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ABSTRACT

A FRAMEWORK FOR WEB OBJECT SELF-PRESERVATION

Charles L. Cartledge
Old Dominion University, 2014
Director: Dr. Michael L. Nelson

We propose and develop a framework based on emergent behavior principles for

the long-term preservation of digital data using the web infrastructure. We present

the development of the framework called unsupervised small-world (USW) which

is at the nexus of emergent behavior, graph theory, and digital preservation. The

USW algorithm creates graph based structures on the Web used for preservation

of web objects (WOs). Emergent behavior activities, based on Craig Reynolds’

“boids” concept, are used to preserve WOs without the need for a central archiving

authority. Graph theory is extended by developing an algorithm that incrementally

creates small-world graphs. Graph theory provides a foundation to discuss the

vulnerability of graphs to different types of failures and attack profiles. Investigation

into the robustness and resilience of USW graphs lead to the development of a

metric to quantify the effect of damage inflicted on a graph. The metric remains

valid whether the graph is connected or not. Different USW preservation policies

are explored within a simulation environment where preservation copies have to be

spread across hosts. Spreading the copies across hosts helps to ensure that copies

will remain available even when there is a concerted effort to remove all copies of a

USW component. A moderately aggressive preservation policy is the most effective

at making the best use of host and network resources.

Our efforts are directed at answering the following research questions:

1. Can web objects (WOs) be constructed to outlive the people and institutions

that created them?

We have developed, analyzed, tested through simulations, and developed a

reference implementation of the unsupervised small-world (USW) algorithm

that we believe will create a connected network of WOs based on the web in-

frastructure (WI) that will outlive the people and institutions that created the



WOs. The USW graph will outlive its creators by being robust and continuing

to operate when some of its WOs are lost, and it is resilient and will recover

when some of its WOs are lost.

2. Can we leverage aspects of naturally occurring networks and group behavior

for preservation?

We used Reynolds’ tenets for “boids” to guide our analysis and development of

the USW algorithm. The USW algorithm allows a WO to “explore” a portion

of the USW graph before making connections to members of the graph and

before making preservation copies across the “discovered” graph. Analysis

and simulation show that the USW graph has an average path length (L(G))

and clustering coefficient (C(G)) values comparable to small-world graphs. A

high C(G) is important because it reflects how likely it is that a WO will be

able spread copies to other domains, thereby increasing its likelihood of long

term survival. A short L(G) is important because it means that a WO will

not have to look too far to identify new candidate preservation domains, if

needed. Small-world graphs occur in nature and are thus believed to be robust

and resilient. The USW algorithms use these small-world graph characteristics

to spread preservation copies across as many hosts as needed and possible.

USW graph creation, damage, repair and preservation has been developed and

tested in a simulation and reference implementation.
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CHAPTER 1

INTRODUCTION

My name is JosieP and I’ve slept in a drawer for twenty years. Artie kept me

there. It was warm in the winter, cool in the summer and it was always dark and

protected. Sometimes we would look out over the ocean and watch the waves. Later,

we would look at the mountains and the desert. Artie liked me and cared for me.

She took me with her everywhere. We traveled all over the world together. And

then there were three of us.

Artie married Bert. He was nice. He took care of things. When Artie started

to get sick, Bert took care of her and me. When Artie got sicker, we did not go

out as much any more. The time between looking at the mountains got longer and

longer. I heard Artie and Bert talking, but it did not make much sense. I stayed in

the drawer and kept company with the others. When I did see Artie, I do not think

that she knew who I was.

Then she stopped visiting me. I heard Bert talking with other people and ev-

erything seemed to be sad and quiet. Bert started moving things. I would see him

sometimes, but he never talked to me. Not the way that Artie did.

Bert took some of my friends away and I got lonely. I think that he still liked

me, but it was a very quiet time.

I heard Bert talking to David. David is Artie’s nephew. Bert was saying that

Artie did not live there anymore. Artie needed more help and care than Bert could

give, so she was living somewhere else. Bert said that he was going to live there too,

soon. Bert told David that there was so much stuff to get rid of he did not know

what to do. He had already given a lot of things to friends and family members,

but there was still a lot left. David said that he would take it all; everything. All

Bert had to do was put it in a box and David would care for it, protect it, and pass

it on to the next generation. I was not sure what all that was about, but it sounded

good.

One day Bert came and got me. He got a lot of my friends as well. He picked me

up and carefully laid me in a box. Then it went dark. Then cold and noisy. Then

bumpy and cold. Then quiet, warm and moist.



2

I heard the box open. The sound of tape being pulled back and some cardboard

tearing. David’s voice started talking, “this is a picture of my Father’s brother

Robert. He . . . ” Things were being lifted off me and I could breath again. “These

are pictures of Artie in South Africa, . . . ” And then there was light. “This is a

picture of my Grandmother’s sister Josie.” And I could see.

It was a nice room. Yellow and brown walls and a few cat hairs in the air. David

looked nice. His nose was not too large, the glasses fit his face, and his thinning

silver hair was the right length. David passed me to his wife. She seems nice, too.

She has nice eyes and says that I look nice in my muslin dress. She passes me on to

their son. In many ways he was like me when I was that age. Mildly curious about

the old things and the old stories. I bet he’d rather be doing almost anything other

than listening to David talk about people who have passed.

David is talking about Bert and the promise made to him to protect things for

the next generation. David is saying that he is not sure how he will do that but

that he hopes to find a way to keep that promise so that a hundred years from now,

their great grandchildren will be able to see the three of them.

Now I begin to understand. I am a picture of Josie McClure (Figure 1 on the

following page), born 1892. I have been passed down through the years, safe and

secure in darkened places, protected from the elements and not handled too much.

And, I am here to see and be touched by my sister’s great grandchild. David has

made a promise to Bert, a man now since gone, to continue to protect me so that I

can see David’s great grandchildren.

The rest of this story belongs to David. David who grew up in an analog era;

now with one foot there and one in the digital era is going to find a way to pass me

on to generations unknown who have both feet firmly planted in the digital era.

1.1 COMPARISON OF PRESERVATION ATTRIBUTES

In Josie’s analog age, popularity can lead to destruction and loss. Active use

and enjoyment almost always leads to damage due to “normal wear and tear.” In

an analog world, benign neglect allows the original to be enjoyed far into the future

in much the same way as when it was created. In a digital age, things are different.

David is faced with a different set of problems dealing with preserving things

in the digital age. In the analog age, benign neglect eliminated “wear and tear” so

things that were protected from the elements, insects, fire, and rot still remained.
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(a) front (b) back

Figure 1. A 1907 photograph of Josie McClure. An analog artifact in a digital
age. Penciled on the back “Josie McClure picture taken Feb 30, 1907 at Poteau,
I.T. Fifteen years of age When this was taken weighed 140 lbs.” The penciled
information on the back is “metadata” associated with the picture. The same data
converted to current place and current calendar would be: Josie McClure picture
taken Mar 2, 1907 at Poteau, Oklahoma. Fifteen years of age when this was taken

weighed 140 lbs.
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As long as no one used them, things would stay around for a long time. In the

digital age, things that are not used are lost. They may exist on a physical medium

somewhere, but there may not be any means to read the medium. They may exist

in a proprietary format, and the program to interpret the file may be lost. They

may exist in a file that can be read, but “bit rot” [1, 2] may have set in and the file

may become too corrupt to be processed. Data preservation is different in the two

different ages.

“Conventional archiving distinguishes between conservation (which

looks after individual artifacts) and preservation (which retains the con-

tent if the original artifact decays or is destroyed).”

William Y. Arms [3]

The tenets of digital preservation [3] will apply to Josie in the digital age:

� Replication and refreshing : aims to preserve a precise sequence of bits. A digi-

tal representation of Josie as a JPEG file would be copied without modification

from one storage device to another.

� Migration: preserves the content at a semantic level, but not necessarily the

specific sequence of bits. A digital representation of Josie as a JPEG file would

be converted to a PNG formatted representation.

� Emulation: provides an environment where the original sequence of bits can be

used. A digital representation of Josie as a JPEG file is viewed using software

that runs a program that supports viewing JPEG files.

An important part of the digital preservation process to deciding what to collect,

what to store, what to preserve for the future and what to discard. Compounding

the problem is that it is nearly impossible to predict what will be important in the

future. The simplest way to address these questions is to err on the side of ignorance

and preserve everything.

Digital images and content that are popular are copied from one context to

another and migrate from one format to another. This “handling” does not damage

or destroy the original, but in fact helps to ensure its existence. Popularity also leads

to emulation. In a digital world, benign neglect leads to permanent loss because
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hardware, data formats and the software needed to read the data are constantly

changing in a very short time.

David could convert Josie’s analog image into a digital one, and then address

digital preservation issues. Periodically he could refresh the bits by copying the

digital data from one media (an internal hard disk, external drive, CD-ROM, DVD,

or some solid state device) to another. If he were to monitor and predict changes in

digital image format, he could migrate the bits from an old format to a newer one.

Or he could maintain a computer system with complete operating system, a suite of

applications and instructions for future generations on how to use the system. This

complete operating environment could also be emulated in some sort of advanced

simulation. David could do any and all of these things, until he was unable to

because of health, financial constraints, or death. The digital representation of

Josie will survive as long as David, as the curator survives.

1.2 TECHNOLOGY ENABLERS

In the digital age, technology enablers directly impact digital preservation. These

enablers include:

� Moore’s Law : states that transistor density doubles about every 24 months.

This continuing increase in density is enabled by decreasing line width (thinner

traces), more efficient component construction techniques and improved man-

ufacturing processes. Moore in 1965 [4] predicted that by 1975 there would

be as many as 65,000 components on an integrated circuit (IC). He looked

at a number of existing IC manufacturing technologies and put forth the idea

that the unit cost per technology would decrease as the number of components

increased until the component density was such that the manufacturing de-

fects would obviate any gains by increasing the density. When this happens,

then another technology would be brought to the fore and the process would

repeat itself yielding greater and greater densities. Based on these monetary

considerations and his analysis of past efforts, he predicted a doubling in IC

density about every other year.

Describing Moore’s prediction using text is interesting, it is even more striking

when plotted (Figure 2 on page 8 and Table 1 on page 7) [5, 6].

� Nielson’s Law : states that Internet bandwidth (network speed) increases by a
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factor 45% every year (Figure 3 on page 9 and Table 2 on page 8) [7],

� Kryder’s Law : relates to the density of hard drives and indirectly the cost

of magnetic storage, decreasing by approximately 45% every year (Figure 4

on page 9) [8, 9]. This is a fundamental aspect to the long-term preservation

planning [10, 11, 12, 13].

“The density of hard drives increases by a factor of 1,000 every

10.5 years (doubling every 13 months).”

Mark Kryder [9]

The exponential decline in storage costs has changed the way that individuals

and companies view storage. As the cost for storage approaches $0.00 individ-

uals will tend to save more and larger files and images. Companies will cease

to charge for storing data at their locations and will look to other revenue

avenues (i.e., advertising or added service value) as a way to make a profit,

and

� Broadband access : will be available in more than 94% [14] of the homes in the

US.

The cumulative effects of these enablers permit companies such as flickr, Gmail,

shutterfly, or ImageShack to offer to store large amounts of digital data for free.

These companies offer this storage because their income is derived from the sale of

advertising targeted at the user. As the cost of storage medium approaches $0.00,

the limiting factor on how long the institution or repository may live and how long

the institution is willing support the maintenance cost of the archive will be their

revenue stream. Metcalfe’s Law states:

“. . . connect any number, n, of machines - whether computers, phones

or even cars - and you get n squared potential value. Think of phones

without networks or cars without roads. Conversely, imagine the benefits

of linking up tens of millions of computers and sense the exponential

power of the telecoms.”

George Gilder [15]
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Table 1. Increases in Intel transistor density as a function of time. The continued
exponential increases in transistor density (≈ 2.843 for this period) is the basis for

Moore’s Law.

Year Name Number of Trace width Die Density

transistors (µm) (mm2) trans/(mm2)

1971 4004 2,300 10.000 12 192

1972 8008 3,500 10.000 14 250

1974 8080 4,500 6.000 20 225

1978 8086 29,000 3.000 33 879

1979 8088 29,000 3.000 33 879

1982 Intel 286 134,000 1.500 49 2,735

1985 intel 386 275,000 1.500 104 2,644

1989 Intel 486 1,200,000 1.000 N/S —

1993 Pentium 3,100,000 0.800 N/S —

1995 Pentium Pro 5,500,000 0.350 N/S —

1997 Pentium II 7,500,000 0.250 N/S —

1998 Celeron 7,500,000 0.250 N/S —

1999 Pentium III 9,500,000 0.250 123 77,236

2000 Pentium 4 4 · 10+07 0.180 112 375,000

2001 Itanium 3 · 10+07 0.180 N/S —

2001 Xeon 4 · 10+07 0.180 90.3 465,116

2002 Itanium 2 2 · 10+08 0.180 374 588,235

2004 Itanimu 2 (9MB cache) 6 · 10+08 0.130 N/S —

2006 Itanium 2 2 · 10+09 0.090 N/S —

2007 Itanium 2 2 · 10+09 0.090 N/S —

2008 Xeon 2 · 10+09 0.045 N/S —

2010 Core I7 1 · 10+09 0.032 263 4,448,669

2010 Quad-core Itanium 2 · 10+09 0.065 N/S —

2010 8 Core 2 · 10+09 0.045 684 3,362,573

2010 10 Core 3 · 10+09 0.032 512 5,078,125

2012 Itanium 9500 3 · 10+09 0.032 544 5,698,529

2013 Core 17-4770K 1 · 10+09 0.022 177 7,909,605
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Table 2. Increase in standards based LAN speeds has been roughly 45% per year.

Year Mbps IEEE

Standard

1983 10 802.3a

1995 100 802.3u

1998 1,000 802.3y

2003 10,000 802.3ae

2011 40,000 802.3bg

2014(est.) 400,000 802.3bj
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Figure 2. Hardware continues to improve (Moore’s “Law”). Moore’s “Law” of dou-
bling transistor density every 18 to 24 months has held true for 45 years. Improve-
ments in thermal cooling efficiencies and changes in the ways chips are manufactured

from 2D to 3D are expected to enable the “Law” to continue.
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by replacing “telecoms” with “computer resources,” the technological enablers

will have an enormous and probably unpredictable impact.

1.3 LIFESPAN LIMITATIONS

As a broad statement, there are many different types of memory organizations

that can act as repositories. They include: individuals acting by themselves in their

own best interest, commercial organizations operating for a profit, educational and

academic institutions acting in the pursuit of knowledge and tradition, non-profit

organizations (such as the Internet Archive and Wikipedia) acting because they

perceive a need that is not being filled, museums whose main charge to collect and

preserve items of interest for future generations, and government institutions that

produce and collect artifacts for the betterment of the population.

Human life expectancy in the US is currently about 77 years [16]. The life

expectancy trend is nearly constant, or increasing slightly (Figure 5 on page 12).

When addressing David’s desire to preserve the digital representation of his analog

artifact, he can only reasonably expect that a human would be interested and able

to act as an archivist for 20 to 30 years in the middle of their life. This 20 to 30

year period corresponds roughly to one generation.

We believe that commercial institutions may not be a much better choice for

long-term viability. Currently (circa 2013), the US economy is recovering from

the worst recession since the Great Depression of 1929. Institutions that were once

thought to be invulnerable to outside influences and considered among the strongest

in the world have gone through bankruptcy proceedings and if they emerge will

be radically different entities than what they were. A digital object given to a

commercial institution may not be any more likely to survive beyond one generation

than if a single human were charged with looking after it.

Educational and academic institutions are also subject to being lost. Frederick

College operated in Portsmouth, VA from 1958 until it closed in 1968 [17]. Carolina

College for Women operated in Maxton, NC from 1907 until it closed in 1926 for

financial reasons [18]. Antioch College in Yellow Springs, OH is an interesting case

of a college returning from the dead [19]. Antioch College was founded in 1852 and

closed in 2008 due to lack of enrollment. Antioch alumni raised enough money to

restart the college in 2011 and is currently accepting students. We have examined

the historical record and found that if an institution survives longer than 23 years
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(one generation) then it has a higher likelihood of surviving longer. But first, it has

to survive for one generation.

Government institutions are not immune either. The Texas Superconducting

Super Collider lasted but a few years [20, 21]. The National Aeronautics and Space

Administration (NASA), chartered to give its information and discoveries the widest

possible publications [22], faces budget cuts and constraints. The Base Realignment

and Closure Commission (BRAC) was charged with closing military installations

[23]. When a governmental institution closes, the question arises as to who is re-

sponsible for the corporate knowledge of the closed institution.

The National Science Foundation (NSF) has recently added the requirement that

all proposals include a Data Management Plan (DMP) [24]. The plan must describe

the manner in which data and results from the NSF effort are to be disseminated

to the community at large. While ensuring that the results of an effort are made

available to members of the community, the DMP does not address how the data

will be managed after the lifetime of the organization.

Each of these types of institution are subject to external pressures and may not

be able to live up to their commitment to preserve digital data into the future. As

stated by William Y. Arms (with our emphasis added):

“Tomorrow we could see the National Library of Medicine abolished

by Congress, Elsevier dismantled by a corporate raider, the Royal Society

declared bankrupt, or the University of Michigan Press destroyed by a

meteor. All are highly unlikely, but over a long period of time

unlikely events will happen.”

William Y. Arms [25]

The solution that David has to arrive at must meet and overcome all these

limitations.
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Figure 5. Average US life expectancy for both sexes, 1940 - 2010. The rate of life
expectancy increase remains nearly constant of ≈ 0.2 years of age per calendar year.

1.4 SAFEGUARDING OF CONTENT

Every institution has to safeguard its contents against a host of events by which

the data could be lost. A partial list of these events include:

1. Change in operations : due to closing of the institution, changing the insti-

tution’s business model such that they are no longer interested in preserving

some or all their data, or something as simple as inability to perform the

required maintenance because of insufficient resources [26],

2. Internet Service Provider’s information technologies (IT) policies and prac-

tices : that could deem that a particular type of legal digital data was no

longer going to be hosted or supported [27],

3. Failure of a critical piece of IT infrastructure: the loss of a disk drive that had

not been backed up recently would result in loss of data since its last backup

[28],
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4. Human error : whether due to negligence, malicious intent or simple misun-

derstanding [29],

5. Censorship: whether by active governmental censorship of the Internet [30],

or ex post facto revisionist historians purging the records of data and ideas

that do not fit the current dogma,

6. Natural catastrophe: including the traditional fire [31, 32], wind, water [33]

and temperature. Changes in global climate may cause institutions to rethink

their locations based on rising sea levels, weather patterns and population

distributions, and

7. Technological obsolescence: of hardware and software without which access to

the digital objects and what they represent would be impossible. Software

obsolescence can be mitigated by continuous migration of files in the “old”

format to the “new” format (specific examples include the image formats Ko-

dak PhotoCD, Kodak RAW, and PICT [34]). The number of old formats will

continue to increase because newer and better formats are continuing to be

developed. Eventually the market place will decide that there is no financial

incentive to support an old format and therefore there will not be a migration

path available. Emulation of the systems that supported the old formats is an

alternative way to ensure access to old data.

One way to increase the likelihood that data will be available and understand-

able for a long time, is to use commonly available technology and require

minimal external support. An outstanding example of the application of these

tenets is the Domesday Book [35] written in 1085 and still accessible today

after almost a 1,000 years. An example of what can happen it there is too

much dependence on specialized technology and esoteric external support is

the BBC’s Domesday Project [36]. Between 1984 and 1986, the BBC com-

piled static and multimedia data from across the UK. The data was presented

in 1986 using laser disks and a network of BBC micro computers. By 2002

there were fears that the data would be unusable because of the reliance on

specialized technology [37]. The Creative Archiving at Michigan and Leeds:

Emulating the Old on the New (CAMiLEON) project was created to access

the data before it became totally irretrievable [38]. The CAMiLEON project

used hardware and software emulation to retrieve the data [39].
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1.5 RESEARCH QUESTIONS

Based on the previous sections, our research questions are:

1. Can web objects (WOs) be constructed to outlive the people and institutions

that created them?

2. Can we leverage aspects of naturally occurring networks and group behavior

for preservation?

We will address these questions by examining related works dealing with “emer-

gent behavior,” graph-theory focusing on small-world graphs, and long term digital

preservation. Based on these related works, we will develop a theory of unsuper-

vised incremental graph creation that results in graphs with small-world properties.

We will use a graph agnostic metric to measure damage to a graph caused by the

removal of an edge or vertex and, based on that metric identify, the most advan-

tageous attack profile that could be used by an entity bent on destroying a graph.

This damage metric can be used to quantify damage to a graph, and the obverse

of the metric can be used to quantify the most advantageous edge to restore to a

graph after the graph has been attacked. The damage metric can serve as the heart

of a “game” between an attacker and the graph to predict the long term future of

the graph.
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CHAPTER 2

BACKGROUND

2.1 BOIDS

Reynolds in 1987 created and defined the behavior of “boids” by which he sought

to establish that three simple rules were sufficient to simulate the complex behaviors

of schools of fish, flocks of birds, and herds of animals [40]. The rules themselves are

simple, but the behaviors that emerge from the rules are complex and realistic. The

salient feature is that these rules are scale-free: only the neighbors are accounted for

in the computation; knowing the entire size of the group, or network is not required.

A precise definition of neighbor does not exist and it is reasonable to say that it

depends on the specific species that the boid represents and can be a combination

of distance between boids, relative position (in front, behind, to one side), environ-

mental conditions and perhaps other factors. Application of the “boids” concept

to computer animation resulted the movement of collections of objects (schools of

fish, herds of animals, flocks of birds, etc.) in ways that mimicked real life and did

not require monolithic programs that controlled each entity individually. Reynolds’

approach imbued each object with simple directives that it used to decide how and

where to move, a by product of this object oriented freedom, was that occasionally

the objects behaved in accordance with the directives, but not in accordance with

the animators wishes.

Unsupervised Small-Worldwill implement these rules to create self-preserving

digital objects with similar complex emergent behaviors. Table 3 lists the rules that

Reynolds proposed for boids (his term for bird-like objects) and our interpretation

for USW web-objects(WOs). While it is not directly possible to implement these

concepts in the world of Web Objects, it is possible to mimic them. His ideas are

further expanded as follows.

Collision avoidance is perhaps the easiest rule to visualize the transcription

from boids to WOs. WOs flocking to a new repository cannot overwrite each other

(collide in physical storage), nor collide in name-spaces (have the same URI). This is

orthogonal to the naming mechanism used: URN implementations such as handles
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or DOIs, globally unique identifiers (GUIDS) or content addressable naming schemes

[41].

With boids, the concept of velocity matching (the vector quantity referring to

the combination of heading, speed and change in altitude) is to travel the same

speed as your neighbors. This is perhaps the most difficult rule transformation.

However, interpreting velocity as resource consumption (i.e., storage space) makes

this rule more intuitive. Specifically, a WO should try to consume as much, and

only as much, storage as everyone else. In resource-rich environments, making as

many copies of yourself as you would like is easy. When storage becomes scarce, this

becomes more difficult. So there must be a provision for WOs to delete copies of

themselves from different archives to make room for late arriving WOs in low-storage

situations. WOs will never delete the last copy of themselves to make room for new

WOs, but they will delete copies of themselves to come down from a soft threshold

(e.g., 10 copies) down to a hard threshold (e.g., 3). When resources become plentiful

again, new copies can be made.

For boids, flock centering means staying near (but not colliding with) other

flockmates. We interpret this similarly, with WOs attempting to stay near other

WOs as they make copies of themselves at new repositories. In essence, when a

WOs learns of a new repository and makes a copy of itself there, it should tell the

other WOs it knows so they will have the opportunity to make copies of themselves

at the new location if they wish. Announcing the location of a new repository will

thus cause WOs at other repositories that have not reached their upper limit on

creating copies to flow to the new repository.

Collision avoidance and velocity matching are complementary and the combina-

tion of these two rules results in the boids moving in the same general direction at

roughly the same speed. Flock centering drives the boids towards one another, and

prevents the boids from flying apart. The interaction of these rules results in emer-

gent behavior that appears realistic and reasonable. Because the boids are driven by

these simplistic rules; implementation is relatively simple, of low complexity and re-

sults in boids that have geometric and kinematic state, but do not have a significant

mental state.
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Table 3. Listing, interpreting and implementing Craig W. Reynolds’ flocking con-
cepts in the USW framework. We are taking Reynolds’ concepts and applying them
to a different type of movement model. Reynolds was interested in mimicking the
movement of herds and groups of animals, while USW WOs exist outside the phys-

ical realm and have different abilities and limitations.

Reynolds’
Concepts

Definition Concept as interpreted and implemented
within USW

Collision
Avoidance

Avoid col-
lisions with
nearby flock-
mates

Each WO has a unique name or number. WOs
flocking to a new repository cannot overwrite
each other (collide in physical storage), nor
collide in namespaces (have the same URI).

Velocity
Matching

Attempt to
match ve-
locity with
nearby flock-
mates

Interpreted as the consumption of system re-
sources, therefore use only as many resources
as those in your “flock.” In resource-rich en-
vironments (lots of storage space available on
lots of hosts), making as many copies of your-
self as you would like is easy. When storage
becomes scarce, WOs must be able to delete
copies of themselves from different archives to
make room for late arriving WOs.

Flock Cen-
tering

Attempt to
stay close
to nearby
flock-mate

A preservation copy will be made on reposito-
ries discovered by your “friends,” or by follow-
ing your “friends” to new repositories.

Reynolds’ work [40] is the first important step in incorporating behavior and au-

tonomy concepts to classical computer animation systems. He proposes a “bottom

up” approach and designs a system where a global and complex behavior emerges

from a combination of several simple individual behaviors. Reynolds obtains syn-

thetic flocks of birds, where the birds avoid crashing among them, maintain a con-

stant velocity and remain within the flock [42]. When Reynolds’ concepts are applied

to groups of autonomous entities their collective emergent behavior appears to be

under the control of an omnipotent, omnipresent, and controlling entity. In fact

each entity responds to only the small part of the collective that it can detect. We

believe that Reynolds’ approach to crowd (or flock) behavior (Table 3) is applicable

outside the field of computer animations, and specifically to the world of “crowd
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Table 4. Measured and computed metrics for real-world small-world graphs.

Actual Random graph

Entity Order size C(G) L(G) C(G) L(G) Ref.

C. elegans 248 511 0.21000 2.87 0.05000 2.62 [45]

WEEC 4,941 6,594 0.08010 18.99 0.00054 8.70 [48]

ENRON 148 500,000 0.44000 2.25 0.11000 2.00 [47]

sourced curation” of digital objects. We believe that the emergent behavior of dig-

ital objects will be comparable to the behavior of objects under the control of an

omnipresent controller.

2.2 SMALL-WORLD

We are interested in the structural aspects of “small-world” graphs because of

their occurrence in many diverse and unexpected areas. Small-world graphs were

popularized in main stream computer science by Watts and Strogatz [43]. They were

interested in taking a lattice graph and perturbing each edge based on a probability p

and understanding what happened as the graph went from a totally regular lattice

graph to a totally random graph. Their investigation revealed an area where p

resulted in a graph with a relatively high average clustering coefficient C(G) when

compared to a random graph of the same order and size and an average path length

L(G) that approximated a random graph of the same order and size. They declared

that this phenomenon constituted a “small-world” in the same manner as Stanley

Milgram’s small-world [44]. From a mathematical perspective, Watts and Strogatz

laid out the following criteria for a “small-world:”

L(G) ≥ L(G)random (1)

C(G) ≫ C(G)random (2)

Small-world graphs also appear in nature (Figure 6 on the following page), in

consciously created man-made entities (Figure 7 on the next page), and in uncon-

sciously created man-made entities (Figure 8 on page 20). Metrics for these graphs

(order, size, C(G), etc.) are available in Table 4.



19

(a) Anatomy (b) Neuron connections

Figure 6. Naturally occurring small-world graph: nematode Caenorhabditis elegans
neuron connections. Images from [45].

(a) WECC location (b) WECC graph

Figure 7. Man-made small-world graph: Western Electricity Coordinating Council.
Images from [46].
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Figure 8. Organic small-world graph: ENRON e-mail exchanges. Image from [47].

2.3 CURRENT PRACTICE IN DIGITAL PRESERVATION

2.3.1 INTRODUCTION

Current practices in digital preservation range from institutions and organiza-

tions attempting to preserve their intellectual property (with varying degrees of

success [49]) at one end of the spectrum to the promotion of digital preservation

using cloud-based technology at the other [50]. These extremes could be character-

ized as ad-hoc (and probably doomed to failure because they are ad-hoc), or the

creation of product that is geared to the preservation of medical and financial data

and less for general needs of society.

In the following sections, we discuss another approach based on the application

of current well-known standards and architectures combined with the intent of a

repository to create an algorithm that will preserve data for a long time.
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2.3.2 WORLD WIDE WEB CONSORTIUM (W3C) WEB ARCHITEC-

TURE

The World Wide Web Consortium (W3C) has put forth an architectural rec-

ommendation [51] that discusses the core design issues for the World Wide Web

(Web) to provide sufficient scalability, efficiency and utility resulting in a remarkable

information space as the original technologies have evolved to increasingly complex

and diverse system. Some of these design issues are: the use of Uniform Resource

Identifier (URI), the interaction between a URI and a resource, and the separation

of content, presentation, interaction, and data formats.

A URI identifies one resource. A resource is used in the broadest of senses and

can refer to something as limited as a single file, or as complex as initiating a long

series of events “behind the scenes.” Multiple URIs may point to the same resource,

but a URI can only identify a single resource.

An interaction is the communication exchange between servers at a given point in

time. An agent is charged with carrying out out some task on the Internet. Protocols

on the Web are based on an exchange of messages (communication) between agents,

where each message may include data and metadata about a resource. It is then

up to a protocol, such as HTTP, to dereference the URI. The relationship between

a URI, the resource that it identifies, and what the resource represents is shown in

Figure 9 on the following page [51]. The result is a representation of the state of the

resource. The format of the resource’s representation is dependent on a negotiation

between the requesting agent and the responding server.

2.3.3 DIGITAL REPOSITORIES

“A repository is a network-accessible storage system in which digital

objects may be stored for possible subsequent access or retrieval. The

repository has mechanisms for adding new digital objects to its collection

(depositing) and for making them available (accessing), . . .The reposi-

tory may contain other related information, services, and management

systems.”

Kahn and Wilensky [52]

We are concerned about digital repositories. That is, a generalized data repos-

itory where the collection is entirely digital. These repositories are composed of
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Figure 9. Relationship between URI, resource, and representation. URIs identify
resources. When a URI is dereferenced, a representation of the resource’s state is

returned. Image from [51].

hardware, software, and data that exist in an environment where communication

between each repository is possible and supported without requiring human inter-

vention.

Reich and Rosenthal in [53] identify two different models of digital repositories,

centralized and decentralized. The centralized model contains a very small number

of tightly controlled and administered repositories that do the entire job of preserva-

tion, requiring expensive hardware, and a sophisticated and highly trained technical

staff. The cost of preserving data in this model is borne by a few, and providing

ready access to their data may not be their highest priority. Centralized repositories

are more concerned with the preservation of the bits, rather than access to the bits.

The decentralized model envisages a large number of loosely controlled and

loosely administered repositories where each repository is only responsible for part

of the preservation process. These repositories would have inexpensive hardware and

require only minimally trained staff. The cost of preserving data would be borne by

many and in proportion to the amount of its priorities and resources. Decentralized

repositories are concerned with preserving access to the bits and less so with the

bits themselves.
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Kahn and Wilensky in [52] put forth an idea that is an extension of the de-

centralized repository where a user could deposit a digital object in one or more

repositories from which it may be made available to others. The idea that anyone

could be a curator was extended by McCown in [54] and becomes a client-assisted

preservation system. McCown’s ideas are an extension of the original Open Archives

Initiative (OAI) Object Reuse and Exchange (OAI-ORE) [55, 56] for instantiating

aggregations of Web resources.

2.3.4 PRESERVATION TECHNIQUES

Preservation of digital data is a multidimensional problem. Jeff Rothenberg in

[57], identifies the following technological dimensions to the problem:

1. Digital media suffer from physical decay and obsolescence,

2. Digital documents are inherently software-dependent,

3. Additional considerations include issues of corruption of information, privacy,

authentication, validation, and preserving intellectual property rights.

Rothenberg concludes the report by making a case that the best approach to

address these issues is to document the environment needed to run the software

and then in the future recreate these environments as part of sophisticated software

emulators. These emulators would run on machines as yet undesigned and unbuilt.

Kenneth Thibodeau in [58], an article about the vision of an Electronic Records

Archive (ERA) at the National Archives and Records Administration (NARA) doc-

uments some of the early efforts at the San Diego Supercomputer Center (SDSC)

dealing with the long-term issues of building a management architecture to sup-

port the preservation of arbitrarily structured sets of virtually any type of electronic

records. SDSC’s ideas and techniques lead to the Persistent Object Preservation

approach. Key to this approach is the requirement that the digital object be in-

ternally self-documenting using ideas based on the Extensible Markup Language

(XML). Self-documenting digital objects could be more easily processed by the Uni-

versal Virtual Computer (UVC) [59]. Digital archivists (DA) have a number of

roles and responsibilities within the digital library (DL) [60]. These include:

� Appraisal and Selection: All systems have a finite (albeit large) amount of

storage space, therefore it is not possible to store all WOs. The archivist is
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responsible for the selection of those DO items that are deemed to be most

valuable.

� Accession: Once a DO has been selected for storage, it must be prepared for

the storage in the archives.

� Storage: The placement of the DO onto a media of some type. Consideration is

also given to the anticipated frequency of access, number of redundant copies,

and some sort of hierarchical organization.

� Access : Ensuring that the DL is accessible via a network with the appropriate

bandwidth and protocols for delivering the WOs.

� System engineering : Defining and maintaining the interlocking requirements of

media and data formats, hardware and software upon which the DL depends.

DA have to take a long-term view of the WOs under their purview. With this comes

the realization that both WOs and the media on which they live will eventually

become obsolete. In order to meet the DL’s responsibility for long-term preservation

and to address the continuing obsolescence problem, archivists must have strategies

to migrate their WOs from the old to the new. These are a few migration strategies

that are similar to (but different than preservation strategies):

Change media: Current magnetic and optical technology is subject to “bit rot”

[61] and if left unattended will eventually corrupt enough to the media so that

the DO will become unrecoverable. As more stable media becomes available,

WOs on older and less stable media have to be copied from the old to the new.

(Similar to replication and refreshing.)

Change format : A multiplicity of data formats can become unmanageable. A DL

could decide to change or convert a DO from its original format to a more

manageable and “standard” format. (Similar to migration.)

Incorporate standards : DLs, like any other user of digital data, benefits from ad-

herence to well published and accepted standards.

Build migration paths : DL archivists can communicate and educate DO creators

about better and more efficient techniques that can be used in the creation of

DOs. Incorporating the ideas of digital preservation early makes the inevitable

later migrations easier.
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The Consultive Committee for Space Data Systems developed a reference model

for an Open Archival Information System (OAIS) as a standard for how archive

systems should be organized and operated [62]. A portion of their recommendation

is called the “Functional Model” (Figure 10 on the next page). A summary of the

major activities of the model are:

� Ingest : provides the services and functions to accept Submission Information

Packages (SIPs) from Producers and prepare the contents for storage and

management within the Archive,

� Archival Storage: provides the services and functions for the storage, mainte-

nance and retrieval of Archival Informational Packages (AIPs).

� Data Management : provides the services and functions for populating, main-

taining, and accessing both Descriptive Information which identifies and doc-

uments Archive holdings and administrative data used to manage the Archive,

� Administration: provides the services and functions for the overall operation

of the Archive system,

� Preservation Planning : provides the services and functions for monitoring the

environment of the OAIS, providing recommendations and preservation plans

to ensure that the information stored in the OAIS remains accessible to, and

understandable by, the Designated Community over the Long-Term, even if

the original computing environment becomes obsolete.

� Access : provides the services and functions that support Consumers in de-

termining the existence, description, location and availability of information

stored in the OAIS,

A Submission Information Package (SIP) is a package of information about the

digital artifact that a producer would submit with the artifact. A Dissemination In-

formation Package (DIP) is disseminated with the artifact to the consumer. Archive

Information Packages (AIPs) are not part of the USW algorithm. In the USW algo-

rithm, the SIP is represented by metadata and ORE REsource Maps (Appendix D

on page 383), created when the digital object becomes a member of the USW graph.

The WO’s DIP will contain whatever data is associated with the WO’s retrieval by

the standard WI retrieval mechanisms.
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Figure 10. OAIS Reference Model functional model. The USW algorithm directly
supports ingest, data management, and archival storage functions of the OAIS ref-
erence model. The SIP is created when the WO is created, and the DIP is created

by the process that retrieves the WO. Image is taken from [62].

The USW algorithm reflects the intent of the OAIS ingest functionality.

2.4 SUMMARY

The current Web architecture has proven itself to be both robust and scalable.

Therefore it can be expected to continue to support protocols that conform to Web

standards and practices. Significant limitations in the current approaches to the

long-term preservation of digital data have been identified. These procedural and

mechanistic limitations apply to personal, commercial and non-commercial entities.

A framework using Web standards and practices that is not constrained by per-

sonal and institutional entities will be presented in the following chapters. That

framework is called unsupervised small-world (USW).

The following chapters will describe specific aspects of the USW life cycle. These

aspects are:

� Creation: when the USW graph is created and grows.

� Attack : when the USW graph is attacked by an adversary bent on disconnect-

ing the graph.
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Crea te  the  
USW graph

Attack  the  
USW graph

Repair  the 
USW graph

Figure 11. Navigational figure orienting USW graph life aspects.

� Repair : when the USW graph detects and recovers from damage caused by

the attacker.

These aspects are shown in the navigational diagram (Figure 11). This image

will appear in each chapter that deals with creation, attack, and repair. After a

USW graph repairs itself, it could be subject to another attack, which is why there

is a cycle between the attack and repair aspects.

During the creation and repair aspects of the USW graph’s life, individual USW

WOs will actively engage in fulfilling the migration strategies laid out above. Specif-

ically,

Change media: every time a copy is made on a new host; presumably, a new media

will be used. The media may be magnetic, optical, or some other technology,

but the media will not be the same as the media where the original WO was

located. Copying the WO to a new media is at the very heart of changing the

media.

Change format : the USW algorithm is predicated on WOs exchanging messages

(to create copies, to manage USW roles, etc.) to create and maintain the

USW graph. A message could also announce to the WOs that a service exists

to change data from one standard format to another. A WO receiving this

message would then be able to change the format of some of its constituent

parts.

Incorporate standards : the USW algorithm is predicated on adherence to Internet

standards to host the WOs and to enable communication between the WOs.

Services that can change the format of data presumably will be based on

standards as well.

Build migration paths : the USW graph grows through the addition of new WOs.
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These new WOs strengthen the existing graph by adding new potential preser-

vation locations for existing WOs. New WOs can be added to the USW graph

by DLs taking explicit action to include those WOs that they deem “wor-

thy.” WOs could also be added to the graph by anyone by the addition of

USW JavaScript “decorators” to existing Web pages. The addition of these

“decorators” would enable anyone to be a DL curator [54].
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CHAPTER 3

RELATED WORKS

Unsupervised Small-World (USW) brings together a disparate collection of col-

lection of ideas and concepts from computer science and digital libraries. Ideas from

graph theory (including metrics, robustness, and resiliency) and communication the-

ory where message sender and receivers may be unknown when a message is sent.

Each of these ideas and concepts are identified in the following sections.

3.1 EMERGENT BEHAVIOR

Emergent behavior systems are self-managing distributed computing resources,

adapting to unpredictable changes while hiding intrinsic complexity to operators

and users.

“The Autonomic Computing Paradigm has been inspired by the hu-

man autonomic nervous system. Its overarching goal is to realize com-

puter and software systems and applications that can manage themselves

in accordance with high-level guidance and direction from humans.”

Manish and Hariri [63]

Application of the USW algorithm results in a emergent behavior system.

� 2006

Harmen and Beneš [64] expanded on Reynolds’ rules to account for the be-

havior of a flock leader. They based their idea on watching the behavior of

flocks where one bird would break away from the flock for a short time and

act as a leader and then return to the flock and another assumes the role as

leader. Their addition was to add a leadership attribute to each boid and

that attribute changed value as the boid neared the periphery of the flock.

USW incorporates their idea of changes in leadership roles to answer the ques-

tion: Which WO is responsible for the preservation of a group of WOs (see

Section 3.1.1 on the following page)?

3.1.1 DIRECTLY APPLICABLE
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Figure 12. USW is at the nexus of multiple disciplines. The disciplines are:
1) Graph theory : mathematical structures used to model pairwise relations between
objects, 2) Emergent behavior : movement of the inanimate, 3) Preservation: en-
suring that digital information of continuing value remains accessible and useable.

Harmen and Beneš

Proper execution of the USW algorithm requires that a family have a single

“active maintainer” at any particular point in time. If a family is split due to the

network being split, then an outside entity would see there was more than one family,

but to the family members in each partition, there would only be one family. As

each WO is accessed, it executes a function that informs it, if it is the one responsible

for the active maintenance of the USW graph (see Algorithm 9 on page 296). The

act of becoming the active controller is at the heart of Harmen and Beneš [64].

3.1.2 COMMUNICATIONS

USW WOs must be able to communicate amongst themselves. There are many

different communication models that could be employed. The challenge is finding

an efficient model that has the following capabilities:

1. Point-to-point messaging,

2. One to many (multicast) messaging,
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3. One to all (broadcast) messaging, and

4. One to unknown and unknowable recipients.

USW WOs require all of the above communications capabilities.

� 1989

Carriero and Gelernter [65] propose a method of communication called Linda,

between cooperating programs that does not require that either the sender

or the receiver be explicitly identified. Rather, the sender attaches metadata

to the message and places the combined digital structure into a tuple space.

An unidentified receiver querys the tuple space looking for messages whose

metadata match the query. The receiver then performs any necessary actions

included in the message and may potentially return values to the tuple space

for other processing or to return results to the sender. Using the concept

of the tuple space: 1) the sender may never need to know the identity of the

receiver, 2) the receiver may never know the identify of the sender, 3) messages

can exist in tuple space after the sender ceases to exist and before any qualified

receivers start to exist, 4) the same message can be sent to all members of an

unknown group based on the metadata. USW uses the tuple space concept

to send messages to unknown and as yet non-existent members of the USW

graph (see Section 5.3 on page 121).

� 2002

Iamnitchi et al. [66] look at how to locate data, in particular files in a peer-

to-peer network in a fast and efficient manner. They approach the problem

by examining the effectiveness of using a gossip based protocol that individual

nodes can use to construct a “map” of the files in their local neighborhood.

Based on these maps, they can quickly locate requested files. They put forth

the idea that a small-world graph overlaying the actual graph structure would

further improve the performance of the system, but do not offer a way to

construct such a graph. USW could use the idea of employing a gossip based

protocol to enable a WO to learn more about the total graph (Chapter 8 on

page 275).

� 2004
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Newman [67] details an algorithm that can detect and display communities

(clusters) in graphs with more than 1,000,000 vertices. The worst case execu-

tion time is O((m+ n)n) or O(n2) for sparse graphs. The algorithm identifies

modules in the graph Q =
∑

i(eii−a2i ) by partitioning the graph into commu-

nities based on the number of edges that connect the various communities. As

the communities are identified, graph connected components of different sizes

can be combined or distinguished.

� 2013

Alam et al. [68], describe a mailbox style communications tailored to en-

able RESTful HTTP communication between sender and receiver. Messages

are kept in persistent storage and are retrieved from storage based on search

queries applied to the messages destination. Decoupling the absolute desti-

nation from the message allows for a message to be sent to unknown and

unknowable recipients. This communications mechanism allows for temporal

and locality separation between sender and receiver. USW uses the HTTP

Mailbox as the prototype communication mechanism between WOs (see Sec-

tion 5.3 on page 121). The USW implementation will use multiple mailboxes

to spread the communications processing load across multiple independent

hosts and to help minimize the possibility of a cascading failure [69].

3.2 GRAPH THEORY

Graph theory is the study of points (vertices or nodes) and lines (or edges)

that connect them G(V,E). Graphs are mathematical structures used to model the

pairwise relationship between objects. Different relationships result in graphs that

have different properties.

The USW algorithm will create graphs with small-world characteristics.

3.2.1 ROBUSTNESS AND RESILIENCE

Robustness and resilience describe the ability of the graph to remain connected

and “functional” when some of its components have been compromised or removed.

A “robust” graph is able to remain functional at some level after it has been dam-

aged. A “resilient” graph is able to regain its functionality after it has been damaged

and has had a chance to recover, or rebuild itself.
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� 1990

Najjar and Gaudiot [70] develop a probabilistic model of a network’s resistance

to disconnection based on the likelihood that any set of components can fail

and then disconnect the system. Based on their analysis, they prove that

graphs with a higher average degree are less likely to become disconnected

when components start to fail. USW takes the idea of assigning a probability

of failure to a component (either a friendship link, or a DO) and compute the

resilience of the USW graph (see Section 3.2.5 on page 60).

� 1996

Ang and Nadarajan [30] examine how Singapore has attempted to censor the

content that its citizens can download from the Internet. They cite that Singa-

pore has justified this censorship because of socio-political grounds by favoring

caution and prevention over liberalism. Censorship is focused primarily on ma-

terial going to homes more so than data going to companies, while material for

public consumption is more heavily censored than material going to the home.

Singapore has tried using separate servers and algorithmic based approaches.

Singapore has been attempting to walk a thin line between fully controlling

access by its citizens and enabling them to have all the benefits of the Internet.

Inherently, USW will not have access controls, but the design and resiliency

tests will take into account that the USW environment might be harmful to

the USW’s preservation intent.

� 2002

Fiat and Saia [71] examine the problem of how to ensure that data is not

effected by a censorship attack on the data content of Peer-to-Peer Content

Addressable Networks. They look at networks that are resistant to censorship

and spamming because data is not passed “homeward” if data from lower

levels does not all agree. USW graphs are neither Peer-to-Peer nor is the

content addressable, but they will ensure that the content they are charged

with preserving are in fact the original contents. The ideas from this paper

used to ensure that data is un-altered will be incorporated (see Section 3.2.5

on page 57).

Holme et al. [72] took Albert and Jeong and Barabási’s [73] paper and ex-

panded it by introducing the idea of using the average inverse path length
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(L(G)−1) as an approach to measure the vulnerability of a graph to different

types of attacks. The use of L(G)−1 as part of the metric to compute the

Damage(G) used in evaluating classical and USW graphs (see Section 5.2.4

on page 100).

Moreno et al. [74] investigate the stability of scale-free networks under node-

breaking avalanches. They use the idea that a node has a fixed throughput

capacity and that when this capacity is exceeded, then the node fails. The

volume that the node was servicing is then spread back through the nodes

that were feeding the failed node. This may cause these nodes to fail as well,

resulting in an avalanche of failures because of the failure of one node. Based

on simulations of medium sized graphs (n = 105 nodes), they conclude that

almost 20 - 60% of their graphs nodes have to be removed prior to system

collapse. As the average degree of the nodes increase the number of nodes

that have to collapse increases (see Section 3.2.5 on page 60).

Holme and Kim [75] address the problem of vertex overload in an evolving

system. They define vertex overload as a function of the number of geodesic

paths that use a vertex and that the vertex can only support a fixed number

of paths. If the number of paths exceeds the capacity of the vertex, then the

vertex is defined as being overloaded and may breakdown. When a vertex

breaks down, the paths that used that vertex are shifted to other vertices. If

these other vertices are then overloaded, an avalanche of failures might occur

result from a single failure (see Section 3.2.5 on page 59).

� 2004

Crucitti, Latora et al. [76] published a paper with the same title as Albert and

Jeong andBarabási’s [73], dealing with the same general topic, but proposing

a metric they called global efficiency. Their global efficiency is average inverse

path length L(G)−1, but with a different name. They look at the behavior of

a network (i.e., a graph that has a measurable flow along an edge) when a

node or an edge is removed. Their premise is that the flow between nodes will

always take the lowest cost path. In their models, each edge has a capacity

and a tolerance factor. As edges/nodes are removed, the flow that was going

through the removed component is spread out to other edges. The removal of

a critical edge (high flow) and the redistribution of the flow through adjacent



35

edges can result in a cascade of failures as the increased flow causes additional

edges to reach saturation. They investigated these phenomena for Erdös-Rényi

random graphs and Barabási-Albert scale-free graphs using the same ideas of

ID, IB, RD and RB as introduced in by Holme in [72]. Crucitti introduces the

idea of global efficiency that has the same form and character as L(G)−1.

E(G) =
1

n(n− 1)

∑

i ̸=j∈V

1

dij
(3)

Crucitti computes global efficiency after a node or an edge is removed, but they

do not compare the current efficiency versus a connected graph’s efficiency.

Petermann and Rios [77] explore how the tools used to discover the nature

(connections between nodes via edges) can skew the data about the graph

and therefore the analysis of the data may be suspect. Using the idea of the

traceroute command to detect links between routers in real-world graphs, the

authors argue that traceroute in general will report a short path (perhaps not

the shortest path) between a source and terminus node. Because of selecting

a short path between the source and terminus whenever possible, a tree like

structure is returned from analyzing the data from the command. This tree

like structure may represent the true nature of the graph because each router,

node, or decision point may have more outgoing edges than are reported by

traceroute. Petermann and Rios then construct several simulated graphs and

show how using different discovery tools and techniques return different values

for the same graph. They conclude that the discovery tool will bias the data

and that a researcher needs to understand and account for these biases. USW

will use the discovery tools that are part of the R igraph and Matrix packages

[78, 79] to report on and evaluate the USW graphs.

Bollobás and Riordan [80] explore the robustness and vulnerability of the lin-

earized chord diagram (LCD) and the diagram’s robustness and vulnerability

in the face of random damage and malicious attack. They show that an LCD

graph is much more robust (and more vulnerable) that a classical random

graph with the same number of edges. Also, under malicious attack, the crit-

ical portion pc of vertices needed for a giant component is roughly 4 times as

high for an LCD graph as a classical random graph. As part of their analysis,

they investigate how effective an attacker can be when allowed to have only a
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limited knowledge of the entire graph.

� 2005

Criado, Flores et al. [81] propose to quantify the vulnerability of a graph

based on the number of nodes, number of edges and the standard deviation of

the degreeness of the nodes to random and intentional attacks.

Klau and Weiskircher [82] formalized Réka Albert and Hawoong Jeong and

Albert-László Barabási’s idea into the tuple (S, ⟨s⟩). Their work is also a

chapter in [83]. They provide a very nice survey of robustness and resilience

metrics and ideas that have been advocated by various authors. A graph

is robust if it is able to keep its basic functionality even when some of its

components fail. Components can fail because of some random event, or be-

cause the component has been targeted to fail in order to cause damage to the

graph. They explore and detail how to measure different aspects of a graph’s

robustness in the face of random failures and attacks and conclude stating

that the ideal statistics for describing the robustness of a complex network

depends on the application and the types of failures that are expected. Klau

and Weiskercher hint that failure of a component in a real network may result

in a cascade of failures across the network. None of the approaches provide

a single unit-less value that describes the damage inflicted on a graph by the

removal of an edge or node and the possible disconnection of the graph.

Link et al. [84] look into the parameters affecting the resilience of scale-free

networks to random failures. They extend previous work by Cohen et al. in

[85] by focusing on the Internet and estimating the percentage of nodes that

must be removed during a random attack to cause a disconnection. They

assign a likelihood of 0.5 deletion to each of the routers in the Internet and

conclude that the Internet will collapse (as in no longer have a giant compo-

nent) after the failure of 0.9 of the entire net. They generalize their results of

various finite power-law networks based on analytical and empirical evidence.

USW graphs should not have a power-law degree distribution, so much of the

paper may not be directly applicable (see Section 3.2.5 on page 59).

� 2006

Notetea and Pongor [86] proposed measuring the “robustness” of a network

by computing the L(G)−1 before and after a change is made to a graph under
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consideration. If the robustness of the graph is improved, then the change

becomes permanent. If the robustness decreases then the change is reverted.

They focus on the evolution of a graph towards a new organization that is

more robust or efficient. Their definition of efficiency is:

E(G) =
1

n(n+ 1)

∑

i ̸=j∈V

1

dij
(4)

(which the same as other’s L(G)−1) and their definition of robustness R(G) =
Et

E
. They use a genetic algorithm that starts with a random graph (100 nodes

and 120 edges) and mutates and crossovers the graph until it reaches a “steady

state” condition. A steady state was achieved when the goals of E, R and the

maximum percentage of periphery nodes (those nodes with a degreeness of 1)

was reached. Et was computed after either 1 or 5 of the highest betweenness

nodes were removed. Their idea of robustness R comes close to capturing our

idea of a single number that measures the health of a graph. Health is the

inverse of our idea of damage. Within USW, once edges are created, they are

not removed or altered. The efficiency of the USW graph will increase by the

addition of more nodes and edges.

3.2.2 ATTACK

Any component of a graph may fail at anytime. Examples of a graph failures

include: a USW WO residing on a host whose power supply fails, or a network

router that is shorted out due to flooding. An attack is a collection of targeted

failures, whose collective goal is to disrupt the graph.

� 2000

Albert, Jeong and Barabási [73] look at the effect on the average (or expected)

path length for scale-free networks (specifically snapshots of the Internet and

the WWW) when the highest degreed node (be it an Internet router, or a

well connected HTML page) is removed from the graph. Within their context,

the Internet is a graph where routers equate to nodes and communications

links equate to edges. They proposed a tuple metric (LCC, S, s) based on the

proportion of the graph represented by the ratio of largest connected compo-

nent LCC to the entire graph S and the mean size of all remaining fragments
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⟨s⟩. They conclude that these networks are tolerant of many random failures,

but are very susceptible to the failure of a few critical elements because of

their underlying structure. This type of sensitivity is common to scale-free

networks. USW is not a scale-free graph and therefore should not be sensitive

to targeted attacks. The sensitivity of the USW graph to targeted attacks will

be evaluated (see Section 5.5 on page 148).

� 2002

Motter and Lai [69] focus on the effects of cascading failures due to overloading

of the Internet and power grids when using degree based attacks. In these types

of graphs the traffic (be it either packets or electrical power) that was being

serviced when a component fails is transferred to other components of the same

type to which the failed component was connected. Their analysis shows that

an attack, or a failure of an exceptionally heavily loaded component, may

have a cascading failure effect on the other components. The possibility of a

cascading USW graph failure when the messages are routed through a WO is

a contributing factor to finding and using a different communications model.

� 2005

Criado, Flores et al. [81] propose to quantify the vulnerability of a graph

based on the number of nodes, number of edges and the standard deviation of

the degreeness of the nodes to random and intentional attacks. Perhaps most

importantly, they define the attributes of a vulnerability function in terms of

the graph.

Their definition is:

Let G be the set of all possible graphs with a finite number of vertices. A

vulnerability function v is a function v : G → [0, 1] verifying the following

properties:

1. v is invariant under isomorphisms.

2. v(G′) ≤ v(G) if G′ is obtained from G by adding edges.

3. v(G) is computable in polynomial time with respect to the number

of vertices of G.
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The equation they present to meet their definitions is:

v∗∗(G) = exp{σ
n
+ n−|E| − 2 +

2

n
} (5)

Supported by:

σ =

√

√

√

√

1

n

n
∑

i=1

(ki −
2|E|
n

)2 (6)

Equation 5 evaluates to the interval [0,1]. A value of 0 means that the graph

is very robust (low vulnerability), while a value of 1 means that the graph is

very vulnerable (not robust). Using equation 5 before and after a modification

to a graph can be used as a way to measure what effect the change has had

on the graph’s vulnerability. If the vulnerability increases, then probably the

change should not be finalized. While their system of equations meets their

requirements, the equations do not report the type of damage that we are

interested in measuring. Their definition of the attributes of a metric are in

harmony with our intuition.

� 2006

Kim et al. [87] examine the idea of increasing the resilience of a network as

it grows by changing the connection criteria as a function of the life of the

graph. They propose that a node be connected to an already existing node

in the network based on the maximum, average, or minimum degree of the

already connected node. These criteria require global knowledge of the graph.

Based on their analysis, they recommend that new nodes be connected to an

already existing node whose degree value approximates that of the total graph.

USW nodes operate using only local knowledge and create additional edges

in a random manner. In future work, an outside entity may steer WOs to

selected WOs to increase the USW graph’s resilience.

� 2008

Lee et al. [88] look at how the topology of the graph affects which type of at-

tack profile would be most effective. They propose a new metric, called attack

power to quantify the effect of any of their attack profiles. They measure dam-

age to their graph using degree distribution, average path length and vertex
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cover. They enumerate some interesting attack profiles, but their approach

does not address a disconnected graph. They use the autonomic system (AS)

connectivity graphs from National Laboratory for Applied Network Research

as their test graph. Based on this graph, they apply weights to each of the

edges in the graph based on the amount of traffic along that edge. They then

focus on three different types of failures. Node failure where an AS is lost due

to some sort of hardware failure (i.e., power supply failure, accidental or delib-

erate misconfiguration, etc.). Link failure where adjacent ASes are not able to

communicate because of hardware failure (such as the cutting of a cable), or

electronic failure (such as DNS hacking, routing table poisoning, etc.). Path

failure including DoS and routing table loops, resulting in a flooding of the

path with packets to the extent that the communications links are unusable.

Lee et al. then create different attack profiles based on these types of failures.

Their attack profiles are:

1. Random AS attack — randomly choose an AS and and remove it,

2. Min-degree AS attack — order the ASes by their degree connectivity and

then start removing them from low degree to high degree order,

3. Max-degree AS attack — order the ASes by the degree connectivity and

then start removing them from high degree to low degree order,

4. Random edge attack — randomly choose an edge and remove it,

5. Min-weight edge attack — order the edges by their weight and then start

removing them from low weight to high weight order,

6. Max-weight edge attack — order the edges by their weight and then start

removing them from high weight to low weight order,

7. Random path attack — randomly choose a path and remove it,

8. Max-weight edge attack — order all paths by weight and then remove

paths in order from heaviest to lightest, and

9. Max-length path attack — order all paths by length and then remove

paths in order from longest to shortest.

After each attack, the effect on the graph is quantified by a metric they labeled

as “attack power.” Attack power reports the effect of each attack on the

number of components that fail in the system. We treat Lee’s path failure as
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a limited case of our edge failure (see Section 5.5.3 on page 153). Path failure

is based on the path at the start of the attack where the path meets some

sort of criteria and then a series of edges are removed based on these criteria.

The limitation is that the set of criteria used to identify the path in the first

place, may not be valid after the removal of the first edge in the path. Their

conclusion is that the Internet is more vulnerable than a random graph to

path based attacks. Our method of testing the robustness of the USW graphs

will be slightly different than those proposed in [88] in that we will reevaluate

the effect of an attack after each edge or WO removal to ensure that only the

latest information about the graph is used.

Kownacki [89] examines the robustness of planar random graphs to targeted

attacks. He focuses on connected cluster distribution when all faces whose

number is greater than a cut-off kmax are removed. His investigations point to

a percolation value of kc = 15.8 that above which the connectivity of the graph

is greatly affected and below which the graph remains largely undamaged. His

experiments were based on using graphs ranging in size from 1,000 and 32,000.

He concludes that his simulated graphs are “rather” robust with up to ≈ 20%

of the nodes having to be removed prior to the disconnection of the graph.

USW graphs are not planar and therefore Kownacki’s analysis and results are

not directly applicable, but they do serve as a benchmark to be measured

against.

3.2.3 SMALL-WORLD

A small-world graph by definition has the following properties [90]:

1. Is of a large order n,

2. The order is much much greater than the average degree and much much

greater than 1 n ≫ ⟨k⟩ ≫ 1,

3. The order is much much greater than the maximum degree of any vertex n ≫
kmax,

4. Is sparsely connected |E| ≪ n2,

5. L(G) ∼ ln(n)
ln(k)

, and
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6. Whose C(G) ≫ C(G)random

USW graphs will be meet the definition of a small-world graph.

� 1998

Watts and Strogatz [43] take a regular lattice graph of fixed size and randomly

“re-wire” edges based on a probability p. They compare the average path

length L(G), and the average clustering coefficient C(G) of the “re-wired”

graph to the original graph. As p varies from 0 to 1, the normalized L(G)

and C(G) are nearly 1 when p is nearly 0 and nearly 0 when p is nearly 1.

These two regions correspond to a regular graph and random graph regions,

respectively. Between these extremes, there is a region where the L(G) begins

to drop from the regular region to the random region while the value of C(G)

remains in regular region (Figure 13 on the next page). This area where C(G)

is ≫ L(G) is designated as the “small-world” region. Any graph that exhibits

this kind of relationship between normalized C(G) and L(G) values is, by

definition, a small-world graph. USW graphs are small-world graphs based on

this definition.

� 1999

Watts [90] provides an overview of the small-world graph related phenomena

and the derivation of region of average path length and average clustering

coefficient that characterize a small-world graph. The definition that Watts

gives for a small-world graph is:

“A small-world graph is a large N, sparsely connected, decentral-

ized graph (n ≫ kmax ≫ 1) that exhibits a characteristic path length

close to that of an equivalent random graph (L ≈ L(G) ∼ ln(n)
ln(k)

), yet

with a clustering coefficient much greater (C ≫ C(G) ∼ k
n
).”

Watts – Strogatz [90]

Watts puts forth the conjecture that any graph that meets the average path

length and clustering coefficient requirements of his definition is a small-world

graph regardless of how it was constructed. USW graphs are repeatedly eval-

uated against Watts’ definition to ensure that they meet the requirements of

a small-world.
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Figure 13. Watts and Strogatz lattice evolves to a random graph. The graph evolves
as the probability p of rewiring an edge increases from 0 to 1. A small-world exists
between the total regularity of a lattice and the total randomness of a random graph

(both shown in red).
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� 2000

Amaral et al. [91] put forth the position that scale-free graphs are in fact

a case of small-world graphs. They further classify these special case small-

world graphs into: scale-free characterized by a degree distribution that decays

as a power law, broad-case networks characterized by a degree distribution

that has a power law regime followed by a sharp cut-off, and single-scale

networks characterized by a degree distribution with a fast decaying tail. They

explored this area based on the question: “What are the reasons for such a

tight range of possible structures for small-world graphs?” The answer put

forth is that preferential attachment leads to growing networks with power law

degree distributions, and that preferential attachment can be affected by two

factors: aging of the vertices, and cost of adding additional edges to a vertex.

USW will create small-world graphs, but it has not been classified yet based

on Amaral’s taxonomy.

Border et al. [92] examine 200 million pages with 1.5 billion links from the

WWW and conclude that the Web is considerably more intricate than had

been suggested by smaller scale experiments. Based on the real-world data

they used, they compute that the fraction of the Web with i in-links is pro-

portional to 1
i2.1

. Interestingly enough, they find that their in-degree data more

closely fits a Zipf distribution than a power-law distribution. Another inter-

esting observation is that given a random start and finish page, one get from

the start page to the finish page only about 25% of the time. USW friendship

links are bidirectional, so some of the ideas from this paper are not applica-

ble. Based on particular values of β and γ, the USW degree distributions will

be analyzed to see if they fit a power-law distribution (see Section 5.2.1 on

page 84).

Callaway et al. [93] look at predicting the percolation point in random graphs

where the degree distribution is other than Poisson. Those efforts are appli-

cable to real-world graphs (such as the Internet and others). They give exact

solutions for a variety of cases, including site and bond percolation and to

models in which the occupation probabilities depend on the vertex degree.

Part of their motivation is to compute the point in graph development where

a large giant connected component appears that permits the underlying graph

of become fully functional (see Section 3.2.5 on page 57).
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Kleinberg [94] claims to prove that there are no decentralized algorithms using

only local knowledge that can construct a graph with small world properties

for clustering coefficients and average path length. He started with a lattice

based graph and uses messages that collect intermediary data as they are

passed from node s to t. Based on the information collected in these mes-

sages, long jumps/links can be constructed that shorten the overall average

path length. Our USW approach is similar in that the USW node actively

collects information about the structure of the graph while in the wandering

phase and passively from newer wandering nodes after it has become connected

(Appendix A on page 287).

Kleinberg [95] algorithmically bridges the gap between Stanley Milgram’s [44]

and Watts and Strogatz’s [43] small-world phenomenons. Kleinberg uses an

underlying lattice as a baseline where each node represents a potential message

sender and receiver. Each sender and receiver has directed links to nodes

close to them and a very small set of links to nodes that are far away. In

this sense, close and far are determined by the lattice distance between the

sending and receiving nodes. Kleinberg then poses the question: Why should

arbitrary pairs of strangers be able to find short chains of acquaintances that

link them together? Kleinberg approaches solving this by analytically sending

messages from any sender to any receiver. The sender knows the location of

the receiver and its own close and distant links. As the message is passed

from node to node, all nodes that touch the message record that fact in the

message. As the message is routed through the lattice, each node begins to

accumulate a more complete understanding of all links in the graph. Kleinberg

uses this model to prove that there are no decentralized algorithms using only

local knowledge that can construct a graph with small-world properties for

clustering coefficients and average path length. Our USW approach is similar

in that the USW node actively collects information about the structure of the

graph while in the wandering phase and passively from newer wandering nodes

after it has become connected (Appendix A on page 287).

Mathias and Gopal [96] investigate the creation of small-world graphs arising

from base graphs other than lattices. They focus on using simulated annealing

to create graphs that have a trade-off between maximal connectivity and min-

imal wiring and settle on an alternative creation that connects small hubs to
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create a larger graph that has the desired small-world characteristics of high

clustering coefficients and short average path length. USW simulations use

their ideas of connecting subgraphs into a larger whole while evaluating the

effectiveness of damage metrics.

Newman [97] provides a short review of small-world (SW), their characteristics

and techniques by which they can be created. He starts by contrasting SW

with random graphs and then proceeds to discuss the SW model of Watts –

Strogatz. Newman provides average path length limits based on his previous

works. He concludes with SW models based on graphs with a limited number

of “well connected” nodes a discussion of the World Wide Web as SW by

Albert et al. and models by Kleinberg based on Manhattan distance (L1)

computations. USW continuously evaluates its self in terms of average path

length (L(G)) and clustering coefficient (C(G)) and remains within the bounds

developed by Newman.

� 2002

Holme and Kim [48] look at the problem of growing scale-free graphs with

high clustering based on the use of a control parameter. They look to fill

the void between classic Watts – Strogatz small-world graphs that have high

clustering but without a power law degree distribution and the Barabaási and

Albert (BA) scale-free graphs that have low clustering and a power law degree

distribution. Holme and Kim achieve this combination distribution by taking

the BA graph construction algorithm using preferential attachment and adding

an additional random edge between the new node and the neighbors of the

node that the new one is attaching to. Holme and Kim focus on controlling the

clustering coefficient in a scale-free graph based on a control parameter. The

USW algorithm creates small-world graphs based on two control parameters

(β, γ) and application of Policy C.

Newman et al. [98] attempt to model social networks via the use of random

graphs. In some cases, their efforts based on degree distributions match well

with real data, while in others they match less well. They found that large

random graph has a degree distribution that can be expressed by a Poisson

distribution that does not match well with the degree distribution of a random

graph. They were able to exactly compute the size of the largest connected
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component S and the average size of the remaining components ⟨s⟩ based

on a specified degree distribution. Using these data, they proposed a way to

compute the average path length.

� 2004

Barrat et al. [99] put forth the idea that more can be learned about “large

real-world” graphs if the edges between the nodes in the graph are assigned a

“weight” that is appropriate for the graph. They base their claim after study-

ing the International Air Transportation Association database of seats avail-

able between airports and the author citation database from e-Print Archive.

Using information particular to the graph (number of seats, number of co-

authored papers, etc.), they compute a weight for each edge. Based on this

weighted edge, the more critical and important edges can be determined, where

before the edges may have been overlooked. USW will use this type of idea

about edge centrality to test the graph’s resilience to high edge centrality

attacks (see Section 5.5 on page 148).

Hui et al. [100] consider how to construct a structured peer-to-peer network

with small-world clustering and path length characteristics. They present

a small-world overlay protocol (SWOP) that is used to maintain a network

consisting of head nodes, inner nodes, long links and cluster links. They use a

SHA-1 function to ensure that each node has a unique identifier. This hashing

function is also used when a node wants to join the network. SWOP has

various sub protocols including: Join Cluster, Leave Cluster, Stabilize Cluster

and Object Lookup. The idea of using SHA-1 as a way to generate a unique

ID is appealing, but multiple protocols does not fit well with our current USW

model. Their Object Lookup protocol may be applicable to locating a USW

DO that has a particular data load.

Kleinberg [94] takes a lattice graph and creates long links originating from

selected nodes s based on the distance to other selected nodes t based on the

distance between the nodes. Kleinberg states that these “long links” are useful

in the design of peer-to-peer file sharing systems on the Internet. An effective

routing algorithm can arise based on purely locally gleaned information. Our

USW algorithm is different from Kleinberg’s in that the USW environment

does not have a concept of distance. We will investigate a variant of Kleinberg’s
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idea of distance by giving connection preference to nodes that are directly

connected to a node that the USW node connects to (Section 6.7.3 page 200).

� 2005

Bonato [101] provides a survey of various models for growth of the Inter-

net (he calls it W), including preferential attachment, off line, copying and

growth/deletion. He provides a list of desirable W graph properties, includ-

ing:

1. On-line property. The number of nodes and edges changes with time.

2. Power law degree distribution. The degree distribution follows a power

law, with an exponent β > 2.

3. Small-World property. The average distance (or diameter) is much smaller

than the order of the graph.

4. Many dense bipartite subgraphs. The number of distinct bipartite cliques

or cores is large when compared to a random graph with the same number

of nodes an edges.

USW uses some of the techniques that Bonato discusses in his copying model

when a USW WO makes connections to some of the WOs that it has learned

about during its wandering phase (Appendix A on page 287). USW uses

some of the techniques discussed in the growth/deletion model when assessing

the robustness of the USW graph (see Section 5.2.1 on page 84).

� 2008

Cont and Tanimura [102] investigate the creation of graphs with small-world

properties that do not start from an initial lattice. They provide a technique

for constructing graphs that meet the clustering coefficient and average path

length requirements to be classified as a small-world starting from a collection

of disconnected clusters and then connecting them. They do not present a

construction technique corresponding to the USW approach where the node

are added one at a time and make connections based only on the information

that they gather.

3.2.4 MISCELLANEOUS
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� 1949

Luce and Perry [103] provide an early example of using an adjacency matrix

to identify cliques in a graph. The authors focus on the problem of three or

more nodes n having a relationship such that (ni → nj → nk → ni) only. By

the use of matrix multiplication, they provide a technique that says x
(n)
ij = c,

iff there are c distinct n-paths from i to j and an element i is contained in a

clique iff the ith entry of the main diagonal of S3 is positive. USW is more

concerned about the clustering coefficient C(G) than the presence of cliques.

The techniques and approaches outlined by Luce and Perry are useful for

computing L(G) during simulations and evaluations.

� 1973

Fiedler [104] explores the second smallest eigenvalue (a(G)) of the adjacency

matrix A(G) algebraic connectivity of the graph G. Results of this exploration

come to be known as the Fiedler vector. The Fiedler vector is used to explain

the relationship between the second eigenvalue and the usual vertex and edge

connectivities. USW uses the Fiedler vector when evaluating which edge or

node to remove to cause the greatest amount of damage to the USW graph

when it is under attack.

� 1976

Milgram [44] reported on two experiments where he started a chain letter in

the American Mid-West with a target in the Eastern US. The chain letter

was to be passed from one person to another, only if the first person knew

the second. The fewest number of intermediate people in the chain was 2,

while the highest was 11. There was a pronounced peak at 6 intermediaries.

Milgram’s paper is credited with measuring the anecdotal phenomenon where

complete strangers find that they have someone in common. The peak in

the reported data, led to the phrase “we are all separated by six degrees of

freedom.” Our USW graphs may have more than 6 degrees (based on β, γ,

and n), or edges between any random node, but the average path distribution

length mimics that measured by Milgram.

� 1993

Huberman and Adamic [105] examine data from Alexa and Infoseek crawls of
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the Internet. Based on this data, they present a power-law distribution for the

number of links to a particular site. Using this data a growth factor −β can

be estimated using the equation p(k) = p(k0) ∗ ( k
k0
)−β. As an extension, the

number of sites that that would be expected to be located after N crawls is

N ∗p(k). USW creates small-world graphs, vice preferential attachment graphs

that are the main source of data for this evaluation. Construction of the USW

graph based on the USW algorithm will create a graph that will increase in

density ρ(G) as more WOs are added (see Section 5.3.2 on page 125).

� 1997

Randić and DeAlba [106] look to quantify the distinction between sparse and

dense graphs, where before these were discussed as “qualitative” attributes

of graphs and therefore open for interpretation. They develop their equation

by examining the ratios E
E∗ (the ratio of the actual number of edges over the

maximal number of edges) and Z∗

Z
(the ratio of the size of the adjacency matrix

over the number of 0 entries in the adjacency matrix). Using these two ratios,

they propose the metric ρ(G) = ( n2

2m
−1)(1− 1

n
). If ρ(G) < 1 then the graph is

sparse. If ρ(G) is > 1 then the graph is dense. Because ρ(G) can never equal

1, there are no ambiguous conditions. USW graphs start out as sparse, but

become more dense as they grow (see Section 5.3.2 on page 125).

� 2001

Barabási [107] provides a statistical overview of the Web and general graph

theory. He describes directed and undirected graphs, the salient characteristics

of Poisson and power-law graphs, and estimates on the upper limit on the size

of the Web (19 clicks from one end to another). He addresses the differences

between static and dynamic graphs and how most graph theoretical work has

been directed towards static graphs. How the Internet can be attacked and

the effectiveness of various attack profiles (edge vs. node) would be in causing

a disconnection and wide spread disruption. USW graphs are dynamic and

small-world. The paper is written towards a general population, but has ideas

and thoughts views that have been incorporated into USW implementation

and testing (see Section 5.5 on page 148).

Brandes [108] presents a faster algorithm to compute betweenness centralities.

Computing betweenness is a O(n3) time and O(n2) space problem, but this
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approach brings it down to O(nm) time or O(nm+n2logn) time and O(n+m)

space making the computation of much larger graphs practical. These tech-

niques were used during simulation and graphs of size 10,000. The R language

igraph library [78] was used when creating the reference implementation robot

(Chapter 7 on page 253).

Cooper and Garcia-Molina [109] investigate the idea that autonomous reposi-

tories may enter into trading agreements with each other to provide preserva-

tion services by trading data between themselves. They conclude that the key

issue is how a site can determine with whom to enter to a trading agreement

with. Based on the agreements that can exist between different sites and the

way that these agreements may be advertised, a complete preservation trading

network could be created. USW will match very closely to many of the ideas

of the trading network (see Section 3.2.5 on page 57). USW hosts provide au-

tonomous archive sites, digital storage and indirectly a trading network. USW

WOs provide archiving clients and automation.

Goh et al. [110] investigate the problem of data packet transport in scale-free

networks whose degree distribution follows a power law with the exponent

γ. Using the idea of vertex betweenness that computes the betweenness of

each vertex based on the number of geodesic paths that use that particular

vertex, they find that the load distribution follows a power-law distribution

the exponent δ ≈ 2.2. Based on their investigations, they conjecture that the

load exponent is a generic quantity that can be used to characterize scale-free

networks. USW used some of their ideas about how the degree distribution

affects message transmission as part of an investigation into the effectiveness

of message and communication costs as new WOs are added to an existing

graph (see Section 5.3 on page 121).

� 2002

Menczer [111] looks at the linkage structure of Web hypertext pages and the

content topology of Web pages. Menczer defines a lexical distance between

Web pages using Information Retrieval techniques and then argues that the

Web is built in a cognitive manner using the lexical distance. In effect, Web

page creators are more likely to link to pages that are similar to themselves.
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Menczer validated his approach by using 150,134 URLs from the Open Direc-

tory Project, and re-creating the power law distributions seen there. USW will

keep the idea of linking to nodes based on their content as an alternative way

for the wandering node to make its first connection (Chapter 8 on page 275).

� 2003

Newman [112] provides a survey of random graphs and shows how well, or

not the random graph’s degree distribution matches real-life networks/graphs.

He discusses random graphs with specified degree distributions, directed and

undirected graphs, graph clustering and the application of these ideas to epi-

demiological simulation models.

Wang and Chen [113] provide an easy to read and understand survey of ran-

dom, small-world and scale-free graphs. They provide equations for the distin-

guishing characteristics of each type of graph and address the “Achilles heel”

— robustness versus fragility of scale-free networks. How scale-free are robust

(as in the network is still able to function reasonably well) in the face of the

loss of a very high percentage (80%) of randomly selected nodes, but it is

very sensitive to a targeted attack against a very small percentage of nodes.

They also address the idea of synchronization of a graph, where adding just a

few links to an existing graph can have profound effects on the average path

length, and can convert a regular graph into a small-world one. USW graphs

have been evaluated in light of the ideas in this paper (see Section 5.5 on

page 148).

Newman and Girvan [114] investigate how to detect communities in a graph

without any foreknowledge of the graph. They approach the problem by com-

puting the edge betweenness centrality cB(e) for entire graph, identifying that

edges as being between two communities, and then removing that edge. The

process is repeated until all edges have been removed and all nodes are iso-

lated. This decomposition will identify all communities in the graph that

are greater than or equal to some arbitrary n. Betweenness can be based on

the number (or percentage) of geodesic paths that use an edge, by the flow

through an edge (if there are different flows through different edges), or the

number of random walks (a Markov approach) that use a particular edge.

USW graphs have been evaluated based on ideas and techniques from this
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paper (Section 5.5 page 148).

Radicchi et al. [115] tackle the problem of how to detect communities in

large networks in a fast and efficient manner. They define a community as

a portion of the graph (a subgraph) where the connections between nodes

(the edge density) is higher than the average in the total graph. Radicchi et

al. use an agglomerative algorithm that builds communities up from nodes, as

opposed to a divisive algorithm where the graph is cut into subgraphs based

on the edge’s centrality value. The computational difference between the two

approaches is that O(M2N) for the agglomerative algorithm and O(MN) for

the divisive. The agglomerative is too computationally expensive for large

graphs, while the divisive is practical.

� 2005

Aberer et al. [116] propose a reference model for the study of P2P networks.

They authors claim that the diversity of approaches to describe P2P networks

has been brought about by the origins of the different most popular P2P net-

works creators. These creators come from different communities (networking,

databases, distributed systems, graph theory, and others) and as such the ter-

minology used to describe each aspect of each system is inconsistent. This

inconsistency results in confusion when comparing different P2P architectures

and makes it difficult to properly evaluate each type of network using the same

set of criteria. The reference model takes into account the key components of

P2P design consideration:

1. Efficiency : Routing should incur a minimum number of overlay hops

(with minimum “physical” distance) and the bandwidth (number and

size of messages) for constructing and maintaining the overlay should be

kept minimal.

2. Scalability : The concept of scalability includes many aspects. We focus

on numerical scalability, i.e., very large numbers of participating peers

without significant performance degradation.

3. Self-organization: The lack of centralized control and frequent changes in

the set of participating peers requires a certain degree of self-organization,

i.e., in the presence of churn the overlay network should self-reconfigure
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itself towards stable configurations. This is a stabilization requirement

as external intervention typically is not possible.

4. Fault-tolerance: Participating nodes and network links can fail at any

time. Still all resources should be accessible from all peers. This is

typically achieved by some form of redundancy. This is also a stabilization

requirement for the same reason as above. Fault-tolerance implies that

the partial failure property of distributed systems [19] is satisfied, i.e.,

even if parts of the overlay network cease operation, the overlay network

should still provides an acceptable service.

5. Cooperation: Overlay networks depend on the cooperation of the partic-

ipants, i.e., they have to trust that the peers they interact with behave

properly in respect to routing, exchange of index information, quality of

service, etc.

USW graphs, while not strictly a P2P network in the classical sense, have

been evaluated based on efficiency (see Section 5.3 on page 121), scalability

(Appendix A on page 287), self-organization (Appendix A on page 287),

fault-tolerance (see Section 5.5 on page 148) and cooperation (Appendix A on

page 287).

Borgatti [117] provides an interesting view on how different types of flows

through a network can result in different centrality values for edges or nodes

in that network. The types of flows he studied in his simulations include:

used goods, money, gossip, e-mail, attitudes, infection, and packages. Data

being sent using these flows are also affected by the flow processes. These

processes include: if the data is actually moved or copied from one node to

another, whether there is only one data package at a time or more than one,

and whether the data takes the shortest path or not. Each combination of the

type of flow and the influencing process is addressed with real-world examples

and analysis. USW nodes may learn about nodes in their local area via a

gossip protocol and will use an infection model when engaged in forwarding

messages (Chapter 8 on page 275).

Leskovec et al. [118] explore the phenomena that over time graphs become

more dense with edges being added super linearly with respect to the number

of nodes. The result being that the average path length decreases as a function
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time as well. In particular they examine the arXiv citation graph, the patents

citation graph, the autonomous systems graph and the affiliation graph. In

all cases, the diameter shrinks as a function of time. They propose different

models to describe this behavior. The models are:

1. Community guided attachment where members of the community are

“directed” that they should cite a certain number of already existent

members of the community resulting in self-reinforcing behavior, and

2. A forest fire model based on the idea that some papers have an extra ordi-

nary large number of out links (citations to others) that anyone accessing

them, might also access a large number of other papers.

USW graphs demonstrate community guided attachment behavior based on

Policy C.

White and Smyth [119] look towards finding communities in a graph by ap-

plying Laplacian techniques to the adjacency matrix of a graph. Using this

approach they claim that they are able to find more accurate communities

of subgraphs than could be found using hierarchical techniques. They tested

their techniques with real-world data fromWordNet, American college football

teams, and clustering of authors publishing in Neural Information Processing

Systems (NIPS). USW graphs have small-world properties, and the charac-

teristics of L(G) and C(G) are more important. A community may develop

based on Policy C, but it is not guaranteed.

� 2006

Borgatti and Everett [120] provide a view of conceptualizing and measuring

centrality values from a graph-theoretic perspective. They approach the prob-

lem by focusing on a node’s involvement in the walk structure of a graph.

They measure this along four axis: type of nodal involvement, type of walk

considered, property of walk assessed and choice of summary measurement.

USW used many of their involvement ideas during the centrality measurement

and evaluations when considering how to attack a graph (see Section 5.5 on

page 148).

Newman [121] puts forth a technique for detecting community structures by

examining the adjacency matrix for a graph and then the spectral partitioning
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of that matrix. By recursively applying spectral partitioning techniques to the

derivatives of the adjacency graph, the full network can be subdivided into

modules/clusters in a fast and accurate manner.

Newman [122] provides a extensive treatment of the properties of many differ-

ent types of graphs including random, Markov and small-world. For each type

of graph, he discusses and presents equations defining clustering coefficients,

expected degree distributions, mixing patterns, network resilience and degree

correlation. Newman has brought into one place many divergent ideas and for-

mulations. USW made use of his equations and approaches in the evaluation

of its graphs.

� 2008

Halim et al. [123] evaluate small-world networks as structured overlay net-

works (SON). They compare SON to small-world networks (SWN) and ran-

dom networks and seek to explain how each responds to node and link failures.

They conclude that the number of edges in any graph increases the robustness

of the graph, that SON graphs have high maintenance costs as compared to

SWN and that SWN can function as replacements for SONs. Their simulation

and evaluation of SWNs leads to the conclusion that increasing the number of

edges increases the robustness of the SWN matches our intuition.

Osvall and Bergstrom [124] use information theory to detect and describe

clusters of connected nodes in a directed graph using random walks. They

demonstrate their technique by performing citation analysis on 6,434,916 ci-

tations in 6,128 scientific journals and identify 88 modules/clusters. Using

their techniques, they can design maps of graphs at an appropriate level for

a particular visualization need. USW may apply their techniques in order to

provide “maps” of the autonomously created graphs based on the content of

each WO (Chapter 8 on page 275).

Zweig and Zimmermann [125] propose a protocol that enables the graph to

change its overall degree distribution based on locally detected failures. Es-

sentially, if a node detects a failure in one of it Ni(v) neighbors, then it will

create additional links to other members of its k neighborhood. If there is

extensive damage to the graph because it is under attack, then there will be

a dramatic shift in the total degree distribution of the graph. USW may use
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these repair techniques if it detects that there is significant damage within the

local k subgraph (Chapter 8 on page 275).

� 2010

Karsai et al. [126] put forth the argument that the spreading dynamics of a

small-world network are slow, even with the numerous short length paths that

are characteristic of a small-world. They use empirical data and a susceptible-

infected (SI) model to evaluate their proposition. A way to view their contri-

bution from a USW perspective is to replace their “infection” with “message

passing.” Their model and concepts dove tail nicely with (see Section 5.3 on

page 121) and support the need for faster and more capable communication

models.

3.2.5 DIRECTLY APPLICABLE

Callaway

USW graphs are dependent on interactions between WOs for the graph to grow

through making new friendship links between WOs, thereby enabling more preserva-

tion copies to be made. Experimentation with constructing USW graphs has shown

that this interaction should be regular and widespread. For instance, if a list of

WOs were added to the system in a linear manner through one gateway, and that

gateway were only accessed after all the WOs had been added to the system, then

connections will be made to only the gateway and not to any other WOs. Once all

the WOs had been added to the system and the list of WOs (including the gateway)

were accessed a second time, then more connections would be made. In a sense, the

order in which WOs are added to the system and most particularly when and how

often the gateway is accessed could create the appearance of a percolation activity.

Cooper and Garcia-Molina

Cooper and Garcia-Molina [109] enumerate ideas they believe are key to a trading

network. The USW algorithm fits very closely with some of their ideas (Table 5 on

the next page).
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Table 5. Comparing Cooper and Garcia-Molina concept of trading networks and
the USW.

Concept C&G-M expansion USW Interpretation

An archive
site

An autonomous provider of an
archival storage service.

Each USW WO host is a poten-
tial autonomous provider of an
archival storage service. Each
host makes its own decisions
based solely in its own criteria.

A digital
collection

A set of related digital material
that is managed by an archive
site.

A USW WO is a single digi-
tal entity. A collection of these
entities on a host can be con-
sidered a Cooper Garcia-Molina
collection.

Archival
storage

Storage systems used to store
digital collections.

Each USWWO copy is a preser-
vation copy.

Archiving
clients

Users that deposit collections
into the archive, and retrieve
archived data.

The USW client facing software
will support users adding to the
WO collection.

Trading net-
work

A local site must connect to re-
mote sites and propose trades.

The USW algorithm does not
support or address this need.

Automation The archive should operate as
automatically as possible, while
allowing librarians or archivists
to oversee its operation and ad-
just its configuration.

Each USW WO operates au-
tomatically and will manage
preservation copies automati-
cally.
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Fiat and Saia

USW preserves web pages that the user decides are worth curation. It is totally

possible that the web page is not under the user’s control and therefore may be

changed after the user has curated the page. This can happen based on the following

events:

1. The user decides to add the web page to the USW graph,

2. Preservation copies of the web-page are made in accordance with the USW

algorithm,

3. The web page’s creator decides to change the content of the original web page.

The web page that the curator preserved is now different than the page visible under

normal conditions. Solving the problem of resource synchronization is beyond the

scope of this dissertation. The USW algorithm will ensure that the web page that

was originally curated is preserved. This is akin to cache synchronization in a large

multi-processor system.

Holme and Kim

USW WOs will have infinite capacity, so the likelihood of an avalanche of failures

as described by Holme and Kim is 0. An alternative way to interpret their work

is to interpret the number of geodesic paths as the number of paths a broadcast

message would take from one WO to all WOs. Using this interpretation, then

failure of the WO that most paths traverse could cause an avalanche of failures.

We have implemented a Linda [65] communications to eliminate this possibility.

Implementing Linda style communications also allows for more efficient WO to a

WO group communication mechanism and allows messages to be sent to WOs that

currently do not exist.

Link

Analysis of the probability of a USW graph being disconnected by the loss of a

WO (and all the edges that are incident to the WO) has been taken to the limit

during the resiliency and robustness analysis. During the analysis, the Damage(G)

that the graph would suffer when any of the WOs was deleted was computed. The

WO that was resulted in the highest Damage(G) was removed from the graph, and
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the process was repeated until the graph was disconnected. This analysis is directly

related to the analysis elsewhere (see Section 3.2.5 on the following page).

Manku

The USW algorithm requires that WOs exchange messages amongst themselves.

Ideally this would be direct WO-to-WO communications, but current WI limitations

prevent this type of communication. Generally, a server of some sort is required to

access a WO, and that assumes that the URI of the intended recipient is known

when the sender needs to send the message. Because USW communication is asyn-

chronous, and because the intended recipients may not be known when the message

is sent, and because the same message may be intended for multiple recipients, a

different messaging scheme is needed. The USW reference implementation uses a

Linda [65] communications model.

Moreno

USW are small-world graphs composed of WOs that are assumed to have infinite

capacity and therefore should be immune to avalanche types of failures. But if the

capacity were characterized as the inability for USW nodes to contact their friends

then this could result in a bottle neck preventing WO-to-WO communication and

could be treated as a form of avalanche behavior. WO-to-WO communication is

central to the USW algorithm, a store-and-forward communications model would

allow for the possibility of an avalanche type of failure. To overcome this type of

design limitation, a tuple based style of communications based on Linda [65] was

implemented (see Section 5.3 on page 121).

Najjar and Gaudiot

Analysis of the probability of a USW graph being disconnected by the loss of a

WO (and all the edges that are incident to the WO) has been taken to the limit

during the resiliency and robustness analysis. During the analysis, the Damage(G)

that the graph would suffer when any of the WOs was deleted was computed. The

WO that was resulted in the highest Damage(G) was removed from the graph, and

the process was repeated until the graph was disconnected.

3.3 DIGITAL LIBRARIES AND WEB PRESERVATION
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A digital library is a library whose collections are stored electronically. The

collection can be specific to a particular topic, or unclassified and free form. The

USW algorithm takes some of the functions of a digital library geared towards

preservation of web pages and exposes them to crowd-sourcing. Digital libraries

have evolved from custom applications tailored for one institution or environment, to

general purpose systems with extensive functionality. The USW algorithm supports

and implements many of the standard digital library functions and exposes some of

those functions to curators outside of the library.

� 1989

Bearman [127] raises a series of questions and issues about the role of archivists

in culture. He postulates that their current perceived role as keeper of the

past in order to serve some ill-defined greater good at an unknown time in the

future is incorrect. Bearman feels that archivists are keepers of very incomplete

fragments of the past and that usually these fragments are without context

and that the context is vital to truly understanding the past. Based on the

rate of production that might be of archival interest and the rate of accession

by archivists, the volume of material that should be archived will overwhelm

any archiving effort. Bearman believes that the very limited number of people

that use archives is the result of a combination of the archivist’s view that they

are keepers of the past and therefore not overly concerned about the present

and that archives are not constructed in a way that encourages the general

public from accessing the information and data in the archives. Part of his

summary is:

“Archivists cannot adequately describe what they currently hold

or will acquire if they continue to employ current methods based on

examination of their holdings, even if they rely on only the highest

level of top down description. To increase the effectiveness of de-

scription and control by the necessary order of magnitude, archivists

will need to identify that information which can be obtained from

outside, and import it into their systems automatically. This infor-

mation will provide access by provenance, based on the nature of the

activities documented, and by the structure of information systems.

They will also need to design systems that capture administrative
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data throughout the life-cycle of records, both before and after they

come into archival custody, and use that information in the on-going

control and management of the records. . . . In redirecting ourselves

to this effort, we need to revisit our rhetoric, removing the uncon-

vincing references to our role in preserving evidence for posterity,

and replacing them with our role in focussing and connecting the

past and the present. Instead of envisioning ourselves as victims of

an information explosion, we need to emphasize a vision of archives,

libraries and museums joining to bring about an information implo-

sion.”

� 1995

Arms [128] puts forth eight key concepts in the architecture of digital libraries.

They are:

1. The technical framework exists within a legal and social framework

2. Understanding of digital library concepts is hampered by terminology

3. The underlying architecture should be separate from the content stored in

the library

4. Names and identifiers are the basic building block for the digital library

5. Digital library objects are more than collections of bits

6. The digital library object that is used is different from the stored object

7. Repositories must look after the information they hold

8. Users want intellectual works, not digital objects

The USW algorithm address concepts 3, 5, and 6 (see Section 3.3.2 on

page 77).

Lesk [129] provides a survey of most of the common and recurring problems

posed when preserving digital objects. These include:

1. Media Problems : not only the lifetime of different media, but the ability

to read and access the data on the media.

2. Format Problems : once data on media is accessed, it must then be in-

terpreted. The wide variety of different formats, both open source and
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proprietary, could lead to the creation of a new profession: digital pale-

ographer.

3. Selection: the almost exponential explosion in the amount of digital data

and the limited number of professional digital archivists means that not

all data will, or can be archived and therefore a selection process must

be created.

4. Cooperation: because of the volume of data that needs to be preserved,

repositories may decide to “divide” up the work and focus on specific

areas and then provide the results of their efforts to their partners.

5. Fairness : if repositories are to cooperate, then each must feel that they

are being expected to contribute a reasonable amount of effort based on

their available resources and expected return from other repositories.

6. Legalities : often digital data is encumbered with licenses and fees. These

legal restrictions will have to be addressed and solved.

USW’s implementation addresses the media and formation problems (Ap-

pendix A on page 287). Because USW WOs are autonomous entities; the

selection, cooperation and fairness concerns should be controlled by access to

the WOs. USW does not address the legalities issue.

� 1996

Waters and Garrett [60] detail the findings of Task force on Digital Archiving.

The Task Force was created by the Commission on Preservation and Access

and the Research Libraries Group to investigate the means of ensuring “con-

tinued access indefinitely into the future of records stored in digital electronic

form.” The report identifies specific examples of how digital data was lost due

to accident, changes in technology, loss of explanatory information (metadata)

and loss of organizations. They detail the requirements of a “digital archivist”

to include: appraisal and selection, accession, storage management, access and

systems engineering. Some of the mitigation strategies that they proposed are

to fend off the likelihood of data loss and to support the digital archivist in-

clude: changing media, changing format, incorporation of standards, building

migration paths, and the use of processing centers. Many of the threats and

mitigation strategies from this report have been echoed by many others since
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the report was delivered. USW addresses a few of these areas (to wit, chang-

ing media and format), while others require organizational intervention and

support and are outside of the USW arena.

� 1997

Daniel and Lagoze [130] extend the Warwick Framework (WF) to manage a

possible unrestricted growth in complexity. The WF originated from an at-

tempt, at the Second Invitational Metadata Workshop, to define an extension

mechanism for the Dublin Core Metadata Element Set. Named after the site

of the workshop in Warwick, U.K., the WF tackles the extension problem by

aggregating typed metadata packages into containers. The extensions by the

authors include having a catalog of internal components inside a container,

resulting in a self describing package. This catalog can be used to specify the

relationship between the container’s internal and external components. These

relationships are called Distributed Active Relationships (DARs). External

applications can take advantage of these DARs and automatically process the

data in the container. USW incorporates many of the DAR ideas including

no essential distinction between data and metadata, multiple relationships be-

tween the containing WO and other WOs, and the location of other resources

are independent of the current WO.

� 1998

Goldberg and Yianilos [131] present an idea that would use the Internet as

long term, distributed, archival storage. This Internet based memory system

is called Intermemory. In their model, a user donates a certain amount of

storage S for a finite period of time and then is permitted to utilize an amount

of storage s (s ≪ S). Data would be dispersed across all the Intermemory

subscribers and the data would continue to migrate as time goes on. Because

if this dispersal, removal or censoring of data in the Intermemory would get

increasingly difficult and the likelihood of total removal is vanishingly small.

USW will provide the same level of protection from censorship by being a

crowd-based opportunistic protocol that would make locating and modifying

all copies of a WO extremely difficult. The USW algorithm does not provide,

nor preclude access controls. Access control may be layered on by USW hosts.

Rothenberg [2] starts with a hypothetical letter to his grandchildren saying, if
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you can read this CD-ROM, you will find the key to the family fortune. His

grandchildren have only seen CDs in old movies and are now faced with the

problem of finding a mechanism to read the CD, software to interpret the data

on the CD and then what to do with that knowledge. Rothenberg reviews

the several significant data losses and postulates the idea that digital data

never dies, it just becomes irretrievable. This loss may be due to the inability

to mechanically handle the media, or that the software needed to correctly

interpret the bit stream is unavailable. Rothenberg puts forth the argument

that a data file can be considered a program that contains instructions (format

instructions, image placement, etc.) and data (text, image, metadata, etc.)

and therefore anything that can properly interpret the program instructions

can be used to emulate the original program. This idea of emulation can be

extended to the hardware as well. Rothenberg states that digital data will last

forever, or five years whichever comes first. Rothenberg advocates for the use

of well known standards to provide a method of bootstrapping future programs

to be able to interpret non-standard bit streams, of using these standards to

document the hardware and software needed to define emulators and that

digital data (along with its attendant digital explanations) be migrated on a

regular and frequent basis. USW uses standards based techniques [132, 133,

134, 135] to help ensure the USW data.

� 2000

Waugh et al. [136] provide a brief overview and explanation of the Victorian

Electronic Record Strategy (VERS) that is being tested within the Victorian

government to address the difficulties of digital preservation. VERS distin-

guishes itself from other preservation systems, in that it is in active use by

government agencies as opposed to theoretical systems. VERS relies on data

driven encapsulation. The key elements of the encapsulation are:

– Simple and Self Documenting — the encapsulation must be capable of

being read and understood by a human using the simplest computer tools.

– Self Sufficient — the encapsulation must include all the information re-

quired to preserve the digital information.

– Content Documentation — the encapsulation must contain sufficient doc-

umentation to enable a future user to find or write software to access the
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preserved information.

– Organizational Preservation — the encapsulation must support the in-

clusion of information that addresses the organizational issues involved

in continued use of the preserved information.

USW meets all the VERS key elements, except organizational preservation

because USW WOs are autonomous entities.

� 2001

Nelson and Maly [137] put forth the position that information in complex dig-

ital objects are “first class citizens” and that decoupling these citizens from

the confines of the digital libraries that contain them will result in richer dig-

ital library (DL) experiences for users. They introduce the idea of “Buckets”

as aggregative, intelligent, object-oriented constructs for publishing in digital

libraries. Buckets are an extension of the “Smart Object, Dumb Archive”

model. Bucket design goals are: aggregation, intelligence, self-sufficiency, mo-

bility, heterogeneity and archive independence. USW is a continuation of the

ideas that from the basis of “Buckets” and focuses on imbuing the USW digi-

tal objects with the intelligence to autonomously create small-world graphs, to

migrate from the host where the WO currently lives to another host that has

more space available and WOs that can be heterogeneously across the graph.

Reich and Rosenthal [53] provide an overview of the Lots of Copies Keeps

Stuff Safe (LOCKSS) system. LOCKSS is a peer-to-peer network of minimal

hardware and software computer installations that provide long term caching

services to libraries and archives. When a user at one of the LOCKSS in-

stitutions requests a web page, the request is forwarded to the originating

publisher. If the request fails, it is then serviced by the local institution. The

LOCKSS installations at each institution monitor the health of each other’s

pages and maintain all caches via a reputation based mechanism that is de-

signed to operate slowly and to be very difficult to corrupt or subvert. USW

incorporates the ideas of multiple copies to ensure long term availability and

the implicit idea that copies should be distributed across multiple hosts to

reduce the likelihood that accident or attack will compromise all copies.

Thibodeau [58] focuses on digital preservation as it pertains to the National

Archives and Records Administration (NARA). An important distinction is
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made between preserving a file (say a map) and the context of how that map

was used (say in planning the bombardment of a specific target). NARA is

chartered and directed to be responsible for the life-cycle maintenance of the

records for all three branches of the Government until the end of the Republic.

The author proposes an Electronic Records Archive (ERA) based on XML

standards for addressing what is considered a moving preservation target that

is growing both quantitatively and in complexity and in directions that are not

entirely predictable. The author states that NARA is making and maintaining

partnerships with other government agencies, private businesses and academia

to address these challenges. USW uses standards based techniques [132, 133,

134, 135] to facilitate and support it preservation needs and to be able to move

to newer technologies as they become available.

� 2002

Nelson and Allen [138] report on the long monitoring of 1,000 digital library

(DL) objects. Twenty World Wide Web accessible DLs were chosen and from

each DL, 50 objects were chosen at random. The DLs were checked three

times a week for just over 1 year for a total of 161 data samples. During

this time span, they found 31 objects (3% of the total) that appear to no

longer be available. During their testing, they did not make any statement as

to the “correctness” or “completeness” of the objects other than to compare

their size. If the 3% per year loss is a reasonable presentation of the expected

object loss at a DL, then 50% of the original objects will not be available after

22 years. The USW algorithm is created to provide a data-centric long term

method to preserve data and therefore should not be subject to the same kinds

of losses that repository-centric approaches. As the USW algorithm operates,

it monitors the status of each of it preservation copies and works to ensure

that enough copies are present so that the rate of loss per year will not exceed

the rate of preservation copies created.

� 2003

Kephart and Chess [139] provide a high level vision of autonomic computing.

They put forth the position that as systems become more interconnected and

diverse, architects will become less able to anticipate and design interactions

to cover all eventualities. Because of this, the software will have to be able to
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adapt to and overcome these unforeseen conditions. Autonomic systems will

have four self management aspects. These aspects are:

1. Configuration: the ability to follow high level policies,

2. Healing : the ability to detect, diagnose and repair system failures,

3. Optimization: the continuous process of improvement and enhancing per-

formance, and

4. Protection: defend against malicious attacks or cascading failures

USW WOs implement all of these aspects.

Lipscomb [140] discusses how demographic factors are affecting the number of

active librarians. The factors are the average age of the current professional

librarian is increasing, in step with the general population and that soon a ma-

jority of the librarians will be eligible to retire. Second, there are fewer new

librarians entering the profession to fill the ranks of those that leave the pro-

fession. Lipscomb predicts that ongoing recruiting efforts may have negative

impacts on the profession, even as the need for more professionals increases.

USW could be of use to these professionals by reducing the amount of manual

data maintenance that is required once a WO is curated. Additionally, an

implemented USW will make it easier to curate WOs.

Markwell and Brooks [141] examine the expected life of links to education

related sites for 6 years starting in 2000. Based on the monthly sampling of 515

URLs, they estimate that the “link rot” follows the equation E = E0∗e−0.013∗m

where E0 is the original links used in a course curriculum, and m is the number

of since all the links were established and E is the number of links that can be

expected to still be viable. They estimate that the half-life of their education

related links to be 60 months. The USW algorithm is created to provide a

data-centric long term method to preserve data and therefore should not be

subject to the same kinds of losses that repository-centric approaches. As

the USW algorithm operates, it monitors the status of each of it preservation

copies and works to ensure that enough copies are present so that the rate of

loss per year will not exceed the rate of preservation copies created.

Paskin [142] examines the question “What is a copy?” Specifically, the copy

term is used in the generic sense of an imitation or reproduction of an original.



69

Paskin concludes that two digital entities are never the same in any absolute

sense and can be considered copies of each other only in the context of some

defined purpose. It is the definition of this purpose that can place some re-

strictions on the copy’s use and availability. Use and restriction are at the

heart of the Digital Rights Management (DRM). The difficulty of handling

DRM issues with respect to long term preservation of digital data is that the

data will become increasingly encumbered with strings that identify how the

copy can be used within a DRM environment. USW uses a loose definition of

“copy.” When a USW DO is created, it will not be a bit for bit copy of the

original object that is to be preserved, but instead contains a subset of all the

object’s components. By preserving only a subset of the object, then DRM

issues should be avoided.

� 2004

Hunter and Choudhury [143] put forth the idea that comparing the metadata

of digital objects in a central repository and be useful in detecting, or pre-

dicting an object’s obsolescence. Based on this detection, a message could

be sent to a relevant agent and obsolescence could be avoided. By making

this agents available using the machine-process-able ontology web language

service (OWL-S) these agents could be discovered automatically. They call

this system Preservation service Architecture for New Media and Interactive

Collections (PANIC). Their approach is very different from our USW, in that

the USW model relies on peer-to-peer communication to alert members about

agents and does not rely on a central repository.

� 2005

Anderson et al. [144] document their experiences at Stanford University when

they participated in the Archive Ingest and Handling Test (AIHT). Stanford

focused on the assessment process. They quickly realized that a purely human-

mediated interrogative process or tool would not scale and that some sort of

automated mechanism was required. Based on their experience working with

more than 55,000 files, they feel that an automated assessment process is

clearly the only efficient means to collect technical information about large

numbers of files. Additionally, they feel that cooperative experiments like the

AIHT are the best way to test how a system will work with “live data.” A fully
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implemented USW will aid the assessment process by involving the user in the

curation process (Chapter 7 on page 253) and by automating the conversion

from one data format to another (Chapter 8 on page 275).

Shirky [145] presents an overview of the Archive Ingest and Handling Test

(AIHT). The AIHT was a project from the National Digital Information In-

frastructure and Preservation Program to better understand which aspects of

digital preservation are institution-specific, and which are more general and

applicable across institutions. AIHT initially focused on, what they thought

would be a trivial problem, the transfer of 60,000 digital records from George

Mason University (GMU) to the Library of Congress. This “trivial” exercise

turned out to be fraught with problems: file identifiers that are not, require-

ments that are not, curation triage that will not, and “small” errors that cause

the system to fail when taken to scale. These types of problems are also possi-

ble when the digital records are exported from one system to another. There

are two conclusions from the paper: (1) Data-centric is better than tool-centric

or process-centric at large scale, and (2) Preservation is an outcome. The final

conclusion from the AIHT is that there is a pressing need for continual com-

parative testing preservation tools and technologies. USW fits squarely into

the idea that data should have the “desire” and the tools to preserve itself.

Baker et al. [61] explore the challenges associated with the preservation of

digital data on various hardware alternatives in the face of hardware/software

failures, environmental threats, accidental erasure by humans, and changes in

institutional policies and directions. Their solution to mitigate against these

threats is to replicate data across autonomous sites, minimize the per-site

engineering costs, and design for long term scalability. In many ways they are

promoting the philosophy of the Lots of Copies Keeps Stuff Safe (LOCKSS)

system [53, 146]. USW follows these design philosophies by operating at high

level thereby maintaining a level of hardware and software independence, by

keeping copies across multiple independent sites to mitigate against human and

institutional errors, and by designing each USW WO to act autonomously so

that the system will scale.

McCown et al. [147] explored the persistence of URLs cited in articles pub-

lished in D-Lib Magazine. They selected 452 articles that had a total of 4,387

unique URL references. These URLs were sampled three times a week for 6
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months. Approximate 28% URLs failed to resolve at the start of the monitor-

ing. This increased to approximately 38% by the end of the monitoring period.

Based on this data, they estimated that the half-life of a URL referenced in

a D-Lib Magazine article is approximately 10 years. Additionally, they found

that references URLs in the .net, .edu or country-specific top-level domains

were lost faster. The USW algorithm is created to provide a data-centric long

term method to preserve data and therefore should not be subject to the same

kinds of losses that repository-centric approaches. As the USW algorithm op-

erates, it monitors the status of each of it preservation copies and works to

ensure that enough copies are present so that the rate of loss per year will not

exceed the rate of preservation copies created.

Nelson et al. [148] detail their experience at Old Dominion University (ODU)

as participants in the Archive Ingest and Handling Test (AIHT). The AIHT

was a project from the National Digital Information Infrastructure and Preser-

vation Program to better understand which aspects of digital preservation are

institution-specific, and which are more general and applicable across institu-

tions. ODU was the only member of the test that was a non-library to par-

ticipate in the test and therefore focused on alternative archiving techniques,

including:

– Self-archiving Object

– Archive Models and Granularity

– Archive Ingest

– Format Conversion

Nelson et al. encoded the content to be archived as an MPEG-21 DIDL

complex objects with web access to the content. Their archival data model

used internal identifiers in place of the original identifiers and did not delete

the original files when they are migrated to new formats. Each individual

file to be archived is mapped to an MEPG-21 DIDL “Component” element.

They believed that metadata generation tools will continue to evolve, so their

philosophy was to be able to process the original file through an arbitrary

number of introspective programs and store their respective output in separate

MPEG-21 DIDL “Descriptor” elements. Throughout the project, they took

a decidedly “data-centric” view of archiving. USW has made use of many of
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the ideas and lessons learned from ODU’s experience with the AIHT by using

REsource Maps [133] to document the current state of the WO and therefore

laying the framework for keeping a series of data transformations as the WO

ages (Chapter 8 on page 275).

Rosenthal et al. [149] layout the minimum requirements for a digital preser-

vation system in sufficient detail to obtain a certification as a ISO-9000-like

process. To approach the problem of assuring the long term availability of

digital data by identifying and proposing solutions and processes to single

points of failure, automatic upgrades to media, hardware and software as the

current items become obsolete; bearing in mind that the data will be accessed

infrequently. Because of the infrequent access, the data must be audited on a

periodic basis. All of these problems and issues are addressed from a “bottom-

up” approach, focusing on what the system should not do. They bring forth

the idea that the failure of a digital preservation system will be determined in

a finite time, while its success will be forever unproven.

Shirky [150] presents the final results of the Library of Congress’ Archive In-

gest and Handling Test (AIHT). The test covered three main areas: ingest and

markup of a digital archive; export and sharing of that same digital archive

from the tested preservation regime; and conversion of digital objects from one

format to another. Based on the results of the efforts of the five different dig-

ital repositories (George Mason University, Harvard University, John Hopkins

University, Old Dominion University, and Stanford University), three areas of

continued investigation and effort were identified. The areas are: validation of

shared effort; a need for regular, comparative testing; and work to reduce the

cost of sharing the preservation burden. USW can be actively used to sup-

port reducing the cost of preservation by automating the conversion of digital

formats and migrating digital data from one environment to another.

� 2006

Moore et al. [151] examine the requirements for digital repository audit check-

sums as part of the assessment of organizational infrastructure, repository

functions, community use and technical infrastructure. These assessments are

expressed as a series of rules that can be mapped to various potential failures of

an organization. The failures include technology failure, technology evolution,
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collection evolution and organizational failures. A large number of checksum

related commands are identified that are applicable to these failures. USW

could incorporate some sort of checksumming or MD5 hash of the digital data

to increase the confidence that the data has not been corrupted (Chapter 8

on page 275).

� 2008

Allison et al. [152] put forth Simple Web-service Offering Repository Deposit

(SWORD) as a lightweight protocol for repository deposit. It was developed

over short time span during mid 2007 with a very ambitious schedule to provide

capability to support a series of use cases. The use cases include an author

using a desktop application to submit a file to a mediated deposit service,

computer or experiment generated output stored as a “save as” type of func-

tion, simultaneous depositing of the same digital data to multiple repositories,

and inter-repository digital exchanges. SWORD met all these requirements

in a very short period of time. USW WOs could make use of the ideas of

using standard and existing repository interfaces in order to preserve copies

(Chapter 8 on page 275).

Lagoze et al. [153] recasts the repository-centric notion of digital object preser-

vation to that of a digital object being a bounded aggregation of Web resources.

USW will use many of the ideas from this paper that deal with the mechanics

of preserving data. In particular, USW will use Object Re-Use & Exchange

(ORE) resource maps (REMs) to manage the data associated with the USW

WOs. USW will use the ORE idea of links to frame, design, and track the

resources that constitute the original digital object that was preserved.

� 2009

McCown et al. [28] surveyed 52 individuals that had lost their web sites

through a number of hardware, software and human failures. Using a collection

of web repositories (the Internet Archive, Google, Live Search, and Yahoo)

collectively known as the web infrastructure (WI) and the software package

Warrick, portions of many of these lost sites were able to be recovered. Based

on these experiences and the belief that the reasons that the original sites were

lost would continue to occur, the idea of lazy preservation is proposed. Lazy

preservation uses the idea that there are web crawling repositories routinely
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caching copies of the visible web in their local storage and that these repository

stores could be used to recreate lost sites. Because this is an ad-hoc operation

by the crawlers, there in no guarantee that a complete site will be crawled, nor

that all site components will be available in one repository. Lazy preservation

and site reconstruction using the Warrick software cannot replace dedicated

preservation activities, but preservation will occur at virtually no cost to the

site being preserved. USW takes the idea of lazy preservation and extends it

to be crowd-based preservation. When a user decides that a site should be

preserved, it will be initially entered into the USW graph and then actively,

automatically, and completely preserved there after.

McCown et al. [54] looks at spreading the curation process across all Internet

users versus relying on the activities of a few selected curators associated with

digital repositories. McCown proposes client side software called ReMember

which uses Object Reuse and Exchange (ORE) Resource Maps (ReMs) for

describing aggregations of web resources. These resources are then stored

at different web infrastructure (WI) accessible locations so that they can be

retrieved at a later time. USW uses ReMs to record the location of various

WO components and the idea of using the WI to store preservation copies.

� 2011

Wojcik et al. [154] provide a perspective on distributed digital curations

from the Persistent Archives Testbed (PAT) project and the Archive Ingest

and Handling Test (AIHT). A number of fundamental difficulties that arose

across the different archives are identified, including the differences between

file names and the effect on the way different software packages (and operating

systems) restrict and constrain names. Each digital library tested their sites

with one or more archival functions (appraisal, accessioning, arrangement, de-

scription, preservation, or access). The sites were able to exchange data using

a common software infrastructure while maintaining each site’s independence.

Based on the lessons learned, their conclusion is that long term sustainabil-

ity is probably beyond the capability of most individual archival repositories,

and that the expertise required to stay abreast of changes in technology may

be too overwhelming. Because of these issues, a distributed multi-repository

partnership or consortia might be the best alternative. USW is designed to be

repository independent and to be able to migrate the data load of each WO
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as needs arise. USW directly addresses many of the issues raised in [154].

Digital preservation deals with ensuring that digital data is available for as long as

necessary. USW supports key aspects of digital preservation of data refreshing and

data migration by continually making preservation copies on different WO hosts.

3.3.1 DIGITAL REPOSITORIES

Digital repositories are the electronic “bookshelves” of a digital library. The

USW graph serves as the “bookshelf” where the USW WOs are the “books” in the

digital library.

� 1990

The Committee on Government Operations [155] takes the National Archives

and Records Administration (NARA) to task about some of the areas where

the NARA had not done as well as they were expected. Included in the

report are details about how the National Military Command Center Infor-

mation Processing system (NIPS) files were lost because the application that

read the files lived on an IBM mainframe that was no longer manufactured

and therefore the Agent Orange Task force was not able to accurately report

the effects on Viet Nam era veterans of Agent Orange. Other problems that

were enumerated include; loss of census data because files were compressed

in an ad hoc and non-documented way, how United States Railway Author-

ity Case Tracking/Document Management System data was lost because the

latest version of the database software could not read the previous version’s

data, how data was expected to be lost shortly because it was punched into

Hollerith cards, and how testimony and diary summaries from the Watergate

affair requires a specific version of software that was no longer available. An

unidentified archivist is quoted as saying,

“The problem with preservation of electronic media is that the

media can easily be preserved longer than the capability of reading the

signals recorded on them. Magnetic and optical media for recording

sound, image and data are all subject to market forces and tech-

nological change which are occurring at a rate that requires us to

continuously recopy media to newer media to newer physical and

logical formats in order to preserve access.”
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Unidentified archivist [155]

� 2003

Lynch [156] speaks to the need for institutional repositories. In his view, an

institutional repository is a set of services that an organization (such as a

university) offers to the members of its community for the management and

dissemination of digital material created by the institution and its members.

Key among the services provided by the repository is the management of

technological changes, and the migration of digit content from old technology

to new. Lynch argues that an institutional repository can address near-term

problems of making institutional data available while the author is part of the

institution, and will continue to do so after the author has left. The institution

at its core acting like long term corporate memory. Unlike long term memory,

an institutional repository could fail for many reasons, including changes in

policy, management failure or incompetence, or technical problems. USW

WOs augment the preservation capabilities of an institutional repository and

lessen the impact of change in policy or technical problems.

� 2005

Heery and Andersen [157] report on a review of UK digital repositories. They

enumerate the primary functions of a digital repository for supporting current

research and the need for the repository to support as yet unidentified research

needs. Heery and Andersen identify repositories based on their content type:

1. Raw research data

2. Derived research data

3. Full text pre-print scholarly papers

4. Full text peer-reviewed final drafts of journal/conference proceedings pa-

pers e-theses

5. Full text original publications (institutional or departmental technical

reports)

6. Learning objects

7. Corporate records (staff and student records, licenses, etc.)

and by the coverage of these types:
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1. Personal (authors personal archive)

2. Journal (output of a single journal or group of journals)

3. Departmental

4. Institutional

5. Inter-institutional (regional)

6. National

7. International

and by target user group:

1. Learners

2. Teachers

3. Researchers

USW supports their digital repository tenets by ensuring that digital data is

preserved for future and unknown uses.

� 2006

Heery and Powel [158] examine the state of digital repositories in the UK in

2006 and lay out areas that need attention to meet the 2010 vision in which

a high percentage of scholarly work in the UK will be widely available. They

identify areas that need attention and development, in the areas of policy,

culture, and working practices. For different media types (academic papers,

geospatial data, learning materials, and raw data), they spell out the 2010

vision, what is the state of the art now, and how to get from where they are to

where they need to be. Integral to their vision is that repository holdings be

open and accessible to queries from outside the repository using well known

and established protocols (such as OAI Protocol for Metadata Harvesting).

USW process is complementary with their stated visions. USW digital objects

could be held in a digital repository and be made available via OAI techniques

and procedures.

3.3.2 DIRECTLY APPLICABLE
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Arms

The USW algorithm represents a change from archive and repository centric

preservation to data-centric preservation. As such, some of the concepts enumerated

by Arms in [128] are applicable while others are not. The concepts are:

1. The technical framework exists within a legal and social framework.

2. Understanding of digital library concepts is hampered by terminology.

3. The underlying architecture should be separate from the content stored in the

library.

Within the USW environment, a copy request with data is sent to a friend

WO, who in turn passes the data onto its copy service. The service has

complete liberty as to how the data is stored on its host, and where it is

located. The location returned by the copy service will be used by the host

to retrieve a representation of the original data, but how it is stored may

be totally independent of where it is stored.

4. Names and identifiers are the basic building block for the digital library.

5. Digital library objects are more than collections of bits.

The USW algorithm ensures that preservation copies of data are made

across distinct hosts. Candidate preservation hosts are identified by the

friendship connections that WOs make based on their activity in the USW

graph. These connections can be considered as metadata about the data

being preserved. The USW algorithm ensures that the metadata and

the actual data are preserved, the data without the metadata is just a

collection of bits without form or organization.

6. The digital library object that is used is different from the stored object.

The way that a USW WO is presented to the user, may be totally different

than the way the WO is stored internally.

7. Repositories must look after the information they hold.
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USW removes the requirement for a repository to look after the infor-

mation they hold. The removal of this requirement opens up a world of

preservation possibilities.

8. Users want intellectual works, not digital objects.

3.4 SUMMARY

We have identified those authors and works germane to the Unsupervised Small-

World framework. We build the USW theory, simulation, and reference implemen-

tation on these related works.

“We are like dwarfs standing on the shoulders of giants and so are

able to see more and see farther than the ancients.”

Bernard of Chartres, 12th-century philosopher [159]
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CHAPTER 4

INTRODUCTION TO UNSUPERVISED SMALL-WORLD

(USW)

4.1 INTRODUCTION TO JOSIE MCCLURE

We have chosen the photograph of Josie McClure to juxtapose the problems of

preserving data in an analog age (from the early 1900s) with the growing problem

of preserving data in a digital age (post 2000). We have enumerated the things that

have, and have not to occur to data in the analog age for the data to survive. As

well as the preservation things that must occur in the digital age.

Josie must transition from the analog to digital age to survive for the next

hundred years. Her image must be scanned into a digital format and put on the

Web to become a Web Object (WO). That WO will then become a part of the USW

graph by executing the USW algorithm.

4.2 TENETS OF THE USW ALGORITHM

The USW algorithm is intended to provide a method for WOs to outlive the

people and the institutions that create them. To achieve that goal, the algorithm:

� Does not depend on global knowledge: meaning that there is

– No omnipotent enforcer of the actions that a WO will take, and

– No omnipresent monitor of the state of the USW graph ensuring that

each WO remains healthy and vital.

� Opportunistic preservation: meaning that a WO will engage in its USW graph

and preservation activities when accessed by an outside entity. This implies

that it may be a very long time between accesses and therefore a very long

time between preservation activities.
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� Self-describing Web Objects : meaning that all data necessary to preserve the

WO and to perform USW activities are in the WO itself. The WO does not

require, nor is it dependent on outside entities for interpretation and under-

standing.

Each of these tenets will be expanded upon in the following sections.

4.3 EXPECTED CONTRIBUTIONS

We make the contributions to Computer Science in the following areas:

� Graph theory,

� Preservation, and

� Emergent behavior

as supported by theoretical analysis, verified by simulation, and a reference imple-

mentation (Figure 12 on page 30).

4.3.1 THEORETICAL

We make the contributions to Computer Science theory in the following areas:

� Quantify the damage to a graph caused by the loss of a vertex or node,

� Identification, quantification, and qualification of the different ways that an

attacker can damage a graph by the removal of edges or vertices,

� Quantify the amount of repair opportunities that the graph must have in order

to repair itself after it has been damaged by an attacker,

� Incrementally create a small-world graph by the addition of nodes using only

locally gleaned information.

4.3.2 SIMULATION

Two different simulators are used to verify and validate the theories we have

developed. The first simulator is an in-memory and messages driven application used

to create and analyze graphs of 1,000 vertices or more. The in-memory simulator

allows graphs of these sizes to be created and analyzed in a fairly short time frame.
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The second simulator is a robot that drives the reference implementation. The

reference implementation is performance constrained to about 1 message per second,

so graphs of a few hundred become extremely time consuming to create and evaluate.

4.3.3 REFERENCE IMPLEMENTATION

We created a reference implementation was created to demonstrate and validate

theories and algorithms in a setting that more closely approximates the Web than a

pure simulation. We have collected all the algorithms (Appendix A on page 287) and

messages (Appendix B on page 311) needed to create the reference implementation

in the appendices.

4.4 THE USW CREATE, ATTACK, AND REPAIR LIFE CYCLE

The life cycle of a preservation graph can be viewed as:

� Create: where a node (vertex) is added to an already existing graph. It the

limit, the USW algorithm supports the creation of the graph when there are

0 nodes.

� Attack : where the graph is attacked by an enemy.

� Repair : when the graph is allowed to repair itself.

� Repeated attacks and repairs : when the attacker and the graph “play a game”

by alternating attack and repair turns

These life cycle stages can be drawn as a “state diagram” (Figure 11 on page 27),

and this diagram will be used as a “navigation” tool throughout this dissertation.
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CHAPTER 5

THEORY

5.1 INTRODUCTION

USW is at the convergence of many different and significant computer science

disciplines. These include:

� Emergent behavior : movement of the inanimate, Reynolds’ ideas and concepts

for “boids,”

� Graph theory : the unattended construction of small-world graph structures

that mimic those found in nature and in some man-made social organizations,

and

� Preservation: the long-term preservation of digital data focusing on web pages.

To provide the context of understanding the contributions of this research, we first

briefly review the status of how objects are stored in repositories as well as the

nature and types of various networks or graphs.

Each of the preservation approaches listed above (see Section 2.3 on page 20) in-

herently relies on human and institution intervention in the digital preservation

activities of refreshing and migration [60, 57]. Digital preservation activities of em-

ulation and metadata attachment are outside our context in this dissertation. Over

time humans die and their personal archives can become lost, institutions may lose

funding or have a change in ownership and therefore be unable to continue their

preservation activities. As the amount of digital data continues to grow (at po-

tentially an exponential rate), the organizational and human cost to keep up with

traditional approaches can become overwhelming. An alternative approach is to

revisit the definition of a WO and to incorporate into that definition the idea that

the WO is empowered to make replication copies of itself for the purposes of preser-

vation.

5.2 GRAPH THEORY
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Our approach for the construction of a small-world network of WOs for self

preservation is different than what others have used or proposed. We make use of

the definition of a small-world graph as one that has a high clustering coefficient

when compared to a randomly created graph and an average path length that is

proportional to the number of nodes in the graph [43]. The Watts-Strogatz ap-

proach to constructing such a graph is to take a lattice graph of degree k and order

n and perturb the links to create a graph with small-world characteristics. Some

approaches make connections between nodes based on the proportion of the des-

tination node’s degree count [160, 161, 162], a kind of preferential attachment or

fitness policy. Yet another type of approach takes an existing graph and then grows

a small-world by the addition of new links [163, 95]. Or, by connecting a node to a

fixed number of vertices based on their degree [164], or even creating a small-world

graph from a random one [165]. Newman in [97] provides a survey of small-world

graph construction techniques. Our USW approach can use preferential attachment

to select the first node when adding a new node to an existing graph. But after the

first WO selection, the USW algorithm controls where the WO fits into the graph

and how many edges are created to other WOs in the system. USW is the only

small-world graph creation algorithm that we know of where connections are made

between WOs based only on information that the WO gleans prior to making its

first connection.

5.2.1 ROBUSTNESS THEORETIC

In discussions about the graphs created by the USW algorithm, questions about

their robustness and resiliency need to be addressed. We will compare various ro-

bustness and resiliency of the USW graph to graphs constructed by more classical

techniques, such as Barabási’s preferential attachment, Erdös-Rényi’s random and

Watts – Strogatz small-world. Each graph type is evaluated by counting the num-

ber of edges that an omnipotent attacker could remove before the graph becomes

disconnected. Within this chapter, disconnection is defined as there being one or

more nodes that are unreachable from any other node in the graph. In the trivial

case; the removal of a node with a degree of one from a graph of infinite size means

that the graph is disconnected. Other definitions are possible, but were not evalu-

ated. The chapter concludes with how the work represented here can be expanded

and enhanced.
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Discussion

In much of the literature, the terms resiliency and robustness are used almost

interchangeably. For this dissertation they have very different meanings. Their

meanings are:

Resilience: the power or ability to return to the original form after being bent,

damaged, or attacked.

Robustness : strongly or stoutly built. The ability of a system to remain functioning

under a range of conditions (Appendix D on page 383).

Within this section, we are interested in the robustness of a graph, i.e. how much

damage can a graph sustain and still remain connected? Resilience, by its definition,

implies a period of recovery after some sort of damage. This in turn implies some

sort of game where in one turn a totally knowledgeable attacker wreaks some sort

of damage to the graph and in the next turn the graph is allowed to repair itself.

These two steps alternate until the graph becomes disconnected (meaning that the

attacker has won), or the graph degree distribution and average path lengths oscillate

between some set of values (meaning the graph has won).

Test Environment

The R package igraph [78] was used to generate representative Albert – Barabási,

Erdös-Rényi, and Watts – Strogatz graphs. The package was chosen because it:

1) has library calls to generate each graph type thereby speeding up the generation

phase of the analysis, and 2) uses a widely accepted implementation. For each

graph two types of data were collected and analyzed. The data are the degree

distribution and an iterative graph disconnection process to quantify the particular

graph’s robustness.

Results and Evaluation

Degree distribution and robustness results for these “standard” graphs are shown

in Figures 14 on page 87 through 17 on page 90. After the graphs were created, the

next point of interest was to evaluate their robustness in the face of directed attack

by an adversary who has total knowledge of the graph.
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For each of the “standard” graphs, a game was constructed. The single edge with

the highest centrality cB(E) when computing the shortest path between all vertices

was computed based on techniques from [114]. This edge was removed. Average

path length L(G) and diameter D(G) values were computed and saved. These three

steps were repeated until the graph became disconnected (i.e., the attacker won).

Plots for the “standard” graphs are shown (Figure 18 on page 91 through Figure 20

on page 93). For each graph type, the green circles represent the average path

length for that graph after the edge with the highest “betweenness” was removed.

The red squares are the diameter of the graph after the edge was removed. For

all graphs, the edge with the highest “betweenness” was repeatedly identified and

removed until the graph was disconnected. As expected, the Barabási graph became

disconnected after the removal of a single edge. Disconnection for the Barabási and

the Erdös-Rényi followed very closely the lower bounds of their respective degree

distribution plots. Barabási preferential attachment graphs display a power-law

degree distribution where the number of higher degreed nodes is declines at an

axk (k < 0) rate. Erdös-Rényi degree distribution is a normal random bell curve

centered approximately at pn, where p is the probability of connecting two nodes.

Watts – Strogatz small-worlds start out as regular graphs where all nodes are of

the same degree. After the initial graph is created, each edge e ⊂ E(g) is evaluated

for potential rewiring one end to a different node. No new edges are added to the

original graph, but end points are moved, thus the total of the node degrees starts

off as kn and remains that after the rewiring. The Watts – Strogatz graph took

many more edge removals before disconnection, probably because of the relatively

high number of vertices that were highly degreed.

After establishing a set of criteria for graph evaluation, USW graphs were sub-

jected to the same game. A set of 9 USW graphs were constructed with 100 nodes

and permutations of 0, 0.5, 1.0 for β and γ. Their degree distributions and ro-

bustness measurements are shown in Figures 21 on page 94 and 22 on page 95

respectively. A more complete set of degree distribution and disconnections based

on various combinations of β and γ are found in Appendices H on page 489 and I

on page 499 respectively.
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(a) Lattice graph
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(b) Lattice graph degree distribution

Figure 14. Representative lattice graph and associated degree distribution.
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(a) Erdös-Rényi random graph
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(b) Erdös-Rényi random graph degree distribution

Figure 15. Representative Erdös-Rényi random graph and associated degree distri-
bution.
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(a) Albert-Barabási scale free
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(b) Albert-Barabási scale free degree distribution

Figure 16. Representative Albert-Barabási scale free graph and associated degree
distribution.
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(a) Watts – Strogatz small-world graph
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(b) Watts – Strogatz small-world graph degree distribution

Figure 17. Representative Watts – Strogatz small-world graph and associated degree
distribution.
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Figure 18. Barabási graph — disconnected after 1 removal. The disconnection of
various “classical” graphs with the same number of nodes.
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Figure 19. Erdös-Rényi graph — disconnected after 116 removals. The disconnec-
tion of various “classical” graphs with the same number of nodes.
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Figure 20. Watts – Strogatz graph — disconnected after 75 removals. The discon-
nection of various “classical” graphs with the same number of nodes.
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One of the common factors in describing graphs and their robustness in the face

of directed attacks is the k-edge connectivity.

“A graph is k-edge connected if every disconnecting set has at least k

edges.”

Douglas B. West [166]

As can be seen in Figure 21 on page 94, β of 0 (regardless of γ) results in a

degree distribution with a great deal of very low degreed nodes. As γ increases, the

degree “hump” moves away from 0 and starts to widen and become lower.

Summary

Based on these simulations, robustness is a k-edge connection problem. The

terminology from [167] uses λ(G) notation when talking about edge-connectivity,

and refers to any edge that is being removed as a “bridge.”

5.2.2 COMPARISON OF CONNECTED AND DISCONNECTED MET-

RICS

The graph theory field is festooned with a wide variety of graph types. The

graphs in this dissertation are limited to those that meet these requirements:

1. undirected,

2. simple,

3. self loops are not permitted, and

4. may have more than one component.

Connected metrics

Here we list a collection of characteristic metrics for connected graphs. In many

cases the characteristic does not have meaning, or a computable value when the

graph is not connected. Detailed explanation of each term is Appendix D.2 on

page 385.

� Average path length(L(G))
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� Average inverse path length (L(G)−1)

� Centrality, betweenness of an edge (cB(e) =
∑

s ̸=t∈V
σst(e)
σst

)

� Centrality, betweenness of an edge relative to all edges in a graph (cB(E) =

max(cB(e)|e ∈ E))

� Centrality, betweenness of a vertex (cB(v) =
∑

s̸=v ̸=t∈V
σst(v)
σst

)

� Centrality, betweenness of a vertex relative to all vertices in a graph (cB(V ) =

max(cB(v)|v ∈ V ))

� Centrality, closeness of a vertex (cC(u) =
n−1∑

u ̸=v∈V d(u,v)
)

� Centrality, degree (cD(v))

� Clustering coefficient(C(G))

� Degree (k)

� Diameter(D(G))

� Eccentricity of a node (ϵ(u))

� Eccentricity of a graph (ϵ(G))

� Path length(d(u, v))

� Radius of a graph(r(G))

� Triangles based on a node(λ(v))

Disconnected metrics

Here we list a collection of characteristic metrics for disconnected graphs. In

many cases the connected graph characteristic does not have meaning, or is not

computable when the graph is disconnected. Detailed explanation of each term is

in Appendix D.2 on page 385.

� Average inverse path length (L(G)−1)

� Constrained average path length (L(G) = 1
n(n−1)

∑

u ̸=v∈V

0<d(u,v)<∞
d(u, v))
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The effect of directivity and self loops

Many of the graph metric equations use the number of edges in the graph, but

often the authors do not specify how the edges are selected or limited. Table 6 on

the following page identifies how many edges can be used based on two criteria:

whether or not the edges are directed or whether or not the graph permits edges

back to the originating vertex. Based on these restrictions, the number of edges can

range from n∗(n−1)
2

to n ∗ (n+ 1).

5.2.3 DERIVATION OF VARIOUS EQUATIONS RELATING TO RAN-

DOM GRAPHS

The number of edges in a fully connected graph is bounded by the number of

vertices in the graph (Equation 7).

|E| = n(n− 1)

2
(7)

The number of edges in a random graph is dependent on the probability ρ that there

is an edge between the two nodes (Equation 8).

|E| = ρ
n(n− 1)

2
(8)

The average degree of the nodes in the graph ⟨k⟩ is twice the number of the

edges in the graph |E| (Equation 9), which can be reduced to a function of the

probability ρ that nodes will be connected (Equation 11).

⟨k⟩ = 2 |E|
n

=
2ρn(n−1)

2

n
(9)

=
2ρn(n− 1)

2n
(10)

= ρ(n− 1) (11)
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Table 6. Maximum number of edges based on directivity and self loops. A sample
three node graph is used to illustrate the maximum number of edges a graph can
have based on whether edges are directed or not and whether the graph permits
edges that originate and return to the same node. The number of edges that can be
used in various graph theoretical computations can range from n∗(n−1)

2
to n∗(n+1).

The apparently redundant double edges when directed edges are allowed and self
loops are permitted reflect that there is two-way communication. In effect, the node

is “talking” to itself.

Are directed edges permitted?
Yes No

S
e
lf

lo
o
p
s
p
e
rm

it
te
d
?

Y
e
s

1

2

3

1

2

3

|Emax| = n ∗ (n+ 1) = 12 |Emax| = n∗(n+1)
2

= 6

N
o 1

2

3

1

2

3

|Emax| = n ∗ (n− 1) = 6 |Emax| = n∗(n−1)
2

= 3
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Table 7. A summary list of useful equations. These equations are useful for esti-
mating n, ⟨k⟩ and n for random graphs.

Given Estimate

L(G), ⟨k⟩ n = L(G)⟨k⟩ (15)

L(G), n ⟨k⟩ = lg n

lgL(G)
(16)

n, ⟨k⟩ L(G) = ⟨k⟩
√
n (17)

n, ⟨k⟩ C(G) =
⟨k⟩
n

(18)

The relationship between average degree of the graph ⟨k⟩, the number of nodes

n in the graph n, and the average path length L(G) is easily shown (Table 7).

L(G)⟨k⟩ = n (12)

⟨k⟩ lgL(G) = lg n (13)

⟨k⟩ = lg n

lgL(G)
(14)

5.2.4 DAMAGE ASSESSMENT

A number of metrics reporting on different structural aspects a graph G(V,E)

have been proposed and used when comparing graphs. Some of these metrics are

summarized in Table 8 on the following page. Many of these metrics are applicable

when the graph is connected, but the definition of a graph does not require that
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Table 8. Comparing the expected average path length and expected clustering
coefficient for lattice, small-world and random graphs. Small-world region of values
for L(G) and C(G) are wide and not exact. The relationship between L(G) and
C(G) graph values are the real determinates as to whether any particular graph is

a small-world [113].

Graph type L(G) C(G) See

Random L(G) ∼ ln(n)
ln(k)

C(G) ∼ k
n

[43]

Scale free L(G) = A ln(n−B) + C Not predictable [170]

Lattice L(G) ∼ n
2k

≫ 1 C(G)Lattice =
(3k−3)
2(2k−1)

[43, 171]

Small-world n
2k

> L(G) > ln(n)
ln(k)

C(G) ∼ 3
4

[43]

it be connected. Our interest is in quantifying the damage to a graph after one or

more components have been removed. None of the available metrics are applica-

ble to quantifying damage when the graph that results from the removal may be

disconnected.

Menger’s theorem [168, 167] sets the limit on the number of vertices or edges

that must be removed to cut the graph. The greater the κ(G) or λ(G) that must

be removed, the greater the connectivity and the robustness of the graph. The

following relationship between vertex κ(G), edge λ(G) and degree δ(G) connectivity

holds true for all non-trivial graphs [169]:

κ(G) ≤ λ(G) ≤ δ(G)

Discussion

The idea of quantifying the damage to a graph G(V,E) because of failure or

attack is at the heart of quantifying the robustness of the graph. Intuitively, ro-

bustness is the ability of the graph to continue to perform its function when some

number of its elemental components have been lost due to some attack profile. (See

Section 5.5.5 on page 159 for a description of different attack profiles.) We will now

investigate how a graph performs with some small examples and then extend the

results to larger graphs. The investigation uses these metrics:
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� Average path length(L(G))

� Average inverse path length (L(G)−1)

� Clustering coefficient (C(G))

� Damage (Damage(G))

Approach

The approach is to create a series of test graphs (some easy, some hard, some

pathological) and see how the metrics work and what kinds of insights the graphs

revealed. Things to look for in the images, using Figure 27 on page 112 as an

example, include:

1. Each figure has three parts. They are:

(a) The initial graph (Figure 27(a) on page 112). This graph may be con-

nected or not depending on the sample that is being tested.

(b) The consolidated graph (Figure 27(b) on page 112). Many of the graph

metrics will not work on a disconnected graph, therefore the initial graph

is made into a connected graph. The components of the disconnected ini-

tial graph are ordered based on their size. The highest degree vertices in

the two largest components are connected with a new edge. The process

of ordering and connecting is repeated until there in a single component.

This new graph is called the consolidated graph. Vertices from the initial

graph that are connected via a new edge are colored in red.

(c) The action plot (Figure 27(c) on page 112). For the purposes of this

discussion, an action is defined as the addition or removal of an edge.

Depending on the size of the initial graph and the number of edges, the

number of actions per graph may be different.

2. The action graph has several interesting parts. Starting first with the three

vertical divisions. The divisions are:

(a) Consolidation (labeled “C”). During this phase of the action, the graph

is being consolidated. Edges are being added as necessary to create a

single component. The number of edges added is 1 less than the original

number of components.
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(b) Adding (labeled “Adding”). After the graph is connected, additional

edges are added until the graph is fully connected. The number of addi-

tional edges necessary depends on the initial graph’s fragmentation.

(c) Destruction (labeled “Destruction”). After the graph is fully connected,

edges are removed until the graph is fully disconnected.

The action plot shows the history of the graph from initial creation, through

extensive construction and finally total destruction.

A number of interesting data items are plotted on the action plot. They are:

(a) Average Inverse Path Length (AIPL) (L(G)−1). The AIPL increases

relatively rapidly during the Consolidation phase, slowly increases to 1

during the Adding phase, and then decreases to 0 during Destruction.

The math behind the AIPL is such that a totally disconnected graph

has an AIPL of 0 and a fully connected graph has an AIPL of 1. During

the Consolidation phase, the graph has more and more edges being added

until it is connected and during Adding, the effects of the additional edges

are less pronounced. During Destruction, interesting things happen with

the curve.

The selection of which edge to remove is based on the same attack profile

(AE,H) Edge High Betweenness. This is the attack profile that a deter-

mined attacker would use given total knowledge of the graph and the

resources to take it to destruction. During Destruction the AIPL curve

has pronounced and repeated steps downward. The steps occur when

some component becomes disconnected from the graph. The number of

edges necessary to disconnect a component decreases as the graph be-

comes less connected. In Figure 27(c) on page 112, it takes 5 removals

to isolate the first node, four to isolate the second, three the third and so

on until the last two nodes are isolated.

(b) Damage (Damage(G)). The damage curve is computed based on the

assumption that the initial graph is being compared to a fully connected

graph. As more edges are added to the initial graph, the damage de-

creases. Because adding more edges during the Adding phase brings the

consolidated graph into closer alignment with the fully connected graph,
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the damage curve rapidly approaches 0 and remains close to 0 for a sig-

nificant portion of the Destruction phase. The damage curve has steps in

it, for the same reason as the AIPL curve, but the damage curve increases

from 0 to 1.

Attributes of Damage(G) metric [172] are:

i. Different fragmentation cases result in different numerical values,

ii. Test cases where the size of the fragments have been scaled, and the

entire graph (for instance, increased by a factor of 10 or 0.1) should

result in the same value,

iii. The value is useful without additional information about the graph

(i.e., the metric is graph independent and does not require knowledge

of the graph in a different state),

iv. The metric should be unitless.

Damage(G) test cases are summarized in (Table 9 on page 107), and in

Tables 23 on page 108 through 26 on page 111.

(c) Clustering Coefficient (C(G)). During the Consolidation phase, the CC

curve is very dependent on the initial graph. Sometimes it starts high and

then drops while other times it stays low for the the entire phase. In all

cases, during Adding, the CC increases to 1 as more and more edges are

added and more and more triangles are created in the graph. During De-

struction, the curve has “waves” as a component becomes more isolated.

When a component becomes totally isolated, the CC curve bounces back

up to 1 because the node no longer is a part of the computations. This

“wave” action continues until the last three nodes are connected by two

edges and no triangles are possible.

(d) Average Path Length (L(G)). The APL is dependent on a connected

graph and therefore has no meaning during the Consolidation phase.

During the Adding phase, it decreases to 1 as more and more edges are

added to the graph. The graph is still connected during the beginning of

the Destruction phase until the first component is isolated.

Equations 19 on the following page through 24 on the next page were derived

from Albert, Jeong and Barabási (AJB) [73], and are the basic definitions for the

number of nodes n in the graph at any point in time. At that point in time, there is
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a set of clusters s in the graph. If the graph is connected then there is one cluster.

In [73], the node with the highest degree is removed (along with its adjacent edges)

and all values are computed again. n starts at an initial value and is decremented

at each time step until all nodes are disconnected.

Equation 21 is the number of clusters (components) in the set of clusters c.

Equation 22 identifies the size of the largest connected component LCC in c. Equa-

tion 23 is the ratio (percentage) of the size of LCC to the current n. Equation 24

is the mean size of all the remaining clusters (i.e., less the LCC) in the graph.

n
def
= number of nodes inG (19)

c
def
= set of clusters inG (20)

m = |c| (21)

LCC = max(|<c>|) (22)

S = |LCC|
n

(23)

s =
n−|LCC|
m− 1

(24)

The various characteristics in equations 19 through 24 are subject to some math-

ematical constraints. These constraints are:

1 ≤|LCC| ≤ n (25)

mmin =

{

1 when |LCC| == n

2 otherwise
(26)

mmax =

{

1 when |LCC| == n

n− LCC otherwise
(27)

mmin ≤ m ≤ mmax (28)

1 ≤ j ≤ m (29)

In addition to the mathematical constraints, there are a series of logical con-

straints. These constraints are:

1. s <|LCC| (Equation 24)

2. S will always be in the range 1
n
≤ S ≤ 1 (Equation 23)



106

3. If |LCC| == 1 then ∀c :| ci = 1 =⇒ m = n meaning that anytime where

m == n and |LCC| ̸= 1 is a contradiction and can not happen.

4. If |LCC| == n
2
=⇒ mmax = n

2
where ∀ci :|ci| == 1.

5. If |LCC| == n
j
=⇒ mmax = n

j
where ∀ci :|ci| == 1.

6. If |LCC| == (n− 1) =⇒ m = 2.

Constraint 2 on the preceding page limits |LCC| between n and 1. The |LCC| will

equal n when the graph is connected (i.e., the graph has not been fragmented). LCC

will equal 1 when the graph is totally disconnected (i.e., the graph is composed of

only nodes and no edges). Equation 28 on the previous page limits the number

of fragments m to between 1 and n. Equation 29 on the preceding page limits

the number of fragments to the greater of 1 (when the graph is totally connected;

i.e. one cluster) or n (when the graph is totally disconnected). Albert, Jeong

and Barabási (AJB) were interested in the fraction f of their graphs that had to

be removed to cross a percolation threshold that would cause the graph to become

severely fragmented. We are interested in the continuum of the graph’s performance

while it is connected and after it is disconnected. The percolation threshold is of

passing interest, while the ideas that they espouse serve as starting point for our

investigation.

Summary

There are a few things that can be said.

1. The Damage Damage(G) curve behaves in a reasonable way during all phases.

2. Based on analysis, the AIPL L(G)−1 curve behaves in a reasonable way. The

curve’s behavior during the Destruction phase was unexpected but under-

standable. Each “step” in the curve during the Destruction phase is the result

of one more component being disconnected. When the graph is totally discon-

nected, the curve goes to 0.

3. The Clustering Coefficient C(G) curve was reasonable in most cases. The case

of the two triangles (Figure 27 on page 112) dip during the Adding phase is

due to the number of edges in the graph increasing, but their placement does

not increase how well-connected the graph has become. In all other cases the
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Table 9. Comparing Albert, Jeong and Barabási’s raw s to our damage metric
for a collection of test graphs. Raw s [73] and Damage(G) [172] are evaluated as
surrogates for the “health” of the graph. A healthy graph would have a value close

to 0, while a totally disconnected graph would have a value of 1.

Name s Damage(G)

100 NaN 0.00

90,10 10.00 0.14

90. . . 1 1.00 0.16

80. . . 2 2.00 0.31

50,50 50.00 0.39

50,49,1 25.00 0.40

50,40,10 25.00 0.46

50,30,10,10 16.67 0.52

50. . . 5 5.00 0.64

20. . . 20 20.00 0.66

16. . . 1 8.40 0.78

10. . . 10 10.00 0.81

10. . . 9 9.00 0.82

1. . . 1 1.00 1.00
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(a) 100 diagram, s = NaN, Damage(G) =
0.00

(b) 90,10 diagram, s = 10.00, Damage(G) =
0.14

(c) 90 . . . 1 diagram, s = 1.00, Damage(G)
= 0.16

(d) 80 . . . 2 diagram, s = 2.00, Damage(G)
= 0.31

Figure 23. Notional diagrams for test cases 100 , 90,10 , 90. . . 1 and 80. . . 2 .
The entire graph is contained within the square. The LCC is represented by the
large inner circle, smaller fragments are represented by the outer circles. The circles

represent the relative sizes of the different fragments.
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(a) 50,50 diagram, s = 50.00, Damage(G) =
0.39

(b) 50,49,1 diagram, s = 25.00, Damage(G)
= 0.40

(c) 50,40,10 diagram, s = 25.00, Damage(G)
= 0.46

(d) 50,30,10,10 diagram, s = 16.67, Dam-
age(G) = 0.52

Figure 24. Notional diagrams for test cases 50,50 , 50,49,1 , 50,40,10 and
50,30,10,10 . The entire graph is contained within the square. The LCC is rep-
resented by the large inner circle, smaller fragments are represented by the outer

circles. The circles represent the relative sizes of the different fragments.
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(a) 50 . . . 5 diagram, s = 5.00, Damage(G)
= 0.64

(b) 20 . . . 20 diagram, s = 20.00, Damage(G)
= 0.66

(c) 16 . . . 1 diagram, s = 8.40, Damage(G)
= 0.78

(d) 10 . . . 10 diagram, s = 10.00, Damage(G)
= 0.81

Figure 25. Notional diagrams for test cases 50. . . 5 , 20. . . 20 , 16. . . 1 and 10. . . 10 .
The entire graph is contained within the square. The LCC is represented by the
large inner circle, smaller fragments are represented by the outer circles. The circles

represent the relative sizes of the different fragments.
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(a) (b)

Figure 26. Notional diagrams for test cases 10. . . 9 and 1. . . 1 . The entire graph
is contained within the square. The LCC is represented by the large inner circle,
smaller fragments are represented by the outer circles. The circles represent the

relative sizes of the different fragments.

behavior during Adding make sense. The curve’s behavior during destruction

was unexpected and quite delightful.

4. The Average Path Length L(G) curve’s behavior during the Adding phase

was to be expected, while its behavior during the first part of destruction

was unexpected. In all cases, the L(G) increased until the first disconnection

because the average path increased.
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Figure 27. Sample two triangles graph. Initially 2 clusters, 6 nodes and 6 edges.
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Figure 28. Sample totally disconnected graph. Initially 10 clusters, 10 nodes and 0
edges.
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Figure 29. Sample 3 pairs graph. Initially 3 clusters, 6 nodes and 3 edges.
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Figure 30. Sample 1 LCC and 6 singletons graph. Initially 7 clusters, 10 nodes and
4 edges.
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Figure 31. Sample fully connected graph. Initially 1 cluster, 10 nodes and 9 edges.
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Figure 32. Sample cave man graph. Initially 1 cluster, 15 nodes and 30 edges.
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Figure 33. Sample butterfly graph. Initially 2 clusters, 10 nodes and 8 edges.
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Figure 34. Sample off balance graph. Initially 2 clusters, 11 nodes and 9 edges.
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Figure 35. Sample clusters graph. Initially 21 clusters, 24 nodes and 3 edges.
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5.3 COMMUNICATIONS

5.3.1 INTRODUCTION

We investigate the problem of sending a message from a sending WO to receiving

WO (there may be more than one intended recipient) by looking at the factors that

affect the path length and looking that the likelihood that the message will actually

be delivered based on the path length.

5.3.2 DISCUSSION OF MESSAGE PATH

During the analysis of the USW graphs, considerable time was spent trying to

quantify the number of hops it would take a message to “travel” from any particular

WO to all the WOs. This section defines the problem with a hand tractable example,

derives the underlying equations and presents a closed form equation to answer the

base question:

1. How many hops are necessary to get from a “root” web object (WO) to reach

all WOs in a Unsupervised Small-World (USW) graph?

Sample problem and definitions

A sample graph (Figure 36 on page 123) will be used to develop equations that

can be applied to larger graphs. A small number of symbols are used to describe

characteristics of the graph (Table 10 on the next page).

Analysis

The number of WOs at any number of hops from WO# 1 in the sample graph

is shown in Table 11 on page 124. Examination of the total summation equation

in the table, reveals that is a geometric series :

n =
m
∑

i=0

⟨k⟩i (30)

and that solving for m would be the solution to the problem. The derivation of

equation 21 on page 105 shows how to compute the number of hops m needed to
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Table 10. A list of symbols used for the analysis of USW communications.

Symbol Meaning

a The likelihood that a connection will be made after an unknown
number of connection attempts.

enew The number of new edges added to the USW graph after the wan-
dering WO makes all of its new connections.

j The number of random number selections required to achieve a.

⟨k⟩ The average degree of all the WOs excluding those WO that are
leaf nodes. In the sample graph, WOs whose number is greater
than 4 are leaf nodes because no other nodes can be reached from
them.

l The likelihood that a connection will be made based on the current
random number and β.

m The number of constant distance rings required to have a graph of
size n where all interior WOs have a constant average degree of ⟨k⟩.

n The number of WOs in the USW.

nd The order of the discovered USW graph.

β The threshold that a random number has to exceed for the newly
introduced WO to make its first connection (i.e., as long as the
random number is below β, the newly introducedWOwill “wander”
through the USW graph).

γ The percentage of WOs that the no longer wandering WO will make
connections to.

ρ(G) The of the number edges currently in the graph to the total number
there could be.

|Γv|V The vertices that are directly connected to the WO of interest.
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Figure 36. A “toy” graph that is tractable by hand. Node 1 wants to reach all the
nodes in the graph. The question is: how many hops (i.e., how distant) are all the

WOs in the graph?

reach all WOs in a USW graph with n WOs and when the graph has an average

degree of ⟨k⟩.

m
∑

i=0

⟨k⟩i =
1− ⟨k⟩m+1

1− ⟨k⟩ (31)

n =
1− ⟨k⟩m+1

1− ⟨k⟩ (32)

n ∗ (1− ⟨k⟩) = 1− ⟨k⟩m+1 (33)

⟨k⟩m+1 = 1− n ∗ (1− ⟨k⟩) (34)

⟨k⟩m+1 = 1− n+ n ∗ ⟨k⟩ (35)

(m+ 1) log(⟨k⟩) = log(1− n+ n ∗ ⟨k⟩) (36)

m =
log(1− n+ n ∗ ⟨k⟩)

log(⟨k⟩) − 1 (37)

numberOfEdges = m− 1 (38)

numberOfEdges is the number of edges that a message would have traverse to

go from WO#1 to all WOs in the graph. Once the message was received by the

most distant WO, it would not go any further.
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Table 11. The number of WOs at selected distances.

Distance(m) Number WOs(n) Equation

0 1 ⟨k⟩0
1 3 ⟨k⟩1
2 9 ⟨k⟩2

Total 13
2

∑

m=0

⟨k⟩m

Other considerations

A number of things can be surmised based on the above analysis and the funda-

mental questions. They are:

1. Graph omnipotence: If n and ⟨k⟩ are given, then the entire graph must have

been explored.

2. Graph exploration: If the graph has been explored, then the average path

length for the graph can be computed using:

d(u, v) : u, v ∈ V (39)

d(u, v) =|E(P )|, E(P ) = {u0u1, u1u2, . . . , v−1v0} (40)

L(G) =
1

n ∗ (n− 1)
∗

n
∑

i,j

d(vi, vj) (41)

3. Average path length: Is a more realistic value for how many hops are required

than numberOfEdges from Equation 38 on the preceding page.

4. Distances in a USW graph: Distances between WOs in a USW graph are

independent of how the USW graph is constructed.

5. Availability of graph related information: If n and ⟨k⟩ are given, then why not

all the information about the entire graph? If the label for each node in the

USW graph was it canonical name, then all information would be available

and the basic problem becomes trivial.

The WO’s name is sufficient for the underlying Internet architecture to make the

distance between any WOs a constant 1.
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A different approach

The text and equations in the previous sections are correct in as far as they go.

Based on further analysis, it is possible that there are other approaches that are as

equally valid.

The following sections approach the problem starting with posing slightly differ-

ent questions, followed by how the Unsupervised Small-World is constructed, how

Unsupervised Small-World WOs could be selected by an external user or agent,

how the Unsupervised Small-World WOs could communicate messages from one to

another, and concludes with an evaluation of the different scenarios.

Posing a different question

The original question was:

1. How many hops are necessary to get from a “root” web object (WO) to reach

all WOs in a Unsupervised Small-World (USW) graph?

and could be open to interpretation. So it has been replaced by the following

questions:

1. How many hops are necessary to get a singular message from a “root” WO

to all WOs in a Unsupervised Small-World (USW) graph?

2. How many hops are necessary to get the same message from a “root” WO to

all WOs in a Unsupervised Small-World (USW) graph?

The first replacement question speaks to a “unicast” message from one sender

to one receiver. The second question speaks to a “broadcast” message from one

sender to all WOs. In fact, the second replacement question is a special case of the

first question. The time to send a message to the most remote WO (there are many

different ways to define what is remote) will always be less than the time to send

the same message to those WOs that are less remote. We will focus on solving the

first question.

Unsupervised Small-World construction

The construction of a USW graph is dependent on the control parameters β and

γ. As the new WO wanders through the USW graph, it collects information about
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the USW structure. After making its first connection, the WO will make connections

to γ of the USW WOs that it has discovered. Based on these definitions:

l = 1− β (42)

a = 1− βj (43)

βj = 1− a (44)

j log(β) = log(1− a) (45)

j =
log(1− a)

log(β)
(46)

nd = j ∗ ⟨k⟩ (47)

enew = γ ∗ nd + 2 (48)

When the wandering node is connected into the USW graph, the USW graph

has grown by 1 WO and enew edges. The factor of two in equation 48 accounts for

the two edges added when the wandering WO made its first connection.

The density of a graph ρ(G) = m

(n2)
[167] can be used as a surrogate for ⟨k⟩. ⟨k⟩

is an important descriptor of the USW graph and has a profound impact on the how

much of the graph is known by any single WO. Therefore the question of how enew

affects ρ(G) is important. (In the interest of clarity, |E| will be used vice m for the

following equations.)

ρ(G)Old
?
= ρ(G)New (49)

|E|
n(n− 1)

?
=

|E|+ enew

(n+ 1)n
(50)

|E|(n2 + n)
?
= (|E|+ enew)(n)(n− 1) (51)

|E|n2+ |E|n ?
= |E|n2 + enewn

2 − n |E| − nenew (52)

|E|n ?
= enewn

2 − n |E| − nenew (53)

|E| ?
= enewn− |E| − enew (54)

2 |E| ?
= enewn− enew (55)

2 |E| ?
= enew(n− 1) (56)

2 |E|
(n− 1)

= enew (57)

Based on equation 57, the following prediction can be made about ρ(G):
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ρ(G)Newwill



















remain the same if enew = 2|E|
(n−1)

decrease if enew <
2|E|
(n−1)

increase if enew >
2|E|
(n−1)

(58)

As ρ(G) goes, so goes ⟨k⟩.

Unsupervised Small-World WO selection options

When a WO is activated, or selected by someone (or some agent) browsing the

Web, the WO engages in a series of maintenance activities. Two of these activi-

ties are to read messages and to send messages. For this discussion, we focus on

the sending of messages and assume that the WO acts appropriately on whatever

messages it reads.

A WO can be selected based on one of these conditions:

1. Uniform random selection: Every WO has exactly the same likelihood of being

selected as every other WO.

success =
1

n
(59)

a = 1− (
n− 1

n
)j (60)

j =
log (1− a)

log n−1
n

(61)

Based on equation 61, the larger graph becomes, the more number of random

selections it will take to reach a predefined expectation of success.

2. Degree based selection: A vector is created which contains each WO its degree

d(v) = k number of times. Meaning that if a WO has a degree of 4, then it

would be in the vector 4 times. Therefore,

success =
min(d)
∑

d
(62)

a = 1− (

∑

d−min(d)
∑

d
)j (63)

j =
log (1− a)

log
∑

d−min(d)∑
d

(64)
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Based on equation 64 on the preceding page, the more unbalanced the degree

distribution of the graph, the more degree biased selections will be needed to

select the least connected WO.

3. Age based selection: A vector is created which contains each WO a number of

times based on its age. If the newest WO is normalized to one, the oldest will

be greater than one. If the oldest is normalized to one, then the newest will

be greater than one. Therefore, the formulation for computing j is exactly

the same as the technique used in equation 64 on the previous page, only

substituting one for min(d) and
∑

age for
∑

d. As the graph ages, it will take

more and more selections to select the WOs with an age of one.

4. Popularity: Some WOs are more “popular” than others. The definition of

“popular” is open for discussion, but it will rank order all the WOs to some

standard. Using that standard and making the least “popular” WO as a

one, then the same formulation used in equation 64 on the preceding page is

applicable, substituting one for min(d) and
∑

popularity for
∑

d.

Unsupervised Small-World WO communication mechanisms

There are three basic communications mechanisms, gossip based [173], store-

and-forward and bus style. Gossip is a variation on store-and-forward and will be

considered as part of the store-and-forward discussion. In the store and forward

technique, a message is received and if it is not addressed to the recipient, it is

forwarded on to another intermediary recipient. In the bus technique, a signal is

sent out that a message is coming, everyone on the bus listens and if the message is

addressed to them then they take an action.

These data fields are assumed to be in the message, they may or may not be

used based on the technique being discussed:

1. To: The intended recipient.

2. From: Who originated the message.

3. Via: Who has seen the message so far.

4. Time to live (TTL): How many WOs have seen this message.
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Store and forward (e-mail style communications)

These are the different store-and-forward techniques that could be employed:

1. Randomly forward : All fields in the message (other than To) are ignored. The

next single recipient of the message is selected at random from all the |Γv|V .
Messages sent using this technique will take θ(n3) [174] attempts to reach the

intended recipient.

2. Forward to everyone: All fields in the message (other than To and TTL) are

ignored. Each time the message is received, the TTL field is decremented. If

the TTL reaches 0, the message is silently discarded. Otherwise, the message

is forwarded to everyone in the |Γv|V . This flooding will occur at each node

until the TTL reaches 0 and the number of messages in circulation at any time

will be TTL * ⟨k⟩. If the TTL is not large enough, the message may never be

received.

3. Forward to others that have not seen the message: The From and Via fields

of the message are examined to see if they are not in the |Γv|V of the current

recipient. If the TTL is not 0, then the message is forwarded to all who have

not seen the message yet. The number of messages in circulation will be less

than TTL * ⟨k⟩ and messages may die sooner than the TTL based on not

being forwarded back to WOs on the Via list.

As can be seen in Table 12 on page 132, the number of selections necessary to achieve

a 0.95 confidence of the least likely WO being selected can vary considerably based

on the selection criteria. The number of selections required to ensure that a message

is received by the “lowest evaluated” recipient is the product of the communications

mechanism and the recipient selection criteria.

The representative selection models were evaluated to determine how many se-

lections would be necessary to reach a 0.95% probability of reaching the “least”

likely WO (Figure 37 on the following page). The vertical green line is 0.95% and

each of the horizontal green lines indicates the number of selections required to reach

the acceptable level. All of the curves in the figure have the same basic shape, only

offset vertically from each other.

The cumulative probability distribution (CPD) for the representative selection

models is show in Figure 38 on page 131. The figure shows two plots of the same
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Figure 37. The number of selections required to reach any particular a.

data. As seen in Figure 38(a) on the following page, the curves for all but the

Popularity selection are almost stacked on top of one another. In Figure 38(b) on

the next page, the X-axis is a log scale in order to show the activity in the lower

region.

A subjective evaluation of the performance of all the a communications tech-

niques based on the WO selection criteria is shown in Table 13 on page 132.

Bus

Using a bus style communications, the time for a message to go from the sender

intended recipient after getting control of the bus, is 1. Getting control of the bus

will be dependent on n due to contention for control. If the WOs are too talky this

should not be an issue.
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Table 12. Computing the number of selections needed to achieve 0.95 likelihood of
a message being received by all WOs based on different WO selection criteria.

Item Uniform Degree Age Popularity Power −2.1

WO-1 1 2 1 1 1

WO-2 1 10 2 1 1

WO-3 1 10 3 1 1

WO-4 1 10 4 1 1

WO-5 1 10 5 100 5

WO-6 1 10 6 100 5

min 1 2 1 1 1
∑

6 52 21 204 14

j 17 77 62 610 41

Table 13. Subjective evaluation of communications mechanisms and WO selection
criteria.

Comms. Perf. Selection Criteria

mechanism Uniform Degree Age Popularity

Randomly forward θ(n3) Bad Bad Bad Worst

Forward to everyone θ(n2) N/A N/A N/A N/A

Forward to other that
have not seen the mes-
sage

θ(n2) Bad Bad Bad Best

Bus θ(1) Best Better Better Better

Tuple based θ(1) Best Better Better Better
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Tuple based

Carriero and Gelernter in [65, 175, 176] provide an explanation and an overview

of the Linda communication model as implemented in various languages and for

representative applications. Linda’s communication model is summarized in:

“If two processes need to communicate, they do not exchange a vari-

able; instead, the data producing process generates a new data object

(called a tuple) and sets it adrift in a region called tuple space.”

Nicholas Carriero and David Gelernter [65]

Asynchronously the sender writes a message into the tuple space (perhaps) with-

out specifically identifying the intended recipient. Instead, attached to each mes-

sage are a set of “characteristics” of the intended recipient. A candidate recipient

queries the tuple space to retrieve any messages there that match the recipient’s

characteristics and processes the messages returned by the query. Using a bus style

communications, the time for a message to go from the sender intended recipient

after the message is in tuple space is 1. The size of the tuple space will affect query

time.

The number of “hops” that a message must take to reach all WOs in a Unsu-

pervised Small-World (USW) graph has been computed. But another question has

been raised:

1. How long will it take for the same message from a “root” WO to reach a given

percentage of all WOs in a Unsupervised Small-World (USW) graph?

The ultimate answer depends on the number of users/agents accessing the graph

per unit time, and the number of accesses required for 95% assurance that all USW

WOs have received the message will be between θ(1) and θ(n3). The number of

users/agents and how active they are per unit time will determine how long it takes

for a message to be received by a particular WO.

Summary

Equation 38 on page 123 shows how to compute the number of hops m needed

to reach all WOs in a USW graph with n WOs and when the graph has an average

degree of ⟨k⟩. The equation will work for any sized graph, but is very sensitive to
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all WOs having the same ⟨k⟩. Table 14 on the following page shows the number of

uniform random selections necessary to reach different CPD based on graph order.

The values come from the USW simulator.

The number of USW WO selections necessary to ensure that the WO ranking

lowest based on the selection criteria has the form log (1−a)

log
∑

criteria−min(criterion)∑
criteria

, where a

is the acceptance level. The selection criteria (uniform random, age, degree, pop-

ularity, etc.) was a significant impact on the number of selections needed to reach

the acceptance level. The effectiveness of the communications mechanism is a mul-

tiplicative factor in the number of selections that are necessary. Communications

mechanisms can operate in the range of θ(1) to θ(n3).

WO selection based on uniform random selection using bus, or tuple space style

communications results in the fewest number of WOs needed to be selected to reach

any given acceptance threshold.

With an estimate of the number of WOs that must be selected to achieve the

acceptance threshold and a estimate of the number of WOs that will be accessed

per unit time; the length of time to reach the acceptance threshold is a simple

division. The simplest technique to reduce the time for a message to be received by

the intended recipient is to have an agent that constantly activates the USW WOs.



135

T
ab

le
14
.
A

co
m
p
ar
is
on

an
d
an

al
y
si
s
of

th
e
n
u
m
b
er

of
se
le
ct
io
n
s
n
ee
d
ed

to
re
ac
h
a
le
ve
l
of

co
n
fi
d
en
ce

ve
rs
u
s
th
e
or
d
er

of
th
e

gr
ap

h
b
as
ed

on
u
n
if
or
m

ra
n
d
om

se
le
ct
io
n
.

O
rd

e
r

0
.8
0

R
a
ti
o

0
.8
5

R
a
ti
o

0
.9
0

R
a
ti
o

0
.9
5

R
a
ti
o

20
0

32
,3
49

16
2

38
,1
32

19
1

46
,2
81

23
1

60
,2
13

30
1

75
19
0

4,
54
9,
56
7,
47
2

60
,5
08

5,
36
2,
78
8,
65
3

71
,3
23

6,
50
8,
95
9,
53
2

86
,5
67

8,
46
8,
35
1,
59
1

11
2,
62
6

15
01
80

18
,1
49
,7
67
,6
46

12
0,
85
3

21
,3
93
,9
82
,7
42

14
2,
45
6

25
,9
66
,4
47
,1
06

17
2,
90
2

33
,7
83
,1
26
,5
65

22
4,
95
1

22
51
70

40
,8
00
,6
95
,6
51

18
1,
20
0

48
,0
93
,6
94
,4
00

21
3,
58
8

58
,3
72
,5
98
,8
20

25
9,
23
8

75
,9
44
,5
01
,9
90

33
7,
27
6

30
01
60

72
,5
02
,2
15
,4
25

24
1,
54
5

85
,4
61
,7
63
,2
46

28
4,
72
1

10
3,
72
7,
22
0,
01
7

34
5,
57
3

13
4,
95
2,
22
4,
60
8

44
9,
60
1

37
51
50

11
3,
25
4,
12
4,
73
0

30
1,
89
0

13
3,
49
7,
95
0,
89
0

35
5,
85
2

16
2,
03
0,
02
1,
35
6

43
1,
90
7

21
0,
80
5,
91
7,
98
1

56
1,
92
4

45
01
40

16
3,
05
8,
21
9,
71
3

36
2,
23
9

19
2,
20
4,
37
4,
53
9

42
6,
98
8

23
3,
28
3,
57
2,
54
5

51
8,
24
7

30
3,
50
8,
92
5,
37
6

67
4,
25
5

52
51
30

22
1,
91
0,
54
0,
45
0

42
2,
58
2

26
1,
57
6,
36
6,
43
9

49
8,
11
7

31
7,
48
2,
20
8,
21
0

60
4,
57
8

41
3,
05
3,
87
5,
97
1

78
6,
57
5

60
01
20

28
9,
81
4,
63
3,
45
5

48
2,
92
8

34
1,
61
8,
10
7,
03
7

56
9,
25
0

41
4,
63
1,
00
2,
27
0

69
0,
91
3

53
9,
44
7,
37
1,
08
6

89
8,
89
9

67
51
10

36
6,
76
8,
57
5,
97
5

54
3,
27
2

43
2,
32
7,
32
9,
89
2

64
0,
38
1

52
4,
72
7,
20
3,
88
5

77
7,
24
7

68
2,
68
5,
83
1,
79
6

1,
01
1,
22
2

75
01
00

45
2,
77
5,
96
1,
69
0

60
3,
62
1

53
3,
70
8,
27
1,
04
4

71
1,
51
6

64
7,
77
5,
95
4,
44
8

86
3,
58
6

84
2,
77
5,
94
7,
20
7

1,
12
3,
55
1

82
50
90

54
7,
82
4,
35
0,
59
4

66
3,
95
7

64
5,
74
6,
26
6,
87
3

78
2,
63
7

78
3,
75
9,
45
6,
33
6

94
9,
90
8

1,
01
9,
69
4,
56
2,
07
9

1,
23
5,
85
9

90
00
80

65
1,
93
9,
55
5,
91
9

72
4,
31
3

76
8,
47
1,
74
4,
64
9

85
3,
78
2

93
2,
71
4,
63
9,
93
4

1,
03
6,
25
7

1,
21
3,
48
9,
72
3,
94
9

1,
34
8,
20
2

97
50
70

76
5,
10
9,
40
8,
63
6

78
4,
67
1

90
1,
87
0,
36
0,
16
3

92
4,
92
9

1,
09
4,
62
4,
09
5,
29
6

1,
12
2,
61
1

1,
42
4,
13
8,
78
1,
95
7

1,
46
0,
55
0

10
50
06
0

88
7,
28
9,
01
7,
34
7

84
4,
98
9

1,
04
5,
88
9,
19
7,
82
2

99
6,
02
8

1,
26
9,
42
3,
59
7,
35
5

1,
20
8,
90
6

1,
65
1,
55
8,
17
7,
36
2

1,
57
2,
82
3

11
25
05
0

1,
01
8,
58
6,
84
4,
11
4

90
5,
37
0

1,
20
0,
65
6,
10
6,
94
3

1,
06
7,
20
2

1,
45
7,
26
8,
32
0,
23
5

1,
29
5,
29
2

1,
89
5,
94
9,
79
6,
35
6

1,
68
5,
21
4

12
00
04
0

1,
15
8,
88
7,
83
7,
99
1

96
5,
70
8

1,
36
6,
03
5,
47
1,
58
1

1,
13
8,
32
5

1,
65
7,
99
3,
66
3,
24
9

1,
38
1,
61
5

2,
15
7,
09
9,
48
8,
50
8

1,
79
7,
52
3

12
75
03
0

1,
30
8,
23
2,
82
7,
85
2

1,
02
6,
04
1

1,
54
2,
07
5,
41
8,
64
6

1,
20
9,
44
2

1,
87
1,
65
8,
03
9,
30
9

1,
46
7,
93
3

2,
43
5,
08
3,
25
0,
76
7

1,
90
9,
82
4

13
50
02
0

1,
46
6,
66
6,
12
3,
57
6

1,
08
6,
40
3

1,
72
8,
82
8,
17
8,
26
9

1,
28
0,
59
4

2,
09
8,
32
4,
84
1,
52
0

1,
55
4,
29
2

2,
72
9,
98
3,
55
9,
46
5

2,
02
2,
18
0

14
25
01
0

1,
63
4,
14
8,
11
9,
20
0

1,
14
6,
76
3

1,
92
6,
24
7,
06
5,
04
5

1,
35
1,
74
3

2,
33
7,
93
7,
40
6,
55
9

1,
64
0,
64
6

3,
04
1,
72
6,
69
3,
91
8

2,
13
4,
53
0

15
00
00
0

1,
81
0,
70
7,
96
4,
70
5

1,
20
7,
13
9

2,
13
4,
36
6,
43
9,
42
2

1,
42
2,
91
1

2,
59
0,
53
7,
43
8,
62
0

1,
72
7,
02
5

3,
37
0,
36
6,
91
2,
53
4

2,
24
6,
91
1



136

5.3.3 DISCUSSION OF THE LIKELIHOOD THAT A MESSAGE WILL

BE RECEIVED.

A fundamental way to measure the performance of any communication system

is: How long will it take for the same message from a “root” WO to reach a given

percentage of all WOs in a Unsupervised Small-World (USW) graph?

This section delves into answering that question. A number of different sized

USW graphs were created, with different values of β and γ and three different

USW graph stimulation policies. Message delivery to all WO is based on the degree

distribution of the graph and equation that predicts the probability that a particular

WO will receive the message at any particular time is derived.

Analysis

The analysis is based on running the USW simulator with varying graph sizes,

varying values for β and γ and varying how an outside entity would “ping” a WO

within the the graph. The graph was allowed to be created as determined by β and

γ before a message was introduced.

Three different “ping” selection policies were simulated. They are:

� Sequential : every WO in the graph was selected. This served as a baseline to

assist in the evaluation of the other policies.

� Random: a WO was selected at random from all the WOs in the graph.

� Degree biased : the WO as selected partially on its degree k.

In order to be able to select a WO to “ping” based on its degree, a degree

distribution set of the entire graph had to be created. Along with the degree set,

another data structure maintained a list of WOs based on their degree. After the set

was created, a vector was created that had the same number of entries per degree

as the degree from the set. If the set looked like:

{3, 6, 9}

Then the vector would look like:

333666666999999999
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A member of the vector was chosen in a uniform random manner. The degree

that was chosen was used as a pointer to the list of WOs that had that degree. From

the list of WOs that all have the chosen degree, one WO was chosen in a uniform

random manner.

WO #0 was selected to send a message to all WOs. When a WO was “pinged” it

would do its normal housekeeping and check for Linda style messages. The “pinged”

WO would check to see if it had received the message before and would print a log

message stating that this was the first time it had received the message, or if this

was an old message. The log message stating this was a new message was captured

for the analysis.

Initial testing of the algorithm showed that it was nearly impossible for all the

WOs to be pinged without some duplicate pings and that the entire selection process

would have to be repeated a number of times to raise the likelihood that all WOs

would have a chance to be “pinged.” Each of these iterations is called an epoch in

recognition that there is considerable time involved in pinging all the WOs in the

graph. The pinging process runs for 20 epochs.

The simulator was run and the number of epochs needed to for all the WOs to

acknowledge they had received the message is summarized in Table 15 on page 139.

As expected using the Sequential approach has all WOs receiving the message in 1

epoch. Random selection was able to reach all WOs in about 10 epochs under all

β and γ values. Degree biased selection quickly fell apart, in many cases requiring

greater than 20 epochs. (Closer analysis may show that those cases where 19 epochs

were reported, may also really need more than 20.)

Looking at the cases where the WOs were not able to receive the message in

20 epochs, a common characteristic came into view. The degree distribution was

heavily skewed into a long head or a long tail (Figure 132 on page 392). Where the

degree distribution was not heavily skewed, the message was delivered to all WOs

within 20 epochs.

A complete set of degree distribution and delivery times were computed (Ap-

pendix G on page 452).

Probabilistic analysis We investigate the likelihood that a message will be de-

livered as a binomial distribution probabilistic problem with slight modifications.

Classic binomial distribution meets the following assumptions:
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Figure 39. A comparison of different degree distributions and an assessment of how
suitable the graph is for message distribution.
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Table 15. Summary of the number of epochs needed to get the sample message to
all WOs.

Graph size

Selection method β γ 100 500 1000

Sequential

0.0 0.0 1 1 1

0.0 0.5 1 1 1

0.0 1.0 1 1 1

0.5 0.0 1 1 1

0.5 0.5 1 1 1

0.5 1.0 1 1 1

1.0 0.0 1 1 1

1.0 0.5 1 1 1

1.0 1.0 1 1 1

Random

0.0 0.0 6 9 10

0.0 0.5 8 7 9

0.0 1.0 5 8 7

0.5 0.0 6 9 10

0.5 0.5 5 7 8

0.5 1.0 9 7 8

1.0 0.0 6 9 10

1.0 0.5 8 6 8

1.0 1.0 5 9 7

Degree biased

0.0 0.0 >20 >20 >20

0.0 0.5 14 20 19

0.0 1.0 11 14 19

0.5 0.0 >20 >20 >20

0.5 0.5 7 14 15

0.5 1.0 8 19 19

1.0 0.0 7 9 19

1.0 0.5 17 15 17

1.0 1.0 >20 >20 >20
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1. There are only two possible outcomes for each trial,

2. The probability of success is the same for each trial,

3. There are n trials, where n is a constant,

4. The n trials are independent.

The classic binomial distribution [177] is described by:

b(x;n, p) =

(

n

k

)

px(1− p)n−x (65)

Equation 65 returns the likelihood that there are x “successes” out of n trials,

the likelihood of a trial succeeding is p.

We are interested in applying the binomial distribution under two different sce-

narios. The scenarios are:

1. A message is sent to a single member of a “family” simulating that a sending

WO wants to convey a message to a member of another family and then has

no interest in the message there after.

2. A message is sent to all “family” members simulating that an active maintainer

WO has information that all family members need to know.

To address these scenarios, the classic binomial distribution assumptions are

modified to:

1. There are only two possible outcomes for each trial,

2. The probability of success is the same for each trial,

3. There are n trials, where n is a constant, for our analysis, we will be computing

n, therefore;

4. The n trials are independent, and

5. A probability of success c is given

To see the effect of these assumptions, we create a small USW graph with the

following characteristics:

1. There are nine non-participating WOs,
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Table 16. Number of trials to send a message. The number of trials to remains
constant for families B and C for both scenarios because reception by one of member
of each family is sufficient for the message to be passed along to the next member in
the path. The number of trials is marked different for the receiving WO because in
the first scenario only one WO has to receive the message, but in the second there
is at least a c likelihood that all members of the receiving family gets the message.

Scenario Scenario

1 2

WO n n

B 8 8

C 11 11

Recv. 14 84,948

2. There is one sending WO,

3. The sending WO has a friendship link to the B family,

4. The B family has a friendship link to the C family,

5. The C family has friendship links with all members of the intended receiving

family.

The store and forward message path is:

Sending WO → B → C → Receiving family

The desired probability of success is 0.95.

The number of trials to meet c is shown in Table 16.

Summary

Based on data from the USW simulator, the probability that a particular WO

will receive a message is:

P (WO) =
1

|WOk|
∗ kWO
∑

kWO

The number of “pings” that might be required to ensure that all WOs get the

message, is at least 1
P (WO)

and if P (WO) is small, some multiple of the least number

of pings. Because selection of WO to ping is a random function, there is no guarantee
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that all WOs will in fact be pinged, regardless of how many epochs pass. All that

can be hoped for is that the probability of not being “pinged” is acceptably low.

Degree Distribution and Message Delivery Times

Figures 169 on page 453 through 204 on page 488 show a collection of data for

a USW graph of order 1000. Data shown include:

1. Degree distribution: the various combinations of β and γ result in very different

degree distributions. The distribution provides insight into the other plots.

2. Sequential : the number of epochs necessary for 100% of the WOs to receive the

message if the WOs are accessed sequentially. This plot is always a straight

line, but it is included for completeness.

3. Random: the number of epochs necessary for 100% of the WO to receive the

message if the WOs are accessed randomly. The curve will asymptotically

approach 100%.

4. Degree biased selection: the WOs with higher degrees k are preferentially

selected over those with lessor degrees. Some WOs will never get the message

because their k is too low relative to other WOs.

5.3.4 SUMMARY

These general statements can be made:

1. Sequentially accessing all WOs will ensure that the message is received in one

epoch. (Trivial case.)

2. Extremely skewed degree distributions will ensure that at least some of the

WOs will never get the message. (Pathological case.)

Between these two extremes, if the system were given enough time then all WOs

would get the message. It becomes a design decision as to how much energy must

be put into the system to reach an acceptable level of likelihood that enough WOs

have received the message.
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5.4 COPYING

Discussion

Unsupervised Small-World does not attempt to make a “bit-by-bit” copy of the

original resource [142]. Instead, the resource that will be preserved is examined by

an entity outside the USW environment to identify those components that comprise

the essence of the resource. A REsource Map (REM) [133] is created to capture the

identified components. A crucial part of the REM is the list of aggregated resources

that could be used to recreate the essence of the original resource.

Aggregated resources fall into different categories (Table 17 on page 145). Each

category will be treated differently by the USW “copying” process.

The size of the resource (or more precisely the data associated with the resource),

also impacts the preservation method. Notionally, the following resource data size

relationships exist:

Tiny << Medium << Large << Huge.
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Figure 40. Preservation copy guidelines. Green means that data from the resource
is safe for the life of the WO. Red means that data is at grave risk and may be
vulnerable to loss at any time. A continuum exists between green and red. The
preservation copy guideline to be followed will be stated by originating REM cre-
ator. Subsequent ReM modifiers will always be able to enforce a more conservative

approach, but should never adopt a looser approach.
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Table 17. Aggregated data categories based on an expected update rate. Each
category will be treated differently during the USW copying process.

Freq. of Update Example How treated Preservation
Impact

Continuously Real time
streaming video
from a camera

The original
URI is main-
tained. Copy
by Reference

The aggregated
resource will be
available only as
long as the origi-
nal URI is valid.

Frequently Number of pas-
sengers on a
mass transit bus

The original
URI is main-
tained or the
resource is
copied to a new
location. Copy
by Reference
or Copy by
Value

If the original is
maintained then
loss of the sin-
gle resource is
catastrophic. If
the resource is
copied then the
resource is likely
to be different
than the original
and it is more
likely to survive.

Seldom A CV The resource is
copied to a new
location. Copy
by Value

If the original is
maintained then
loss of the sin-
gle resource is
catastrophic. If
the resource is
copied then the
resource is likely
to be the same
as the original
and it is more
likely to survive.

Never A digital signa-
ture

These internal-
ized data are
copied intact
and without
modification
as part of the
copied resource
to the new host.
Data URI

As long as the
copied resource
is available, then
the internalized
data will be
available.
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Absolute values for each of the terms is almost meaningless as something that is

considered as large today might be considered only medium in the not too distant

future.

The “preservation space” is a combination of the orthogonal aspects of resource

size and resource change rate (Figure 40 on page 144 and Table 18 on the following

page).

To capture the attributes of size and method of preservation, a single identifier

format will be used:

copy {size} {frequencyOfUpdate}

Resulting in the following copying and preservation identifiers:

� copy tiny never

� copy medium never

� copy large never

� copy huge never

� copy tiny seldom

� copy medium seldom

� copy large seldom

� copy huge seldom

� copy tiny frequently

� copy medium frequently

� copy large frequently

� copy huge frequently

� copy tiny continuously

� copy medium continuously

� copy large continuously

� copy huge continuously
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Table 18. Recommended copying actions based on resource size and update fre-
quency.

Update frequency

Never Seldom Frequently Continuously

Size

Tiny Data URI Copy by
Value

Copy by
Reference
or Copy
by Value

Copy by
Reference

Medium Copy by
Value

Copy by
Reference
or Copy
by Value

Copy by
Reference

Copy by
Reference

Large Copy by
Reference
or Copy
by Value

Copy by
Reference

Copy by
Reference

Copy by
Reference

Huge Copy by
Reference

Copy by
Reference

Copy by
Reference

Copy by
Reference
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Summary

WOs can ensure that preservation copies are spread across unique hosts by using

unique copy services and assuming that unique services, in fact, copy to unique

places. By maintaining a list of copy services and the copy service that was used

to create a new copy, when a new copy is needed then it is easy to identify a copy

service that has not been used already and request that a new copy be made there.

Due to the nature of asynchronous communication between the Copy Requesting

WO and the Copy Servicing WO, it is possible that several Requests could be sent

resulting in one or more Copy Location messages.

5.5 ATTACK VERSUS FAILURE

5.5.1 EXPLANATION

Errors and attacks remove components from a system. The distinguishing char-

acteristic between the two types of losses is how components are selected. This

characteristic can be explained by using a computer network as a graph. The net-

work is a graph where vertices are represented by routers, switches and computers,

while edges are represented by the connections between the vertices, either wired or

wireless connections.

The loss of a router through hardware failure, mis-configuration, or the severing

of the communications links to the router can be considered to be accidental. An

error is the accidental loss of a component from a system. The simultaneous loss of

a set of routers, perhaps without a readily apparent reason, could be considered to

be an attack. An attack is the deliberate loss of components, or a component, from

a system.

The survivability of a graph to error or attack depends on the underlying struc-

ture of the graph (for example scale-free or exponential). Scale-free graphs are very

robust in the face of random failures, but are very susceptible to attacks [73]. Where

exponential graphs have just the opposite behavior.

5.5.2 SELECTION OF GRAPH COMPONENT TO ATTACK

The components that an attacker chooses to remove from an existing graph can

be called an attack profile. Each of the different attack profiles is presented with
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Figure 41. The sample graph presented to each attack profile. This is graph is small
enough that it can be visualized easily, characteristics can be computed manually

and yet has interesting features.

the same graph (Figure 41). The attack profile continues to execute until the graph

is disconnected. In those cases where there are multiple graph components with

the same value (vertices of the same degreeness, edges with the same betweenness,

etc.), the attack profile is recursively applied and the total number of deletions is

reported. Figures 42 on the following page and 43 on page 151 show the sample

graph prior to the deletion of the first attack profile specific element. Each attack

profile assumes that the attacker has complete (i.e., global) knowledge of the graph

and so is able to make decisions that are most advantageous to the attacker. How

this knowledge is obtained is outside this discussion. The goal of each attack profile

is the disconnection of the graph, where disconnection is defined as no path exists

from vertex i to vertex j i ↛ j : ∃i,j ∈ V . Therefore a graph with only one vertex

is still connected and removing a vertex that is connected to only one other vertex

does not disconnect the graph.

Ultimately there are only two graph components that an attacker can attack,

edges or vertices. The selection of which of these components to attack has to be

based on some metric rather than random selection. Holme and Kim [72] looked at

how an attacker could maximize the damage to a graph by one of two approaches.

The approaches being:
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(a) AE,L (b) AE,H

(c) AV,L (d) AV,H

Figure 42. The first graph component that will be removed based on different attack
profiles (1 of 2). Each profile selects a different component to be removed. In each
of these figures, the first component to be removed is shown in red. In cases where
more than one component has the appropriate qualities to qualify it for removal;

selection of which component to remove is based on random selection.
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(a) AD,L (b) AD,H

(c) AC,L (d) AC,H

Figure 43. The first graph component that will be removed based on different attack
profiles (2 of 2). Each profile selects a different component to be removed. In each
of these figures, the first component to be removed is shown in red. In cases where
more than one component has the appropriate qualities to qualify it for removal;

selection of which component to remove is based on random selection.
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1. To remove the vertex with the highest initial degree (ID)

cD(v) = d(v) (66)

2. Or, the vertex with the highest in-betweenness centrality (IB)

cB(v) =
∑

s ̸=v ̸=t∈V

σst(v)

σst

(67)

Their idea about betweenness can be extended to include removing the edge with

the highest in-betweenness centrality

cB(e) =
∑

s̸=t∈V

σst(e)

σst

(68)

.

Lee et al. in [88] put forth failures in a network as being either node, link,

or path related. Their node corresponds to our vertex and their link to our

edge. And, their path to our betweenness. The betweenness of a component

is a measurement of the component’s contribution to all the shortest paths δst in

the graph. The higher the betweenness value, the more shortest paths use that

component.

In the following sections, we will use a sample graph to show the effects of an

attacker’s limited knowledge of the global graph on which component to remove.

5.5.3 SIZE OF SUBGRAPH TO EVALUATE

An attacker has to select a graph component to attack, and identifying which

component to remove is based on the attacker’s knowledge of some portion of the

graph. The attacker’s knowledge can range from a single component to complete

knowledge of the graph. One approach to gaining knowledge of a graph’s organi-

zation is to identify a vertex and then determine those vertices that are at a path

length distance of 1 edge from the initial vertex. This process is repeated again and

again until the attacker decides to stop increasing the path length.

In Figure 44 on page 154, vertex 5 is the source vertex and is colored red. The

path length is initially set to 1 and the attacker now knows about the vertex set {4,
5, 6, 8, 9} (Figure 44(a) on page 154). All attacker discovered vertices are colored
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pink. As the path length increases from 2 (Figure 44(b) on the following page)

to 4 (Figure 44(d) on the next page), more and more of the global graph becomes

known. As readers, we know what the global graph looks like because we have an

omnipotent view point. The attacker does not enjoy this view and must blindly

continue to work outwards from his initial vertex. The attacker must expend time

and energy to increase his knowledge of the graph, until at some point he will have

spent “enough” and believes that sending additional time will not be worth the

effort.

The attacker uses this limited local knowledge of the global graph to select

the component whose removal will cause the greatest damage to the graph. If

the path length is increased enough, the entire graph will be discovered. Barabási

hypothesized that the entire World Wide Web could be discovered with a path

length of 19 [162]. The resources for attempting to conduct such a discovery may

be too large to be practical.

Edge selection

The selection of an edge to remove from the graph is based on how much of the

graph that the attacker has discovered. As the discovered graph becomes larger and

larger (as measured by the path length from an initial/central) vertex to the rest

of the graph (Figure 44 on the following page), the more closely the betweenness

value of the edge is to the edge’s betweenness value for the entire graph. The edge

betweenness value for all edges in the global graph and for the discovered subgraph

is shown in Table 19 on page 155. In the table, the first two columns are the vertices

that are connected by an edge. The third column is the edge betweenness for that

edge based on the global graph. The remaining columns show the edge betweenness

value as the path length from the central vertex gets longer and longer. In those

cases where the discovered subgraph has not discovered a particular vertex in the

global graph, the edge betweenness value is marked with a — indicating no value

possible. It is interesting to see how the value of an edge changes as the size of the

graph changes. In most cases the value of an edge decreases as graph size increases.
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(a) Path length = 1, discovered diameter =
2

(b) Path length = 2, discovered diameter =
4

(c) Path length = 3, discovered diameter = 6 (d) Path length = 4, discovered diameter =
7

Figure 44. The effects of different path lengths starting from a fixed vertex in
discovering the global graph. Vertex 5 is the center vertex. Each sub-figure shows
the subgraph that is discovered based on the path length from the center vertex as
the path length increments from 1 to 4. The diameter of the discovered subgraph is
at most twice the path length. As the path length increases, more and more of the

global graph is discovered.
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Table 19. Comparing the betweenness of edges based on the neighborhood discov-
ered from a central vertex. The size of the neighborhood increases from 1 to 4 based
around vertex 5 (Figure 44 on the previous page). As the size of the neighborhood
gets closer and closer to the global graph, the betweenness values get closer and
closer to the global values. Those edges that have not been discovered because they
belong to a portion of the global graph that has not been discovered are marked

with a —.

Source
node

Dest.
node

Edge Be-
tween-
ness

Path
length 1

Path
length 2

Path
length 3

Path
length 4

1 2 20.00 — — 12.00 15.00

2 3 4.00 — 3.00 4.00 4.00

2 4 15.63 — 4.00 8.83 11.30

2 8 24.03 — 7.67 14.83 18.37

3 4 16.00 — 6.00 8.00 11.00

4 5 43.97 4.00 13.33 21.17 29.63

5 6 36.47 4.00 14.17 19.33 26.80

5 8 26.80 4.00 8.50 13.83 18.47

5 9 49.63 4.00 16.00 23.00 31.63

6 7 21.57 — 5.50 9.33 14.23

6 11 56.37 — 9.00 19.00 34.37

7 8 13.90 — 6.83 9.67 11.57

9 10 51.63 — 9.00 17.00 28.63

10 12 53.63 — — 11.00 25.63

11 20 58.37 — — 13.00 31.37

12 15 52.67 — — — 15.00

12 19 9.63 — — — 6.63

12 20 21.67 — — 7.00 15.00

13 14 8.67 — — — —

13 17 20.67 — — — —

14 16 33.33 — — — —

14 21 20.00 — — — —

15 16 43.67 — — — —

16 17 13.67 — — — —

17 18 37.33 — — — —

18 20 46.33 — — — 15.00

19 20 10.37 — — — 8.37



156

Vertex selection

The selection of a vertex to remove from the graph is based on how much of the

graph that the attacker has discovered. As the discovered graph becomes larger and

larger (as measured by the path length from a initial/central) vertex to the rest of the

graph (Figure 44 on page 154), the more accurate the computed value betweenness

value of the vertex is to the vertex’s betweenness value for the entire graph. The

betweenness value for all vertices in the global graph and for the discovered subgraph

is shown in Table 20 on the next page. In the table, the first column is the vertex

number. The second column is the vertex’s betweenness value based on the global

graph. The remaining columns show the vertex betweenness value as the path length

from the central vertex gets longer and longer. In those cases where the discovered

subgraph has not discovered a particular vertex in the global graph, the vertex

betweenness value is marked with a — indicating no value possible. It is interesting

to see how the value of an vertex changes as the size of the graph changes. In most

cases the value of an vertex decreases as graph size increases. One notable exception

is the vertex 2. As the graph size increases, that vertex’s betweenness increases and

decreases and yet in the global graph, its value is less than in some of the subgraphs.

Degree selection

Discovering the degree of a node is based on the idea that the nodes exchange

messages between themselves and that the attacker can intercept these messages.

As the attacker intercepts more and more messages; a node’s neighbors (aka, degree)

can be determined. The degree of a node can be used as a criterion to determine if

the node is worthy of attack.

The degrees for the discovered graph based on differing path lengths is shown in

Table 21 on page 158. The first column is the vertex number. The second column

is the vertex’s global degree. The remaining columns show the degree of each of

the discovered vertices as the path length increases. If the vertex has not been

discovered based on a particular path length then the marker — is used to indicate

that no data is available. It is interesting to note that the degree of a vertex always

increases as the path length increases until the global degree value is reached. Once

the global value is reached, it remains constant.

5.5.4 ATTACK PROFILE NOTATION
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Table 20. Comparing the betweenness of vertices based on the neighborhood dis-
covered from a central vertex. The size of the neighborhood increases from 1 to 4
based around vertex 5 (Figure 44 on page 154). As the size of the neighborhood get
closer and closer to the global graph, the betweenness values get closer and closer
to the global values. Those vertices that have not been discovered because they
belong to a portion of the global graph that has not been discovered are marked
with a —. The betweenness values have been normalized to the range (0,1) to allow

comparisons across different sized graphs.

Node Vertex
Be-
tween-
ness

Path
length 1

Path
length 2

Path
length 3

Path
length 4

1 0.00 — — 0.00 0.00

2 0.32 — 0.13 0.42 0.37

3 0.00 — 0.00 0.00 0.00

4 0.41 0.00 0.33 0.40 0.40

5 1.00 1.00 1.00 1.00 1.00

6 0.69 0.00 0.46 0.55 0.66

7 0.11 — 0.08 0.11 0.12

8 0.33 0.00 0.33 0.40 0.36

9 0.59 0.00 0.37 0.43 0.49

10 0.62 — 0.00 0.24 0.43

11 0.69 — 0.00 0.31 0.55

12 0.86 — — 0.09 0.52

13 0.07 — — — —

14 0.31 — — — —

15 0.56 — — — 0.00

16 0.52 — — — —

17 0.38 — — — —

18 0.47 — — — 0.00

19 0.00 — — — 0.00

20 0.85 — — 0.12 0.60

21 0.00 — — — —
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Table 21. Comparing the degreeness of each vertex based on the neighborhood
discovered from a central vertex. The size of the neighborhood increases from 1 to 4
based around vertex 5 (Figure 44 on page 154). As the size of the neighborhood get
closer and closer to the global graph, the betweenness values get closer and closer

to the global values.

Vertex Degree Path len. 1 Path len. 2 Path len. 3 Path len. 4

1 1 — — 1 1

2 4 — 3 4 4

3 2 — 2 2 2

4 3 1 3 3 3

5 4 4 4 4 4

6 3 1 3 3 3

7 2 — 2 2 2

8 3 1 3 3 3

9 2 1 2 2 2

10 2 — 1 2 2

11 2 — 1 2 2

12 4 — — 2 4

13 2 — — — —

14 3 — — — —

15 2 — — — 1

16 3 — — — —

17 3 — — — —

18 2 — — — 1

19 2 — — — 2

20 4 — — 2 4

21 1 — — — —
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An attacker can target any graph component for removal based on the damage

estimate or other criteria and whether to use the highest, or lowest valued component

based on those criteria. We introduce the notation AC,V as a shorthand way to

identify a specific profile. The first subscript in AC,V is the metric that is being used

to select a component C ∈ {E, V,D, ∗} for edge, vertex, degree or any respectively.

The second subscript is the value of the metric that is being used V ∈ {L,M,H,R, ∗}
for low, medium, high, random or any respectively. The notation AD,H means that

the attacker is using a profile that targets nodes based on their degree D and chose

the highest H valued one.

5.5.5 EFFECTIVENESS OF DIFFERENT ATTACK PROFILES

The damage to a graph by fragmentation can be calculated (Equation 111

on page 387) using the fragmented graph and approximating the graph without

fragmentation. A connected graph is created from the fragmented graph by adding

an edge between each of the highest degreed nodes of each fragment. As each edge

is added to coalesce the fragments into a larger and larger connected component,

the highest degreed node may change based on the order in which the fragments are

coalesced. Therefore the highest degreed node in the coalescing component must be

evaluated after each fragment addition. At the end of the collation process, there

will be a single connected component containing the same number of nodes as the

fragmented graph and one additional edge for each of the original fragments.

As the original graph becomes more and more fragmented, its AIPL will decrease.

The AIPL of the connected approximation will decrease and the Damage(G) will

increase as well. This behavior is readily apparent when edges are removed from

the original graph in order to create the fragments. When vertices are removed,

the behavior is similar, until the last vertex is removed. In the limiting case, AIPL

of the fragmented graph with one fragment and one node in that fragment, is the

same as the AIPL of a connected component with one node. Using Equation 111

on page 387 results in a value of 0, meaning that the graph is undamaged.

Edge selection

The attacker can compute the betweenness of any edge in the subgraph that he

has discovered, see Table 19 on page 155. Based on these computed betweenness

values, the attacker can select either the highest or lowest valued edge to remove.
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After the removal of this edge, the betweenness values can be recomputed for the

newly modified subgraph and the process repeated again and again until there are

no edges left in the discovered graph (the discovered graph is totally destroyed).

Figures 45 on the following page and 46 on page 162 show the effects of repeatedly

applying attack AE,L or AE,H profile to the discovered subgraph of path length 3.

In each figure, the betweenness value of each edge is written on the edge. The edge

with the lowest (Figure 45 on the following page) or highest (Figure 46 on page 162)

betweenness value is highlighted in red, prior to it being removed. After the removal

of the edge, the betweenness values of all the remaining edges is computed shown in

the next sub-figure, along with the next edge that has been selected for removal. The

four sub-figures in Figures 45 on the following page and 46 on page 162 show this

process. When two or more edges have the same betweenness value, the selection of

which edge to remove it totally random.

Attack profile AE,L tends to attack the periphery of the graph, while profile AE,H

tends to attack the core of the graph. Either profile will result in a fully disconnected

graph with the same number of removals, selecting the highest valued edge causes

more damage quicker.

Table 22 on page 163 lists the computed damage to the discovered subgraph

after the removal of either the highest or lowest betweenness valued edge. Figure 47

on page 164 shows the damage plotted against the deletion. There are 16 edges in

the discovered subgraph and damage is total upon the removal of the last edge.

Vertex selection

The attacker can compute the betweenness of any vertex in the subgraph that

he has discovered Table 20 on page 157. Based on these computed betweenness

values, the attacker can select either the highest or lowest valued vertex to remove.

After the removal of this vertex, the betweenness values can be recomputed for the

newly modified subgraph and the process repeated again and again until there are

no vertices left in the discovered graph (the discovered graph is totally destroyed).

Figures 48 on page 166 and 49 on page 167 show the effects of repeatedly applying

AV,L or AV,H profile to the discovered subgraph of path length 3. In each figure,

the betweenness value of each vertex is written in the vertex. The vertex with the

lowest (Figure 48 on page 166) or highest (Figure 49 on page 167) betweenness value

is highlighted in yellow, prior to it being removed. After the removal of the vertex,
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(a) First lowest has been identified (b) Previous lowest has been removed, new
lowest identified

(c) Previous lowest has been removed, new
lowest identified

(d) Previous lowest has been removed, new
lowest identified

Figure 45. The effects of the AE,L attack profile on the sample graph. Vertex
5 is the center vertex and is marked in red. The discovered graph is at a path
length of 3 from the center vertex and is marked in pink. The edge with the lowest
betweenness value is marked in red. After each deletion, all edge betweenness values
are recomputed because the graph has changed. Some of the edges are unlabeled

because the attacker has not “discovered” them.
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(a) First highest has been identified (b) Previous highest has been removed, new
highest identified

(c) Previous highest has been removed, new
highest identified

(d) Previous highest has been removed, new
highest identified

Figure 46. The effects of the AE,H attack profile on the sample graph. Vertex
5 is the center vertex and is marked in red. The discovered graph is at a path
length of 3 from the center vertex and is marked in pink. The edge with the highest
betweenness value is marked in red. After each deletion, all edge betweenness values
are recomputed because the graph has changed. Some of the edges are unlabeled

because the attacker has not “discovered” them.
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Table 22. Damage to the discovered subgraph of path length 3 based on AE,∗ attack
profiles. The betweenness of each edge is recomputed after the removal of either the
highest or lowest betweenness valued edge. The process is repeated again and again

until all edges are removed.

Deletion Local
damage
due to
AE,H

Global
damage
due to
local
damage
by AE,H

Local
damage
due to
AE,L

Global
damage
due to
local
damage
by AE,L

0 0.00 0.00 0.00 0.00

1 0.10 0.06 0.02 0.01

2 0.36 0.31 0.07 0.03

3 0.41 0.33 0.10 0.05

4 0.57 0.41 0.21 0.12

5 0.65 0.50 0.23 0.13

6 0.70 0.53 0.34 0.19

7 0.72 0.54 0.44 0.26

8 0.78 0.57 0.54 0.32

9 0.82 0.62 0.62 0.38

10 0.83 0.62 0.71 0.43

11 0.87 0.64 0.77 0.48

12 0.89 0.65 0.83 0.52

13 0.92 0.67 0.89 0.57

14 0.95 0.68 0.93 0.61

15 0.97 0.69 0.97 0.65

16 1.00 0.70 1.00 0.70
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Figure 47. Damage to the discovered graph of path length 3 based on AE,∗ attack
profiles. The “local” values are those that come from the discovered graph, while
the global values are from the total graph. Damage inflicted on the discovered graph
when using the high edge betweenness value and the resulting impact on the total
graph are show in black and red respectively. In a similar manner, damage caused
by choosing the low betweenness is shown in the green and blue lines respectively.
The betweenness of each edge is recomputed after the removal of either the highest
or lowest betweenness valued edge. The process is repeated again and again until

all edges are removed.
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the betweenness values of all the remaining vertices are computed and shown in

the next sub-figure, along with the next vertex that has been selected for removal.

The four sub-figures in Figures 48 on the next page and 49 on page 167 show this

process. When two or more vertices have the same betweenness value, the selection

of which edge to remove it totally random.

Attack profile AV,L tends to attack the periphery of the subgraph. While attack

profile AV,H tends to attack the core of the graph. While both selection choices will

result in a fully disconnected graph with the same number of removals, selecting the

highest valued vertex causes more damage quicker.

The betweenness computation, removal and damage computation process is

shown in Table 23 on page 168 and Figure 50 on page 169. The global high

line in Figure 50 on page 169 goes flat after the fifth deletion while the global low

line continues to increase. This behavior is explained by looking at Figures 51(a)

on page 170 and 51(b) on page 170. By the fifth high deletion, the discovered and

global graphs are disconnected and further local deletions do not affect the global

graph. In Figure 51(a) on page 170, the discovered and global graphs are still

connected and local deletions will affect the global graph.

Degree selection

The attacker can compute the degreeness of any vertex in the subgraph that he

has discovered Table 21 on page 158. Based on these values, the attacker can select

either the highest or lowest valued vertex to remove. After the removal of this vertex,

the degreeness values can be recomputed for the newly modified subgraph and the

process repeated again and again until there are no vertices left in the discovered

graph (the discovered graph is totally destroyed).

Figures 52 on page 172 and 53 on page 173 show the effects of repeatedly applying

attack AD,L or AD,H profiles to the discovered subgraph of path length 3. In each

figure, the degreeness value of each vertex is written in the vertex. The edge with

the lowest (Figure 52 on page 172) or highest (Figure 53 on page 173) betweenness

value is highlighted in yellow, prior to it being removed. After the removal of the

vertex, the degreeness values of all the remaining vertices are computed shown in

the next sub-figure, along with the next vertex that has been selected for removal.

The four sub-figures in Figures 52 on page 172 and 53 on page 173 show this process.

When two or more vertices have the same degreeness value, the selection of which
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(a) First lowest has been identified (b) Previous lowest has been removed, new
lowest identified

(c) Previous lowest has been removed, new
lowest identified

(d) Previous lowest has been removed, new
lowest identified

Figure 48. The effects of an AV,L attack profile on the sample graph. Vertex 5 is the
center vertex and is shown in red. The discovered graph, in pink is at a distance of
3 from the center vertex. Each vertex is labeled with the number of shortest paths
that go use that vertex. The vertex with the lowest betweenness is drawn in yellow.
Each time, the lowest valued vertex is removed from the discovered graph and all
betweenness values for the discovered graph are recomputed. If there is more than
one vertex with the same low value, one is selected at random for removal. Some of

the vertices are unlabeled because the attacker has not “discovered” them.
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(a) First highest has been identified (b) Previous highest has been removed, new
highest identified

(c) Previous highest has been removed, new
highest identified

(d) Previous highest has been removed, new
highest identified

Figure 49. The effects of an AV,H attack profile on the sample graph. Vertex 5 is
the center vertex. The discovered graph is at a distance of 3 from the center vertex.
The vertex with the highest betweenness is drawn in yellow. Each time, the highest
valued vertex is removed from the discovered graph and all betweenness values for
the discovered graph are recomputed. If there is more than one vertex with the
same high value, one is selected at random for removal. Some of the vertices are

unlabeled because the attacker has not “discovered” them.
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Table 23. Damage to the discovered subgraph of path length 3 based on AV,∗ attack
profiles. The betweenness of each vertex is recomputed after the removal of either
the highest or lowest betweenness valued vertex. The process is repeated again and

again until all vertices are removed.

Deletion Local
damage
due to
AV,H

Global
damage
due to
local
damage
by AV,H

Local
damage
due to
AV,L

Global
damage
due to
local
damage
by AV,L

0 0.00 0.00 0.00 0.00

1 0.29 0.17 0.12 0.07

2 0.57 0.41 0.24 0.14

3 0.78 0.51 0.36 0.22

4 0.89 0.68 0.47 0.28

5 0.89 0.68 0.58 0.35

6 0.92 0.70 0.66 0.41

7 0.92 0.70 0.77 0.48

8 0.95 0.71 0.83 0.54

9 0.95 0.71 0.89 0.59

10 0.97 0.72 0.93 0.64

11 0.97 0.72 0.97 0.69

12 1.00 0.77 1.00 0.77
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Figure 50. Damage to the discovered subgraph of path length 3 based on AV,∗ attack
profiles. The “local” values are those that come from the discovered graph, while
the global values are from the total graph. Damage inflicted on the discovered graph
when using the high vertex betweenness value and the resulting impact on the total
graph are show in black and red respectively. In a similar manner, damage caused
by choosing the low betweenness is shown in the green and blue lines respectively.
The betweenness of each vertex is recomputed after the removal of either the highest
or lowest betweenness valued vertex. The process is repeated again and again until
all vertices are removed. Damage to the global graph is flat from deletion 4 through
11, while the local damage increases due to the selection of the particular high
valued vertices to remove. The low betweenness option does not show this type of
behavior. The system of graphs for high and low selection is shown in Figure 51

on the following page.
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(a) Results of AV,H (b) Results of AV,L

Figure 51. Markedly different graphs resulting from the differences in choosing
AV,H or AV,L attack profiles. Both sub-figures show the sample graph after 4 dele-
tions based on AV,H or AV,L attack profiles. Continued deletions in the discovered
graph (in pink) in the high betweenness case (Figure 51(a)), will have only marginal
effect on the global graph (the union of pink and green). Deletions in the discovered
graph in low betweenness case (Figure 51(b)) will continue to affect the union of
the pink and the green nodes because the two graphs (pink and green) are still con-
nected. Some of the vertices are unlabeled because the attacker has not “discovered”

them.
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edge to remove it totally random.

Attack profile AD,L tends to attack the periphery of the subgraph. While attack

profile AD,H tends to attack the core of the graph. While both selection choices will

result in a fully disconnected graph with the same number of removals, selecting the

highest valued vertex causes more damage quicker.

The betweenness computation, removal and damage computation process is

shown in Table 24 on page 174 and Figure 54 on page 175. The Global High

line in Figure 54 on page 175 goes flat after the fifth deletion while the Global Low

line continues to increase. This behavior is explained by looking at Figures 55(a)

on page 176 and 55(b) on page 176. Using a AD,H profile, the discovered and global

graphs are disconnected and further local deletions do not affect the global graph.

Using AD,L profile in Figure 55(b) on page 176 results in the discovered and global

graphs still being connected, so any deletions on the discovered graph affect the

global graph.

5.5.6 SUMMARY

All node based attacks (AV,∗, AD,∗) will totally destroy the discovered graph. All

edge based attacks AE,∗ will cause the discovered graph to be totally disconnected.

The two attack philosophies differ in their efficacy and are summarized in Table 25

on page 174. Attack efficacy was computed by integrating the area under the A∗,H

and dividing it by the area under the A∗,L curves (Equation 69).

efficacy =

∫ n

1
Damage(A∗H)

∫ n

1
Damage(A∗L)

(69)

In all cases the A∗,H attack profiles were more destructive than the A∗,L profile.

HTTP/HTML protocols preclude AE,∗ (see Section 6.11.2 on page 240).

If the attacker’s goal is to disconnect the graph by repeated use of the same

attack profile, then the most effective profiles in order are: AE,H , AV,H and AD,H .

5.6 EFFECT OF CLUSTERING COEFFICIENT EQUATION

SELECTION

Since being introduced by Watts and Strogatz [43] the clustering coefficient for

a graph (C(G)) is a staple topic when discussing Small-World graph characteristics.

Their definition was written in the caption of one figure and therefore is open for
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(a) First lowest has been identified (b) Previous lowest has been removed, new
lowest identified

(c) Previous lowest has been removed, new
lowest identified

(d) Previous lowest has been removed, new
lowest identified

Figure 52. The effects of an AD,L attack profile on the sample graph. Vertex 5
(marked in red) is the center vertex. The discovered graph is at a distance of 3 from
the center vertex. The vertex with the lowest degree is marked in yellow. In the case
where multiple vertices have the same degree value (Figure 52(b)), random choice
is used to select one vertex as the next one to be removed. Removal of a vertex
causes a reduction in the degree values of all of the removed vertex’s neighbors. This
change in the degreeness of potentially many vertices requires that the relative order
of the vertices be evaluated after each removal. Some of the vertices are unlabeled

because the attacker has not “discovered” them.
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(a) First highest has been identified (b) Previous highest has been removed, new
highest identified

(c) Previous highest has been removed, new
highest identified

(d) Previous highest has been removed, new
highest identified

Figure 53. The effects of on AD,H attack profile on the sample graph. Vertex 5
(marked in red) is the center vertex. The discovered graph is at a distance of 3
from the center vertex. The vertex with the highest degree is marked in yellow. In
the case where multiple vertices have the same degree value (Figure 53(c)), random
choice is used to select one vertex as the next one to be removed. Removal of a vertex
causes a reduction in the degree values of all of the removed vertex’s neighbors. This
change in the degreeness of potentially many vertices requires that the relative order
of the vertices be evaluated after each removal. Some of the vertices are unlabeled

because the attacker has not “discovered” them.
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Table 24. Damage to the discovered subgraph of path length 3 based on AD,∗ attack
profiles. The degree of each vertex is computed after each deletion. A vertex’s degree
value will change if one of its immediate neighbor vertices has been removed. The
removal of a neighbor will reduce the degreeness of all its neighbors by one. This
change in the degreeness of all neighboring vertices may affect the relative order of
all vertices based on their respective degreeness. The process is repeated again and

again until all edges are removed.

Deletion Local
damage
due to
AD,H

Global
damage
due to
local
damage
by AD,H

Local
damage
due to
AD,L

Global
damage
due to
local
damage
by AD,L

0 0.00 0.00 0.00 0.00

1 0.27 0.16 0.12 0.07

2 0.61 0.37 0.24 0.14

3 0.78 0.51 0.36 0.22

4 0.88 0.62 0.47 0.28

5 0.95 0.74 0.58 0.35

6 0.97 0.75 0.66 0.41

7 1.00 0.76 0.77 0.48

8 1.00 0.76 0.83 0.54

9 1.00 0.76 0.89 0.59

10 1.00 0.76 0.93 0.64

11 1.00 0.76 0.97 0.69

12 1.00 0.76 1.00 0.77

Table 25. Efficacy of various attack profiles. In general, regardless of the attack
profile utilized, attacking the highest valued component is the most destructive.

Attack
Profile

Attacks Efficacy

AE,H The core of the graph 1.43

AE,L The periphery of the graph 1.00

AV,H The core of the graph 1.42

AV,L The periphery of the graph 1.0

AD,H The core of the graph 1.40

AD,L The periphery of the graph 1.00
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Figure 54. Damage to the discovered subgraph of path length 3 by based on AD,∗ at-
tack profiles. The degree of each vertex is computed after each deletion. A vertex’s
degree value will change if one of its immediate neighbor vertices have been removed.
The removal of a neighbor will reduce the degreeness of all its neighbors by one. This
change in the degreeness of all neighboring vertices may affect the relative order of
all vertices based on their respective degreeness. The process is repeated again and
again until all vertices are removed. The flat area on the Global High line is related
to the discovered and global graphs becoming disconnected (Figure 55 on the next

page).
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(a) High degree (b) Low degree

Figure 55. The sample graph after removing the fifth discovered node using AD,∗ at-
tack profiles. The undiscovered graph is drawn in green. The central vertex, where
it remains is drawn in red (Figure 55(b)). The vertex that will be deleted next is
drawn in yellow. While each graph shows the effects of five deletions, selecting the
highest degreed node to delete results in a graph that is disconnected (Figure 55(a)).
Focusing on the lowest degreed node results in damage to the periphery and a graph
that is still connected (Figure 55(b)). Some of the vertices are unlabeled because

the attacker has not “discovered” them.

interpretation. Newman [178] presents equations for two different C(G)s and pro-

vides a formulaic interpretation of Watts’ definition. The equations for Watts and

Newman have been coded into the R packages, as well as one formulation whose

source I have yet to discover. Each C(G) definition, natural language interpretation,

and evaluation are given in the following subsections.

5.6.1 CLUSTERING COEFFICIENT DEFINITIONS

A literature search identified several different definitions for clustering coefficient

(Table 26 on the next page).
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Table 26. Various clustering coefficients definitions and their sources.

Cluster Coeffi-

cient Definition

Equation, Natural language, Ref. (Eq.)

CGlobal

C(G)Average =
3∗ΣNumberOfTrianglesInTheGraph

NumberOfConnectedTriples

The total number of triangles in the graph divided
by the total number of triples in the graph. [178,
This is the ratio of the means] (3) [179] (1)

C(G)AverageLocal

Ci =
NumberOfTrianglesConnectedToV ertexi

NumberOfTriplesCenteredAtV ertexi

C(G)AverageLocal =
1
n

∑

i
NumberOfTrianglesConnectedToV ertexI

NumberOfTriplesCenteredAtV ertexI

The summation of the ratio of triangles at each node divided
by the number of triples that that node belongs to averaged
over all nodes. [178, This is the means of the ratios.] [43]

(Continued on the next page.)
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Table 26. (Continued from the previous page.)

Cluster Coeffi-

cient Definition

Equation, Natural language, Ref. (Eq.)

C(G)AverageTriples

Ci =
NumberOfTrianglesConnectedToV ertexi

NumberOfTriplesCenteredAtV ertrxi

C(G)AverageTriples =
1∑

i,Ci ̸=0

∑

i
NumberOfTrianglesConnectedToV ertexI

NumberOfTriplesCenteredAtV ertrxI

The summation of the ratio of triangles at each node divided by
the number of triples that that node belongs to averaged over
nodes that belong to a triple. Equation “reverse engineered”
based on analysis of results using test environments.

C(G)Lattice

C(G)Lattice =
(3k−3)
2(2k−1)

= C(G) ∼ 3
4
for large k

C(G) is purely dependent on the number of nodes (k) that each
node is linked to. C(G)Lattice and C(G)LatticeRewired are special
cases of CGlobal because the number of triangles and triples
can be computed directly because the number of connections
(aka, degrees) is given by the value of k. [171] (pg. 8)

C(G)LatticeRewired

CLatticeRewired =
(3k−3)
(4k−2)

∗ (1− p)3

C(G) is initially dependent on the number of nodes (k)
that each node is linked to and then the probability
that an edge will be rewired. [171] (8)

(Last page.)
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5.6.2 TEST ENVIRONMENT

The purpose of this investigation was to validate the custom code written as

part of my research into USW construction. During this research, we learned that

R had different packages (igraph [78] and sna [180]) that would/could compute a

graph’s C(G); so we undertook to compare the various R libraries. The evaluation

process was to construct and evaluate Watts – Strogatz graphs, evaluate a small

graph that lends itself to hand computations, and finally to evaluate Unsupervised

Small-World (USW) graphs.

Part of the investigation, led to re-creating Watts – Strogatz ring lattices of size

2000 (n) and connections (k) equalling 10 where the probability of re-wiring varied

from 0 to 1. These values meet the requirement that [43]:

n ≫ k ≫ ln(n) ≫ 1

The results are shown in Figure 56 on the following page. The C(G) line is very

dark because there are eight symbols (one for each “type” in the igraph transitivity

function) being plotted nearly on top of each other. The raw data is shown as well

(see Figure 57 on the next page). The Watts – Strogatz small-world graphs were

created, average path length L(G), and different cluster coefficient C(G) values are

computed using the transitivity function from the R igraph package.

One of the interesting things in Figure 57 on the following page is that when the

probability approaches 1, the average path length approaches:

l = log(n)

.

Figure 58 on page 181 is an artificial undirected graph. It was created because it

is small enough to be validated by hand and yet has enough interesting features to

be useful when discussing the various C(G) definitions. Table 27 on page 181 lists

the number of triangles and triples that are used by the C(G) equations (Table 26

on page 177). The results of evaluating the sample graph with all R language igraph

and sna options are shown in Table 28 on page 182.
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Figure 56. Watts – Strogatz small-world graph analysis (normalized data).

Figure 57. Watts – Strogatz small-world graph analysis (raw data).
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Table 27. Number of triangles and triples per node from the test graph.

Node Num. of
Triangles
per Node

Num. of Triples
per Node

ΣTriangles

Triples

1 1 — {2, 1 ,3} 1 — {2, 1 ,3} 1
1
= 1

2 1 — {1, 2, 3} 1 — {1, 2, 3} 1
1
= 1

3 1 — {1, 3, 2} 6 — {1, 3, 2}, {1,3,4},
{4,3,5}, {1,3,5},
{2,3,5}, {2,3,4}

1
6
= 0.166666667

4 0 0 0
0
= Not a number

5 0 0 0
0
= Not a number

1

2

3

4 5

Figure 58. Sample undirected graph used to demonstrate effects of different Clus-
tering Coefficient definitions.
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Table 28. Results of exercising the igraph and sna packages with the sample graph.

Package, func-
tion control

Underlying
Clustering
Coefficient
equation

Numerical
result

Notes

igraph, transitiv-
ity(type = . . . )

null CGlobal 0.375

undirected CGlobal 0.375 Same as global

global CGlobal 0.375

globalundirected CGlobal 0.375 Same as global

localundirected Ci of
C(G)AverageLocal

{1, 1,
0.166667,
NaN, NaN}

A vector of Ci values
used to compute
C(G)AverageLocal

local Ci of
C(G)AverageLocal

{1, 1,
0.166667,
NaN, NaN}

A vector of Ci values
used to compute
C(G)AverageLocal

average C(G)AverageTriples0.7222

localaverage C(G)AverageTriples0.7222

localaverageundirected C(G)AverageTriples0.7222

sna, gtrans(measure = . . . )

null CGlobal 0.375

weak CGlobal 0.375 The transitive
constraint cor-
responding to:
a → b → c ⇒ a → c

strong C(G)AverageLocal 0.4333 The transitive
constraint cor-
responding to:
a → b → c ⇔ a → c

weakcensus N/A 6 The number of
transitive triads
used in computing
“weak” transitivity.

strongcensus N/A 26 The number of
transitive triads
used in computing
“strong” transitivity.
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(a) Normalized USW data.

(b) Raw USW data.

Figure 59. Average path lengths and clustering coefficients for various sized USW
graphs.
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Table 29. USW simulation parameters used to generate graphs to be analyzed
with igraph. A complete list of simulator command line options are provided in

Appendix C on page 368.

Parameter Value Notes

β 0.9 The value that the random number
has to exceed to connect to the
current non-wandering node

γ 60% Percentage of nodes used after connecting

vertices Varied The number of nodes in the system
was varied to see the effect of
C(G) and average length

1st node
choice

4 Always pick the highest degreed node to
start with when looking for a connection

hosts 5000 The number of hosts that the ver-
tices could be spread across

Initially we investigated the USW algorithm with limited β and γ values and

a very small graph (n = 10). The effects of varying β and γ from 0.0 to 1.0 are

shown in Figures 60 on the next page and 61 on page 186. The USW initial node

policy chosen was to have each wandering node start with the same initial non-

wandering node, node 0 circled in red in Figure 60 on the next page. Holding γ to

0.0 and varying β from 0.0 to 1.0 created graphs that evolved from star to non-closed

ring lattices. Increasing γ from 0.0 to 1.0 added a greater and greater number of

additional edges to the graph until the graph is an almost fully connected entity.

We investigated larger USW graphs with the command line parameters shown in

Table 29. Based on earlier investigations these values seemed to create Small-World

graphs. Figures 59(a) on the previous page and 59(b) on the preceding page show

the normalized and raw values respectively. In prior work, we had focused on the

shape of the C(G) curve as indicating the presence of a small-world being present.

5.6.3 RESULTS AND EVALUATION

Packages igraph and sna can take as input either a Graphviz [181] or a Pajek

[182] graph file and then manipulate the resulting data structure. The results of

exercising the packages are shown in Tables 28 on page 182. The sna documentation

states that the measurement type “strong” is the most commonly used, but does
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(a) β = 0.0,γ = 1.0 (b) β = 0.5,γ = 1.0 (c) β = 1.0,γ = 1.0

(d) β = 0.0,γ = 0.5 (e) β = 0.5,γ = 0.5 (f) β = 1.0,γ = 0.5

(g) β = 0.0,γ = 0.0 (h) β = 0.5,γ = 0.0 (i) β = 1.0,γ = 0.0

Figure 60. The effect of varying β and γ on a USW graph of size 10. β is the
threshold that a random number must exceed for a “wandering” node to attach
(make an undirected edge) to a “non-wandering“ node. As the ”wandering“ node
attempts to attach to a non-wandering node, it maintains an internal data structure
of nodes that it has failed to attach to and nodes that it will attempt to attach to in
the future. After the wandering node attaches to a non-wandering node, connections
are made to a γ portion of the previously and not yet visited non-wandering nodes.
For all runs, the same initial node (node 0, circled in red) was used as the first
initial node. When β and γ are 0, the graph takes on a “star” shape. As β increases

towards 1.0, the graph becomes more linear.
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Figure 61. Path length histogram. A more complete set of histograms are in Ap-
pendix J on page 509.

not provide any justification for the statement. Both packages reference Wasserman

and Faust [183] as their justification for their differing approaches.

Comparing the average C(G) values computed with the custom code to those

returned with the igraph transitivity type set to “average,” “localaverage” and “lo-

calundirectedaverage.” All values compared exactly out to 4 decimal places. The

other values for type agreed out to 3 decimal places. Therefore, probably any could

be used and be in close agreement.

This is a quote from Newman comparing the C(G) of structured and random

graphs (In his context, Newman is referring to our CGlobal or C(G)AverageLocal).:

“In general, regardless of which definition of the clustering coefficient

is used, the values tend to be considerably higher than for a random graph

with a similar number of vertices and edges. Indeed, it is suspected that

for many types of networks the probability that the friend of your friend

is also your friend should tend to a non-zero limit as the network becomes

large, so that C = O(1) as n ⇒ ∞. On the random graph, by contrast,

C = O(n−∞) for large n (either definition of C) and hence the real-world

and random graph values can be expected to differ by a factor of order

n.”

M. E. J. Newman [178]

Table 30 on the following page summarizes the relationships and regions of values

that define lattice, small-world and random graphs. Exact thresholds from one graph

type to another do not exist and the transition from one type to another can be very

gradual. Small-world region of values for L(G) and C(G) are wide and not exact.

The relationship between L(G) and C(G) compared to lattice and random graph

values are the real determinates as to whether any particular graph is a small-world
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Table 30. Comparing the regions for the expected average path length (L(G)) and
expected Clustering Coefficient (C(G)) for lattice, small-world and random graphs.

Graph type L(G) (average
path length)

C(G) (clustering
coefficient)

Lattice N
2∗K

3
4

Small-world N
2∗K

> L(G) > ln(N)
ln(⟨k⟩)

3
4
> C(G) > K

N

Random ∼ ln(N)
⟨k⟩

⟨k⟩
N

[113]. For the purposes of this discussion, the most important thing is that the

definition of C(G) be explicitly given and agreed to.

5.6.4 SUMMARY

We will use C(G)AverageLocal for offline analysis of USW graphs, because:

1. It is available in an “off the shelf” package, and

2. It is what Watts and Strogatz used.

We will use custom code for repeated bulk analysis of USW simulated graphs

because it is a compiled function versus a scripted function.

5.7 SUMMARY

This dissertation is at the intersection of emergent behavior, graph theory, digital

preservation (Figure 12 on page 30). USW algorithm will:

1. Take the emergent behavior tenets and apply them to WOs on the Internet,

2. Create graphs of WOs that are resilient, robust, and autonomous,

3. Communicate effectively and efficiently between one sender and an unknown

and unknowable collection of receivers, and

4. Make and create copies of WOs taking into account the update rates of the

WO’s aggregate components.
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CHAPTER 6

SIMULATION

6.1 INTRODUCTION

We have enumerated and expanded up a set of theories that form the foundation

of the USW algorithm (Chapter 5 on page 83). Based upon those theories, we:

1. Identify and describe a small set of USW related policies,

2. Identify and describe a single control variable,

3. Discuss how graph related metrics will change because of the USW algorithm,

and

4. Explain the orthogonality of USW WOs and the hosts where they live.

6.2 POLICIES

Policies are courses of action used in different circumstances. The USW algo-

rithm has a set of policies dealing with how to select the first WO, how to select the

next WO, how to select friends, how to propagate preservation copies, and so on.

Within each policy are a number of different approaches that could be “hardwired”

into a WO when it is created. The policy helps guide the behavior of the WO in

both “active” and “passive” maintenance roles.

Different policies are in place at different phases during the life of a WO (Fig-

ure 62 on the next page).

6.3 CONTROL VALUES

The single most controlling variable in the USW algorithm is β. A secondary

variable is γ. We will explain each.

β controls how much of the existing USW graph is “explored” prior to a “wander-

ing” WO making its first connection (Equation 70 on page 190). β is the threshold
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Figure 62. Creation, wandering, and active maintenance phases and policy navi-
gation aide. This is the basic navigation figure that will be annotated when each

policy is discussed.
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that a locally generated random number must exceed for a wandering WO to make

its first connection to an established WO. As the wandering WO attempts to attach

to an established WO, it maintains an internal data structure of WOs that it has

failed to attach to (the visitedSet) and WOs that it will attempt to attach to in the

future (the toBeV isitedSet). After the wandering WO attaches to an established

WO, friend connections are made to a portion of the visitedSet ∪ toBeV isitedSet.

The size of visitedSet∪ toBeV isitedSet is the size of the “discovered” USW graph

(Equation 71). The distinction between the “explored” and the “discovered” por-

tions of the USW graph, is that a when a new WO is identified then it becomes part

of the “discovered” graph. When a WO is examined and its friend connections are

identified, it becomes part of the “explored” graph. If β is a large value less than 1,

then the “wandering” WO will have have the opportunity to “discover” many WOs.

nexplored =
1

1− β
(70)

ndiscovered = ⟨k⟩ ∗ nexplored (71)

γ is a multiplicative factor applied to the size of visitedSet∪ toBeV isitedSet as

part of computing how many WOs to make friendship connections to based on the

selection method.

At a macro level, β determines how much of the USW graph will be explored

and γ determines how much of the discovered graph is remembered.

6.4 COMPARISON OF USW AND RANDOM GRAPHS

We exercised the USW algorithm and compared its results (C(G) and L(G))

with a random graph with the same number of vertices and edges (n and |E|).
The random graphs were created using the erdos.renyi.game() function from the

R igraph library [78]. We compared and tabulated the results (Table 31 on the

following page). Raw and normalized data are plotted in Figures 63 on page 192

and 64 on page 192. Examination of the normalized data (Figure 64 on page 192),

validates that the USW algorithm creates graphs that meet the requirements of a

small-world, where:

C(G)USW ≫ C(G)random (72)

L(G)USW ≈ L(G)random (73)
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Table 31. Comparing USW and random graph metrics.

Vertices Edges Avg. Deg. USW APL USW CC Rnd. APL Rnd. CC

50 275 11.000 1.776 0.358 1.849 0.211

100 623 12.460 1.874 0.266 2.067 0.124

200 1,379 13.790 1.931 0.193 2.295 0.072

300 2,148 14.320 1.952 0.149 2.434 0.045

400 2,910 14.550 1.964 0.121 2.534 0.036

6.5 GROWTH FUNCTION THEORETIC

Any discussion about USW growth at time i is predicated on the conditions at

time i− 1 (see Equations 74 through 80).

G(V,E) ≡ A USW graph exists (74)

(perhaps with 0 WOs or 0 edges). (75)

n(i−1) ≡ orderUSWgraph(|V (G)|) (76)
⟨

k(i−1)

⟩

≡ averagedegree (77)

ρ(G)(i−1) =
n(i−1) ⟨ki−1⟩

n(i−1)(n(i−1) − 1)
(78)

C(G)Average(i− 1) ≡ averageclusteringcoefficient (79)

=
|E(G)|

n(i−1)(n(i−1) − 1)
(80)

6.5.1 CURRENT CONDITION

After a number of WOs have been added to the USW graph, the current condition

is established and one WO is added to the system. The state of the system changes
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Figure 63. Comparing USW and random graph metrics (raw data).
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Figure 64. Comparing USW and random graph metrics (normalized data).
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(see Equations 81 through 88).

ni = n(i−1) + 1 (81)

nexplored =
1

1− β
(82)

ndiscovered = nexplored ∗ ⟨k⟩(i−1) (83)

1 ≤ x ≤ n (84)

kadded = f(γ, x) (85)

1 ≤ kadded ≤ x (86)

⟨k⟩i = ⟨k⟩(i−1) +
kadded

ni + 1
(87)

C(G)Average(i) =
|E(G)|+ kadded

ni ∗ (ni + 1)
(88)

Where:

1. nexplored (Equation 82) is the number of established WOs contacted by the

wandering WO,

2. ndiscovered (Equation 83) is the number of discovered WOs,

3. kadded (Equation 85) is the number of edges added to the system based on

γ and the size of the discovered graph. kadded is bounded between 1 and the

ndiscovered,

4. ⟨ki⟩ grows by the addition of number of new edges divided by the new number

of WOs.

6.5.2 EFFECT OF ADDITIONAL WOS

After WOs have been added to the system, graph metrics change (see Equa-

tions 89 on the next page through 92 on the following page). The graph continues

to grow and evolve as more and more WOs are added. The addition of a single WO

results in at least 1 undirected edge being added to the system, and that incremen-

tal amount is added to the current ⟨k⟩ (Equation 90 on the next page) resulting

in an every increasing ⟨k⟩. An increasing ⟨k⟩ means that the average density ρ(G)

increases as well (Equation 92 on the following page).
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ni ≡ orderUSWgraph (89)

⟨ki⟩ = ⟨ki−1⟩+
k

ni + 1
(90)

ρ(G)i =
n ∗ ⟨ki⟩

n ∗ (n− 1)
(91)

=
⟨ki⟩
n− 1

(92)

6.5.3 GROWTH THEORETIC SUMMARY

USW graph density is directly dependent on β and over time will increase towards

1. The USW growth function f(γ) controls how fast ρ(G) will increase. L(G) is

indirectly dependent on β and will decrease over time to 2 (Equation 95).

ρ(G) ↗ is directly dependent on β will increase over time towards 1.(93)

C(G)Average follows the same path as ρ(G). (94)

L(G) ↘ will decrease over time towards 2. (95)

6.6 ORTHOGONALITY OF FAMILIES, FRIENDS, AND HOSTS

The USW logically consists of connected WOs called “friends,” and collections of

preservation WOs called “families.” These connected WOs sets share connections,

but they are not connected via the traditional HTTP navigational links. WOs can

not exist in a vacuum. All WOs require an Web Infrastructure (WI) for persistent

storage and communication mechanisms. The WI provide hosts on which WO can

live. A host may have one or many WOs. The relationship of WOs and hosts can

be thought of as USW layers (Figure 65 on the following page andFigure 66 on

page 196).

The upper limit of preservation copies that a WO can create is dependent on

the number of friend connections that the WO has (see Section 6.3 on page 188)

and the number of unique hosts that those friends reside upon. For example, if WO

#4 and WO #5 both reside on host #3 (Figure 67 on page 197), then they can not
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Figure 65. USW WO “friendship” links. A WO may have many friends. Friendship
links are shown as solid black lines. Friendship links are not the same as HTML

links.

make preservation copies on that host, regardless of their friendship links.

6.7 DESIGN DECISIONS

The purpose of the USW algorithm is to allow for WOs to engage in the long-

term preservation of digital data, without the requirement of continuous human

interaction. Critical to solving this problem is the idea that the individual USW

components be self-reliant and self-organizing. A number of design decisions have

to be made to meet the self-organizing goals. In the following sections, we identify

and investigate a number of these design questions and present various alternatives

to each major design question.

6.7.1 CHOOSING THE INITIAL WO
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Figure 66. USW WO families. A WO may have many family members. Family
links are shown as dashed red lines.
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Figure 67. USW hosts. Hosts are shown as solid blue ovals.

Figure 68. Creation, wandering, and active maintenance phases and policy A.
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The initial WO is the WO that a “wandering” WO is introduced to when trying

to find a connection in the USW graph. The initial WO is selected via some mech-

anism outside the USW algorithm (Figure 68 on the preceding page). This is a list

of possible approaches:

1. Use a “well-known” WO : The same WO is used as the initial WO for all

“wandering” WOs. If all USW implementations were to use the same “well-

known” WO, then it is likely that a power law graph will start to grow, vice the

desired small-world graph. Using a “well-known” WO is easy to implement.

2. Random selection: An initial WO is selected at random from all available WOs

in the graph. This approach requires that the external process used to select

the initial WO have total knowledge of the current USW graph. As the graph

becomes larger over time, the effort and energy to explore the entire graph

may become excessive.

3. Preferential attachment : The existent USW graph is explored and the ordering

of the WOs (based on some criteria) is used for determining the initial WO.

A preferential attachment example based on “degreeness” is as follows:

(a) The USW graph is explored and a list of WOs that have been discovered

and visited is maintained in a visited list.

(b) For each WO in the visited list, some collection of metrics (such as de-

greeness) is maintained.

(c) One WO is selected based on:

i. The highest degree (the rich get richer [184]), or

ii. The lowest the degree, or

iii. Some probabilistic distribution.

6.7.2 CHOOSING THE NEXT WO

When the “wandering” WO encounters a new candidate attachment WO, it will

explore the WO and acquire a list of WOs that the candidate is currently attached

to. This action will increase the WO’s “discovered” portion of the total USW graph.

These WOs may become part of the list of “to be visited” WOs that the “wandering”

WO will visit, if it does not attach itself to the current candidate WO (Equation 98).
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Figure 69. Creation, wandering, and active maintenance phases and policy B.

{WOset} ≡ WOs connected to discovered WO (96)

NewlyDiscoveredSet = {WOset} ̸∈ visitedSet ∪ toBeV isitedSet (97)

toBeV isitedSet = toBeV isitedSet ∪ {NewlyDiscoveredSet} (98)

The set of WOs are added to the existing set of “to be visited” WOs is in

accordance with one of several possible approaches (Figure 69) (Equation 98).

This is a list of possible approaches when selecting the next WO to be visited:

1. FIFO processing : the NewlyDiscoveredSet is appended to

toBeV isitedSet and the next WO to be visited is at the head of the

toBeV isitedSet list.

2. LIFO processing : the NewlyDiscoveredSet is prepended to

toBeV isitedSet and the next WO to be visited is at the end of the

toBeV isitedSet list.
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3. Random processing : the NewlyDiscoveredSet is appended to

toBeV isitedSet and the next WO to be visited is selected at random

from the toBeV isitedSet list.

6.7.3 DECIDING HOW MANY CONNECTIONS TO MAKE

Discussion

The “wandering” WO discovers information about the USW graph, including

building a list of the WO that it has explored and discovered. At the end of its

“wandering” phase, it will make connections to some number of the WOs it has

discovered. There are a number of different ways to compute how many of these

connections to make. Some of these approaches are evaluated below (Equation 99).

friendsToBe =























































































n ∗ γ if selection method = 1

max(1, ln(n ∗ γ)) if selection method = 2

max(1, ln(n) ∗ γ) if selection method = 3

max(0, ln(n ∗ γ)) if selection method = 4

max(0, ln(n) ∗ γ) if selection method = 5

max(1, log2(n ∗ γ)) if selection method = 6

max(1, log2(n) ∗ γ) if selection method = 7

max(0, log2(n ∗ γ)) if selection method = 8

max(0, log2(n) ∗ γ) if selection method = 9

5 + log2(n ∗ γ) if selection method = 10

(99)

The evaluation was based on creating a USW graph with the same creation

parameters (n = 75, β = 0.85, γ = 0.10) and the selection method was varied.

Table 32 on the next page has the data resulting from using a “constant” (i.e., well

known) established WO and shows selected graph characteristics as the selection

method changed. For each resulting graph, a degree distribution histogram (of in,

out, and combined degrees) is created. Table 33 on page 202 has the data resulting

from selecting a “random” WO as the established WO and shows selected graph

characteristics as the selection method changed. Table 34 on page 203 has the data

resulting from using the last added WO as the established WO and shows selected

graph characteristics as the selection method changed.
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Table 32. Summary of various graph characteristics (n = 75, β = 0.85, γ = 0.10) as
a function of selection method and constant established WO. The USW algorithm
requires an “established” WO that all other WOs are initially introduced to. There-
fore, there is an initial WO and then 75 new WOs are introduced. A USW graph
may not have a total of 76 WOs due to the fidelity of the prototype environment
(e.g., HTTP timeouts or other systemic problems). On average, it takes about 12
events to create an edge and the system is averaging 111 events per minute (≈ 1.85

events per second).

Selection method

1 2 3 4 5 6 7 8 9 10

C(G) 0.09 0.065 0.068 0.052 0.000 0.104 0.066 0.104 0.000 0.304

L(G) 2.660 2.092 2.141 2.061 2.058 2.074 2.100 2.022 2.057 1.819

Time(min.) 29 29 27 25 14 48 27 30 13 101

Events 3,234 3,332 3,100 2,698 1,638 4,151 3,143 3,560 1,604 11,287

Min(k) 1 2 2 1 1 2 2 1 1 6

⟨k⟩ 3.7 3.7 3.6 3.1 1.9 4.5 3.5 4.1 1.9 13.6

Max (k) 24 67 60 68 60 67 66 68 61 75

Std. dev.
(k)

4.4 7.6 6.9 7.8 7.3 7.5 7.4 7.8 7.3 8.6

Actual.
WOs

73 76 75 73 66 76 76 72 67 76

Edges 269 284 267 226 127 343 269 295 129 1037

Degree
hist. fig.

139 140 141 142 143 144 145 146 147 148

All of the log graphs showed one, or possibly two WOs that were extremely

well-connected. So well-connected, that the effort to slow the connection growth

effectively transferred all the growth to a single WO. If the user were to attempt to

service this well-connected WO, then all the concerns enumerated in the Introduc-

tion would come to the front.

This connectedness may be the result of the way the USW graphs were created.

To wit:

1. All WOs used the same initial established WO to start the USW algorithm.

This mimics using a “well-known” WO as the starting point. If the starting

WO was selected at random (requiring knowledge of the entire USW graph)

then results may be different.

2. All WOs used the same series of random numbers. Random numbers are used
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to determine when to make the first USW WO connection (thereby beginning

the transition from “wandering” to “established’) and for selecting the initial

set of WOs to form “friendship links” with. Having a different series of random

numbers would make a difference in the USW graph.

Table 33. Summary of various graph characteristics (n = 75, β = 0.85, γ = 0.10) as
a function of random selection method to select the established WO. The USW
algorithm requires an “established” WO that all other WOs are initially introduced
to. Therefore, there is an initial WO and then 75 new WOs are introduced. A USW
graph may not have a total of 76 WOs due to failures of the prototype environment
(e.g., HTTP timeouts or other systemic problems). On average, it takes about 12
events to create an edge and the system is averaging 111 events per minute (≈ 1.85
events per second). The established WO was selected from all the WO currently in

the USW graph when the wandering WO as introduced.

Selection method

1 2 3 4 5 6 7 8 9 10

C(G) 0.070 0.008 0.008 0.000 0.000 0.040 0.040 0.008 0.006 0.000

L(G) 2.966 2.434 2.434 3.832 3.690 2.684 2.684 2.434 3.269 3.690

Time(min.) 92 85 173 69 67 93 97 72 64 205

Events 3,646 3,908 3,908 2,900 2,802 4,002 3,805 3,158 2,802 8,737

Min(k) 1 2 2 1 2 1 4 2 2 1

⟨k⟩ 3.5 3.9 3.9 2.1 1.9 8.1 4.1 3.9 2.7 1.9

Max (k) 18 37 37 15 21 33 33 37 20 21

Std. dev.
(k)

2.7 5.6 5.6 2.6 3.4 4.7 4.7 5.6 3.0 3.4

Actual.
WOs

76 75 75 76 76 75 75 75 76 76

Edges 264 290 290 163 148 304 304 290 202 148

Degree
hist. fig.

149 150 151 152 153 154 155 156 157 158

Thoughts on random selection

The question about which WO would be chosen and how often it would be chosen

as the USW grows has interesting and unexpected aspects. As the graph grows, each

WO has exactly the same probability of being selected as the established WO as any

other. Table 35 on the following page shows the probability that any of the 4 WOs

in the USW will be selected as the graph grows from 1 WO to 4. When there is 1

WO, then the probability that it will be selected is 1. When there are two WOs,
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Table 34. Summary of various graph characteristics (n = 75, β = 0.85, γ = 0.10) as
a function of using the last previously entered WO as the established WO.

Selection method

1 2 3 4 5 6 7 8 9 10

C(G) 0.094 0.005 0.004 0.0000 0.000 0.000 0.004 0.000 0.000 0.353

L(G) 2.835 2.412 2.413 7.936 7.969 7.969 2.412 7.969 7.943 1.913

Time(min.) 91 84 94 60 62 50 89 61 62 201

Events 4,197 3,944 3,931 2,790 2,797 4,099 3,934 2,797 2,784 8,382

Min(k) 1 2 2 1 1 1 2 1 1 6

⟨k⟩ 4.4 3.9 3.9 2.0 2.0 2.0 3.9 2.0 1.9 11.2

Max (k) 30 38 38 5 5 5 38 5 5 25

Std. dev.
(k)

3.9 5.7 5.7 1.7 1.7 1.7 5.7 1.7 1.6 4.9

Actual.
WOs

76 76 76 76 76 76 76 76 76 76

Edges 334 295 293 149 150 150 294 150 148 855

Degree
hist. fig.

159 160 161 162 163 164 165 166 167 168

then each as a probability of 1
2
, and so on. When the graph has reached 4 WOs, the

first WO will have been selected 52% of the time.

The behavior of WO #1 is interesting and is in fact a harmonic series (Equa-

tion 100) [185]:

Hn = 1 +
1

2
+

1

3
+

1

4
+ ...

1

n
=

n
∑

i=1

1

i
(100)

The harmonic series displays interesting characteristics when evaluated to see

which WOs are selected most often. Figures 70 on page 205 through 73 on page 208

show that WO#1 has a full harmonic series sum and each WO after that is miss-

ing their respective first harmonic series terms. Each figure has two Y-axes. The

left-hand axis is the harmonic value of the WO. The right-hand axis is the cumu-

lative probability density (CPD) function of the individual WOs harmonic number

normalized to the sum of all the harmonic numbers. Additionally, each figure has

horizontal lines at 50% and 75% CPD intersecting the CPD curve and then vertical

lines showing where that CPD percentage is met on the X-axis. As the USW graph

grows larger, the 50% value tends towards 18% of the order of the USW graph,

while the 75% tends towards the 38%.
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Table 35. How often a WO is chosen as USW graph grows.

WO #

#WO in USW
graph

1 2 3 4 Σ

1 1 1

2 1
2

1
2

1

3 1
3

1
3

1
3

1

4 1
4

1
4

1
4

1
4

1

Σ 2.08 1.08 0.58 0.25 4

Prob. 0.52 0.27 0.15 0.06 1

Table 36. Trending 50% and 70% based on USW graph size.

Order
USW
graph

50% WO % order 75% WO % order

4 1 0 2 50

100 19 19 39 39

1,000 187 18.7 383 38.3

10,000 1,867 18.67 3,824 38.24

100,000 18,668 18.668 38,241 38.241

Based on the limited test cases, 50% of the randomly selected WOs will be in

the first 19% USW WOs (Table 36).

Thoughts on last WO selection

Examining the degree histograms (Figure 149 on page 431 through Figure 158

on page 440), the histogram given by 5 + log2(n ∗ γ) (and shown in Figure 158

on page 440) exhibit the type of degree clustering and C(G) that are typical of

“classical” Watts – Strogatz [43] small-worlds.
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Figure 70. Harmonic series of 4 points showing which WOs are selected 50% and
75% of the time.
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Figure 71. Harmonic series of 100 points showing which WOs are selected 50% and
75% of the time.
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Figure 72. Harmonic series of 1,000 points showing which WOs are selected 50%
and 75% of the time.
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Figure 73. Harmonic series of 10,000 points showing which WOs are selected 50%
and 75% of the time.
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Evaluation

1. ⟨k⟩ is not an adequate descriptor : all of the degree distribution histograms

have a very long power law tail. A power law distribution might be more

descriptive.

2. Lower log base results in more left-handed skewing : based on the actions of

the max function. The max function returns one of three values:

� 0 if log(n ∗ γ) is less than 0 (happens when n is less than 1
γ
) based on

selection method,

� 1 if log(n ∗ γ) is less than 1 (happens when n is less than 1
γ
) based on

selection method,

� log(n ∗ γ) otherwise.

3. Artificial offset results in a much denser graph (as in many edges relative to

the other approaches) and more friends per WO. Each friends means that the

User Interface in a fielded system will take more time to process all friends.

4. Using the last WO and the artificial offset results in a graph in more general

keeping with a “classical” small-world.

6.7.4 CHOOSING CONNECTIONS

After the “wandering” WO has made a connection to the candidate WO, it may

be left with WOs in its toBeV isitedSet and its visitedSet lists. Attaching itself

to WOs in the toBeV isitedSet list is akin to making attachments into the future

(because the “wandering” WO would visit these WOs sometime in the future).

Attaching itself to WO in the visitedSet list is akin to attaching itself to the past

(because the “wandering” WO has already visited those WOs before and did not

make a connection). We will evaluate different approaches in order to identify which

approach is best for selecting which WOs to connect to.

After the number of connections to make has been determined (Equation 99 on

page 200), which WOs to select has to be addressed. There are three different lists

of WOs from which friend connections can be made. The lists are:

1. {WOset}: WOs connected to the candidate WO,
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Figure 74. Creation, wandering, and active maintenance phases and policies C and
E.
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2. visitedSet: WOs that the wandering WO has explored, but not connected to

3. toBeV isitedSet: WOs that the wandering WO has not explored.

Friendship connections are made to friendsToBe WOs using the following

approaches:

1. Randomly : select friendsToBe of WOs in visitedSet ∪ toBeV isitedSet.

2. FIFO : select friendsToBe of WOs from visitedSet ∪ toBeV isitedSet.

3. LIFO : select friendsToBe of WOs from visitedSet ∪ toBeV isitedSet.

4. Preferentially connect to candidate WO’s friendsToBe friends from {WOset}.
If friendsToBe > |{WOset}| then the remaining connections are selected

based on “random selection.”

6.7.5 CHOOSING WHEN TO MAKE A PRESERVATION COPY

An active maintenance WO is responsible for ensuring that enough preserva-

tion copies have been created and for ensuring that the copies are spread across

unique hosts (Figure 74 on the previous page). When the WO determines that ad-

ditional preservation copies need to be made to get closer to the maximum number

of preservation copies that it was directed to achieve when it was created, there are

several different approaches that it can take. During the life of the maintenance

WO, it will have many opportunities to make preservation copies. At each of these

opportunities, it can be:

1. Polite and attempt to find room for a single preservation copy,

2. Moderately aggressive and add enough preservation copies to immediately

reach the minimum number of copies and after that only add one more at

a time to reach the maximum number, or

3. Aggressive and attempt to make the maximum number of preservation copies

every opportunity.

The polite policy keeps the number of communications between the WOs to a

minimum, but takes the longest time to reach the maximum. The moderately ag-

gressive increases the communication activity until the minimum number is reached
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Table 37. Combinatorial explosion of possible USW control parameters. If the step
resolution for both β and γ is 0.01, then the table shows the number of combinatorial
possible USW algorithm control parameters. If the resolution is made finer, then

the number of combinations will increase.

Parameter Values

Policy A 3

Policy B 3

Policy C 4

Selection method 10

β 1
resolution

γ 1
resolution

Combinations 3,600,000

and after that communication activity drops off. Using the moderately aggressive

approach, the minimum number is reached quickly, while it takes longer to reach

the maximum. The aggressive approach maximizes communication at all times and

reaches the maximum number of copies faster than the other approaches.

6.8 REDUCING THE PROBLEM SPACE

In Section 6 on page 188, we identified a collection of policies and control param-

eters that are essential to the USW algorithm. Each policy has a finite number of

values, and the control parameters are floating point numbers [0, 1]. The combina-

torial product of these parameters is too large for practical exploration (Table 37).

The size of the USW control parameter space must be reduced to allow practical

testing and analysis. The following sections will address each policy and identify

values that meet the small-world criteria for C(G)Average and L(G).

6.8.1 CHOOSING THE INITIAL WO

Policy A deals with how to select the initial WO that a wandering WO is initially

introduced to in order to start exploring and discovering the USW graph. We have

enumerated a number of different approaches that could be used (see Section 6.7.1

on page 195).

6.8.2 CHOOSING THE NEXT WO
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Policy B deals with different ways the wandering WO can select the next WO

to be explored from the wandering WO’s internal list of WOs it had discovered.

We have enumerated a number of different approaches that could be used (see

Section 6.7.2 on page 198).

6.8.3 CHOOSING CONNECTIONS

Policy C deals with computing how many WOs the wandering WO should select

from its visitedSet and toBeV isitedSet after the wandering WO has made its first

connection. We have enumerated a number of different approaches that could be

used (see Section 6.7.4 on page 209).

6.8.4 CHOOSING WHEN TO MAKE A PRESERVATION COPY

We investigate how different replication policies ranging from least aggressive to

most aggressive affect the level of preservation achieved by autonomic processes used

by smart web objects (WOs). Based on simulations of small-world graphs of WOs

created using the Unsupervised Small-World algorithm, we report quantitative and

qualitative results for graphs ranging in size from 10 to 5,000 WOs. Our results show

that a moderately aggressive replication policy makes the best use of distributed

host resources and that the communication costs for selected replication policies

only differ by 18% for very small graphs and less than 5% for larger graphs.

Just as there are orthogonal views of a collection of WOs; within a simulation

there can be different views of time. In our event driven simulation, a simulation

event is equivalent to simulation time Se ≡ St. A time slice shows the state of the

system after every 10 Se ( Tslice = 10Se). A time step is a regular offset into the

simulation after an initial offset (Tstep = Se3500 + Tslice ∗ step). The Tslice value

was chosen to facilitate analysis of the data from the simulation. The Tstep offset

of 3,500 was chosen because many of the initial events in the simulation dealt with

the configuration of internal data structures and not with the actions of the WOs

or the hosts.

1. Least aggressive — a WO will only make a single replication copy at a

time, regardless of how many copies are needed, how many opportunities are

available to the WO at a particular time and will continue to make single

copies until it reaches chard.
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Figure 75. A snapshot of the least aggressive replication policy. WOs are shown
on the left and hosts are shown on the right. The colors show the state of the
WO’s preservation copies, or host’s preservation capacity used at the time of the
measurement. Under each circular plot is a Tstephistogram. Above each circular
plot is a status line showing Tstep, how many WOs are in the system or how many

hosts are active and preserving data.

2. Moderately aggressive — a WO will make as many copies as it can to

reach csoft when it makes its first connection, then it will fall back to least

aggressive policy.

3. Most aggressive — a WO will make as many copies as it can to reach

chard when it makes its first connection, then it will fall back to least aggres-

sive policy.

The effect of both the moderately and most aggressive replication behaviors is

that after reaching their respective goals, they behave like the least aggressive.

Figure 75 on the previous page serves as a legend for the sub-figures in Figures 76

on the following page and 78 on page 219 and shows WO and host replication status

as a function of Tstep. Figure 75 on the preceding page is divided into four areas.

The left half of Figure 75 on the previous page shows WO related data, while the

right half shows host data. WOs are created sequentially and added to the model.
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In Figure 76 on the following page, WOs are added in a spiral fashion starting at

the center of the “circular” plot, and newer WOs are plotted in a circular manner

from the center. This presentation is much the same as the rings of a tree, in that

the oldest are in center and the youngest are on the outer edge.

The preservation status of a WO is approximated by the color assigned to the

WO. Initially the WO has c = 0 copies and is colored red. As the WO creates

copies, the color changes to yellow. When the WO reaches csoft, the color changes

to green. When chardis reached, the WO turns blue. The rules of the model (Table 3

on page 17) permit the killing of one WO’s replication copies for the sake of creating

a room for copy of a WO that needs to reach its csoft(i.e., if a WOi,c,h has more than

its csoft and WOj,c,h has not reached its csoft, then WOi,c,h will sacrifice one of its

copies so that the other WO can move closer to csoft). Sacrificing a preservation

copy for the betterment of the whole is the embodiment of velocity matching. The

effect of this behavior is that a WO can change color from red to yellow to green

and then possibly to blue. If the WO changes to blue, it might oscillate between

green and blue as its preservation copies oscillate between csoftand chard. A WO

will never sacrifice a copy if it has not exceeded its csoft. The histogram under the

WO circular plot shows the percentage of WOs in each of the different preservation

copy states as a function of Tstep.

The preservation utilization status of a host is shown in the right half of Figure 75

on the preceding page. The universe of possible hosts is constant and is represented

by the entire right half plot. Hosts that are not being used are shown in grey. The

placement of the host in the figure is based on the host’s sequential number in the

model. Those hosts that are used are drawn in one of five colors. If the host is used

in the model, but is not hosting any preservation copies then it is colored white. If

less than 25% of the host’s capacity is used then it is colored red. Similarly, it is

yellow if less than 50% is used, green if less than 75% and blue if greater than 75%.

The histogram on the host’s side shows the percentage of the hosts that are in any

of the particular states.

The model has nmax=500, csoft=3, chard= 5, hmax = 1000, hcap = 5. The

model runs until it reaches a steady state. A steady state is defined as: all WOs

are unable to locate candidate hosts on which to store preservation copies. Steady

state is reached at different times based on the replication policy. In all cases, all

nmax WOs have been introduced into the model by Tstep = 100.
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(a) Tstep = 1 (b) Tstep = 10

(c) Tstep = 50 (d) Tstep = 100

Figure 76. The growth of a nmax = 500 WO system captured at various time-steps.
The left half of each sub-figure shows the “tree ring” growth of the WO’s portion
of the system. The WO and host histograms show the percentage of WO and hosts
that are in their respective states as a function of time. All WOs have been created

and assigned to a host by Tstep = 100.
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The initial WO is plotted in the center of the left-hand upper quadrant of each

composite, Figure 76(a) shows the first 5 WOs in the system. The one in the center

is the oldest WO, while the others are younger. The five WOs currently in the

system (Figure 76(a)), live on hosts in the system. Hosts can live anywhere on the

network and where a particular host is drawn information. The hosts in Figure 76(a)

have a finite capacity that their respective system administrators have allocated to

the preservation of copies of “foreign” WOs. Foreign copies are copies of WOs that

originated on another host and are being preserved on the local host.

At any point in time during the simulation, there will likely be a difference in

the number of preservation copies that the WOs want to create and the preservation

capacity of all the hosts. Reynolds’ rules (Table 3 on page 17) attempt to balance

these two requirements over time. Figure 76(a) on the previous page indicates that

the WOs have each made some number of copies (they are colored yellow vice red)

and those copies are spread across some of the hosts in a non-even manner. One host

has used all its capacity (as shown in blue), while one has not used any (as shown

in white). The remaining hosts have used something in between those two extremes

(they are yellow and red). In Figure 76(a) on the preceding page, the histograms do

not show too much information because the figure shows the Tslice = 1 of system

growth.

In Figure 76(b) on the previous page, Tslice = 10. The tree ring growth of

the WOs is becoming more apparent. Older WOs have had more opportunities to

make preservation copies of themselves, therefore there is more green and blue in

the center of the WO plot. Many of the hosts are have reached hcap, as indicated

by the number of blue hosts. The histograms are starting to become filled with

data. The WO histogram is starting to show that the percentage of the WOs that

have made some, but not all their preservation copies (those in yellow) is starting to

grow, while the percentage of those that have reached their goals is lessening. The

hosts histogram is starting to show that the percentage of the hosts that have been

discovered and added to the system (the grey area), is starting to decrease. A WO

will be local to exactly one host. A host may have more than one WO local to it.

A WO will not put a preservation copy on any host that it lives on, or that already

has a preservation copy of itself.

In Figure 76(c) on the preceding page, Tslice = 50. The tree ring presentation

of the WO success at preservation is becoming more pronounced. Younger WOs are
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Figure 77. Least aggressive replication policy. System stabilization at Tstep = 334.
Using a moderately aggressive policy results in a higher percentage of WOs meeting
their preservation goals sooner and makes more efficient use of limited host resources

sooner.

struggling to make copies, while the old ones are maintaining their copies. More of

the hosts are being brought into the system (the percentage of grey hosts is decreas-

ing), but a significant percentage of the hosts are not being used for preservation

(those shown in white).

In Figure 76(d) on the previous page, Tslice = 100. All WOs have been intro-

duced into the system. The tree ring preservation effect is still evident, and some

of the new WOs have been fortunate enough to make some number of preserva-

tion copies (as shown by the yellow markers in the sea of red). The percentage of

hosts that are still not preserving any WOs is still significant, and the percentage

of hosts that have reached hcap is holding constant. The system will continue to

evolve until it reaches a steady state, when those WOs that have preserved as many

copies of themselves as they can based on their knowledge of hosts that have ex-

cess preservation capacity. The final time slice for this particular graph is shown in

Figure 77.
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Figure 78. Moderately aggressive replication policy. System stabilization Tstep =
554. Using a moderately aggressive policy results in a higher percentage of WOs
meeting their preservation goals sooner and makes more efficient use of limited host

resources sooner.
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Figure 79. Most aggressive replication policy. System stabilization at Tstep = 300.
Using a moderately aggressive policy results in a higher percentage of WOs meeting
their preservation goals sooner and makes more efficient use of limited host resources

sooner.
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(a) WO1,c,h, replication pol-
icy 1.

(b) WO250,c,h, replication
policy 1.

(c) Sum of all WOs, replica-
tion policy 1.

(d) WO1,c,h, replication pol-
icy 2.

(e) WO250,c,h, replication
policy 2.

(f) Sum of all WOs, replica-
tion policy 2.

(g) WO1,c,h, replication pol-
icy 3.

(h) WO250,c,h, replication
policy 3.

(i) Sum of all WOs, replica-
tion policy 3.

Figure 80. Showing total messages sent and received by an early node, a mid-
simulation node and all WOs. The shape of the message sent curves (in black) for
the early node is different based on the replication policy (see Figures 80(a), 80(d)
and 80(g)). While the shape of messages received curve (in red) remains almost
the same. This behavior is contrasted with the mid-simulation node (see Fig-
ures 80(b), 80(e) and 80(h)). The mid-simulation node message sent curve is con-
stant regardless of the replication policy. The growth and maintenance phases are

shown in light blue and light green respectively.
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6.8.5 PRESERVATION STATUS WHEN THE SYSTEM REACHES

STEADY STATE

Figure 78 on the next page shows the steady state condition of the same system

using the three different replication policies. All WOs have been introduced into the

system by Tstep = 100 (as shown by the “kink” in the percentage of hosts that are

used histogram). Each replication policy resulted in a significantly different time

to reach a steady state. A steady state in the system is achieved when the WOs

have made as many preservation copies as they are able to based on the number

of friends that they have acquired when the system was in a growth phase and

the number of unique hosts that those friends live on. The WOs are programmed

with csoft = 3, chard = 5 and hcap = 5. The hosts have enough preservation

capacity to accommodate the preservation needs of the WOs. If the WO can locate

enough unique hosts via its friends, then it will be able to meet its preservation

goals. These representative values for number of WOs, desired preservation levels

and host preservation capacity were chosen to illustrate the interaction between the

WOs as they move preservation copies from one host to another while attempting

to maximize the preservation needs of most of the WOs.

The least aggressive policy reaches steady state after Tstep = 334 (Figure 77 on

page 218) and a significant percentage of the WOs have not been able to make any

preservation copies (as shown by the lower-most (red) band in the histogram). If

the system were to be forced to operate longer; based on the downward trend of

the two lower-most bands, it might be possible for the system to achieve a higher

percentage of preservation. As shown in the node half of the figure, many of the

hosts are not preserving any WOs and those hosts that are preserving have reached

their capacity.

The moderately aggressive policy reaches steady state after Tstep = 554 (Fig-

ure 78 on page 219). Prior to Tstep = 100, most of the WOs have made most of

their preservation copies. After Tstep = 100, the percentage achieving chardslowly

increases until steady state at Tstep = 554. The hosts’ preservation capacity is used

by the WOs in the system almost as quickly as the hosts come on line. This is

indicated by the very narrow white region between the unused host region and the

totally used region. At steady state, only a very few of the hosts have not been

totally used (as shown by the few host usage squares that are neither blue or grey).
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The most aggressive policy reaches steady state after Tstep = 300 (Figure 79

on page 220). Close examination of the host histograms in Figures 78 on page 219

and 79 on page 220 show almost identical behavior both prior to Tstep = 100

and at steady state. Comparing the host usage plot in the two figures show that

slightly more hosts have unused capacity based on a most aggressive policy than a

moderately aggressive policy (390 versus 397). Based on nmax WOs in the system,

the difference between the two policies host under utilization does not appear to be

significant.

6.8.6 COMMUNICATION PHASES WHILE THE SYSTEM STRIVES

TO REACH STEADY STATE

From the WO’s perspective, there are two distinct phases of communication.

The first is when the WO is wandering through the graph and collecting information

from WOs that are already connected into the graph, called the growth phase. The

second is after the WO is connected into the graph and is based on the current

replication policy, and is called the maintenance phase. During the growth phase,

the WO is aggressively communicating with other WOs. While in the maintenance

phase, the WO is responding to queries and communications from other WOs. This

change in communication patterns occurs at Tstep = 100 in Figure 78 on page 219.

Tstep = 100 in Figure 78 on page 219 corresponds to approximately St = 3500

in Figure 80 on page 221. Figure 80 on page 221 shows the communications for 2

different WOs and the system in total as a function of the replication policy. WO1,c,h

and WO250,c,h were chosen to represent the messaging profiles of all WOs in order

to see if the profile changes as a function of when a WO enters the system. Time

in Figure 80 on page 221 runs until St = 15000 and messages are counted in bins

sized to 100 simulation events.

Looking at Figures 80(a) on page 221, 80(b) on page 221, 80(d) on page 221, 80(e)

on page 221, 80(g) on page 221 and 80(h) on page 221, there is a marked difference in

the communication curves between WO1,c,h and WO250,c,h. These curves (with only

minor differences) are consistent across all replication policies. WO1,c,h (the earliest

WO introduced into the system), sends a rather modest number of messages O(2n)

to WOs that are also in the system as WO1,c,h attempts to create preservation copies.

Under the least aggressive policy (Figure 80(a) on page 221), WO1,c,h sends a few

messages per time bin until the system enters the maintenance phase. The number
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of messages sent during the moderately aggressive policy is nominally the same

(Figure 80(d) on page 221). While the most aggressive policy results in messages

for just a couple of time bins and then virtually no messages are sent (Figure 80(g)

on page 221). Regardless of the replication policy, the number of messages that

WO1,c,h receives is about the same.

Comparing the message curves for WO1,c,h and WO250,c,h indicates that the sys-

tem discovered by the later WO is very different than the one discovered by the

earliest WO. The late arriving node has more than enough opportunities to satisfy

its preservation goals within the Tslice = 0. WO250,c,h sends all of its messages in

one time bin and virtually nothing thereafter. This behavior is constant across all

replication policies and indicates that the late arriving WOs are able to connect with

another WO in very short order (within one time bin) and almost immediately enter

into the maintenance phase of their existence. The maintenance phase of the system

corresponds to a combination of the velocity matching and flocking centering.

The system is in a growth phase from about Tslice = 1500 to Tslice = 3500 as

shown by the rising curves in the “Sum of all WOs” sub-figures 80(c) on page 221, 80(f)

on page 221 and 80(i) on page 221. During the growth phase, the wandering node

is sending and receiving a lot of messages while attempting to make its initial con-

nection into the graph. After Tslice = 3500, the system is in a maintenance phase

when the system is attempting to balance the preservation needs of the WOs with

the capacity of the hosts. Comparing the messages curves for the entire system

Figures 80(c) on page 221, 80(f) on page 221 and 80(i) on page 221 shows that there

is no qualitative difference between the number of messages sent and received in

the system based on replication policy. The nuances of the message curves for early

WOs is lost as the size of the system increases.

6.8.7 MESSAGES SENT AND RECEIVED AS THE SYSTEM GROWS

IN SIZE

Figures 78 on page 219 and 80 on page 221 showed the efficacy and communi-

cation costs associated with a system with nmax = 500 and hmax = 1000. These

values allowed the simulation to execute quickly, therefore enabling more options

and combinations to be investigated. After determining that at least a moderately

aggressive replication policy enabled a high percentage of WOs to meet at least their

csoftgoals, the next area of investigation was to determine how the total number of
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messages changes as a function of system size. Figure 80 on page 221 clearly shows

that there are two different types of communication curves reflecting the different

types of communication during the growth and maintenance phases. During the

maintenance phase, the WOs are attempting to spread their replication copies out

across all the unique hosts in their friend’s network. One of the contributing factors

to this spreading is the limited capacity of the hosts to support preservation. In

order to remove the effects of maintenance communications and focus purely on the

effect of the number of WOs in the system, a series of simulations were run where

hcap = 2 ∗ nmax. This ensured that there would be room on the host for any WO

that discovered the host via one of their friends. Based on the simulations, the

total number of messages exchanged during the growth phase approximates O(n2)

and the incremental messaging cost of each new WO to the system is O(2n).

6.8.8 COPY CREATION SUMMARY

We have shown that implementing Reynolds’ “boid” model that a limited num-

ber of rules can result in an emergent behavior system where web objects (WOs)

behave in a manner that works towards the betterment of the whole by occasionally

sacrificing an individual. Using simulations, we investigated different policies that

WOs could use when making preservation copies of themselves. The policies were:

(1) be least aggressive and only attempt to make a single copy at a time, (2) be

moderately aggressive and initially make at least a minimum number of copies and

then revert to policy (1), or (3) be most aggressive and make as many copies as

possible at every opportunity and then revert to policy (1).

There are two distinct communication message curves: one prior to all the WOs

being introduced into the system and one after. The system’s growth period is

characterized by many messages being sent from the wandering WO and few being

received while the WO attempts to make its appropriate number of preservation

copies. The maintenance period is characterized by a relatively few number of

messages as the WO is directed to sacrifice its preservation copies for the greater

good of the graph, and subsequently having to create copies anew. There are distinct

differences between the growth message curves of new and late arriving WOs, based

on the replication policy. The number of messages exchanged between WOs is

virtually independent of the replication policy used. The difference between the

maximum and minimum number of messages was only 18% when the USW graph
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(a) WOs not reaching mini-
mum, a “time of scarcity.”

(b) All WOs reaching mini-
mum.

(c) WOs reaching maximum, a
“time of plenty.”

Figure 81. Theoretical truth table showing all possible copying conditions. Showing
the combinations of number of preserved copies versus the minimum and maxi-
mum desired copies.The two horizontal lines represent the minimum and maximum

number of desired preservation copies.

had 100 WOs. As the size of the graph increased to 5,000 WOs, the difference varied

from 1% to 8%.

Based on simulations of 500 WOs and potentially 500 hosts with limited preserva-

tion capacity; a moderately aggressive replication policy enabled the WOs to attain

the same preservation percentage in the same time frame as the most aggressive pol-

icy and to more slowly exhaust the preservation capacity of the supporting hosts.

A moderately aggressive replication policy will make as many copies as quickly as

it can to reach a minimum number of preservation copies and then it will change

its behavior to making only one copy at a time until it has reached the its desired

maximum number of copies.

We provide a set of USW system design considerations based on WO preserva-

tion needs and the preservation capacity of the hosts in Appendix K on page 519.

Figure 81 is a truth table showing the relationship between WO preservation de-

sires and host capacity. Figures 82 on the following page and 86 on page 232 show

the results of a specific simulation, resulting in only 57% of the WOs achieving

their preservation needs while 35% of the host are at their maximum preservation

capacity.
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Table 38. USW simulation values used to reduce USW problem space.

Parameter Min. value Max. value Inc. value

Policy A 1 5 1

Policy B 1 3 1

Policy C 1 4 1

Sample function 1 10 10

β 0.8 0.8 N/A

γ 0.5 0.5 N/A

Size 100 100 N/A

6.8.9 COMPUTATION AND ANALYSIS

Theoretically, the size of the USW problem space is unlimited because of the

infinite values through which β and γ could be taken through. In order to reduce

the computational problem space, they and the number of WOs, were held to a fixed

value, while the policies were exercised for all values (Table 38). The fixed values

for β and γ were based on experience with previous USW simulations as generating

graphs that tended to meet the small-world criteria for C(G)Average and L(G).

For all permutations, the C(G)Average and L(G) were computed and compared

to a random graph of the same size and number of edges. The number of times

where the USW graph C(G)Average exceeded the random graph and where the

USW graph L(G) approximated the random graph was enumerated (Table 39 on

page 235 and Table 40 on page 236).

6.8.10 SUMMARY

In summary; we have made the following design decisions to reduce the problem

space:

1. Choosing the initial WO : A well-known WO will be used for ease of imple-

mentation and testing. We will call this Policy A.

2. Choosing the next WO : FIFO processing will be used for ease of implementa-

tion and testing. We will call this Policy B.

3. Deciding how many connections to make: Using a log function concentrates
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Figure 86. A specific minimum copying condition WO status. A case where 65% of
1,000 WOs have preserved at least their minimum number of copies. WOs 0 through

1000 have between 2 and 10 preservation copies each.
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Figure 87. A specific minimum copying condition, a histogram. A case where 65%
of 1,000 WOs have preserved at least their minimum number of copies. Histogram
of how many WOs achieved a particular level of preservation copies. Preservation
copies mean and standard deviation values are shown in blue and black respectively.
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Figure 88. A specific minimum copying condition, sorted by WO status. A case
where 65% of 1,000 WOs have preserved at least their minimum number of copies.
WOs sorted by preservation copies highlighting those WOs that are in a “time of
scarcity,” (red) or “time of plenty,” (blue) or in between (green). See Section 6.8.8

on page 225 for full explanation of the different regions.
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Table 39. CC and APL logical (raw) data. The number of times the USW CC was
greater than a random graph with the same number of vertices and edges, and the
USW APL was approximately the same as a random graph APL. The numeric values
for A correspond to choosing: 1) random WO, 2) most connected WO, 3) highest
degreed WO, 4) lowest degreed WO. The numeric values for B correspond to next
WO selection: 1) FIFO, 2) LIFO, 3) random selection. The numeric values for C
correspond to how to select WO friends: 1) random selection, 2) FIFO selection,

3) LIFO selection, 4) prefer friends of friend.

Policy Policy A

C B 1 2 3 4 5

1

1 8 8 8 8 8

2 8 8 8 8 8

3 8 8 8 8 8

2

1 2 2 2 2 2

2 0 0 0 0 0

3 0 0 0 0 0

3

1 2 2 2 2 2

2 0 0 0 0 0

3 2 0 2 2 2

4

1 3 3 3 3 3

2 3 3 3 3 3

3 3 3 3 3 3
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Table 40. CC and APL logical (normalized) data. The numeric values for A corre-
spond to choosing: 1) 2) random WO, 3) most connected WO, 4) highest degreed
WO, 5) lowest degreed WO. The numeric values for B correspond to next WO selec-
tion: 1) FIFO, 2) LIFO, 3) random selection. The numeric values for C correspond
to how to select WO friends: 1) random selection, 2) FIFO selection, 3) LIFO

selection, 4) prefer friends of friend.

Policy Policy A

C B 1 2 3 4 5

1

1 1.0 1.0 1.0 1.0 1.0

2 1.0 1.0 1.0 1.0 1.0

3 1.0 1.0 1.0 1.0 1.0

2

1 0.3 0.3 0.3 0.3 0.3

2 0.0 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0 0.0

3

1 0.3 0.3 0.3 0.3 0.3

2 0.0 0.0 0.0 0.0 0.0

3 0.3 0.0 0.3 0.3 0.3

4

1 0.4 0.4 0.4 0.4 0.4

2 0.4 0.4 0.4 0.4 0.4

3 0.4 0.4 0.4 0.4 0.4
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the number of friendship links into a smaller set of WOs but does not cure the

systemic problem of algorithmically limiting the number links. Combining an

artificial lower bound on the number of WOs to force a higher out degree and

using the last introduced WO as the USW established WO results in a graph

in rough approximation with a classic small-world graph.

4. Choosing connections : Preferential attachment will be used to connect to the

friends of the established WO that the wandering WO makes it first connection

to, then random selection will be used for ease of implementation and testing.

We will call this Policy C.

5. Deciding when to make a preservation copy : A polite preservation will be used

for ease of implementation and testing. We will call this Policy E.

6.9 CREATING AN UNSUPERVISED SMALL-WORLD GRAPH

Crea te  the  
USW graph

Attack  the  
USW graph

Repair  the 
USW graph

In this section, we create the USW graph. This is part of the

creation, attack, and repair sequence.

We have reduced the USW parameter space (see Section 6.8 on page 212) to a

manageable size. We will use the data from Table 40 on the preceding page as a

guide for selecting appropriate values to create a USW graph for further analysis.

During this analysis, we will:

1. Create the graph,

2. Attack the graph by removing 10% of the WOs in the graph using the AV,H pro-

file,

3. Repair the graph examining a giving the graph 2 opportunities to detect the

loss of WOs and to take action to repair the graph,
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Table 41. Alternating turns between attacker and graph.

Turn Health

0 G = 1

1 G = G * Damage(G)

2 G = G * r(G)

3 G = G * Damage(G)

4 G = G * r(G)
...

...

4. Repeat the attack and repair sequence will be repeated until the graph reaches

a steady state.

During each step of the process (create, attack, and repair), the graph will be

analyzed (C(G)Average, L(G), and ⟨k⟩, degree as a function of time), and the data

reported.

6.10 ANALYSIS OF DAMAGE VS. REPAIR

We investigate the relationship between the damage Damage(G) an attacker can

cause to a graph, and how resilient r(G) the graph has to be to recover from the

damage. We approach the problem through analysis and simulation.

The following assumptions apply:

1. Damage(G) affects a constant of the USW graph

2. r(G) remains constant as relative to Damage(G)

3. The “health” of the graph (based on some measure) is 1.0 before any damage

is done.

We view the interplay between the attacker and graph as a game where each

player alternates turns. The attacker causes Damage(G) damage to the graph, and

the graph repairs itself r(G) before the attacker’s next turn (Table 41).

Damage(G) is under control of the attacker, and r(G) is a function of main-

tenance activity in the USW graph. The amount of maintenance activity between

attacker turns is dependent on the rate of accessing the USW WOs and the length

of time between attacker turns. If the time between attacks is small, then there
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might be a very small number of maintenance activities. The relationship between

Damage(G) and r(G) is not straight forward (Equation 101). As an example of

the interaction between Damage(G) = 0.75% and r(G), a game was conducted for

all three conditions of r(G) for a 350 turn game (Figure 89 on page 247).

r(G) =



































>
1

Damage(G)
then graph will improve

=
1

Damage(G)
then graph will stabilize

<
1

Damage(G)
then graph will collapse

(101a)

(101b)

(101c)

6.10.1 CREATING THE USW GRAPH

We use a single set of parameters to create the graph (Table 42). The C(G),

degree distribution, L(G) for the graph is show in Figures 90 on page 248, 91 on

page 249, and 92 on page 250 respectively. The degree distribution changes and

evolves over time (Figure 93 on page 251).

Table 42. USW simulation values used to create a USW graph.

Parameter Value

Policy A 1

Policy B 2

Policy C 1

Sample function 1

β 0.8

γ 0.5

Size 1500

The USW algorithm successfully created a graph that meets that small-world

criteria for C(G)Average, L(G). The graph will be attacked and analyzed.

6.11 ATTACKING AN UNSUPERVISED SMALL-WORLD GRAPH
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Crea te  the  
USW graph

Attack  the  
USW graph

Repair  the 
USW graph

In this section, we attack the USW graph. This is part of the

creation, attack, and repair sequence.

6.11.1 INTRODUCTION

We assume that an external entity causes damage to the USW graph. This entity

could be as simple as the failure of a host to maintain a WO, or as complex as an

adversary bent on removing some WOs for some reason. As we have shown in an

earlier section (see Section 5.5.5 on page 159), AE,H is the most effective attack

profile to damage and disconnect a graph. Due to the WO’s internal structure, a

AE,H attack profile requires that very specific changes be made to the WO and we

assume that this is neither permitted by the hosts on which the targeted WO lives,

nor is it practical for the attacker to implement.

A far simpler attack profile to implement is the AV,H .

6.11.2 ATTACKING THE USW GRAPH

We simulate the actions of the attacker by examining the USW graph and re-

moving the 10% of the discovered WOs meeting the AV,H attack profile. (Current

technology enables an adversary to explore an Internet graph of significant size [186],

but we assume that the adversary does want to draw attention to the attack.) After

the WOs were removed, a set of graph metrics were measured (Table 43 on the

following page). HTTP/HTML protocols preclude the AE,∗ attack profiles because

removing an edge requires that both ends of the edge be modified so that the edge

does not exist. HTTP/HTML protocols do not permit such fine grained strategies,

only the total removal of a WO is supported.

6.11.3 SUMMARY
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Table 43. Comparison of pre and post attack USW graph metrics.

Parameter Pre. attack Post attack

n 300 224

|E| 2,392 1,732.0

⟨k⟩ 15.95 15.5

⟨k⟩ σ 12.5 11.1

C(G) 0.1 0.2

L(G) 2.3 2.2

We have simulated a focused AV,H on attack on a USW graph and measured the

results of the attacks. We measured various graph parameters to quantify the effect

of the attack.

6.12 REPAIRING AN UNSUPERVISED SMALL-WORLD GRAPH

Crea te  the  
USW graph

Attack  the  
USW graph

Repair  the 
USW graph

In this section, we repair the USW graph. This is part of the

creation, attack, and repair sequence.

We limit the problem of repairing a USW graph to detecting the loss of a WO and

making one of the missing WOs the active maintainer. This is opposed to adding

a new WO replace the missing one. We take this approach to focus on the ability

of the USW graph to maintain preservation copies of each WO, rather than on the

ability of the USW graph to accept new WOs. Adding new WOs to an existing

USW graph was discussed in Section 6.9 on page 237.

6.12.1 DETECTING USW GRAPH LOSSES AND GAINS
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Detecting the loss of a WO

When a WO is non-reachable, then it is assumed to be lost. A WO will be either

an active maintainer or a passive maintainer. An active maintainer is responsible

for ensuring that there are enough preservation copies for the family. A passive

maintainer sends notification messages to the active maintainer about things it has

detected and that the active maintainer needs to take action upon. Active and

passive maintainer WOs compose a “family” relationship.

The active maintainer in a family will communicate with active maintainer in

another family. These communications are between “friends.”

The loss of a passive maintainer will be detected by the active maintainer during

the active maintainer’s normal action. The loss of an active maintainer will be

detected by a passive maintainer from the same family. When the active maintainer

loss is detected, one of the family’s passive maintainers will assume active maintainer

responsibilities.

Detecting a disconnected USW graph

A USW graph could become disconnected because of something as simple as

misconfiguring a critical router or as complex as massive attack.

It is not possible for a WO to detect when the USW graph is disconnected. A

disconnection is only possible by viewing a graph from an external viewpoint (the

viewer has to be outside the graph to see that the graph is disconnected). A WO

does not have an external viewpoint, it will never be able to detect that the graph

is disconnected.

A WO will be able to detect:

1. Its active maintainer is not reachable,

2. Some (perhaps all) of its friends are not reachable.

6.12.2 DETECTING A RECONNECTED DISCONNECTED USW

GRAPH

A USW graph reconnecting means that at least one USW family that was dis-

connected is now connected. This can happen after the graph was disconnected,

each family has grown somewhat, but not all members of each family have been
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accessed and subsequently have not updated their internal data structures with the

latest family information. So there is at least one family member in each partition

that has a “memory” of the family in the other partition. To the WO which has

memory of the other partition, it behaves exactly as if it was never disconnected.

Some of copies may not be accessible, and it will notify the family of that. It will

add entries to additional entries about the copies that were made between the last

time it was accessed and now. It will follow whatever maintenance responsibility

is defined in its internal data structure. This may cause a newly accessed WO to

assume parental responsibilities (with an announcement to the family). It may then

relinquish responsibilities because some other WO is better suited (by definition)

that it is. After some number of accesses of all the WOs in the newly reconstituted

graph, there will be only a single active maintainer based on whatever maintenance

approach is in effect.

If the two graphs have anything other than the “progenitor only” maintenance

approach are separated for a long time, it is possible that both parts will have created

the maximum number of copies as dictated by their internal data structures. When

the two partitions unite, the processing of messages from the family mailboxes could

result in the family having more than its maximum number. This is not an issue,

because the maintaining WO will only make copies when there are fewer than the

minimum number needed and less than the maximum. If there are more than the

maximum, then no new copies will be created. Eventually the excess WOs in the

family will die off and then the maintainer will set about making new copies.

6.12.3 REPAIRING THE USW GRAPH

We repair the USW graph by attempting to access all the active maintainer

WOs. Those WOs that have been removed by the attacker will not be accessible,

therefore we select one of the passive maintainers for that family to become the

family’s active maintainer. The new active maintainer WOs have internal copies of

the same USW creation parameters (see Section 6.9 on page 237) that the original

active maintainers had, and assume their maintenance responsibilities for a family

that now has one less family member due to the loss of the original active maintainer.

After all necessary active maintainers have been identified, all the WOs in the

USW graph are accessed to perform their maintenance functions. Accessing all the

WOs simulates either a very active USW graph, or a long time between attacks.
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Table 44. Comparison of pre and post repair USW graph metrics.

Parameter Pre. repair Post repair

n 224 300

|E| 2,392 1,732.0

⟨k⟩ 15.46 9.3

⟨k⟩ σ 11.05 5.5

C(G) 0.16 0.2

L(G) 2.23 2.7

Following the universal accessing, various graph metrics are collected (Table 44).

6.12.4 SUMMARY

We have evaluated how a USW graph can be repaired predicated on accessing

all available active maintenance WOs. The USW graph is both robust and resilient.

6.13 REPEATEDLY ATTACKING A USW GRAPH

Crea te  the  
USW graph

Attack  the  
USW graph

Repair  the 
USW graph

In this section, we repeatedly attack and repair the USW

graph. This is part of the creation, attack, and repair sequence.

Over the long life of the USW graph, it is possible that it might be attacked

repeatedly. These attack repair cycles could be expected to repeat many, many

times. We are interested in the long-term change in selected USW graph metrics.

For clarity, no additional WOs were added to the USW graph between the time

it was attacked and when it was repaired. Preventing additional WOs from entering

the system ensured that only the effects of the attack and repair processes were
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captured.

6.13.1 REPEATEDLY ATTACKING THE USW GRAPH

L(G) and C(G) data for a USW graph that has been attacked using the AV,H pro-

file and repaired at two different percentage levels are shown (Figure 94 on page 252

andFigure 95 on page 252). The symbols are identical for both figures, but only the

first one has a legend because of way the data in the second figure covers most of

the plotting surface.

In both figures, the reported L(G) and C(G) are shown as well as the computed

L(G) and C(G) for a random graph with the same number of vertices and edges.

The reported L(G) follows the see-saw action of increasing after each attack and

then decreasing after each repair. This behavior continues for a few attack repair

cycles and then tends to settle within a small range of values. The reported values

are about 30% higher than the computed values. The reported is higher because

it is based on real degree distribution data, while the computed assumes a uniform

⟨k⟩ distribution.
The C(G) starts out a value and then decreases after an attack. When the

graph is repaired, the C(G) increases above its original value. The increase is due

to the maintenance activities of the WOs. If a WO has not achieved the number

of preservation copies that it desires, then it will explore the graph again looking

for places to put the copies. Exploring the graph enables the WO to add more

connections to other WOs and thereby increasing the C(G) of the entire graph.

The see-saw behavior of C(G) settles out when the L(G) settles out. In all cases,

the computed C(G) is lower than the reported because the reported is based on real

degree distribution data, while the computed assumes a uniform ⟨k⟩ distribution.

6.13.2 SUMMARY

We have demonstrated that the USW graph is robust and resilient when alter-

nately attacked and then allowed to repair itself. If a high percentage of the USW

graph is damaged by the attack, then the USW algorithm results in more additional

edges being added to the graph as compared to a low percentage attack. These

additional edges are additional friendship connections made between active main-

tainers. The more connections there are, the closer the graph comes to being fully

connected. As the USW graph approaches being fully connected, the closer L(G)
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and C(G) come to 1. The emergent behavior of the USW WOs will be controlled

through the application of a few policies and one control variable. These policies and

the control variable value are set at the time the WO is created and are immutable

thereafter. This design is in keeping with Reynolds’ minimal rule set for emergent

behavior.
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Figure 89. Relationship of damage and repair on graph health. A sample game
between an attacker and the USW graph, where Damage(G) = 0.75% and three
different values of r(G) are used (Equation 101 on page 239). A low r(G) will result
in a graph whose health declines and asymptotically approaches 0. A high r(G) will
result in a graph that continues to improve. While a r(G) which just matches the
inverse of the Damage(G) will restore the graph to its initial health. In all cases, the
figure shows the health of the graph when it was damaged and then the health after
active maintenance activities took place. These two actions inscribe an alternating

low high area for each of the r(G) values.
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Figure 90. CC of USW simulation. After the graph has started growing, the
measured USW C(G)Average remains significantly higher than the computed ran-
dom graph with the same number of vertices and edges. The minimum measured

C(G)Average provides a feel for the C(G)Average range of the total graph.
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Figure 91. Degrees of USW simulation. The maximum degrees continues to rise as
the number of WOs increases. This is due to the policy of always using the same
first WO when introducing a wandering WO to the USW graph. It is a variant of
“preferential attachment” [184] because in the beginning, the reciprocal connections
between WOs tends to reinforce the edges going to the first WO. As the USW graph
in real life, we expect that wandering WOs will be introduced to a variety of WOs

and the phenomenon shown in the simulation will not occur.
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251

0 10 20 30 40

0
10

20
30

40

Degree

C
ou

nt

Initial distribution
Final distribution

Figure 93. Temporal degree histogram of USW simulation. As the USW graph
grows, the degree histogram it takes on a power law shape.
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Figure 94. Graph metrics after repeated low percentage (5%) attacks and repairs.
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Figure 95. Graph metrics after repeated high percentage (50%) attacks and repairs.
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CHAPTER 7

REFERENCE IMPLEMENTATION

7.1 INTRODUCTION

We have developed the USW algorithm and shown that it is capable and viable

in a simulation environment. We now take it the next level by building a small

scale reference implementation using a representative set of different web pages, and

using the idea of “crowd-sourcing” via instrumented HTML pages to test the USW

algorithm.

We create a mini-web environment based on HTML pages downloaded from

four different domains. In our mini environment, we create the minimal necessary

support services and communications infrastructure to allow WOs to create copies,

modify themselves, and exchange messages.

After creating this environment, we compare the USW graph to a random graph

of the same order and size.

7.2 DIFFERENCES BETWEEN USW THEORY AND REFERENCE

IMPLEMENTATION

We developed the USW theory without any implementation constraints; we as-

sumed that various critical USW aspects (communication, connections, etc.) were in

place and working correctly. Many of these aspects were easily ignored when study-

ing USW performance in a simulation environment. When moving from a simulation

environment to a reference implementation, some of these aspects become problem-

atic (Table 45 on the following page). The number and types of HTTP methods

available also varies considerably on publicly available servers [187]. A potential

by-product of the temporal aspects of moving from a simulation to a reference im-

plementation is the possibility that the WOs that a WO is connected to will on

average have more connections than the original WO [188]. This is partially due to

WOs that the original WO is connected to can double-count WOs that are shared

between WOs.

7.3 IMPLEMENTATION ENVIRONMENT
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Table 45. Differences between USW simulation and reference implementation.

Area USW Theory HTTP/HTML
reality

Impact

Communications Instantaneous Asynchronous WOs have to be
accessed to read and
process messages.
An HTTP mailbox
is used to exchange
messages [68].

Edges Bidirectional Directional Some of graph
metrics (such as
L(G)) may not work
because paths may
not exist between
all WOs. Extra
time will be re-
quired to fully create
bi-directional links.

Temporal effects Non-existent Present The reference imple-
mentation may take
considerably longer
than the simulation
environment to sta-
bilize. A longer sta-
bilization time would
permit an attacker
more time to mount
an effective attack.
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The minimum web infrastructure (WI) needed by the USW algorithm is:

1. A set of domains that has USW instrumented pages (instrumenting the pages

changes the pages from digital objects to web objects),

2. A way for a WO to modify itself,

3. A way to create WOs, and

4. A way for WOs to communicate with each other.

Each of these needs is addressed in the following sections.

7.3.1 DOMAINS

Four different web domains were selected based on the variety of web page

structures (Table 46 on the next page). In three of the domains, 100 pages were

downloaded, while only 1 was downloaded from the fourth. Only one page was

downloaded from www.gutenberg.org because of their stated monitoring of client

activity and that any excessive activity would result in the black listing of the

client’s domain. If www.gutenberg.org decided there was too much activity from

the cs.odu.edu domain, they may have decided to black list all of odu.edu. Based

on previous USW algorithm analysis, the page from www.gutenberg.org was desig-

nated the “well known WO” that all new WOs would use as their gateway into the

USW graph (Policy A).

As each page was down loaded from its original domain to its respective cs.odu.edu

domain, it was instrumented with USW lines (see Listing 1), and a REM was cre-

ated for the page. Each page’s REM contains USW metadata and data specific to

that page.

<link rel="resourcemap" type="application/atom+xml;type=

entry" href="http: // arxiv.cs.odu.edu/rems/arxiv

-0704 -3647 v1.xml" />

<link rel="aggregation" href="http: // arxiv.cs.odu.edu/

rems/arxiv -0704 -3647 v1.xml#aggregation" />

<script src="http: //www.cs.odu.edu/~ salam/wsdl/uswdo/work

/preserveme.js"></script >

Listing 1. USW implementation instrumentation. Each HTML page was

instrumented with these lines.
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Table 46. Domains that provided HTML pages for USW implementation testing.

Source domain Num.
of
HTML
pages

Destination domain

www.arxiv.org (Figure 96) 100 arxiv.cs.odu.edu

www.flickr.com (Figure 97 on the following page) 100 flickr.cs.odu.edu

www.gutenberg.org (Figure 98 on page 258) 1 gutenberg.cs.odu.edu

www.radiolab.org (Figure 99 on page 259) 100 radiolab.cs.odu.edu

Figure 96. Sample HTML page from arXiv domain.
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Figure 97. Sample HTML page from flickr domain.
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Figure 98. Sample HTML page from gutenberg domain.
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Figure 99. Sample HTML page from radiolab domain.
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7.3.2 SUPPORT SERVICES

A WO has to be able to modify itself (to keep track of its preservation copies,

to maintain a list of friend connections, to “remember” the last time it checked for

messages, and so on) and to make preservation copies of of WOs.

Edit Service

The REM Edit Service associated with each unique WO is an HTTP service and

is accessed via an HTTP POST command (see Listing 2).

curl -m 120 -i -X POST --data -binary @/tmp/temp~.

xxx3283ace9 -i -H "Sender: http: // flickr.cs.odu.edu/

rems/flickr -ceotty -8161751828. xml" -H "Content -type:

application/patch -ops -error+xml" http: //ws -dl -02.cs.

odu.edu:10101/hm/http: // gutenberg.cs.odu.edu/rems/

gutenberg -pride -and -prejudice.xml 2>/dev/null"

Listing 2. Sample Edit Service request.

The Edit Service expects an XML patch directive [132] (see Listing 3).

PATCH /rems/gutenberg -pride -and -prejudice.xml HTTP /1.1

Host: gutenberg.cs.odu.edu

Content -type: application/patch -ops -error+xml

Content -length: 216

<?xml version="1.0" encoding="UTF -8"?>

<diff>

<add sel="entry"><link rel="http: //wsdl.cs.odu.edu/uswdo/

terms/friend" href="http: // flickr.cs.odu.edu/rems/

flickr -ceotty -8161751828. xml" title="Kittens" /></add>

</diff>

Listing 3. Sample Edit Service request.
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Copy Service

The REM Copy Service associated with each unique WO is an HTTP service

and is accessed via an HTTP POST command (see Listing 4).

curl -m 120 -i -H "Sender: http: // arxiv.cs.odu.edu/rems/

arxiv -0912 -0201 v1.xml" -X POST --data -binary @/tmp/

temp~. xxx258b667a http: //ws -dl -02.cs.odu.edu:10101/hm/

http: // gutenberg.cs.odu.edu/rems/gutenberg -pride -and -

prejudice.xml 2>/dev/null"

Listing 4. Sample Copy Service request.

The Copy Service expects a complete REM (see Listing 5). Upon successful

completion of the Copy request, the service returns the URL where the copy was

created.

<?xml version="1.0" encoding="UTF -8"?>

<entry xmlns="http: //www.w3.org /2005/ Atom" xmlns:oreatom=

"http: //www.openarchives.org/ore/atom/" xmlns:dcterms=

"http: //purl.org/dc/terms/" xmlns:dc="http: //purl.org/

dc/elements /1.1/" xmlns:rdf="http: //www.w3.org

/1999/02/22 -rdf -syntax -ns#" xmlns:rdfs="http: //www.w3.

org /2000/01/ rdf -schema#" xmlns:ore="http: //www.

openarchives.org/ore/terms/" xmlns:foaf="http: // xmlns.

com/foaf /0.1/" xmlns:grddl="http: //www.w3.org /2003/g/

data -view#" xmlns:relationship="http: //purl.org/vocab/

relationship/" xmlns:usw="http: //wsdl.cs.odu.edu/uswdo

/terms/" grddl:transformation="http: //www.openarchives

.org/ore/atom/atom -grddl.xsl" xmlns:le="http: //purl.

org/atompub/link -extensions /1.0">

<id>tag:uswdo.cs.odu.edu ,2012 -11 -01 :arxiv -0912 -0201 v1</

id>

<link rel="alternate" type="text/html" href="http: //

arxiv.cs.odu.edu/arxiv -0912 -0201 v1.html" />

<link rel="self" type="application/atom+xml" href="http:

// arxiv.cs.odu.edu/rems/arxiv -0912 -0201 v1.xml" />
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<link rel="edit" type="application/atom+xml" href="http:

//ws -dl -02.cs.odu.edu:10102/rem/edit/http: // arxiv.cs.

odu.edu/rems/arxiv -0912 -0201 v1.xml" />

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/copy" type

="application/atom+xml" href="http: //ws -dl -02.cs.odu.

edu:10102/rem/copy/http: // arxiv.cs.odu.edu/" />

(lines removed)

<source >

<author >

<name>ODU WSDL ReM Generator </name>

<uri>http: //ws -dl -02.cs.odu.edu/</uri>

</author >

</source >

<published >2013 -07 -30 T18:25:13 -04 :00</published >

<updated >2013 -07 -30 T18:25:13 -04 :00</updated >

<link rel="license" type="application/rdf+xml" href="

http: // creativecommons.org/licenses/by -nc /2.5/ rdf" />

<rights >This Resource Map is available under the

Creative Commons Attribution -Noncommercial 2.5 Generic

license </rights >

<title >LSST Science Book , Version 2.0</title >

<author >

<name>LSST Science Collaborations </name>

</author >

(lines removed)

<category term="http: //www.openarchives.org/ore/terms/

Aggregation" label="Aggregation" scheme="http: //www.

openarchives.org/ore/terms/" />

<category term="2009 -12 -01 T16:50:56 +00 :00" scheme="http:

//www.openarchives.org/ore/atom/created" />

<category term="2009 -12 -01 T16:50:56 +00 :00" scheme="http:

//www.openarchives.org/ore/atom/modified" />

<category term="3" scheme="http: //wsdl.cs.odu.edu/uswdo/

terms/preservationCopiesMinimumNumber" />
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<category term="5" scheme="http: //wsdl.cs.odu.edu/uswdo/

terms/preservationCopiesMaximumNumber" />

<category term="0.85" scheme="http: //wsdl.cs.odu.edu/

uswdo/terms/beta" />

<category term="0.10" scheme="http: //wsdl.cs.odu.edu/

uswdo/terms/gamma" />

(lines remove)

</entry >

Listing 5. Sample Copy Service REM. Many lines have been removed for clarity.

7.3.3 MESSAGE SERVER

WOs need to be able to communicate with each other, to send requests to make

friendship connections, to send requests to make preservation copies, and to manage

the active maintainer status across USW family members. Inside of each WOs’

REM is the location of the mailboxes that that WO receives messages from (see

Listing 6). Each WO receives messages from three logically different mailboxes and

can be checked at different times. They are:

� #self : messages that are meant to be received by only the intended WO

recipient. This is akin to a network point-to-point communication.

� #family : messages that are meant to be received by all members of a particular

USW family. This is akin to a network multicast communication.

� #all : messages that are meant to be received by all WOs. This is akin to a

network broadcast communication.

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/httpmailbox

#self" href="http: //ws -dl -02.cs.odu.edu:10101/hm/http:

// flickr.cs.odu.edu/rems/flickr -ceotty -8161751828. xml"

usw:last -checked="" />

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/httpmailbox

#family" href="http: //ws -dl -02.cs.odu.edu:10101/hm/

tag:uswdo.cs.odu.edu ,2012 -11 -01 :flickr -ceotty

-8161751828" usw:last -checked="" />
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<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/httpmailbox

#all" href="http: //ws -dl -02.cs.odu.edu:10101/hm/all"

usw:last -checked="" />

Listing 6. Sample mailbox lines from a REM.

The message server is based on work done by Alam [68, 189].

7.3.4 USW GRAPH VISUALIZATION

The USW graph exists on the surface of the WI and can be hard to visualize,

and the idea of WOs communicating with one another requires an additional leap

of faith. We created a USW visualizer called “Preserve Me! Viz” to address these

concerns (Figure 100 on the following page). The visualizer receives messages sent

by either the USW web page client or robot as JSON formatted objects and plots

the information on the the display.

Data that is permanently displayed include:

1. Icons representing WOs and services,

2. Friendship links between WOs,

3. Family links between family members,

4. Current L(G) and C(G),

5. The type of message just processed,

6. Time until the next message is processed,

7. The sender and receiver from the last message, and

8. If a previously recorded message stream is being displayed, then a title and

associated explanatory text may be displayed.

Data that is intermittently displayed include:

1. Communication events between the sender and the mail service,

2. Communication events between the received and the mail service,

3. Requests and replies between a WO and the copy service, and
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(a) A blank display

(b) A display with data

Figure 100. The Preserve Me! Viz display.
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4. Directives sent from a WO and its edit service.

7.4 USW IMPLEMENTATION

USW WOs communicate with each other and are responsible for the mainte-

nance of the USW graph and the preservation of copies of them selves. USW WOs

lie dormant and fallow unless they are accessed and they can interact with each

other. We envision two different ways of interacting with the USW graph. The first

supports crowd-sourced preservation through the use of a pop-up window that a

human being interacts with. This pop-up is the public face of the USW algorithm.

The second way to interact with the graph is through the use of a robot or crawler.

We have created a web page client and a robot.

Both the web page client and the robot implement the complete USW algorithm

(Appendix A on page 287) and WO to WO communications (Appendix B on

page 311).

Web page client

The web page client serves as the primary human interface into the USW algo-

rithm. The USW algorithm can appear to be very complex to someone not totally

versed in its nuances. Because the expected user will not be totally versed in the

USW algorithm, two different views into the USW algorithm are presented, “Basic”

and “Advanced.”

The “Basic” interface walks the user through the major actions that a USW WO

would undertake:

1. Connect to the USW graph (Figure 101 on the next page),

2. Make connections to other WOs in the graph (Figure 102 on page 268) , and

3. Make and maintain preservation copies in the graph Figures 103 on page 269, 104

on page 270, and 105 on page 271.

USW robot

Primary inputs to the robot are the gateway WO to which all other WOs will

be introduced and a list of HTML pages to be added to the USW graph. While
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Figure 101. USW client basic “make connection” popup. The WO has determined
that it does not have any friend connections and must make some.
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Figure 102. USW client basic make connection popup.
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Figure 103. USW client basic make copies popup.
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Figure 104. USW client basic copies request popup.
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Figure 105. USW client basic with copies popup.



272

there are a number of additional arguments available (see Section C.2 on page 377),

the gateway and the WO are the ones of greatest interest. The robot also supports

the testing the loss of a WO or an entire domain to test the transfer of active

maintenance from one WO to another.
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Table 47. Comparing USW implementation and random graph metrics. The relative
sizes of ⟨k⟩ and ⟨k⟩ σ indicate the possibility that the ⟨k⟩ distribution does not fit an
ideal “normal” distribution. This possibility is confirmed by examining the degree

histogram for this USW graph (Figure 106 on the following page).

Metric USW Random

n 156 (same)

|E| 539 (same)

⟨k⟩ 6.91 (same)

⟨k⟩ σ 21.04 N/A

C(G) 0.07 0.04

L(G) 1.96 2.08

Table 48. Comparing USW implementation copies and desired copies.

Copies

Total desired minimum 468

Actual number 164

Total desired maximum 780

7.5 RESULTS

We used the USW robot to create a USW graph for comparison with a random

graph of the same order (Table 47). The robot was used to create USW graphs

of different orders within the constraints of the number of live web pages that had

been downloaded to the test environment. Execution time was recorded for each

order (Table 49 on the following page). The execution times fit Equation 102.

Table 48 lists the number of copies that were made as compared to system total

chardand csoft.

hours = 1.586918 + (−0.041927)n+ (0.000373)n2 (102)
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Figure 106. Histogram of an implemented USW graph.

Table 49. Robot execution times for various implementation order USW graphs.

Order Hours

10 0.75

50 1.15

156 3.78

301 22.85
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CHAPTER 8

FUTURE WORK

We have identified a number of areas where the USW precepts and algorithms can

and should be expanded and improved. These areas are expanded in the following

sections.

8.1 IMPROVED CONNECTION SELECTION

The current approach to creating unsupervised small-world (USW) graphs that

rely on locally gathered graph data, arbitrary values of β, γ and selection policies

to be used after a wandering web object (WO) makes its first connection to another

WO in the USW graph. We present an idea for improving the USW graph creation

that should result in graphs that more closely meet the quantitative requirements

of a small-world than are currently being met.

8.1.1 INTRODUCTION

A USW web object (WO) communicates with WOs that are already connected

in the USW graph and collects data about the k = 1 neighborhood around each

of these established and connected WOs. During the process, the wandering WO

maintains a list of WOs that it has contacted to ensure that established WOs are

only contacted once. After a connection is made, a γ portion of the visited and not

yet visited WOs are forcibly connected to the no-longer wandering WO.

8.1.2 DISCUSSION

At its core, the USW graph creation process is based on random selection. The

initial connection is based on a random number compared to an acceptance threshold

and all connections are then randomly selected. Connection after the initial one can

be selected based on when they were discovered (LIFO or FIFO queues) or their

degreeness, but at the core it is mostly a random selection. The decision on which

connections to make after the initial one can be improved and even maximized.

Possible improvements are:
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1. Currently the wandering WO contacts each established WO and requests the

k = 1 neighbors of the established WO. This list of neighbors is then compared

to the list of WO that have yet been visited and those that have already been

visited. WOs that are not in either list are added to the list of WOs to be

visited. The act of adding these newly discovered WOs just to the list of WOs

to be visited, gives up a tremendous amount of information about the USW

graph. If the connection information about between the established WO and

its neighbors is retained, then the wandering WO can start to create a more

accurate “map” of the USW graph. The size of this USW graph map will be

limited by the number of established WOs that the wandering WO contacts.

2. When the wandering WO makes it first connection to an established WO, the

“map” can be put to use.

3. Currently after the initial connection, a γ portion of the WOs that the wander-

ing WO has learned about are forcibly connected to the wandering WO. The

improvement would be to take the partial USW graph (when the USW graph

becomes large, it seems very unlikely that the wandering WO will explore the

entire graph before making its first connection) and make connections to the

best γ WOs that reinforce the small-world aspects of high C(G)Average and

acceptable L(G) when compared with the USW graph prior to the wandering

WO making its connections.

4. Computing the L(G) is in worst case Θ(V 3 lg V ) (from [185]) and we assume

that computing C(G)Average is equally as costly.

5. Watts – Strogatz in [43] plot normalized C(G)Average and L(G) values and

define the region where C(G)Average is high and the L(G) is low as the small-

world region. Watts and Strogatz were able to use normalized data because

they started their exploration from a lattice graph which they proceeded

to perturb. USW graphs do not start out as lattices, but we can use the

idea of normalization and detection of large differences between normalized

C(G)Average and normalized L(G) as a value function to enable the wandering

WO to make connections that optimize the value function.

6. The key to the improved processing is a nested For loop (Algorithm 19 page 308)

that is used to evaluate each possible improvement to the graph. USW WOs
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are ordered (see Algorithm 17 on page 305) after each change in made to

the graph so that decisions are made on the most recent data available. Each

change to the graph is evaluated (see Algorithm 18 on page 306) and then

compared with an exponentially averaged value of the previous values. An ex-

ponential averager is used to compensate for the “noisiness” of the C(G)Average

and L(G) values. While the figures in Watts and Strogatz [43] show smoothly

changing values, experimentation with other graphs have shown very “noisy”

data. The dampening value of 0.7 is based on experience with other exponen-

tial averages. The WOs are searched in decreasing path length order. This

order was chosen because reducing the L(G) will have the greatest and most

rapid improvement in the overall graph structure. As each change is evalu-

ated, the first candidate WO that causes the smoothed exponential average

to decrease causes the search to terminate. A connection request message is

sent to the candidate WO and the local copy of the USW graph is updated

assuming that the candidate WO will in fact make the connection.

7. WO ordering based on the current local graph, exhaustive evaluation of can-

didate WO connections and request for real connections repeats until the γ

number of WOs has been identified and connected to.

The cost to compute L(G) one time is Θ(V 3 lg V ). Because we will be computing it

multiple times based on γ, the more likely computation time will be Θ(2∗V 3+γ lg V )

assuming that the time to compute C(G)Average is approximately the same as L(G).

8.2 HANDLING MULTIPLE WO MAILBOXES

Currently a WO’s REM contains this single line (broken for clarity) giving the

location of the WO personal mailbox (see Listing 7).

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

httpmailbox#self"

href="http: //ws -dl -02.cs.odu.edu:10101/hm/http:

// flickr.cs.odu.edu/rems/flickr -ceotty -8161751828. xml

"

Listing 7. Current WO personal mailbox.

The REM can be expanded to contain multiple lines such as:
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<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

httpmailbox#self"

href="http: //ws -dl -02.cs.odu.edu:10101/hm/http:

// flickr.cs.odu.edu/rems/flickr -ceotty -8161751828. xml

"

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

httpmailbox#self"

href="http: //ws -dl -03.cs.odu.edu:10102/hm/http:

// flickr.cs.odu.edu/rems/flickr -ceotty -8161751828. xml

"

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

httpmailbox#self"

href="http: //ws -dl -04.cs.odu.edu:10103/hm/http:

// flickr.cs.odu.edu/rems/flickr -ceotty -8161751828. xml

"

Listing 8. Future work WO personal mailboxes.

The REM (see Listing 8) now declares three personal mailboxes. When a WO

parses the REM as part of its persistent memory, it must treat mailboxes and

possibly other data as a set of data and apply the appropriate processing to each

entry in the list vice assuming that there is only one value.

The same approach can be used for any USW system parameters, to include edit

and copy services.

8.3 IMPROVED AGGREGATE RESOURCE UPDATES

The USW process attempts to create enough copies of a WO’s aggregated re-

sources so that the essence of the WO is preserved for a long time. Resources may

not be immutable, they may change at some rate relative to the expected life of the

WO. They may change often, infrequently, seldom, or never. Each of these notional

categories will be handled like this when a copy of WO is created:

� Often: an HREF to the original resource will be maintained intact.

� Infrequently : an HREF to the original resource may be maintained intact, or

a copy of the resource will be made when the WO is copied.
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� Seldom: a copy of the resource will be made when the WO is copied.

� Never : a copy of the resource will be incorporated into the WO.

8.4 IMPROVED REPLICATION PROCESSES

The basic premise of the USW process is that a “generic” web page is automat-

ically instrumented with various pieces of JavaScript to entice the viewer to aid in

the page’s long-term preservation [54].

When the first viewer elects to preserve the page, the hosting server makes a

“snapshot” of the page and creates a web object (WO) from the page. The WO

takes the form of an Atom based REsource Map (REM) [133] XML file. Individual

resources in the original page are identified based on criteria unique to the hosting

server. Copies of this REM are provided to copying services on other hosts and the

REM is updated to reflect the location on the copying host of the original aggre-

gated resources. This approach corresponds to “baseline synchronization” versus

“incremental synchronization” [190].

8.4.1 DISCUSSION

At time t1, a web page with one resource (R1) (for instance, a JPEG image) is

selected by the viewer for long-term preservation using the USW process. The WO

is copied to a number of additional servers resulting in multiple copies of R1.

At time t2, R1 changes and becomes R
′

1. Within the web page, its identity

remains the same, but the resource is changed (i.e., someone replaces the original

JPEG image with another with the same name).

From the viewer’s perspective, the web page at times t1 and t2 are different

things.

The USW process could recognize that R1 has changed by comparing its current

MD5 hash with the previous MD5. Given that the web page at time t2 is not the

same one as at t1, the WO could start the USW process again. This is the essence

of replication.

If the USW process attempts to spread the R
′

1 to its USW copies, then R1 will

be lost entirely. This loss occurs because the service making copy of the REM on its

local host, can place copies of resources anywhere it chooses. Thus, it is not possible

for the originating WO to predict where the copy of R
′

1 would be placed. The only
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choice that the originating WO has is to tell the copy service to replace R1 with R
′

1.

Resulting in the eventual loss of all copies of R1.

One possible solution is to serialize all synchronizations. Each “incremental

synchronization” would be serialized (possibly using a UUID) and the serialization

would become part of the WOs family name. This would result in:

1. Uniquely identifiable synchronization copies of the originating WO,

2. Large amounts of bookkeeping data (based on frequency of synchronizations).

Another possible solution is to user content based naming (CBN) to create unique

names to replace all references to R [191]. Or alternatively, organizationally unique

names that can be bridged to other organizations [192]. Routing and searching for

CBN identified data will require investigation and experimentation beyond the scope

of this dissertation. Using CBN techniques will change the details of the REMs, but

will not change the USW precepts or concepts.

Resource synchronization was never a part of the USW baseline design. While

possible approaches exist that might support synchronization, they each violate the

basic premise in that they do not preserve what the original page viewer saw and

wanted to preserve.

8.5 IMPROVED SECURITY

Currently the role of “active maintainer” is based on a comparing the respective

WO’s creation timestamps. The WO with the earliest timestamp is designated as

the active maintainer. An attacker could construct a false WO with an extremely

early timestamp and assume the role of progenitor for any USW family. This is

a security area that could be addressed. One possible approach would be to have

all family members vote whether, or not to accept a WO’s claim as the active

maintainer. Design and implementation of this voting process involving WOs that

may, or may not be active at the same time could have application and impact in

other areas of computer science.
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CHAPTER 9

CONCLUSION AND CONTRIBUTIONS

9.1 CONCLUSION

We have identified two significant shortcomings in the current world of digital

preservation. One is the expectation that institutions will preserve digital data for

the long-term (greater than 100 years). We have shown many cases where institu-

tions are unable or unwilling to preserve data they created, or were charged with

maintaining for even as short as 20 years. The second shortcoming is selecting

which digital data to preserve. The volume of digital data continues to grow at an

exponential rate and will outstrip the capabilities of the curators in charge of the

OAIS ingest process (Figure 107 on page 283) [193]. The cumulative effects of these

shortcomings will be the loss of a significant portion of our personal and cultural

heritage.

We have taken fundamental ideas from computer animation which have been

used to foster emergent behaviors between independent entities and applied them

to web objects. Specifically, we have reinterpreted Craig Reynolds’ ideas of colli-

sion avoidance, velocity matching, and flock centering as seen to herd behavior and

applied them as name uniqueness, resource consumption, and host utilization. The

net effect of these ideas is to have web objects (WOs) that move and operate as

independent members of a herd.

We have examined the underlying theory behind Barabási and Albert-László

preferential attachment, Erdos-Renyi random, and Watts and Strogatz small-world

graphs. We have studied each type of graph for their robustness and resilience in

the face of attacks and failures. We have developed a metric to quantify the damage

to the graph based on the loss of edges or vertices due to attack or failure. Based

on the analysis of the many attack profiles that an adversary could use, and the

occurrence of small-world graphs in nature and social context, we identified small-

world graphs as both robust and resilient. Bringing together the ideas from computer

animation and graph theory, we developed the unsupervised small-world algorithm
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to create small-world graphs based on local knowledge. The USW graph serves as

the framework for the long-term preservation of digital data.

We have identified and explored a different approach to solving the long-term

preservation problem by:

1. Promoting the idea that everyone could be a curator [54] and initiating the

ingest process,

2. Developing the USW protocol that addresses the administration and preser-

vation planning management functions,

3. Encouraging “crowd-sourced” preservation by executing data management

and archival storage functions based on users interacting with the USW web

objects (WOs), and

4. Providing access to the preserved WOs using common web infrastructure (WI)

search and retrieval technologies.

The USW algorithm creates a collection of WOs that:

1. Grows based on users deciding which WO should be preserved,

2. Automatically expands across new hosts based on their receptiveness to new

WOs, and

3. Maintains WOs when faced with losses,

We have developed the need for and the theory behind the unsupervised small-

world (USW) algorithm. We have developed a simulation that was used to test and

refine various aspects of the USW algorithm. We have developed a small scale ref-

erence implementation of the USW algorithm using a variety of pages from different

domains. We have developed a framework for crowd-sourced preservation.

The OAIS Informational Model (Figure 108 on the following page) makes explicit

that OAIS can apply to to physical and digital objects and that the object can be

enhanced by the addition of outside knowledge via the Knowledge Base to the

Information Object. Application of such outside information to the metadata on

Josie’s picture (Figure 1 on page 3) enhances the image (Table 50 on page 284).

We started with and answered the following questions:
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Figure 107. OAIS Reference Model functional entities. A Submission Information
Package (SIP) is a package of information about the digital artifact that a producer
would submit with the artifact. A Dissemination Information Package (DIP) is
disseminated with the artifact to the consumer. Archive Information Packages (AIP)
are not part of the USW algorithm. In the USW algorithm, the SIP is represented by
metadata (including ORE REMs) created when the digital object becomes a member
of the USW graph. The WO’s DIP will contain whatever data is associated with
the WO’s retrieval by the standard WI retrieval mechanisms. The USW algorithm
directly supports the Ingest, Data Management, and the Archival Storage functions

of the reference model. Image taken from [62].

Figure 108. OAIS Information Model. Image taken from [194].
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Table 50. Analysis of Josie’s metadata. Adding external knowledge via the knowl-
edge base aspect of the OAIS Information Model enhances and enriches an object.

Metadata Additional Information

Josie McClure Her maiden name.

Feb 30,1907 In the late 1800s and early 1900 there were
places where the calendar had more than
28 days in February. By today’s calendar,
the date would be 2 March.

Poteau, I.T. Poteau currently had a population of
about 8520 in 2010. I.T. is an abbrevi-
ation for Indian Territories, the area that
was to become Oklahoma.

Fifteen years of age
. . . weighed 140 lbs.

She was probably well fed and possibly
overweight.

1. Can web objects (WOs) be constructed to outlive the people and institutions

that created them?

We have developed, analyzed, tested through simulations, and developed a

reference implementation of the unsupervised small-world (USW) algorithm

that we believe will create a connected network of WOs based on the web in-

frastructure (WI) that will outlive the people and institutions that created the

WOs. The USW graph will outlive its creators by being robust and continuing

to operate when some of its WOs are lost, and it is resilient and will recover

when some of its WOs are lost.

2. Can we leverage aspects of naturally occurring networks and group behavior

for preservation?

We used Reynolds’ tenets for “boids” to guide our analysis and development of

the USW algorithm. The USW algorithm allows a WO to “explore” a portion

of the USW graph before making connections to members of the graph and

before making preservation copies across the “discovered” graph. Analysis

and simulation show that the USW graph has an average path length (L(G))

and clustering coefficient (C(G)) values comparable to small-world graphs. A

high C(G) is important because it reflects how likely it is that a WO will be

able spread copies to other domains, thereby increasing its likelihood of long
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term survival. A short L(G) is important because it means that a WO will

not have to look too far to identify new candidate preservation domains, if

needed. Small-world graphs occur in nature and are thus believed to be robust

and resilient. The USW algorithms use these small-world graph characteristics

to spread preservation copies across as many hosts as needed and possible.

9.2 CONTRIBUTIONS

We have made the following contributions to the field of Computer Science:

1. Expanded graph theory

(a) By creating an algorithm that creates small-world graphs based on locally

collected data. Small-world graphs appear naturally in nature and in

organic man made structures and relationships. Small-world graphs are

both robust and resilient, and

(b) Developed a new way to quantify damage in connected and disconnected

graphs.

2. Expanded digital preservation

(a) Developed a unified theory to optimize when and where to create preser-

vation copies, and

(b) Analyzed the communication costs associated with preservation policies

that different in their aggressiveness.

3. Developed techniques to apply the ideas of emergent behavior to digital preser-

vation of web objects.

We have successfully combined disparate ideas from graph theory, digital preserva-

tion, and computer based emergent behavior to create a system for the preservation

of web objects (Figure 109 on the next page).
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Figure 109. USW contributions to graph theory, emergent behavior, and preserva-
tion.
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APPENDIX A

ALGORITHMS

A collection of the algorithms that are at the heart of creating a USW graph. A

complete list of all algorithms is given in APPENDIX L on page 546.

A.1 MAIN ALGORITHMS AND FUNCTIONS

The following algorithms, procedures, and functions are critical to understanding

and implementing the USW algorithm in the simulator and the reference implemen-

tation.

A.1.1 USW CONCEPTUAL MODEL

The USW conceptual model one where a WO is created, added to an existing

USW graph, makes some number of preservation copies, and waits to be accessed

by some entity (see Algorithm 1 on the next page).

A WO is created by “wrapping” a digital object with metadata that has USW

control parameters, communications mechanisms, and links to those parts of the DO

that the entity creating the WO considers important (see Algorithm 3 on page 290).

After the WO is created, the creator identifies an already existing USW WO that

the new WO will use to start its exploration of the existing graph. The WO will

explore the USW graph until it makes a connections to some of the WOs it has

explored and discovered. Based on these connections, the wandering WO will make

some number of preservation copies.

At some later time, any WO that is accessed from the USW graph will process

any messages using the communication mechanisms that it was imbued with when

it was created. These messages may update and change the WO’s internal data

structure. A key distinction is whether the accessed WO is the responsible for the

active or passive maintenance of its self and its family members.

After the WO performs its maintenance tasks, it updates the graph by returning

itself (and its new internal data structures) to the original graph.
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Algorithm 1 USW model.

1: procedure Model

2: wo← Creation(do)
3: data← Wandering(wo, oldWO) ▷ The oldWO is given by the WO creator.
4: graph← Connecting(wo, data)
5: while true do
6: wo← WOSelectionProcess(graph)
7: wo←MessageMaintenance(wo) ▷ The wo is updated with applicable

messages.
8: if IsActiveMaintainer(wo) == true then
9: wo← ActiveMaintenance(wo)
10: else
11: wo← PassiveMaintenance(wo)
12: end if ▷ The USW graph is updated by the inclusion of the updated

WO.
13: graph← graph ∪ wo
14: end while
15: end procedure
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A.1.2 ACTIVE MAINTENANCE ALGORITHM

Each USW family has exactly one WO who is designated as the WO to affect

active maintenance of the family. The primary purpose of active maintenance is to

ensure that there an adequate number of preservation copies available. The active

maintainer examines its internal data structures to see how many copies have been

created and where they are located (see Algorithm 2). If these copies are “bad”

meaning they are unreachable, or corrupted, or invalid in some way, then a list of

the bad copies is processed.

Each family should have internal data structures that track the active main-

tainer’s structures. If the active maintainer can not access a copy then the location

of that copy must be removed from the all internal data structures for all family

members. The next time a family member is accessed, it will receive and process

the message and update its internal structure.

The active maintainer is responsible for creating additional copies as needed. If

there are additional copies to be made, then the active maintainer creates the copies

(see Algorithm 5 on page 292).

Algorithm 2 ActiveMaintenance() function. Returns an updated WO.

1: function ActiveMaintenance(wo)
2: currentBadCopies← copies that are invalid
3: while currentBadCopies ̸= 0 do ▷ Remove copy from list of copies and all

family members.
4: badCopy ← PopFront(currentBadCopies)
5: SendMessage(wo.family, “removecopy′′, badCopy)
6: currentBadCopies← RemoveFront(currentBadCopies)
7: end while
8: neededCopies← CopyNumberNeeded(wo)
9: if neededCopies > 0 then
10: Copy(wo)
11: end if

return wo
12: end function
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A.1.3 CREATION FUNCTION

A web object (WO) is a digital object (DO) that has been augmented with USW

specific data and metadata.

Included in the augmented data are:

1. Limits on the number of preservation copies to create: this includes both

minimum and maximum limits

2. Communication mechanisms : the WO must be able to send and receive mes-

sages. Logically these messages can be:

� Point-to-point (WO to WO messages), or

� To family members only (multicast messages), or

� To all WOs (broadcast messages).

3. Specific USW control parameters : including values for all policies, β, γ, name

of the progenitor, and any other data required for implementation.

Each WO must have a globally unique identifier, a URI.

Algorithm 3 Creation() function. Returns a WO starting with a DO. Control and
other data wrap the DO to create a WO.

1: function Creation(do)
2: wo← do+ controlParameters
3: wo← wo+ name ▷ Name assigned from a global naming function

return wo
4: end function
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A.1.4 CONNECTING FUNCTION

After a new WO explores and discovers as much of the USW graph as permitted,

it must make friendship connections between itself and other selected WOs. At a

minimum, a connection will be made between the new WO and the last WO it

explored (see Algorithm 4).

While exploring the graph, the new WO maintained two sets of WOs. One,

the toBeV isitedSet is a set of WOs that have been discovered, but have yet to be

explored. The other, the visitedSet is a set of WOs that have been explored. These

sets are completely disjoint. The function SampleSize() treats this sets as lists.

After making a connection to the last WO explored, the WO will make some

number of connections to members of the toBeV isitedSet and visitedSet lists.

Connections are bi-directional, so a connection between WO A and WO B requires

that the internal data structures for both WOs to be updated. The number of

connections is dependent on the control parameters in the new WO.

Algorithm 4 Connecting() function. Returns a graph whose edges have been
increased by the number of edges (connections) made by the no longer wandering
WO.
1: function Connecting(newWO, data)
2: newWO and data.oldWO connect to each other
3: γ

′′

← SampleSize(wo, newWO.“tobevisited′′list)
4: while newWO has γ

′′

names in its “to be visited” list do
5: newWO selects node ρ from the list
6: newWO and ρ connect to each other
7: end while
8: γ

′

← SampleSize(wo, newWO.“visited′′list)
9: while newWO has γ

′

names in its “visited” list do
10: newWO selects node ρ from the list
11: newWO and ρ connect to each other
12: end while
13: graph← graph ∪ newWO

return graph
14: end function
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A.1.5 COPY ALGORITHM

A copy of a WO is a WO that is logically the same as the original WO, it is

not a bit-by-bit copy of the original WO [142]. The intent of a copy is to increase

the likelihood of the long-term preservation of the original WO. To increase this

likelihood, copies are spread across to as many unique locations as possible.

The WO is imbued at creation with a copy creation policy, and minimum and

maximum number of desired preservation copies. During the WO’s lifetime, it will

make copies, it will keep a record of their location, and will identify copy candidate

locations based on the WO’s connections to other WOs.

TheWO determines if additional copies need to be created CopyNumberNeeded(),

and if so identifies copy candidate locations based on where copies currently exist

and where they could exist. If a set of candidate location exists, then a request is

sent to one member of the set.

Algorithm 5 Copy() function. How to select where to make a copy. A copy will
be created on a host that does not already have a copy on it.

1: procedure Copy(wo)
2: copiesToCreate← CopyNumberNeeded(wo)
3: if copiesToCreate > 0 then
4: currentCopyLocations← wo.currentCopyLocations
5: candidateCopyLocations← wo.candidateCopyLocations
6: possibleLocations← candidateCopyLocations\currentCopyLocations
7: while copiesToCreate > 0 do
8: if | possibleLocations |> 0 then ▷ Create a copy at the

newCopyLocation
9: newCopyLocation← PopFront(possibleLocations)
10: SendMessage(newCopyLocation, “copyrequest′′, wo)
11: else ▷ Reaching this break can be used as an indication to begin

“wandering” the graph again
12: break
13: end if
14: copiesToCreate← copiesToCreate− 1
15: end while
16: end if
17: end procedure
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A.1.6 COPYNUMBERNEEDED FUNCTION

A WO will create some number of copies every chance it gets. The maximum

number of copies it attempt to create is dependent on how many copies it has cur-

rently, the minimum and maximum number of copies it has been imbued to create,

and its preservation policy (see Algorithm 6). The CopyNumber() implements

Policy E logic.

Algorithm 6 CopyNumberNeeded() function. Returns the number of copies to
make. The number of copies to make is determined by the copy creation policy and
the current number of copies.

1: function CopyNumberNeeded(wo)
2: copyPolicy ← wo.copyPolicy
3: minCopies← wo.minCopies
4: maxCopies← wo.maxCopies
5: currentNumber ← wo.currentNumberOfCopies
6: copyNumber ← 0
7: if currentNumber < maxNumber then
8: if copyPolicy == “polite” then
9: copyNumber ← 1
10: else if copyPolicy == “moderately aggressive” then
11: if currentNumber < minNumber then
12: copyNumber ← minNumber − currentNumber
13: else
14: copyNumber ← 1
15: end if
16: else if copyPolicy == “aggressive” then
17: copyNumber ← maxNumber − currentNumber
18: end if
19: end if

return copyNumber
20: end function
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A.1.7 ISACTIVEMAINTAINER FUNCTION

Each family has exactly one WO responsible for the active maintenance of the

family. When the family was created, it was made of copies of the original WO known

as the progenitor (see Algorithm 7). The progenitor WO will always be the active

maintainer and will assume these responsibilities if another WO has designated itself

as the active maintainer.

Algorithm 7 IsActiveMaintainer() function. Returns TRUE or FALSE if the cur-
rent WO is the active maintainer. As a side effect, a new parent might be declared.

1: function IsActiveMaintainer(wo)
2: returnV alue← false
3: if wo.name == wo.progenitor then
4: returnV alue← true
5: if wo.name ̸= wo.parent then
6: SendMessage(wo.family, “declareparent′′, wo.name)
7: end if
8: else if wo.name == wo.parent then
9: returnV alue← true
10: else if wo.parent is not accessible then
11: SendMessage(wo.family, “declareparent′′, wo.name)
12: returnV alue← true
13: end if

return returnValue
14: end function
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A.1.8 MESSAGEMAINTENANCE FUNCTION

WOs communicate with each other via messages. Messages are used because

current technology does not permit direct WO-to-WO interaction. WOs are imbued

with various ways to send and receive messages (see Algorithm 3 on page 290).

When a WO is activated, it queues all the messages that it meant for it based its

communication mechanisms (see Algorithm 8). These messages are sorted into time

order and processed sequentially. It is assumed that the communication mechanism

keeps track of the messages the WO has received and will not send the same message

twice. If the communication mechanism does not provide this service then the WO

ensure that it only processes “new” messages.

Algorithm 8 MessageMaintenance() function. USW WO message maintenance.

1: function MessageMaintenance(wo)
2: messages← messages from communication wo.mechanism(s)
3: messages← SortByT imeSent(messages)
4: while messages ̸= 0 do
5: message← PopFront(messages) ▷ Messages can be received from

family members, friends, and outsiders. ▷ Process each message in
the order sent.

6: end while
return wo

7: end function
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A.1.9 PASSIVEMAINTENANCE ALGORITHM

Each family has exactly one active maintenance WO, all other family WOs en-

gage in passive maintenance. A passive maintainer checks the state of family mem-

bers and reports any problems to the active maintainer for action.

Algorithm 9 PassiveMaintenance() function. Returns an updated WO.

1: function PassiveMaintenance(wo)
2: currentBadCopies← copies that are invalid
3: while currentBadCopies ̸= 0 do ▷ Notify the active maintenance WO

about invalid copy.
4: badCopy ← PopFront(currentBadCopies)
5: SendMessage(wo.parent, “badcopy′′, badCopy.name)
6: currentBadCopies← RemoveFront(currentBadCopies)
7: end while

return wo
8: end function
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A.1.10 SAMPLESIZE FUNCTION

The WO builds up internal data structures as it explores and discovers informa-

tion about the USW graph. The WO uses this information in various ways when

determining which friendship connections to make, where to make copies, etc. As

the USW graph grows, these data structures could grow to considerable size. The

SampleSize() function returns the number of entries to return from this universe

of data based on criteria imbued at the WO’s creation (see Algorithm 10).

Algorithm 10 SampleSize() function. Return the number of WOs to select from
the WO list. There are many different ways to select ho many WOs to pick from a
list.
1: function SampleSize(wo, listOfWOs)
2: selector ← wo.selector
3: universe← listOfWOs
4: γ ← wo.γ
5: if selector == 1 then
6: sampleSize← length(universe) ∗ γ
7: else if selector == 2 then
8: sampleSize← max(1, ln(length(universe) ∗ γ))
9: else if selector == 3 then
10: sampleSize← max(1, ln(length(universe)) ∗ γ)
11: else if selector == 4 then
12: sampleSize← max(0, ln(length(universe) ∗ γ))
13: else if selector == 5 then
14: sampleSize← max(0, ln(length(universe)) ∗ γ)
15: else if selector == 6 then
16: sampleSize← max(1, log2(length(universe) ∗ γ))
17: else if selector == 7 then
18: sampleSize← max(1, log2(length(universe)) ∗ γ)
19: else if selector == 8 then
20: sampleSize← max(0, log2(length(universe) ∗ γ))
21: else if selector == 9 then
22: sampleSize← max(0, log2(length(universe)) ∗ γ)
23: else if selector == 10 then
24: sampleSize← 5 + log2(length(universe) ∗ γ)
25: end if

return sampleSize
26: end function
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A.1.11 WANDERING ALGORITHM (HIGH LEVEL)

A new WO “wanders” through the USW graph gathering information about the

graph’s structure as it explores each already existing WO it encounters. The new

WO will wander until it has explored the entire graph, or a locally generated random

number exceeds a threshold β that the WO was imbued with when it was created

(see Algorithm 11).

The new WO explores an existing old WO and adds the old WO to a “visited”

list. When exploring the old WO, the new WO discovers connections to other WOs.

Connections to unexplored and already undiscovered WOs are added to the “to be

visited” set. If there are no more WOs to be explored or a locally generated random

number exceeds the new WOs β value then a new old WO is selected and the process

continues. Otherwise, the function returns the last WO that was explored and the

two lists.

Algorithm 11 Wandering() function. Returns a collection of data about the USW
graph that the wandering WO discovered. Depending on the size of the graph and
how long the WO wanders, the data returned may or may not reflect the total state
of the graph.

1: function Wandering(newWO, oldWO)
2: connected = false
3: while connected == false do
4: newWO explores the oldWO
5: newWO adds oldWO to “visited” list
6: newWO adds oldWO’s list of “connected to WOs” to “to be visited” set
7: newWO gets a value ζ from a random number generator
8: if there are names in “to be visited” list and ζ < newWO.β then
9: A different oldWO is selected from the “to be visited” list
10: else
11: connected = true
12: end if
13: end while

return oldWO, “visited” list, “to be visited” list
14: end function
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A.1.12 WANDERING ALGORITHM (LOW LEVEL)

A high level description of the Wandering algorithm was given in A.1.11 on the

preceding page. A more detailed description is given in Algorithm 12 on the next

page.
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Algorithm 12 Wandering() detailed view. A WO is in the wandering state until
it makes its first friendship link. After that it is in the connected state. The WO
initiates communications with non-wandering or established WOs.

1: β ← newWO.beta ▷ The connection threshold.
2: γ ← newWO.gamma ▷ The amount of queues that will be used after the first

connection.
3: growthSelector ← newWO.controlParameter ▷ The growth function selector.
4: odering ← newWO.controlParameter ▷ How to select WOs from a list.
5: oldWO =given by the WO creator ▷ An initial WO that we (the creators of

this WO) define.
▷ If this WO does not have any friends.

6: if FriendList == ∅ then
▷ We initialize the queues of where we will go and where we have been.

7: toBeV isitedSet← oldWO
8: visitedSet← ∅ ▷ While we have WOs that we have not visited, we will

work.
9: while toBeV isitedSet ̸= ∅ do ▷ Get the next one from the front of the

queue.
10: potentialFriend← PopFront(toBeV isitedSet) ▷ Make sure we talk

to each WO exactly once.
11: visitedSet← visitedSet∪ potentialFriend ▷ Get the potential friend’s

list of friends.
12: posFriends← potentialFriend.friendList ▷ Identify WOs that are

not in the visitedSet and not in the toBeV isitedSet.
13: additionalV isits← posFriends\visitedSet\toBeV isitedSet ▷

Append the new found WOs to our list of WOs to visit.
14: toBeV isitedSet← toBeV isitedSet+ additionalV isits ▷ If a random

number exceeds our acceptance threshold or we have processed the
last potential WO then we are ready to make a connection

15: ζ ← from a random number generator
16: if ((ζ > β) or (toBeV isitedSet == ∅)) then ▷ Make the list contain

the WO that we last “talked to”.
17: friendList← potentialFriend ▷ Add to the list, some of the ones

that the WO planned to and did talk to.
18: temp← sampleSize(newWO, toBeV isitedSet)
19: friendList← friendList ∪ toBeV isitedSet[temp]
20: temp← sampleSize(newWO, visitedSet)
21: friendList← friendList ∪ visitedSet[temp]
22: else ▷ Add the WO that we just talked to the to list of WOs that we

have visited.
23: visitedSet← visitedSet+ potentialFriend
24: end if
25: end while
26: end if

return potentialFriend, visitedSet, toBeV isitedSet
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A.1.13 WOSELECTIONPROCESS FUNCTION

The USW algorithm relies on individual USW WOs to be accessed. Accessing

a WO causes it to begin a maintenance process and injects “energy” into the USW

system. An entity outside the USW system determines which WO to access (see

Algorithm 13). The external entity could be human or robotic, and the WO selection

technique is at the discretion of the entity.

Algorithm 13 WOSelectionProcess() Returns a single WO from the USW graph.

1: function WOSelectionProcess(graph) ▷ There are numerous ways to
select a WO from the USW graph.

Random selection would mimic a human browsing the USW graph as
identified by some external source such as search engine.

Ordered selection could be based on the time of WO creation, on the
number of connections that already exist within the WO, the number of
preservation copies that already exist, an estimate of the visitation rate for
a WO, etc.

return wo
2: end function
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A.2 SUPPORTING ALGORITHMS AND FUNCTIONS

Misc. things that are supporting and not reallymain stream enough to be raised

to a higher level.

A.2.1 EVALUATING THE ROBUSTNESS AND RESILIENCY OF

GRAPH

Algorithm 14 is an approach that returns whether or not a graph is (1) resilient

to attack, and (2) is robust. This algorithm is used to measure the effectiveness of

an attack profile and USW graph resiliency and robustness.

Algorithm 14 Evaluating the robustness and resiliency of graph.

1: g ←a graph
2: l ←maximum number of turns in the game
3: attackerPercent←constant percentage
4: resiliencePercent←constant percentage
5: gOrig ← g
6: while l > 0 do
7: Report graph metrics on graph g
8: gPrime← removeHighestBetween(g, attackerPercent)
9: if disconnected(gPrime) == true then
10: Break From Loop
11: end if
12: Report graph metrics on graph gPrime
13: g ← reconstitute(gOrig, gPrime, resiliencePercent)
14: l ← l − 1
15: end while
16: if disconnected(gPrime) == true then
17: Declare attacker the winner.
18: else
19: Declare USW robust and resilient.
20: end if
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A.2.2 REMOVEHIGHESTBETWEEN FUNCTION

Each WO in the USW graph was evaluated to identify the one with the highest

centrality cB(v) (see Algorithm 15). This WO is then removed from the graph and

the modified graph is returned.

Algorithm 15 removeHighestBetween() function. Removing the WO with the
highest “betweenness” score.

1: function removeHighestBetween(graph) ▷ The WO with the highest
betweenness value is identified.

2: WOId← f(graph) ▷ The WO is removed from the original graph.
3: gReduced← graph−WOId

return gReduced
4: end function
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A.2.3 RECONSTITUTE FUNCTION

Each WO in the attacked USW graph is assigned a random number as a local

label (see Algorithm 16). All WOs are numerically sorted based on this numeric

label. A fixed percentage of WOs in the attacked graph are replaced by the same

WOs from the original graph.

Algorithm 16 reconstitute() function.

1: function reconstitute(gOrig, gAttacked, percentage)
2: qNodes ← each node in the attacked graph is assigned a random number

and sorted ascending by that number
3: wNodes← perCentage ∗ length(qNodes)
4: for node in wNodes do
5: gAttacked[node]← gOrig[node]
6: end for

return gAttacked
7: end function
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A.2.4 ORDEREDQUEUE ALGORITHM

We may required a number of graph metrics for the USW graph depending on

the particular circumstances. OrderedQueue() provides a single place where those

metrics can computed and ordered as needed.

Algorithm 17 OrderedQueue() function. Returns an ordered queue of WOs from
a USW graph. The queue can be ordered in different manners based on which which
graph characteristic is of interest. A few options are: path length from an source
WO to all WOs, the degreeness of each of the WOs or the age of the WO.

1: function OrderedQueue(g, sourceWO, queueType)
2: returnV alue← nill
3: if queueType == “Path length longest” then
4: pathLengths← ComputePathLength(g, sourceWO)
5: returnV alue← Sort(pathLengths, “descending′′)
6: else if queueType == “Path length shortest” then
7: pathLengths← ComputePathLength(g, sourceWO)
8: returnV alue← Sort(pathLengths, “ascending′′)
9: else if queueType == “Degreeness ascending” then
10: degrees← ComputeDegrees(g)
11: returnV alue← Sort(degrees, “ascending′′)
12: else if queueType == “Degreeness descending” then
13: degrees← ComputeDegrees(g)
14: returnV alue← Sort(degrees, “descending′′)
15: else
16: attribute← SomeFuction(g)
17: returnV alue← OrderingFunction(attribute)
18: end if

return returnV alue
19: end function
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A.2.5 VALUE ALGORITHM

V alue() provides a way to compare the normalized C(G)Average and L(G) for a

USW graph. The value returned by the function should remain positive, meaning

that the normalized C(G)Average dominates. If the value returns a negative number,

then there is significant differences in the L(G) and further investigation into why

is recommended.

Algorithm 18 Value() function. Returns a single normalized value. The value
is the difference between the clustering coefficient and the average path length.
The functions CC and PL take a graph as input and return C(G)Average and L(G)
respectively.

1: function Value(g, ccbase, plbase)
2: cc← ComputeClusteringCoefficient(g)
3: pl← ComputePathLength(g)
4: nc← cc/ccbase
5: np← pl/plbase
6: returnV alue← nc− np

return returnValue
7: end function
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A.2.6 EVALUATING ALL CONNECTIONS

An exponential averager is used to select identify the set of WOs that have the

greatest positive influence on both C(G)Average and L(G).

Base values for C(G)Average and L(G) from the original graph are computed. As

well as the number of times the system will be evaluated. All δst value from the

wandering WO to every other WO is computed and then ordered in a queue from

longest to shortest. A connection is made from the wandering WO to the furthest

WO and C(G)Average and L(G) values for the tentative graph are computed. If the

new values are better than the previous values, the process repeats. At the end of

the tentative graph computations connection messages have been sent to a all WOs

whose friendship connections improve the USW’s small-world criteria.
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Algorithm 19 EvaluateConnections() function. The newly connected WO evalu-
ates the effect of connecting to each of the γ established WOs. The evaluation is used
to select the ones to connect to have the greatest positive impact on C(G)Average

and L(G).

1: procedure EvaluateConnections(g, γ)
▷ The number of WOs that will become connected to the no-longer

wandering wo
2: limit← γ∗ | V (g) |
3: dampening ← 0.7
4: o← 0
5: for o ≤ limit do
6: oldDV ← 0
7: ccbase ← ComputeClusterCoefficient(g)
8: plbase ← ComputePathLength(g)
9: queueOfWOs← orderedQueue(g, pathLengthLongest)
10: e← 0
11: for e ≤ (limit− o) do
12: candidateWO ← PopFront(queueOfWOs)
13: g

′

← g ∪ candidateWO
14: newV alue← V alue(g

′

, ccbase, plbase)
15: dampenedV alue← dampening∗oldDV +(1−dampening)∗newV alue
16: if dampenedV alue > oldDV then
17: oldDV ← dampenedV alue
18: else
19: break
20: end if
21: e← e+ 1
22: end for
23: sendMessage(candidateWO, “connect to me”, WO)
24: g ← g

′

25: o← o+ 1
26: end for
27: end procedure
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A.3 FUTURE WORK

The following algorithms, procedures, and functions are critical to understanding

and implementing the USW algorithm in other environments.

Algorithm 20 Important() function. Return TRUE or FALSE that a message is
important. Provides a way to identify things that are important and to remove
duplicates. There may be other criteria that define what makes a message impor-

tant. For USW demonstration purposes, this procedure will always return TRUE,
meaning that the message is important.

1: function Important(message) ▷ Determine if this message is important.
2: returnV alue← FALSE
3: if important message then
4: returnV alue← TRUE
5: end if

return returnValue
6: end function

Algorithm 21 Wiki rd() implementation. Linda rd() equivalent implementation
for MediaWiki.
1: LMT ← last modified date of this REM
2: MB ← message box wiki page of this REM
3: SMB ← shared multicast message box wiki page
4: CHANGES ← ∅
5: MSGS ← MB revisions after LMT∪ filtered revisions from SMB
6: for each MSG in MSGS do
7: if Important(MSG) then
8: CHANGES ← CHANGES ∪MSG
9: end if
10: end for
11: Apply CHANGES to this REM
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Algorithm 22 Wiki out() implementation. Linda the message box (TMB) out()
equivalent implementation for MediaWiki.

1: if multicast message then
2: TMB ← shared multicast message box wiki page
3: else
4: TMB ← message box wiki page of target REM
5: end if
6: MSG← message tuple
7: overwrite TMB with MSG

Algorithm 23 Gmail rd() implementation. Linda rd() equivalent implementation
for Gmail.
1: MB ← gmail inbox of this REM
2: SMB ← shared multicast gmail inbox (via gateway)
3: MSGS ← MB unread messages ∪ filtered messages from SMB
4: CHANGES ← ∅
5: for each MSG in MSGS do
6: if Important(MSG) then
7: CHANGES ← CHANGES ∪MSG
8: end if
9: end for
10: apply CHANGES to this REM

Algorithm 24 Gmail out() implementation. Linda out() equivalent implementation
for Gmail.
1: if multicast message then
2: TMB ← shared multicast gmail inbox (via gateway)
3: else
4: TMB ← gmail inbox of target REM
5: end if
6: MSG← message tuple
7: email MSG to TMB
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APPENDIX B

USW EVENTS

We have categorized and organized WO events and activities into an expected

order to support implementation and provide additional clarification. For each event

or activity, we have listed the following types of information:

� Message Name: message are exchanged between WOs to create friendship

links, request that preservation copies be made, and so on. Where a message

is exchanged, the message is identified. In those cases where a message is

not exchanged (for instance when a curl command is used), then appropriate

identifying information is provided.

� Explanation: a summary of what is happening the USW graph during this

activity or event.

� Example: example text supporting whatever was identified in the message

name item.

A complete list of listings is given in APPENDIX M on page 547.
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B.1 EVENT 101. GET ENTRYPOINT’S REM.

Wandering
WO

Mail box

103. Friend request sent

Potential
Friend

101. Get Initial WO

Potential
Friend of
a friend

102. Get discovered WO wanderer’s host

104. Add friend location

105. Friend request received
Existing USW link

fof’s host

106. Add wandering WO as friend

Figure 110. Wandering events and messages, event 101.

� Message Name: N/A, simple curl command

� Explanation: The “wandering” WO retrieves the entrypoint’s REM to extract

USW graph information.

� Example:

curl -m 120 -i http://flickr.cs.odu.edu/

flickr-ceotty-8161751828.html
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B.2 EVENT 102. GET FRIEND OF FRIEND’S REM.

Wandering
WO

Mail box

103. Friend request sent

Potential
Friend

101. Get Initial WO

Potential
Friend of
a friend

102. Get discovered WO wanderer’s host

104. Add friend location

105. Friend request received
Existing USW link

fof’s host

106. Add wandering WO as friend

Figure 111. Wandering events and messages, event 102.

� Message Name: N/A, simple curl command

� Explanation: The “wandering” WO retrieves the discovered WO’s REM to

extract USW graph information. The “wandering” WO will continue to ex-

plore the USW graph until an end condition is met: 1) the wandering WO’s

random number exceeds β, or 2) the wandering WO explores the entire USW

graph.

� Example:

curl -m 120 -i http://arxiv.cs.odu.edu/rems/

arxiv-0912-0201v1.xml
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B.3 EVENT 103. SEND FRIEND REQUEST.

Wandering
WO

Mail box

103. Friend request sent

Potential
Friend

101. Get Initial WO

Potential
Friend of
a friend

102. Get discovered WO wanderer’s host

104. Add friend location

105. Friend request received
Existing USW link

fof’s host

106. Add wandering WO as friend

Figure 112. Wandering events and messages, event 103.

� Message Name: Friend Request

� Explanation: The wandering WO sends a friend request to an established WO.

� Example: (lines broken for clarity)

curl -m 120 -i -X POST --data-binary @/tmp/temp~.xxx9d0be5d -i

-H "Sender: http://flickr.cs.odu.edu/rems/

flickr-ceotty-8161751828.xml"

-H "Content-type: message/http"

http://ws-dl-02.cs.odu.edu:10101/hm/http:

//gutenberg.cs.odu.edu/rems/gutenberg-pride-and-prejudice.xml

PATCH /rems/gutenberg -pride -and -prejudice.xml HTTP

/1.1

Host: gutenberg.cs.odu.edu

Content -type: application/patch -ops -error+xml

Content -length: 216
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<?xml version="1.0" encoding="UTF -8"?>

<diff>

<add sel="entry">

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/friend

"

href="http: // flickr.cs.odu.edu/rems/flickr -ceotty

-8161751828. xml"

title="Kittens" />

</add>

</diff>

Listing 9. Sample Friend Request message.The Friend Request message is

an asynchronous communication delivered to the recipient’s personal mailbox.

The recipient will receive and process the message at some later time. Contents

of /tmp/temp˜ .xxx9d0be5d.
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B.4 EVENT 104. WO UPDATES OWN REM.

Wandering
WO

Mail box

103. Friend request sent

Potential
Friend

101. Get Initial WO

Potential
Friend of
a friend

102. Get discovered WO wanderer’s host

104. Add friend location

105. Friend request received
Existing USW link

fof’s host

106. Add wandering WO as friend

Figure 113. Wandering events and messages, event 104.

� Message Name: REM Patch

� Explanation: Send HTTP Patch directive to WO’s edit service to update WO’s

REM.

� Example: (lines broken for clarity)

curl -m 120 -X POST -i --data-binary @/tmp/temp~.xxx23a40ffc

-H "Content-type: application/patch-ops-error+xml"

http://ws-dl-02.cs.odu.edu:10102/rem/edit/http:

//flickr.cs.odu.edu/rems/flickr-ceotty-8161751828.xml

<?xml version="1.0" encoding="UTF -8"?>

<diff>

<add sel="entry">

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/friend"

href="http: // gutenberg.cs.odu.edu/rems/gutenberg -

pride -and -prejudice.xml"

title="Pride and Prejudice" />
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</add>

</diff>

Listing 10. Sample Patch, adding a friend location.The patch

directive is serviced by the requesting WO’s edit service. Contents of

/tmp/temp˜ .xxx23a40ffc.
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B.5 EVENT 105. RETRIEVE FRIEND REQUEST.

Wandering
WO

Mail box

103. Friend request sent

Potential
Friend

101. Get Initial WO

Potential
Friend of
a friend

102. Get discovered WO wanderer’s host

104. Add friend location

105. Friend request received Existing USW link

fof’s host

106. Add wandering WO as friend

Figure 114. Wandering events and messages, event 105.

� Message Name: Retrieve Friend Request

� Explanation: The established WO services all of its mailboxes when it is

activated. All messages are processed in a first sent - first processed order to

ensure that an accurate state is achieved when the last message is processed.

� Example: (lines broken for clarity)

curl -m 120 -i -o -

http://ws-dl-02.cs.odu.edu:10101/hm/http:

//gutenberg.cs.odu.edu/rems/gutenberg-pride-and-prejudice.xml

HTTP /1.1 200 OK\r

Server: HTTP Mailbox\r

Content -type: message/http\r

Date: Fri , 16 Aug 2013 18 :17:37 GMT\r

Memento -Datetime: Fri , 16 Aug 2013 18 :13:35 GMT\r

Via: sent by 68.10.149.64 on behalf of http: //

flickr.cs.odu.edu/rems/flickr -ceotty -8161751828. xml ,

delivered by http: //ws -dl -02.cs.odu.edu:10101/hm/\r
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Link: <http: //ws -dl -02.cs.odu.edu:10101/hm/http: //

gutenberg.cs.odu.edu/rems/gutenberg -pride -and -

prejudice.xml>;

rel="current", <http: //ws -dl -02.cs.odu.edu:10101/hm

/id/f9db8321 -7eae -43db -a241 -0 ee5ea5ec330 >;

rel="self", <http: //ws -dl -02.cs.odu.edu:10101/hm

/id/08 e32760 -ac47 -4194 -a186 -c3d79af50652 >;

rel="first", <http: //ws -dl -02.cs.odu.edu:10101/hm

/id/77 cef9fd -d3e1 -4737 -a59b -142 a7936535c >;

rel="last", <http: //ws -dl -02.cs.odu.edu:10101/hm

/id /85088497 -3a9a -4fb4 -9c67 -96 e71e60d299 >;

rel="next", <http: //ws -dl -02.cs.odu.edu:10101/hm

/id/08 e32760 -ac47 -4194 -a186 -c3d79af50652 >;

rel="previous"\r

Content -Length: 366\r

Connection: keep -alive\r

\r

PATCH /rems/gutenberg -pride -and -prejudice.xml HTTP

/1.1

Host: gutenberg.cs.odu.edu

Content -type: application/patch -ops -error+xml

Content -length: 216

<?xml version="1.0" encoding="UTF -8"?>

<diff>

<add sel="entry">

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/friend

"

href="http: // flickr.cs.odu.edu/rems/flickr -ceotty

-8161751828. xml"

title="Kittens"

/>

</add>

</diff>
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Listing 11. Complete Friend Request message.The receiving WO can use the

“Link:” header to get an ordered list of messages from its mailbox.
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B.6 EVENT 106. PROCESS FRIEND REQUEST.

Wandering
WO

Mail box

103. Friend request sent

Potential
Friend

101. Get Initial WO

Potential
Friend of
a friend

102. Get discovered WO wanderer’s host

104. Add friend location

105. Friend request received
Existing USW link

fof’s host

106. Add wandering WO as friend

Figure 115. Wandering events and messages, event 106.

� Message Name: REM Patch

� Explanation: Send HTTP Patch directive to WO’s edit service to update WO’s

REM.

� Example: (lines broken for clarity)

curl -m 120 -X POST -i --data-binary @/tmp/temp~.xxx9d03a55

-H "Content-type: application/patch-ops-error+xml"

http://ws-dl-02.cs.odu.edu:10102/rem/edit/http://

gutenberg.cs.odu.edu/rems/gutenberg-pride-and-prejudice.xml

<?xml version="1.0" encoding="UTF -8"?>

<diff>

<add sel="entry">

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/friend"

href="http: // flickr.cs.odu.edu/rems/flickr -ceotty

-8161751828. xml"
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title="Kittens"

/>

</add>

</diff>

Listing 12. Sample Friend Request message processing.The receiving

WO uses its edit service to process the patch directive. Contents of

/tmp/temp˜ .xxx9d03a55.



323

B.7 USW GRAPH AFTER WANDERING.

USW WO actions can be logically divided into different phases. One such divi-

sion is pre- and post wandering. After “wandering,” a WO is connected to at least

one other WO (Figure 116).

Resulting USW graph
by URI

Resulting USW graph
by title

http://flickr.cs.odu.edu/rems/flickr-ceotty-8161751828.xml

http://gutenberg.cs.odu.edu/rems/gutenberg-pride-and-prejudice.xml

Kittens

Pride and Prejudice

Figure 116. USW graph after wandering events.



324

B.8 EVENT 201. COPY REQUEST TO FRIEND

Active
maintainer

Mail box

208. Sending copy location to family 201. Copy request sent

parentHost

207. Add copy location206. Copy location received

family

209. Additional copy 
location received

friend

202. Copy request received

familyHost

210. Add copy location

205. Copy location sent

friendHost

203. Copy service request 204. Copy location return

Figure 117. Copying events and messages, event 201.

� Message Name: Copy Request to Friend

� Explanation: A parental WO is charged with making and distributing copies

across as many different domains as it knows about. It sends a Copy Request

to a friend and requests that the friend make a copy of using the REM data

the parental WO provides.

� Example: (lines broken for clarity)

curl -m 120 -i

-H "Sender: http://flickr.cs.odu.edu/rems/

flickr-ceotty-8161751828.xml"

-H "Content-type: message/http"

-X POST --data-binary @/tmp/temp~.xxx3bbc2b84

http://ws-dl-02.cs.odu.edu:10101/hm/http://

gutenberg.cs.odu.edu/rems/gutenberg-pride-and-prejudice.xml

POST http: //ws -dl -02.cs.odu.edu:10102/rem/copy/http:

// flickr.cs.odu.edu/ HTTP /1.1

Host: flickr.cs.odu.edu

Content -type: application/atom+xml
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Content -length: 7681

<?xml version="1.0" encoding="UTF -8"?>

<entry xmlns="http: //www.w3.org /2005/ Atom"

xmlns:oreatom="http: //www.openarchives.org/ore/atom

/"

xmlns:dcterms="http: //purl.org/dc/terms/"

xmlns:dc="http: //purl.org/dc/elements /1.1/"

xmlns:rdf="http: //www.w3.org /1999/02/22 -rdf -syntax -

ns#"

xmlns:rdfs="http: //www.w3.org /2000/01/ rdf -schema#"

xmlns:ore="http: //www.openarchives.org/ore/terms/"

xmlns:foaf="http: // xmlns.com/foaf /0.1/"

xmlns:grddl="http: //www.w3.org /2003/g/data -view#"

xmlns:relationship="http: //purl.org/vocab/

relationship/"

xmlns:usw="http: //wsdl.cs.odu.edu/uswdo/terms/"

grddl:transformation="http: //www.openarchives.org/

ore/atom/atom -grddl.xsl"

xmlns:le="http: //purl.org/atompub/link -extensions

/1.0">

<id>tag:uswdo.cs.odu.edu ,2012 -11 -01 :flickr -ceotty

-8161751828 </id>

<link rel="alternate" type="text/html"

href="http: // flickr.cs.odu.edu/flickr -ceotty

-8161751828. html" />

<link rel="self" type="application/atom+xml"

href="http: // flickr.cs.odu.edu/rems/flickr -ceotty

-8161751828. xml" />

<link rel="edit" type="application/atom+xml"

href="http: //ws -dl -02.cs.odu.edu:10102/rem/edit/

http:

// flickr.cs.odu.edu/rems/flickr -ceotty

-8161751828. xml" />
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<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/copy"

type="application/atom+xml"

href="http: //ws -dl -02.cs.odu.edu:10102/rem/copy/

http:

// flickr.cs.odu.edu/" />

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

synchronize"

type="message/http" href="http: //ws -dl -02.cs.odu.

edu:10102/

rem/synchronize/http:

// flickr.cs.odu.edu/rems/flickr -ceotty

-8161751828. xml" />

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

httpmailbox#self"

href="http: //ws -dl -02.cs.odu.edu:10101/hm/http:

// flickr.cs.odu.edu/rems/flickr -ceotty

-8161751828. xml"

last -checked="2013 -08 -16 T18:13:36 +00 :00"/>

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

httpmailbox#all"

href="http: //ws -dl -02.cs.odu.edu:10101/hm/all"

last -checked="2013 -08 -16 T18:13:42 +00 :00"/>

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

httpmailbox#family"

href="http: //ws -dl -02.cs.odu.edu:10101/hm/

tag:uswdo.cs.odu.edu ,2012 -11 -01 :flickr -ceotty

-8161751828"

last -checked="2013 -08 -16 T18:13:39 +00 :00"/>

<link rel="http: //www.openarchives.org/ore/terms/

describes"

href="http: // flickr.cs.odu.edu/rems/

flickr -ceotty -8161751828. xml#aggregation" />

<source >

<author >
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<name>ODU WSDL ReM Generator </name>

<uri>http: //ws -dl -02.cs.odu.edu/</uri>

</author >

</source >

<published >2013 -07 -30 T18:25:35 -04 :00</published >

<updated >2013 -07 -30 T18:25:35 -04 :00</updated >

<link rel="license" type="application/rdf+xml"

href="http: // creativecommons.org/licenses/by -nc

/2.5/ rdf" />

<rights >This Resource Map is available under the

Creative Commons Attribution -Noncommercial 2.5

Generic license </rights >

<title >Kittens </title >

<author >

<name>ceotty </name>

</author >

<category term="http: //www.openarchives.org/ore/

terms/Aggregation"

label="Aggregation" scheme="http: //www.

openarchives.org/ore/terms/" />

<category term="2012 -11 -06 T00:00:00 -05 :00"

scheme="http: //www.openarchives.org/ore/atom/

created" />

<category term="2012 -11 -06 T00:00:00 -05 :00"

scheme="http: //www.openarchives.org/ore/atom/

modified" />

<category term="3"

scheme="http: //wsdl.cs.odu.edu/uswdo/terms/

preservationCopiesMinimumNumber" />

<category term="5"

scheme="http: //wsdl.cs.odu.edu/uswdo/terms/

preservationCopiesMaximumNumber" />

<category term="0.85"
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scheme="http: //wsdl.cs.odu.edu/uswdo/terms/beta"

/>

<category term="0.10"

scheme="http: //wsdl.cs.odu.edu/uswdo/terms/gamma"

/>

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

family#parent"

type="application/atom+xml" title="Kittens"

href="http: // flickr.cs.odu.edu/rems/flickr -ceotty

-8161751828. xml" />

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

family#parentOriginal"

type="application/atom+xml" title="Kittens"

href="http: // flickr.cs.odu.edu/rems/flickr -ceotty

-8161751828. xml" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // flickr.cs.odu.edu/flickr -ceotty

-8161751828. html"

type="text/html" title="Kittens" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: //www.flickr.com/photos/ceotty

/8161751828/"

type="text/html" title="Kittens | Flickr - Photo

Sharing!" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e.jpg"

type="image/jpeg" title="[Medium 500] Kittens"

usw:synchronize="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e.jpg"
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modified="2012 -11 -06 T00:00:00 -05 :00" length="

1024000" md5="" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_s.jpg"

type="image/jpeg" title="[Square 75] Kittens"

usw:synchronize="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_s.jpg"

modified="2012 -11 -06 T00:00:00 -05 :00" length="

1024000" md5="" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_q.jpg"

type="image/jpeg" title="[Square 150] Kittens"

usw:synchronize="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_q.jpg"

modified="2012 -11 -06 T00:00:00 -05 :00" length="

1024000" md5="" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_t.jpg"

type="image/jpeg" title="[Thumbnail] Kittens"

usw:synchronize="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_t.jpg"

modified="2012 -11 -06 T00:00:00 -05 :00" length="

1024000" md5="" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_n.jpg"

type="image/jpeg" title="[Small 240] Kittens"
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usw:synchronize="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_n.jpg"

modified="2012 -11 -06 T00:00:00 -05 :00" length="

1024000" md5="" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_m.jpg"

type="image/jpeg" title="[Small 320] Kittens"

usw:synchronize="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_m.jpg"

modified="2012 -11 -06 T00:00:00 -05 :00" length="

1024000" md5="" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_z.jpg"

type="image/jpeg" title="[Medium 640] Kittens"

usw:synchronize="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_z.jpg"

modified="2012 -11 -06 T00:00:00 -05 :00" length="

1024000" md5="" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_c.jpg"

type="image/jpeg" title="[Medium 800] Kittens"

usw:synchronize="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_c.jpg"

modified="2012 -11 -06 T00:00:00 -05 :00" length="

1024000" md5="" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"
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href="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_l.jpg"

type="image/jpeg" title="[Large 1024] Kittens"

usw:synchronize="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_l.jpg"

modified="2012 -11 -06 T00:00:00 -05 :00" length="

1024000" md5="" />

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

friend"

href="http: // gutenberg.cs.odu.edu/rems/gutenberg -

pride -and -prejudice.xml"

title="Pride and Prejudice"/>

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

copyService"

href="http: // gutenberg.cs.odu.edu/rems/gutenberg -

pride -and -prejudice.xml"

domain="gutenberg.cs.odu.edu"/>

</entry >

Listing 13. Sample Copy Request message.. The message contains the

entirety of the WO that is requesting a copy be made on a friend WO’s

host. Because communication between the sending and the receiving WOs

is asynchronous, sending the “value” of the requesting WO rather than a

“reference” ensures that a complete WO is available to create a copy. Contents

of /tmp/temp˜ .xxx3bbc2b84.
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B.9 EVENT 202. GET COPY REQUEST MESSAGE.

Active
maintainer

Mail box

201. Copy request sent 208. Sending copy location to family

parentHost

207. Add copy location206. Copy location received

family

209. Additional copy 
location received

friend

202. Copy request received

familyHost

210. Add copy location

205. Copy location sent

friendHost

203. Copy service request 204. Copy location return

Figure 118. Copying events and messages, event 202.

� Message Name: Retrieve Copy Request

� Explanation: A parental WO sends a request to an established WO to make

a copy of the parent based on the data in the message. The established WO

services all of its mailboxes when it is activated. All messages are processed in

a first sent - first processed order to ensure that an accurate state is achieved

when the last message is processed.

� Example: (lines broken for clarity)

curl -m 120 -i -o - http://ws-dl-02.cs.odu.edu:10101/hm/http:

//gutenberg.cs.odu.edu/rems/gutenberg-pride-and-prejudice.xml

HTTP /1.1 200 OK\r

Server: HTTP Mailbox\r

Content -type: message/http\r

Date: Fri , 16 Aug 2013 18 :17:36 GMT\r

Memento -Datetime: Fri , 16 Aug 2013 18 :13:50 GMT\r

Via: sent by 68.10.149.64 on behalf of http:

// flickr.cs.odu.edu/rems/flickr -ceotty -8161751828.

xml ,



333

delivered by http: //ws -dl -02.cs.odu.edu:10101/hm/\r

Link: <http: //ws -dl -02.cs.odu.edu:10101/hm/http:

// gutenberg.cs.odu.edu/rems/gutenberg -pride -and -

prejudice.xml>;

rel="current", <http: //ws -dl -02.cs.odu.edu:10101/hm

/id /85088497 -3a9a -4fb4 -9c67 -96 e71e60d299 >;

rel="self", <http: //ws -dl -02.cs.odu.edu:10101/hm

/id/08 e32760 -ac47 -4194 -a186 -c3d79af50652 >;

rel="first", <http: //ws -dl -02.cs.odu.edu:10101/hm

/id/77 cef9fd -d3e1 -4737 -a59b -142 a7936535c >;

rel="last", <http: //ws -dl -02.cs.odu.edu:10101/hm

/id /31341132 -3abd -412a-874d-6 b2f4bae1cb1 >;

rel="next", <http: //ws -dl -02.cs.odu.edu:10101/hm

/id/f9db8321 -7eae -43db -a241 -0 ee5ea5ec330 >;

rel="previous"\r

Content -Length: 7844\r

Connection: keep -alive\r

\r

POST http: //ws -dl -02.cs.odu.edu:10102/rem/copy/http:

// flickr.cs.odu.edu/ HTTP /1.1

Host: flickr.cs.odu.edu

Content -type: application/atom+xml

Content -length: 7681

Listing 14. Complete Copy Request message.The receiving WO can use the

“Link:” header to get an ordered list of messages from its mailbox.

POST http: //ws -dl -02.cs.odu.edu:10102/rem/copy/http:

// flickr.cs.odu.edu/ HTTP /1.1

Host: flickr.cs.odu.edu

Content -type: application/atom+xml

Content -length: 7681

HTTP /1.1 200 OK

Date: Fri , 16 Aug 2013 18 :13:48 GMT

Server: Apache /2.2.15 (Red Hat)
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Last -Modified: Fri , 16 Aug 2013 18 :13:47 GMT

ETag: "5671e6 -1d00 -4 e4148d3e6ccc"

Accept -Ranges: bytes

Content -Length: 7424

Connection: close

Content -Type: text/xml

<?xml version="1.0" encoding="UTF -8"?>

<entry xmlns="http: //www.w3.org /2005/ Atom"

xmlns:oreatom="http: //www.openarchives.org/ore/atom

/"

xmlns:dcterms="http: //purl.org/dc/terms/"

xmlns:dc="http: //purl.org/dc/elements /1.1/"

xmlns:rdf="http: //www.w3.org /1999/02/22 -rdf -syntax -

ns#"

xmlns:rdfs="http: //www.w3.org /2000/01/ rdf -schema#"

xmlns:ore="http: //www.openarchives.org/ore/terms/"

xmlns:foaf="http: // xmlns.com/foaf /0.1/"

xmlns:grddl="http: //www.w3.org /2003/g/data -view#"

xmlns:relationship="http: //purl.org/vocab/

relationship/"

xmlns:usw="http: //wsdl.cs.odu.edu/uswdo/terms/"

grddl:transformation="http: //www.openarchives.org/

ore/atom/atom -grddl.xsl"

xmlns:le="http: //purl.org/atompub/link -extensions

/1.0">

<id>tag:uswdo.cs.odu.edu ,2012 -11 -01 :flickr -ceotty

-8161751828 </id>

<link rel="alternate" type="text/html"

href="http: // flickr.cs.odu.edu/flickr -ceotty

-8161751828. html" />

<link rel="self" type="application/atom+xml"

href="http: // flickr.cs.odu.edu/rems/flickr -ceotty

-8161751828. xml" />
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<link rel="edit" type="application/atom+xml"

href="http: //ws -dl -02.cs.odu.edu:10102/rem/edit/

http:

// flickr.cs.odu.edu/rems/flickr -ceotty

-8161751828. xml" />

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/copy"

type="application/atom+xml"

href="http: //ws -dl -02.cs.odu.edu:10102/rem/copy/

http:

// flickr.cs.odu.edu/" />

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

synchronize"

type="message/http" href="http: //ws -dl -02.cs.odu.

edu:10102/

rem/synchronize/http:

// flickr.cs.odu.edu/rems/flickr -ceotty

-8161751828. xml" />

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

httpmailbox#self"

href="http: //ws -dl -02.cs.odu.edu:10101/hm/http:

// flickr.cs.odu.edu/rems/flickr -ceotty

-8161751828. xml"

last -checked="2013 -08 -16 T18:13:36 +00 :00"/>

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

httpmailbox#all"

href="http: //ws -dl -02.cs.odu.edu:10101/hm/all"

last -checked="2013 -08 -16 T18:13:42 +00 :00"/>

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

httpmailbox#family"

href="http: //ws -dl -02.cs.odu.edu:10101/hm/

tag:uswdo.cs.odu.edu ,2012 -11 -01 :flickr -ceotty

-8161751828"

last -checked="2013 -08 -16 T18:13:39 +00 :00"/>
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<link rel="http: //www.openarchives.org/ore/terms/

describes"

href="http: // flickr.cs.odu.edu/rems/

flickr -ceotty -8161751828. xml#aggregation" />

<source >

<author >

<name>ODU WSDL ReM Generator </name>

<uri>http: //ws -dl -02.cs.odu.edu/</uri>

</author >

</source >

<published >2013 -07 -30 T18:25:35 -04 :00</published >

<updated >2013 -07 -30 T18:25:35 -04 :00</updated >

<link rel="license" type="application/rdf+xml"

href="http: // creativecommons.org/licenses/by -nc

/2.5/ rdf" />

<rights >This Resource Map is available under the

Creative Commons Attribution -Noncommercial 2.5

Generic license </rights >

<title >Kittens </title >

<author >

<name>ceotty </name>

</author >

<category term="http: //www.openarchives.org/ore/

terms/Aggregation"

label="Aggregation" scheme="http: //www.

openarchives.org/ore/terms/" />

<category term="2012 -11 -06 T00:00:00 -05 :00"

scheme="http: //www.openarchives.org/ore/atom/

created" />

<category term="2012 -11 -06 T00:00:00 -05 :00"

scheme="http: //www.openarchives.org/ore/atom/

modified" />

<category term="3"
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scheme="http: //wsdl.cs.odu.edu/uswdo/terms/

preservationCopiesMinimumNumber" />

<category term="5"

scheme="http: //wsdl.cs.odu.edu/uswdo/terms/

preservationCopiesMaximumNumber" />

<category term="0.85"

scheme="http: //wsdl.cs.odu.edu/uswdo/terms/beta"

/>

<category term="0.10"

scheme="http: //wsdl.cs.odu.edu/uswdo/terms/gamma"

/>

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

family#parent"

type="application/atom+xml" title="Kittens"

href="http: // flickr.cs.odu.edu/rems/flickr -ceotty

-8161751828. xml" />

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

family#parentOriginal"

type="application/atom+xml" title="Kittens"

href="http: // flickr.cs.odu.edu/rems/flickr -ceotty

-8161751828. xml" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // flickr.cs.odu.edu/flickr -ceotty

-8161751828. html"

type="text/html" title="Kittens" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: //www.flickr.com/photos/ceotty

/8161751828/"

type="text/html" title="Kittens | Flickr - Photo

Sharing!" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"
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href="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e.jpg"

type="image/jpeg" title="[Medium 500] Kittens"

usw:synchronize="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e.jpg"

modified="2012 -11 -06 T00:00:00 -05 :00" length="

1024000" md5="" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_s.jpg"

type="image/jpeg" title="[Square 75] Kittens"

usw:synchronize="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_s.jpg"

modified="2012 -11 -06 T00:00:00 -05 :00" length="

1024000" md5="" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_q.jpg"

type="image/jpeg" title="[Square 150] Kittens"

usw:synchronize="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_q.jpg"

modified="2012 -11 -06 T00:00:00 -05 :00" length="

1024000" md5="" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_t.jpg"

type="image/jpeg" title="[Thumbnail] Kittens"

usw:synchronize="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_t.jpg"

modified="2012 -11 -06 T00:00:00 -05 :00" length="

1024000" md5="" />
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<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_n.jpg"

type="image/jpeg" title="[Small 240] Kittens"

usw:synchronize="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_n.jpg"

modified="2012 -11 -06 T00:00:00 -05 :00" length="

1024000" md5="" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_m.jpg"

type="image/jpeg" title="[Small 320] Kittens"

usw:synchronize="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_m.jpg"

modified="2012 -11 -06 T00:00:00 -05 :00" length="

1024000" md5="" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_z.jpg"

type="image/jpeg" title="[Medium 640] Kittens"

usw:synchronize="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_z.jpg"

modified="2012 -11 -06 T00:00:00 -05 :00" length="

1024000" md5="" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_c.jpg"

type="image/jpeg" title="[Medium 800] Kittens"

usw:synchronize="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_c.jpg"
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modified="2012 -11 -06 T00:00:00 -05 :00" length="

1024000" md5="" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_l.jpg"

type="image/jpeg" title="[Large 1024] Kittens"

usw:synchronize="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_l.jpg"

modified="2012 -11 -06 T00:00:00 -05 :00" length="

1024000" md5="" />

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

friend"

href="http: // gutenberg.cs.odu.edu/rems/gutenberg -

pride -and -prejudice.xml"

title="Pride and Prejudice"/>

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

copyService"

href="http: // gutenberg.cs.odu.edu/rems/gutenberg -

pride -and -prejudice.xml"

domain="gutenberg.cs.odu.edu"/>

</entry >

Listing 15. Corresponding Copy Request message.
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B.10 EVENT 203. COPY SERVICE REQUEST.

Active
maintainer

Mail box

201. Copy request sent 208. Sending copy location to family

parentHost

207. Add copy location206. Copy location received

family

209. Additional copy 
location received

friend

202. Copy request received

familyHost

210. Add copy location

205. Copy location sent

friendHost

203. Copy service request 204. Copy location return

Figure 119. Copying events and messages, event 203.

� Message Name: Copy Service Request

� Explanation: A parental WO requests that a friend WO create a copy of the

parent using the friend’s copy service. The exact location of the copy is a

function of the service and is unknowable to the requester.

� Example: (lines broken for clarity)

curl -m 120 -i -X POST --data-binary @/tmp/temp~.xxx4ac1f0a7

-H "Content-type: application/atom+xml"

http://ws-dl-02.cs.odu.edu:10102/rem/copy/

http://gutenberg.cs.odu.edu/

<?xml version="1.0" encoding="UTF -8"?>

<entry xmlns="http: //www.w3.org /2005/ Atom"

xmlns:oreatom="http: //www.openarchives.org/ore/atom

/"

xmlns:dcterms="http: //purl.org/dc/terms/"

xmlns:dc="http: //purl.org/dc/elements /1.1/"
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xmlns:rdf="http: //www.w3.org /1999/02/22 -rdf -syntax -

ns#"

xmlns:rdfs="http: //www.w3.org /2000/01/ rdf -schema#"

xmlns:ore="http: //www.openarchives.org/ore/terms/"

xmlns:foaf="http: // xmlns.com/foaf /0.1/"

xmlns:grddl="http: //www.w3.org /2003/g/data -view#"

xmlns:relationship="http: //purl.org/vocab/

relationship/"

xmlns:usw="http: //wsdl.cs.odu.edu/uswdo/terms/"

grddl:transformation="http: //www.openarchives.org/

ore/atom/atom -grddl.xsl"

xmlns:le="http: //purl.org/atompub/link -extensions

/1.0">

<id>tag:uswdo.cs.odu.edu ,2012 -11 -01 :flickr -ceotty

-8161751828 </id>

<link rel="alternate" type="text/html"

href="http: // flickr.cs.odu.edu/flickr -ceotty

-8161751828. html" />

<link rel="self" type="application/atom+xml"

href="http: // flickr.cs.odu.edu/rems/flickr -ceotty

-8161751828. xml" />

<link rel="edit" type="application/atom+xml"

href="http: //ws -dl -02.cs.odu.edu:10102/rem/edit/

http:

// flickr.cs.odu.edu/rems/flickr -ceotty

-8161751828. xml" />

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/copy"

type="application/atom+xml"

href="http: //ws -dl -02.cs.odu.edu:10102/rem/copy/

http:

// flickr.cs.odu.edu/" />

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

synchronize"
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type="message/http" href="http: //ws -dl -02.cs.odu.

edu:10102/

rem/synchronize/http:

// flickr.cs.odu.edu/rems/flickr -ceotty

-8161751828. xml" />

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

httpmailbox#self"

href="http: //ws -dl -02.cs.odu.edu:10101/hm/http:

// flickr.cs.odu.edu/rems/flickr -ceotty

-8161751828. xml"

last -checked="2013 -08 -16 T18:13:36 +00 :00"/>

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

httpmailbox#all"

href="http: //ws -dl -02.cs.odu.edu:10101/hm/all"

last -checked="2013 -08 -16 T18:13:42 +00 :00"/>

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

httpmailbox#family"

href="http: //ws -dl -02.cs.odu.edu:10101/hm/

tag:uswdo.cs.odu.edu ,2012 -11 -01 :flickr -ceotty

-8161751828"

last -checked="2013 -08 -16 T18:13:39 +00 :00"/>

<link rel="http: //www.openarchives.org/ore/terms/

describes"

href="http: // flickr.cs.odu.edu/rems/

flickr -ceotty -8161751828. xml#aggregation" />

<source >

<author >

<name>ODU WSDL ReM Generator </name>

<uri>http: //ws -dl -02.cs.odu.edu/</uri>

</author >

</source >

<published >2013 -07 -30 T18:25:35 -04 :00</published >

<updated >2013 -07 -30 T18:25:35 -04 :00</updated >

<link rel="license" type="application/rdf+xml"
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href="http: // creativecommons.org/licenses/by -nc

/2.5/ rdf" />

<rights >This Resource Map is available under the

Creative Commons Attribution -Noncommercial 2.5

Generic license </rights >

<title >Kittens </title >

<author >

<name>ceotty </name>

</author >

<category term="http: //www.openarchives.org/ore/

terms/Aggregation"

label="Aggregation" scheme="http: //www.

openarchives.org/ore/terms/" />

<category term="2012 -11 -06 T00:00:00 -05 :00"

scheme="http: //www.openarchives.org/ore/atom/

created" />

<category term="2012 -11 -06 T00:00:00 -05 :00"

scheme="http: //www.openarchives.org/ore/atom/

modified" />

<category term="3"

scheme="http: //wsdl.cs.odu.edu/uswdo/terms/

preservationCopiesMinimumNumber" />

<category term="5"

scheme="http: //wsdl.cs.odu.edu/uswdo/terms/

preservationCopiesMaximumNumber" />

<category term="0.85"

scheme="http: //wsdl.cs.odu.edu/uswdo/terms/beta"

/>

<category term="0.10"

scheme="http: //wsdl.cs.odu.edu/uswdo/terms/gamma"

/>

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

family#parent"

type="application/atom+xml" title="Kittens"
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href="http: // flickr.cs.odu.edu/rems/flickr -ceotty

-8161751828. xml" />

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

family#parentOriginal"

type="application/atom+xml" title="Kittens"

href="http: // flickr.cs.odu.edu/rems/flickr -ceotty

-8161751828. xml" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // flickr.cs.odu.edu/flickr -ceotty

-8161751828. html"

type="text/html" title="Kittens" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: //www.flickr.com/photos/ceotty

/8161751828/"

type="text/html" title="Kittens | Flickr - Photo

Sharing!" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e.jpg"

type="image/jpeg" title="[Medium 500] Kittens"

usw:synchronize="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e.jpg"

modified="2012 -11 -06 T00:00:00 -05 :00" length="

1024000" md5="" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_s.jpg"

type="image/jpeg" title="[Square 75] Kittens"

usw:synchronize="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_s.jpg"
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modified="2012 -11 -06 T00:00:00 -05 :00" length="

1024000" md5="" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_q.jpg"

type="image/jpeg" title="[Square 150] Kittens"

usw:synchronize="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_q.jpg"

modified="2012 -11 -06 T00:00:00 -05 :00" length="

1024000" md5="" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_t.jpg"

type="image/jpeg" title="[Thumbnail] Kittens"

usw:synchronize="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_t.jpg"

modified="2012 -11 -06 T00:00:00 -05 :00" length="

1024000" md5="" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_n.jpg"

type="image/jpeg" title="[Small 240] Kittens"

usw:synchronize="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_n.jpg"

modified="2012 -11 -06 T00:00:00 -05 :00" length="

1024000" md5="" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_m.jpg"

type="image/jpeg" title="[Small 320] Kittens"
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usw:synchronize="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_m.jpg"

modified="2012 -11 -06 T00:00:00 -05 :00" length="

1024000" md5="" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_z.jpg"

type="image/jpeg" title="[Medium 640] Kittens"

usw:synchronize="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_z.jpg"

modified="2012 -11 -06 T00:00:00 -05 :00" length="

1024000" md5="" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_c.jpg"

type="image/jpeg" title="[Medium 800] Kittens"

usw:synchronize="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_c.jpg"

modified="2012 -11 -06 T00:00:00 -05 :00" length="

1024000" md5="" />

<link rel="http: //www.openarchives.org/ore/terms/

aggregates"

href="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_l.jpg"

type="image/jpeg" title="[Large 1024] Kittens"

usw:synchronize="http: // farm8.staticflickr.com

/7131/8161751828 _bafa8b207e_l.jpg"

modified="2012 -11 -06 T00:00:00 -05 :00" length="

1024000" md5="" />

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

friend"
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href="http: // gutenberg.cs.odu.edu/rems/gutenberg -

pride -and -prejudice.xml"

title="Pride and Prejudice"/>

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/

copyService"

href="http: // gutenberg.cs.odu.edu/rems/gutenberg -

pride -and -prejudice.xml"

domain="gutenberg.cs.odu.edu"/>

</entry >

Listing 16. Copy Request Message sent to receiving WO copy service.Each

WO has the URI of its copy service in its REM. Contents of

/tmp/temp˜ .xxx4ac1f0a7.
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B.11 EVENT 204. COPY LOCATION RETURNED

Active
maintainer

Mail box

201. Copy request sent 208. Sending copy location to family

parentHost

207. Add copy location206. Copy location received

family

209. Additional copy 
location received

friend

202. Copy request received

familyHost

210. Add copy location

205. Copy location sent

friendHost

203. Copy service request 204. Copy location return

Figure 120. Copying events and messages, event 204.

� Message Name: Copy location return

� Explanation: The copy request is made by passing REM data to a copy service.

The service returns the location of the copy via an HTTP location header.

� Example: (lines broken for clarity)

HTTP /1.1 201 Created\r

Content -Type: text/html;charset=utf -8\r

Location: http: // gutenberg.cs.odu.edu/copyrems/flickr

-ceotty -8161751828. xml\r

Content -Length: 0\r

Connection: keep -alive\r

Server: thin 1.5.0 codename Knife\r

\r

Listing 17. Copy service returns copy’s URI.The copy URI is returned to the

requesting WO.
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B.12 EVENT 205. COPY LOCATION SENT.

Active
maintainer

Mail box

201. Copy request sent 208. Sending copy location to family

parentHost

207. Add copy location206. Copy location received

family

209. Additional copy 
location received

friend

202. Copy request received

familyHost

210. Add copy location

205. Copy location sent

friendHost

203. Copy service request 204. Copy location return

Figure 121. Copying events and messages, event 205.

� Message Name: Copy location sent

� Explanation: The location of the newly created copy is returned to the re-

quester in the form of a REM patch directive.

� Example: (lines broken for clarity)

curl -m 120 -i -X POST --data-binary @/tmp/temp~.xxxdc8b74 -i -H

"Sender: http://gutenberg.cs.odu.edu/rems/

gutenberg-pride-and-prejudice.xml"

-H "Content-type: message/http"

http://ws-dl-02.cs.odu.edu:10101/hm/

http://flickr.cs.odu.edu/rems/flickr-ceotty-8161751828.xml

PATCH /rems/flickr -ceotty -8161751828. xml HTTP /1.1

Host: flickr.cs.odu.edu

Content -type: application/patch -ops -error+xml

Content -length: 223

<?xml version="1.0" encoding="UTF -8"?>
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<diff>

<add sel="entry">

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/family"

href="http: // gutenberg.cs.odu.edu/copyrems/flickr -

ceotty -8161751828. xml"

title="Kittens" />

</add>

</diff>

Listing 18. Copy URI is sent back to requesting WO.The URI of the copy is

returned to the originating WO. Contents of /tmp/temp˜ .xxxdc8b74.
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B.13 EVENT 206. RETRIEVE COPY LOCATION.

Active
maintainer

Mail box

201. Copy request sent 208. Sending copy location to family

parentHost

207. Add copy location206. Copy location received

family

209. Additional copy 
location received

friend

202. Copy request received

familyHost

210. Add copy location

205. Copy location sent

friendHost

203. Copy service request 204. Copy location return

Figure 122. Copying events and messages, event 206.

� Message Name: Retrieve copy location

� Explanation: A copy request was sent to a friend. The friend may, or may or

may not make the copy. If the friend makes the copy, then it will send the

copy’s location to the originator.

� Example: (lines broken for clarity)

curl -m 120 -i -o - http://ws-dl-02.cs.odu.edu:10101/hm/http:

//flickr.cs.odu.edu/rems/flickr-ceotty-8161751828.xml

HTTP /1.1 200 OK\r

Server: HTTP Mailbox\r

Content -type: message/http\r

Date: Fri , 16 Aug 2013 18 :20:15 GMT\r

Memento -Datetime: Fri , 16 Aug 2013 18 :18:07 GMT\r

Via: sent by 68.10.149.64 on behalf of http: //

gutenberg.cs.odu.edu/rems/gutenberg -pride -and -

prejudice.xml ,

delivered by http: //ws -dl -02.cs.odu.edu:10101/hm/\r

Link: <http: //ws -dl -02.cs.odu.edu:10101/hm/http: //
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flickr.cs.odu.edu/rems/flickr -ceotty -8161751828. xml>

;

rel="current", <http: //ws -dl -02.cs.odu.edu:10101/hm

/id /89574459 -38f8 -4d65 -a5bd -5604 acd25e7a >;

rel="self", <http: //ws -dl -02.cs.odu.edu:10101/hm

/id /89574459 -38f8 -4d65 -a5bd -5604 acd25e7a >;

rel="first", <http: //ws -dl -02.cs.odu.edu:10101/hm

/id /89574459 -38f8 -4d65 -a5bd -5604 acd25e7a >;

rel="last"\r

Content -Length: 365\r

Connection: keep -alive\r

\r

PATCH /rems/flickr -ceotty -8161751828. xml HTTP /1.1

Host: flickr.cs.odu.edu

Content -type: application/patch -ops -error+xml

Content -length: 223

<?xml version="1.0" encoding="UTF -8"?>

<diff>

<add sel="entry">

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/family

"

href="http: // gutenberg.cs.odu.edu/copyrems/flickr -

ceotty -8161751828. xml"

title="Kittens"

/>

</add>

</diff>

Listing 19. Copy URI is retrieved by the originating WO.
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B.14 EVENT 207. UPDATE REM WITH COPY’S LOCATION.

Active
maintainer

Mail box

201. Copy request sent 208. Sending copy location to family

parentHost

207. Add copy location206. Copy location received

family

209. Additional copy 
location received

friend

202. Copy request received

familyHost

210. Add copy location

205. Copy location sent

friendHost

203. Copy service request 204. Copy location return

Figure 123. Copying events and messages, event 207.

� Message Name: Update REM with copy location

� Explanation: The WO will use its edit service to update its REM with the

copy location received from the mail box.

� Example: (lines broken for clarity)

curl -m 120 -X POST -i --data-binary @/tmp/temp~.xxx7a2b1006

-H "Content-type: application/patch-ops-error+xml"

http://ws-dl-02.cs.odu.edu:10102/rem/edit/http:

//flickr.cs.odu.edu/rems/flickr-ceotty-8161751828.xml

<?xml version="1.0" encoding="UTF -8"?>

<diff>

<add sel="entry">

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/family

"

href="http: // gutenberg.cs.odu.edu/copyrems/flickr -

ceotty -8161751828. xml"

title="Kittens"

/>
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</add>

</diff>

Listing 20. Originating WO is updated with copy’s URI.. Contents of

/tmp/temp˜ .xxx7a2b1006.
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B.15 EVENT 208. BROADCAST COPY LOCATION TO FAMILY.

Active
maintainer

Mail box

201. Copy request sent 208. Sending copy location to family

parentHost

207. Add copy location206. Copy location received

family

209. Additional copy 
location received

friend

202. Copy request received

familyHost

210. Add copy location

205. Copy location sent

friendHost

203. Copy service request 204. Copy location return

Figure 124. Copying events and messages, event 208.

� Message Name: Broadcast copy location to family

� Explanation: The parental WO will broadcast the location of any new copies

to all family members by using the family mailbox.

� Example: (lines broken for clarity)

curl -m 120 -i -X POST --data-binary @/tmp/temp~.xxx3553e8e5 -i

-H "Sender: http://flickr.cs.odu.edu/rems/

flickr-ceotty-8161751828.xml"

-H "Content-type: message/http"

http://ws-dl-02.cs.odu.edu:10101/hm/

tag:uswdo.cs.odu.edu,2012-11-01:flickr-ceotty-8161751828

PATCH /rems/self HTTP /1.1

Host: selfHost

Content -type: application/patch -ops -error+xml

Content -length: 223

<?xml version="1.0" encoding="UTF -8"?>

<diff>

<add sel="entry">
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<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/family

"

href="http: // gutenberg.cs.odu.edu/copyrems/flickr -

ceotty -8161751828. xml"

title="Kittens"

/>

</add>

</diff>

Listing 21. Copy’s URI is sent to all of the originating WO “family”

members.The originating WO may not know the URI of all family members

because new members may be created after the message is sent, or

the USW family may become disconnected at some time. Contents of

/tmp/temp˜ .xxx3553e8e5.
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B.16 EVENT 209. RETRIEVE COPY LOCATION MESSAGE.

Active
maintainer

Mail box

201. Copy request sent 208. Sending copy location to family

parentHost

207. Add copy location206. Copy location received

family

209. Additional copy 
location received

friend

202. Copy request received

familyHost

210. Add copy location

205. Copy location sent

friendHost

203. Copy service request 204. Copy location return

Figure 125. Copying events and messages, event 209.

� Message Name: Retrieve copy location message

� Explanation: The parental WO sends the location of any new copy to all

family members via the family mailbox.

� Example: (lines broken for clarity)

curl -m 120 -i -o - http://ws-dl-02.cs.odu.edu:10101/hm

/tag:uswdo.cs.odu.edu,2012-11-01:flickr-ceotty-8161751828

2>/dev/null

HTTP /1.1 200 OK\r

Server: HTTP Mailbox\r

Content -type: message/http\r

Date: Sat , 17 Aug 2013 20 :10:33 GMT\r

Memento -Datetime: Sat , 17 Aug 2013 20 :10:30 GMT\r

Via: sent by 68.10.149.64 on behalf of

http: // flickr.cs.odu.edu/rems/flickr -ceotty

-8161751828. xml ,

delivered by http: //ws -dl -02.cs.odu.edu:10101/hm/\r

Link: <http: //ws -dl -02.cs.odu.edu:10101/hm
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/tag:uswdo.cs.odu.edu ,2012 -11 -01 :flickr -ceotty

-8161751828 >;

rel="current", <http: //ws -dl -02.cs.odu.edu:10101/hm

/id/7a2ef2a8 -dd5d -440a-8e1a -2972 ea7d4106 >;

rel="self", <http: //ws -dl -02.cs.odu.edu:10101/hm

/id/7a2ef2a8 -dd5d -440a-8e1a -2972 ea7d4106 >;

rel="first", <http: //ws -dl -02.cs.odu.edu:10101/hm

/id/7a2ef2a8 -dd5d -440a-8e1a -2972 ea7d4106 >;

rel="last"\r

Content -Length: 332\r

Connection: keep -alive\r

\r

PATCH /rems/self HTTP /1.1

Host: selfHost

Content -type: application/patch -ops -error+xml

Content -length: 223

<?xml version="1.0" encoding="UTF -8"?>

<diff>

<add sel="entry">

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/family

"

href="http: // gutenberg.cs.odu.edu/copyrems/flickr -

ceotty -8161751828. xml"

title="Kittens"

/>

</add>

</diff>

Listing 22. Family member retrieves new copy URI location.There may be

many messages to be serviced.
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B.17 EVENT 210. UPDATE REM WITH LOCATION OF NEW

COPY.

Active
maintainer

Mail box

201. Copy request sent 208. Sending copy location to family

parentHost

207. Add copy location206. Copy location received

family

209. Additional copy 
location received

friend

202. Copy request received

familyHost

210. Add copy location

205. Copy location sent

friendHost

203. Copy service request 204. Copy location return

Figure 126. Copying events and messages, event 210.

� Message Name: REM Patch

� Explanation:

� Example: (lines broken for clarity)

curl -m 120 -X POST -i --data-binary @/tmp/temp~.xxx7a2b1006

-H "Content-type: application/patch-ops-error+xml"

http://ws-dl-02.cs.odu.edu:10102/rem/edit/http:

//flickr.cs.odu.edu/rems/flickr-ceotty-8161751828.xml

<?xml version="1.0" encoding="UTF -8"?>

<diff>

<add sel="entry">

<link rel="http: //wsdl.cs.odu.edu/uswdo/terms/family

"

href="http: // gutenberg.cs.odu.edu/copyrems/flickr -

ceotty -8161751828. xml"

title="Kittens"
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/>

</add>

</diff>

Listing 23. New copy URI added to existing family member.The patch

directive is serviced by the family member’s edit service. Contents of

/tmp/temp˜ .xxx7a2b1006.
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B.18 EVENT 301. UPDATE MAILBOX TIME CHECKED.

WO

Active
maintainer

302. Check on A.M.

progenitor

305. Check on progenitor

friend

303. Check on friend

family

304. Check on family

WO Host

301. Update mailbox timestamps

Figure 127. Maintenance events and messages, event 301.

� Message Name: REM patch

� Explanation: A WO updates the time it last checks each of its mailboxes.

This update time is used to control how often a mail box is checked to reduce

processing load and network usage. Whenever time is involved across different

platforms, time synchronization can be an issue. When maintaining the last

date time indicating when a mailbox was checked two times are available, from

the requesting WO’s host, and from the mailbox server. It is recommended

that the time from the DATE general-header field (part of the HTTP header

set) be used [195].

� Example: (lines broken for clarity)

curl -m 120 -X POST -i --data-binary @/tmp/temp~.xxx210e7129

-H "Content-type: application/patch-ops-error+xml"

http://ws-dl-02.cs.odu.edu:10102/rem/edit/http:

//flickr.cs.odu.edu/rems/flickr-ceotty-8161751828.xml

<?xml version="1.0" encoding="UTF -8"?>

<diff>

<replace sel="/entry/link[@rel=’http: //wsdl.cs.odu.

edu/uswdo/terms/httpmailbox#self ’]">

<link rel=’http: //wsdl.cs.odu.edu/uswdo/terms/

httpmailbox#self’

href="http: //ws -dl -02.cs.odu.edu:10101/hm/http:

// flickr.cs.odu.edu/rems/flickr -ceotty -8161751828.

xml"

usw:last -checked="2013 -08 -17 T21:10:29 +00 :00"
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/>

</replace >

</diff>

Listing 24. Updating the mailbox last time checked timestamp.Contents of

/tmp/temp˜ .xxx210e7129.
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B.19 EVENT 302. ENSURE PARENT IS ACCESSIBLE.

WO

Active
maintainer

302. Check on A.M.

progenitor

305. Check on progenitor

friend

303. Check on friend

family

304. Check on family

WO Host

301. Update mailbox timestamps

Figure 128. Maintenance events and messages, event 302.

� Message Name: curl command

� Explanation: Each WO will ensure that its parent is accessible. If the parent

is not accessible, then the WO may take family related corrective actions.

� Example: (lines broken for clarity)

curl -m 120 -i

http://flickr.cs.odu.edu/flickr-ceotty-8161751828.html
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B.20 EVENT 303. ENSURE THAT FRIENDS ARE ACCESSIBLE.

WO

Active
maintainer

302. Check on A.M.

progenitor

305. Check on progenitor

friend

303. Check on friend

family

304. Check on family

WO Host

301. Update mailbox timestamps

Figure 129. Maintenance events and messages, event 303.

� Message Name: curl command

� Explanation: Each WO will ensure that its friends are accessible. If a friend

is not accessible, then the WO may take family related corrective actions.

� Example: (lines broken for clarity)

curl -m 120 -i -o -

http://gutenberg.cs.odu.edu/rems/

gutenberg-pride-and-prejudice.xml
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B.21 EVENT 304. ENSURE THAT FAMILY MEMBERS ARE

ACCESSIBLE.

WO

Active
maintainer

302. Check on A.M.

progenitor

305. Check on progenitor

friend

303. Check on friend

family

304. Check on family

WO Host

301. Update mailbox timestamps

Figure 130. Maintenance events and messages, event 304.

� Message Name: curl command

� Explanation: Each WO will ensure that its family members are accessible.

If a family member is not accessible, then the WO may take family related

corrective actions.

� Example: (lines broken for clarity)

curl -m 120 -i -o -

http://gutenberg.cs.odu.edu/copyrems/

flickr-ceotty-8161751828.xml
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B.22 EVENT 305. ENSURE THAT THE PROGENITOR IS

ACCESSIBLE.

WO

Active
maintainer

302. Check on A.M.

progenitor

305. Check on progenitor

friend

303. Check on friend

family

304. Check on family

WO Host

301. Update mailbox timestamps

Figure 131. Maintenance events and messages, event 305.

� Message Name: curl command

� Explanation: Each WO will ensure that the family progenitor is accessible. If

the progenitor is not accessible, then the WO may take family related correc-

tive actions.

� Example: (lines broken for clarity)

curl -m 120 -i -o -

http://flickr.cs.odu.edu/rems/flickr-ceotty-8161751828.xml
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APPENDIX C

COMMAND LINE ARGUMENTS

The command line arguments to the USW simulator and robot.

C.1 USW SIMULATOR

Table 51 is a complete list of all command line arguments understood by the

USW simulator.

Table 51. USW simulator command line arguments.

Arg. Definition Default Min. value Max. value

a The probability thresh-

old used when a preferen-

tial attachment mode of

selecting the first node is

used.

0.5 0 1

b The threshold value (β)

is the against which a lo-

cally generated random

number is compared to

determine if the NEW

node will be connected to

the current OLD node.

0.5 0 1

c The file name where

graph preservation and

description data will be

written.

Not used N/A N/A

(Continued on the next page.)
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Table 51. (Continued from the previous page.)

Arg. Definition Default Min. value Max. value

d The number of desired

edges used during re-

siliency repairs.

10 1 1,000.0

f How to select WOs to be

“pinged” to collect mes-

sage statistics. (see

Note I on page 374)

2 0 3

g The source of the random

numbers used through

out the system. (see

Note II on page 374)

1 1 4

k The k size of the neigh-

borhood to looking for

the friends of a WO.

1 1 1,000.0

m The minimum desired

number of WO copies per

family.

3 1 125,000.0

n What procedure to be

used to choose the next

host to assign a parental

WO to. (see Note III on

page 374)

1 1 2

(Continued on the next page.)
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Table 51. (Continued from the previous page.)

Arg. Definition Default Min. value Max. value

o The type of resiliency

repair technique that

will be applied when at-

tempting to reconstruct

a graph. (see Note IV

on page 374)

1 1 3

p The percentage (γ) of the

“visited” and “to be vis-

ited” lists that are used

after the wandering node

has found a home.

0 0 1

r The random number

seed, required for de-

velopment to ensure

that each run uses the

same series of random

numbers per run.

123,457.0 1 1,000,000.0

s The size of the graph. 10 10 1,000,000.0

t The maximum percent

size of the graph that a

node being reconnected

because of resilience re-

constitution will attempt

to connect to.

0 0 1

(Continued on the next page.)
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Table 51. (Continued from the previous page.)

Arg. Definition Default Min. value Max. value

w The command line argu-

ment that has all control

parameters necessary to

reconstitute a graph dur-

ing resilience reconstitu-

tion.

Not Used NULL NULL

A Which first node selec-

tion selection policy to

execute. (see Note V on

page 374)

1 1 5

B Which next first node

selection policy to exe-

cute. (see Note VI on

page 375)

1 1 3

C How to select nodes from

the toBeV isitedList to

forcibly connect to. (see

Note VII on page 375)

1 1 3

D How to select nodes

from the visitedList to

forcibly connect to is the

same as the 'C' argu-

ment. The 'D' command

line argument is ignored.

2 2 2

(Continued on the next page.)
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Table 51. (Continued from the previous page.)

Arg. Definition Default Min. value Max. value

E What policy to use when

attempting to place WOs

on hosts. (see Note VIII

on page 375)

1 1 3

F The name of the input

Pajek file.

Not Used NULL NULL

G The name of the output

Graphviz file.

Not Used NULL NULL

H The name of the output

host data file.

Not Used NULL NULL

J The name of the SWAA

output data file.

Not Used NULL NULL

L The number of WO

copies to attempt to

create during graph

reconstruction.

10 1 125,000.0

M The maximum number of

WO copies to attempt to

create.

10 1 125,000.0

N The number of hosts in

the system.

100 0 2,000.0

O Collect images. Not Used NULL NULL

P The name of the output

Pajek file.

Not Used NULL NULL

(Continued on the next page.)
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Table 51. (Continued from the previous page.)

Arg. Definition Default Min. value Max. value

R Boolean whether or not

to reset the random num-

ber sequence for each

new WO.

TRUE N/A N/A

S The name of the file that

contains the sequence of

random numbers to be

used (see Note IX on

page 375).

N/A N/A N/A

T Method to be used to

compute number of WOs

to connect to after the

first connection. (see

Note X on page 375)

1 1 10

V The name of the output

visitation data file.

Not Used NULL NULL

W Boolean whether or not

to create a resiliency con-

trol string for use during

resiliency reconstruction.

FALSE N/A N/A

Z Boolean whether or not

to collect messages

FALSE N/A N/A

(Last page.)

Notes:
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I. The possible values for command line option 'f' selection of WOs to be

“pinged” to collect message statistics:

1. Not used.

2. Uniform random

3. High degree preference

4. Sequential

II. The possible values for command line option 'g' source of random numbers:

1. Not used.

2. Use random numbers based on default seed

3. Use random numbers based on specific seed

4. Use random numbers read from file

5. Use random numbers based on system clock

III. The possible values for command line option 'n' selection of next host num-

ber:

1. Assign new host based on mod total number of hosts

2. Assign new host based on random selection from total hosts

IV. The possible values for command line option 'o' selection of resiliency repair

technique:

1. Start with highest degreed node

2. Start with lowest degreed node

3. Select nodes at random

V. The possible values for command line option 'A' first node selection selection

policy:

1. Always use the first node as the start node

2. Pick a random start node

3. Preferential attachment as the start node

4. Always pick the highest degreed node as the start node
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5. Always pick the lowest degreed node as the start node

VI. The possible values for command line option 'B' next first node selection

policy to execute.

1. FIFO node selection for next OLD node

2. LIFO node selection for next OLD node

3. Random node select for next OLD node

VII. The possible values for command line option 'C' how to select nodes from

the toBeV isitedList to forcibly connect to.

1. Randomly select some number of nodes from the toBeVisitedList

2. FIFO select some number of nodes from the toBeVisitedList

3. LIFO select some number of nodes from the toBeVisitedList

4. Connect to established nodes neighbors than random from the toBeVisit-

edList

VIII. The possible values for command line option 'E' how to attempt to create

preservation copies

1. Be polite and attempt to find room for a single preservation copy

2. Be moderately aggressive and only add one more copy or enough to get to

minimum desired

3. Be aggressive and attempt to make our maximum number of preservation

copies

IX. The possible values for command line option 'S' defining the name of the file

that contains random numbers.

� The default name of the file that contains the series of random numbers to

be read from is: /home/chuck/Temp/SmallWorld/randomNumbers.data

� Any other valid filename. Depending on the characters in the file name,

the 'S' argument may need to be escaped.

X. The possible values for command line option 'T ' select which function to use

to compute number of WOs to connect to
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1. m = γ∗ |toBeV isitedList, visitedList|

2. m = max(1, lg
e
(|toBeV isitedList, visitedList| ∗ γ))

3. m = max(1, lg
e
(|toBeV isitedList, visitedList|) ∗ γ)

4. m = max(0, lg
e
(|toBeV isitedList, visitedList| ∗ γ))

5. m = max(0, lg
e
(|toBeV isitedList, visitedList|) ∗ γ)

6. m = max(1, lg
2
(|toBeV isitedList, visitedList| ∗ γ))

7. m = max(1, lg
2
(|toBeV isitedList, visitedList|) ∗ γ)

8. m = max(0, lg
2
(|toBeV isitedList, visitedList| ∗ γ))

9. m = max(0, lg
2
(|toBeV isitedList, visitedList|) ∗ γ)

10. m = 5 + lg
2
(|toBeV isitedList, visitedList| ∗ γ)
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C.2 PRESERVE ME! ROBOT

Table 52 is a complete list of command line arguments understood by the USW

robot.

Table 52. Preserve Me! robot command line arguments.

Arg. Definition Default Min. value Max. value

a List of additional WOs to

be added to the system

NULL NULL NULL

d The name of the script

file used to sequence var-

ious commands. (see

Note I on page 380)

NULL NULL NULL

e USW entry WO. http://arxiv.cs.

odu.edu/

arxiv-0704-

3647v1.html

NULL NULL

m Should message server be

reset on start-up?

FALSE FALSE TRUE

o The name of the movie

file.

NULL NULL NULL

q List of WOs to be added

to the system (see

Note II on page 381)

NULL NULL NULL

r List of WOs to be added

to the system (see

Note II on page 381)

NULL NULL NULL

(Continued on the next page.)
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Table 52. (Continued from the previous page.)

Arg. Definition Default Min. value Max. value

s List of WOs to be added

to the system (see

Note II on page 381)

NULL NULL NULL

t List of WOs to be added

to the system (see

Note II on page 381)

NULL NULL NULL

v Title of the USW graph

and displayed by the Pre-

serve Me! application.

NULL NULL NULL

A Which first node selec-

tion selection policy to

execute. (see Note III on

page 381)

1 1 6

C Explicitly incorporate

this list of Copy REMs

into the process.

NULL NULL NULL

D Which domains should

be deleted after the

graph is created.

NULL NULL NULL

E Which copy creation at-

titude to take. (see

Note IV on page 381)

1 1 3

F Which WOs to delete af-

ter the USW graph has

stabilized?

NULL NULL NULL

(Continued on the next page.)
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Table 52. (Continued from the previous page.)

Arg. Definition Default Min. value Max. value

I How many times to

attempt to process all

mailbox messages before

working on the next

WO.

1 1 infinite

L Limit the USW graph

size to a maximum of this

number of WOs, regard-

less of how many WOs

are identified.

-1 1 infinite

M Should REMs be reset on

start-up?

FALSE FALSE TRUE

P A list of predefined WOs

that will be added to the

system.

NULL NULL NULL

R Should the list of WOs

be randomized to mimic

random users and ran-

dom events?

FALSE FALSE TRUE

S Method to be used to

compute number of WOs

to connect to after the

first connection. (see

Note V on page 381)

1 1 10

(Continued on the next page.)
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Table 52. (Continued from the previous page.)

Arg. Definition Default Min. value Max. value

T Initial system to known

set of conditions based on

the test condition num-

ber. (see Note VI on

page 382)

0 0 4

V Text file containing ex-

planatory text.

NULL NULL NULL

X The name of the file to

restore the USW graph

from.

NULL NULL NULL

V Name of the file that has

explanatory text used by

the Preserve Me! appli-

cation.

NULL NULL NULL

Z Maximum number of

times all WOs in the

USW graph should be

loaded to check their

mailboxes.

0 1 infinite

(Last page.)

Notes:

I. The possible values for command line option 'd ' commands that the robot

will execute in sequence:

1. fileOfWOsToDelete: same as the 'D ' option.
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2. fileOfDomainsToDelete: same as the 'd ' option.

3. replaceParentHREF : deprecated (do not use) send commands to all WOs

to change their existing parent WO reference to the new parent WO.

4. replaceParentProgenitorHREFOrig : deprecated (do not use)

5. replaceParentHREFNew : send commands to all WOs to change their ex-

isting parent WO reference to the new parent WO.

6. replaceParentProgenitorHREFNew : send commands to all WOs to change

their existing progenitor WO reference to the new progenitor WO.

II. All domains lists (options 'q ', 'r ', 's 'and 't ') are combined into a single list

for internal processing. Different options were provided for ease of testing .

III. The possible values for command line option 'A' first node selection selection

policy:

1. Always use the first node as the start node

2. Pick a random start node

3. Preferential attachment as the start node

4. Always pick the highest degreed node as the start node

5. Always pick the lowest degreed node as the start node

6. Always pick the last created node as the start node

IV. The possible values for command line option 'E ' how to attempt to create

preservation copies

1. Be polite and attempt to find room for a single preservation copy

2. Be moderately aggressive and only add one more copy or enough to get to

minimum desired

3. Be aggressive and attempt to make our maximum number of preservation

copies

V. The possible values for command line option 'S ' select which function to use

to compute number of WOs to connect to

1. m = γ∗ |toBeV isitedList, visitedList|
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2. m = max(1, lg
e
(|toBeV isitedList, visitedList| ∗ γ))

3. m = max(1, lg
e
(|toBeV isitedList, visitedList|) ∗ γ)

4. m = max(0, lg
e
(|toBeV isitedList, visitedList| ∗ γ))

5. m = max(0, lg
e
(|toBeV isitedList, visitedList|) ∗ γ)

6. m = max(1, lg
2
(|toBeV isitedList, visitedList| ∗ γ))

7. m = max(1, lg
2
(|toBeV isitedList, visitedList|) ∗ γ)

8. m = max(0, lg
2
(|toBeV isitedList, visitedList| ∗ γ))

9. m = max(0, lg
2
(|toBeV isitedList, visitedList|) ∗ γ)

10. m = 5 + lg
2
(|toBeV isitedList, visitedList| ∗ γ)

VI. The possible values for command line option 'T ' facilitate the creation of

predefined test conditions

1. Defer to options 'm 'and 'M '.

2. Reset the message server, reset all REMs with β = 1 and γ = 1.

3. Reset the message server, reset all REMs with β = 0 and γ = 0.

4. Reset the message server, reset all REMs with β = 1 and γ = 0.

5. Reset the message server, reset all REMs with β = 0 and γ = 1.
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APPENDIX D

VOCABULARY

D.1 DIGITAL PRESERVATION TERMS

“A major difficulty in any newly emerging discipline, such as digital

preservation, is the lack of a precise and definitive taxonomy of terms.

Different communities use the same terms in different ways which can

make effective communication problematic.The following working set of

definitions are those used throughout the handbook and are intended to

assist in its use as a practical tool.These definitions will not necessarily

achieve widespread consensus among the wide ranging communities the

handbook is aiming at, they are offered here as a mechanism to avoid

potential ambiguities in the body of the handbook rather than as a defini-

tive gloss.Where they have been taken from existing glossaries, this has

been acknowledged.”

Neil Beagrie and Maggie Jones [196]

The following definitions are from “The Handbook for Preservation Management

of Digital Materials” [196]:

Access

As defined in the handbook, access is assumed to mean continued, ongoing

usability of a digital resource, retaining all qualities of authenticity, accuracy

and functionality deemed to be essential for the purposes the digital material

was created and/or acquired for.

Digital

Archiving This term is used very differently within sectors.The library and

archiving communities often use it interchangeably with digital preservation.

Computing professionals tend to use digital archiving to mean the process

of backup and ongoing maintenance as opposed to strategies for long-term

digital preservation. It is this latter richer definition, as defined under digital

preservation which has been used throughout this handbook.
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Digital Preservation

Refers to the series of managed activities necessary to ensure continued access

to digital materials for as long as necessary. Digital preservation is defined

very broadly for the purposes of this study and refers to all of the actions

required to maintain access to digital materials beyond the limits of media

failure or technological change.Those materials may be records created during

the day-to-day business of an organization;”born-digital” materials created

for a specific purpose (e.g. teaching resources); or the products of digitiza-

tion projects.This handbook specifically excludes the potential use of digital

technology to preserve the original artifacts through digitization.

� Long-term preservation - Continued access to digital materials, or at least

to the information contained in them, indefinitely.

� Medium-term preservation - Continued access to digital materials beyond

changes in technology for a defined period of time but not indefinitely.

� Short-term preservation - Access to digital materials either for a defined

period of time while use is predicted but which does not extend beyond

the foreseeable future and/or until it becomes inaccessible because of

changes in technology.

Emulation

A means of overcoming technological obsolescence of hardware and software

by developing techniques for imitating obsolete systems on future generations

of computers.

Metadata

Information which describes significant aspects of a resource. Most discus-

sion to date has tended to emphasize metadata for the purposes of resource

discovery.The emphasis in this handbook is on what metadata are required

successfully to manage and preserve digital materials over time and which will

assist in ensuring essential contextual, historical, and technical information

are preserved along with the digital object.

Migration

A means of overcoming technological obsolescence by transferring digital re-

sources from one hardware/software generation to the next.The purpose of
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migration is to preserve the intellectual content of digital objects and to re-

tain the ability for clients to retrieve, display, and otherwise use them in the

face of constantly changing technology. Migration differs from the refreshing of

storage media in that it is not always possible to make an exact digital copy or

replicate original features and appearance and still maintain the compatibility

of the resource with the new generation of technology.

Reformatting

Copying information content from one storage medium to a different storage

medium (media reformatting) or converting from one file format to a different

file format (file re-formatting).

Replication and refreshing

Copying information content from one storage media to the same storage me-

dia.

D.2 GRAPH THEORETIC TERMS

A vocabulary of graph theoretic terms and ideas that are applicable:

Average inverse path length (L(G)−1)

The inverse of the mean of all the shortest paths in the graph between all

nodes u and v. Because the shortest path between vertices in two disconnected

components is ∞, the inverse is 0 and therefore is a valid value that does not

cause the computation to fail. A larger AIPL means that the distance between

nodes is on average shorter [72].

L(G)−1 =
1

n(n− 1)

∑

u̸=v∈V

1

d(u, v)
(103)

AIPL is also known as average inverse shortest path (AISP) [197] and average

inverse shortest path length (AISPL) [198].

Average path length(L(G))

The mean of all paths lengths between all vertices in the graph.

Centrality
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A centrality measurement is a way of quantifying the notion that some com-

ponents of a graph are more important than others. Some centrality measure-

ments are based purely on data that is available at the graph component level

and is invariant with respect to the rest of the graph; these are called local

centrality measurements. Global centrality measurements are dependent on

the structure of the graph in to-to.

Centrality, betweenness of an edge (cB(e))

The proportion of shortest paths between nodes s and t that use edge e [72,

199].

cB(e) =
∑

s ̸=t∈V

σst(e)

σst

(104)

Centrality, betweenness of an edge relative to all edges in a graph(cB(E))

The edge that has the highest centrality of all edges is the edge that is most

used by all shortest paths in the graph.

cB(E) = max(cB(e)|e ∈ E) (105)

Centrality, betweenness of a vertex (cB(v))

The proportion of shortest paths between nodes s and t that use vertex v

[72, 86, 200, 199].

cB(v) =
∑

s ̸=v ̸=t∈V

σst(v)

σst

(106)

Centrality, betweenness of a vertex relative to all vertices in a graph(cB(V ))

The vertex that has the highest centrality of all vertices is the vertex that is

used by the most shortest paths in the graph.

cB(V ) = max(cB(v)|v ∈ V ) (107)

Centrality, closeness of a vertex

How close (fewest number of edges) u is to all other vertices [78].

cC(u) =
n− 1∑

u̸=v∈V d(u, v)
(108)

Centrality, degree (cD(v))
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The number of edges incident to a vertex.

cD(v) = d(v) (109)

Degreeness only makes sense for vertices. A vertex with a high degreeness is

central to a local portion of the graph, but not to the graph in to-to.

Clustering coefficient(C(G))

Is a measure of graph’s local structure. It is a value between 0 and 1 for a

vertex that reflects the percentage of vertices that it and another vertex that

it is directly connected to share in common [201, 43].

Component, connected

A connected component is a group of vertices in a graph that are reachable

from one another. A strongly connected component is a group of vertices in a

graph that are mutually reachable from one another [202].

Connected

Any vertex can be reached from any other vertex via a path δst of some length.

The term connected means that there is a series edges between any arbitrary

nodes source s and terminus t that can be used to get from node s to t [167].

Constrained average path length (L(G) = 1
n(n−1)

∑
u ̸=v∈V

0<d(u,v)<∞
d(u, v))

The average of all shortest path lengths between nodes u and v, given that

there is a path between u and v. The lower an CAPL, the fewer edges on

average there are between nodes.

L(G) =
1

n(n− 1)

∑

u ̸=v∈V

0<d(u,v)<∞

d(u, v) (110)

Damage (Damage(G))

The ratio of the AIPL of the current graph to a fully connected graph of the

same size. [172].

Damage(G) = 1−
L(Gfragmented)

−1

L(Gunfragmented)−1
(111)

Degree (k)
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The number of edges incident to a node.

d(v) = k (112)

Density (ρ(G))

The ratio for the edges in the graph to the number of edges in a fully connected

graph connected graph [106].

ρ(G) = (
n2

2m
− 1)(1−

1

n
) (113)

Diameter(D(G))

The maximal shortest path between any vertices u and v. [201].

D(G) = max{d(u, v) : u, v ∈ V } (114)

Directed

The edge connecting nodes s and t is unidirectional.

Disconnected

A graph is disconnected when source node s and terminus node t cannot be

reached by a path.

Eccentricity of a graph (ϵ(G))

The maximal eccentricity of all nodes u in G.

ϵ(G) = max{ϵ(u) : u ∈ V } (115)

Eccentricity of a node (ϵ(u))

The maximal distance between vertex u and any other vertex v. [201, 166].

ϵ(u) = max{d(u, v) : v ∈ V } (116)

Edge(E)

A connection between two vertices. For the purposes of this paper, an edge is

an infra-structural link.
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Fragment, cluster or component

Are used interchangeably and mean a set of nodes (there may be only 1 node)

that are connected to each other. A graph G may have more than one com-

ponent.

Graph(G(V,E))

A composite structure made of vertices and edges. G(V,E) is an ordered pair

of disjoint sets (V ,E) such that E is a subset of V 2 of the unordered pairs

of V [167]. In this discussion, a graph is composed of WOs that have infra-

structural links. Infra-structural links are separate and distinct from HTML

navigational links.

Neighbor

t is an immediate neighbor to s because they are separated by a path of length

one edge.

Network

Is a graph with different weights assigned to each edge. By default, all edges

in a graph have a weight of 1. While, edges in a network may have different

weights.

Node

The same as a vertex.

Order of a graph(n)

The number of vertices in the graph.

Path length(|δst|)

The number of edges in a path from a source s vertex to a terminus t vertex.

Path length(d(u, v))

The number of edges in a path P from a starting node u to terminating node

v [167].

d(u, v) =|E(P )|, E(P ) = {u0u1, u1u2, . . . , v−1v0} (117)

Path(δst)

The sequence of edges from a source s vertex to a terminus t vertex.
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Planar

The graph can be drawn in such a way that no edges cross one another [203].

Radius of a graph(r(G))

The minimal eccentricity of all vertices in G [201, 166].

r(G) = min{ϵ(u) : u ∈ V } (118)

Resiliency

The capacity of a system to absorb disturbance and reorganize while undergo-

ing change so as to still retain essentially the same function, structure, identity,

and feedbacks [204].

Robustness

The ability of a system to remain functioning under a range of conditions [204].

Self loops

An edge that starts and ends at the same source node.

Simple

There is only one edge between any adjacent nodes.

Size(|E|)

The number of edges in a graph.

Triangles based on a node(λ(v))

The number of subgraphs of the graph G that have exactly three nodes and

three edges and one of the nodes is v [201].

λ(v) =|{△ | v ∈ V△}| (119)

Undirected

The edge connecting nodes s and t is bidirectional. t is an immediate neighbor

to s because they are separated by one edge and the same edge connects t to

s.

Vertex (V )

an elemental entity. When we talk about about a vertex, it is a DO in the
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KWF sense. The terms vertex and node are used interchangeably and mean

the same thing.

D.2.1 SELECTED TYPES OF GRAPHS

Graphs can be classified by many different and overlapping criteria including

the presence or absence of well defined structural elements. Randić and DeAlba

[106] provide an extensive list of different classifications. Within this paper, we are

interested in the classifying graphs by their degree distributions. Those processes

can be purely random, preferential attachment, classical Watts – Strogatz small-

world, or our USW construction process.

Each of these processes generates a graph with distinctively different degree dis-

tributions, clustering coefficients (C(G)) and expected average path lengths (L(G)).

Figure 132 on the next page is a plot of representative degree distributions for each

of the types of graphs that we are interested in. In Figure 132 on the following page,

the red circles are characteristic of a power law distribution and of a preferential

attachment degree distribution graph. The black x’s are from a small-world graph

and look very much like a random distribution because the underlying methodology

for creating the edges is random. The difference between a small-world distribution

and a random one is the smallness of the degree distribution and having a mean µ

that is same as the underlying lattice that was used as the base. While this small-

world distribution is ± 4, a similar random one is ± 10. A random graph degree

distribution is shown with the green triangles, whose µ is centered at p ∗ n and a

Poisson distribution for the rest of the degreed nodes.

1. Preferential attachment

A special case of Power Law graphs. Preferential attachment graphs grow

over time by the addition of new vertices.

2. Power law

A graph where the likelihood that node u is connected to node v based on the

number of edges incident to node v (p(k) = ck−δ|δ > 0, c > 0). In a power

law graph, the more connections a node has, the greater the likelihood that

more connections will be made to that node. This is essence of the notion of

“preferential attachment” where the “rich get richer.” This accretion process

results in a few well-connected nodes and a majority that are very poorly
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Figure 132. Histogram of representative degree distributions of 1000 node graphs
built using random, power law, small-world and USW processes. The degree dis-
tribution for a random graph is based on the probability that an edge is created
between two nodes. If the probability is low, then few edges are created, but the
degrees of the nodes with edges reflects the type or random distribution that was
used to create the random number. Power law p(k) = Ck−α degree distributions
can show a long tail based on α. Classical small-world graphs have a very narrow
degree distribution because the underlying graph was initially a lattice. The shape
and location of the unsupervised small-world (USW) graph degree distribution is

a function of the β and γ values used to create the graph.
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connected and is evidenced by a significant skewing of the graph’s degree

distribution towards the left (low end of the distribution) (Figure 135(b) on

page 397). Power law graphs are characterized by the fraction of their vertices

that have a specified degree k. In general, the degree distribution of a power

law graph is given by: p(k) = ck−δ|δ > 0, c > 0.

3. Regular

A graph where the minimum number of edges of any vertex ∆(G) equals the

maximum number of edges ∆(G) of any vertex. All vertices have the same

number of edges k (i.e., the same degree).

4. Lattice

A graph where every node at location (a,b) has edges to nodes at locations (a-

D,b), (a+D,b), (a, b-D) and (a,b+D) where D is some constant, but arbitrary

offset. A lattice graph is a regular graph, therefore each node has the same

number of incident edges. The resulting degree distribution has only a single

value (Figure 133(b) on page 395).

5. Random

A graph created by some random process [205, 206] where the likelihood that

node u is connected to node v based on a random probability. These stochastic

connections are made from any node u to any node v. The center of a random

graph’s degree distribution is at the product of n and p(k) (Figure 134(b)

on page 396). A random graph is one that is generated . At the end of the

random graph construction process, the graph may not be connected.

6. Social networks

A graph where the average CC is high and the graphic structure mimics human

activities.

7. Small-world

A graph where the average clustering coefficient C(G) is high and the average

path length L(G) is low [43]. Small-world graphs were introduced in [43, 97]

by beginning with a k-lattice and rewiring each edge with a probability p.

Small-world graphs may be planar or non-planar and there is a greater than

0 probability that the resulting graph will not be simple and nor connected.
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Small-World graphs have distinctive average path length and clustering coef-

ficient properties (Table 8 on page 101).

D.2.2 CONNECTED GRAPH METRICS

Here we review a collection of characteristic metrics for connected graphs. In

many cases the characteristic does not have meaning, or a computable value when

the graph is not connected.

Average path length (L(G))

The average of all shortest (geodesic) path lengths between nodes u and v.

The lower an APL, the fewer edges on average there are between nodes. [201]

L(G) =
1

n(n− 1)

∑

u ̸=v∈V

0<d(u,v)<∞

d(u, v) (120)

Clustering coefficient [201, 43].

The likelihood that two neighbors of v are connected.

c(v) =
2 ∗ λ(v)

d(v)2 − d(v)
(121)

A complete discussion of clustering coefficients can be found in section D.2.3.

Equations 120, 114 on page 388 and 116 on page 388 are directly related to the

length of the path between nodes u and v (Equation 117 on page 389). Equa-

tions 104 on page 386, 105 on page 386, 106 on page 386, 107 on page 386, 121, 116

on page 388 and 118 on page 390 are indirectly related to the path length.

D.2.3 CLUSTERING COEFFICIENTS

A clustering coefficient C(G) is an expression of the likelihood that two nodes

that are connected to node v are also connected directly to each other [201]. Since

being introduced by Watts and Strogatz [43] C(G) has been a staple characteristics

topic when discussing Small-World and other graph types. Watts and Strogatz’s def-

inition was written in the caption of one figure and therefore open for interpretation.

Their C(G) definition and others are given in the following paragraphs.
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(a) Lattice graph
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(b) Lattice graph degree distribution

Figure 133. Representative lattice graph and associated degree distribution.
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(a) Erdös-Rényi random graph
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(b) Erdös-Rényi random graph degree distribution

Figure 134. Representative Erdös-Rényi random graph and associated degree dis-
tribution.
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(a) Albert-Barabási scale free
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(b) Albert-Barabási scale free degree distribution

Figure 135. Representative Albert-Barabási scale free graph and associated degree
distribution.
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(a) Watts – Strogatz small-world graph
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(b) Watts – Strogatz small-world graph degree distribution

Figure 136. Representative Watts – Strogatz small-world graph and associated
degree distribution.
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(a) Raw data

(b) Normalized data

Figure 137. A “small-world” graph exists along the continuum between a regular
lattice and a random graph.
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Newman [178] and Opsahl [179] define C(G) as the total number of triangles in

the graph divided by the total number of triples in the graph (Equation 122). This

is the ratio of the means.

C(G)Average =
3 ∗ ΣNumberOfTrianglesInTheGraph

NumberOfConnectedTriples
(122)

Newman [178] and Watts and Strogatz [43] define C(G) as the summation of

the ratio of triangles at each node divided by the number of triples that that node

belongs to averaged over all nodes (Equation 123). This is the means of the ratios.

C(G)AverageLocal =
1

n

∑

i

NumberOfTrianglesConnectedToV ertexI

NumberOfTriplesCenteredAtV ertexI
(123)

If the graph that a pure lattice, then C(G) is purely dependent on the number

of nodes (k) that each node is linked to (Equation 123). Equations 124 and 125

are special cases of equation 122 because the number of triangles and triples can be

computed directly based on the number of connections (aka, degrees) is given by

the value of k.

C(G)Lattice =
(3k − 3)

2(2k − 1)
(124)

If the graph is a lattice whose links have been rewired with some probability

p, then C(G) is initially dependent on the number of nodes (k) that each node is

linked to and then the probability that an edge will be rewired (Equation 125).

C(G)LatticeRewired =
(3k − 3)

(4k − 2)
∗ (1− p)3 (125)

Figure 138 on the following page is an artificial undirected graph. It was cho-

sen/created because it is small enough to be validated by hand and yet has enough

interesting features to be useful when discussing the various C(G) definitions. Ta-

ble 53 on the next page lists the number of triangles and triples that are used by the

the various C(G) equations. The results of evaluating the sample graph are shown

in Table 54 on page 402. Functions from the R igraph [207] and sna [180] packages

were used for computing C(G).

This is a quote from Newman comparing the C(G) of structured and random

graphs:
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Table 53. Number of triangles and triples per node from the test graph.

Node Num. of

Triangles

per Node

Num. of Triples

per Node

ΣTriangles

Triples

1 1 — {2, 1 ,3} 1 — {2, 1 ,3} 1
1
= 1

2 1 — {1, 2, 3} 1 — {1, 2, 3} 1
1
= 1

3 1 — {1, 3, 2} 6 — {1, 3, 2}, {1,3,4},
{4,3,5}, {1,3,5},
{2,3,5}, {2,3,4}

1
6
= 0.166666667

4 0 0 0
0
= Not a number

5 0 0 0
0
= Not a number

1

2

3

4 5

Figure 138. Sample undirected graph used to demonstrate effects of different Clus-
tering Coefficient definitions. The graph is small enough to be tractable by hand

and yet has enough different characteristics to be interesting.
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Table 54. Results using different approaches for computing the clustering coefficients
for the sample graph. The richness of the functions in the igraph package make it

more interesting and germane to future analysis.

Package, func-

tion control

Underlying

Clustering

Coefficient

equation

Numerical

result

Notes

igraph, transitiv-
ity(type = . . . )

null C(G)Average 0.375

undirected C(G)Average 0.375 Same as global

global C(G)Average 0.375

globalundirected C(G)Average 0.375 Same as global

localundirected Ci of
C(G)AverageLocal

{1, 1,
0.166667,
NaN, NaN}

A vector of
Ci values used
to compute
C(G)AverageLocal

local Ci of
C(G)AverageLocal

{1, 1,
0.166667,
NaN, NaN}

A vector of
Ci values used
to compute
C(G)AverageLocal

average C(G)AverageTriples 0.7222

localaverage C(G)AverageTriples 0.7222

localaverageundirected C(G)AverageTriples 0.7222

sna, gtrans(measure = . . . )

null C(G)Average 0.375

weak C(G)Average 0.375 The transitive
constraint corre-
sponding to: a →
b → c ⇒ a → c

strong C(G)AverageLocal 0.4333 The transitive
constraint corre-
sponding to: a →
b → c ⇔ a → c

weakcensus N/A 6 The number of
transitive triads
used in com-
puting “weak”
transitivity.

strongcensus N/A 26 The number of
transitive triads
used in com-
puting “strong”
transitivity.
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“In general, regardless of which definition of the clustering coefficient

is used, the values tend to be considerably higher than for a random graph

with a similar number of vertices and edges. Indeed, it is suspected that

for many types of networks the probability that the friend of your friend

is also your friend should tend to a non-zero limit as the network becomes

large, so that C = O(1) as n ⇒ ∞. On the random graph, by contrast,

C = O(n−∞) for large n (either definition of C) and hence the real-world

and random graph values can be expected to differ by a factor of order

n.”

M. E. J. Newman [178]

In this context, Newman is referring to my C(G) or C(G)AverageLocal.

D.2.4 CENTRALITY

A centrality measurement is a way of quantifying the notion that some compo-

nents of a graph are more important than others. Some centrality measurements are

based purely on data that is available at the graph component level and is invariant

with respect to the rest of the graph; these are called local centrality measurements.

Global centrality measurements are dependent on the structure of the graph in toto.

The difference between local and global knowledge is fundamentally one of degree

using the idea of k−neighborhood. In the minimal case where k = 1, all knowledge

is based on edges and vertices that are 1 edge away. In the maximal case where

k = D(G), all knowledge is based on global knowledge of the graph. Values of k

from 1 and D(G) reflecting increasing knowledge of G.

Betweenness centrality

Betweenness is a global centrality measurement. Betweenness is a measure of

how many geodesic paths from any vertices s, t ∈ V use either an edge [72] (Equa-

tion 126) or a vertex [72, 86, 200] (Equation 127 on the following page). Removal

of a graph component based on its betweenness is a direct attack on the global

structure of the graph.

cB(e) =
∑

s̸=t∈V

σst(e)

σst

(126)
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cB(v) =
∑

s̸=v ̸=t∈V

σst(v)

σst

(127)

Closeness centrality

Closeness is a global centrality measurement. Closeness quantifies the idea that

a vertex has a shortest average geodesic distance when compared to all geodesic

distances.

cC(u) =
∑

v∈V

d(u, v) (128)

Degreeness centrality

Degreeness is a local centrality measurement. Degreeness is the number of edges

that are incident to a vertex (Equation 129). Degreeness only makes sense for

vertices. A vertex with a high degreeness is central to a local portion of the graph,

but not to the graph in to-to.

cD(v) = d(v) (129)

D.2.5 DISCONNECTED GRAPH METRICS

Here we review a collection of characteristic metrics for disconnected graphs. In

many cases the connected graph characteristic does not have meaning, or is not

computable when the graph is disconnected.

Constrained average path length (L(G) = 1
n(n−1)

∑
u ̸=v∈V

0<d(u,v)<∞
d(u, v))

The average of all shortest path lengths between nodes u and v, given that

there is a path between u and v. The lower an CAPL, the fewer edges on

average there are between nodes.

L(G) =
1

n(n− 1)

∑

u ̸=v∈V

0<d(u,v)<∞

d(u, v) (130)

Average inverse path length (L(G)−1)

The inverse of the mean of all the shortest paths in the graph between all

nodes u and v. Because the shortest path between vertices in two disconnected

components is ∞, the inverse is 0 and therefore is a valid value that does not

cause the computation to fail. A larger AIPL means that the distance between
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nodes is on average shorter [72].

L(G)−1 =
1

n(n− 1)

∑

u̸=v∈V

1

d(u, v)
(131)

AIPL is also known as average inverse shortest path (AISP) [197] and average

inverse shortest path length (AISPL) [198].

Equation 130 on the preceding page is a constrained APL as compared to a

un-constrained APL (Equation 120 on page 394) that restricts the path lengths

between nodes to those whose path length is not ∞. Equation 131 at first appears

to be dependent on a path length, but in fact, it is not. If a path does not exist

between nodes u and v then, by definition, the path length is infinite ∞.

D.3 USW TERMS

Here we list a collection of USW related terms and ideas used in this dissertation.

{WOset}

A WO’s set of “friend” connections.

visitedSet

The set of WOs that the “wandering” WO visited prior to making its first

connection.

toBeV isitedSet

The set of WOs that the “wandering” WO intends to visit prior to making its

first connection.

visitedSet ∪ toBeV isitedSet

The set of unique WOs that the wandering WO has discovered.

β

The threshold value against which a locally generated random number is com-

pared to determine if the NEW node will be connected to the current OLD

node.

γ

The percentage of the “visited” and “to be visited” lists that are used after

the wandering node has found a home.
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Active maintenance WO

The single WO in a “family” charged with maintaining the correct number of

copies of the progenitor across unique hosts in a USW graph.

Candidate

A WO under consideration to become “connected.” As a WO “wanders” the

USW graph, it discovers new WOs. Each newly visited WO is a candidate for

the wandering WO to make a connection to prior to the decision to make the

connection.

Connected

A WO is connected if it has “connections” to other WOs.

Connection

A logical connection between WOs. A connection is not necessarily an HTML

navigational link.

Digital object (DO)

Any digital file.

Family

A collection of WOs that are preservation copies of the “progenitor” WO.

A family consists of exactly one “active maintenance” WO and some limited

number of “passive maintenance” WOs.

Friend

Any WO is connected to by another WO and is not a member of the second

WO’s family.

Host

A computer that is connected to a TCP/IP network.

Introduced

Prior to a WO entering its “wandering” phase, it must be introduced to a WO

already existent in the USW graph. This existent WO is “connected” and

provides identities of other “connected” WOs.

Maximum number of preservation copies

The maximum number of preservation copies that the active maintainer will

create for the family.
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Minimum number of preservation copies

The lower bound number that the active maintainer will not go below when

managing the number of preservation copies for the family.

Passive maintenance WO

Any “family” WO that detects the loss of a family member or a friend. The

loss is communicated to the “active maintenance” WO for resolution.

Policy A

The policy used when selecting the initial and established WO that the “wan-

dering” WO will be introduced to.

Policy B

The policy used when selecting all WOs after the initial WO that the “wan-

dering” WO will explore.

Policy C

The policy used when selecting which WOs the no-longer “wandering” WO

will make connections to.

Policy D

Not used.

Policy E

The policy used to decide how many preservation copies an active maintenance

WO will make per preservation opportunity.

Progenitor

The original WO from which all “family” WOs are created. The ID of the

progenitor is immutable.

REsource Map (REM)

“. . . describes an Aggregation. A Resource Map asserts which Aggregation it

describes, and which resources are constituents of the Aggregation (the Ag-

gregated Resources). In addition, a Resource Map can express relationships

and types pertaining to the Aggregation, the Aggregated Resources, the Re-

source Map itself, and to resources related to them. Each Aggregation may

be described by one or more Resource Maps, each of which must have exactly
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one representation that is a serialization of the Resource Map according to a

specific format. . . . ” [133]

Wandering

A WO “wanders” through the USW graph prior to making its first connection.

The WO learns about the USW graph, size of the graph, number of WOs that

each WO in the graph is connected to, and other data. A WO will wander

until one of these conditions is met:

1. the entire USW graph is explored, or

2. a locally generated random number exceeds β.

Web object (WO)

A DO that has been augmented with various USW specific metadata.

D.4 MISCELLANEOUS TERMS

Here we list a collection of terms that do not fall into the other categories.

Digital Object Identifier (DOI)

A DOI is a character string (a “digital identifier”) used to uniquely identify an

object such as an electronic document. Metadata about the object is stored

in association with the DOI name and this metadata may include a location,

such as a URL, where the object can be found. The DOI for a document

remains fixed over the lifetime of the document, whereas its location and other

metadata may change. Referring to an online document by its DOI provides

more stable linking than simply referring to it by its URL, because if its URL

changes, the publisher need only update the metadata for the DOI to link to

the new URL.

Globally Unique IDentifier (GUID)

A GUID, is a unique reference number used as an identifier in computer soft-

ware. The term GUID typically refers to various implementations of the uni-

versally unique identifier (UUID) standard.

Uniform Resource Identifier (URI)

A string of characters used to identify a name of a web resource. Such iden-

tification enables interaction with representations of the web resource over a
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network (typically the World Wide Web) using specific protocols.

Uniform Resource Locator (URL)

A URL is a URI that, in addition to identifying a web resource, specifies the

means of acting upon or obtaining the representation: providing both the pri-

mary access mechanism, and the network “location” For example, the URL

http://example.org/wiki/MainPage refers to a resource identified as /wiki/-

MainPage whose representation, in the form of HTML and related code, is

obtainable via HyperText Transfer Protocol (http) from a network host whose

domain name is example.org.

Uniform Resource Name (URN)

A URN is an Internet resource with a name that, unlike a URL, has persistent

significance - that is, the owner of the URN can expect that someone else (or

a program) will always be able to find the resource.

Universally Unique IDentifier (UUID)

A UUID is an identifier standard used in software construction, standardized

by the Open Software Foundation (OSF) as part of the Distributed Computing

Environment (DCE).The intent of UUIDs is to enable distributed systems

to uniquely identify information without significant central coordination. In

this context the word unique should be taken to mean “practically unique”

rather than “guaranteed unique” Since the identifiers have a finite size, it is

possible for two differing items to share the same identifier. The identifier

size and generation process need to be selected so as to make this sufficiently

improbable in practice. Anyone can create a UUID and use it to identify

something with reasonable confidence that the same identifier will never be

unintentionally created by anyone to identify something else. Information

labeled with UUIDs can therefore be later combined into a single database

without needing to resolve identifier (ID) conflicts.
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APPENDIX E

USW MATHEMATICAL TERMS

Table 55 is a collection of mathematical symbols used when discussing the USW

graph.

Table 55. USW related mathematical symbols.

Symbol Explanation and expansion

A{C,D,E,V },{H,L}

The type of profile that an attacker would use against

a graph. The first subscript is the metric that will

be used (Closeness, Degree, Edge Betweenness, Vertex

Betweenness). The second subscript is whether to use

the High or Low value of the metric.

No equation, a definition.

chard
The maximum number of preservation copies that the

active maintainer will strive to create.

No equation, a definition.

csoft
The minimum number of preservation copies that the

active maintainer will strive to create.

No equation, a definition.

cB(e)
The portion of paths that use a particular edge out of

all paths [72].

cB(e) =
∑

s ̸=t∈V
σst(e)
σst

(Continued on the next page.)



411

Table 55. (Continued from the previous page.)

Symbol Explanation and expansion

cB(E)
The maximum cB(e) for the entire graph.

cB(E) = max(cB(e)|e ∈ E)

cB(V )
The maximum for the entire graph.

cB(V ) = max(cB(v)|v ∈ V )

cB(v)
The portion of paths that use a particular vertex out

of all paths [72, 86, 200].

cB(v) =
∑

s̸=v ̸=t∈V
σst(v)
σst

cC(u)
The closeness of a vertex to all other vertices.

cC(u) =
n−1∑

u ̸=v∈V d(u,v)

C(G)AverageLocal

The clustering coefficient for a single vertex and its

neighbors [178, 43].

C(G)AverageLocal =
1
n

∑
i
NumberOfTrianglesConnectedToV ertexI

NumberOfTriplesCenteredAtV ertexI

C(G)AverageTriples

The clustering coefficient for a single vertex and its

neighbors.

C(G)AverageTriples =
1∑

i,Ci ̸=0

∑
i
NumberOfTrianglesConnectedToV ertexI

NumberOfTriplesCenteredAtV ertrxI

c(v)
The clustering coefficient for a single vertex and its

neighbors [201].

c(v) = 2∗λ(v)
d(v)2−d(v)

(Continued on the next page.)
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Table 55. (Continued from the previous page.)

Symbol Explanation and expansion

C(G)Average

The clustering coefficient for the entire graph [178,

179].

C(G)Average =
3∗ΣNumberOfTrianglesInTheGraph

NumberOfConnectedTriples

C(G)Lattice
The clustering coefficient for a lattice graph [171].

C(G)Lattice =
(3k−3)
2(2k−1)

C(G)
The clustering coefficient for a Watts – Strogatz small-

world graph [43].

C(G) ∼ 3
4

C(G)
The clustering coefficient for a random graph [43].

C(G) ∼ k
n

C(G)LatticeRewired

The clustering coefficient for a Watts – Strogatz small-

world that is rewired with some probability p [171].

C(G)LatticeRewired =
(3k−3)
(4k−2)

∗ (1− p)3

C(G)Rewired

(See C(G)LatticeRewired.)

C(G)Rewired = C(Ck
n)(1−

p

2k
)

Damage(G)
How damaged a graph is compared to its previous state

[172].

Damage(G) = 1−
L(Gfragmented)

−1

L(Gunfragmented)−1

D(G)
The length of the maximal path in the graph [201].

D(G) = max{d(u, v) : u, v ∈ V }

(Continued on the next page.)
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Table 55. (Continued from the previous page.)

Symbol Explanation and expansion

d(u, v)
The maximum distance between any two vertices for

the entire graph [167].

d(u, v) =|E(P )|, E(P ) = {u0u1, u1u2, . . . , v−1v0}

E
The foundational element in a G(V,E). A E exists

between two or more V .

No equation, a definition.

|E|
The number of edges in G(V,E). This is also known

as the size of the graph. The expansion is the number

of undirected edges in a fully connected graph.

|E| = n(n−1)
2

|Emax|
The maximum number of edges incident to a WO.

No equation, a definition.

ϵ(G)
The maximum ϵ(u) for the entire graph.

ϵ(G) = max{ϵ(u) : u ∈ V }

ϵ(u)
The maximum distance between a particular vertex

and all other vertices in the graph [199].

ϵ(u) = max{d(u, v) : v ∈ V }

friendsToBe
The set of WOs that will be friends of the current WO.

No equation, a definition.

(Continued on the next page.)
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Table 55. (Continued from the previous page.)

Symbol Explanation and expansion

G(V,E)
The foundational definition of a graph. A composite

structure composed of some number of vertices and

possibly some edges. Edges must be between vertices

in the graph.

No equation, a definition.

hcap
The upper limit of WOs that a host will allow.

No equation, a definition.

hmax
The maximum number of hosts in the USW graph.

No equation, a definition.

k
(See E.)

No equation, a definition.

⟨k⟩
Average degree for all vertices in the graph.

⟨k⟩ = orderOfGraphLHS

numberV erticesLHS

⟨k⟩
Average degree in a random graph [112].

⟨k⟩ = 2m
n

= p(n− 1) ≈ pn

⟨k−−−⟩
The average degree of a vertex.

No equation, a definition.

L(G)
Average distance between all vertices in a connected

graph.

L(G) = 1
n∗(n−1)

∗
∑n

i,j d(vi, vj)

(Continued on the next page.)
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Table 55. (Continued from the previous page.)

Symbol Explanation and expansion

L(G)−1
Average of the inverse distances in a graph [72].

L(G)−1 = 1
n(n−1)

∑
u ̸=v∈V

1
d(u,v)

|LCC|
The size of the Largest Connected Component of the

graph.

No equation, a definition.

λ(v)
The number of number of triangles centered on a par-

ticular vertex v [201].

λ(v) =|{△ | v ∈ V△}|

m
(See |E|.)

|E|

n
The number of vertices in G(V,E). This is also known

as the order of the graph.

No equation, a definition.

nmax
The maximum number of WOs (or vertices) in the

USW graph.

No equation, a definition.

NewlyDiscoveredSet
The set of discovered WOs.

No equation, a definition.

ρ(G)
The ratio of the number of actual edges to the maxi-

mum possible number of edges [208].

ρ(G) = m
n

(Continued on the next page.)
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Table 55. (Continued from the previous page.)

Symbol Explanation and expansion

ρ(G)
(See ρ(G) above [106].)

ρ(G) = ( n2

2m
− 1)(1− 1

n
)

ρ(G)
(See ρ(G) above [167].)

ρ(G) = m

(n
2
)

Se
An event or activity that a WO completes.

No equation, a definition.

St
The sequential event used to order events in the a USW

simulation.

No equation, a definition.

Tstep
The number of Stin a time bin.

No equation, a definition.

Tslice
A single time across simulations.

No equation, a definition.

toBeV isitedSet
The list of WOs that will be visited.

No equation, a definition.

toBeV isitedSet
The set of WOs that will be visited.

No equation, a definition.

V
A necessary and required component of a G(V,E).

No equation, a definition.

(Continued on the next page.)
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Table 55. (Continued from the previous page.)

Symbol Explanation and expansion

visitedSet
The list of WOs that have been visited.

No equation, a definition.

visitedSet
The set of WOs have been visited.

No equation, a definition.

{WOset}
The set of WOs that friends of the current WO.

No equation, a definition.

(Last page.)
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APPENDIX F

DEGREE HISTOGRAMS

F.1 INTRODUCTION

A series of USW simulated graphs were created using default values for all pa-

rameters (see Section C.1 on page 368), except for:

1. USW graph order n=500

2. First WO selection:

(a) Always using the same first WO,

(b) Selecting a WO at random from the existing USW graph,

(c) Always using the last WO that was added to the USW graph.

3. Different ways to decide how many connections to make:

(a) n ∗ γ

(b) max(1, ln(n ∗ γ))

(c) max(1, ln(n) ∗ γ)

(d) max(0, ln(n ∗ γ))

(e) max(0, ln(n) ∗ γ)

(f) max(1, log
2
(n ∗ γ))

(g) max(1, log
2
(n) ∗ γ)

(h) max(0, log
2
(n ∗ γ))

(i) max(0, log
2
(n) ∗ γ)

(j) 5 + log
2
(n ∗ γ)

The following sections contain degree histograms from the above parameter combi-

nations.
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F.2 HISTOGRAMS BASED RESULTING FROM USING THE

SAME FIRST WO

A series of USW simulated graphs were created using default values for all pa-

rameters (see Section C.1 on page 368), except for:

1. USW graph order n=500

2. First WO selection:

(a) Always using the same first WO,

3. Different ways to decide how many connections to make:

(a) n ∗ γ

(b) max(1, ln(n ∗ γ))

(c) max(1, ln(n) ∗ γ)

(d) max(0, ln(n ∗ γ))

(e) max(0, ln(n) ∗ γ)

(f) max(1, log
2
(n ∗ γ))

(g) max(1, log
2
(n) ∗ γ)

(h) max(0, log
2
(n ∗ γ))

(i) max(0, log
2
(n) ∗ γ)

(j) 5 + log
2
(n ∗ γ)
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F.3 HISTOGRAMS BASED RESULTING FROM USING A

RANDOM FIRST WO

A series of USW simulated graphs were created using default values for all pa-

rameters (see Section C.1 on page 368), except for:

1. USW graph order n=500

2. First WO selection:

(a) Selecting a WO at random from the existing USW graph,

3. Different ways to decide how many connections to make:

(a) n ∗ γ

(b) max(1, ln(n ∗ γ))

(c) max(1, ln(n) ∗ γ)

(d) max(0, ln(n ∗ γ))

(e) max(0, ln(n) ∗ γ)

(f) max(1, log
2
(n ∗ γ))

(g) max(1, log
2
(n) ∗ γ)

(h) max(0, log
2
(n ∗ γ))

(i) max(0, log
2
(n) ∗ γ)

(j) 5 + log
2
(n ∗ γ)
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F.4 HISTOGRAMS BASED RESULTING FROM USING LAST

ADDED WO

A series of USW simulated graphs were created using default values for all pa-

rameters (see Section C.1 on page 368), except for:

1. USW graph order n=500

2. First WO selection:

(a) Always using the last WO that was added to the USW graph.

3. Different ways to decide how many connections to make:

(a) n ∗ γ

(b) max(1, ln(n ∗ γ))

(c) max(1, ln(n) ∗ γ)

(d) max(0, ln(n ∗ γ))

(e) max(0, ln(n) ∗ γ)

(f) max(1, log
2
(n ∗ γ))

(g) max(1, log
2
(n) ∗ γ)

(h) max(0, log
2
(n ∗ γ))

(i) max(0, log
2
(n) ∗ γ)

(j) 5 + log
2
(n ∗ γ)
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APPENDIX H

USW DEGREE DISTRIBUTIONS

We examine and report the degree distributions for various USW graphs of order

L(G) = 100. The graphs were created with different values for β and γ. Plots with

midrange values of β and γ clearly show their random number origins.
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APPENDIX I

USW DISCONNECTION

We examine and report the diameter D(G) and the average path length L(G) for

various USW graphs of order L(G) = 100. The graphs were created with different

values for β and γ. Plots with midrange values of β and γ clearly show their

random number origins by being “short” relative to the length of similar Watts –

Strogatz graphs.
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APPENDIX J

USW PATH LENGTH HISTOGRAMS

We examine and report the path length L(G) distributions for various USW

graphs of order L(G) = 10 (Table 56 on the following page). The axises are the

same on all plots, so that a visual comparison of each histogram is facilitated. As γ

grows to 1, the average path length becomes much shorter.
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Table 56. The effect on C(G) and (L(G) based on various values for β and γ. As γ
grows to 1, the average path length becomes much shorter

β γ C(G) L(G)

0.0 1.0 0.741 1

0.5 1.0 0.718 1

1.0 1.0 0.732 1

0.0 0.5 0.739 1

0.5 0.5 0.699 2

1.0 0.5 0.479 1

0.0 0.0 0.000 2

0.5 0.0 0.000 2

1.0 0.0 0.000 4

Figure 223. The path length histogram for β = 0.0 and γ = 0.0. shows the effect of
varying β and γ on a USW graph of size 10. The axises are the same on all plots,
so that a visual comparison of each histogram is facilitated. As γ grows to 1, the

average path length becomes much shorter.
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Figure 224. The path length histogram for β = 0.5 and γ = 0.5. shows the effect of
varying β and γ on a USW graph of size 10. The axises are the same on all plots,
so that a visual comparison of each histogram is facilitated. As γ grows to 1, the

average path length becomes much shorter.
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Figure 225. The path length histogram for β = 1.0 and γ = 1.0. shows the effect of
varying β and γ on a USW graph of size 10. The axises are the same on all plots,
so that a visual comparison of each histogram is facilitated. As γ grows to 1, the

average path length becomes much shorter.
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Figure 226. The path length histogram for β = 0.0 and γ = 0.0. shows the effect of
varying β and γ on a USW graph of size 10. The axises are the same on all plots,
so that a visual comparison of each histogram is facilitated. As γ grows to 1, the

average path length becomes much shorter.
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Figure 227. The path length histogram for β = 0.5 and γ = 0.5. shows the effect of
varying β and γ on a USW graph of size 10. The axises are the same on all plots,
so that a visual comparison of each histogram is facilitated. As γ grows to 1, the

average path length becomes much shorter.
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Figure 228. The path length histogram for β = 1.0 and γ = 1.0. shows the effect of
varying β and γ on a USW graph of size 10. The axises are the same on all plots,
so that a visual comparison of each histogram is facilitated. As γ grows to 1, the

average path length becomes much shorter.
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Figure 229. The path length histogram for β = 0.0 and γ = 0.0. shows the effect of
varying β and γ on a USW graph of size 10. The axises are the same on all plots,
so that a visual comparison of each histogram is facilitated. As γ grows to 1, the

average path length becomes much shorter.
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Figure 230. The path length histogram for β = 0.5 and γ = 0.5. shows the effect of
varying β and γ on a USW graph of size 10. The axises are the same on all plots,
so that a visual comparison of each histogram is facilitated. As γ grows to 1, the

average path length becomes much shorter.
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Figure 231. The path length histogram for β = 1.0 and γ = 1.0. shows the effect of
varying β and γ on a USW graph of size 10. The axises are the same on all plots,
so that a visual comparison of each histogram is facilitated. As γ grows to 1, the

average path length becomes much shorter.
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APPENDIX K

USW SYSTEM DESIGN CONSIDERATIONS

K.1 INTRODUCTION

Based on analysis of the preservation needs of the USW WOs and the assumed

capacity of hosts to provide storage capacity for foreign WOs, we developed a set of

equations that provide insight into USW preservation efficacy based on preservation

policy.

K.2 DISCUSSION

The following set of equations relate to designing and predicting the preservation

performance of the system:

hmin = p+ 1 (132)

hcap =
| WO | ∗chard
min(hmin, h)

(133)

Scap = hcap ∗min(| WO |, h) (134)

hmax = D (135)

The absolute minimum number of hosts that need to be in the system in order

for there to be any likelihood of preservation activity is based constrained by the

fact that a preservation copy can not exist on the same host as the parent copy.

A WO’s family members will be spread across a collection of hosts. A complete

description of a WO’s position in a family structure and the host that it is living on

is given by WOn,c,h. Where:
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limits =























csoft = min. preservation copies

chard = max. preservation copies

nmax = max. WOs

hmax = max. hosts

n, c, h constrained to:















n = 1, . . . , nmax

c = 0, . . . , chard
h = 1, . . . , hmax

subject to:























(n, h) unique ∀ n and ∀ h

c =

{

0 if parent WO

> 0 otherwise

0 ≤ csoft ≤ chard
There is a design consequence to this limitation (Equation 132 on the previous

page).

The lower limit of the preservation capacity of each host is based on the total

number of preservation copies that the system of WOs needs spread over all hosts

in the system (Equation 133 on the preceding page). While this capacity will be

enough to meet all the needs of the WOs, the WOs may not know about, or discover

all hosts.

The total system capacity can be computed (Equation 134 on the previous

page).

Figure 232 on the following page is a notational diagram of how the various

combinations of hosts, WO preservation needs and host capacity relate. The x-axis

shows a range of hosts from a small value to a large one, while the y-axis shows

host preservation capacity ranging from small to large. There is a diagonal line

that shows the total system capacity (Equation 134 on the previous page). System

required capacity (Equation 133 on the preceding page) is shown as a horizontal

line. The number of hosts in the system (Equation 132 on the previous page) is

shown by the left-hand vertical line and the desired number of preservation copies

is to the right of the host line.

In Figure 232 on the following page the red area is the region where the limited

number of hosts preclude any likelihood of meeting the system’s preservation needs.

The green area represents enough system capacity, but there are too few hosts to
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Figure 232. Notional host system design diagram relating host capacity to WO
preservation needs.

meet the constraint that each WO family member be on a different host. The blue

area is where preservation will occur and is subdivided into two regions, A and

B. In Region A, there are there hosts and they have limited capacity, so will be

unable to meet all the preservation needs of the system. While some WOs will meet

their needs, some will not. In Region B, there is enough capacity and enough hosts

to meet the system’s needs. The closer the number of hosts is to the right hand

boundary, the greater the number of WOs that will meet their needs. The black

area (Region C) is a region of excess system capacity. Hosts in this region will never

be discovered or used because no WOs live on them (Equation 135 on page 519).

K.3 PRESERVATION EFFECTIVENESS ANALYSIS

We have identified a limited number of relationships between csoft, chard, and
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hcap. In all cases csoft≤ chard, but the relationship of hcapis less clean cut.

We have identified, and named all possible relationships between csoft, chard, and

hcap(Table 57).

Table 57. Named conditions for total system host preservation capacity hcap in
relation to total system csoft and chard. We have taken the liberty to abuse the
definitions of hcap, csoft and chard by interpreting them to apply to the total

system, vice a single host or WO.

Name Requirements

Famine hcap< csoft≤ chard
Boundary Low hcap= csoft≤ chard
Straddle csoft≤ hcap≤ chard
Boundary High csoft≤ chard= hcap

Feast csoft≤ chard< hcap
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We evaluated the effectiveness of various preservation policies based on the

named conditions (Figure 233 on page 523 through Figure 247 on the preced-

ing page). Simulation control parameters were set so that the total preservation

capacity of the hosts was varied to create the named conditions. For each of the

named conditions, the preservation policy was varied and data was collected. In all

cases, the least aggressive policy was the least successful at meeting the system’s

preservation goals. Under the Famine and Boundary Low conditions, it would be

impossible to meet preservation goals, and the Moderately and Most aggressive poli-

cies arrived at approximately the same steady state situations in about the same

length of time. Boundary High and Feast conditions have enough capacity for the

system to meet its preservation needs.

K.4 COMMUNICATION COST ANALYSIS

We next considered the number of messages exchanged in the USW system

from inception to system stabilization under the named preservation conditions and

preservation policies (Figure 248 on the next page through Figure 252 on page 543).

In all cases, the Least aggressive policy was the least successful at meeting the sys-

tem’s preservation goals. Under the Famine and Boundary Low conditions, it would

be impossible to meet preservation goals, and the Moderately and Most aggres-

sive policies arrived at approximately the same steady state situations in about the

same length of time. Boundary High and Feast conditions have enough capacity for

the system to meet its preservation needs, and the Most aggressive policy operates

about twice as efficiently as the Moderately aggressive policy. The Moderately ag-

gressive policy took longer to stabilize, but in the end 18% more WOs reached their

preservation goals and had a lower rate of messages sent per WO activation.

K.5 SUMMARY

In Table 58 on page 544, we have taken the liberty to abuse the definitions of

hcap, csoft and chard by interpreting them to apply to the total system, vice a

single host or WO. In all cases, the Least aggressive policy was the least successful

at meeting the system’s preservation goals. Under the Famine and Boundary Low

conditions, when it would be impossible to meet preservation goals, both the Mod-

erately and Most aggressive policies arrived at approximately the same steady state

situations after exchanging approximately the same number of messages. Straddle
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Figure 248. Number of messages exchanged based on preservation policies in famine
system capacity condition.
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Figure 249. Number of messages exchanged based on preservation policies in
boundary-low system capacity condition.
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Figure 250. Number of messages exchanged based on preservation policies in strad-
dle system capacity condition.
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Figure 251. Number of messages exchanged based on preservation policies in
boundary-high system capacity condition.
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Figure 252. Number of messages exchanged based on preservation policies in feast
system capacity condition.
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Table 58. The effectiveness of various preservation policies based on named host
capacity conditions.

Named host ca-

pacity
Preservation policy

Least aggressive
Moderately ag-
gressive

Most aggressive

Famine

(csoft ≤
chard < hcap)

Lowest
percentage of
WOs achieving
preservation
goal.

Equally marginally effective.

Boundary Low

(hcap =
csoft ≤ chard)

Straddle

(csoft ≤
hcap ≤ chard)

The baseline
against which
others are
measured.
Takes longer to
stabilize, but
more WOs reach
preservation
goals.

Reaches steady
state fastest
with the most
messages sent in
the shortest
period of time.

Boundary High

(csoft ≤
chard = hcap)

Feast

(hcap <

csoft ≤ chard)
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conditions would permit someWOs to achieve their goals, if the WOs were fortunate.

Straddle results under Moderately and Most aggressive policies are comparable and

the Most aggressive reaching steady state after exchanging about 1

2
as many mes-

sages as the Moderately aggressive policy. Boundary High and Feast conditions

have enough capacity for the system to meet its preservation needs, and the Most

aggressive policy stabilizes the fastest, but the Moderately aggressive policy allows

more WOs to reach their goals.
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