i]

  
  
 i-

 
 (

F
R
O

M
:+

 T
O

:-
)

3
4
 d

e
le

t
e
d

a
 [

h
i]

  
  
 i
- 

b
 [

h
i]

  
  
 i
- 

R
E
V
E
R
S
E

c
 [

Z
e
ro

] 
i-

 
d
 [

h
i]

  
  
 i
- 

R
E
V
E
R
S
E

e
 [

h
i]

  
  
 i
- 

R
E
V
E
R
S
E

a
=

c
=

e
|d

|b
 [

h
i]

  
  
 i-

 
 (

F
R
O

M
:+

 T
O

:-
)

a
 [

Z
e
ro

] 
i-

 
b
 [

In
f]

  
  
0
 N

O
N

E
c
 [

L
o
] 

  
  
i-

 
d
 [

h
i]

  
  
 i
- 

R
E
V
E
R
S
E

e
 [

In
f]

  
  
0
 N

O
N

E
a
=

d
=

c
 [

h
i]

  
  
 

i-
 

 (
F
R
O

M
:+

 T
O

:-
)

 

2
8
 d

e
le

t
e
d

a
 [

h
i]

  
  
 i
- 

b
 [

In
f]

  
  
0
 N

O
N

E
c
 [

h
i]

  
  
 i
- 

d
 [

h
i]

  
  
 i
- 

R
E
V
E
R
S
E

e
 [

In
f]

  
  
0
 N

O
N

E
a
=

d
=

c
 [

h
i]

  
  
 

i-
 

 (
F
R
O

M
:+

 T
O

:-
)

Figure 5.12: simplecircuitoutputselectedtopology2
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terminals, demonstrating that flow distribution between parallel segments works

correctly. In the 4th row b is Lo with a i- flow and is in parallel with d which is

Med, thus causing an order of magnitude lower flow in d then b of i--. In the 5th

row b is again Lo with a i- flow and is in parallel with d which this time is Hi,

causing a two order of magnitude lower flow of i---.

The previous tests show that zero and infinite resistances are handled correctly

resulting in changes to the circuit topology due to disconnected and shorted circuit

fragments. To validate the multiple qualitative resistance topologies the circuit

was simulated again with the following constraints:

• Resistance c is fixed at Zero. Since c and a are in series the greater resistance

will act as a current limiter providing a symmetrical result for either.

• Resistances a, b, d, e are considered with all permutations of the possible

values {Lo, Med, Hi}

This simulation requires all permutations 3 resistance levels for 4 resistances and

hence generates the 34 = 81 results all of which are presented in Figures 5.13

and 5.14. The lack of Zero and Inf resistances in this test mean that all the

circuits collapse in the same way to the configuration a=c=e|b|d. This table can

be analysed in detail to manually check the result of a wide variety of circuit

configurations. Specifically the lower levels of flow that are automatically intro-

duced by the simulator because of parallel flow distribution can be observed in

the individual parallel circuit resistances (b, d, e). For example the second row of

Figure 5.13 illustrates a high resistance (e) in parallel with medium ones (b and

d) carrying a flow of I, thus e has a flow of i-, one order of magnitude less than

I .

Considering the table as a whole we observe (as expected) that an overall circuit

flow of I provides a minimum flow in any of the parallel branched of i--, since

the maximum difference in resistance between parallel branched is two. For an

overall circuit flow of i- the minimum is again two orders lower, for the same

reason, and this is borne out by the smallest i--- values in the second section of

the table. The final section of the table in Figure 5.14 shows that for an overall

circuit flow of I+ the minimum branch flow is i- (again two orders lower), and

also that resistances a and c must have a maximum resistance of Lo (c is fixed at

Zero anyway) to allow a flow of I+.
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Figure 5.14: simplesimplecircuitlomedhi2
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The analysis of the comprehensive set of simulations for circuit 5.5(b) combined

with the use of the tool in higher level tasks such as FMEA for complex circuits

such as the one in Figure 2.3 described in the next section provide a high level of

confidence in the tool and the algorithms it implements.

5.5 Deployment of the New Simulator

The simulator developed in this thesis has been successfully deployed not only

for electrical systems presented in this work, but also for fluid flow systems. One

specific project (Autonomous Systems Technology Related Airborne Evaluation

& Assessment [ASTRAEA]) addressed aircraft fuel systems and has developed

several tools that use the simulator. These tools include an automated FMEA tool,

a symptom generation tool, an on board diagnosis system and a diagnosability

assessment and sensor placement tool. These tools all require extensive use of the

simulator as they consider a wide range of nominal operating modes and failure

modes. The failure modes in particular often produce circuits with very abnormal

topologies and are hence a good test of the ability of the simulator to produce the

correct behaviour for extreme topologies. An example FMEA analysis fragment

produced by the ASTRAEA project is shown in Figure 5.15 for the system in

Figure 2.3.

When modelling sophisticated fluid flow systems using the new MCIRQ simulator

it was found that some additional capability is needed that was not originally

provided in the work undertaken in this thesis, however it has been pleasing to

find that integration of these capabilities by extension of the implementation was

possible. For general interest and as a demonstration of the utility and extensibility

of the simulator a brief description of two major implications of the use of the

simulator for the aircraft fuel systems are itemised below:

• Multiple sources (pumps) can exist in the same network. This problem was

solved by running the simulator multiple times, removing each source in

turn following the principle of superposition. This was done by providing a

wrapper class known as M2CIRQ for Multiple Source Multiple level CIRQ.

• Unlike electrical systems, the actual substances flowing in a circuit may be

important in fluid flow systems to represent faults such as leaks where for
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example air may enter the circuit and cause components to behave differ-

ently. To address this issue the vertices were extended by including a list of

substances present (flowing into) at the vertex. These substances are then

accessed by the edges to cause propagation according to the derived flows.

A vertex therefore causes ‘mixing’ of the substances to occur based on the

flows.

Both of these issues plus other more minor considerations such as the possibil-

ity that sources may provide more than one qualitative level of voltage or effort

are detailed in [Snooke, 2007], describing continuing work carried out after the

implementation in this work was completed.
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Figure 5.15: Fragment of FMEA generated from system in Figure 2.3
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Chapter 6

Conclusions

It has been shown that the techniques presented here can resolve simple circuits

that collapse to a set of single resistances that connect power and ground. In

addition, the automatic generation of new qualitative levels works in test circuits

and has been seen to help analysis in the ASTRAEA project, providing new

qualitative levels in circuits, helping to identify ground loops where this would

not have been possible with previous simulators.

The quantity space may be of more than the simple three values that have long

been used by the commercial tools that were developed using early forms of qual-

itative circuit solving. The primary objective of this thesis — to allow automatic

qualitative value generation in the flow quantity space where necessary — has

been demonstrated to work experimentally.

There have been a number of enhancements to made to the algorithm as proposed

in [Lee, 2002] that have allowed many more circuits to be solved. These include the

removal of infinite branches, loops, floating branches, and the collapsing of zero-

resistance edges to assist in resolving a lot of the problems that were being caused

by bridges in real circuits. The system also only generates current values when

they are queried therefore potentially reducing the total number of calculations

needed as often only parts of an electrical circuit will be queried. This can assist in

providing solutions to circuits that will only partially reduce, as long as the queried

segment will reduce to a single resistance, then a solution can be provided.

In cases where the circuit does not collapse to a single resistance, by issuing a

call-back to the calling program, which then will usually relay that on to the user,
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we can produce results that were previously unavailable or unreliable. These call-

backs could be cached in an intermediate module, allowing for storage of known

results, therefore not having to re-present already-seen cases to the user, and could

be stored long term in a non-volatile knowledge base. There are a finite number

of combinations and permutations that occur on a regular basis, and it should

not take long to build up the requisite knowledge base. It is felt that this task is

beyond the scope of this dissertation.

Some initial work has been done into the automatic resolution of the bridge, delta

and star circuits, by development of a knowledge based approach, drawing from

a library of examples and caching of user supplied knowledge. As this problem

has been understood to be one of the difficulties encountered in the previous

attempted implementations, there was some thought put into the design to allow

easy modular expansion of the system in the future if necessary. The call-back

system implemented for this has been used for this purpose, and has been found to

work. The enhancements that have been made to the algorithm it has been found

that this is not as necessary as it was thought to be initially, as all the real-world

circuits presented to the system were able to be processed by the algorithm.

Code has been written to implement the new algorithms, and demonstrated to

work in the electrical problem domain, through the development of a new tool,

which has been used for some time within Aberystwyth University, and has been

used on the ASTRAEA project in both the electrical and fluid flow domains. The

product of this thesis and its integration into the larger system has made it possible

to analyse engineering systems that were not able to be addressed by the existing

circuit analysers, most importantly in systems that contain multiple sources and

types of effort.

6.1 Limitations

The system allows the creation of multiple parallel edges between the same ver-

tices, and if a name for an edge is not specified, and the edges have the same

resistance, then there is no way of getting a handle for one or other edge in par-

ticular. This is potentially a problem, but if it is borne in mind when generating

the circuit, and edges are given unique names should not actually prove to be a

serious problem for the programmatic use of the system.
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At the moment, the system has not been developed to consider the resolution

of voltage, or pressure drop at points throughout the system being simulated.

The primary goal for the simulation has been for determination of flow or current

levels. In an ideal simulation environment, the system should be able to determine

pressure differential between a point in the circuit and the source and/or sink point.

6.2 Future Work

I would like to perform some complexity analysis on the code in order to determine

where optimisations could be applied, so that the scalability of the implementation

can be determined. This was not possible in the scope of this piece of work due to

time constraints. Experience of using the system against previous systems implies

that this new algorithm and implementation performs simulations in less time, and

provides more reliable results than were provided by previous software systems.

If a more reliable way than the knowledge based approach of collapsing resistance

networks and resolving current flows through bridge, star and delta configura-

tions was available, that could be added to this program through the call-back

mechanism - with the programmer not having to modify the central core of the

system.
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