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ABSTRACT

Out-of-cloud convectively induced turbulence (CIT) poses both a serious threat

to aviation operations and a challenge to forecasting applications. This challenge is

particularly large in the tropics, as CIT prediction and avoidance are limited due to

sparse observations and lack of tropical turbulence research. This study uses high

resolution numerical simulations to investigate out-of-cloud CIT properties including

intensity, areal coverage, and location using popular turbulence diagnostics in both

the tropics and midlatitudes. Convective types are varied in both regions to deter-

mine the influence of convective strength and stage (developing versus mature) on

CIT characteristics. The Ellrod index, Richardson number, subgrid-scale eddy dissi-

pation rate (EDR), and second-order structure functions are evaluated across various

model resolutions and compared with observations of turbulence. Static stability

and vertical wind shear are examined to characterize the environment and turbu-

lence potential around simulated convection in the tropics and midlatitudes. This

study found that model resolutions similar to operational forecasting systems under-

predicted the probability of turbulence, while high resolutions had a probability of

turbulence at aviation cruising altitudes that better agreed with observations. The

biases in the probability of turbulence for various model resolutions were affected

by storm type and synoptic features, and had more agreement for cases with strong

dynamical forcing. Model resolution also influenced the locations that CIT was pre-

dicted. An investigation of variations in static stability and vertical wind shear in

different locations around convective cores showed that these parameters subtly var-

ied with model resolution and often did not correlate with the preferred direction of

xxi



turbulence as would be expected from theory. A further study into convective stage

found that developing convection poses the greatest threat to aviation as it is associ-

ated with the greatest turbulence intensity and probability of turbulence in both the

tropics and midlatitudes. The environment near developing convection was altered

more than near mature convection and likely increased turbulence production through

shear-generation mechanisms and gravity wave propagation. This study motivates an

increased effort to understand turbulence probability for convection globally in order

to improve aviation thunderstorm avoidance guidelines.
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CHAPTER 1

INTRODUCTION

Global air travel continues to be a growing endeavor and is projected to increase over

5% for the next two years (Statista 2018). While almost all regions are anticipated

to add flights, Asia Pacific and Latin America alone are forecasted to increase by

almost 6% (Statista 2018). Every day convection influences aviation operations by

causing delays during take-off or landing, flight cancellations, and rerouting flight-

paths. According to the Federal Aviation Administration (FAA), weather accounts

for 68% of delays in U.S. airspace with the greatest amount of delays occurring May

through August (FAA 2017; Weather Delays), the main cause being convection. Ball

et al. (2010) found that aviation delays in the U.S. cost the industry over $32 billion

and over 25% of flights during the months of June through August experience a 15

minute delay. As the number of daily flights continue to increase, the amount of

delays due to convection will also increase.

Convection not only poses the threat of causing delays in air traffic patterns,

but it can also cause structural damage to the aircraft, injuries to passengers and

crew, and instrumentation failure. Lightning, hail, and turbulence are the main

hazards to aviation caused by convection. Sharman et al. (2006) found that 65%

of all weather related aircraft incidents were caused by turbulence. According to

the FAA, between 2002 and 2016 over 500 passengers and crew were injured due to

turbulence in the U.S. (FAA 2017). These encounters with turbulence cost the airline
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industries millions in insurance premiums, worker compensation, injury settlements,

and mechanical repairs (Golding 2000).

Turbulence generated by convection is extremely difficult to predict for nu-

merous reasons. First, turbulence generating processes are still poorly resolved or

missed entirely in operational models. To mediate the resolution dependency, many

turbulence prediction products rely on empirical indices that have been designed to

diagnose large-scale fields that relate to turbulent sources from numerical simulations.

Secondly, convective initiation and strength must be accurately simulated in order to

correctly represent turbulent features, which are not always well predicted. Lastly,

modeling studies are difficult to constrain with limited in situ observations of turbu-

lence itself; therefore, the results are seldom implemented into turbulence avoidance

policies. Unfortunately, as air traffic becomes more congested, the number of turbu-

lence encounters will continue to rise unless turbulence prediction for all convective

scenarios becomes more reliable.

Developing convection is of particular concern to aviation operations because

of limited environmental observations and the small temporal scale in which it takes

place. Pilots can be helpless during a developing convective scenario if the on-board

radar is not oriented at an angle that can detect convection below. This situation

can lead to injuries aboard the aircraft if turbulence is encountered while passengers

are not securely fastened in their seats. Few research studies have solely focused

on turbulence caused by developing convection, or the accuracy of commonly used

turbulence indices during this particular stage. Airlines will continue to encounter

turbulence caused by developing convection if the sensitivities of turbulence indices

are not investigated. By understanding the magnitude and extent of turbulence

during the developing stage of convection, thunderstorm avoidance guidelines may be

altered and decrease passenger injuries.
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The proposed research addresses the following scientific objectives: 1) Deter-

mines how model resolution influences the distribution of turbulence intensity calcu-

lated from popular turbulence metrics, 2) determines if a directional bias in turbu-

lence location is found when model resolution is altered, 3) determines if common

turbulence indices developed for midlatitude turbulence prediction can be accurately

applied to tropical convective regimes for turbulence prediction, and 4) determines

biases in turbulence prediction for various convective regimes in tropical oceanic and

continental midlatitude regions. The Weather Research and Forecast (WRF) model

was used to simulate convection in both midlatitude continental regions and tropical

oceanic to accomplish these research objectives.
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CHAPTER 2

BACKGROUND

Turbulence is defined by the American Meteorological Society Glossary as random

and continuously changing air motions that are superposed on the mean motion of the

air (AMS 2015). In comparison, the Federal Aviation Administration (FAA) simply

defines turbulence as the bumpiness in flight that has effects on the aircraft and pas-

sengers (FAA 1977). This broad definition includes mechanically induced turbulence,

thermally induced turbulence, and the formation and breakdown of gravity waves

(Vinnichenko et al. 1980). Turbulence accounts for 65% of all weather related avia-

tion accidents and costs the industry between $150-500 million a year in structural

repairs, insurance premiums, and injury settlements (Williams 2016; Kauffmann and

Sousa-Poza 2001). Turbulence can be classified as clear air, mountain wave turbu-

lence, or convectively induced, and can occur in cloud or out of cloud. Convectively

induced turbulence in particular is of concern to aviation operations as forecasting

systems are dependent on the accurate prediction of convection and the resolution

of processes that induce turbulence and therefore will be the focus of this study.

The following sections will discuss the theoretical understanding of convectively in-

duced turbulence, the current understanding of convectively induced turbulence from

modeling studies, aviation procedures utilized to decrease turbulence encounters, pre-

diction systems and diagnostics in operation for turbulence prediction, and differences

in convective properties in the midlatitudes and tropics that influence turbulence.
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2.1 Convectively induced turbulence generation

Convectively induced turbulence (CIT) is a dynamical phenomenon that requires

advanced prediction in order to reduce weather-related turbulence accidents. CIT

often occurs in the immediate area surrounding convection due to moist instabilities

and mixing (Lane et al. 2003), particularly near updrafts, downdrafts, and anvil cloud

features. Strong vertical variations of velocities within the convective updraft cause

in-cloud CIT of stronger intensity. In-cloud regions of turbulence are easily avoided

by the detection of cloud boundaries both visually and with radar (Kim and Chun

2012), but the intensity of in-cloud CIT is not always correlated to the intensity of

radar echoes. CIT is not limited to the immediate cloud area and can occur more

than 100 km away from and 1-3 km above convective areas (Zovko-Rajak and Lane

2014; Lane and Sharman 2014; Lane et al. 2012; Lane et al. 2003; Pantley 1989;

and USAF 1982). The three mechanisms known to generate out-of-cloud CIT are

(1) enhancement of the background wind shear by convection penetrating into the

upper troposphere, (2) cloud-induced deformation at the cloud boundary caused by

buoyancy gradients, and (3) convectively generated gravity waves that propagate and

break above convection (Lane et al. 2003).

Gravity waves generated by convection are especially hazardous to aviation

and are responsible for much of the out-of-cloud CIT (Sharman and Trier 2018).

Convectively induced gravity waves generally have horizontal wavelengths between

5 and 200 km, occur on temporal scales of 10 to 100 minutes, and are generated

by mechanical and diabatic forcings, which in realistic convective clouds are coupled

through nonlinear momentum and heat fluxes (Chun 2008; Lane and Sharman 2008;

Alexander et al. 2006; Lane et al. 2003; Song et al. 2003; Beres et al. 2002; Lane

et al. 2001). The nonlinear forcings refer to the mechanical oscillator effect (Clark
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et al. 1986) and the obstacle effect (Pfister et al. 1993). The mechanical oscillator

effect leads to the formation of vertically propagating gravity waves when updrafts

and downdrafts intersect a stable layer, in turn causing vertical displacements of

the isentropes at the base of the stable layer. The obstacle effect, also known as

the moving mountain effect, causes gravity waves when a pressure field produced by

the upward (and downward) convective region obstructs the environmental horizontal

flow. The diabatic forcing (thermal forcing) which occurs when latent heat is released

within the cloud during condensation (Lin and Smith 1986). While the formation of

gravity waves during convective activity is common, turbulence may or may not be

generated as the production of turbulence is influenced by the breakdown of gravity

waves (Pantley 1989; Reiter and Lester 1968). The wavelength (λ) of vertically

oscillating gravity waves can be mathematically expressed using

λ =
2πū

N
, (2.1)

where u is the mean horizontal wind speed (m s−1) and N is the Brunt frequency

(s−1), mathematically represented by

N =
(g

θ

)(∂θ

∂z

)1/2

, (2.2)

where g is the acceleration due to gravity (m s−2) and is potential temperature (K).

This equation assumes that the phase speed of the waves is zero, which is not the

case for convectively induced gravity waves.

The breakdown of gravity waves in the environment is defined by Pantley

(1989) as a transition from a coherent wave motion to turbulence. Prior to breakdown,

as gravity waves vertically propagate and grow in a nonlinear manner, regions of

strong overturning of isentropes surfaces are produced (Walterscheid and Schurbert
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1990). The overturning of isentropes occurs when the amplitude of the wave grows

large enough where the addition of the wave and the mean field of vertical temperature

gradient becomes superadiabatic (Walterscheid and Schurbert 1990). Furthermore,

Orlanski and Bryan (1969) found that the overturning of isentropes occurs in regions

where upward propagating gravity waves are present when

u′ + ū > c, (2.3)

where c is the horizontal phase speed of the wave, u’ is the wave horizontal velocity,

and u is the mean field horizontal velocity. The horizontal intrinsic phase speed of

gravity waves, cpx can be represented by,

cpx =
±N√
k2 +m2

(2.4)

where k andm are the wave number in the x and z direction (Lin 2007). This equation

demonstrates that as propagating gravity waves enter a more stable region the phase

speed of these waves will increase.

Many studies have examined the influence that atmospheric stability, environ-

mental wind, and convective stage have on the propagation of gravity waves. Lane

and Sharman (2008) used numerical simulations of convection to investigate the re-

lationships between background flow conditions and gravity wave breaking above

convection. The results from Lane and Sharman (2008) found that the instability in

terms of areal coverage was maximized by optimal values of wind shear. In addition,

it was found that the altitude of critical levels which induce breaking gravity waves

are higher in low sheared environments, thereby influencing turbulence location. Lane

and Sharman (2008) also found that areas where gravity waves break are in the down-

shear regions above cloud as waves encompassing a spectrum of wavelengths reach
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critical levels, which is consistent with other studies. Kuester et al. (2008) examined

gravity waves generated around a hurricane, which lacks a strong background wind

and has little shear. In this environment the gravity wave characteristics were in-

fluenced mainly by diabatic heating within the hurricane itself. Gravity waves were

found to peak at vertical wavelengths 2 to 4 times the depth of the heating and prop-

agated vertically across the tropopause at half of their original vertical wavelength

due to refraction. Kuester et al. (2018) examined azimuthal shear and hypothesized

the influence of the obstacle effect. Wimmers et al. (2018) used satellite information

to examine gravity waves. Their study found for two cases of severe CIT, gravity

waves did not propagate in the direction of the background flow but instead propa-

gated orthogonally to the background flow, due to the highly sheared environment of

the convective outflow. Beres et al. (2002) found that the phase speed spectrum of

convectively induced gravity waves can be modified by the vertical structure of the

horizontal wind and that the tropospheric winds can cause gravity waves above con-

vection to refract. The results from Beres et al. (2002) demonstrated the asymmetric

nature of gravity wave propagation due to tropospheric winds agreed with previous

studies including (Lane et al. 2001; Piani et al. 2000; Alexander and Holton 1997;

Alexander et al. 1995; Fovell et al. 1992).

2.2 Simulations of convectively induced turbulence

With the increase in computation resources available, the dynamics of CIT are being

understood at remarkable rates. Model simulations are also being used to explain

aviation turbulence encounters that were responsible for injuries or structural dam-

age. Recently, Trier and Sharman (2016) investigated the mechanisms that caused

a multiple day turbulence event where convection evolved throughout the period.

The results of their study highlighted the complex interactions of shallow convec-
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tion, the jet stream, gravity waves, and shear instabilities. In addition, their study

found that to resolve much of the turbulent motions responsible for the numerous

turbulence reports, model grid spacing needed to be less than 1 km, as 3 km could

not resolve the turbulence mechanisms. This finding is extremely important be-

cause most operational forecasting models currently have model grid spacing equal

to or greater than 3 km in the horizontal. Prior to this particular study, Trier et

al. (2012) examined a cold-season turbulence outbreak event using high resolution

simulations (∆x = 667 m). As was the case with Trier and Sharman (2016), Trier

et al. (2012) found two main mechanisms that caused turbulence. The first mech-

anism was Kelvin-Helmholtz instabilities leading to convective instabilities above a

convectively-enhanced jet stream. The second mechanism was vertically propagating

gravity waves that were generated when shallow convection reached a layer of strong

static stability. While both of these studies focused on the interactions of jet streams

and convection during the cold-season, vertically propagating gravity waves have also

been shown to cause turbulence during warm-season events (Lane and Sharman 2008;

Lane et al. 2003).

Lane et al. (2003) investigated a turbulence encounter above a developing

convective cell on 10 July, 1997 using high resolution idealized and full-physics simu-

lations. Turbulence was found 1 km above the cloud top due to the convective updraft

overshoot into the stratosphere and various distances away from the convective cell

due to the propagation and break down of gravity waves. This study demonstrated

the vast horizontal and vertical distances CIT can propagate away from developing

convection and how aviation operations are at risk of encountering CIT. Kim and

Chun (2012) examined a turbulence encounter with an extremely fine model grid

spacing (∆x = 120 m). This study found as the dominant background wind advected

convection near the encounter location, turbulence generated along the convective
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cloud boundary was also advected, from the mature to dissipation stages. At the

same time, vertically propagating gravity waves reached the critical level and began

breaking. The numerical simulations showed that out-of-cloud CIT was located 2 km

above the dissipating convection. The results of this study illustrate the potential

for significant turbulence encounters during numerous convective stages, and not just

the mature stage.

Zovko-Rajak and Lane (2014) utilized an idealized numerical framework with

high resolution (∆x = 500 m) to investigate turbulence near supercells. The focus

was out-of-cloud turbulence, several kilometers away from active convection. This

study found turbulence more than 100 km downstream of active convection, generally

associated with the upper-level outflow jet, near the tropopause. In the areas above

and below the outflow jet, the Richardson number was less than 0.25 and overturning

gravity waves were common.

Simulations of aviation encounters of CIT in the tropics are far less common

than simulations of midlatitude turbulence incidents. Generally wave analyses of

tropical simulations focus on large-scale waves that influence the quasi-biennial os-

cillation, El-Nino Southern Oscillation, and the Madden-Julian Oscillation, and less

on turbulence at scales which influence aviation (Yang and Hoskins 2013; Haertel et

al. 2008; Tanaka and Yoshizawa 1987). One of the few tropical studies of tropical

CIT is Ahmad and Proctor (2011). They used large eddy simulations to model se-

vere CIT experienced by commercial flights in tropical regions.Their study examined

Continental Airlines Flight 128 (Boeing 767), which encountered turbulence north of

Bavaro, Dominican Republic while flying at an altitude of 11 km over isolated cu-

mulus congestus and cumulonimbus on 3 August, 2009. The simulation showed that

light to moderate turbulence occurred in the top of the storm in regions of low radar
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reflectivity values. In relationship to aviation, this finding is important because pilots

generally rely upon on-board radar systems to avoid convective hazards.

Barber (2015) investigated the areal coverage and intensity distribution of CIT

using the Weather Research and Forecasting (WRF) model for a tropical oceanic case

on 5-6 August 2005. The Ellrod index was used as a diagnostic of turbulence (see the

Appendix) and found that the extent of turbulence identified was far beyond what is

observed in midlatitude regions and in the vicinity of tropical cyclones (Cecil et al.

2014; Lane et al. 2012). Although strong turbulence has been observed within the

tropical transition layer and near the tropical tropopause using active sensing instru-

mentation (Alappattu and Kunhikrishnan 2010; Fujiwara et al. 2003; Yamamoto et

al. 2003; Satheesan and Krishna Murthy 2002), the extent of turbulence in Barber

(2015) highlighted the resolution sensitivity of the Ellrod index for the estimation

of convectively induced turbulence. The comparison of turbulence estimated using

the original model resolution simulation and a coarser resolution simulation indicated

that the empirical values of the Ellrod index greatly depend upon model resolution.

While individual model simulations are valuable as thorough details pertaining to tur-

bulence are discovered, in order to provide legitimate guidance to aviation operations

for a spectrum of convective situations in any region, limited case studies will not

suffice. This is especially true for turbulent situations over tropical oceanic regions

where forecasting systems are limited to nowcasting tools and previous results are

concentrated over the midlatitudes.

2.3 Convection and aviation

According to the U.S. Department of Transportation Federal Aviation Administra-

tion Advisory Circular from 2017, all thunderstorms have potential conditions that

are hazardous to aviation. These hazards include tornadoes, turbulence, icing, hail,
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low ceiling and visibility, altimeter effects due to rapid pressure changes, lightning,

and engine water ingestion. Turbulence is the number one cause of injuries to flight

crew and passengers (Mecikalski et al. 2007). The majority of turbulence injuries oc-

cur when flight attendants are up and about the cabin serving passengers. Turbulence

is a hazard to aircraft because additional stresses are placed on the aircraft while pi-

lots attempt to hold a constant altitude (FAA 2017). Kaplan et al. (1999) found that

82% of reported turbulence incidents between 1990 and 1996 occurred near or within

convective activity. Pantley (1989) summarized five main types of CIT hazardous to

aviation: 1) updrafts and downdrafts within and near deep cumulus convection, 2)

rapidly growing thunderstorms, 3) Kelvin-Helmholtz instability induced by outflows

near the tropopause, 4) turbulent vortices that are formed due to breaking of convec-

tively initiated waves above and downwind of thunderstorms, and 5) turbulent wakes

caused by barrier type effects around and within the lee of thunderstorms.

A three year climatology of turbulence in the continental United States created

by Wolff and Sharman (2008) indicated that 39% of turbulence encounters occurred

above convective clouds, 53% of which were moderate or greater intensity. In addition,

9% of encounters occurred in convective cloud, 80% of which were moderate or greater.

Clear-air turbulence (no clouds apparent) encounters occurred 44% of the time, 48%

of which had moderate or greater intensity. An important finding from this study

was that as cloud height increases to approximately 9-12 km, moderate or greater

turbulence intensity encounters increase to 85% of encounters.

An in situ measurement used in aviation to determine the intensity of tur-

bulence is the eddy dissipation rate (Emanuel et al. 2013). Eddy dissipation rate

(EDR) is a universal measurement of the rate at which energy dissipates in the atmo-

sphere. The value of EDR is in units of turbulent kinetic energy (TKE). According to

Emanuel et al. (2013), there are three operational algorithms used to calculate EDR.
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The first is an indirect method that uses the aircraft accelerometer, while the second

uses vertical wind data directly measured from the aircraft, and the third estimates

the longitudinal wind from the true airspeed. The following is a simplified example

of an algorithm used to calculate EDR in flight using the aircraft accelerometer.

ε2/3 =
σ2
z

I
(2.5)

where σz is the variance of the vertical acceleration spectrum, and I is the

integral of the aircraft response bandpass filtered function H (Cornman et al. 2004).

A response bandpass filter is used to remove aircraft maneuver-induced accelerations.

Eddy dissipation rates in thunderstorms can also be estimated using ground-based

Doppler radar (Meischner et al. 2001), although this method has serious limitations

such as poor resolution at large distances (Williams 2004).

With so many potential hazards associated with convection, there have been

several aviation avoidance policies put in place to limit the number of convection

related accidents (US DOT FAA 2013, 2017). The current policy states that pilots

should avoid any severe thunderstorm (i.e., thunderstorm with an intense radar echo)

by at least 20 miles (32.2 km). Next, pilots should circumnavigate an entire area

if the respective region has six tenths thunderstorm coverage. Furthermore, the use

of extreme caution when flying near any thunderstorm with echo tops greater than

35,000 feet is advised. Finally, pilots should also avoid flying beneath the anvil region

and through thunderstorms even if the path through to the other side is visible. It

is important to note that prior to 2013, thunderstorms identified as severe required a

vertical clearance of 1,000 ft for every 10 kt wind speed at cloud top (FAA 2012).

The FAA categorizes turbulence into four verbal descriptors (Table 1) that

are easy to communicate between pilots and traffic control, and corresponds to in
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situ numerical eddy dissipation rates ε (m2/3 s−1) and vertical acceleration (m s−2)

(FAA 2014; Lane et al. 2012; Pololivich et al. 2011; Bowles and Buck 2009). Light

turbulence is described by the FAA as turbulence that momentarily causes slight,

erratic changes in altitude and or pitch, roll, and yaw, and passengers may feel a slight

strain against their seat belts. Moderate turbulence is described as being similar to

Light turbulence but with a greater intensity. During Moderate turbulence, changes

in altitude and attitude occur but the aircraft remains in positive control at all times,

and variations in indicated airspeed are experienced. Furthermore, passengers feel

a definite strain against their seat belts and walking around the cabin is difficult.

Turbulence that causes large, abrupt changes in altitude, attitude (orientation of

the aircraft to Earth’s horizon), and indicated airspeed is described as Severe. In

addition, the aircraft may be temporally out of control. Severe turbulence also causes

passengers to be violently forced against their seats. Lastly, Extreme turbulence

is described as a situation when the aircraft is violently tossed about, is practically

impossible to control, and can suffer structural damage. This magnitude of turbulence

is described as truly frightening for those aboard.

14



Table 1: Turbulence level descriptions, aircraft vertical acceleration magnitude (g; m
s−2), and the cubed root of eddy dissipation rates ε1/3 (m2/3 s−1).

Turbulence Aircraft reaction

Aircraft vertical
acceleration
magnitude
(g; m−2)

ε1/3

(m2/3 s−1)

Light

Turbulence that
momentarily causes
slight, erratic changes
in altitude and/or
attitude (pitch, roll,

and yaw).

0.2-0.5 0.1-0.3

Moderate

Turbulence that is
similar to Light turbulence

but of greater
intensity. Changes
in altitude and/or
attitude occur but
the aircraft remains
in positive control at
all times. It usually
causes variation in
indicated speed.

0.5-1.0 0.3-0.5

Severe

Turbulence that
causes large, abrupt
changes in altitude
and/or attitude. It
usually causes large

variations in indicated
airspeed. Aircraft

may be momentarily
out of control.

1.0-2.0 0.5-0.7

Extreme

Turbulence in which
the aircraft is violently
tossed about and is
practically impossible
to control. It may

cause structural damage.

>2.0 >0.7
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2.4 Turbulence indices and forecasting applications

Other derived meteorological parameters have been scientifically accepted as appro-

priate for turbulence prediction when applied to aviation operations. These parame-

ters include and are not limited to: vertical and horizontal wind shear, stretching and

shearing deformation, absolute vorticity, convergence, divergence, horizontal temper-

ature gradient, frontogenesis, resolved and diagnostic turbulent kinetic energy, struc-

ture functions, and eddy dissipation rate (Ahmad and Proctor 2012; Ellrod and Knox

2010; Frehlich and Sharman 2004a,b; Marroquin 1998; Ellrod and Knapp 1992; Dut-

ton 1980; Buldovskii et al. 1976; Brown 1973; Colson and Panofsky 1965; equations

provided in the Appendix). The use of indices (calculated from derived parameters)

for turbulence prediction is fairly popular for aviation, especially because turbulence

that impacts aviation occurs on a very small scale (10 m to 1000 m; Lester 1994) that

current operational models cannot resolve. Many of these indices are included within

the Graphical Turbulence Guidance product (discussed below; Sharman et al. 2006)

and other turbulence prediction systems for aviation operations.

As the model grid spacing in the operational setting continues to increase,

several of these indices are no longer realistically representing turbulent regions and

turbulence intensity due to a resolution sensitivity. For example, when the Ellrod

index (Ellrod and Knapp 1992; equation provided in the Appendix) was designed, it

utilized derived wind shear and deformation fields from a model resolution greater

than 50 km and was then calibrated to pilot reports. When the Ellrod index is cal-

culated on grid-scales less than 10 km, severe turbulence is abundant in the majority

of the domain (Barber et al. 2018). The Brown index (Brown 1973; equation pro-

vided in the Appendix) which calculates absolute vorticity, stretching deformation,

and shearing deformation is also susceptible to a resolution sensitivity, where each of
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the individual terms alone produce severe turbulence. Another limitation with the

majority of the current spectrum of turbulence indices used is the removal of sus-

pected CIT observations in the original calibration. By ignoring CIT incidents in the

calibration procedure, these indices cannot be accurately relied upon to diagnose CIT.

Lastly, the majority of these indices were calibrated against pilot reports recorded in

the United States which is not representative of global atmospheric conditions. The

following section will discuss turbulence prediction systems currently being used for

aviation operations.

The Graphical Turbulence Guidance product (also known as GTG-2; Sharman

and Pearson 2017; Pearson and Sharman 2017; Sharman et al. 2006) is the culmina-

tion of over 40 turbulence indices that are weighted and rescaled using a lognormal

distribution to represent eddy dissipation to the one-third power (complete index list

provided in Sharman and Pearson 2017). The cause of turbulence is considered in

the overall turbulence intensity estimation, being either clear-air turbulence (shear

induced without convection), mountain wave, or CIT. The numerical value of each

of the diagnostic is calibrated to eddy dissipation rate (EDR) assuming a log-normal

distribution of EDR observations in the upper troposphere. Observations of EDR are

gathered from pilot reports and in situ measurements from aircraft. The ten best di-

agnostics are then incorporated into a weighted ensemble and disseminated to various

platforms every 15 minutes. GTG-2 is undergoing an update as the base model that

the diagnostics are computed from has changed from the Rapid Refresh model (RAP;

grid spacing of 12 km) to the High Resolution Rapid Refresh (HRRR; grid spacing

of 3 km). With this alteration in base models, all indices are being recalibrated. In

addition, GTG-2 will be distinguishing between in-cloud and out-of-cloud turbulence.

The Convective Diagnosis Oceanic (CDO) Algorithm was developed to im-

prove safety and efficiency along trans-oceanic flights (Herzegh 2002). The algorithm
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currently has four inputs (observational and numerical) that are used to detect con-

vective hazards and better resolve convective structure (Kessinger 2017; Kessinger

et al. 2008). These inputs include cloud top height (CTH) from infrared brightness

temperature, the Global Convective Diagnosis- the difference between the brightness

temperature of the infrared channel and the brightness temperature of the water va-

por channel, GOES-R Overshooting Tops algorithm, and combined lightning interest.

The CDO algorithm estimates convective intensity on a scale of 1 to 6 every 15 min-

utes and is calculated on global scale using six geostationary satellites. While CDO

does not explicitly warn pilots of turbulence intensity or location, it can still be used

as a forecasting aid for CIT.

The NCAR (National Center for Atmospheric Research) Turbulence Detection

Algorithm (NTDA) produces 5 minute three-dimensional in situ observations of in-

cloud turbulence for the contiguous U. S. at 15 height levels (Williams et al. 2011).

The use of NTDA for turbulence verification has increased recently (Pearson and

Sharman 2017) and has been shown to perform well for in-cloud turbulence prediction.

Correlations between lightning and in-cloud turbulence estimated by NTDA are also

being examined for use in future adaptations of GTG-2 (Deireling 2018). However,

the skill of NTDA for out-of-cloud turbulence intensity has not been well-tested.

In addition, out-of-cloud turbulence intensity can only be determined using NTDA

in-cloud turbulence observations.

Pilot reports (PIREPS) are in situ observations of turbulence that are recorded

and disseminated. These reports include the estimated turbulence intensity, time and

location of the turbulence encounter, and whether the aircraft was in-cloud or out-

of-cloud at the time. While PIREPS are extremely helpful for nowcasting turbulence

and aiding in turbulence avoidance there are numerous limitations associated with

the use of PIREPS in scientific research. PIREPS give a limited validity of turbulence
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location and intensity for scientific research and are dependent on pilot perception

of turbulence, especially when in situ measurements of EDR are unavailable. In

addition, turbulence at various scales impacts aircraft of various sizes differently. For

example, moderate turbulence encountered by a small general public aircraft may not

be moderate turbulence to a larger commercial aircraft. Another critical limitation of

PIREPS is that most aviation routes are going to avoid convection based on company

determined lateral and vertical distances. This avoidance drastically decreases the

amount of CIT observations and restricts direct comparisons to model output. Lastly,

PIREPS without in situ EDR measurements are subject to human error and can be

reported incorrectly (Sharman et al. 2014; Wolff and Sharman 2008).

2.5 Comparison of convective properties in the midlatitudes and tropics

It is commonly understood that there are vast dynamical and physical differences

between the various types of convection that occur in the continental midlatitudes

and maritime tropics (Vant-Hull et al. 2016; Liu and Zipser 2005; Yuter et al. 2005;

Chin et al. 1995). The key differences include: the maximum height of convection

and the probability of convection overshooting into the stratosphere, maximum verti-

cal velocities of updrafts, diurnal variation of convection, and hazard potential. The

height of convection in the midlatitudes and tropics is influenced substantially by the

height of the tropopause which is higher in the tropics (Hoinka 1999). Observational

studies using ground-based radar systems found that over 1% of convection occurring

in maritime tropical regions exceeded 14 km in altitude (Barber 2015; Cetrone and

Houze 2006; Liu and Zipser 2005), while satellite-based observations had a slightly

lower frequency (Barber 2015; Houze et al. 2015; Nesbitt et al. 2006; Alcala and

Dessler 2002). In the midlatitudes, the vertical extent of the majority of deep con-

vection remains below 12 km. Severe storms such as supercells can have vertical
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extents greater than 12 km but supercells are the most uncommon type of convection

(Markowski and Richardson 2010). Vant-Hull et al. (2016) found that the majority

of tropical convection over land and ocean had cloud top temperatures (CTTs) near

210 K while convection in the midlatitudes had CTTs near 225 K, indicative of lower

convective heights in the midlatitudes.

Overshooting convection into the stratosphere is a phenomenon that is com-

monly used as a convective intensity proxy (Romps and Kuang 2009; Liu and Zipser

2005; Zipser 2003; Alcala and Dessler 2002; Heymsfield et al. 1991; Adler and Mack

1986). Over tropical oceanic regions, overshoots occur less than one percent of the

time (Hong et al. 2008; Liu and Zipser 2005; Alcala and Dessler 2002). Liu and Liu

(2016) found that convection in the midlatitudes overshot into the stratosphere as

often as tropical convection but the height of the overshoot is more frequently limited

to 13 km. Another distinction between overshooting convection in the midlatitudes

and tropics during the summer months is the greater overshooting area of midlatitude

convection.

Mean vertical velocities of maritime tropical convection is known to be less

than continental midlatitude convection. Several field campaigns and numerical stud-

ies have measured the vertical velocities using a multitude of platforms and have found

that the majority of tropical updrafts have velocities less than 3-5 m s−1 (Xu and

Randall 2001; Lucas et al. 1994a,b; LeMone and Zipser 1980; Zipser and LeMone

1980). In comparison, vertical velocities of midlatitude continental convection are

approximately 1.5 m s−1 greater than tropical convection velocities (Xu and Randall

2001). The greatest difference in vertical velocities is between the most severe con-

vection in the two regions. The vertical velocities of supercells has been documented

to exceed 50 m s−1 (Bunkers et al. 2006; Lehmiller et al. 2001; Bluestein et al. 1988;
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Musil et al. 1986) while tropical cyclones rarely exceed 20 m s−1 (Eastin et al. 2005;

Black et al. 1996; Jorgensen et al. 1989).

The diurnal cycle of convection in the midlatitudes and tropical oceans also

differs. Maximum convective activity over the tropical ocean generally occurs during

the nocturnal-early morning period following an afternoon initiation (Liu and Mon-

crieff 1998; Gray and Jacobson 1977). Convection is sustained following initiation

due to the diurnal heating of the ocean and boundary layer (Futyan and Del Genio

2007). Further, the diurnal cycle over tropical oceanic regions is dependent on the

areal coverage of the cloud shield which can lead to a bi-diurnal cycle (Chen and

Houze 1997). In contrast, convection occurring in the midlatitudes follows the solar

diurnal cycle initiating in the afternoon-early afternoon and ceasing soon after night-

fall (Zhang and Klein 2010; Nesbitt and Zipser 2003; Yang and Slingo 2001; Dai 2001;

Soden 2000; Dai et al. 1999; Gray and Jacobson 1977).

The fundamental differences of convection in the midlatitudes and tropics in-

fluence the probability of turbulence encounters in the following aspects. Commercial

aviation operates between approximately 8-13 km (Trier and Sharman 2016; Smit et

al. 2008; Güsten et al. 2003) where overshooting midlatitude convection occurs. Avi-

ation operations in the midlatitudes are more likely to encounter turbulence caused

by vertically propagating gravity waves as the aircraft attempts to fly over convection.

In comparison, tropical aviation routes cannot fly above overshooting convection and

reroute laterally, therefore decreasing the probability of encountering vertical prop-

agating gravity waves. The weaker vertical velocities of tropical oceanic convection

also reduces the propagation of turbulence caused by moist-instabilities within the

updraft. Lastly, as air traffic is more congested over midlatitude continental regions,

aircraft are more likely to encounter turbulence generated by gravity waves in the

horizontal and along cloud boundaries due to limited airspace. Flights over tropical
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oceanic routes are fewer in number and have more options in adjusting height and

flight-path.

The remaining sections will discuss current turbulence diagnostics, the in-

fluence of model resolution on turbulence distributions and directional preference,

properties of CIT caused by developing convection, and the characteristics of tropical

and midlatitude CIT.
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CHAPTER 3

OUT-OF-CLOUD CONVECTIVE TURBULENCE: ESTIMATION
METHOD AND IMPACTS OF MODEL RESOLUTION

3.1 Motivation

Convectively induced turbulence (CIT) is an aviation hazard that can cause moderate

to severe damage to aircraft and costs the aviation industry millions of dollars (Gold-

ing 2000). Traditionally, forecast models have had limited success with turbulence

prediction because the utilized model resolution is too coarse to resolve individual

turbulent eddies. To mitigate this problem, several metrics have been developed to

diagnose turbulence on larger synoptic scales. These indices include the Brown index,

the Dutton index, the Ellrod index, and the Ellrod–Knox index (Brown 1973; Dutton

1980; Ellrod and Knapp 1992; Ellrod and Knox 2010). A major limitation with all of

these indices for CIT prediction is that the turbulence intensity is an empirical value

determined from correlating large-scale meteorological variables to pilot reports that

did not include CIT. In addition, the turbulence thresholds were determined based on

model simulations with much coarser model resolutions than are in operation today.

Behne (2008) reported an overestimation of turbulence potential when implementing

the Ellrod index. This overestimation by the Ellrod index was also noted in a recent

study of tropical cases (Barber 2015). Although a conservative estimation of tur-

bulence may seem to be a safeway of approaching air travel, in reality the estimate

influences flight routes, traffic patterns, takeoffs, and landings, and is overall eco-
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nomically inefficient. Therefore, more accurate turbulence prediction that maintains

safety and is economically efficient is needed.

More recently, high-resolution numerical models are being used to gain a better

understanding of the generation, propagation, and dissipation of out-of-cloud turbu-

lence (e.g., Trier and Sharman 2016; Lane and Sharman 2014; Kim et al. 2014; Lane

et al. 2012; Trier et al. 2010; Sharman et al. 2012; Lane et al. 2009). However,

simulating CIT using high-resolution models is challenging because the scale of mo-

tion that influences aircraft (10–1000m; Lester 1994) is similar to or smaller than

the scale of mesoscale processes (Bryan et al. 2003) that generate CIT. Accurately

resolving both the mesoscale source and turbulent response simultaneously is critical

for turbulence prediction (Lane and Sharman 2014; Zovko-Rajak and Lane 2014).

Lane and Sharman (2014), using large-eddy simulations, found that the most in-

tense turbulence locations were outside of the convective cloud, well beyond the FAA

guidelines, and not within cloud. An additional challenge specific to forecasting CIT

is correctly forecasting the location, strength, and type of convection (Wakimoto and

Murphey 2009; Weisman et al. 2008; Bernardet et al. 2000; McNulty 1995). Last,

the computational and temporal expenses limit the use of high-resolution models in

an operational forecast environment for turbulence prediction.

CIT prediction depends on model resolution and the accuracy of convective

forecasts. The goal of this research is to identify statistical biases in popular tur-

bulence metrics estimated from both common operational model setups and high-

resolution simulations. Biases in convection will also be investigated amongst various

model setups and convective morphologies. Turbulence is estimated from Weather

Research and Forecasting (WRF) Model simulations over a 1-week period over the

North Dakota region in July 2015. The results are compared with observed pilot

reports collected from various airlines. Out-of-cloud turbulence estimations are in-
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cluded in the analysis of model accuracy. The biases found will be useful for ongoing

development of resolution-dependent turbulence intensities for independent indices.

3.2 Data and Methods

3.2.1 Pilot reports

Pilot reports (PIREPs) gathered from the Aviation Weather Center (A. Ter-

borg 2016, personal communication) and the Iowa Environmental Mesonet

(https://mesonet.agron.iastate.edu/request/gis/pireps.php) are used as observations

of turbulence from various aircraft in the northern Great Plains region during 10–17

July 2015. These reports include the estimated turbulence intensity, time, and lo-

cation of the turbulence encounter, and whether the aircraft was in cloud or out of

cloud at the time. PIREPs that are reported on a 0–8 scale can be converted to

eddy dissipation rate (EDR) values following the methodology outlined in Sharman

and Pearson (2017) and Sharman et al. (2014). A caveat with this conversion is

that the constants may be height dependent. While PIREPs are extremely helpful

for nowcasting turbulence and aiding in turbulence avoidance, there are numerous

limitations associated with the use of PIREPs in scientific research. PIREPs give

a limited validity of turbulence location and intensity for scientific research and are

dependent on pilot perception of turbulence, especially when in situ measurements

of EDR are unavailable. In addition, turbulence at various scales impacts aircraft

of various sizes differently. Specifically, moderate turbulence encountered by a small

general public aircraft may not be moderate turbulence to a larger commercial air-

craft. Another critical limitation of PIREPs is that most aviation routes are going to

avoid convection based on company-determined lateral and vertical distances. This

avoidance drastically decreases the number of CIT observations and restricts direct
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comparisons with model output. Last, PIREPs without in situ EDR measurements

are subject to human error and can be reported incorrectly (Sharman et al. 2014;

Wolff and Sharman 2008). Because of these limitations, direct comparisons of the

location and timing of PIREPs will not be made with simulated EDR in this study.

The National Center for Atmospheric Research (NCAR) Turbulence Detection

Algorithm (NTDA) produces 5-min 3D in situ observations of in-cloud turbulence for

the contiguous United States at 15 height levels (Williams et al. 2011). The use of

NTDA for turbulence verification has increased recently (Pearson and Sharman 2017)

and has shown to perform well for in-cloud turbulence prediction. However, the skill of

NTDA for out-of-cloud turbulence intensity has not been well tested. In addition, out-

of-cloud turbulence intensity can only be determined using NTDA in-cloud turbulence

observations. NTDA observations will not be used in this study because the focus is

out-of-cloud turbulence, and therefore only PIREPs will be considered as turbulence

observations.

3.2.2 Model setup

In this study, 30-h forecasts of convection in the northern Great Plains from

10 to 17 July 2015 are made using the Advanced Research WRF Model, ver-

sion 3.7 (Skamarock and Klemp 2008). All simulations are initialized at 0000

UTC with ERA-Interim (http://www.ecmwf.int/en/research/climate-reanalysis/era-

interim) global reanalysis data and run using Extreme Science and Engineering Dis-

covery Environment (XSEDE) resources (Towns et al. 2014). Forecasts are then

analyzed from 0600 to 0600 UTC (forecast hours 7–30). Four sets of horizontal and

vertical grid spacings are used for these simulations and range from 12 km to 500

m in the horizontal (Table 2) with one-way nesting implemented. Model setup 1

(S1) is designed to be similar in resolution to the North American Model (NAM),
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Table 2: Model grid spacing and number of vertical levels. D02 represents the inner-
most nest of S1 (i.e., D02 = 1 parent and 1 nest), and D03 represents the innermost
nest of S2–S4 (i.e., D03 = 1 parent and 2 nests).

Model
Horizontal grid

spacing
No. of vertical levels

Mean vertical grid
spacing (7-11 km in height)

S1 12 km (D02) 65 550 m
S2 3 km (D03) 65 550 m
S3 3km (D03) 100 325 m
S4 500 m (D03) 100 325 m

setup 2 (S2) is similar to the operational High Resolution Rapid Refresh (HRRR)

model, setup 3 (S3) is comparable to the HRRR but with a finer vertical resolution,

and setup 4 (S4) will be used as the high resolution simulations and considered to

be “truth.” This spectrum of grid spacings encompasses operational and research

applicable model setups. Parameterizations for all of the simulations are provided

in Table 3. The model top in all simulations is set to 10 hPa (approximately 30

km), and a 10-km-deep damping layer is used at the model top. The model domains

for S1–S3 remain unaltered and encompass the same geographical area for all eight

simulation periods. For S4, the model domain varies with simulation period based

on the known location of convection from observations in order to limit the compu-

tational costs (i.e., the model domain for each simulation period does not cover the

same geographical area). The model domain for each simulation is provided in Figs.

1 and 2. The results will highlight findings from three simulation days on which the

convective types included linear features, weak and intense isolated convection, and

decaying mesoscale convective systems.
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Table 3: Model parameterizations used in simulations. The cumulus parameterization
is not applicable to model setup 4.

Parameterizations Model setup
Microphysics WDM6

PBL MYJ
Surface layer MM5 similarity
Land surface Noah

Shortwave radiation Dudhia
Longwave radiation RRTM

Cumulus Kain-Fritsch (D01 and D02, N/A for S4)

Figure 1: Model domain for model setup S1 (a), and model setups S2 and S3 (b). D02
represents the innermost nest of model setup S1 and D03 represents the innermost
nest of model setups S2 and S3. The black circles represent the Mayville, ND and
Bismarck, ND radars.
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Figure 2: Model domain for model setup S4 on (a) 12 July 2015, (b) 13 July, and (c)
15 July.
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Table 4: Turbulence intensity as determined from the cubed root of eddy dissipation
rate (ε; Lane et al. 2012; Sharman and Pearson 2017).

Turbulence intensity
ε1/3 (m2/3 s−1)

Lane et al. (2012) Sharman and Pearson (2017) median
Light 0.1-0.3 0.01

Moderate 0.3-0.5 0.22
Severe 0.5-0.7 0.47

3.2.3 Turbulence metrics

Turbulence intensity (TI) is estimated by computing EDR from turbulent kinetic

energy (TKE) of each simulation as discussed in the Appendix. Atmospheric turbu-

lence is commonly defined as light, moderate, and severe based on the cubed root of

EDR (m2/3 s−1; Tables 4 and 21; Lane et al. 2012). This study will use thresholds

corresponding to Lane et al. (2012) provided in Table 4. Recently, new EDR values

have been proposed (Sharman et al. 2014; Sharman and Pearson 2017; Pearson and

Sharman 2017) based on climatological PIREPs and various sources including the

Global Turbulence Guidance (GTG-2) product. This study will mainly discuss the

former thresholds but provide both thresholds in figures to demonstrate the various

intensities based on which thresholds are used. In addition to EDR, the Ellrod index

(T2) will be used as a turbulence metric (see the Appendix for calculation).

3.2.4 Lateral avoidance

Current FAA thunderstorm guidelines are implemented to reduce the frequency of

thunderstorm hazard encounters by aircraft. These guidelines include a lateral avoid-

ance of 20 mi from a thunderstorm. In this study, lateral avoidance will be examined

by creating range circles around simulated convection. The following discussion will

describe this methodology. Echo top height is used as a proxy for convection and
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considered in cloud. An 18-dBZ threshold for simulated radar reflectivity is used

to determine the echo top height. Individual grid cells with echo top heights (ET)

greater than 8 km in altitude are masked out within the domain. Radius ranges of 10

mi, 20 mi, and 50 mi (16.1 km, 32.2 km, and 80.5 km) are calculated for each grid cell

that has ETs ≥ 8km (Fig. 3). Turbulence grid cells within these radius ranges are

out-of-cloud if there is no ET greater than 8 km in the same location. Out-of-cloud

turbulence will be analyzed within 10 mi, 20 mi, and 50 mi of convection. Out-of-

cloud turbulent grid cells within the lateral distances of convection are examined at 8

km, 10 km, and 12 km in altitude (common cruising altitudes of commercial aircraft).
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Figure 3: Schematic depicting masking methodology for determining the turbulence
distribution (color bar; m2/3 s−1 within various distances from convective cores at
various altitudes. Black grid cells represent echo top heights ≥ 8 km, blue color grid
cells represent distances of (a) 10 mi (16.1 km) around ET cores, (b) 20 mi (32.2 km)
around ET cores.
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3.3 Results

This section highlights findings from three simulation days (12, 13, and 15 July 2015)

from 0600 to 0600 UTC of the forecast period. These days were selected for analysis

because convection was severe with numerous storm reports and pilot reports recorded

in the North Dakota region. The convective types observed during these analysis times

included linear features, weak and intense isolated convection, and decaying mesoscale

convective systems. A detailed overview of the S4 simulation and a comparison with

observed storm characteristics is first presented, as S4 will be considered to be truth

in the model comparisons. The other model configurations are then compared with

S4 to assess the impacts of resolution on simulated turbulence.

3.3.1 Storms observed

3.3.1.1 12 July 2015 (0600 UTC 12 July–0600 UTC 13 July)

Convection on 12 July was severe and produced large hail, severe winds, and several

tornadoes (EF0–EF2 on the enhanced Fujita scale) in the eastern portion of North

Dakota (ND) and western Minnesota (MN). Storms began as intense individual cells

in the northeast and southeast portion of ND around 2000 UTC. Near 2200 UTC

the convection merged into two large convective regions with radar reflectivity values

at 1-km AGL exceeding 55 dBZ along the ND–MN border (Fig. 4a). The northern

complex began to weaken around 0100 UTC 13 July while the southern complex

continued to strengthen until 0200 UTC. Maximum echo top (ET; ≥ 18dBZ) heights

are used in this study as a proxy for convective strength. ETs are determined from

level-III radar data. Observed ETs for this convective period exceeded 15 km in both

the northern and southern convective segments (Fig. 5a). There were 27 PIREPs

from 0600UTC 12 July to 0600 UTC 13 July, with 5 reports classified as light and
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Figure 4: (a) Observed Mayville, ND radar reflectivity values (0.5◦ elevation angle)
at 2155 UTC on 12 July and (b) simulated 1-km AGL radar reflectivity values at
0200 UTC on 13 July for S4 (forecast initialized at 0000 UTC on 12 July). Black box
in (a) represents the model domain in (b). Black arrows are included to describe the
northern complex discussed in above. See Fig. 2a for the complete model domain.

22 as moderate. Of the 27 PIREPs, 24 PIREPs were above 8 km at the time of the

report. The majority of the encounters were located near the ND–MN border in the

afternoon (Fig. 6) and were out of cloud. The EDR values of these reports when

converted using Sharman et al. (2014) methodology varied between 0.18 and 0.27

m2/3 s−1 (i.e., moderate intensity).
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Figure 5: Maximum echo top heights (km) observed by Mayville and Bismarck, ND
radar (a) and simulated by S4 (b).
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Figure 6: Pilot reports of turbulence occurring on 12 July 2015 within S2-S3 model
domain (innermost white box represents the 3km domain). Blue circles represent
light turbulence reports and red represents moderate turbulence reports. Black dots
within the circles indicate the report was made when the aircraft was greater than 8
km in altitude.

3.3.1.2 13 July 2015 (0600 UTC 13 July–0600 UTC 14 July)

Convection on 13 July was nonsevere and mainly isolated cells that formed from weak

frontal boundaries in the northern region of ND. These cells began to develop around

1800 UTC and dissipated near 0100 UTC (Fig. 7a); 1-km AGL reflectivity values of

these convective cells exceeded 50 dBZ. Observed ETs extended past 14 km in altitude

in multiple isolated cells west of the ND–MN border around 2000 UTC but began

decreasing in altitude shortly after 2200 UTC (Fig. 5a). From 0600 UTC 13 July to

0600 UTC 14 July, pilots reported nine turbulence encounters in the ND–MN–South

Dakota (SD) region, all of which were moderate intensity. Eight of the nine were

above 8 km and out of cloud.
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Figure 7: (a) Observed Mayville, ND radar reflectivity values (0.5◦ elevation angle)
at 1925 UTC on 13 July and (b) simulated 1-km AGL radar reflectivity values at
1900 UTC on 13 July for S4 (forecast initialized at 0000 UTC on 13 July). Black
box in (a) represents the model domain in (b). See Fig. 2b for the complete model
domain.

3.3.1.3 15 July 2015 (0600 UTC 15 July–0600 UTC 16 July)

Convection that occurred on 15 July produced hail greater than 1 in. in diameter and

three severe wind reports. Convection began overnight (0600 UTC, 0100 local time)

in western ND as large isolated cells that propagated into central ND and organized

into a weak convective complex by 1300 UTC. Radar reflectivity values were less

than 55dBZ at 1-km AGL. The complex formed a bowing segment near 1800 UTC

in the southeast region of ND with radar reflectivity values exceeding 55 dBZ. This

bowing feature dissipated by 2300 UTC in western MN, while more intense isolated

convection developed in the western portion of ND (Fig. 8a). At 0200 UTC a strong

linear feature with radar reflectivity values exceeding 60 dBZ was present in northwest

ND (Fig. 9a) and 2 h later weakened into a stratiform-dominant feature. Observed

ETs exceeded 16 km in altitude in western ND near 1800 UTC (Fig. 5a). On 15 July

there were 10 reports of turbulence, 8 of which were moderate intensity. All of the

reports of moderate turbulence were above 8 km in altitude and out of cloud.
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Figure 8: (a) Observed Bismarck, ND radar reflectivity values (0.5◦ elevation angle)
at 2325 UTC on 15 July and (b) simulated 1-km AGL radar reflectivity values at
0000 UTC on 16 July for S4 (forecast initialized at 0000 UTC on 15 July). Black
box in (a) represents the model domain in (b). See Fig. 2c for the complete model
domain.

Figure 9: (a) Observed Bismarck, ND radar reflectivity values (0.5◦ elevation angle)
at 0225 UTC on 16 July and (b) simulated 1-km AGL radar reflectivity values at
0200 UTC on 16 July for S4 (forecast initialized at 0000 UTC on 15 July). Black
box in (a) represents the model domain in (b). See Fig. 2c for the complete model
domain.
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3.3.2 S4 turbulence

Convection simulated by S4 for the three simulation days was generally accurate in

morphology but often inaccurate in intensity and timing. For example, the morphol-

ogy of a simulated isolated convective segment in the northern region of the S4 domain

was very similar to observations on 12 July (Fig. 4b), but was lagging in time by ap-

proximately 4 h and was located farther south in latitude. In addition, S4 simulated

ETs above 11 km after 2200 UTC with a maximum of approximately 12 km after

0200 UTC (Fig. 5b), but observed ETs were greater than 15 km. For 13 July, S4 sim-

ulated the correct type of convection (isolated), developed and dissipated simulated

convection in the same time period as observed convection, but had weaker reflectivity

intensity at 1-km AGL (Fig. 7b). Simulated vertical depth of convection on 13 July

was also lower than observed (Figs. 5a and b). These results were also consistent for

simulated convection on 15 July (correct morphology and timing but shallower depth;

Figs. 8b, 9b, and 5b). Previous studies have shown that the microphysical scheme

implemented can influence simulated ET height. Stephan and Alexander (2014) com-

pared ETs and cloud tops for the WRF double-moment 6-class microphysics scheme

(WDM6) with other microphysical schemes. Relative to the Morrison or Thomp-

son scheme, WDM6 had fewer high ETs but similar cloud-top heights. The lower

ETs were likely related to lower column-integrated ice amounts. Although the verti-

cal depth of simulated convection was substantially less than observations indicated,

turbulence magnitude will be evaluated and compared with PIREPs.

The Ellrod index is examined in the S4 domain at 8 km, 10 km, and 12 km alti-

tudes. During the simulation period, the minimum nonzero values of the Ellrod index

exceed the severe threshold of 12 by an order of magnitude and cover large portions

of the domain. A direct comparison of the Ellrod index and EDR predicted byS4 at

8 km in altitude at 0200 UTC is provided in Fig. 10. This comparison demonstrates
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a large areal coverage of severe turbulence estimated by the Ellrod index (blue color

contour = severe) and a smaller areal coverage of moderate turbulence estimated by

EDR (purple color contour = moderate). This overestimation of turbulence magni-

tude and occurrence by the Ellrod index was consistent through the entire simulation

period, for all heights and all lateral distances away from convection. This analysis

highlights the resolution sensitivity of the Ellrod index at higher model resolutions.

Upon further investigation, the vertical wind shear term in the calculation of the Ell-

rod index was found to have the largest impact on the magnitude of turbulence. At

this time the Ellrod index is not a useful measure across different model resolutions

unless a resolution-scale-dependent threshold were developed. The empirical values

originally derived for the Ellrod index are not applicable to model setups with finer

grid spacing without calibration or reverification of new values to PIREPs. The Ell-

rod index similarly overestimated turbulence at the 3 km resolution (not shown; see

also Barber 2015). Because of the extreme resolution sensitivity of the Ellrod index,

the remainder of this study will not discuss the Ellrod index.
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Figure 10: (a) Eddy dissipation rate (magnitudes indicated using Lane et al. 2012)
and (b) Ellrod index values at 8 km in altitude predicted from S4 at 0200 UTC 13
July 2015 (from 0000 UTC initialized forecast on 12 July). All colored regions in (b)
are traditionally classified as ”severe”.

Out-of-cloud EDR values are examined within 10, 20, and 50 mi from convec-

tion at 8, 10, and 12 km in altitude (12 km analysis provided in Fig. 11) on 12 July.

At 12 km in altitude, more of the turbulent grid cells were light in magnitude within

50 mi of convection and more of the turbulent grid cells were moderate in magnitude

within 10 mi of convection. Similar relationships in turbulence intensity and distance

are seen at both 8 and 10 km in height. Although there was a higher percentage

of turbulent grid cells with moderate intensity within 10 mi away from convection,

turbulence within 50 mi of convection is important to forecast because it is farther

than the 20 mi lateral distance avoidance guideline set by the FAA. Because of this

finding, turbulence within 50 mi of convective cores will be discussed hereinafter.
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Figure 11: 12 km normalized out-of-cloud eddy dissipation rate distribution ≥ 0.2
m2/3 s−1 (# of turbulent grid cells within bin divided by all grid cells with turbulence
≥ 0.2 m2/3 s−1) within (a) 10 mi (16.1 km), (b) 20 mi (32.2 km), and (c) 50 mi (80.5
km) of convective cores with echo top heights ≥ 8 km for S4. Dashed (cyan) and
dotted (purple) vertical lines represent turbulence intensities based on Lane et al.
(2012) and Sharman et al. (2014), respectively.

3.3.2.1 12 July 2015 (0600 UTC 12 July–0600 UTC 13 July)

Figure 12a provides the EDR values within 50 mi of convective cores with ETs greater

than 8 km in altitude. The lowest EDR values had the greatest areal coverage,

indicating that there is a significant amount of area experiencing light turbulence.

The highest EDR values were predicted at 8 and 12 km in altitude for S4, below and

above the maximum ET. Although the areal coverage of the highest EDR values was

small, the prediction of these values is crucial. In relationship to the PIREPs on 12

July, turbulence estimated by EDR was the same magnitude as the PIREPs: light

and moderate intensity above 8 km.
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Figure 12: Normalized out-of-cloud eddy dissipation rate distribution ≥ 0.2 m2/3 s−1

(# of turbulent grid cells within bin divided by all grid cells with turbulence ≥ 0.2
m2/3 s−1) within 50 mi (80.5 km) of convective cores with echo top heights ≥ 8 km for
S4. Dashed (cyan) and dotted (purple) vertical lines represent turbulence intensities
based on Lane et al. (2012) and Sharman et al. (2014), respectively.

Although simulated convection was lagging in time and predicted ETs sig-

nificantly lower than observations, estimated turbulence magnitude was similar to

observations. In a real-time operational setting (assuming the S4 simulation could

be performed in a timely manner), moderate turbulence caused by deep convection

would have been forecast in the ND area at altitudes near where commercial aviation
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had reported. S4 could have been utilized in an operational setting for the prediction

of turbulence.

3.3.2.2 13 July 2015 (0600 UTC 13 July–0600 UTC 14 July)

The distribution of out-of-cloud EDR values within 50 mi of convection on 13 July

is significantly narrower than on 12 July (Fig. 12b) and the majority of EDR values

are less than 0.1 m2/3 s−1. The maximum EDR value predicted by S4 was 0.3 m2/3

s−1 and occurred at 8 km in altitude. At both 10 and 12 km, S4 did not predict any

EDR values greater than 0.25 m2/3 s−1. Again, the likelihood of encountering light

turbulence is far greater than experiencing moderate turbulence, especially below

10 km in altitude. S4 did predict moderate turbulence, although it was at a lower

altitude than the majority of PIREPs indicated.

For this case day, convective morphology (isolated) and timing was well pre-

dicted by S4. However, the storm intensity was too weak, as evidenced by both

reflectivity and echo top heights. This is the likely reason that S4 in general under-

predicted the turbulence intensity. While at times turbulence intensity was correct,

the predicted altitude was too low. This suggests the S4 simulations of turbulence

have difficulty with convection that is isolated, is less intense, and has a shorter

lifespan.

3.3.2.3 15 July 2015 (0600 UTC 15 July–0600 UTC 16 July)

The distribution of out-of-cloud EDR values forecast by S4 on 15 July again shows

mostly light turbulence at 10 and 12 km (Fig. 12c). This suggests a higher likelihood

of aircraft encountering lower-intensity turbulence near convection because of wide

areal coverage. The maximum EDR values predicted by S4 are at both 12 and 8 km

in altitude. Moderate turbulence was predicted by S4 at 8, 10, and 12 km, which
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agrees with observed pilot reports of turbulence. The usage of S4 in a real-time

operational setting would have been beneficial, as simulated radar reflectivity at 1

km in altitude was comparable to observed radar reflectivity and the morphology of

convection was similar to observations. Once again, the convective depth was lower

than observations. However, the prediction of turbulence intensity and location did

not seem to be directly affected by lower simulated ETs.

3.3.3 Effects of varying resolution on turbulence

To examine the effects of horizontal resolution on predicted turbulence, S4 will be

compared with S1, S2, and S3, treating S4 as truth. Figures 13–15 provide the

maximum ETs for each model setup for 12, 13, and 15 July. Important features

from this analysis are the relatively low ETs for S1, which never exceeded 7 km on

both 12 and 13 July. Weak convection that does not extend far in the vertical is

less of a hazard for aviation operations flying above 8 km in altitude. The weak

convection and low ETs simulated from S1 highlight that coarse horizontal model

resolution, such as the 12 km grid spacing used here, is not appropriate for the

calculation of eddy dissipation rates because of the significant under prediction of

convection and convective depth. Therefore, S1 will not be discussed hereinafter.

However, the use of indices that are calibrated for large-scale conditions could still be

applied at coarser resolutions, similar to indices utilized in the Graphical Turbulence

Guidance product (Sharman et al. 2006) from the Rapid Refresh products. The

setups with higher vertical resolution achieved ETs >12 km on 12 July, suggesting

that higher vertical resolution is important for accurately predicting the convective

depth of linear convective features and in turn turbulence. However, on 13 and 15 July,

the relationship between maximum ETs and vertical model resolution is less apparent,

especially on 15 July. It is possible that model resolution in the vertical has greater
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influence on the strength of simulated isolated convection and is less important for

convection that has stronger dynamical forcing, such as organized mesoscale systems

that are severe in strength, extensive in areal coverage, and long lasting, or convection

that is forced by synoptic frontal boundaries.

Figure 13: Maximum echo top heights (km) forecasted by S1-4 and estimated by
radar on 12 July 2015 beginning at 0600 UTC.
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Figure 14: Maximum echo top heights (km) forecasted by S1-4 and estimated by
radar on 13 July 2015 beginning at 0600 UTC.
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Figure 15: Maximum echo top heights (km) forecasted by S1-4 and estimated by
radar on 15 July 2015 beginning at 0600 UTC.

The examination of out-of-cloud EDR values from 12 July within 50 mi from

convection at 8, 10, and 12 km in altitude for S2 and S3 demonstrates that lower

EDR values have the greatest areal coverage (for both normalized and raw area val-

ues; all further results discuss normalized area values, but results hold for raw area

values as well), indicating that there is a significant amount of area experiencing light

turbulence (Fig. 16). This result is consistent with S4, where S4 predicted large areas

of light turbulence at 8 km, 10 km, and 12 km in altitude. Interestingly, all of the

model setups predict the most light turbulence at 10 km in altitude with the greatest

areal coverage by S3. The highest EDR values were predicted at 12 km in altitude

for S2–S3, and 8 km in altitude for S4. The maximum EDR value was predicted

by S4, suggesting that higher resolution in the vertical and horizontal is needed in

order to simulate turbulence intensities similar to observations. On 12 July, all three
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simulations predicted moderate turbulence at 8 km or higher, comparable to PIREPs.

However, S2 and S4 predicted moderate turbulence at all three height levels, while

S3 predicted moderate turbulence only at 8 km and 12 km.

Figure 16: Out-of-cloud eddy dissipation rate distribution values ≥ 0.2 m2/3 s−1

within 50 mi (80.5 km) of convective cores with echo top heights ≥ 8 km for S2-S4 on
12 July 2015. Dashed (cyan) and dotted (purple) vertical lines represent turbulence
intensities based on Lane et al. (2012) and Sharman et al. (2014), respectively.

On 13 July, when convection is isolated and weaker in strength, neither S2 nor

S3 predict moderate turbulence (Fig. 17). On this particular day, the highest vertical

and horizontal resolution is necessary to predict turbulence magnitudes similar to

observations. Last, some moderate values of EDR are evident above 8 km in all

simulations of 15 July (Fig. 18). However, only S4 predicts moderate turbulence at all
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height levels, where S2 predicts moderate turbulence only at 10 and 12 km in altitude,

and S3 only predicts moderate turbulence at 12 km in altitude. For convection

that is dynamically forced (i.e., synoptic-scale lifting mechanism such as a frontal

boundary), as is the case on 15 July, all simulations do produce turbulence with the

same magnitude as observations, but the occurrence is highly height dependent. The

major differences between turbulence intensity and areal coverage between the various

model setups are the higher areal coverages of lower-intensity values for S2 and S3

and the higher intensity EDR values predicted by S4. It is clear that higher horizontal

and vertical resolution is necessary to accurately predict turbulence intensity.
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Figure 17: Out-of-cloud eddy dissipation rate distribution values ≥ 0.2 m2/3 s−1

within 50 mi (80.5 km) of convective cores with echo top heights ≥ 8 km for S2-S4 on
13 July 2015. Dashed (cyan) and dotted (purple) vertical lines represent turbulence
intensities based on Lane et al. (2012) and Sharman et al. (2014), respectively.
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Figure 18: Out-of-cloud eddy dissipation rate distribution values ≥ 0.2 m2/3 s−1

within 50 mi (80.5 km) of convective cores with echo top heights ≥ 8 km for S2-S4 on
15 July 2015. Dashed (cyan) and dotted (purple) vertical lines represent turbulence
intensities based on Lane et al. (2012) and Sharman et al. (2014), respectively.

3.3.4 10–17 July S2 and S3 comparisons

A further investigation examines the influence of vertical resolution alone on turbu-

lence intensity using model setups 2 and 3 (64 and 100 vertical levels). These vertical

grid spacings represent those used in common operational forecasting frameworks and

more research oriented frameworks. Results will be analyzed at 8, 10, and 12 km in

altitude (in cloud and out of cloud) for eight simulation days. Turbulent grid cells

within convection (in cloud) are now included in the analysis. Seven of the eight
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Table 5: Number of grid cells with echo top heights ≥ 8 km.

Simulation day S2 S3
10 Jul 2015 392 260
11 Jul 2015 1199 785
12 Jul 2015 1343 1139
13 Jul 2015 399 367
14 Jul 2015 380 383
15 Jul 2015 1353 970
16 Jul 2015 1554 1215
17 Jul 2015 764 657

simulation days had convection for several hours in the model domain. The purpose

of this analysis is to determine if there is a statistical bias in EDR values greater than

0.2 m2/3 s−1 when using two different vertical resolutions.

The number of grid cells for both S2 and S3 that have ETs ≥ 8 km are

determined for each of the eight simulation days (Table 5). Interestingly, S2 predicts

more grid cells with ETs ≥ 8 km in altitude than S3 for seven of the eight days.

This finding is substantial because if ETs were used as the only turbulence proxy,

then increased vertical resolution would not positively benefit the prediction of storm

depth and intuitively turbulence. Furthermore, as was shown in Figs. 13–15, the

maximum hourly ETs predicted by the two 3 km runs were comparable, but still far

less than observations. However, a frequency analysis does show that S2 is predicting

greater ETs slightly more often than S3, which intuitively influences the turbulence

production and strength (Table 5). It would be hypothesized that the model setup

with the highest storm heights would produce more turbulence at higher altitudes.

Yet, as was discussed in the previous sections (Figs. 16–18), S2 never had the greatest

EDR values at 8, 10, or 12 km.

The normalized distribution of EDR values from 10 to 17 July (0600–0600

UTC) for S2 and S3 at 8, 10, and 12 km are provided in Fig. 19 (comparisons of
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raw area distributions show similar results, not shown). As was noted in the three

individual simulation days, S3 has a greater percentage of grid cells (59%) with EDR

values between 0.17 and 0.22 m2/3 s−1 than S2 for the 8-day period. S3 also has

a larger percentage of grid cells with EDR values between 0.32 and 0.47 m2/3 s−1

(4%). However, S2 has a larger percentage of grid cells with EDR values between

0.22 and 0.32 m2/3 s−1 (35%). This again demonstrates that higher vertical resolution

produces the extremes of the EDR distribution; more widespread light turbulence and

more extreme values. However, statistical testing shows that these results are not

statistically significant. The coarser vertical resolution (S2) distributes the majority

of EDR values within the middle of the spectrum and hardly any in the maximum.

If the prediction of turbulence is solely based on exceeding one EDR threshold value

such as 0.2 m2/3 s−1, S2 would predict grid cells above this threshold more often than

S3, but once again this difference is not statistically significant. However, from this

evaluation, it was found that S3 does exceed the EDR threshold of 0.2 m2/3 s−1 more

than S2 when convection was long lasting, extensive in areal coverage, and severe

in strength. This finding indicates that convective type does influence turbulence

prediction for various model setups.
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Figure 19: Distribution of eddy dissipation rate values ≥ 0.2 m2/3 s−1 within 50 mi
(80.5 km) of convective cores with echo top heights ≥ 8 km for S2 and S3 across 8
simulation days, combining statistics at 8 km, 10 km, and 12 km in altitude. Dashed
(cyan) and dotted (purple) vertical lines represent turbulence intensities based on
Lane et al. (2012) and Sharman et al. (2014), respectively.

3.4 Discussion and Conclusions

CIT is currently treated as a nowcasting problem because turbulence encounters oc-

cur on scales much finer than model resolutions used for forecasting applications.

Forecasts that predict the intensity of turbulence are generated in 15-min intervals by

utilizing several convective and turbulence indices (Pearson and Sharman 2017); how-

ever, in-depth details about precise locations of turbulence on 10–1000-m scales are

not available. Furthermore, forecasting operations continue to trend toward higher-

resolution configurations in both the vertical and horizontal, but performance of these

turbulence indices at these higher resolutions has not been examined. This study
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evaluated turbulence prediction from commonly implemented model configurations

(i.e., NAM, HRRR, and research) for numerous convectively active days in the North

Dakota region. This study found that simulations with horizontal grid spacing of

12 km (S1) cannot be used for CIT prediction because this model setup frequently

under predicts convective depth and intensity, unless convection is driven by large-

scale forcing. Among the remaining model setups, the simulated convection was not

significantly different. In general, convective type and intensity were forecast well.

However, all model setups underpredicted maximum storm depth when compared

with observations and S2–S3 more often underpredicted storm depth when compared

with S4. These consistent errors in storm depth are likely important for forecasting

turbulence.

Overall, turbulence forecasts were mixed. The finest model resolution (hori-

zontal and vertical; S4) predicted the most intense turbulence values over small areas.

The 3 km simulations (S2 and S3) with varying vertical resolution altered the dis-

tribution of lower EDR values that encompass larger areas. The height of maximum

turbulence values and areal coverage were also influenced by model resolution. This

suggests that the mechanisms that drive turbulence production and propagation are

altered by model resolution. This study has demonstrated how turbulence intensity

and areal coverage are very sensitive to model resolution, which means scale-aware

thresholds are vitally needed.

The Ellrod index, a popular operational diagnostic for turbulence thresholds,

was investigated, and while it is an adequate tool for large-scale turbulence prediction

(e.g., jet stream turbulence, frontal passage turbulence), it cannot be used as a CIT

diagnostic at operational and research model resolutions without coarsening the model

input to resolutions used in the original formulation (i.e., 10–100 km). Application

of TI2 to the latest operational model resolutions (i.e., 3 km) will produce unrealistic
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results. The Ellrod index is very sensitive to model resolution and over predicts the

intensity and areal coverage of turbulence. The Ellrod index used in conjunction

with additional products may be effective, but should not be used as an individual

diagnostic on resolution scales less than 10 km.

Results from this study show that moderate CIT can surpass the current FAA

avoidance guideline of 20 mi (32.2 km) and can be present out to 50 mi (80.5 km)

from active convection. These results are in agreement with recent studies by Lane

et al. (2012), Lane and Sharman (2014), and Zovko-Rajak and Lane (2014). This

finding emphasizes how additional research of CIT identification for various types

of convection is needed. It also brings into question how efficient and useful strict

lateral avoidance thresholds are for avoiding CIT when CIT is variable from storm to

storm and spatially limited. For example, on 12 July 2015, above 8 km in altitude,

moderate-to-severe turbulence within 20 and 50 mi of convection covered less than 1%

of those areas. Is there a better approach to CIT avoidance when moderate–severe

turbulence is extremely spatially limited? Although the areal coverage of the most

intense EDR values was spatially limited, the greatest EDR values were found at

8 km for the highest-resolution simulations and 12 km for the coarser simulations,

which are common altitudes used by commercial aviation. To improve turbulence

forecasting tools and redesign avoidance procedures, more observations and research

are needed.
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CHAPTER 4

PREDICTING AVIATION HAZARDS: LOCATION OF
OUT-OF-CLOUD TURBULENCE

4.1 Motivation

Convectively induced turbulence (CIT) is an atmospheric process that occurs at re-

markable frequencies over the continental U.S. Sharman and Trier (2018) found that

CIT occurs more than 40% of the time in the Great Plains and more than 60% of

the time in Texas, Florida, the Gulf of Mexico, and the Atlantic during the summer

months. The high frequency of CIT in the U.S. directly influences aviation operations

because flights have an increased likelihood of encountering CIT, flights are rerouted

around convection to avoid turbulence hazards, and delays at airports occur. More

specifically, CIT decreases aviation efficiency and costs the industry 150−500 million

a year in structural repairs, insurance premiums, and injury settlements (Kauffmann

and Sousa-Poza 2001; Williams 2016).

To reduce the effects of convective hazards on the aviation industry the Federal

Aviation Administration provides avoidance guidelines for all U.S. aviation operations

in national and international airspace. These guidelines recommend that pilots remain

20 mi (32.2 km) from severe convection (Federal Aviation Administration 2017; FAA).

However, this guideline is limited as CIT has been shown to occur more than 100 km

(62 miles) away from convective sources (Barber et al. 2018; Lane and Sharman 2014;

Zovko-Rajak and Lane 2014; Lane et al. 2012; Lane et al. 2003; Pantley and Lester

1990; USAF 1982). Another caveat with this recommendation is the dynamic nature
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of CIT. CIT does not behave as an isotropic feature that extends uniformly from

convection in all directions. The background environmental wind (i.e. wind shear)

and stability of the atmosphere will influence the propagation direction of gravity

waves generated from convection, the location of breaking gravity waves, the cascade

of energy to turbulent scales (10-1000 m for aviation; Lester 1994), and regions of

shear which lead to shear-induced turbulence (Lane and Sharman 2008; Lane et al.

2003). As breaking gravity waves are responsible for much of the out-of-cloud CIT

(Sharman and Trier 2018) these waves are considered especially hazardous to aviation

operations. Convectively induced gravity waves often have horizontal wavelengths on

the order of 10 km to 102 km, occur on temporal scales of 10 to 102 minutes, and are

generated by mechanical and diabatic forcings, which in realistic convective clouds

are coupled through nonlinear momentum and heat fluxes (Chun 2008; Lane and

Sharman 2008; Alexander et al. 2006; Lane et al. 2003; Song et al. 2003; Beres et

al. 2002; Lane et al. 2001). While the formation of gravity waves during convective

activity is common, the breakdown of gravity waves is most important for turbulence

production (Pantley and Lester 1990; Reiter and Lester 1968).

Many studies have examined the influence of atmospheric stability, environ-

mental wind shear, and convective stage on turbulence produced through breaking

gravity waves. Lane and Sharman (2008) used numerical simulations of convection

to investigate the relationships between background flow conditions and gravity wave

breaking above convection. Lane and Sharman (2008) found that the instability in

terms of areal coverage was maximized by optimal values of wind shear. In addition,

it was found that the altitude of critical levels which induce breaking gravity waves

are higher in low sheared environments, thereby influencing turbulence location, and

making it more prevalent in the downshear region above cloud. Wimmers et al.

(2018) used satellite observations to examine gravity waves in relation to turbulence.
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Their study found for two cases of severe CIT, gravity waves did not propagate in the

direction of the background flow but, instead propagated orthogonally to the back-

ground flow, due to the highly sheared environment of the convective outflow. Beres

et al. (2002) and Alexander et al. (2006) showed how the phase speed spectrum of

convectively induced gravity waves can be modified by the vertical structure of the

horizontal wind above convection and can cause gravity waves to refract. The results

from Beres et al. (2002) demonstrated the asymmetric nature of gravity waves prop-

agation due to tropospheric winds and agreed with previous studies including Fovell

et al. (1992), Alexander et al. (1995), Alexander and Holton (1997), Piani et al.

(2000), and Lane et al. (2001).

Numerous methodologies are in operation to assist pilots in turbulence avoid-

ance. These methods include: nowcasting applications that identify convection and

convective hazards along flight paths (Kessinger 2017; Kessinger et al. 2008; Herzegh

2002); in situ turbulence measurements, subjective pilot reports; and forecast models

that diagnose turbulence from meteorological fields such as frontogenesis, vorticity,

shearing and stretching deformation, perturbations in velocity fields (Ahmad and

Proctor 2012; Ellrod and Knox 2010; Frehlich and Sharman 2004a,b; Marroquin

1998; Ellrod and Knapp 1992; Dutton 1980; Buldovskii et al. 1976; Brown 1973;

Colson and Panofsky 1965). These methods are beneficial to the aviation commu-

nity, but no method currently resolves the turbulent scales of motions themselves,

as all methods are approximations for turbulence. To implement better forecasting

tools for turbulence prediction many studies have been using numerical models to

further understand the physical attributes of CIT and the role of gravity waves. But,

the nonlinear characteristics of gravity waves, the complex interaction of atmospheric

stability and wind shear, and the accuracy of convective forecasting itself (location,

timing, morphology, and strength) continues to hinder the forecasting capabilities
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of convectively induced gravity waves and turbulence. Improved computer resources

have become more accessible to the forecasting community, leading to more efficient

modeling systems that are capable of resolving physical processes on small temporal

and spatial scales. As the trend in increased horizontal and vertical resolution contin-

ues, resolving and therefore forecasting CIT will be possible. However, resolution has

been found to impact the total power of gravity waves and the vertical propagation

of gravity waves (Lane and Knievel 2005), gravity wave characteristics (Doyle et al.

2011), and the location of most intense turbulence (Lane and Sharman 2014). Barber

et al. (2018) found that resolution influenced the simulated storm height, as well as

the accuracy of popular turbulence diagnostics including the Ellrod index and eddy

dissipation rate. The examination of turbulence distribution found enhanced vertical

resolution is crucial to accurately predict the magnitude of turbulence intensity.

The goals of this study are to investigate the impact of model resolution on

convective parameters such as depth and intensity, environmental variables such as

static stability and vertical wind shear in the vicinity of convection, and ultimately

how out-of-cloud turbulence location varies due to these differences. This study will

determine if the frequency of high sheared and unstable out-of-cloud environments

occur with different frequency in higher resolution models, and determine the influ-

ence of these variables on turbulence production. Richardson number and vertical

velocities are used as proxies for gravity wave production and propagation/breaking

when the characteristics of convectively induced gravity waves cannot be resolved due

to coarse model and temporal resolution.
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4.2 Data and Methods

4.2.1 Model setup

In this study, 30-hour convective forecasts in the northern Great Plains are made

using the Advanced Research WRF Model, version 3.7 (Skamarock and Klemp 2008)

to examine convectively induced turbulence. All simulations were initialized at 0000

UTC with ERA-Interim (http://www.ecmwf.int/en/ research/climate-reanalysis/era-

interim) global reanalysis data and run using Extreme Science and Engineering Dis-

covery Environment (XSEDE) resources (Towns et al. 2014). Analysis times used in

this study are the 7th-30th forecast hours from each simulation day (12, 13, and 15

July 2015). Barber et al. (2018) investigated the influence of grid spacing with four

modeling setups and found that 12 km horizontal grid spacing (similar to the NAM

and RAP models) was inadequate to replicate convective activity and turbulence in

this region. Therefore, this study will examine the results from the three higher res-

olution modeling setups (S2, S3 and S4) used in Barber et al. (2018; Table 2 in

chapter 3). Setup 2 (S2) is similar to the operational High-Resolution Rapid Refresh

(HRRR) model and has 3 km horizontal grid spacing and 65 vertical levels. Setup

3 (S3) also has 3 km horizontal grid spacing and is comparable to the HRRR, but a

finer vertical grid spacing (100 vertical levels) is implemented. Lastly, setup 4 (S4) is

considered high-resolution with 500 m horizontal grid spacing and 100 vertical levels.

Parameterizations for all of the simulations are provided in Table 3 in chapter 3. The

model top for all simulations is set to 10 hPa (approximately 30 km) with a 10 km

deep damping layer at the model top. The model domains for S2–S3 remain unaltered

and encompass the same geographical area for the entire 90-h of simulations (see Fig.

1). Due to limits of computational costs, the simulation period of S4 only includes

12 July, 13 July, and 15 July 2015 and does not cover the same geographical area as
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S2 and S3 (see Fig. 2). Additional 10-minute output from 1800 UTC to 0600 UTC

is used for comparison on 12 July.

4.2.2 Eddy dissipation rate

Turbulence intensity (TI) is estimated by computing EDR from turbulent kinetic

energy (TKE) of each simulation as discussed in the Appendix. Atmospheric turbu-

lence is commonly defined as light, moderate, and severe based on the cubed root of

EDR (m2/3 s−1; Tables 4 and 21; Lane et al. 2012). This study will use thresholds

corresponding to Sharman and Pearson 2017 based on climatological PIREPs and

various sources including the Global Turbulence Guidance (GTG-2) product (Table

21). Echo tops are used to determine if a turbulent grid cell is out of cloud or in cloud.

Echo top height is calculated from the simulated radar reflectivity using a threshold

of 18-dBZ. A turbulent grid cell is considered out of cloud if the echo top height at

the same grid point location is less than the analysis height. A turbulent grid cell

is considered to be in cloud if the echo top height at the same grid point location is

greater or equal to analysis height.

4.2.3 Bulk analysis of turbulence location

To determine the location of turbulence relative to convection, convective objects

(CO) are defined as consecutive regions where echo tops (18-dBZ threshold) are

greater or equal to 8 km. A threshold of 8 km is adequate because deep convection

generally exceeds 8 km in altitude during the summer months in the midlatitudes.

The centroid location of each CO is determined and distance from the grid point

location of turbulence to the CO centroid location is calculated. After each turbulent

grid cell is associated with the CO closest to its location, the direction turbulence

occurs relative to the CO centroid location is determined by subtracting the vector
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location of turbulence from the vector location of the CO. Directions are divided

into compass definitions of north, east, south, and west (Fig. 20). The environment

around convection is analyzed within 20 miles (∼32.2 km) of the convective object’s

boundaries. It is important to note that this method does not address the source

of CIT, but only the relationship between out-of-cloud turbulent grid points and the

location of convection. When convection is near the boundaries of the simulation

domain, if a radius of 20 miles cannot be computed in all four directions, the time

period is not utilized to ensure that a direction is not preferred simply because it has

more areal coverage.

Figure 20: Compass degree definition of direction from convection.

4.2.4 Calculation of environmental variables

The environmental variables vertical wind shear (Sv
2), static stability (N2), Richard-

son number (Ri), and simulated vertical velocity (w) are calculated for regions 20

miles (32.2 km) around convective boundaries. Vertical wind shear produces turbu-

lence through Kelvin Helmholtz instabilities and a variation in static stability pro-

duces turbulence through convective instabilities. Richardson number is the ratio

between static stability and the vertical shear. The gradient Richardson number is
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expressed as,

Ri =
N2

Sv
2
, (4.1)

where S2
v is the vertical wind shear defined as,
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and N2 is defined in the section 2.1, equation 2.1.

In Eq. 4.2, u and v are the horizontal components of velocity (m s−1), and z

is height (m). Ri values less than 0.25 are indicative of gravity wave breakdown and

turbulence. Ri values have been found to be low near outflow regions and regions

where deep convection penetrates the tropopause.

4.3 Results

4.3.1 Comparison of convective properties

The distributions (normalized by total count for the entirety of the model simulation)

of simulated convective properties such as echo top height, 2-km radar reflectivity

values, and column-maximum radar reflectivity values are provided in Figures 21-22.

For the case days where convection was forced through large-scale synoptic dynamics

(12 and 15 July), the percentage of simulated echo tops exceeding 8 km is higher

for S4 than either S2 or S3. The distributions of echo tops for S2 and S3 are nearly

equal and not influenced by the variation in vertical resolution. The variability in

the amount of echo tops exceeding 8 km likely influences the turbulence production

through the generation of gravity waves if those waves begin to break. The tropopause

heights for the three days were 9.5 km, 11.1 km, and 12.3 km. S4 had more than

10% of echo tops surpassing the tropopause. The distributions of simulated 2-km
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radar reflectivity values are very similar between S2, S3, and S4 (Fig. 5). The subtle

differences (less than 0.5%) are in the weaker reflectivity bins (20-30 dBZ), where

S4 has a slightly higher percentage. S4 again has a larger percentage of greater

reflectivity values, implying stronger convection on two of the three case days. These

findings are consistent in the column-maximum simulated reflectivity field.

Figure 21: Distributions of simulated echo tops (km) for S2 (red), S3 (blue), and S4
(green) on 12, 13, and 15 July.

Figure 22: Domain-wide distributions of simulated radar reflectivity (solid lines) and
column-maximum simulated radar reflectivity (dashed lines) for S2 (red), S3 (blue),
and S4 (green) on 12, 13, and 15 July.

Distributions of in-cloud and out-of-cloud vertical velocity between 8 km and

12 km (Fig. 23) and domain-wide accumulated precipitation (Fig. 24) are examined.

Vertical velocity is a good proxy for convective strength and accumulated precipita-

tion can be used as a proxy for latent heating and therefore gravity wave amplitude
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(Stephan and Alexander 2015; Stephan and Alexander 2014). The distribution of

out-of-cloud vertical velocities for the three model setups is the greatest between -3

m s−1 and 2 m s−1 (greater than 45%). At the extremes of the distributions (greater

than 10 m s−1) the model setups are within 0.005% of one another, but S4 is slightly

greater than S2 and S3. There is larger variability in the distribution of in-cloud

vertical velocities between the model setups. The largest differences between S2, S3,

and S4 vertical velocities are on the stronger convective days (12 and 15 July). These

variations are also apparent in the accumulated precipitation distributions, suggesting

that gravity wave amplitude is greater for S4.

Figure 23: Distribution of in-cloud (IC) and out-of-cloud (OC) vertical velocities (m
s−1) for S2 (red), S3 (blue), and S4 (green) on 12 (solid), 13 (dashed), and 15 (dotted)
July between 8 km and 12 km.
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Figure 24: Distribution of accumulated precipitation (mm) for S2 (red), S3 (blue),
and S4 (green) on 12, 13, and 15 July.

The variation in the convective properties will influence convectively induced

turbulence production in this study mainly through the production of gravity waves

as storm tops surpass the tropopause and break, and energy cascades to turbulent

scales. Storms simulated by S4 to exceed the tropopause 5-10% more often than S2

and S3. Other attributes of simulated convection, specifically, outflows (regions of

enhanced vertical wind shear) are hypothesized to be dynamically similar between

the model setups.

4.3.2 Directional preference of turbulence (S4)

Out-of-cloud convectively induced turbulence between 8 km and 12 km in altitude is

analyzed on 13 July (0000-0600 UTC from the forecast initialized at 0000 UTC on 12

July and referred to as 12 July in text), 13 July (1700-0100 UTC), and 15 July 2015

(2100-0600 UTC) for S4 and is categorized as light (LGT) or moderate or greater

(MOG). The altitude range of 8 km to 12 km is applicable for cruising altitudes of

commercial aviation. A complete summary of the convection observed and simulated

on these dates can be found in Barber et al. (2018).
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Briefly, severe convection occurred in the eastern portion of North Dakota and

western Minnesota on 12 July producing hail, severe winds, and tornadoes. Individ-

ual cells initiated near 2000 UTC and intensified into two large convective complexes

with echo tops exceeding 15 km in height and radar reflectivity values exceeding 55

dBZ. S4 simulated both the observed convective morphology and also the observed

timing and location. However, the intensity and depth of the simulated convection

was underpredicted when radar reflectivity values and echo top heights are compared

to observations. S4 generated 337 convective objects between 0000 UTC and 0400

UTC. There were 26529 out-of-cloud turbulent grid points within 20 miles of con-

vection between 8 km and 12 km from 0000 UTC to 0400 UTC. Of the turbulent

grid points, 78% were categorized as LGT and 22% MOG. Figure 25 provides the

directional distribution of out-of-cloud CIT between cruising altitudes. The majority

of turbulence is located north of convection (33% of turbulent cells) for all intensity

thresholds. The remaining 67% of turbulent grid points are distributed between the

south (20%), east (24%), and west (23%) directions. These results suggest that avi-

ation operations navigating around this convective system at cruising altitude would

have had the highest probability of experiencing turbulence when flying to the north

of the convective complex. While MOG turbulence only accounted for 22% of the

total turbulent grid points, the greatest likelihood of experiencing MOG turbulence

occurred to the west of convection (32%). Applying these results to aviation opera-

tions, the lowest probability of experiencing MOG turbulence is to the south and east

of convection.
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Figure 25: Directional preference of out-of-cloud turbulence between 8 km and 12
km (all, light, and moderate or greater) in normalized percentage for S4 (top), S3
(middle), and S2 (bottom) on 12 July when convection is present (within 20 miles of
convection).

Convection on 13 July initiated around 1800 UTC from weak frontal bound-

aries occurring in the northern ND. This convection was non-severe, isolated in nature,

and dissipated near 0100 UTC. Radar reflectivity values exceeded 50 dBZ and echo

tops reached 14 km in altitude. S4 generated 253 convective objects between 1900

UTC and 0100 UTC. One hundred and sixty two turbulent grid points within 20 miles

of convection between 8 km and 12 km were produced, of which 68% were LGT and
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32% were MOG. The significant decrease of turbulent grid points present on 13 July is

due to the weakly forced, isolated nature of the particular convection. The directional

distribution is provided in Figure 26 and shows that the highest probability of LGT

and MOG turbulence is to the east of convection (48% and 45%). There is larger

variability in the directional distribution of turbulence identified as LGT than on 12

July. The overall likelihood of experiencing turbulence on 13 July was significantly

lower than 12 July and these results suggest that west of convection has the lowest

likelihood of experiencing turbulence of any intensity.
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Figure 26: Directional preference of out-of-cloud turbulence between 8 km and 12
km (all, light, and moderate or greater) in normalized percentage for S4 (top), S3
(middle), and S2 (bottom) on 13 July when convection is present (within 20 miles of
convection).

Convection on 15 July was severe, producing hail and severe wind reports.

Convection initiated in western ND before 1600 UTC and organized into a convective

complex with a bowing feature in central ND that persisted through 0200 UTC. S4

generated 224 convective objects between 2100 UTC and 0600 UTC. S4 produced

3879 turbulent grid points. Of the turbulent grid points, 81% were LGT and 19%

were MOG. For this case day, within 20 miles of convection the highest probability of
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encountering turbulence is to the north (Fig. 27). The lowest likelihood of encoun-

tering turbulence is to the south of convection (17%). When turbulence is subset by

intensity, the north has a higher likelihood of MOG turbulence.

Figure 27: Directional preference of out-of-cloud turbulence between 8 km and 12
km (all, light, and moderate or greater) in normalized percentage for S4 (top), S3
(middle), and S2 (bottom) on 15 July when convection is present (within 20 miles of
convection).

Variability in the location of turbulence for the three case days is apparent. On

12 July, two organized intense convective complexes produced a significant number of

turbulent grid points, the majority located to the north of convection. The isolated,
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weakly forced convection on 13 July produced few turbulent grid cells, most of which

had an eastern preference. Lastly, the convection on 15 July, a strong squall-line with

a bowing echo, produced a significant amount of turbulence, which was primarily to

the north of convection. It is hypothesized that varying convective morphology and

intensity for the three case days influences the amount and intensity of turbulence

found in the simulation domain. The location of out-of-cloud turbulence is likely in-

fluenced by the environmental conditions present around convection (i.e. the vertical

wind shear and static stability) and will be discussed below in section 4.3.4.

4.3.3 Influence of model resolution on the directional distribution of
turbulence

In this section the directional preference of turbulence of model setups S2 and S3

will be compared against S4. The domain size differences between the model setups

influence the duration that convection is present in the domain. However, the type,

intensity, and timing of convection present in all three setup domains is similar for all

three setups on each case day. Recall that S2 and S3 have the same horizontal reso-

lution (3-km), and S3 has a higher vertical resolution than S2 (S3 vertical resolution

matches S4, 100 vertical levels).

The raw count of turbulent grid points for the three days within 20 miles of

convection is 5985 for S2 and 15770 for S3. The significant increase in count for S3

is due to the increase in vertical layers. The total number of grid points for the three

days for S2 and S3 is far lower than for S4 (30570 total for the three days), but when

normalized against the size of each grid cell, the areal coverage is similar. Figures 25-

27 demonstrate the directional variation of turbulence for the three model setups for

the case days. The direction distributions of turbulence in S2 and S3 on 12 July are in

disagreement with S4 (southern preference versus northern preference). Interestingly,
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the distribution of turbulence is heavily skewed in two directions (south and west) for

S3, while turbulence is more evenly distributed in all directions for S2 and S4. The

percentage of MOG grid points varies significantly between S2 (26%), S3 (10%), and

S4 (22%). The location of the largest percentage of MOG turbulence is to the south

for S2 and S3 in contrast to the west for S4. These results suggest that turbulence

prediction on 12 July would have varied significantly based on model resolution. The

coarser resolution model setups (S2 and S3) indicate turbulence likelihood is less to

the east of convection, while the finer resolution model setup indicates less likelihood

of turbulence to the south of convection.

The turbulence distribution on 13 July again varies between the three model

setups, however the coarser model setups (S2 and S3) are in agreement with one

another (western preference), while the greatest turbulence likelihood was to the east

of convection for S4 (Fig. 26). Although the direction of all turbulence is in contrast

between the model setups, the majority of MOG turbulence was located to the east

of convection for all simulations. Weak convection, as simulated on 13 July, reduced

the influence of model resolution, especially on the location of MOG turbulence.

On 15 July, S4 and S2 distribute turbulence nearly evenly in three directions

while in S3 the majority of turbulence in one direction (Fig. 27). Turbulence is

preferred to the west of convection for S3 in comparison to the north for S2 and

S4. S2 and S4 also agree in the preferred direction of MOG turbulence. S3 again

distributes MOG turbulence to one preferred direction (west) and S2 and S4 distribute

turbulence to three directions and the largest percentage is to the north of convection.

Model resolution is influencing the direction of turbulence for all cases of convection.

The coarser model setups are not in agreement with one another with the direction

of greatest turbulence probability. There is disagreement in the location of greatest

turbulence likelihood between the finest and coarser model setups, but interestingly,
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S4 distributes turbulence in a manner more in comparison to S2 for the stronger

convective cases.

4.3.4 Influence of model resolution on environmental conditions

Out-of-cloud static stability (N2), vertical wind shear (Sv
2), and Richardson number

(Ri) are used as indicators of turbulence potential, while vertical velocity (w) is used

as a proxy for gravity wave potential. Richardson number is an indicator of breaking

gravity waves and values less than 0.25 suggest turbulence at the location. These

parameters are examined in direction subsets of north, east, south, and west within

20 miles (32 km) of convective objects between 8 km and 12 km for all three model

setups and related to the turbulence frequency. An examination of static stability

between 8 km and 12 km (in-cloud and out-of-cloud) for the three case days within

the entire model domain (Fig. 28) has little variability between the model setups for

the stronger convective days (12 and 15 July). The similarities in the distributions

of static stability indicates that model resolution is not impacting static stability,

and therefore turbulence production by instability processes should be occurring at

similar frequencies between the model setups. In comparison, the distribution of

vertical wind shear between 8 km and 12 km varies significantly between the model

setups for the three case days (Fig. 29). Interestingly, S4 has the lowest probability of

large vertical wind shear and is more than an order of magnitude smaller than S3 for

all case days. The implications of the lower vertical wind shear values between 8 km

and 12 km for S4 likely influences turbulence production through Kelvin-Helmholtz

instability processes. The following section will compare the environmental variables

subset by direction from convection for the three modeling setups. A brief review of

the convective setup and directional preference of turbulence will be provided.
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Figure 28: Domain-wide distribution of static stability between 8 km and 12 km for
S2 (red), S3 (blue), and S4 (green) on 12, 13, and 15 July.

Figure 29: Domain-wide distribution of vertical wind shear between 8 km and 12 km
for S2 (red), S3 (blue), and S4 (green) on 12, 13, and 15 July.

Static stability

Convection on 12 July was two large convective complexes that persisted for

more than four hours in all three model domains. The greatest probability of turbu-

lence was to the north of convection for S4 and to the south of convection for S2 and

S3. Out-of-cloud static stability distributions and statistics on 12 July are provided

in Fig. 30 and Table 6. The lowest mean static stabilities between 8 km and 12 km

are associated with S4. The lowest mean static stabilities for S4 are to the north

and east of convection. These directions are associated with the greatest probability

of turbulence in this height range for S4. The mean static stabilities of S2 and S3
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are very similar to one another but the lowest mean static stability is to the west

of convection, not the preferred direction of turbulence for both setups. The varia-

tion in static stability between the direction subsets for S2 and S3 is smaller than

the variation of S4, indicating that vertical resolution does not influence the static

stability.
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Figure 30: Distribution of out-of-cloud static stability between 8 km and 12 km within
20 miles of convection on 12, 13, and 15 July subset by direction from convection for
S2 (solid lines), S3 (dashed lines), and S4 (dotted lines). The vertical lines represents
the mean static stability in the direction of greatest turbulence probability.
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Table 6: Mean out-of-cloud static stability (s−2) between 8 km and 12 km within 20
miles of convection. Bold represents the direction the highest percentage of turbulence
is located.

Case day Model setup North East South West

12 July
S2 1.98x10−4 1.92x10−4 1.95x10−4 1.87x10−4

S3 2.00x10−4 1.98x10−4 1.99x10−4 1.89x10−4

S4 1.59x10−4 1.59x10−4 1.75x10−4 1.65x10−4

13 July
S2 1.47x10−4 1.46x10−4 1.57x10−4 1.58x10−4

S3 1.53x10−4 1.50x10−4 1.61x10−4 1.62x10−4

S4 1.84x10−4 1.84x10−4 1.83x10−4 1.83x10−4

15 July
S2 1.01x10−4 1.05x10−4 1.03x10−4 1.01x10−4

S3 1.09x10−4 1.11x10−4 1.09x10−4 1.06x10−4

S4 9.11x10−5 9.34x10−5 9.36x10−5 9.15x10−5

Convection on 13 July was isolated and weak, with very little turbulence diag-

nosed. The greatest probability of turbulence was found to the east of convection for

S4 and to the west of convection for S2 and S3. The mean static stability for S2 and

S3 is lower on 13 July than 12 July and greater on 13 July for S4 (Fig. 30 and Table

6). The variability of static stability between the directions is also much less for S4

than on 12 July even though variability in turbulence direction was found, suggest-

ing that static stability variations were not responsible for the preferred turbulence

direction. While S2 and S3 had larger directional variations of static stability, the

lowest stabilities were not related to the preferred turbulence direction.

Convection on 15 July was intense and persisted for more than eight hours.

The greatest probability of turbulence was found to the north of convection for S4

and S2 and to the west of convection for S3. The lowest static stabilities were found

north of convection for S4 and S2 and west of convection for S3, the same directions of

greatest turbulence probability (Figs. 30 and Table 6). The mean static stabilities for

all three modeling setups were lower than the previous two case days, likely influencing

the convective type. The variability in stability between the model setups is the least
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when compared to the previous convective days, suggesting that model resolution did

not influence the stability near convection on 15 July.

Vertical wind shear

Out-of-cloud vertical wind shear distributions on 12 July significantly vary be-

tween the model setups (Fig. 31 and Table 7). As was found with the domain-wide

distribution of vertical wind shear, S4 has a lower probability of greater wind shear

in all directions when compared to S2 and S3. For this environmental variable, the

direction with the greatest probability of increased shear values is associated with the

preferred direction of turbulence (east). However, this relationship between probabil-

ity of larger shear values and direction is not consistent for S2 and S3. The greater

variation in vertical wind shear between direction and model setup indicates that

horizontal and vertical resolution are influencing vertical wind shear near convection,

likely as the production of convective outflows.
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Figure 31: Distribution of out-of-cloud vertical wind shear between 8 km and 12
km within 20 miles of convection on 12, 13, and 15 July subset by direction from
convection for S2 (solid lines), S3 (dashed lines), and S4 (dotted lines). The vertical
lines represents the mean vertical wind shear in the direction of greatest turbulence
probability.
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Table 7: Mean out-of-cloud vertical wind shear (s−2) between 8 km and 12 km within
20 miles of convection. Bold represents the direction the highest percentage of tur-
bulence is located.

Case day Model setup North East South West

12 July
S2 1.33x10−5 1.77x10−5 1.43x10−5 1.86x10−5

S3 3.37x10−5 4.70x10−5 3.58x10−5 4.99x10−5

S4 1.01x10−5 1.00x10−5 5.22x10−6 8.34x10−6

13 July
S2 2.99x10−6 3.09x10−6 3.56x10−6 3.89x10−6

S3 7.92x10−6 1.00x10−5 1.08x10−5 1.06x10−5

S4 2.16x10−6 1.97x10−6 3.08x10−6 2.84x10−6

15 July
S2 7.43x10−6 7.34x10−6 8.35x10−6 8.20x10−6

S3 2.00x10−5 1.89x10−5 2.28x10−5 2.46x10−5

S4 1.02x10−5 7.63x10−6 7.05x10−6 8.92x10−6

Vertical wind shear on average for 13 July is less than the vertical wind shear

on 12 July but still has directional variation (Fig. 31). S3 again has the largest mean

vertical wind shear by an order of magnitude when compared to S2 and S4. Increased

vertical wind shear in the direction of increased turbulence likelihood is not found for

S3 and S4, but is found for S2. For weak convection, directional subsets of vertical

wind shear distributions are not effective as indicators of turbulence potential across

varying model resolutions. The same findings hold for vertical wind shear on 15 July,

with the exception that the greatest mean vertical wind shear is found in the same

direction of greatest turbulence probability for S3 and S4.

Richardson number

Richardson number diagnosed out of cloud on 12 July had very subtle direc-

tional variation between the model setups (Fig. 32 and Table 8). On average, S4 has

the lowest Richardson number east of convection. For all directions with Richardson

number less than one, more than 20% of grid points are less than 0.25 (criteria for

breaking gravity waves). In comparison, north and west of convection has the lowest

Richardson number for S2 and S3. The direction of minimum Richardson number
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subtly varied amongst S2 and S3 and a similar percentage of grid points (20%) had

Richardson numbers less than 0.25. The likelihood of breaking gravity waves be-

tween the model setups is similar and does not indicate a directional preference due

to model resolution. As was discussed previously, the height of convection did vary

between the setups and was hypothesized to influence gravity wave production and

breaking as storms exceeded the tropopause, however using Richardson number as a

proxy for gravity wave breaking, the under prediction of storm height for the coarser

simulations did not influence gravity wave breaking.
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Figure 32: Distribution of out-of-cloud Richardson number between 8 km and 12
km within 20 miles of convection on 12, 13, and 15 July subset by direction from
convection for S2 (solid lines), S3 (dashed lines), and S4 (dotted lines). The vertical
lines represents the mean Richardson number in the direction of greatest turbulence
probability.
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Table 8: Mean out-of-cloud Richardson number between 8 km and 12 km within 20
miles of convection. Bold represents the direction the highest percentage of turbulence
is located.

Case day Model setup North East South West

12 July
S2 0.44 0.46 0.44 0.45
S3 0.45 0.42 0.42 0.41
S4 0.37 0.36 0.33 0.36

13 July
S2 0.43 0.41 0.39 0.48
S3 0.45 0.44 0.45 0.42
S4 0.43 0.33 0.29 0.41

15 July
S2 0.43 0.41 0.40 0.42
S3 0.46 0.45 0.41 0.42
S4 0.34 0.35 0.34 0.33

The percentage of Richardson number values less than 0.25 is again near 20%

on 13 July, and the directional variability is nearly the same for S2 and S3, indicating

that breaking gravity waves do not have a directional preference (Fig. 32) in this con-

vective scenario. S4 again had the lowest mean Richardson number but when subset

by direction was not associated with the direction of greatest turbulence probability.

The same findings hold for 15 July.

Vertical velocity

Out-of-cloud vertical velocities also had a large variation in the mean between

the coarser model setups and the finest model setup (Fig. 33 and Table 9). The mean

vertical velocity of S4 was nearly twice that (or more) of S2 and S3 especially on 15

July. The maximum mean vertical velocity of S4 was north of convection, the same

direction of the greatest probability of turbulence on 12 July. The greatest mean

vertical velocities for S2 and S3 were west of convection, not the preferred direction

of turbulence on 12 July. There was little consistency between greatest mean vertical

velocity and direction of greatest turbulence probability. However, if vertical velocity

is used as a proxy for gravity wave production, it would be hypothesized that S4 would
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have a higher frequency of gravity waves. The frequency at which the generated waves

begin to break is similar between the model simulations, and therefore would produce

turbulence at similar rates. Additional simulations with increased temporal output

is needed to verify this hypothesis.
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Figure 33: Distribution of out-of-cloud vertical velocities (absolute value) between
8 km and 12 km within 20 miles of convection on 12, 13, and 15 July subset by
direction from convection for S2 (solid lines), S3 (dashed lines), and S4 (dotted lines).
The vertical lines represents the mean vertical velocities in the direction of greatest
turbulence probability.
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Table 9: Mean out-of-cloud vertical velocity (m s−1 between 8 km and 12 km within 20
miles of convection. Bold represents the direction the highest percentage of turbulence
is located.

Case day Model setup North East South West

12 July
S2 0.47 0.57 0.48 0.61
S3 0.47 0.56 0.44 0.59
S4 0.98 0.95 0.70 0.83

13 July
S2 0.20 0.19 0.18 0.21
S3 0.20 0.22 0.21 0.21
S4 0.38 0.36 0.41 0.40

15 July
S2 0.35 0.34 0.38 0.37
S3 0.35 0.35 0.39 0.40
S4 1.02 0.85 0.79 0.97

In summary, the environmental variables out of cloud were related to the

directional preference of turbulence inconsistently, especially for S2 and S3. For S4

on 12 and 15 July north of convection, the static stability on average was lower than

the other directions, and the vertical wind shear and vertical velocity were greater

than the other directions. For weaker convection on 13 July, static stability, vertical

wind shear, and vertical velocity subset by direction away from convection was not

related to the direction of greatest turbulence probability.

4.3.5 Correlation between environmental variables and turbulence
intensity

It is hypothesized that the preferred direction of turbulence would be associated with

the lowest static stabilities, greatest vertical wind shear, and greatest vertical veloci-

ties, with correlations between these variables and the intensity of turbulence. Figure

34 and Table 10 shows the correlations between static stability, vertical wind shear,

vertical velocity, and turbulence intensity on 12 July. For the three model setups

there is a weak negative correlation between out-of-cloud static stabilities and turbu-
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lence intensity. When subset by direction, all three setups have the greatest negative

correlation in the direction of greatest turbulence probability (S2-south, S3-south,

and S4-north). While this result is only for one particular case, it could motivate

additional examination to determine the feasibility of correlations being implemented

as forecasting metrics for direction specific avoidance. A weak positive correlation

between vertical wind shear and turbulence intensity and vertical velocity and turbu-

lence intensity is also present for the three model setups. The strongest correlations

are no longer associated with the direction of greatest turbulence probability, suggest-

ing that vertical wind shear and vertical velocity alone cannot be utilized to avoid

turbulence in specific directions.
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Figure 34: Correlation of out-of-cloud static stability, vertical wind shear, vertical
velocities, and turbulence intensity between 8 km and 12 km on 12 July, 20 miles
within convection. Colored circles represent the direction turbulence probability is
the greatest. Light, moderate, and severe turbulence thresholds are represented by
the black, yellow, and pink vertical lines.

4.4 Discussion and Conclusions

This study examined the influence model resolution has on the directional preference

of turbulence for three convective days in North Dakota. Three model setups rep-
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Table 10: Correlation coefficients for out-of-cloud static stability, vertical wind shear,
vertical velocity, and eddy dissipation rate between 8 km and 12 within 20 miles
of convection on 12 July. Bold represents the direction the highest percentage of
turbulence is located.

Variable Model setup All North East South West

N2

S2 -0.11 -0.07 -0.06 -0.14 -0.13
S3 -0.06 -0.05 0.03 -0.10 -0.09
S4 -0.10 -0.24 -0.06 -0.12 -0.05

Sv
2

S2 0.11 0.06 0.16 0.07 0.13
S3 0.14 0.14 0.18 0.16 0.10
S4 0.19 0.12 0.17 0.22 0.22

|w|
S2 0.15 0.11 0.21 0.10 0.19
S3 0.15 0.12 0.21 0.17 0.11
S4 0.20 0.09 0.14 0.23 0.25

resenting operational and research forecasting systems were utilized. Convection for

the three case days included an intense mesoscale convective complex, weak, isolated

convection, and an intense squall line. Turbulence location was found to vary be-

tween the model setups. The highest frequency of turbulence was found to the north

of convection (mesoscale convective complex) for the high resolution simulation (S4)

on 12 July. The majority of turbulence on 12 July was found to the south of con-

vection for the coarser model setups (S2 and S3). Turbulence was less likely on 13

July (weak, isolated convection), and the preferred direction was east for S4 and west

for S2 and S3. On 15 July (squall line), the majority of turbulence was found to the

north of convection for S4 and west for S2 and S3. The convective type (i.e. isolated,

weak convection versus dynamically forced convection) influences the agreement in

the turbulence direction. Convective properties such as echo top heights, reflectivity,

and vertical velocity were compared between the model setups. S4 had higher fre-

quencies of lower echo tops (and radar reflectivity values) for two of the three case

days, and much higher frequencies on 15 July. The distribution of vertical velocities
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found that S4 has higher frequencies of higher vertical velocities, but is statistically

insignificant. Turbulence production was likely influenced by the variation in con-

vective strength as convective cells approached or surpassed the tropopause, but the

frequency of breaking gravity waves was similar between the setups.

Another popular methodology to subset turbulence location is identifying re-

gions upshear and downshear of convection. Anecdotally (and based on scientific

research of gravity wave propagation), pilots avoid flying downshear of mesoscale

convective systems. One caveat with this methodology is defining upshear and down-

shear on a consistent basis from limited observations at various altitudes. Simply,

defining upshear and downshear for an operational use is more difficult than compass

directions. Nonetheless, it is a valuable methodology to characterize turbulence po-

tential and relate turbulence to the environmental conditions. Figures 35 and 36 show

wind vectors and turbulence intensity at 10 km near similar convective features for

S2 and S3 on 12 July. Turbulence for S2 is generally downshear of convection while

turbulence for S3 is upshear in this example. Analysis such as this could be completed

on a larger dataset to determine the influence of resolution by defining upshear and

downshear. However, for aviation operations it could be potentially difficult to trans-

late upshear and downshear turbulence potential for numerous convective regimes in

real time to the pilots and air traffic control.
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Figure 35: An example of the wind field (a and c) and turbulence intensity (b and
d) at 10 km on 12 July for S2. Black contours represent echo top heights greater or
equal to 10 km.
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Figure 36: An example of the wind field (a and c) and turbulence intensity (b and
d) at 10 km on 12 July for S3. Black contours represent echo top heights greater or
equal to 10 km.

Environmental parameters that influence turbulence were analyzed and com-

pared for the various model setups. Static stability produces turbulence through

convective instabilities. Model resolution alters the distribution of stability within 20

miles (32 km), but was not found to be significantly different based on direction away

from convection. Above 8 km in altitude, outside of convective cloud and convective

outflows, the static stability profile should not vary significantly in relationship to

direction away from convection (Lane and Sharman 2014). S4 had the lowest mean

stability, while S2 and S3 had the greatest mean stability on 12 and 15 June. Vertical
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shear produces turbulence through Kelvin-Helmholtz instabilities. The mean envi-

ronmental shear was found to be the least for S4 and greatest for S3. A directional

preference in vertical wind shear is apparent in the results especially for stronger

convective days. Richardson number is a diagnostic used to identify regions where

breaking gravity waves and subsequent turbulence are likely. The frequency of the

Richardson number being less than 0.25 was nearly the same for all three model se-

tups and did not have a significant directional preference for stronger convective days.

This result suggests that breaking convectively induced gravity waves are equally as

likely in model simulations with various resolutions. Lane and Knieval (2005) found

that the gravity wave spectrum and momentum fluxes varied with model resolution.

Unfortunately in this study the model resolution and temporal output was too coarse

to compute specific gravity wave characteristics, such as wavelengths, phase speeds,

and momentum fluxes. However, if vertical velocities and accumulated precipitation

are utilized as proxies for gravity waves, there is a significant variation in frequency

and location between model resolutions.

In regards to aviation applications, this study found that resolution influences

the direction turbulence is located away from convection. Current Federal Aviation

Administration thunderstorm avoidance guidelines recommend that pilots use a lat-

eral avoidance range of 20 miles from severe convection. While turbulence is not

isotropic in nature, resolution alters the direction distribution of turbulence, more

specifically, particular directions have less turbulence and could be safer to fly through

than others. Convective types alters the directional preference of turbulence. More

research, both with observational and modeling platforms is vitally needed to verify

the directional preference of turbulence around various types of convection if avia-

tion is to be more efficient during convective seasons. Idealized modeling and further
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investigation of planetary boundary layer schemes (calculation of TKE) is necessary

for turbulence prediction improvement.
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CHAPTER 5

PROPERTIES OF CONVECTIVELY INDUCED TURBULENCE
OVER DEVELOPING OCEANIC CONVECTION

5.1 Motivation

Convectively induced turbulence (CIT) continues to be a prediction challenge for

global aviation operations. Some studies have examined CIT encounters through

dedicated numerical simulations in more detail. These studies have lead to some

advancement in our understanding of CIT but more research needs to be done to

fully understand all physical processes that lead to convection related turbulence.

Furthermore, the majority of these studies have been limited to mature convection

in the midlatitudes (Barber et al. 2018; Trier and Sharman 2016; Lane and Sharman

2014; Zovko-Rajak and Lane 2014; Lane and Sharman 2012; Trier et al. 2012; Lane

et al. 2009; Trier and Sharman 2009; Lane and Sharman 2008; Koch et al. 2005;

Lane et al. 2003). Because the scientific research on turbulence associated with

tropical convection (developing and mature) is sparse, aviation operations in tropical

regions abide by thunderstorm avoidance policies designed from research of mature

midlatitude convection. The Federal Aviation Administration (FAA) in the U.S. set

policies that include a lateral avoidance of 20 mi (32.2 km) from severe convection

(U.S. DOT-FAA 2017).

While consistency in operations between the midlatitudes and tropics may re-

duce the number of guidelines needed to avoid convective hazards, it could also be

inefficient for flight routing and planning when tropical convection is significantly dif-
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ferent than midlatitude convection. It is commonly understood that there are some

significant dynamical and physical differences between the convection populations

that occur in the continental midlatitudes and maritime tropics (Vant-Hull et al.

2016; Liu and Zipser 2005; Yuter et al. 2005; Chin et al. 1995). These differences

are discussed further in section 2.5. There is also a difference in the stability and

shear profiles of the tropical and midlatitude environments. Generally, vertical wind

shear is lower in the tropical environment (Wissmeier and Goler 2009) and moist

static stability is less (Saha and Singh 1972; Garstang and Fitzjarrald 1999; Frierson

2006; Frierson and Davis 2011). Tropical developing convection poses a challenge to

aviation because nowcasting products used for the identification of developing con-

vection are limited temporally and spatially. Current operational forecasting systems

also have difficulties accurately predicting the location and timing of developing con-

vection. Due to these numerous challenges associated with developing convection,

hazards to aviation operations are not completely understood and no specific FAA or

ICAO (International Civil Aviation Organization) avoidance guidelines exist. Pilots

do have on-board radar systems that can detect developing convection. However, the

operation and tilt management of the radar at cruising altitude is at the discretion

of the pilot, which can lead to unexpected CIT encounters when on-board radar is

improperly used (M. Poellot 2018, personal communication; Marconnet et al. 2016;

AIRBUS 2007).

In this study, a numerical simulation of a severe turbulence encounter is com-

pared against observations and in situ measurements of turbulence. Indices commonly

used for turbulence prediction are used as turbulence diagnostics and examined dur-

ing time periods near the turbulence encounter. Indices that perform well for the

convective environment are used to analyze turbulence during the developing and
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mature stages of the convective cycle to understand the influences of convective stage

on turbulence.

5.2 Turbulence Incident in Southern Gulf of Mexico: 20 June 2017

On 20 June 2017, a commercial aircraft (Boeing 737) traveling from Panama City,

Panama to Houston, Texas at approximately 11 km cruising altitude encountered

severe turbulence 90 miles east of Cancun, Mexico. The encounter occurred at 1651

UTC near 21.84 ◦N, -86.16 ◦E. During the encounter the aircraft experienced normal

load factors of -0.73 to 1.6 g for approximately 20 seconds and decreased in altitude

by 120 m (Fig. 37). Nine passengers and one crew member sustained injuries and

received medical attention. Synoptically, the jet stream was located north of 37 ◦N

and was in a zonal flow pattern with a jet streak located west of Washington state

over the Pacific ocean (CIMSS, NOAA, WPC, College of Dupage, not shown here).

Winds aloft over the Gulf of Mexico were weak and had a northerly component along

the flight trajectory. There were enhanced regions of vertical wind shear over the Gulf

of Mexico between the 350 mb and 200 mb (9.7 km and 11 km) and speed shear of 30-

40 kts between the upper (less than 300 mb) and lower atmosphere (greater than 700

mb). The horizontal gradient of vertical wind shear was oriented almost exactly along

the flight trajectory. In addition to wind shear along the flight trajectory, there was

deformation and enhanced upper level divergence. High values of absolute vorticity

were limited in areal coverage over the Gulf of Mexico but had a local maximum

northeast of the Yucatán Peninsula.

A broad region of low pressure was located over the Gulf of Mexico (Fig.

38). The low pressure center became more organized over the Gulf of Mexico on 20

June and developed into Tropical Storm Cindy by 1800 UTC. An extensive cloud

field with embedded deep convection extended east of the low pressure center in the
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Figure 37: Baro-corrected altitude (km) and acceleration (g) recorded by the aircraft
from 1552 UTC to 1800 UTC.

Gulf of Mexico. In relation to the flight path, convection was abundant but satellite

imagery and pilot records indicate the aircraft was out of cloud at the time of the

incident in a clear region above lower cloud tops. Brightness temperatures calculated

from GOES-13 radiances reached minimum temperatures of 190 K in isolated areas

to the west and north of the aircraft around the time of the encounter and near 220

K in the vicinity of the aircraft (Fig. 39a-b; note that here and in subsequent figures

the location of the aircraft at the time of the severe turbulence encounter is indicated

with a star symbol).

The Convective Diagnosis Oceanic Algorithm (CDO) is a nowcasting tool de-

veloped to improve safety and efficiency along trans-oceanic flights (Herzegh 2002).

The algorithm has four inputs (observational and numerical) that are used to detect

convective hazards and better identify convective structure (Kessinger et al. 2008;

Kessinger 2017). These inputs are cloud top height (CTH) from infrared brightness
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Figure 38: 1500 UTC surface analysis issued by the Weather Prediction Center.

temperature, the global convective diagnosis- the difference between the brightness

temperature of the infrared channel and the brightness temperature of the water

vapor channel, GOES-R Overshooting Tops algorithm, and a 15 minute lightning

density field. The CDO algorithm estimates convective intensity on a scale of 1 to 6

every 15 minutes and is calculated on a global scale using 6 geostationary satellites.

CDO identified the Gulf of Mexico as an area with convective hazards. Re-

gions of lightning and overshooting tops near the aircraft at the time of the turbulence

incident occurred based on the GOES-R Overshooting Tops algorithm and Earth Net-

works lightning data (Figs. 39c-f and 40). Numerous lightning strikes were recorded

within 5 minutes of the turbulence incident. Echo top heights determined by CDO

were estimated to be 10.7 km near the location of the turbulence encounter at 1700

UTC and greater than 13 km in isolated cells to the west, south, and north of the

102



Figure 39: Observed brightness temperatures (K) from GOES-13 at a) 1545 UTC
and b) 1645 UTC on 20 June, 2017. The Convective Diagnosis Oceanic Algorithm
(CDO) hazards (c-d) at the same times as a-b (threshold descriptors in Table 11).
Time (minute) of a detected lightning flash from 1530-1600 UTC (e), 1630-1700 UTC
(f). White (a and b), blue (c and d) and black (e and f) stars represent the aircraft
location at 1651 UTC.
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Table 11: Threshold descriptions of the Convective Diagnosis Oceanic Algorithm.

Threshold Description

2
Satellite data only

contributed to diagnosis

3
Lightning but not through the entire

analysis period and no overshooting top

5
Lightning present at the 15th, 30th,

and 60th minute but no overshooting top
6 Same as 5, but an overshooting top is present

aircraft. While CDO performed well for this particular case, it cannot provide fore-

casting information of convection needed for flight planning operations. The synoptic

and mesoscale atmospheric conditions suggest that turbulence was likely convectively

induced and enhanced in regions of wind shear. To adequately predict turbulence

for this case day, turbulence diagnostics must capture both large scale features such

as vorticity, mesoscale features such as stability, deformation, and wind shear, and

subgrid-scale motions such as turbulent kinetic energy.

5.3 Data and Methods

5.3.1 Model setup

In this study, a 24 hour hindcast of tropical convection from 20 June 2017 is made

using the Advanced Research WRF (ARW) model version 3.9 (Skamarock and Klemp

2008). This simulation is initialized at 0000 UTC with quarter degree GFS analysis

data (http://rda.ucar.edu/datasets/ds084.1). One parent and two nested domains are

used in this simulation with a horizontal grid spacing of 3 km in the innermost domain

and 100 vertical levels (Fig. 41). The vertical grid spacing between 8 km and 12 km

is approximately 325 m. The horizontal resolution of this simulation is comparable
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Figure 40: Earth Networks lightning from 1645-1655 UTC (white crosses) and cloud
top temperature (K) from GOES-13 at 1645 UTC. The black star represents the
location of the aircraft at 1651 UTC.

to operational modeling systems currently used and the increased vertical resolution

has been shown to be adequate for turbulence prediction (Barber et al. 2018). A

10-km damping layer is used at the model top which is set to approximately 30 km

(10 hPa). This study uses the Thompson microphysical parameterization, the Tiedke

cumulus scheme, and the Mellor-Yamada-Janjić (MYJ) planetary boundary layer

scheme (additional parameterization information is provided in Table 12). Simulation

output is saved every 10 minutes to examine convective development, maturity, and
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Figure 41: Model domain for 20 June 2017 simulation. D02 represents the first
nest within the domain with horizontal grid spacing of 9 km and D03 represents the
innermost nest of the model set up with horizontal grid spacing of 3 km (red box).
Area designated for convective development analysis is represented by the black box.
The red star represents the location of the aircraft at 1651 UTC.

dissipation of individual convective cells. The output variables include simulated

radar reflectivity which is calculated from the WRF radar routine.

5.3.2 Turbulence metrics

Turbulence diagnostics that are used in this study include the Richardson number,

eddy dissipation rate, and second-order structure functions with a separation distance

of 10∆x (see the Appendix for more details). These indices are chosen based on the

environmental conditions of the case day and previous usage in turbulence studies

and NCAR’s Graphical Turbulence Guidance system (GTG-2; Sharman and Pearson

2017). Additional indices that are commonly used for diagnosing turbulence including

the Brown index (Brown 1973), Colson-Panofsky turbulent kinetic energy metric

(Colson and Panofsky 1965), the Dutton index (Dutton 1980), the Ellrod index (T2;

Ellrod and Knapp 1992), and the DTF3 index (Marroquin 1998) were also computed

for this case day, but will not be discussed due to poor performance. More specifically,
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Table 12: Model parameterizations used in 20 June 2017 simulation.

Model physics Model setup
Microphysics Thompson

PBL MYJ
Surface layer MM5
Land surface Noah

Shortwave radiation RRTMG SW
Longwave radiation RRTMG LW

Cumulus Tiedke (D01 and D02)

the Brown and Ellrod index suffered resolution sensitivity as was found in Barber et

al. (2018). The calculations and additional information about these diagnostics can

be found in the Appendix.

5.4 Results

5.4.1 Verification of simulated convection

The simulated synoptic features of 20 June 2017 include a low pressure center north

of the Yucátan Peninsula that deepens with time throughout the simulation. The

simulated wind shear along the plane trajectory is both directional and speed shear. In

the domain, simulated cloud features include a convective line similar to observations

(as shown in Fig. 39a). Simulated cloud top temperatures (CTTs) calculated using

the mixing ratios of the microphysical species from 1500-1800 UTC show the vertical

convective structure and the intense development and decay of the convective line

(Fig. 42). Within the convective line (squall line), embedded cells had CTTs less than

210 K and a larger area of colder cloud tops to the north of the aircraft. Simulated

CTTs were warmer than observed and biased in the western direction (compare Fig.

42 with Fig. 39a-b). This direction bias is important because observed CTTs imply
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Figure 42: Simulated cloud top temperatures (K) at a) 1600 UTC and b) 1700 UTC
on 20 June, 2017. White stars represent the approximate location of the aircraft at
1651 UTC.

that there were clouds directly below the aircraft while simulated CTTs indicate the

aircraft would have been out of cloud with no cloud field underneath near the time of

the turbulence encounter. The bias in cloud location and convection also influences

the location of simulated turbulence.

The same squall line discussed above is shown using simulated radar reflectivity

values (Fig. 43a). The convective line structure has a north-south orientation with a

larger complex to the north. 2-km simulated radar reflectivity values exceed 55 dBZ

in the embedded cells.With regard to the location of the turbulence encounter (21.84

◦N, -86.16 ◦E), 2-km simulated radar reflectivity values are zero while directly to the

west maximum values exceed 50 dBZ. There is also an area of convection directly to

the north of the aircraft’s location that was decaying throughout the analysis period.
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Echo top heights (not shown; calculated from simulated radar reflectivity values with

a threshold of 18-dBZ) that correspond with the regions of maximum 2-km radar

reflectivity values exceed 14 km. At the location of the aircraft no echo tops are

simulated but directly to the west a cell developed to heights greater than 14 km and

growth was more than 10 km during an hour. The analysis of the change of echo top

height with time shows the greatest convective development was between 1500-1700

UTC. Closest to the aircraft convection was mainly decaying, but numerous cells

within 100 km of the aircraft were rapidly growing.

Figure 43: 2-km simulated radar reflectivity (a) and lightning flash densities per ten
minutes determined from b) ice water path at 1650 UTC on 20 June, 2017. Black
stars represent the approximate location of the aircraft at 1651 UTC.

Lightning was prevalent in the region near the time of the turbulence en-

counter, specifically around convective cores. Within the region of interest, more

than 2000 lightning flashes were recorded by Earth Networks lightning detection net-

work between 1500-1800 UTC with the highest frequency between 1600-1700 UTC.

Near the time of the turbulence encounter lightning was recorded near the trajec-
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tory of the aircraft (Fig. 39f). Lightning from the model simulation was determined

based on various empirical relationships that relate model variables of maximum up-

draft velocity, ice water path (column integrated ice, snow, and graupel mass for

temperatures below -5 ◦C), graupel mass and ice mass fluxes to lightning flash rate

(see Barthe et al. 2010 for these relationships). These relationships were adapted to

predict lightning densities per km2 for this model simulation by comparing observed

lightning densities with the above model parameters (e.g. Allen et al. 2016). These

parameters differ between observational and modeling data and also depend on model

simulation setups such as grid spacing and a chosen microphysics scheme. At the time

of the turbulence encounter, simulated lightning was frequent within simulated con-

vective cores and anvil cloud regions based various predicted lightning density-model

parameter relationships. Figure 43b shows an example of predicted lightning density

based on ice water path.

In summary, the model simulation was able to capture the morphology of the

convective line extending north to south in the Gulf of Mexico and the depth of con-

vection as compared to observations. The simulated convection was intense in nature

with echo tops exceeding the typical cruising altitudes of commercial aviation and fre-

quent lightning. While the type of convection, depth, and hazards such as lightning

were similar to observations, the location of the convective line was approximately

100 km too far west as compared to the location of the turbulence encounter. Due to

the location bias of convection, the analysis of turbulence will be focused at a hypo-

thetical aircraft location also approximately 100 km to the west. However, turbulence

is still analyzed across the entire domain and the shift in aircraft location only influ-

ences the hypothetical flight path. Within figures, this location is designated with a

second star.
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5.4.2 WRF-derived turbulence predictors

Richardson number (Ri), second-order structure functions (SF), and eddy dissipation

rate (EDR) are used to diagnose turbulence from the model simulation. The objective

of the diagnostic comparison is to examine the performance of each diagnostic in a

convective environment where the diagnostics have not been evaluated in previous

studies (i.e. the tropics and developing convection). The success of the turbulence

diagnostic in the simulated convective environment will motivate the examination of

the diagnostic for specific life stages of convection (section 5.4.3). Horizontal cross

sections of the various indices will focus on the prediction of turbulence between the

altitudes of 10 km, 11 km (altitude of the aircraft), and 12 km, as these altitudes are

common cruising altitudes. Echo top heights are used as a proxy for cloud and an

indicator of in-cloud or out-of-cloud. More specifically, if an echo top intersects the

analysis height, the grid cell at the analysis height is considered in cloud. If an echo

top is less than the analysis height, the grid cell at the analysis height is considered

out of cloud (following the methodology implemented in Barber et al. 2018).

Ri is used in this study to indicate regions that are likely turbulent, but can-

not be used to differentiate between various intensities of turbulence. Ri indicates

areas of turbulence outside of convective regions and the likelihood of turbulence in-

creases with height. In areas where Ri is less than 0, analysis of isentropes suggest

convectively generated gravity waves began to break. Prior to, during, and after the

turbulence encounter, turbulence diagnosed by Ri subtly varies in areal coverage and

magnitude. Between 10 km to 12 km in altitude, Ri less than 0.25 is within 20-50

km of convective features (Fig. 44b). If Ri was the only diagnostic used as a fore-

cast tool for turbulence avoidance, the altitudes between 10 km to 12 km would be

forecasted as a high likelihood of experiencing turbulence within 50 km of convec-

tion and extremely unlikely to the east of the convective line (west of -86.5 ◦E). The
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probability of experiencing turbulence increases significantly with height and flying

over convection would be hazardous (Lane et al. 2012). Importantly, the turbulence

that is diagnosed has a higher likelihood of being out-of-cloud than in-cloud, and is

therefore an additional concern to aviation.
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Figure 44: Simulated echo tops (km) at 1650 UTC and maximum turbulence (mini-
mum for Ri) at 1650 UTC diagnosed by b) Richardson number, c) EDR, and d) ε1/3

(structure functions converted to EDR units) between the altitudes of 10 km and
12 km. Turbulence intensity is represented by light (green), moderate (yellow), and
severe (red) thresholds. Black, blue, and magenta contours represent echo top heights
greater than 10 km, 11 km and 12 km. Black (purple) stars represent the aircraft
(shifted analysis) location at 1651 UTC.
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Barber et al. (2018) simulated a week of convective cases in North Dakota,

in which EDR was shown to reasonably match PIREPS. However, in this case EDR

under-predicted intensity of turbulence when compared to the turbulence intensity

observed by aircraft (Fig. 44c. EDR rarely exceeded a value of 0.15 m2/3 s−1 or the

intensity of light. Similar to Ri, the areal coverage of turbulence increases with height.

At the time of the turbulence encounter, there were areas with EDR values between

0.2-0.3 m2/3 s−1 (moderate) between the altitudes of 10 km and 12 km, approximately

100 km to the southwest of the turbulence encounter location. However, between 10

km and 12 km ten minutes prior to the turbulence encounter and twenty minutes

afterwards, EDR was less than 0.2 m2/3 s−1 and limited to fewer than 100 grid pixels.

If EDR was the sole turbulence diagnostic for this case day, EDR would not have

been successful in forecasting turbulence around convection and in clear air regions.

Due to this under prediction of turbulence by the EDR diagnostic, it will not be used

to analyze turbulence around developing convection (section 5.4.3).

Converting SF to EDR units (see the Appendix) turbulence intensity can be

discussed as EDR metrics (Fig. 44d). Relating the converted SF in EDR units to

turbulence intensity thresholds provided in Table 21, moderate to severe turbulence

is diagnosed between the altitudes of 10 km and 12 km. At these altitudes there is

moderate turbulence diagnosed near the aircraft location. The most severe turbulence

is located to the west and south of the aircraft, with the largest areal coverage of severe

turbulence near 19.7 ◦N, -87 ◦E. Very localized regions of moderate-severe turbulence

are present substantial distances (more than 50 km away in the horizontal direction)

from cloud boundaries at all heights. The use of SF converted to EDR units aids in

assessing the intensity of turbulence that aviation may experience and in this case

would have predicted out-of-cloud turbulence of moderate intensity near the aircraft.
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Turbulence distributions are important indicators of how turbulence diagnos-

tics perform. It is also important to understand in-cloud and out-of-cloud turbulence

distributions for aviation applications. SF converted to EDR units (see the Ap-

pendix) between the altitudes of 10 km and 12 km from 1500-1800 UTC is provided

in (Fig. 45) and illustrates the greater areal coverage (nearly an order of magnitude)

of out-of-cloud turbulence when compared to in-cloud turbulence. The distribution

of out-of-cloud turbulence using SF finds nearly 1% of SF values are light and less

than 0.1% are moderate or severe. The maximum EDR value of in-cloud turbulence

is nearly the same as out-of-cloud, but the relative likelihood of experiencing the

most severe turbulence while in cloud is greater than while out of cloud. The greatest

hazard remains with out of cloud turbulence as pilots generally avoid flying through

convective cloud. The distribution of turbulence at various heights (not shown) for

a forecast period of 1500 UTC to 1800 UTC highlights that 10 km in altitude would

have the greatest likelihood of experiencing both in-cloud and out-of-cloud turbulence

In summary, Ri and SF performed adequately at diagnosing turbulence near

active convection at common cruising altitudes. The majority of turbulence diag-

nosed is out-of-cloud and occurs near the time of the observed turbulence encounter

and location. However, the location of turbulence relative to convection does differ

between the diagnostics which highlights how the type of turbulence each diagnos-

tic is designed for influences the prediction. SF will be used to diagnose turbulence

during the developing stage of convection because of the better performance for the

convective environment and because it can be converted to an intensity threshold

without requiring any calibration (section 5.4.3).
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Figure 45: Count of out-of-cloud (OC; red) and in-cloud (IC; blue) turbulent grid cells
and probability density functions of OC and IC turbulent grid cells calculated from
structure functions converted to EDR units from 1500-1800 UTC. Vertical dashed
lines represent the turbulence intensity thresholds (light-green, yellow-moderate, and
magenta-severe).
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5.4.3 Analysis of turbulence prediction in the vicinity of developing
convection

Numerous meteorological parameters can be used to distinguish between developing,

mature, and dissipating convection. Developing convection in past studies has been

defined by echo tops that increase in height with time, the presence of an updraft only,

vertical growth only, vertical velocities near 10 m s−1, insignificant convective rain

totals, and the absence of cold rain processes ( Lin 2010; Markowski and Richardson

2010; Futyan and Del Genio 2007; Byers and Braham 1949). Mature convection in

past studies has been defined as echo tops that reach a maximum in altitude, the

presence of an updraft, downdraft, and anvil, the maximum frequency of lightning,

significant convective rain totals, vertical velocities that exceed various percentiles,

sustained updraft strength, and maximum areal coverage (Mullendore et al. 2013;

Markowski and Richardson 2010; Carey and Rutledge 2000; Tapia et al. 1998; Byers

and Braham 1949). In this study, individual convective objects (CO) are defined as

contiguous regions with echo tops greater than 8 km in height. The COs are followed

through time using the object’s centroid location. A new object is defined if the

centroid location of a previous convective object has changed by more than 10 km

in a 10 minute period. Developing convection is defined as a convective object in

which the simulated maximum vertical velocity for that object is less than the 90th

percentile of all maximum vertical velocities of that object’s lifespan and less than the

maximum vertical velocity of the following time period. To determine if turbulence

is associated with developing convection or mature convection, distance is calculated

between the turbulent grid cell and the boundaries of the convective object.

Developing convection is examined by creating a subset within the study do-

main between the longitudinal range of -89 ◦E to -86 ◦E and the latitudinal range of

20 ◦N to 23 ◦N (black box in Fig. 41). This particular region had numerous convective
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cells evolving with time and large variations in echo top height. To isolate develop-

ing convection from mature and dissipating convection, maximum vertical velocities

within convective objects are used as thresholds (as discussed above). From 1510-

1800 UTC, 77 convective objects were identified as developing and maximum vertical

velocities of the objects varied from 3 m s−1 to 14 m s−1. Convection intensified in

three distinct periods from 1510-1600 UTC, 1600-1710 UTC, and 1710-1800 UTC, in

which 46 developing convective objects were present in the first active period, 26 in

the second active period, and 4 in the third active period. For the convective objects

that are identified as mature, the vertical velocity magnitudes in the mature convec-

tion (i.e., the 90th percentile of vertical velocity) exceeded 5 m s−1 for 24 objects and

10 m s−1 for 4 objects, while the mean vertical velocity was 3.86 m s−1. The timespan

for the majority of convective objects identified as developing to transition to mature

occurred in 10 minutes and the maximum time for development was 40 minutes.

Out-of-cloud turbulence is analyzed in relationship to the number of CO that

are within 30 km of the turbulence location. By examining turbulence at 10 km (the

height with the greatest likelihood of experiencing turbulence) in this manner, the

influence of convective stage can be further understood in terms of aviation safety.

Figure 46 shows the distribution of turbulence values for turbulent grid points that

are within 30 km of CO. The areal coverage of turbulence within 30 km of only

mature/dissipating CO is greater than the areal coverage of turbulence within 30 km

of both mature/dissipating and developing CO. However, turbulence intensities are

found to be the greatest when developing convection is present in the region. While

the exact convective source of turbulence cannot be determined, these results suggests

that a flight path near developing convection is likely to experience the most severe

turbulence.
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Figure 46: Distribution of structure functions converted to EDR units where only
mature/dissipating (MDC) convective objects are within 30 km of a turbulent grid
point (red) and where both mature/dissipating and developing convective objects are
within 30 km of a turbulent grid point (blue). Vertical dashed lines represent the
turbulence intensity thresholds (light-green, yellow-moderate, and red-severe).

Turbulence is then analyzed in relationship to the distance from CO. The

distribution of turbulence closest to developing convection demonstrates that the

majority of values were less than 0.22 m2/3 s−1 (moderate) at all three analysis heights

(Fig. 47) while the most extreme turbulence values were located at 10 km in altitude.

At 11 km and 12 km in altitude, turbulence closest to developing convection does

exceed 0.22 m2/3 s−1 (moderate) but occurs at a lower frequency when compared

to 10 km in altitude. Turbulence nearest to mature and dissipating convection is

mostly less than 0.22 m2/3 s−1 (moderate) but at a higher frequency than developing

convection turbulence (Fig. 47). The majority of severe turbulence is closest to

mature convection and is more frequent than severe turbulence closest to developing

convection at all three analysis heights (results hold true for various methodologies

of defining developing and mature convective objects). However, the grid cells with

highest turbulence intensities were co-located with developing convection at 10 km in
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altitude (not shown in previous discussion due to analysis procedure). The particular

developing CO that was co-located with the highest turbulence value had maximum

vertical velocities increase more than 9 m s−1 in ten minutes. In addition, echo top

heights of the CO increased more than 3 km in altitude during the same development

period.

It can be hypothesized that the rapid development of convection likely formed

gravity waves as convection extended in stable regions (Lane et al. 2003); however

additional high resolution simulations (spatially and temporally) are needed to ad-

equately examine gravity wave characteristics and determine the exact dynamical

cause of the most severe turbulence. While the areal coverage of the most severe tur-

bulent cells co-located with developing convection is very limited, these regions are

more dangerous to aviation operations because of lack of avoidance guidelines during

developing convective scenarios. One important caveat with this analysis is that tur-

bulence co-located with developing convection may actually be caused by dynamics

associated with nearby mature convection. Turbulence can occur more than 100 km

away from mature convection (Lane and Sharman 2014; Zovko-Rajak and Lane 2014;

Lane et al. 2012; Lane et al. 2003; Pantley and Lester 1990; USAF 1982), and the

particular complexity of this simulation does not allow for the analysis of the pri-

mary source of turbulence. More specifically, turbulence co-located with developing

convection may not have been caused solely by the developing convection. But we

hypothesize that even when mature convection contributes to the turbulence signal,

the developing convection is playing an important role in modifying (often increasing)

the turbulence magnitude, especially in the limited timespan of development in this

study. These results highlight that the most severe values of turbulence can be located

near developing convection and pilots should use extreme caution around developing

convection. These results also stress the necessity of additional research to address
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the likelihood of turbulence generated by developing convection through the use of

high resolution simulations.

Figure 47: Distribution of structure functions converted to EDR units closest to
developing convection and mature and dissipating convection at 10 km, 11 km, and
12 km. Vertical dashed lines represent the turbulence intensity thresholds (light-green,
yellow-moderate, and red-severe).

5.5 Discussion and Conclusions

Convectively induced turbulence (CIT) prediction is a challenging problem globally

and more so in data-sparse regions such as tropical oceans. This study examined

turbulence prediction from a WRF simulation for an aviation case that experienced

severe turbulence near areas of active convection. Various indices including Richard-

son number (Ri), subgrid-scale eddy dissipation rate (EDR), and second-order struc-
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ture functions (SF) were used to diagnose turbulence. These particular indices were

chosen as turbulence predictors based on the synoptic and mesoscale conditions of the

convective environment. While Ri deduces environments that are favorable for turbu-

lence production, such as sheared environments and gravity wave breaking (Lane et

al. 2012), the precise intensity of turbulence that may occur in these regions cannot be

determined, limiting the usefulness for aviation operations. However, in stably strati-

fied environments it can be used as a scaling factor for other indices (Muñoz-Esparza

and Sharman 2018; Sharman and Pearson 2017).

EDR is a common turbulence diagnostic that is physically based and in past

studies has predicted turbulence in the midlatitudes accurately (Barber et al. 2018;

Ahmad and Proctor 2012). However, in this oceanic study EDR under-predicted

turbulence. A limitation with the calculation of EDR is the designation of the length

scale. Various methods in past studies have been used including constants, resolution

dependent length scales, and direct model output of length scale. Unfortunately,

there is no consensus on which approach is the most appropriate for the calculation

of EDR. Here, EDR was calculated from the TKE output by the Mellor-Yamada-

Janjić PBL scheme; further investigation using PBL schemes more commonly used

for WRF simulations for tropical convection is recommended.

SF was adequate at diagnosing turbulence near active convection at common

cruising altitudes. One problem that may occur through the methodology of cal-

culating structure functions is contamination by the updraft. Figure 48 shows the

locations of updraft regions within convective cells, the u and v-components of wind,

and locations of turbulence at 11 km. Turbulence is located near regions of updrafts

(where vertical motions are large), as these regions have perturbations and gradients

in both the u and v field. However, turbulence is also found where vertical motions
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are negligible and only strong gradients in the horizontal component of winds are

present.

Figure 48: U-component of wind (a; m s−1), b) v-component of wind (m s−1), and
c) vertical velocity (m s−1) with locations of structure functions converted to EDR
units greater or equal to 0.15 m2/3 s−1 (black contour) at 11 km in altitude.

This study finds that the turbulence indices (both used for CAT and CIT)

are limited in accuracy for tropical CIT prediction for this particular case. These

results highlight the need for more investigation of tropical turbulence prediction and

turbulence diagnostics. When radar observations and other in situ observations can

be utilized, nowcasting products provide the best guidance for turbulence prediction.

However, without radar coverage such as in this tropical oceanic case, SF and Ri pro-

vides guidance to aviation operations in avoiding turbulence, but many more studies

of tropical turbulence are needed to statistically verify these indices. More specifi-

cally, indices designed for midlatitude continental CIT may not perform as well for

tropical oceanic CIT motivating additional studies of diagnostic performance. While

this study did not investigate the influence of model resolution on the performance of
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the turbulence diagnostics, resolution sensitivity is a known limitation of large scale

diagnostics such as the Brown and Ellrod index. Additional research on resolution

sensitivity and calibration procedures of turbulence diagnostics is needed as model

resolution increases in operational forecasting.

Convection poses a hazard to aviation during multiple stages of the convective

life cycle. Forecasting developing convection is difficult due to the limited accuracy

of simulated convective initiation, including timing and location. These challenges

associated with forecasting developing convection further impact the prediction of

turbulence caused by developing convection. Although convective and turbulence en-

sembles mitigate some of the challenges of forecasting convection in general (Carlberg

et al. 2018; Storer et al. 2018; Iyer et al. 2016; Evans et al. 2014), nowcasting is

more heavily relied upon for developing convection in aviation applications. In this

study, a location bias in the convective feature of approximately 100 km was present,

motivating the need for convective ensembles for aviation operations such as flight

planning.

This study examined turbulence during an active period of convective growth.

Turbulence associated with developing convection was found to represent a small por-

tion of all turbulence during an active convective period. However, turbulence near

developing convection was more severe in magnitude than turbulence near mature

convection. While most turbulence was found to be associated with mature con-

vection, the severity of turbulence associated with developing convection is likely to

influence aviation more as pilots avoid regions with mature convection. In order to

reduce the number of aviation turbulence encounters globally, more research is needed

to understand the variation of CIT and the limitations of current prediction systems.
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CHAPTER 6

CHARACTERISTICS OF TROPICAL AND MIDLATITUDE
OUT-OF-CLOUD CONVECTIVELY INDUCED TURBULENCE

FROM HIGH RESOLUTION SIMULATIONS

6.1 Motivation

Convectively induced turbulence (CIT) is an operational challenge to aviation as

global flight routes increase and air space becomes more congested (Statista 2018).

While numerous forecast guidance systems including real time avoidance algorithms

and preflight forecast systems like the Graphical Turbulence Product (GTG-2; Shar-

man and Pearson 2017; Pearson and Sharman 2017; Sharman et al. 2006) are in use

and are frequently updated to provide pilots with more information, the complexity of

CIT is not always depicted by these systems. To address the limitations of prediction

systems and reduce the number of aviation encounters with convective hazards, the

FAA has thunderstorm avoidance guidelines in place. The most impactful guideline

that influences flight routes and Air Traffic Control is the lateral avoidance of 20 miles

from severe convection. While the guidelines are based on scientific research of CIT

in the midlatitudes, because the understanding of tropical CIT is limited, the same

guidelines are also followed by U.S. airlines along tropical flight routes. However,

convective and environmental properties are known to vary between the midlatitudes

and tropics, from the strength, depth, and duration of convection, to the environ-

mental shear and stability profiles, all of which influence the hazards aviation could

encounter.
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The hazards to aviation caused by convection are also dependent on the type

and stage of convection. Variations in turbulence probability from specific convective

events are not currently addressed by the FAA guidelines, but only convection iden-

tified as severe is avoided. More specifically, developing convection is a hazard not

addressed by the FAA guidelines if not severe in intensity. Developing convection is a

concern to aviation as it is generally poorly forecasted in terms of timing and location,

and therefore cannot be accounted for in flight planning with confidence (Barber et

al. 2019) without nowcasting products. In addition, without real time observations

of convection from satellite and ground-based radar systems, the pilot has to rely on

visual cues of developing convection and proper usage of on-board radar.

High resolution modeling is commonly used to examine small-scale processes

that operational forecasting systems cannot resolve. CIT occurs across multiple scales

from 10 m to 1000 m (Lester 1994), and is generally parameterized in operational

forecasts. High resolution simulations allow for more in depth analysis of convective

processes that in turn produce turbulence, which aids in the development of new

prediction systems. These small-scale and temporally limited processes include the

generation of convective gravity waves, enhancement deformation zones along cloud

boundaries, and enhancement of shear as convection penetrates the tropopause. High

resolution simulations of convection allow for further examination of the characteris-

tics of turbulence and the relationship of convective intensity.

This study will examine the influence of environmental conditions on the dis-

tribution of out-of-cloud CIT for tropical and midlatitude convective simulations to

determine if the probability of experiencing CIT varies between regions using high res-

olution simulations. More specifically, this study will investigate if the environmental

conditions are similar for convective type in the midlatitudes and tropics and if the

likelihood of turbulence is similar. Six encounters of moderate to severe CIT in various
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convective regimes are used as simulation case days and compared to observations.

Suggestions of improved turbulence prediction in the tropics and midlatitudes will be

a result of this research. These simulations are analyzed to identify improvements to

global turbulence prediction.

6.2 Data and Methods

In this study, 24 to 30 hour simulations of midlatitude and tropical convection are

made using the Advanced Research WRF (ARW) model version 3.7 (Skamarock and

Klemp 2008). All simulations are initialized with ERA-Interim global reanalysis data

at various times (Table 13). One parent and two nested domains are used in these

simulations with a horizontal grid spacing of 4.5 km, 1.5 km, and 500 m from the outer

to innermost domain (Fig. 49). All domains have 100 vertical levels. The vertical

grid spacing between 8 km and 12 km is approximately 325 m. The number of vertical

levels is decreased to 65 (∼550 m grid spacing between 8 km and 12 km) for 04 June

2018, due to a numerical instability issue in the simulation, likely due to the terrain.

A 10-km damping layer is used at the model top which is set to approximately 30 km

(10 hPa). This study uses the WDM6 microphysical parameterization and the Mellor-

Yamada-Janjić (MYJ) planetary boundary layer scheme (additional parameterization

information is provided in Table 14) for all simulations except 10 July 1997 and 03

August 2009. These particular cases use the Morrison microphysical scheme as it

produces convection that is in better agreement with observations. Simulation output

is saved every 10 minutes during periods of convective activity to examine convective

development, maturity, and dissipation of individual convective cells (Table 13).

Turbulence is identified in this study using a suite of commonly used diagnos-

tics including the Brown Index, Colson-Panofsky turbulent kinetic energy, Richardson

number, DTF3, eddy dissipation rate, and second-order structure functions (see Ap-
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Figure 49: Model domain of case studies. D01 and D02 have a horizontal grid spacing
of 4.5 km and 1.5 km. Innermost nest (D03) has a horizontal grid spacing of 500 m.
“X” represents the location of the turbulence encounter.
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Table 13: Initialization time, analysis period, and time period of increased temporal
resolution.

Case day Initialization time Analysis period
Period of increased
temporal resolution

03 Aug 2009
(DCT)

1200 UTC
02 Aug

1800-1800 UTC 1200-1400 UTC

10 July 1997
(DCM)

0000 UTC
10 Jul

0600-0600 UTC 1800-2300 UTC

27 Dec 2014
(MCT)

0000 UTC
27 Dec

0600-0600 UTC 0000-0400 UTC

04 Jun 2018
(MCM)

1200 UTC
03 Jun

1800-0600 UTC 1900-2300 UTC

20 Jun 2017
(HCT)

0000 UTC
20 Jun

0600-0600 UTC 1200-1800 UTC

29 Jun 2018
(HCM)

1200 UTC
29 Jun

1800-1800 UTC 1800-0000 UTC

pendix for calculations). Structure functions and eddy dissipation rate in particular

are chosen based on their performance from previous studies in the midlatitudes and

tropics (Barber et al. 2018; 2019). A separation distance of 7∆x is used for the

calculation of structure functions in this study. The alteration in separation distance

from Barber et al. (2019) and chapter 5 (10∆x) is based on previous investigation of

separation distance when 500 m resolution is implemented. In-cloud and out-of-cloud

turbulence are differentiated from one another using the mixing ratios of cloud ice

and cloud water. A threshold of greater than or equal to 0.1 g kg−1 (Lane et al. 2003)

defines in cloud and less than 0.1 g kg−1 defines out of cloud. An 18-dBZ thresh-

old for simulated radar reflectivity is used to determine the echo top height which is

used as a proxy for storm height. The distinction between developing convection and

mature will follow the methodology of Barber et al. (2019) and chapter 5, with the

distinction that the 90th percentile calculation is performed on all vertical velocities

of the object instead of only the maximum velocity of the column. The calculations
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Table 14: Model parameterizations used in simulations.

Model physics Model setup
Microphysics WDM6 (Morrison for DCT and DCM)

PBL MYJ
Surface layer MM5
Land surface Noah

Shortwave radiation RRTMG SW
Longwave radiation RRTMG LW

of static stability (N2; square of Brunt Vaisala frequency) and vertical wind shear

(Sv
2) follow the calculations of chapter 4. Static stability, vertical wind shear, and

vertical velocity are used to characterize the environment around convection as many

of them relate to turbulence generation.

6.3 Results

6.3.1 Case day and simulation overviews

In this section, details regarding six aviation encounters of convectively-induced tur-

bulence are summarized. Each case is identified in text through acronyms describ-

ing the type of convection that was the likely cause of turbulence (i.e., developing

convection- DC, mature convection- MC, or hybrid- HC) and the region the case oc-

curred in (i.e., tropical- T or midlatitude- M). Each tropical turbulence case is paired

with a midlatitude turbulence case in which the convective type and apparent cause

of turbulence was similar. Table 15 provides a summary of the time and location of

the turbulence encounters. Richardson number (Ri), eddy dissipation rate (EDR),

and second order structure functions (SF) for each case day are provided in Figures

50-55 as depictions of areal coverage and turbulence intensity in the region of interest.

The height of interest of each case varies in order to be related to the flight altitude at
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Table 15: Location and time of aviation encounter with turbulence.

Case day Time of encounter Location of encounter
DCT 0755 UTC 19.73 ◦N, -68.55 ◦E
DCM 2141 UTC 46.4 ◦N, -103.6 ◦E
MCT 2317 UTC 3.62 ◦S, 109.70 ◦E
MCM 0108 UTC 33.4 ◦N, -106.4 ◦E
HCT 1651 UTC 21.84 ◦N, -86.16 ◦E
HCM 2257 UTC 46.51 ◦N, -102.46 ◦E

the time of the turbulence encounter. The results discussed below are the diagnostics

without calibration.

03 August 2009 (DCT)

On 03 August 2009, a Boeing 767 encountered severe turbulence while flying

to the northeast of the Dominican Republic (19.73 ◦N, -68.55 ◦E) at 0755 UTC. Con-

vection in the area was rapidly developing and the aircraft flew through the top of

a convective updraft (Monette and Sieglaff 2014; Ahmad and Proctor 2011; NTSB

2011; Vasquez 2009) causing 33 minor injuries. Vertical accelerations experienced by

the aircraft ranged from -1 g to 2 g between 11 km and 11.5 km for no more than 8 sec-

onds. While convection was forecasted for this region, turbulence was not predicted

along the aircraft’s flight path by the deformation-vertical shear index (NTSB 2011).

Although turbulence was not predicted, the captain was aware of convection in the

area and had begun safety procedures to limit hazards associated with convection. A

meteorological overview of this case day was compiled by Vasquez (2009). Briefly, the

area in which the flight experienced turbulence was influenced by the Bermuda high

with weak winds aloft, but instability was present in sounding observations between 8

km and 12 km. Convection was very isolated, extending past 11 km in very few cells,

and likely was enhanced by a tropical easterly wave propagating through the region.

Satellite observations were used to confirm the aircraft had penetrated a developing
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convective cell. This case highlights the limitations of turbulence prediction systems

(forecasts and nowcasts), communication procedures between the pilot and passen-

gers, as well as the hazards associated with developing convection in data sparse

regions.The following paragraph will discuss the simulated convective properties for

DCT.

Isolated cells with simulated radar reflectivity values greater than 35 dBZ at

2-km initiate over the land features of the Dominican Republic and Haiti, due to

diurnal heating three hours into the simulation on 02 August 2009. Oceanic con-

vection initiates nine hours later at 0000 UTC on 03 August as weak isolated cells

(radar reflectivity values less than 50 dBZ) in the northeast region of the domain.

Oceanic convection persists north of the Dominican Republic for the next 18 hours of

simulation and reaches maximum intensity near 1340 UTC as convection propagates

westward. Echo top heights over the ocean are less than 8 km through the simulation

period, until after 1200 UTC when the depth of three convective cells northeast of

the Dominican Republic exceed 10 km. The morphology and depth of convection

resembles the observed convection (weak isolated cells). Convective available poten-

tial energy (CAPE) in the domain was greater than 2000 J kg−1 and the tropopause

was near 13.5 km. Compared to radar observations from San Juan, the simulated

convection over the ocean initiates approximately four hours later than observations,

but the location of the convective cell that likely influenced the aircraft is within 50

km of observations. The time period of 1200 UTC to 1400 UTC on 03 August will

be used to analyze the influence of convective stage on turbulence as it compares well

against observations, where cells are increasing in depth.

Simulated echo top heights, minimum Richardson number (Ri), maximum

eddy dissipation rate (EDR), and maximum second-order structure functions (SF)

at 1340 UTC are shown in Fig. 50 between 8 km and 12 km, as the turbulence
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encounter was near 10 km, and observed convection was extending past the altitude

of the aircraft. A large region of turbulence diagnosed by Ri is present to the south of

active convection between 8 km and 12 km from 1330 UTC to 1400 UTC. The majority

of the turbulence is out of cloud and increases in areal coverage with time. Near the

convective cell most representative of the cell the aircraft penetrated, turbulence is

not diagnosed by Ri. The use of Ri as a diagnostic for turbulence on this case day

would have indicated the presence of out of cloud turbulence south of convection,

but not turbulence directly near or within the convective cells themselves. EDR

highlights a similar area of possible turbulence as Richardson number. Again, the

hazardous region is to the south of convection and is out of cloud. However, when

EDR is converted to turbulence intensity and uncalibrated, the intensity is light and

null. The use of EDR with current thresholds and without calibration would not have

predicted turbulence greater than light along the flight path and would have predicted

an extremely small likelihood of experiencing turbulence in cloud. Maximum SF

values occur in the same region as Ri and EDR indicated, as well as to the north

of the turbulence encounter location. Without calibration, the conversion of SF to

turbulence intensity is light or null out of cloud. However, SF does indicate moderate

or greater turbulence between 8 and 12 km in the simulated convective cell most

similar to the observed cell. In terms of prediction, SF would have been a beneficial

diagnostic to aviation flying near developing convective cells.

10 July 1997 (DCM)

On 10 July 1997, a Boeing 757 encountered severe turbulence while out of cloud

flying southwest of Dickinson, ND (46.4 ◦N, -103.6 ◦E) at 2141 UTC. The aircraft

was navigating between numerous convective cells that were extending higher than

the altitude of the aircraft (11.2 km) near the time of the incident (NTSB 1997). The

aircraft passed over a developing convective cell that was located between two mature
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Figure 50: Echo top heights (a), minimum Richardson number (b), maximum eddy
dissipation rate (c), and maximum second-order structure functions (d) for DCT (03
August 2009) at 1340 UTC between 8 km and 12 km. Echo tops greater than 8 km
are shown in b-d as blue contours, and the black star represents the location of the
aircraft at 0755 UTC.
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convective cells, causing 22 injuries. Vertical accelerations ranged between 1.77 g and

-0.65 g for less than 2 seconds. As was the case for DCT, convection was forecasted

in the region, but turbulence was not predicted along the flight path. The pilot had

warned the passengers of possible turbulence when convection was in the region, but

the “FASTEN SEATBELT” sign was not illuminated. This particular case has been

examined with numerical simulations in Lane et al. (2003) in which a limited meteo-

rological overview is provided. Convection was initiated by a frontal system that was

associated with a prefrontal trough. The region was favorable for convective activity

as convective available potential energy (CAPE) was greater than 3500 J kg−1 and the

tropopause was near 11 km. This case again highlights the limitations of turbulence

prediction systems (forecasts and nowcasts), communication procedures between the

pilot and passengers, and the hazards associated with developing convection. DCM

is paired with DCT as the turbulence incidents were caused by rapidly developing

convective cells as aircraft passed through and over. The following paragraph will

discuss the convective properties simulated for DCM.

Simulated convection on 10 July initiates in the domain at 2000 UTC and

develops into two intense convective complexes with 2-km simulated radar reflectivity

values exceeding 55 dBZ over the next four hours of simulation time. Compared to

observations near the time of the aircraft encounter with the developing convective

cell, three individual simulated convective features (two more intense and one weaker)

are present in the domain at 2200 UTC. By 2300 UTC the all three cells have increased

in strength and echo top heights exceed 12 km. The convective cell that likely is

associated with the turbulence encounter rapidly increases in vertical extent and areal

coverage from 2200 UTC to 2300 UTC. CAPE in the domain is greater than 3000

J kg−1 and the tropopause is near 12 km. The morphology of simulated convection

compares well to previous scientific investigation of this case, however the intensity
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is too strong as a result of the microphysics used in this simulation. Maximum

vertical velocities exceed 60 m s−1 which is likely unrealistic and a byproduct of the

microphysics. However, the Morrison microphysical parameterization was used in

order to be consistent with DCT. The time period of 1800 UTC to 2300 UTC on

10 July will be used to analyze the influence of convective stage on turbulence as

it compares well against observations, where the suspect cell is rapidly increasing in

vertical depth.

Simulated echo top heights, minimum Ri, maximum EDR, and maximum SF

at 1340 UTC are shown in Fig. 51. Due to the differences in convective height, the

turbulence diagnostics are evaluated between 14 km and 16 km to be representative of

an aircraft flying above a convective cell that is rapidly developing. The height range

of 2 km is also applicable to the vertical envelop of turbulence above convection (1-3

km; Lane et al. 2003). As the convective cell increases in depth and areal coverage,

Ri out of cloud above the cell decreases, and is indicative of turbulence. The areal

coverage of EDR again agrees with the areal coverage of Ri and indicates localized

regions of moderate to severe turbulence above cloud. Both Ri and EDR adequately

predict turbulence above a rapidly growing convective cell. SF also diagnoses mod-

erate to severe turbulence above the convective cell, but the areal coverage is much

greater than both EDR and Ri predict. Through time, SF diagnoses severe turbu-

lence before the convective cell reaches a height of 13 km. While, SF does predict

turbulence of appropriate intensity above the convective cell, and the lateral distance

from convection is within 50 km of convection, the areal coverage varies drastically

from the other diagnostics. The individual values of SF also far exceed the threshold

of severe turbulence by more than one order of magnitude. SF for this particular case

likely needs to undergo calibration.

27 December 2014 (MCT)
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Figure 51: Echo top heights (a), minimum Richardson number (b), maximum eddy
dissipation rate (c), and maximum second-order structure functions (d) for DCM (10
July 1997) at 2210 UTC between 14 km and 16 km. Echo tops greater than 13 km
are shown in b-d as blue contours, and the black star represents the location of the
aircraft at 2141 UTC.
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On 27 December 2014, at approximately 2317 UTC, an Airbus A320 flying

at 9.75 km went into an unrecoverable aerodynamic stall over the Java Sea (3.62 ◦S,

109.70 ◦E). Convection was present along the flight route and pilots had requested

numerous altitude changes in order to avoid the convection. While the Aircraft Acci-

dent Investigation Report (KNKT 2015) concluded that the accident was not directly

caused by weather, but was unfortunately caused by pilot error, this case is a favorable

candidate for assessing turbulence prediction in tropical regions. The flight path was

through a region with active convection and the predetermined flight altitudes were

turbulent, suggesting prediction systems were underestimating turbulence intensity

and convective hazards. A squall line was present in the region, propagating west-

ward, and echo top heights varied between 7.3 km and 13.4 km with the proposed

flight path intercepting two mature convective cells with echo top heights greater

than 10 km. The convection was likely caused by the migration of the Intertropical

Convergence Zone. The tropopause was located above 16 km in altitude. This case

illustrates the limitations of turbulence prediction systems (forecasts and nowcasts)

and the challenges pilots face while navigating around convection. The following

paragraph will discuss the simulated convective properties for MCT.

Simulated convection on 27 December 2014 initiates from a boundary near the

land feature of Singapore with intense convective cores that weaken and dissipate

by 1200 UTC. After 1200 UTC, a secondary boundary oriented along 5 ◦S latitude

propagates northward and initiates a convective line more than 100 km long over

the Java Sea. Convection along the boundary has echo top heights greater than 15

km and 2-km radar reflectivity values greater than 50 dBZ, but dissipates by 2200

UTC. The particular convective feature that likely influenced the aircraft along its

flight path occurred near 0300 UTC on 28 December, approximately four hours after

observations. This convection was linear, extending again along 5 ◦S latitude and 4.5
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◦S latitude with echo top heights 14 km in three regions. Maximum simulated vertical

velocities within the convective cores were greater than 25 m s−1. The simulated

tropopause height on 27 December 2014 is 15.5 km and the environment is favorable

for convection with CAPE greater than 2200 J kg−1. The time period of 0000 UTC

to 0400 UTC on 28 December will be used to analyze the influence of convective stage

on turbulence as the simulated convection is oriented along the flight path with the

vertical depths and areal coverage similar to observations.

Simulated echo top heights, minimum Ri, maximum EDR, and maximum SF

are evaluated between 8 km and 12 km (Fig. 52). Of interest is the areal coverage of

out-of-cloud turbulence around the convection, as the aircraft was navigating around

the observed convection. Ri predicts localized regions of turbulence along boundary

features near and away from convection. The areal coverage of the lowest Ri are

found in the western portion of the domain, near the same longitude that the aircraft

was requesting altitude changes. Out-of-cloud turbulence is diagnosed by Ri along

the flight path and between the altitudes the aircraft was operating in. Interestingly,

EDR for this case does not diagnose turbulence out of cloud around active convection

and the probability of in-cloud turbulence with intensity greater than light is very low.

SF has a similar area coverage as Ri and diagnoses out-of-cloud turbulence within

30 km of active convection with the most intense turbulence to the southeast and

northwest of the western convective cell. The localized turbulence regions identified

by SF is representative of observations as the aircraft navigated around the convection

with and without encountering turbulence.

04 June 2018 (MCM)

On 04 June 2018, an Airbus A319 flying in NewMexico at approximately 10 km

intercepted a convective hailcore at 0108 UTC. The aircraft experienced substantial

structural damage with all windshield panels shattered and the nose of the aircraft
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Figure 52: Echo top heights (a), minimum Richardson number (b), maximum eddy
dissipation rate (c), and maximum second-order structure functions (d) for MCT (28
December 2014) at 0300 UTC between 8 km and 12 km. Echo tops greater than 8
(10 and 12) km are shown in b-d as blue (black and magenta) contours.
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destroyed, forcing an emergency landing in El Paso, TX. Fortunately, no passenger

or flight crew injuries occurred because the safety protocols were followed by those

aboard the flight. It is hypothesized that the A319 was attempting to navigate

between convective cells that were growing past typical cruising altitudes. A second

aircraft in the vicinity of the A319 reported severe turbulence at 33.4 ◦N, -106.4 ◦E

while flying at 11 km. Convection was forced by an upper level front extending from

Colorado to New Mexico and was forecasted to be severe in intensity due to high

CAPE (greater than 3000 J kg−1) and bulk shear. Numerous reports of tornadoes

and hail occurred in New Mexico and Texas. Echo top heights ranged from 10 km

to over 16 km in the most intense cells and the tropopause on this day was above

12 km. The complexity of navigating through regions with active convection and

maintaining a safe and efficient flight is illustrated by this turbulence encounter. This

case day is paired with MCT because convection was severe in strength, was similar

in convective morphology, and turbulence production is hypothesized to be through

similar mechanisms. The following paragraph will discuss the simulated convective

properties for MCM.

Simulated convection on 03 June 2018 initiates in an environment with CAPE

greater than 1900 J kg−1 at 1500 UTC on the east side of the San Andres mountain

range. As the diurnal heating intensifies, a second, stronger line of convection with

simulated radar reflectivity values greater than 55 dBZ forms along the mountain

range and propagates to the east. The convective line begins to form a bowing

segment near 0100 UTC as it moves out of the domain. Echo top heights exceed

12 km after 2200 UTC in four regions along a 200 km convective line. Convection

propagates across the region of interest approximately two hours too early when

compared to observations with slightly lower echo tops than observed. Simulated

vertical velocities exceed 40 m s−1 within the convective cores and is favorable for
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hail production. The simulated cells most representative of the observed convection

both aircraft were navigating through occurs near 2300 UTC at 33.5 ◦N, -106.6 ◦E.

The time period of 1900 UTC to 2300 UTC on 03 June will be used to analyze the

influence of convective stage on turbulence as the simulated convection resembles

observed convection in location, strength, and morphology. Echo top heights increase

in depth along the north and south portions of the convective line from 2230 UTC to

2300 UTC.

Simulated echo top heights, minimum Ri, maximum EDR, and maximum SF

are evaluated between 8 km and 12 km (Fig. 53). For this case, two aircraft en-

countered convective hazards while in cloud, navigating between severe convective

cells. The convective properties simulated in this study agree well with observations

in the strength and location, however, out-of-cloud turbulence identified with Ri and

EDR is null between the heights of interest. This result is likely influenced by the

alteration of vertical resolution in this particular simulation. As was found in Barber

et al. (2018), a coarser vertical resolution distributed out-of-cloud turbulence towards

lighter intensity bins. However, in-cloud turbulence (MOG for EDR) is identified by

both diagnostics in similar convective locations (e.g. 33.6 ◦N, -106.6 ◦E and 32.6 ◦N,

-107.3 ◦E) in the strongest portions of the convective line, but is again localized. SF

identifies much of the convective region as MOG in-cloud turbulence, and regional

maximums of MOG out of cloud. The variation in areal coverage of turbulence is

quite pronounced in this simulation, suggesting that vertical resolution is an impor-

tant factor of turbulence prediction. In terms of a turbulence forecast for aviation,

all three diagnostics identify in-cloud turbulence with MOG intensity.

20 June 2017 (HCT)

On 20 June 2017, a Boeing 737 encountered severe turbulence at 11 km in

altitude while flying over the Gulf of Mexico (21.84 ◦N, -86.16 ◦E) near 1651 UTC.
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Figure 53: Echo top heights (a), minimum Richardson number (b), maximum eddy
dissipation rate (c), and maximum second-order structure functions (d) for MCM (03
June 2018) at 2300 UTC between 8 km and 12 km. Echo tops greater than 8 (10 and
12) km are shown in b-d as blue (black and magenta) contours and the black (red)
star represents the location of the aircraft at 0108 UTC on 04 June.
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Convection was present along the flight route as the aircraft traveled from Panama

City to Houston, TX. The aircraft decreased in altitude by 120 m and experienced

normal load factors of -0.73 to 1.6 g for approximately 20 seconds (see Fig. 2 in

Barber et al. 2019 or Fig. 37 in chapter 5). Nine passengers and one crew member

sustained injuries and received medical attention. Additional information regarding

the synoptic conditions for this particular case can be found in Chapter 5 or Barber et

al. (2019). Convection was abundant in the flight region with storm depths exceeding

14 km in altitude. The tropopause on this day was above 14.3 km and CAPE was

greater than 1500 J kg−1. Observations and flight records indicate the plane was

out of cloud at the time of the turbulence encounter, navigating between two regions

of developing convection. This case highlights the complexity of navigating through

regions with active convection and communication limitations between the pilot and

passengers. The following paragraph will discuss the simulated convective properties

for HCT.

Simulated convection initiates north of the Yucatán Peninsula at 1000 UTC

as a narrow convective line with 2-km radar reflectivity values greater than 45 dBZ.

As a sea breeze boundary forms to the east of the Yucatán Peninsula at 1200 UTC,

convection initiates along the same longitude as the original simulated convection

in chapter 5 (Barber et al. 2019). The convective line continues to intensify and

persists between -87 ◦E and -86 ◦E through 1800 UTC. The simulated environment

was very favorable for intense convection with CAPE values greater than 2500 J kg−1

for the majority of the simulation period. Echo top heights exceeded 13 km after

1240 UTC along the convective line and reached 17 km in numerous cells. Simulated

convective depth was slightly higher than observations. Interestingly, the location of

the convective line compares better to observations than the previous simulations with

3 km horizontal resolution (chapter 5). The time period of 1200 UTC to 1800 UTC
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on 20 June will be used to analyze the influence of convective stage on turbulence

probability.

Simulated echo top heights, minimum Ri, maximum EDR, and maximum SF

at 1650 UTC are shown in Fig. 54. Ri indicates localized regions of favorable turbu-

lence likelihood within the convective cores along the convective line. Out-of-cloud

turbulence is not predicted by Ri along or near the cloud boundaries but approxi-

mately 50 km away from the convective boundaries (east and west). It is hypothesized

that Ri is diagnosing a large-scale convectively generated gravity wave that is break-

ing in favorable regions away from convection. The vertical velocity field between

10 km and 12 km indicates in the area of increased out-of-cloud turbulence, vertical

velocities oscillate between -2 m s−1 and 2 m s−1 (not shown). EDR indicates regions

of turbulence in cloud but with less areal coverage than Richardson number. Inter-

estingly, out of cloud approximately 50 km away from the cloud boundaries, EDR

predicts light turbulence in the same areas indicated by Richardson number. The in-

tensity of this turbulence is less than observations. SF indicates MOG turbulence in

cloud along the convective line and LGT to MOG turbulence along the cloud bound-

aries. As was the case for Ri and EDR, approximately 50 km to the east and west

of the convective line, a broad area of increased turbulence severity is present. In

regards to aviation operations for this case day, the diagnostics are in contrast with

one another especially in convective cloud. EDR under-predicts out-of-cloud and in-

cloud turbulence (no in-cloud turbulence with lighter or greater severity and localized

region of out-of-cloud light turbulence), while SF predicts much greater turbulence

probability in cloud and out of cloud. SF would have been most beneficial diagnostic

for turbulence avoidance because it captures various turbulence types.

29 June 2018 (HCM)
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Figure 54: Echo top heights (a), minimum Richardson number (b), maximum eddy
dissipation rate (c), and maximum second-order structure functions (d) for HCT (20
June 2017) at 1650 UTC between 8 km and 12 km. Echo tops greater than 8 (10 and
12) km are shown in b-d as blue (black and magenta) contours and the black (red)
star represents the location of the aircraft at 1651 UTC.
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On 29 June 2018, at 2257 UTC an Airbus 320 enroute to Newark, NJ expe-

rienced severe turbulence while flying at an altitude of 11 km near Dickinson, ND

(46.51 ◦N, -102.46 ◦E). The aircraft decreased more than 600 m and decreased in

speed by 50 kts at the time of the encounter. Convection was present along the flight

path, with composite radar reflectivity values exceeding 45 dBZ in isolated cells west

of Bismarck, ND and more intense cells exceeding radar reflectivity values of 55 dBZ

in northwest SD. It is important to note that the flight path was along a region of

Montana, North Dakota, and South Dakota where there is a void in radar coverage.

Convection was severe in western SD where numerous storm reports were recorded

including tornadoes, large hail, and severe winds within the hour of the turbulence

encounter. CAPE exceeded 3000 J kg−1 and echo top heights were greater than 14.7

km. While no injuries occurred due to the encounter with severe turbulence, this

case illustrates the challenges associated with flight planning and navigating near ac-

tive convection. This case day is paired with HCT because the convective field was

complex with storms of various intensity and stages, and limited ground observations

were available for nowcasting products. The time period of 1800 UTC to 0000 UTC

on 29-30 June will be used to analyze the influence of convective stage on turbulence

probability in south west ND (Fig. 49). The following paragraph will discuss the

simulated convective properties for HCM.

Simulated convection initiates at 1900 UTC near the western South Dakota,

North Dakota border. Isolated cells intensify in two distinct regions with simulated

2-km radar reflectivity values greater than 50 dBZ. The cells propagate eastward and

weaken by 0000 UTC on 30 June. Echo top heights exceed 10 km throughout the

period of interest with the deepest storms to the south.

Simulated echo top heights, minimum Ri, maximum EDR, and maximum SF

at 2250 UTC are shown in Fig. 55. Ri indicates a broad region of turbulence out of
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cloud between the convective cells. In cloud, Ri also identifies a greater likelihood of

turbulence in the deepest cells in the southeast of the domain. Interestingly, EDR

highlights similar areas out of cloud near convection as turbulent. In these areas,

turbulence is MOG. While out-of-cloud turbulence diagnosed by EDR agrees with

Ri, in-cloud turbulence is much less than identified by Ri. SF diagnoses a large

region of MOG both in cloud and out of cloud near convection. The regions of MOG

turbulence do agree with both Ri and EDR. In regards to aviation operations, all

three diagnostics identify regions of turbulence in and out of cloud and would have

been beneficial for turbulence avoidance.

Figure 55: Echo top heights (a), minimum Richardson number (b), maximum eddy
dissipation rate (c), and maximum second-order structure functions (d) for HCM (29
June 2018) at 2250 UTC between 8 km and 12 km. Echo tops greater than 8 (10 and
12) km are shown in b-d as blue (black and magenta) contours and the black (red)
star represents the location of the aircraft at 2257 UTC.
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6.3.2 Summary of turbulence diagnostics

Overall for the six cases, convective type, timing, and morphology were well simulated.

The success of the diagnostics was mixed and was dependent on storm type and region.

Ri predicted in-cloud and out-of-cloud turbulence well for five of the six cases, but

underpredicted the out-of-cloud turbulence for MCM. EDR underpredicted in-cloud

and out-of-cloud turbulence for three of the six cases (two of which were in the tropics).

It is likely that the turbulent kinetic energy from the boundary layer scheme which

only includes the vertical component of velocity is inaccurate. SF predicts in-cloud

and out-of-cloud turbulence for all six cases, and captures turbulence generated by

numerous sources, but needs to be calibrated for strong convection in the midlatitudes.

6.3.3 Distributions of in-cloud and out-of-cloud turbulence

The previous discussion has illustrated the intensity and areal coverage variations in

turbulence diagnostics both in cloud and out of cloud during periods where simulated

convection resembled observations of aircraft encounters with turbulence. There is

also value in comparing the probability distributions of the turbulence diagnostics

throughout all simulated convective periods in order to relate the differences to tur-

bulence prediction through statistical methods. The optimal result for turbulence

diagnostics is that the probability of encountering turbulence with specific intensity

is accurately represented by the distribution of turbulence. Past studies have found

that clear air turbulence distributions created from observations and model simu-

lations are log-normal (Sharman and Pearson 2017; Frehlich and Sharman 2004a,

Frehlich and Sharman 2004b; Cho et al. 2003; Nastrom and Gage 1985). The prob-

ability of light clear air turbulence from numerous diagnostics ranges from 10−1 to

10−2 and the probability of moderate or greater clear air turbulence is less than 10−3.

The probability of encountering MOG turbulence is greater in cloud than out of cloud
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(Pearson et al. 2019). Furthermore, Cho et al. (2003), found that the distributions

of environmental variables including shear, stability, and Richardson number from

aircraft data were also log normal. Few studies have investigated the distributions of

in-cloud and out-of-cloud CIT diagnosed by various methods in both the midlatitudes

and tropics, for a variety of convective types, from individual model simulations. Dis-

tributions are also helpful indicators of which diagnostics are in need of calibration to

theoretical values. It is hypothesized that the probability of experiencing turbulence

in a convective environment is greater than in an environment without convection

and the absence of a jet feature.

Figure 56 provides the in-cloud and out-of-cloud turbulence distributions di-

agnosed from EDR and SF for the six simulated cases between 8 km and 12 km. The

distributions of turbulence for DCT (03 August 2009) are in stark contrast to DCM

(10 July 1997) in probability for both diagnostics and location (in-cloud versus out-of-

cloud). The probability of out-of-cloud and in-cloud turbulence for DCT is much less

than for DCM for both diagnostics. However, the probability of in-cloud turbulence

is in close agreement between SF and EDR for DCT. The decrease in probability for

DCT is likely because the convection was weaker and did not reach the tropopause.

The probability of encountering turbulence diagnosed by SF for DCM is an order

of magnitude greater than EDR, and does not decrease at a rate shown in previous

studies (Sharman and Pearson 2017). As was previously discussed, the individual

values of SF are well beyond the intensity thresholds normally observed in the atmo-

sphere and used in prediction systems, and the discrepancies between EDR and SF

suggest that SF needs to be recalibrated for this particular case. EDR, out of cloud

is one order of magnitude lower than previous work has found even with adjustments

to past intensity thresholds (i.e., Lane et al. 2012). These findings suggests that the

variation in probability for specific diagnostics is related to the strength of convec-
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tion (i.e., weak convection, lower turbulence probability, stronger convection, higher

turbulence probability). This hypothesis is further supported by the distributions of

SF for MCT (Fig. 56-27 December 2014), MCM (Fig. 56-04 June 2018), HCT (Fig.

56-20 June 2017), HCM (Fig. 56-29 June 2018) which shows very similar probabili-

ties of turbulence from convection with similar properties (height, morphology, likely

generated gravity waves).

In terms of aviation turbulence prediction, the probability of out-of-cloud tur-

bulence predicted by EDR is lower than SF in these convective regimes. The probabil-

ity of encountering in-cloud turbulence is in closer agreement between SF and EDR,

where moist instabilities are diagnosed by both methods. It is hypothesized that

out-of-cloud turbulence probabilities from EDR are lower for the three weaker con-

vective regimes because EDR is derived from the vertical velocity component within

the boundary layer scheme, where SF is analyzing the horizontal components of the

velocity field. In Barber et al. (2018), EDR distributions varied dramatically for

each convective case. It is unlikely that a calibration of EDR would increase the

accuracy of out-of-cloud turbulence prediction. Instead, EDR calculated from all

components of the velocity field would likely improve the skill of EDR. Additional

simulations are needed to test this hypothesis. In summary, SF needs to be calibrated

for strong, rapidly developing convection in the midlatitudes and EDR under predicts

out-of-cloud turbulence for both midlatitude and tropical convection.

6.3.4 Characteristics of the simulated environment parameters near
convection

In this section comparisons of the simulated environment around simulated mature

and developing convection for the six cases will be made and related to the likelihood

of turbulence. Mean out-of-cloud static stability, vertical wind shear, and vertical
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Figure 56: Distribution of in-cloud and out-of-cloud turbulence diagnosed using uncal-
ibrated second-order structure functions and eddy dissipation rates between 8 km and
12 km when convection is present for the six cases. The green (yellow and magenta)
vertical line represents the threshold for light (moderate and severe) turbulence.
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velocity are examined between 8 km and 12 km for all grid points closest to mature

convective objects and all grid points closest to developing convective objects, at a

frequency of 10 minutes during the time periods shown in Table 13. The objective of

this analysis is to determine if the simulated environmental conditions near similar

convective types in the midlatitudes and tropics are similar and if turbulence diagnos-

tics are influenced by the variation in environmental conditions. More specifically, are

the stability and shear distributions the same during similar tropical and midlatitude

convective periods and is the turbulence response the same? Additionally, does the

stage of convection influence the environmental parameters and is there a variation in

out-of-cloud turbulence areal coverage and strength. This analysis will use SF instead

of EDR because EDR underpredicted the turbulence intensity out-of-cloud for more

than half of the simulations when compared to the observed turbulence intensity and

expected in-cloud areal coverage. In addition, SF were able to capture turbulence

generated by the many convectively induced mechanisms including gravity waves for

many of the simulations. It is noted that out-of-cloud vertical velocities are used

as a diagnostic of turbulence potential through gravity wave processes, and not a

characteristic of the environment.

Simulated echo top height distributions are created to analyze the frequency

of convection surpassing the tropopause for the simulations, which is related to tur-

bulence production. Convective type and region influences the distribution of echo

top heights (Fig. 57). While, the stronger tropical cases (MCT and HCT) have a

higher percentage of echo top heights that exceed 15 km, because the tropopause

height is higher in the tropics, the percentage of simulated convective cells surpassing

the tropopause is similar for their paired cases (MCM and HCM). Although convec-

tive type varied between the simulations, it is of interest to examine the frequency

at which convection was identified as developing for the simulations versus mature,
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especially as further discussion will compare the environment near the two stages of

convection. In general, developing convection accounts for nearly 30% of the con-

vection for the six simulations (Fig. 58). DCT had much weaker convection than

DCM, but the percentage of developing cells are nearly the same, suggesting that

the environment is being modified by similar frequencies of convection. MCM and

HCM have slightly higher percentages of developing convection likely as a result of

backbuilding over elevated terrain.

Figure 57: Domain-wide distribution of echo top heights for the six simulations (10
minute output periods). Solid lines are the midlatitude cases and dashed lines are
the tropical cases.

Figure 59 provides the distribution of out-of-cloud turbulence (from SF) for

each case day for grid points closest to mature convective objects and closest to devel-

oping convective objects between 8 km and 12 km. First, the turbulence probability

for the region around mature convection varies significantly for the paired cases and
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Figure 58: Percentage of convective objects identified as mature convection (MCO)
and developing convection (DCO) for the six simulations. Bars with vertical lines
represent developing convection.
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for midlatitudes versus the tropics. Near mature convection, the midlatitudes have

a higher probability of turbulence. Interestingly, HCM and HCT have similar turbu-

lence distributions likely because the probability of storms surpassing the tropopause

were similar. The probability of turbulence is greater for all the cases near developing

convective objects (an order of magnitude larger than for mature for all cases except

DCM). This finding highlights the hazards associated with developing convection in

regards to aviation operations. The greatest increase in turbulence probability from

the mature subset to the developing subset occurs for the tropical cases, illustrating

the hazards associated with developing convection in regions with limited real time

data (ground-based radar coverage and satellite observations).

Figure 59: Distribution of out-of-cloud turbulence diagnosed by second-order struc-
ture functions between 8 km and 12 km nearest to mature convection (MCO) and
developing convection (DCO) for the six simulations. The green (yellow and magenta)
vertical line represents the threshold for light (moderate and severe) turbulence.

The distributions of mean static stability for the six cases are shown in Fig. 60.

It is important to note that the distribution of N2 for MCM is influenced significantly

by the decreased number of vertical levels, therefore limiting the comparison to the

other cases. Near mature convective objects, the mean static stability is lower for
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Table 16: Mean, median, mode, interquartile range (IQR), and standard deviation
(STD) for out-of-cloud static stabilities between 8 and 12 km near mature and devel-
oping (italicized) convection.

Case day Mean Median Mode IQR STD

DCT
7.98x10−5 7.87x10−5 7.52x10−5 9.18x10−6 6.20x10−6

7.69x10−5 7.63x10−5 7.42x10−5 4.70x10−6 5.35x10−6

DCM
1.54x10−4 1.58x10−4 1.64x10−4 1.84x10−5 2.08x10−5

1.30x10−4 1.35x10−4 9.00x10−5 4.75x10−5 3.37x10−5

MCT
7.41x10−5 7.43x10−5 7.54x10−5 6.59x10−6 5.07x10−6

7.00x10−5 6.96x10−5 6.62x10−5 7.02x10−6 5.58x10−6

MCM
4.71x10−4 4.70x10−4 4.71x10−4 1.99x10−5 1.59x10−5

4.75x10−4 4.74x10−4 4.74x10−4 2.23x10−5 1.67x10−5

HCT
7.32x10−5 7.26x10−5 7.20x10−5 9.87x10−6 7.73x10−6

7.17x10−5 7.11x10−5 6.44x10−5 1.03x10−5 8.25x10−6

HCM
1.84x10−4 1.86x10−4 1.79x10−4 4.70x10−5 3.66x10−5

1.30x10−4 1.24x10−4 1.08x10−4 7.50x10−5 5.14x10−5

the tropical cases than the midlatitude cases, which is expected. The variation in

static stability for the tropical cases is limited and is not influenced by convective

type. The breadth of the static stability distributions is greater for the midlatitude

cases and the stronger convection influences the probability of lower stabilities. Near

developing convection, again the tropical cases have a lower mean static stability than

the midlatitude cases, and little variation between the cases themselves. Interestingly,

the midlatitude distributions are more alike near developing convection than mature

convection, suggesting that storm type does not influence the static stability during

the developing stage. Importantly, for all six cases the mean static stability is lower

near developing convection compared to mature convection (Table 16). These results

indicate that turbulence probability through stability processes is greater for both

the midlatitudes and tropics near developing convection.

The out-of-cloud vertical shear distributions between 8 km and 12 km (Fig. 60

and Table 17) near mature convection have a large variability between the six cases,

157



Figure 60: Distribution of mean out-of-cloud static stability, mean vertical wind
shear, and mean vertical velocity between 8 km and 12 km nearest to mature convec-
tion (MCO) and developing convection (DCO) for the six simulations (uncalibrated
second-order structure functions).

158



Table 17: Mean, median, mode, interquartile range (IQR), and standard deviation
(STD) for out-of-cloud vertical wind shear between 8 and 12 km near mature and
developing (italicized) convection.

Case day Mean Median Mode IQR STD

DCT
9.05x10−8 3.48x10−8 1.58x10−8 7.20x10−8 4.59x10−7

4.97x10−6 1.59x10−7 7.39x10−9 1.90x10−6 1.45x10−5

DCM
6.11x10−6 4.17x10−7 2.34x10−8 2.45x10−6 2.35x10−5

2.66x10−5 1.15x10−5 9.48x10−6 2.61x10−5 4.31x10−5

MCT
3.87x10−7 1.15x10−7 6.39x10−8 2.18x10−7 1.74x10−6

5.29x10−6 2.63x10−6 1.06x10−6 4.21x10−6 8.71x10−6

MCM
2.41x10−6 1.53x10−6 1.08x10−6 2.30x10−6 2.81x10−6

2.42x10−6 1.64x10−5 1.42x10−6 2.14x10−5 2.76x10−6

HCT
1.98x10−6 2.12x10−6 4.80x10−6 8.26x10−6 7.10x10−6

8.85x10−6 4.05x10−6 1.19x10−6 7.98x10−6 1.41x10−6

HCM
2.26x10−6 4.50x10−7 1.29x10−8 1.89x10−7 6.64x10−6

2.35x10−6 1.27x10−6 3.65x10−6 2.21x10−6 3.05x10−5

likely as a result of the variation in convective type. The greatest mean vertical

wind shear is associated with the midlatitude cases which is expected. The breadth

of vertical wind shear is also the greatest for the midlatitudes. Near developing

convection, the vertical wind shear distributions shift towards higher shear values by

more than an order of magnitude. Interestingly, in the tropics and midlatitudes the

probability of increased vertical wind shear is similar between the cases and is no

longer influenced by storm type, but is still influenced by region. The larger vertical

shear present near developing convection is hypothesized to be caused by deformation

at the cloud boundary and increases the probability of turbulence through shear

producing mechanisms.

Mean out-of-cloud vertical velocity is used as a proxy for the presence of gravity

waves between 8 km and 12 km. Near mature convection, the six cases have a similar

probability of vertical velocities near 0 m s−1 (highest probability less than 0 m s−1

due to binning procedure). The extremes of the distributions of vertical velocity vary
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Table 18: Mean, median, mode, interquartile range (IQR), and standard deviation
(STD) for out-of-cloud vertical velocities between 8 and 12 km near mature and
developing (italicized) convection.

Case day Mean Median Mode IQR STD

DCT
4.31x10−4 5.84x10−4 6.26x10−2 1.08x10−1 9.86x10−2

4.68x10−2 4.86x10−2 -5.52 3.53x10−1 7.90x10−1

DCM
3.25x10−5 -9.33x10−5 -2.10x10−5 2.21x10−6 1.28
3.78x10−5 3.86x10−3 -5.36 1.31 2.77

MCT
4.33x10−3 3.65x10−3 -1.75x10−1 1.85x10−1 2.18x10−1

3.60x10−1 1.99x10−1 1.38x10−1 5.53x10−1 8.78x10−1

MCM
4.18x10−3 4.75x10−3 -2.51x10−1 2.17x10−1 2.41x10−1

-1.89x10−3 -8.96x10−4 -6.00x10−1 4.78x10−1 4.70x10−1

HCT
9.77x10−2 4.00x10−3 -2.02x10−1 3.25x10−1 6.74x10−1

5.24x10−1 2.34x10−1 -3.34x10−1 9.15x10−1 1.35

HCM
1.40x10−2 -1.08x10−2 -3.24x10−1 2.16x10−1 4.73x10−1

5.12x10−1 2.39x10−1 -5.39x10−1 1.27 1.79

significantly by storm type (Fig. 60 and Table 18). More specifically, the paired

cases with similar convective types and intensity have similar distributions of vertical

velocity. Interestingly, the distributions are not equal when examined as greater or

less than 0 m s−1 (i.e., positive or negative vertical velocity). There is greater spread

amongst the paired cases (and cases subset by region) when vertical velocities greater

than 0 m s−1 are examined. The mean vertical velocities for all cases increase near

developing convection, with the greatest increase for the tropical cases. These results

suggest that the likelihood of turbulence produced through gravity waves increases

near developing convection, especially in the tropics.

The distributions of static stability, vertical wind shear, and vertical veloc-

ity are subset by turbulence intensity to discern if turbulence intensity is influenced

by the environment (Fig. 61). More specifically, does the environment alter for all

cases where there is only light and moderate or greater turbulence? When stability is

examined as a subset of turbulence intensity, stability in the midlatitudes decreases
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for MOG turbulence. The static stability of the tropical cases is not influenced by

turbulence intensity. These results are consistent for developing convection, but the

variation for the midlatitudes is less than was found for mature convection. In re-

lationship to aviation operations, the environmental stability in the midlatitudes is

significantly different for MOG turbulence versus LGT turbulence near convective

objects and the broadening of the stability distributions could be an indicator of in-

creased turbulence potential. However, the distributions vary slightly in the tropical

environment, meaning that stability distributions would not provide enough informa-

tion to discern between the likelihood of null turbulence or LGT or MOG turbulence.

The distributions of vertical wind shear between 8 km and 12 km subset by

turbulence intensity for the six cases are shifted towards higher shear values, indi-

cating that turbulence with greater intensity is occurring more frequently in regions

of increased shear (Fig. 61). In comparison to the subset stability distributions,

both tropical and midlatitude cases have a significant alteration in their respective

distributions. The most likely vertical wind shear for all cases has increased by an

order of magnitude. The greatest shift in the vertical wind shear distributions for

all cases is for the environments closest to mature convective objects. In relationship

to aviation operations, the environmental vertical wind shear in the midlatitudes is

significantly different for turbulent regions than null regions near convection. The

significant shift towards higher values of vertical wind shear could be an indicator

of increased turbulence potential. The same application of vertical wind shear could

be used in the tropics near convection. The distinction in distributions between the

mature convective environment and the developing convective environment would be

limited, meaning the same shift in distribution could be used for turbulence prediction

near mature and developing convection. Storm type in the midlatitudes influences the
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Figure 61: Distribution of mean out-of-cloud static stability, mean vertical wind shear,
and mean vertical velocity between 8 km and 12 km nearest to mature convection
(MCO) and developing convection (DCO) for the six simulations subset by turbulence
intensity (uncalibrated second-order structure functions).
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distributions more so than in the tropics and more cases would need to be examined

in order to design prediction diagnostics.

The most discernible variation in parameters subset by turbulence intensity

is the vertical velocities between 8 km and 12 km (Fig. 61). The probability of

larger positive and negative velocities increases for all cases when only turbulence

is examined. The greatest change in probabilities of larger velocities are associated

with MOG turbulence and have increased by more than one order of magnitude for

the tropical cases, especially near mature convection. The shift in probabilities for

vertical velocities is region and storm type dependent. However, the broadening of

the distribution could be used as an indicator of increased turbulence prediction.

Correlations between static stability, vertical wind shear, vertical velocities,

and turbulence intensity are computed to determine if turbulence intensity can be

estimated by the parameters near convection (Figs. 62-64 and Table 19). More

specifically, does turbulence relate to increased vertical wind shear and lower stabil-

ities in both the tropics and midlatitudes. Figure 62 shows the correlation of static

stability and turbulence for all cases subset by mature and developing convection. For

the tropical cases there is no correlation between static stability and turbulence inten-

sity for the environment near mature or developing convection. For the midlatitude

cases, there is a slightly stronger negative correlation for developing convection than

for mature convection. This suggests that static stability could be used to diagnose

turbulence potential in the midlatitudes and is not storm type dependent. Figure 63

shows the correlation of vertical wind shear and turbulence for all cases subset by

mature and developing convection. For all six cases there is a positive correlation

between vertical wind shear and turbulence intensity. The correlations are generally

greater for mature convection and the midlatitude cases. The same results are found

for the correlations between vertical velocity and turbulence intensity (Fig. 64). For
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the correlation of vertical velocity and turbulence intensity, the paired cases have

correlations more similar to one another than the other variables.
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Figure 62: Correlation of mean out-of-cloud static stability and turbulence intensity
(uncalibrated second-order structure functions) between 8 km and 12 km nearest to
mature convection (MCO) and developing convection (DCO) for the six simulations.
The correlation coefficients for the data subset by convective object type (rmature and
rdev).
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Figure 63: Correlation of mean out-of-cloud vertical wind shear and turbulence inten-
sity (uncalibrated second-order structure functions) between 8 km and 12 km nearest
to mature convection (MCO) and developing convection (DCO) for the six simu-
lations. The correlation coefficients for the data subset by convective object type
(rmature and rdev).
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Figure 64: Correlation of mean out-of-cloud vertical velocities and turbulence inten-
sity (uncalibrated second-order structure functions) between 8 km and 12 km nearest
to mature convection (MCO) and developing convection (DCO) for the six simu-
lations. The correlation coefficients for the data subset by convective object type
(rmature and rdev).
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6.4 Discussion and Conclusions

Several cases of convectively induced turbulence (CIT) were simulated at high vertical

and horizontal resolution to investigate the accuracy of current turbulence diagnos-

tics and to determine if the environment near convection varies for storm type and

region, and how the variation influences turbulence intensity. Simulated convection

compared well to observations in morphology and strength for the majority of the

cases, while timing for the tropical simulations generally had a lag of up to four

hours. A developing convective case in the midlatitudes (DCM) had much stronger

convection than observed likely due to the microphysics of the simulation.

The turbulence diagnostics varied in success based on the particular case,

but generally Richardson number indicated regions of turbulence out of cloud and

within convective cloud. Eddy dissipation rate (EDR) underestimated the likelihood

of out-of-cloud turbulence for the tropical cases, likely a result of weaker vertical

velocities which are used in the turbulent kinetic energy formulation of the boundary

layer scheme. EDR in the midlatitudes had mixed results but for the majority of

the cases agreed with Richardson number. The inconsistency of EDR highlights

the need for more research on the influence of the PBL scheme and upper level

turbulence prediction for model-derived diagnostics. Second-order structure functions

(SF) indicated the greatest potential for turbulence in all of the cases but likely suffers

from resolution sensitivity for the strongest convective cases. In regards to global

turbulence prediction, this study finds that the diagnostics do perform differently in

various regions and more investigation as to the statistical bias of these diagnostics

are needed to increase confidence in turbulence prediction.

Storm type and region does influence the probability of in-cloud and out-of-

cloud turbulence between cruising altitudes. Tropical convection has a lower proba-
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bility of turbulence when compared to midlatitude convection of similar convective

type. The probability of turbulence near both tropical and midlatitude developing

convection is greater than the probability of turbulence near mature convection in

the tropics and midlatitudes. The increased probability of turbulence near develop-

ing convection in the tropics and midlatitudes is important for aviation operations

because generally pilots avoid flying near mature convection and will fly closer to

developing convection.

The environmental conditions out of cloud near convection in the midlatitudes

and tropics vary significantly. Static stability is lower for the tropical environment

on average than in the midlatitudes, and is greater around mature convection than

developing convection. The variation in storm type does not influence the stability

around the convection significantly. Vertical shear is lower for the tropical environ-

ment than in the midlatitudes, and increases around developing convection in both

regions. The type of storm does influence the vertical wind shear as does the stage of

development. Vertical velocities on average were larger for the midlatitude cases than

the tropical cases, but both increased significantly near developing convection. When

turbulence was subset by intensity, stability was not significantly different between

light or moderate or greater (MOG) turbulent locations. However, average vertical

wind shear and vertical velocities increased by more than an order of magnitude for

turbulent locations with MOG intensity in both the tropics and midlatitudes. In

terms of turbulence prediction, increased vertical wind shear and vertical velocities

are indicative of increased turbulence intensity. Static stability is less indicative of

turbulence intensity in either region.

Aviation operations currently do not abide by region specific thunderstorm

guidelines even though convective properties are different in the tropics and midlati-

tudes. This study found that turbulence probability varies by region and storm type
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and that the avoidance guidelines need to address these differences in order to be

more efficient. Developing convection was also found to have a higher probability of

turbulence when compared to mature convection. For turbulence associated with de-

veloping convection, the probability was similar between all six cases and may indicate

that storm and regions specific guidelines are not necessary. This study found stark

differences in turbulence potential in the six cases and motivates the need for more

simulations of CIT at high resolution to reduce turbulence encounters by increasing

the understanding of CIT and with time, adapting the avoidance guidelines.
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Table 19: Correlation coefficients for out-of-cloud static stability, vertical wind shear,
vertical velocity, and eddy dissipation rate between 8 km and 12 near mature and
developing (italicized) convection.

Case day N2 and TI Sv
2 and TI |w| and TI

DCT -0.18
-0.19 0.37
0.71 0.43
0.41
DCM -0.30
-0.32 0.68
0.62 0.51
0.45
MCT 0.01
0.10 0.48
0.41 0.33
0.27
MCM 0.00
0.04 0.24
0.39 0.22
0.24
HCT 0.11
0.15 0.52
0.48 0.32
0.28
HCM -0.23
-0.26 0.63
0.62 0.33
0.34
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CHAPTER 7

CONCLUSIONS

Out-of-cloud convectively induced turbulence (CIT) is an atmospheric phenomenon

that is continues to be a challenge to the aviation industry from flight planning to

in flight operations. Numerical modeling offers in depth analysis of turbulence gen-

eration mechanisms and characteristics of out-of-cloud turbulence. Unfortunately,

the model resolution required to properly resolve turbulence is not currently imple-

mented in operational forecasting systems due to computational cost limitations. The

coarser grid spacing used in operational models leads to turbulence being diagnosed

with metrics that are related to large scale features such as convergence, vorticity,

and gradients of velocity components, without verification for convective cases. An

additional challenge in CIT prediction is the accuracy of simulated convective proper-

ties, including timing, location, type, and intensity. While convective forecasting and

nowcasting are improving significantly due to the increased volume of observations

and improved model physics, CIT avoidance still has large uncertainty. Furthermore,

tropical oceanic CIT prediction is nearly limited to nowcasting only as continuous

observations from ground and space-borne platforms are sparse. As the number of

flights per day and with more flight paths over remote tropical areas, CIT prediction

must be improved for numerous regions and convective types. Due to the challenges

of forecasting CIT, in-flight systems that aid pilots in convective hazards detection

are becoming common for many airlines. While these systems are proving to be a

beneficial tool for pilots, the efficiency of flight planning, air traffic control and flight
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management interactions, and flight routes around convection require improvement.

The Federal Aviation Administration (FAA) avoidance guidelines, specifically the

lateral avoidance of 20 miles from severe convection also hinders flight efficiency, as

turbulence is not isotropic. Lastly, the FAA avoidance guidelines are not specific to

convective type or region further limiting efficiency. This study addressed the nu-

merous limitations of out-of-cloud CIT prediction using numerical modeling, from

uncertainty of impacts of model resolution, to the influence of convective type and

stage of development on turbulence characteristics. This study offers steps towards

implementing region dependent and convective type CIT avoidance guidelines.

Model resolution is of particular concern to convective forecasting and tur-

bulence prediction because turbulence diagnostics need to perform accurately across

numerous scales. Three common model resolution setups (NAM-12 km, HRRR-3 km,

and research-500 m) were used to simulate convection over eight days in the northern

Great Plains. The Ellrod Index, a diagnostic that evaluates convergence, vertical

wind shear, and deformation to indicate turbulence, and eddy dissipation rate (EDR)

were evaluated across various resolutions. Ellrod was found to perform very poorly

and would need significant calibrate; in constrast, EDR performed well. Simulated

convective depth and intensity for the coarsest model resolution were found to be un-

der predicted, and therefore turbulence probability was underestimated. A distinctive

limitation in the convective simulations with 3 km horizontal grid spacing was the

storm depth was often too low, which likely influenced the turbulence probability

between 8 km and 12 km.

Model resolution was found to influence the distribution and areal coverage

of out-of-cloud turbulence. Coarser model resolutions distribute turbulence to lower

intensities and to lower altitudes. This suggests that model resolution influences the

generation sources of turbulence. The finest model resolution simulation identified

173



moderate turbulence at cruising altitudes within 50 km of convection. The distribu-

tion of turbulence varied for convective type, and between the three model setups,

indicating that resolution influences the generation of turbulence from various convec-

tive types. Turbulence intensity and areal coverage are sensitive to model resolution,

promoting the need of scale-aware thresholds.

In addition to analyzing the distribution of turbulence for various modeling

setups, the location of turbulence was examined. CIT is not isotropic and generally

has a directional preference. The influence of resolution on the direction preference

directly relates to turbulence avoidance for aviation operations. Turbulence location

varied amongst the model setups within 20 miles of convection. Convective type

also influenced the preferred direction of turbulence and little agreement between the

models based on convective type was found. Generally, the coarser model resolu-

tions agreed in the preferred direction of turbulence. The directional preference of

turbulence is nearly evenly distributed amongst the directions for more intense and

organized convection, supporting the FAA guidelines of an avoidance distance of 20

miles in all directions from convection.

Out-of-cloud environmental parameters related to turbulence production were

analyzed between 8 km and 12 km to determine if resolution influences the environ-

mental conditions, and therefore turbulence likelihood. Model resolution was found

to influence the distribution of static stability towards lower values for the finest

resolution setups. However, the distribution of static stability did not vary signifi-

cantly by direction. The distribution of vertical wind shear varied amongst the model

setups but the finest model setup did not have the greatest likelihood of larger verti-

cal wind shear values. The distribution of vertical wind shear did vary by direction

but the greatest wind shear values were not always associated with the preferred di-

rection of turbulence. The distribution of vertical velocities between 8 km and 12
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km were influenced by the horizontal resolution of the model setup. The finest res-

olution model setup had the greatest probability of larger vertical velocities which

varied by direction. Model resolution influences turbulence generation by altering

the stability of the environment more so than the vertical wind shear. Developing

convection is of particular concern to aviation because it is difficult to forecast and

is best treated with nowcasting systems. Over tropical oceans, where observational

platforms are limited, aviation is vulnerable to encountering turbulence generated by

developing convection. In addition, turbulence prediction systems that are in use

over the tropics diagnose turbulence from metrics that were calibrated in the midlat-

itudes. A model simulation of a turbulence encounter over the Gulf of Mexico was

completed to assess the accuracy of prominent midlatitude turbulence diagnostics

in the tropics. Richardson number and second-order structure functions had lim-

ited success predicting turbulence near convection. Unlike in the midlatitude study,

EDR underestimated the intensity and areal coverage of turbulence. Because EDR is

calculated from turbulent kinetic energy output from the planetary boundary layer

(PBL) parameterization, the variable performance of EDR shows the need to deter-

mine the uncertainty of upper level turbulence generation as a result of the utilized

PBL scheme.

Turbulence was analyzed during a period of time where convection was rapidly

growing and intensifying. Although developing convection was associated with a small

portion of turbulence, it was more intense in severity than turbulence associated with

mature convection. Pilots generally avoid regions with stronger radar echo returns

(mature convection), but this research finds that developing convection is respon-

sible for the most severe turbulence, highlighting the need for updated guidelines

including developing convection. As previously discussed, the FAA guidelines are

neither convective type nor region specific, which hinders aviation efficiency. Convec-
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tive strength, duration, and depth are a few of the convective characteristics that are

known to vary between tropical and midlatitude convection, all of which influence

turbulence generation. Aviation encounters of severe CIT in both the midlatitudes

and tropics were simulated at high horizontal and vertical resolution to examine var-

ious turbulence metrics and the variability in the environment near developing and

mature convection. The success of the turbulence metrics was found to be varied

and again EDR did not consistently diagnose out-of-cloud turbulence, prompting

the additional examination of the PBL scheme. Second-order structure functions

were found to diagnose turbulence for all convective types, but for convection that

was too intense when compared to observations, calibration is necessary. Turbulence

likelihood and areal coverage varied amongst the simulations both in cloud and out

of cloud. Tropical turbulence was generally less likely when compared to midlati-

tude turbulence; however, near developing convection the probability increased more

than midlatitude turbulence. In addition to differences in the convective properties

of tropical and midlatitude convection, the environmental conditions also vary. The

variation in static stability and vertical wind shear influences turbulence propagation.

Midlatitude static stability and vertical wind shear were found to be greater than in

the tropics. The stage of convection did not alter the static stability significantly in

either region, but did alter the vertical wind shear significantly around developing

convection. In regards to aviation applications, turbulence generated by developing

convection is a greater hazard than turbulence generated by mature convection in

the tropics and needs to be addressed by avoidance guidelines. While the success

of the individual diagnostics are inconsistent, an increase in vertical wind shear and

velocity may be a useful indicator of turbulence probability, especially in the tropics.

Numerical simulations of convection give insight into the characteristics of CIT in

the tropics and midlatitudes for various convective types which can be used to aid
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aviation in improving flight operations. Developing convection is the largest threat

to aviation in both the midlatitudes and tropics because it is poorly forecasted and

alters the environment more so than mature convection, increasing the severity of

turbulence. Turbulence diagnostics are not consistent in identifying out-of-cloud CIT

and it is recommended that the properties of convection themselves are used as indi-

cators of turbulence potential. An additional concern with turbulence diagnostics is

the necessary recalibration of the metrics as the resolution of operational forecasting

systems trends towards finer grid spacing. In order to make FAA policy changes, a

significant number of addition simulations are needed to statistically identify the risks

of developing convection in the tropics and midlatitudes.
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CHAPTER 8

APPENDIX

The following section provides the calculations and details about the popular turbu-

lence diagnostics currently utilized in numerous turbulence prediction systems.

8.1 Richardson number

Numerous past studies have found that Richardson number (Ri) can diagnose con-

ditions favorable for turbulence production, including shear induced instability and

gravity wave breaking ( Lee and Chun 2018; Trier and Sharman 2018; Zovko-Rajak

and Lane 2014; Trier et al. 2012; Kim and Chun 2011; Endlich 1964). The gradient

Richardson number is expressed as,

Ri =
N2

Sv
2
, (8.1)

where S2
v is the vertical wind shear defined as,
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Ri is indicative of turbulence when it is less than 0.25. In convection, regions of low

Ri include anvil outflow regions and overshooting tops. One limitation with Ri is the

lack of conversion to turbulence intensity thresholds.
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8.2 Brown index

The Brown index (Brown 1973; hereafter B1), is a commonly applied turbulence

metric that diagnoses turbulence likelihood from absolute vorticity, shearing defor-

mation, and stretching deformation. B1 was developed to improve the prediction of

clear-air turbulence due to the inconsistent prediction of turbulence using Richardson

number (Brown 1973). The index is beneficial for turbulence prediction because it

incorporates large scale analysis fields (i.e. vorticity) with mesoscale analysis fields

(i.e. deformation). B1 is expressed as

B1 = (0.3ζa
2 +DSH

2 +DST
2)1/2 (8.3)

and is in units of s−1. Absolute vorticity (ζa) is calculated by,

ζa =
∂v

∂x
− ∂u

∂y
+ f, (8.4)

where f is

f = 2Ω sinφ, (8.5)

φ is latitude, and u and v are the horizontal components of wind. Shearing (DSH)

and stretching (DST ) deformations are defined as

DSH =
∂v

∂x
+

∂u

∂y
(8.6)

and

DST =
∂u

∂x
− ∂v

∂y
. (8.7)

A supplemental version of B1 that is used explicitly as an expression for energy

dissipation, the Brown 2 index ( Brown 1973; Roach 1970; hereafter B2) is calculated
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Table 20: Turbulence intensity as determined for the Brown 1 index (Brown 1973).

Turbulence Intensity Brown Index (s−1)
Light 2 x 10−5

Moderate 5 x 10−5

Severe 1 x 10−4

Extreme 2 x 10−4

as

B2 =
1

24
(B1)Sv

2. (8.8)

The empirical thresholds that relate to turbulence intensity were calibrated by

Brown (1973) by comparing 12 days of turbulence reports to the calculated values

from Eq. 8.3. However, during the 12 days, no turbulence was related to convection.

Yet, this index is still implemented on a daily basis for regional turbulence prediction.

The thresholds for turbulence intensity using B1 are provided in Table 20. B2 was

developed by Roach (1970) with the assumption that turbulence would counteract

the deformation processes and reduce the Richardson number within a layer. Brown

(1973) examined the performance of B2 again using the same non-convective turbu-

lence cases from the previous 12 days. The thresholds for turbulence intensity using

B2 are the same as eddy dissipation rate (Table 21). B1 and B2 are computed daily in

numerous turbulence prediction algorithms including GTG-2 (Sharman and Pearson

2017), but these indices were not developed for identification of convectively induced

turbulence in either the midlatitudes or the tropics. According to Galvin (2016), B1

has been shown to accurately predict turbulence along the sub-tropical jet. However,

no other studies have examined B1 or B2 in the tropics.
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8.3 Dutton index

The Dutton index (DI; Dutton 1980) is an empirical index that was calibrated from

linear regressions of turbulence reports and synoptic-scale turbulence indices in the

North Atlantic and northwest Europe. The Dutton index is calculated by,

DI = 1.25SH + 0.25S2
v + 10.5, (8.9)

where SH is defined as the horizontal wind shear calculated by,

SH =
u

s

∂s

∂y
− v

s

∂s

∂x
, (8.10)

and s is

s = (u2 + v2)1/2. (8.11)

8.4 Ellrod index

The Ellrod index is a turbulence intensity (TI) metric used for aviation turbulence

avoidance. There are two different methods of calculating the Ellrod index, TI1 and

TI2.

TI1 = V SHxDEF (s−2), (8.12)

where VSH is the vertical wind shear and DEF is the deformation of the horizontal

components.

TI2 = V SHx(DEF + CON)(s−2), (8.13)

where CON is the convergence of the horizontal components (Ellrod and Knapp

1992). The U.S. Air Force Weather Agency (AFWA) includes TI2 as part of their
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turbulence forecast output at seven altitude ranges, from 1.5 km extending to 12.7 km

(Creighton et al. 2014). TI2 values of 4–8 represent clear-air turbulence intensities

of light to moderate, values of 8–12 represent turbulence intensities of moderate, and

values greater than 12 represent severe turbulence. TI2 generated from the NAM

simulations are also provided by the Aviation Weather Center as turbulence guidance

and uses these same thresholds. There are two limitations with the thresholds used

for TI2, the first being the verification of the empirical values. Empirical values were

correlated to only clear-air turbulence PIREPs and convectively induced turbulence

PIREPs were neglected (Ellrod and Knapp 1992). Second, the empirical values were

derived from models designed with grid spaces greater than 50 km (Ellrod and Knapp

1992). This research will calculate the Ellrod index and examine the distribution of

numerical values out of cloud for each simulation using the original thresholds.

8.5 Subgrid-scale eddy dissipation rate

Turbulence intensity is estimated by computing EDR from turbulent kinetic energy

(TKE) of each simulation. TKE is obtained from the subgrid-scale planetary bound-

ary layer (PBL) parameterization, which is the Mellor–Yamada–Janjić (MYJ) scheme

for the entirety of this study. The calculation of TKE is derived from the vertical

component of velocity only (Janjić 1994). At 500 m horizontal grid spacing, it is

possible that a portion of the TKE is resolved. However, for consistency in approach

across all simulations, this “resolved” component of TKE is ignored in these simula-

tions. EDR is a popular aviation turbulence metric that is not dependent on physical

aircraft variables such as type, weight, and speed (Emanuel et al. 2013; Poellot and

Grainger 1991). EDR can be calculated using various inflight data such as vertical ac-

celeration, true airspeed, and three-dimensional winds (Emanuel et al. 2013; Ahmad
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and Proctor 2012; Cornman et al. 1995; Poellot and Grainger 1991). The calculation

for EDR used in this study is

EDR1/3 =
(TKE3/2

L

)1/3

(8.14)

where TKE is the turbulent kinetic energy (m2 s−2) and L is a length scale (Ahmad

and Proctor 2012). Ahmad and Proctor (2012) investigated the accuracy of boundary

layer turbulence intensity when using a length scale L that is dependent on the model

PBL scheme. Their study concluded that EDR at 40 m above ground level (AGL)

when calculated using a model-predicted L was less accurate than a constant L of 336

m. Other constant length scales were evaluated but also found to be less accurate.

Many have continued to improve the validity of the length scale from model output,

but most progress has been made for boundary layer turbulence estimations (Muñoz-

Esparza et al. 2016; Sauer et al. 2016). There is much uncertainty in how length

scales estimated by a PBL scheme relates to a length scale in the upper atmosphere.

In this study,

L =
(

∆x∆y∆z
)1/3

(8.15)

where ∆x is the horizontal resolution in the x direction, ∆y is the horizontal resolution

in the y direction, and ∆z is the vertical resolution in the z direction (Schumann

1991; Sharman et al. 2012). Atmospheric turbulence is commonly defined as light,

moderate, and severe based on the cubed root of EDR (m2/3 s−1; Table 21; Lane et

al. 2012). This study will use thresholds corresponding to Lane et al. (2012) and the

more current thresholds ( Sharman and Pearson 2017; Pearson and Sharman 2017;

Sharman et al. 2014) which are based on climatological PIREPs and various sources

including the Global Turbulence Guidance (GTG-2) product.
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Table 21: Turbulence intensity thresholds as determined from the cubed root of eddy
dissipation rate (ε; Lane et al. 2012, Sharman and Pearson 2017).

Turbulence Intensity ε1/3 (m2/3 s−1)
Light 0.1-0.3, 0.15-0.22

Moderate 0.3-0.5, 0.22-0.34
Severe ≥ 0.5, ≥ 0.34

8.6 Second-order structure functions

Second-order structure functions Ds are used in this study as an estimation method

for EDR in the inertial range (Sharman et al. 2006; Frehlich and Sharman 2004a, b;

Kolmogorov 1941). To compute the second order structure function (hereafter, SF),

the following equations are implemented:

Ds(u) = (u(i+∆s)− u(i))2, (8.16)

Ds(v) = (v(i+∆s)− v(i))2, (8.17)

in both the transverse (x) and longitudinal (y) directions, i is the grid index, and s is

a separation distance expressed in units of spatial grid steps (dx).

〈

Ds
2
〉

= Ckε
2/3∆s, (8.18)

ε1/3 =

(

〈

Ds
2
〉

∆sCk

)1/2

. (8.19)

To calculate ε1/3, the average of the four Ds components (u-longitudinal, u-transverse

(latitudinal), v-longitudinal, and v-transverse (latitudinal), represented by brackets)

of ε2/3 is taken, where Ck equals 2 for the longitudinal direction calculation and 4/3Ck
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for the transverse direction (Frehlich and Sharman 2010), and s is chosen as 10 (the

maximum spatial lag is 10 grid points) for chapter 5 and 7 for chapter 6. Research has

shown that the separation distance should mirror the spectral resolution of the model

advection scheme which is between 7-10∆x (Muñoz-Esparza et al. 2018; Skamarock

2004). The EDR intensity thresholds apply without additional calibration to the

structure function values because the structure functions are within the Kolmogorov

inertial range (Fig. 65). Turbulence intensity can be determined from the second-

order structure functions following the same thresholds as EDR provided in Table 16.

Second-order structure functions are included in the diagnostics because they have

been shown in past studies to be successful for turbulence prediction (Muñoz-Esparza

et al. 2018; Sharman and Pearson 2017; Pearson and Sharman 2017; Sharman et al.

2006; Frehlich and Sharman 2004a, b), are currently represented in GTG-2, and can

be used to diagnose motions across various scales. Second-order structures functions

adequately capture turbulence generated by convective and clear-air mechanisms by

diagnosing localized high gradient regions.

8.7 Colson-Panofsky turbulent kinetic energy

The Colson-Panofsky TKE (CP; Colson and Panofsky 1965) index is used to estimate

turbulence intensity in clear air environments. Turbulence intensity is calculated by,

CP = λ2S2
v

(

1− Ri

Ricrit

)

(8.20)

In the CP equation λ is defined as a length scale equal to the local value of the ∆z

grid increment, and Ricrit is a constant ≈ 0.5. The thresholds for CP are provided in

Table 22.
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Figure 65: Structure functions (longitudinal direction- solid lines, transverse
direction- dashed lines) as a function of separation distance, and the maximum of
the Kolmogorov 2/3 inertial range (black line) for all heights from 1510-1800 UTC.

8.8 Marroquin DTF3

The Marroquin DTF3 diagnostic is used to derive turbulent kinetic energy and eddy

dissipation rate (Marroquin 1998). DTF3 is expressed as,

DTF3 = KM

(c1

c3
S2
v −

c2

c3

N2

Pr

)

, (8.21)

where c1, c2, c3 are constants equal to 1.44, 1.0, and 1.92, and KM and Pr are

adjustable constants but set to 75 and 1 in GTG-2. The thresholds for DTF3 are

provided in Table 23.
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Table 22: Turbulence intensity thresholds for CP (Sharman et al. 2006).

Turbulence Intensity CP (kt2)
Light ≥ 1x103

Moderate ≥ 5x103

Severe ≥ 12x103

Table 23: Turbulence intensity thresholds for DTF3 (Sharman et al. 2006).

Turbulence Intensity DTF3 (m2 s−2)
Light ≥ 1.0

Moderate ≥ 2.0
Severe ≥ 5.0
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