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ABSTRACT 

 Use of the small Unmanned Aircraft System (sUAS) for commercial applications is 

growing. Once approval is granted to conduct flights Beyond Visual Line Of Sight (BVLOS), 

utilization of the sUAS will accelerate. Hazards associated with sUAS flight, including weather 

hazards, must be understood when flying BVLOS. One of the leading weather hazards is wind. 

In this study, nested Weather Research and Forecasting (WRF) model simulations with 

horizontal grid spacings of 12 km, 4 km, 1.33 km, and 0.444 km were conducted to evaluate 

the impact changing resolution has on wind fields and, thus, on the forecasting of sUAS wind 

hazards. The simulated area lies within Central New York (CNY); the surrounding topographic 

features commonly generate small-scale wind patterns, creating excellent opportunities to 

explore the dependence of winds on model resolution. Results suggest the importance in 

increasing model resolution to increase sUAS safety, where a 1.33 km resolution well-

identifies hazardous winds. The 0.444 km resolution resolved more detailed atmospheric 

features at the cost of an increase in computational power. An ensemble model approach along 

with human interpretation is hypothesized to best facilitate a sUAS-centric forecast. 
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1. INTRODUCTION 

 The use of the small Unmanned Aircraft System (sUAS), typically less than 55 lbs, for 

commercial operations is increasing. Their expected positive economic influence has elevated 

interest in developing a regulated airspace in which sUASs can fly safely. Flights Beyond Visual 

Line Of Sight (BVLOS) offer significant opportunity for commercial applications. Routine 

maintenance in difficult to reach areas is expected to be a value of the sUAS; these areas are likely 

difficult to reach due to adverse travel conditions, relevant to people but not necessarily a sUAS. 

Additional hazards arise when a sUAS is flown BVLOS, as flying within Line Of Sight (LOS) 

enables significant hazard mitigations. Efforts to mitigate BVLOS-driven hazards are promising 

but require guidance (whether through flight testing or simulations) in order to create the necessary 

systems that produce the required level of safety. The primary difference between manned and 

Unmanned Aircraft (UA) is the lack of an onboard pilot. Fittingly, the Federal Aviation 

Administration (FAA) views to handle UA rules and regulations no differently than manned 

aircraft. For this reason, the safety methods and regulations implemented for sUASs must allow 

for operations to be just as safe, if not safer, than manned aircraft flight (Askelson et al. 2013). The 

present study focuses on wind hazards that are expected to be associated with flying a sUAS within 

complex terrain regimes. The complex terrain within Central New York (CNY) was chosen for 

analysis in this study. Understanding wind flows and their evolution becomes necessary to a 

successful mission, as wind can, and has, resulted in a loss of sUAS flight control. 

 Complex terrain can be described by the proximity between various topographic features. 

In this case, CNY is characterized by the Allegheny Plateau (AP) to the south, Adirondack 

Mountains to the northeast, Tug Hill Plateau to the north-northeast, Lake Ontario to the northwest, 

and the Mohawk and St. Lawrence River Valleys that make-up its center (Fig. 1). This valley 
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structure within the heart of CNY will be the primary area of interest and referred to as the Central 

Valley (CV). The CV’s surrounding bounds influence wind flow patterns in numerous ways that 

will be discussed in the latter portions of this paper. 

 

Fig. 1: MSL terrain map with topographic feature labels. The x and y 

axes convey the number of grid points (distance = # Grid Points × 4 

km). A reference length scale is provided.  

 

 Utilization of Numerical Weather Prediction (NWP) as a tool in guiding sUAS travel is a 

natural solution to this problem. Understanding weather model performance in this scenario must 



REILLY  AUGUST 2020 

3 

be investigated. Therefore, conducting a high-resolution model simulation and testing its ability to 

resolve momentum and subsequent turbulent evolution within the boundary layer is necessary. 

 A common exploration of model sensitivity involves horizontal and vertical grid spacing 

used within NWP. Model vertical resolution is typically held constant throughout model nests, 

and, thus, horizontal resolution impacts are evaluated herein. Use of the Weather Research and 

Forecasting (WRF) model (Skamarock et al. 2008) allows for a nested domain structure, enabling 

simulations using multiple horizontal grid spacing – hereinafter Δx – intervals. Decreasing Δx 

increases detail within model output; however, decreasing Δx to lower values leads to higher 

computational cost. 

 The primary focus is understanding wind vector sensitivities associated with decreasing 

Δx. To evaluate this, subsequent model nests utilize 12 km, 4 km, 1.33 km, and 0.444 km Δx 

values. While not an exhaustive study, as the sensitivities are subject to change with different 

ambient conditions, the goal of this work is to identify a Δx that enables identification of sUAS 

wind hazards while remaining computationally affordable. 

 The following paper is divided into seven chapters beginning with the previous 

Introduction. sUAS characteristics and associated hazards are described in Chapter 2, with an in-

depth discussion regarding topography provided in Chapter 3. Chapter 4 then includes an 

explanation of the methodology, discussing the WRF model details and use of the New York State 

Mesonet (NYSM). Results and their discussion are included in Chapter 5 and Chapter 6, 

respectively. Conclusions for this experiment are presented within Chapter 7. 
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2. sUAS CHARACTERISTICS AND HAZARDS 

 Use of UA, as discussed by Marshall et al. (2016), has been relevant since the early 1900’s 

when on-board systems such as the rudder, autopilot, and radio helped shape unmanned flight. 

Early usage, like most aviation and weather-related technology, was primarily militaristic, as the 

remote guided aerial torpedoes of 1916 were utilized in World War I. In general, modern UA are 

referred to as autonomous or remotely piloted aircraft that rely on their autopilot or transmitters, 

respectively. 

 The Unmanned Aircraft System (UAS) community uses technology that must be guided 

by regulations. While recreational users are not required to register their machines, doing so helps 

in commercializing the technology (UAS Summit 2019). In the current state of UA, situations that 

threaten human life or property are of particular interest. For this reason, the FAA has implemented 

the Part 107 regulation to provide guidelines for sUAS flight (FAA 2016). The rules include 

weather-related constraints pertaining to avoidance of clouds—500 ft vertically and 2000 ft 

horizontally, and a minimum three-mile visibility, where operations must be conducted within 

Visual Line Of Sight (VLOS). If suitable BVLOS capabilities are supported by the UAS, the 

VLOS requirement may be waived. One means for receiving a Part 107 waiver that enables 

BVLOS operations involves the sUAS being equipped with proper Detect And Avoid (DAA) 

instrumentation. This DAA technology acts to sense nearby encounters and maneuver the sUAS 

to avoid them. As previously stated, sUAS safety regulations must be at least equal to that of 

manned aircraft. Provided an on-board pilot’s sight was a means to DAA with manned aircraft, 

UA DAA technology must act to replicate this ability (Askelson et al. 2013). The absence of such 

capabilities while flying BVLOS leaves a sUAS and any nearby aircraft susceptible to dangerous 

situations, such as a Mid-Air Collision (MAC). DAA technology is essential to ensuring the safety 

https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=20516
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of the airspace and surrounding population. Efforts to implement an automated and certified DAA 

system are ongoing. 

 General weather guidelines are vague and not summarized within Part 107, which states 

that operators should refer to local forecasts from reputable sources. The provided flight 

constraints permit operations up to 400 ft (0.121 km) Above Ground Level (AGL) or 1,600 ft AGL 

if within 400 ft of a structure. At these heights, atmospheric conditions are sensitive to the 

Planetary Boundary Layer (PBL) structure and evolution. Understanding the weather phenomena 

that impact the efficacy of a sUAS in the PBL must be considered. This implication provides the 

basis for weather parameters that must be investigated. Ranquist et al. (2017) provides an overview 

of weather hazards to which sUAS are typically exposed, which are described subsequently. 

 Weather hazards are important even when the UAS is operated within VLOS. Glare and 

flight between the sun and pilot can take away an operator’s vision of the UA, decreasing safety. 

This is true for the pilot’s view of both the sUAS as well as the tablet possibly being used to control 

it. Solar activity can also interfere with GPS and should be a general consideration when flying. 

 Humidity can create condensation on the electronics within an UAS, potentially leading to 

a loss of communication, command, and control. In addition, condensation can cause the circuitry 

to spark and set afire. If an UAS utilizes a partially damaged lithium polymer battery prone to 

hydrogen build-up, one of these sparks can trigger an explosion (Drone Registration 2016). 

Humidity trends vary locally as a result of geography, time of day/year, and current weather 

patterns; therefore, it should be considered before every flight. 

 Temperature variation is similar to humidity and can have significant impacts on an UAS. 

UAS flight operations typically occur between temperatures of 253-323 K. Flying with certain 
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UAS at temperatures as low as 223 K or as high as 343 K is possible, but negative hardware and 

performance impacts are expected. These negative impacts mainly pertain to the battery and 

circuitry. Higher temperatures can lead to deformation of the hardware, while lower temperatures 

can result in on-board materials becoming brittle and easily broken. Lower temperatures can also 

alter UAS communication and operation. Battery life can deplete quickly in higher temperatures, 

as the generation of lift inversely relates to temperature; thus, more energy is required to fly in 

higher temperatures. Lower temperatures lead to less overall battery capacity; even with an 

increase in lift generation, the overall performance/flight time of the UAS becomes limited 

(Warner 2015). 

 Having knowledge of weather conditions and how they will evolve with time is essential 

to a successful BVLOS mission. sUAS operations can oftentimes be visualized using an on-board 

camera. The effectiveness of this camera becomes limited with visibility concerns arising within 

clouds, fog, and haze, which may also act to blur the camera lens and increase the risk of collision. 

Overall, avoiding flight through condensed moisture is recommended. 

 Flying below clouds can expose a sUAS to precipitation, which can adversely affect 

operations in more ways than one. Accumulation of precipitation on a sUAS can create an uneven 

mass distribution. This shifting of the center of mass can result in control issues, as can any 

precipitation that encounters circuitry. Also, the impact of hydrometeors on the airframe creates a 

downward torque, resulting in a downward pitch. This effect coincides with rain intensity, as 

heavier rain will likely force a sUAS downwards and impact aerodynamic efficiency. It should be 

noted that certain airframe materials may respond poorly to intense rainfall. Hansman and Craig 

(1987) showed that wet conditions increased the critical angle, an angle at which an aircraft 

experiences stall, of the NACA 0012 airfoil by 4º. While being a larger structure, implications for 
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sUAS, specifically fixed-wing systems, can be assumed to be similar. Being able to identify 

precipitation during a BVLOS mission flight is necessary for avoiding these hazards. 

 While icing is less of a threat at lower elevations, it is still possible and should be 

considered. The most common cause of aircraft icing is supercooled water freezing onto the 

airframe. Icing on the wings and body increases drag and decreases lift, creating substantial flight 

safety issues. With a sUAS, the primary threat is rime ice (Politovich 2015), a rough and opaque 

form of ice that forms from droplets within low clouds/fog (FAA 1975). When considering a rotor-

blade powered sUAS, rime ice tends to form on the blades themselves. Blade rotation results in a 

centrifugal force that acts as a de-icing method, but it can also produce problematic uneven ice 

distribution. This also impacts fixed-wing aircraft, as the imbalance in mass can be detrimental to 

flight (Brouwers et al. 2010). 

 Impacts of wind and turbulence are particularly relevant. While producing the greatest 

number of weather-related aviation accidents, windy and turbulent conditions can also lead to 

travel limitations. In addition to the effects of wind and turbulence through vertical and horizontal 

displacement, the implications upon sUAS battery life must be considered. Both factors rely on 

the orientation (roll, pitch, and yaw) of the aircraft (Fig. 2). These parameters define sUAS 

orientation in terms of aircraft control: roll pertains to rotation about the airframe’s main body, 

pitch refers to the angle of the airframe’s nose, and yaw guides the aircraft’s horizontal direction. 

An issue arises when the prevailing wind impacts aircraft orientation and, thus, control. For 

example, to avoid collision with nearby structures, operators may conduct take-off in open areas 

that are prone to crosswinds (winds that blow across the aircraft’s path). A crosswind of just 5-8 

m s-1 can displace a larger UA aircraft on a runway, resulting in delays or even cancelation of the 

flight (Master Sergeant Nelson, personal communication, 27 August 2019). Exposing aircraft to 
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these conditions can result in the airframe flipping entirely, as the yaw and roll of the airframe are 

directly affected by the horizontal winds. Once airborne, winds and turbulence can continue to 

encourage a loss of controlled flight, impacting sUAS travel. 

 

Fig. 2: Yaw, pitch, and roll with respect to a sUAS.  

 

 It is not unrealistic for wind speeds, especially at higher altitudes, to exceed the maximum 

flying speed of a sUAS (Fig. 3). On average, multi-rotor sUAS harness a maximum flight speed 

of about 15 m s-1. The resulting loss of control can lead to stagnant flight or significant 

displacement, which could result in loss of VLOS. Examples of such cases are available through 

public video platforms (e.g., YouTube), where sUAS operators experience significant aircraft 

displacement, typically leading to unsafe crash landings. Multi-rotor sUASs generally have lower 

https://www.youtube.com/watch?v=QlKqBX5kRjo
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maximum flight speeds than fixed wing sUAS, as indicated in Fig. 3, and they are subject to 

experience a loss of control within low-level wind speed regimes. sUAS are typically equipped 

with multiple flight modes that permit different flight speed maxima. Recreational users must 

enable a feature to actively switch modes and unlock higher flight speeds that may be necessary 

to overcome the prevailing winds. Failing to do so before flight could result in a dangerous 

situation. 

 

Fig. 3. Survey of 92 different sUAS maximum flight speeds with the Beaufort wind scale 

overlaid. The darker brown color indicates an overlap in fixed wing and multi-rotor 

aircraft travel speeds (1 km hr-1 = 0.27 m s-1). Reproduced from Ranquist et al. (2017).  
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 Maximizing battery life enables a successful and efficient mission. Headwinds require an 

increase in sUAS velocity, and, thus, battery life is shortened. The opposite is true for a tailwind, 

as less battery power is needed to fly at the intended speed. Optimizing flight path to reduce wind-

related adversity can have substantial benefits. According to Master Sergeant Nelson of the Grand 

Forks Air Force Base, optimizing the level at which an UAS is flying can result in an efficiency 

increase of up to 400% (UAS Summit 2019). While this occurs with the large RQ4-B, or Global 

Hawk, the same principle applies to sUAS. Battery life is arguably one of the more important 

factors from an economic standpoint: longer flights are generally more successful/productive. In 

order to maximize flight duration, wind fields must be understood both prior to and during flight. 

Avoiding a strong headwind within the permitted flight region for a sUAS will elongate flight. 

Identifying a tailwind at a permitted altitude, both towards and returning from a destination, is 

optimal. Battery depletion as a result of fighting a headwind before returning to a safe landing 

location could result in a dangerous situation. Flight software often detects wind-flow adversity, 

but, by the time the UAS is airborne, wind speeds may quickly result in an unsafe landing 

condition. Maintaining flight to reach a safe landing location leaves a low battery sUAS prone to 

a hazardous emergency landing. 

 Wind gusts must also be considered, as they can be on the order of two-times larger than 

the sustained wind speed. Given that a wind gust can last up to 20 seconds, there is plenty of time 

to lose control of a sUAS (NOAA 2013). It is also important to consider the degree to which gusts 

and wind-fields vary spatially. Like many atmospheric features, wind-fields are stratified as well 

as spatially and temporally semi-chaotic. The frictional effects of surface features can disrupt 

wind-fields, creating phenomena such as wind tunnels and gap flow. Both meso- and micro-scale 
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wind features must be analyzed to assure sUAS flight safety. Consideration of the PBL is essential. 

The height of the PBL evolves diurnally and relies upon several environmental factors (Fig. 4). 

Wind speeds within the PBL generally increase with height as a result of friction. Above this 

friction, or surface, layer, momentum tends to be well-mixed, implying generally consistent wind 

speed magnitudes, dependent upon local stability, throughout what is known as the Mixed Layer 

(ML). Mixing coincides with vertical motions that can have detrimental impacts on sUAS flight. 

A strong downdraft (updraft) could immediately force the aircraft downwards (upwards) into a 

hazardous situation (Fig. 5). It is also possible for a vertical draft to force a sUAS into a pocket of 

wind speed shear (Fig. 6). Such scenarios could also lead to a MAC. Horizontal wind vectors are 

not guaranteed to be unidirectional as a result of variable pressure gradients that are dependent 

upon several environmental factors, including the local topography. 

 

 

Fig. 4: Illustration of PBL diurnal evolution and its components. Figure reproduced from 

Markowski and Richardson (2010).  
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Fig. 5: Illustration of a sUAS encountering a downdraft (red vectors) that creates a hazardous 

situation with respect to obstacles.  

 

 

Fig. 6: Illustration of a sUAS encountering an updraft that creates a hazardous situation with 

respect to wind speed shear. Red vectors illustrate air flow.  
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3. TOPOGRAPHY 

 The area of interest is CNY’s detailed valley system that envelops the area previously 

described as the CV. Most discussion will revolve around this area’s complex terrain. The CV is 

bounded to the: south by the AP, northeast by the beginning of the Adirondack Mountains, north-

northeast by the Tug Hill Plateau, and northwest by Lake Ontario (Fig. 1). This variation in 

topography enables production of many complex wind flow scenarios; the present experiment 

involves a southerly flow aloft. Thus, wind flow aloft prevails over the AP, traverses the CV, then 

encounters the edge of the Adirondack Mountains and Tug Hill Plateau on the leeward side of the 

CV. The terrain elevation drops ~400 m from the crest of the AP into the heart of the CV. The 

leeward climb in elevation is smoother and involves about a 500 m rise over about 58 km to the 

Tug Hill’s cap. Within the CV wind flow is easterly, following the Mohawk Valley’s drainage 

gradient that begins around 123 m Mean Sea Level (MSL) and sinks, with detailed height 

variations along the way, about 50 m downstream to Lake Ontario. Wind flow behavior as a result 

of this terrain variation becomes a blend of numerous, primarily valley induced factors. 

a. Gap Flow 

 Considering the valley terrain and low-level wind flow of the present simulation, the gap 

flow phenomenon is briefly discussed. A gap flow typically occurs when airflow accelerates within 

a topographically constricted area; after exiting the area of constriction, the airflow continues to 

accelerate downstream of the constriction and achieves a wind speed maximum (Mayr et al. 2007). 

In the case of the CV, an easterly wind flow is bounded and could lead to downstream wind speed 

maxima. 
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b. Valley Circulation 

 Typical valley flow behavior involves a diurnally influenced wind pattern that is driven by 

terrain-induced temperature and pressure differences. The airflow within a valley is well covered 

by Rampanelli et al. (2004), and the following is largely derived from their work. A valley’s large 

daily temperature range is primarily driven by the diurnal heating cycle. The subsequent 

temperature differences within the mountain-valley system drives hydrostatically-generated, 

pressure-gradient-based wind flows. More specifically, Weigel et al. (2006) describes the slope 

walls warming (cooling) at a faster rate than the valley’s central air mass, creating a density driven 

upslope (downslope) flow. This process is known as a slope wind, of which there are usually two—

one on each valley slope—that typically blow up (down) the valley walls during the day (night). 

Mass conservation from the resulting divergence (convergence) at the valley floor completes a 

circulation with sinking (rising) air within the center of the valley. Flow along the valley axis is 

similar, in that it rises up-valley during the day and sinks down-valley at night. The combination 

of the slope winds and airflow along the valley axis results in a three-dimensional circulation 

termed the Valley Circulation (VC) (Fig. 7). Ideal VC conditions involve weak upper-level flow 

and a strong diurnal cycle. Daytime subsidence warming as a result of the rising slope winds helps 

to increase valley air temperatures relative to adjacent plains. The process also reverses, where 

subsidence warming acts to drive the slope winds (Weigel et al. 2006). Provided the subsidence is 

strong in an unstable environment, advective heat transport within the valley can complicate 

temperature profiles. For example, cold air advection at the surface can act to stabilize low level 

air while upper level subsidence develops a strong capping inversion (Weigel et al. 2006). 

Inversions and their evolution are important in identifying a wind speed maximum that could 

become hazardous to sUAS flight. The nature of wind flow within complex topography may 
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involve the superposition of several mechanisms, and a subsequent valley-based PBL profile is 

commonly not the same as that at surrounding locations (Weigel et al. 2006). 

 

Fig. 7: Valley circulation behavior at: a) sunrise, b) mid-

morning, c) early afternoon, d) late afternoon, e) evening, 

f) early night, g) middle of night, and h) late night. White 

arrows depict slope wind circulation and blue arrows 

convey the direction of valley axis flow. Figure reproduced 

from Markowski and Richardson (2010).  
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c. Wind Channeling 

 Valley wind behavior is further complicated by channeling. Wind channeling is well 

defined by Gross and Wipperman (1987). Airflow decelerates when entering a valley and disturbs 

the equilibrium between horizontal pressure gradient and Coriolis forces. The air, now within the 

valley, is forced to flow along the walls of the bordering topography, as the geostrophic pressure 

gradient’s along-valley component becomes dominant. Thus, the airflow is deflected along the 

valley axis, resulting in a valley channeled flow. This behavior is best exhibited when wind flow 

is perpendicular to the valley. Channeling can be complex, as a variety of wind flow regimes, 

dependent on both wind speed and direction, can produce different scenarios. 

d. Valley Flow Mechanisms 

 These scenarios are best explained by a combination of different valley wind mechanisms. 

Four mechanisms that influence airflow above and within a valley are defined by Whiteman and 

Doran (1993), each of which is well explained and relevant herein. The first mechanism is thermal 

forcing, which is essentially the VC. The downward transport of momentum is the second 

mechanism considered. An example of this mechanism occurs through gravity waves. The 

horizontal momentum of the winds aloft is transported downwards by gravity-wave-induced 

turbulent mixing that works to entrain momentum aloft into the valley’s airflow. The reliance on 

vertical mixing inherently involves a dependence on stability, as unstable conditions are beneficial 

in momentum entrainment. Downward transport of momentum is noted to commonly occur in 

valleys that are wide and flat along their axis, like the CV. Pressure-driven channeling, the third 

mechanism, is synonymous to the geostrophic pressure gradient channeling behavior described 

above. This mechanism is very similar to the fourth mechanism: forced channeling. Forced 

channeling also involves the channeling of ambient winds into the valley that then align with the 
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valley axis. The difference involves a phenomenon known as a countercurrent, in which pressure 

driven channeling influences valley winds to flow in the opposite direction of winds aloft. As an 

example, consider a northeast to southwest valley structure. For a southerly wind flow aloft, forced 

channeling would involve an up-valley flow out of the southwest while a pressure-driven 

channeling valley flow would be down-valley, out of the northeast (Fig. 8). This quick turning of 

the winds associated with a strong pressure gradient is the countercurrent nature that defines 

pressure-driven channeling. A valley’s airflow can be explained by a blend of these four effects in 

combination with the overlying synoptic and mesoscale conditions. Further, the dominant 

mechanism is subject to vary seasonally (Carrera et al. 2009).  
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Fig. 8. Wind direction for both the aloft geostrophic and low-level valley flow for a NE to 

SW valley orientation as described by four mechanisms: thermal forcing, downward 

transport of momentum, forced channeling, and pressure driven channeling. Reproduced 

from Whiteman and Doran (1993).  
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 Resolution of wind channeling behavior within models becomes crucial to producing a 

good forecast. This was well depicted by Roebber and Gyakum (2003) in their analysis of 

frontogenetical channeling that led to a prolonged freezing rain event in New York’s St. Lawrence 

River Valley. That event involved cold air from a northerly high-pressure system pooling at the 

valley surface as a result of pressure driven channeling, while southerly winds aloft drove upper 

level warming. This resulted in two freezing rain events, each of which, when modeled without 

the effects of channeling, produced less simulated freezing rain volume (12.1% and 16.5%, 

respectively). The resulting $4 billion in damages stresses the importance of resolving wind 

channeling within models. Ensuring the resolution of channeling in numerical models will benefit 

an accurate forecast of small-scale wind behavior pertinent to sUAS flight. 

 

4. METHODS 

 Weather conditions within CNY on 5 November 2017 are simulated herein. Simulations 

were executed using version 3.9.1.1 of the WRF model (Skamarock et al. 2008). WRF is a 

numerical weather model that can be used to simulate specific parameters that are poorly sampled 

by observations. This type of issue is relevant in areas of varying topography, as small-scale 

features are often generated around complex terrain. Visualizing the occurrence and evolution of 

these features is essential to understanding the low-level dynamic interactions of the atmosphere 

– where sUAS flights are conducted. Utilizing NWP as a tool to predict such weather hazards will 

provide a useful tool for UAS pilots. WRF can be used to simulate multiple domains, nesting each 

inner domain within a parent domain to achieve a higher resolution. The typical method for this 

involves reducing Δx by a factor of three for each nest (e.g., a 12 km parent domain with 4 km, 

1.33 km, etc., nested domains). A higher resolution, or smaller grid spacing, resolves smaller scale 
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atmospheric features (e.g. X km grid spacing poorly resolves atmospheric features of 2X km large 

and well-resolves 10X km features). Thus, resolving weather features of interest relies on this, and 

resolving pertinent atmospheric wave features within a model encourages better results. In order 

to resolve waves small enough to impact sUAS, likely created by terrain, it is hypothesized that a 

resolution better than 4 km is needed. Being able to model the timing and intensity of terrain-

induced waves is expected to be crucial to flight mission success. 

 Ambient weather conditions involved a synoptic scale low pressure system with warm 

frontal precipitation and southerly wind flow throughout the AP (Fig. 9). Higher temperatures and 

easterly wind flow are notable features of the CV when compared to the surrounding area. Cold 

frontal passage associated with the synoptic low pressure occurs outside of the simulation window. 

In the following subsections model details, use of surface observations, and handling of model 

output are discussed. 

a. WRF Model Details 

 WRF contains a highly customizable physics suite that can be curated toward specific 

scenarios. Simulations for this experiment were initialized with North American Regional 

Reanalysis (NARR) 12 km data. These data were used to initialize the parent 12 km domain that 

included three, one-way nested domains of 4 km, 1.33 km, and 0.444 km Δx (Fig. 10). Each 

domain utilized 30 s (~0.926 km) United States Geological Survey (USGS) terrain resolution data. 

Aside from the Cumulus Parameterization (CP), parameterizations were consistent for each 

domain. Parameterizations, also referred to as a scheme, are the model physics that attempt to 

estimate impacts of atmospheric processes that cannot be resolved with the model grid spacing 

that is utilized (Rontu 2006). Thus, there is a larger dependence on parameterizations for coarse 

https://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog_V3.html
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resolutions. The discussion below details each parameterization and model characteristic used 

herein, each of which is summarized within Table 1. 

Table 1: Summary of model domain characteristics and parameterizations.  

 

 For each simulation, the WRF Double-Moment Six-Class (WDM6) Microphysics (MP) 

scheme was used (Lim and Hong 2009). This is an extension of the WRF single-moment six class 

MP scheme, adding cloud condensation nuclei to the extensive list of hydrometeors (Pérez et al. 

2014). While rainfall is not a concern of this experiment, the simulation day does involve warm 

frontal precipitation. In order to best replicate and produce fine scale wind patterns, accurate latent 

heating and cloud cover are needed. 
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Fig. 9: Surface sea-level pressure and precipitation plots for 4 (a), 5 (b), and 6 (c) November 2017 

at 7 AM EST. Images acquired from the Weather Prediction Center (WPC) surface analysis 

archive.  

 

https://www.wpc.ncep.noaa.gov/archives/web_pages/sfc/sfc_archive.php
https://www.wpc.ncep.noaa.gov/archives/web_pages/sfc/sfc_archive.php
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Fig. 10: The WRF nested domain structure utilized herein. The parent 

domain is represented by d01, with d02, d03, and d04 being the 

nested grids, respectively.  

 

 The Land Surface Model (LSM) used is the Unified Noah LSM (Tewari et al. 2004). This 

scheme has been shown to have an improved urban treatment compared to other LSMs, while 

taking surface emissivity into account as well (Skamarock et al. 2008). In addition, the Unified 

Noah LSM provides reasonable diurnal variations in fluxes (Pérez et al. 2014). An urban canopy 

representation is important for wind vector replication as well as its downstream evolution within 

and around the dense urban development of CNY. 
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 The Longwave (LW) and Shortwave (SW) radiation schemes utilized consisted of the 

Rapid Radiative Transfer Model (RRTM) and Dudhia schemes respectively (Mlawer et al. 1997; 

Dudhia 1988). The use of the Dudhia SW scheme allows for implementing the “slope_rad” and 

“topo_shading” physics options. While not used in this experiment, their availability provides the 

opportunity for future work that could improve wind replication through better resolution of the 

diurnal heating cycle within complex terrain. The RRTM LW scheme is commonly paired with 

the Dudhia SW. 

 The CP of choice is the Kain–Fritsch scheme, which was only employed on the outermost 

12 km domain (Kain 2004). CPs are commonly utilized for a coarse Δx of 10 km or greater, 

allowing it to be absent in the model’s nests (Skamarock et al. 2008). 

 The dynamics of the PBL are typically parameterized along with a surface scheme to aid 

in estimation of vertical fluxes such as heat, momentum, and moisture (Pérez et al. 2014). Surface 

layer schemes estimate surface fluxes and stresses that in turn influence development of the PBL. 

The PBL scheme used was the Yonsei University Scheme (YSU) (Hong et al. 2006). The YSU 

has been shown to produce a dry, deeper boundary layer that quickly relieves capping inversions 

(Weisman et al. 2008). The Revised MM5 Scheme, based on the Monin-Obukhov similarity theory 

(Monin and Obukhov 1954), is recommended for use with the YSU, and thus, it was employed to 

parameterize the surface layer (Jiménez et al. 2011). 

 PBL schemes are essential in estimating both surface winds and mixing accurately 

throughout the PBL. WRF tends to produce negative wind speed biases around mountain- and hill-

tops, and positive wind speed biases in plains and valleys (Jiménez and Dudhia 2012). As a result 

of this, WRF-produced wind speeds could be misleading. Along with the previous discussion, it 

can be hypothesized that decreasing Δx, thus, increasing terrain resolution, should tend towards 
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correcting this wind speed bias. Yet, the opposite can be proposed: higher resolutions complicate 

both terrain and wind patterns beyond model capabilities. This could lead to early chaotic 

divergence in a simulation if the synoptic flow is not governing small-scale motion. Considering 

the complexity of CNY’s terrain, it is important to note that areas of steep terrain create a larger 

wind bias (Jiménez and Dudhia 2012). These findings have led to the “topo_wind” 

parameterization when using the YSU PBL scheme; this adjustment implements a sink term as a 

function of surface roughness, in accordance with terrain, within the momentum equation (Jiménez 

and Dudhia 2012). This adjustment was included within this experiments YSU simulated model 

domains. 

 Testing of the topo_wind parameterization has led to encouraging results. Model bias in 

flat terrain was shown to improve, while mountainous areas experienced an increase in bias when 

compared to a monthly average of observations (Lee et al. 2015). This mountainous bias is 

hypothesized to be as a result of representativeness error, sensor location, and crude orographic 

resolution. Representativeness error results in inaccurate model output that is typically a product 

of poorly replicated local terrain variation within a model simulation; further discussion on this 

error is included within the following sub-section. An important result of the Lee et al. (2015) 

study is the improvement in surface latent heat flux. Resolution of heat flux in a valley is crucial 

to the valley wind diurnal cycle, as discussed in Chapter 3. 

 Momentum flux is crucial in resolving accurate wind speeds and ensuring safe sUAS flight. 

Thus, the PBL parameterization is critical to estimating the presence of hazardous winds. This 

importance diminishes in coarse resolutions, as a 4 km Δx would generalize a great distance of 

sUAS travel. Generalization may lead to wind errors that in turn result in pilots conducting an 

unsafe flight. Considering this determinant of parameterizations in combination with topographic 
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detail, resolution of model output can significantly degrade the quality of a forecast. A decrease in 

Δx resolves more detailed terrain which leads to improvement in model performance (Rontu 2006). 

As air flows over model-resolved terrain, small-scale terrain variations that encourage atmospheric 

wave development may not be resolved. Thus, even a 0.444 km Δx will inevitably contain wind 

vector errors. Relatively small atmospheric features, typical of the micro- and meso-gamma scales, 

are usually heavily influenced by the prevailing synoptic and mesoscale patterns that govern a 

general forecast. Given sUAS sensitivity to winds, a general sUAS-centric forecast will differ and 

must be evaluated. Synoptic scale operational models are typically simulated with a Δx ≥ 12 km, 

which is suitable for resolving large-scale pressure systems that influence local weather patterns. 

In this case, the smoothing of surface topography is not much of a concern. Synoptic models are 

used as operational forecasting guidance, producing reliable weather patterns to enable accurate, 

human-produced forecasts. This same concept should be applied not only to higher resolutions but 

to the blending of operational model forecasts. For example, a 4 km resolution may capture the 

presence of a meso-scale low pressure system well, while a 1 km output best exemplifies the local 

change in wind vectors. Such analysis could aid in the human identification of wind hazards and, 

thus, a reliable sUAS-centric forecast. Improving this forecast would then rely on proper model 

output that is dependent upon PBL parameterization performance and Δx replication of terrain. 

 The behavior of parameterizations when approaching small Δx values can become 

problematic. While most parameterizations have been tested in many situations/simulations, 

approaching higher resolutions may involve a change in parameterization performance. PBL 

schemes are considered satisfactory up to 500 m, where the sub-grid scale processes do not 

replicate model physics resolved processes. This duplication starts to become an issue around 100 

m, where model dynamics can appropriately replicate boundary layer mass flux. These smaller Δx 
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intervals enter a “gray zone” where model parameterizations and physics resolve the same eddy 

behavior (Hong and Dudhia 2012). This gray zone is best known in modeling through CP, where 

it is incorporated for a Δx greater than 10 km and disregarded when Δx is less than 4 km. This 6 

km gray area is comparable to the hundreds of meters in Δx that is expected to define the gray area 

of PBL parameterizations. 

 The gray zone is complicated by how turbulent eddies are handled in PBL schemes. Eddy 

cascade involves large momentum circulations dissipating into the smallest of eddies that then 

become irreversibly dampened by viscosity and converted into thermal energy. Large eddies can 

be driven by both wind shear and stability. Free convection within the PBL involves the buoyant, 

or thermal, mixing of air while forced convection mixes mechanically by wind shear. Mixing 

transfers several thermodynamic and kinematic variables (e.g. heat, moisture, and momentum) 

between different levels of the atmosphere. Buoyant mixing relies upon the surface heat flux that 

is positive during the daytime when heating typically occurs within the surface layer – the section 

of the PBL that is most effected by friction. Thus, heat is exchanged between the surface layer and 

a vertically adjacent layer of air. This process can be labeled as local mixing, which in turn drives 

the thermal properties of larger eddies, or non-local mixing (Shin and Hong 2013). In other words, 

the exchange between the surface layer and the lowest level of the ML is essential in developing 

mixing throughout the entire PBL. As a result of differing magnitudes, PBL schemes treat local 

and nonlocal mixing separately and, thus, their gray areas are associated with different Δx intervals 

(Shin and Hong 2013). Consideration of this issue is relevant for other parameterizations as well. 

A flexible, scale-aware parameterization would allow higher resolution simulations to be less 

impacted by the gray area. Specifically, when approaching a Δx ≤ 400 m, parameterization of non-

local mixing would be turned off while the local mixing could still be parameterized. Scale-aware 
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parameterizations are still being tested and developed, and they should be considered for future 

high-resolution simulation studies. 

 An increase in horizontal resolution should be paired with an increase in vertical resolution. 

The vertical grid should enable resolution of features that are resolved horizontally. A couple 

issues with this are discussed by Warner (2011). Many higher resolution simulations fail to satisfy 

the criteria for vertical resolution, as an increase in vertical levels creates the need for more 

computational power. For a Δx less than 1 km, hundreds, potentially thousands, of vertical layers 

are needed to fully resolve wave features in the vertical. A satisfactory number of vertical layers 

depends upon the slope of the resolvable feature: a smaller feature requires more layers. In a nested 

simulation, it is commonplace to keep the amount of vertical levels consistent in each domain. 

This combination of factors results in a challenge with respect to both computational time and 

space. More vertical layers, in combination with a smaller Δx, leads to large output files that take 

longer to produce. Yet, failing to provide enough vertical resolution can lead to spurious gravity 

wave generation, destabilizing and terminating model execution. Modelers tend to compromise 

and focus on Δx while increasing the number of vertical levels dependent on the nature of the 

experiment. Provided that this experiment relies on resolving features around topography, 50 

vertical layers were used. This value is low for the aforementioned reasons. However, a 

computationally cost-effective model is desirable. Thus, the use of fewer vertical levels could be 

viewed as efficient if output is satisfactory. Furthermore, use of σ levels in WRF, which are terrain 

following vertical levels, encourages high resolution of the atmosphere’s lower levels. Compacting 

vertical levels near the surface is valuable in PBL-centric simulations and is employed for this 

experiment (Fig. 11). 
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Fig. 11: Illustration of the default (a) and manually compacted (b) vertical σ levels within the 

WRF model up to 1 km MSL. The red contour signifies the lowest model layer while 

increasingly blue contours show higher levels of the atmosphere.  

 

 Model time step, t, indicates how often calculations involving neighboring model grid 

points are performed. The calculation load increases with decreasing Δx, which must be considered 

for computational stability. Model stability is usually discussed in terms of the Courant Number, 

, which is expressed as a negative linear relationship between Δx and t. Commonly, the  = ct
x  

relationship where t = 6x enables maintenance of model stability; this, at first, resulted in a 

model t of 72 s herein. The nested grids, as with x, generally follow a 3:1 t ratio, resulting in 

a t of 24 s, 8 s, and 2.6 s for the second, third, and fourth nests, respectively. However, with use 

of condensed σ levels within the PBL, stability became an issue. Stability with respect to the 

vertical can also be expressed using the Courant Number, where z replaces x. The typical 
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solutions for increasing stability, in this case, involve increasing z, decreasing t, or a 

combination of the two. In order to maintain a high vertical resolution of the PBL, t was decreased 

to half of its original value. This 36 s t of the parent domain resulted in a 12 s, 4 s, and 1.33 s t 

for the respective nests. Thus, to maintain high resolution and stability, computational cost was 

effectively doubled. The University Corporation for Atmospheric Research (UCAR) and National 

Center for Atmospheric Research (NCAR) made this possible through the Cheyenne 

supercomputer provided by the Computational and Information Systems Lab (CISL). Cheyenne is 

a 5.34 petaflops computing system that provides users with high-performance processing power. 

Use of Cheyenne will be further discussed in the results and discussion chapters, as it is important 

to the production of high-resolution model output. 

 Another possible parameterization is a gust parameterization. With an optimization of local 

and non-local parameterizations in combination with high horizontal and vertical resolutions, 

resolving wind gusts can still be an issue. Wind gusts, as previously defined, coincide with brief 

fluctuations in pressure and force that impact aviation operations (Harris and Kahl 2017). As 

shown by Harris and Kahl (2017), utilizing a gust factor, which is used to measure the average 

intensity of a wind gust in a specific area, can help to forecast peak wind gusts. Measuring this 

gust factor relies heavily on temporal resolution; observations for a specific time of day or year 

will vary with the prevailing ambient conditions, and, thus, impact the resultant gust factor. 

Specifically, wind speed, diurnal heating, and wind direction were shown to impact a gust factor’s 

magnitude. 

• Wind speed exhibited an inverse relationship with gust factor  

• Diurnal heating relates to wind speed as an afternoon increase in wind speed can 

result from the local mixing process  
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• Wind direction leads to the advection of air regimes that impact local stability  

 

These are then further complicated by surface roughness, which in turn can influence local 

stability and result in the hyperlocal variation of gust factors. Current model parameterizations 

for wind gusts fail to consider this variation, which suggests an area for improvement. 

 A study by Gutiérrez and Fovell (2018) investigated the development of a gust 

parameterization while utilizing various PBL schemes and Δx intervals. Their findings suggest 

the importance of Bulk Richardson Number (RB) and PBL structure, as substantial gusts are 

identified within neutral RB and a shallow PBL. RB is an estimation of airflow stability within a 

layer of air that derives from buoyancy and shear. Higher values of static stability can suppress 

mechanical shear and result in laminar air flow; unstable, turbulent air flows result from 

mechanical shear that is larger than the local buoyancy value; a RB of zero is considered neutral. 

Further, RB is better defined when more vertical model layers are resolved. This would suggest 

that as PBL resolution increases, wind gusts would become increasingly identifiable. Indeed, 

gust detection was shown to improve with increasing resolution – however, the false detection of 

wind gusts remains notably high. The suggested solution involves utilizing a 4 km Δx, which 

was shown to perform rather well, in an ensemble format of various gust parameterizations and 

PBL schemes to produce an accurate forecast. This conclusion is reached with knowledge of 

current computational cost limits, as producing an ensemble consisting of many 1 km Δx models 

is usually not temporally efficient for a forecast. Greater value is derived from several relatively 

coarse simulations as compared to a single high-resolution deterministic run. However, future 

computational capabilities will inevitably allow for these higher resolution ensembles. Therefore, 

developing an understanding of hyperlocal environments could result in detailed gust factor 
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mapping. Essentially, the value in understanding these environments and determining local gust 

factors will derive from collecting consistent hyperlocal measurements. With time, pockets of air 

that are safe for sUAS travel will be identified and collecting consistent, once improbable, 

measurements becomes possible. The result is a positive feedback for both NWP and the sUAS 

economy. 

b. New York State Mesonet and Verification 

 A modeling experiment is best conducted with a set of verification measures. Verification 

is the practice of comparing model output to observations, thus evaluating model behavior (Warner 

2011). Several common methods exist, and herein simulated winds are compared to surface 

observations and analysis data to assess model accuracy. Analysis data were acquired from various 

archives; their primary use was to inspect the synoptic pattern and expected airflow. Surface 

observation data within CNY is available through the NYSM, which provides detailed wind 

measurements on a five-minute temporal scale. The NYSM stations used is limited to 15 – each 

of which resides within the innermost domain (Fig. 12). These 15 stations, along with their 

respective station ID are: Belleville (BELL), Camden (CAMD), Cold Brook (COLD), Central 

Square (CSQR), Fayetteville (FAYE), Glenfield (GFLD), Harrisburg (HARR), Herkimer 

(HERK), Jordan (JORD), Morrisville (MORR), Osceola (OSCE), Redfield (REDF), Tully 

(TULL), Westmoreland (WEST), and Woodgate (WGAT). This set of station IDs is recorded in 

the Appendix, and each station is referred to by their respective ID acronym herein. Several factors 

must be considered when comparing specific observation stations values to model output. 
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Fig. 12: MSL terrain of the CV with location labels for the NYSM stations.  

 

 Owing to the presence of complex topography, observations may not be representative of 

the simulated area as a result of orographic smoothing (Warner 2011). However, comparison with 

model output should ensure confidence in reproduction of wind-flow using a mesoscale model 

(Jiménez et al. 2010a). When comparing an observation to a value from a model location that does 

not correspond with a model grid point, the model value becomes a blend of the surrounding grid-
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point calculations. Thus, this blend can poorly resolve local terrain and lead to an inaccurate 

representation of the sub grid-scale Reynolds-averaged surface conditions (Jiménez et al. 2010a). 

This inaccurate representation that arises from comparing observational data to the calculation 

blend produced from a model is referred to as representativeness error (Jiménez and Dudhia 2012). 

Representativeness error is essentially the misrepresentation of scales smaller than the one being 

observed. When comparing observational data from a station in a valley to a value estimated from 

a relatively coarse simulation, the smoothed topography in the model results in misrepresentation 

of the valley and, thus, error. Therefore, comparing non-grid-point model values to an averaged 

area of observations could remove some effects of representativeness error. However, if a blend 

of observations is unrealistic, selective grid-point comparison is recommended to mitigate 

misleading comparisons (Jimenez and Dudhia 2012). 

 WRF simulations are trending towards higher resolutions and larger domains (Steeneveld 

and Vilà-Guerau de Arellano 2019). Verifying fine-scale simulations will rely on dense networks 

of quality sensing data. Meteorological instruments require routine maintenance and have inherent 

thresholds and biases. When working with such observations, one must exercise care in order to 

assure that the data collected are reliable. Quality control and quality assurance, the examination 

of new and preexisting data respectively, are methods to ensure reliable data (Jiménez et al. 2010b). 

Both methods filter out erroneous readings that are likely to be the product of systematic and/or 

random error. Random error is essentially noise that results from the surrounding environment or 

instrument itself. Systematic error relies upon the use of an instrument, where miscalibration or 

mishandling of the instrument incur error. Filtered, quality wind measurements are necessary with 

the rising relevance of wind energy, dispersion of pollutants, and UA — to only name a few. 

Quality does not mean error free, but the smallest of improvements through routine maintenance 
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and quality control can ensure a dataset is: stored and managed correctly, within the environmental 

limits, and temporally consistent (Jiménez et al. 2010b). Inherently, this process can be made 

difficult if sensor stations are in a relatively hostile environment. For example, routine maintenance 

for a station within a mountainous region can be difficult, and its data could be less reliable as a 

result. This is an accepted issue that leads to observation investment elsewhere, leaving sensing 

gaps in these difficult to reach areas. 

 Sensing gaps have an adverse effect on modeling. It is difficult to forecast wind patterns 

on small scales given their dependence on local terrain, diurnal heating, and the overlying synoptic 

conditions (Rife et al. 2009). Wind vectors are sensitive to environmental changes, usually being 

one of the first parameters to fluctuate with the passing of atmospheric features. Essentially, winds 

are subject to high temporal and spatial variability. As with grid spacing, the spatial density of a 

sensing network corresponds to its spatial resolution of atmospheric features. Wind flow within 

sensing gaps will be disturbed as a result of topography, frontal boundaries, and storm systems 

(Wendell 1972). Thus, observing these disturbances relies upon an increased density in surface 

observations with a relatively high temporal resolution. Provided that sufficient mesoscale 

information can be derived from an accurate synoptic prediction (Roebber and Gyakum 2003), it 

is hypothesized that an accurate mesoscale prediction can provide sufficient microscale 

information. A Δx of about 1 km is thought to be enough to capture local wind variance in complex 

terrain, although replicating the spatial variability of wind patterns remains difficult (Rife et al. 

2009; Mass et al. 2002). The lack of sensing data on the local scale is a barrier to verifying such 

features. Implementing a dense in-situ sensing network is expensive, and other methods for 

obtaining local data should be explored. A sUAS can obtain observational flight data within 
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sensing gaps and conduct maintenance on stations within hostile environments - providing a 

solution to both issues discussed. 

 While not utilized here, replication of complex wind flow patterns using ensemble 

modeling is worthy of discussion. Both the spatial and temporal evolution of a wind field are 

commonly displaced when compared with observations. More variability can be generated in 

simulations where more circulations are present – an issue that is best addressed by an ensemble 

approach (Rife et al. 2004). It is now commonplace in the meteorological community to evaluate 

performance of multiple models. While a few models may replicate the same feature, its simulated 

location and timing could be different. Ensemble models can be used to generate probabilistic areal 

percentages, where increased confidence in a forecast results from several simulations producing 

similar temporal and spatial characteristics of a phenomenon (Mass et al. 2002). The likelihood of 

occurrence based on this approach can be thought of as a threat index. This is an important 

consideration when modeling in complex terrain; upstream complex terrain may induce significant 

mesoscale phenomena that impact PBL features (Mass et al. 2002). Furthermore, changing x 

alone may not improve simulation quality, and the inclusion of proper parameterizations and 

higher resolution terrain data suggest areas for improvement (Carvalho et al. 2012). Therefore, 

implementing a blend of multiple x and PBL parameterizations to create a wind hazard threat 

index could prove beneficial in enabling safe sUAS operations. 

 It is difficult to define an approach to verification of model output from multiple nested 

domains. Fine-scale terrain variation and high temporal variations associated with both diurnal and 

sub-diurnal heating complicate local circulations on such fine scales that models will remain 

imperfect (Rife et al. 2004). Model data can be spatially rich but temporally sparse owing to 

computational storage limitations. The opposite is typically true for surface observations that have 
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high temporal and relatively low spatial resolutions. The existence of these combined issues leads 

to difficulty justifying verification measures at the higher resolutions (Rife et al. 2004). Further, 

use of traditional verification metrics may mask the benefits of high resolution simulations and 

favor coarse resolutions (Mass et al. 2002; Warner 2011). For example, as discussed above, the 

occurrence of a phenomenon at the incorrect location or timestep should be expected at smaller 

scales. For this study, traditional verification of model output is therefore difficult to execute, as a 

resolution bias may arise. Output for each domain must be evaluated using the same means of 

observational comparison in order to accurately assess differences associated with resolution 

changes. Thus, comparing model output (from a blend of nearby grid points) to observations for 

each domain will best characterize the effect of changing x. This method of verification is done 

for both hourly and five-minute intervals. Therefore, while model output seems to agree with 

observations, this experiment is not a deterministic representation of CNY on 5 November 2017. 

The simulations are used to visualize changes in wind-flow with changing x; a successful 

simulation will rely on the onset of phenomena, regardless of location (Weisman et al. 1997). 

c. Processing 

 Model output is visualized using Read Interpolate Plot (RIP) software (Stoelinga et al. 

2018). The weather parameters investigated primarily pertain to wind vectors and their sensitivity. 

Temperature and airflow stability, characterized by RB, alongside wind speed and direction 

provide the basis for model output analysis. Considering the complex local valley terrain, cross-

section plots are commonly used (Fig. 13). Cross-sections reveal atmospheric stratification with 

respect to terrain characteristics while also illustrating vertical variations. This allows for critical 

analysis with respect to FAA Part 107 guidelines. Further, as previously discussed, vertical levels 
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were held constant through each domain; thus, the differences visualized between each domain’s 

cross-sections are dependent upon x. 

 

Fig. 13: MSL detailed terrain contours of the CV from the 0.444 km domain with lines 

indicating the east-west and north-south model cross-sectional coverage.  

 

 Plan-view plots of model output are also utilized. Given the difference in model domain 

nest sizes, a subdomain is used for comparison. Thus, the plan-view plots for each domain were 
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cropped to focus on the CV. The 0.444 km domain was cropped slightly to avoid analysis of noise 

near its lateral domain boundaries. Plan-view plots of model output are commonly visualized as a 

vertical layer average that embodies a PBL representation - one exception being model terrain, 

which was visualized using the lowest model level. 

 Multiple scripts were created to efficiently produce images. These scripts utilized the 

Python programming language to systematically execute RIP for each model nest. Separate scripts 

handled the generation of plan-view and cross-sectional plots. The RIP input files enable flexibility 

and customization that was not handled through scripting. However, a script was created to 

expedite the generation of multiple input files that each contained information necessary for 

subdomains and requested weather parameters. An outline of each script name, function, and use 

is provided in Table 2. 

 Time-series comparisons of model and NYSM 10 m wind data were generated using the 

Python programming language. The 10 m u and v wind components were extracted from model 

output and organized using RIP in the form of a time-series for each NYSM station’s latitude and 

longitude. These data are used to calculate wind magnitude and direction. The NYSM data were 

organized in separate Microsoft Excel files that were combined and organized into a single 

spreadsheet. This enabled sorting of measurements of interest within station-respective arrays. The 

two sets of arrays are plotted with respect to time, both hourly and five-minute intervals, for each 

of the 15 NYSM locations. The full code-set is available upon request. 

 



REILLY  AUGUST 2020 

40 

Table 2: Scripts created to execute and maintain organization of RIP output 

efficiently.  
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5. RESULTS 

 WRF was executed with Cheyenne supercomputing, and the simulation utilized 1440 

processing cores to simulate 36 hours in 4 hours and 14 minutes of computational time. 

Simulations for coarse (resolution) domains with larger Δt completed quickly in comparison to the 

high resolution, small Δx nested domains. Subsequently, the file size for hourly 12 km domain 

output was the smallest at 4.51 GB. Each nested domain approximately doubled this value, 

resulting in a 0.444 km domain file size of 38.4 GB. Total file size of the five-minute model data 

(four, one-hour files for each domain) was 126 GB. The total size of all necessary RIP processing 

files generated from the hourly and five-minute output data totaled to ~40 GB and ~77 GB, 

respectively. 

a. Verification 

 Comparison of model reflectivity to observations showed an overestimation of simulated 

morning warm frontal convective precipitation at 05 UTC. This was more apparent in the higher 

resolutions, which overestimated reflectivity values and discrete cell formation (not shown). 

Simulated precipitation through 11 UTC is displaced to the north while the intensity of afternoon 

showers is slightly underestimated by model output (not shown). 

 An example set of graphs depicting hourly NYSM observation and model output wind 

speed comparison is provided in Fig. 14. Error and standard deviation calculations for both the 

hourly and five-minute datasets are provided within Table 3 and Table 4, respectively. Wind speed 

comparisons show that at certain station locations (e.g. TULL and WGAT) the model has trouble 

replicating NYSM observations, while at other locations wind speeds appear to be well-resolved 

(e.g. CSQR and GFLD). Wind speed differences at TULL are as large as 8 m s-1, while HERK 
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wind speed differences are ~1 m s-1 over much of the simulation window. Overall, when 

considering every station and resolution, model wind speeds have an average error of ±1.976 m s-

1 for hourly data and ±1.935 m s-1 for five-minute data. Five-minute wind speed error graph 

examples are provided in Fig. 15. GFLD exhibits lower error for coarse resolutions while OSCE 

is best represented by the higher resolutions. Standard deviation calculations for the five-minute 

data show that higher resolutions capture more wind speed variability; the 0.444 km data are shown 

to overestimate variability (e.g. COLD) when compared to observations (Fig. 16). 
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Fig. 14: Hourly 10 m wind speed comparison of NYSM station data with latitude-longitude 

model location output: a) CSQR, b) HERK, c) TULL, and d) WGAT. The x-axis represents 

the time (h) of the entire 24 h analysis window and the y-axis represents wind speed error (m 

s-1). Different colored lines represent the NYSM observations and each model resolution’s 

output: purple = NYSM, red = 12 km, green = 4 km, yellow =1.33 km, blue = 0.444 km. 

NYSM observations are represented as y=0; error within model output is depicted as a 

deviation from this line.  
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Table 3: Hourly NYSM station location wind data (m s-1) for both observations and model output. 

Darker red shading indicates higher wind speed error; NYSM observation standard deviations and 

the model domain with the closest standard deviation are depicted by green cells.  

 

Table 4: Five-minute NYSM station location wind data (m s-1) for both observations and model 

output. Darker red shading indicates higher wind speed error; NYSM observation standard 

deviations and the model domain with the closest standard deviation are depicted by green cells.  
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Fig. 15: As in Fig. 14, but showing five-minute 10 m wind speed (m s-1) comparison of NYSM 

station data with latitude-longitude model location output: a) GFLD from 12-14 UTC, b) 

GFLD from 20-22 UTC, c) OSCE from 12-14 UTC, and d) OSCE from 20-22 UTC.  
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Fig. 16: Binned wind speed data of NYSM observations (purple), 12 km model output 

(red), and 0.444 km model output (blue) for COLD. The x-axis shows each 1 m s-1 range 

bin while the y-axis represents the number of occurrences each bin contains.  

 

 Example hourly wind direction comparison graphs are provided in Fig. 17. Both the NYSM 

observations and model output show easterly flow within the valley (e.g. WEST), south-easterly 

flow exiting the CV (e.g. CSQR), and southerly flow over the AP (e.g. TULL). At the FAYE and 

JORD locations the model struggles to replicate wind direction in the morning hours but performs 

better by the afternoon. The opposite occurs for WEST, which is the only location where 

simulation of afternoon wind direction is poor. Overall, the model produces accurate wind 

directions. 
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Fig. 17: Hourly 10 m wind direction (°) comparison of NYSM station data with latitude-

longitude model location output: a) CSQR, b) FAYE, c) JORD, d) TULL, and e) WEST. The 

x-axis represents the time (h) of the entire 24 h analysis window and the y-axis represents wind 

direction (°) with the appropriate cardinal direction labels. Different colored lines represent the 
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NYSM observations and each model resolution’s output: purple = NYSM, red = 12 km, green 

= 4 km, yellow =1.33 km, blue = 0.444 km.  

b. Wind Speed 

 Simulated wind speeds vary with Δx. Fig. 18 & Fig. 19 display an average of the lowest 

model vertical levels to represent the environment sUAS would be flying in per Part 107. Results 

show that use of a smaller Δx results in resolution of pockets of both lower and higher wind speeds. 

The 1.33 km and 0.444 km Δx domains produce fine-scale wind speed fields while the 12 km and 

4 km domains produce smooth fields within the subdomain at 13 UTC (Fig. 18). This feature 

associated with higher resolution continues into the afternoon, as the fine-scale output reveals 

pockets of air that may either benefit or be hazardous to sUAS operations (Fig. 19). 



REILLY  AUGUST 2020 

49 

 

Fig. 18: Average low-level (surface up to model level 38: approximately 1600 ft MSL) wind 

speed in m s-1 within each subdomain at 13 UTC: a) 12 km, b) 4 km, c) 1.33 km, and d) 0.444 

km. Color contoured scale represents wind speeds that would permit safe sUAS flight (green-

yellow, 0-11 m s-1) and also those that could be hazardous (orange-white, 12-30 m s-1) based 

on Fig. 3.  
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Fig. 19: As in Fig. 18, but at 21 UTC.  

 

 Cross-section plots display similar characteristics while revealing speed shear in the 

stratified atmosphere above the valley. The 13 UTC cross-section of wind speed is illustrated in 

Fig. 20. Each simulation indicates that the calmest pocket of air resides on the valley surface’s 

windward side and that wind speed changes rapidly with height above the AP. A wind maximum 

of ~30 m s-1 just above the slope from the AP to CV is resolved and of equal magnitude in each 
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simulation. Its core resides between 0.8 km and 0.9 km MSL. The valley floor’s wind speed 

becomes better resolved with a decrease in Δx. The 12 km domain fails to reproduce a pocket of 

wind speeds ≤ 8 m s-1 that is present on the leeward side of the CV in the three other domains. In 

addition, the resolution of wave activity with airflow out of the south is captured in the 1.33 km 

and 0.444 km Δx simulations. The 0.444 km Δx simulation provides more detail of this wave 

feature and minor wind speed discrepancies when compared with the 1.33 km Δx simulation. 

 Afternoon 21 UTC cross-sectional wind speeds are displayed in Fig. 21. Air above the AP 

maintains its relatively high shear while wind speeds above the valley show an increase in shear. 

The windward wind maximum has decreased in magnitude and elevation, prevailing at ~26 m s-1 

between 0.5 km and 0.6 km MSL. Each simulation continues to capture wind speed minima on the 

valley surface and exhibit less overall variation between each other. In fact, the 13 UTC wind 

maximum on the leeward side of the CV becomes a notable minimum and is captured by each 

simulation at 21 UTC. The primary difference continues to be resolution of wave activity, as the 

1.33 km and 0.444 km simulations resolve more vertical variations in wind speed than the 12 km 

and 4 km simulations. A low-frequency wave signature is present in the 4 km simulation; however, 

its amplitude is much smaller than in the higher resolution domains. 
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Fig. 20: North-south cross-section of wind speed in m s-1 at 13 UTC: a) 12 km, b) 4 km, c) 

1.33 km, d) 0.444 km. Color contoured scale represents wind speeds that would permit safe 

sUAS flight (green-yellow, 0-11 m s-1) and also those that would be hazardous (orange-white, 

12-30 m s-1) based on Fig. 3.  
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Fig. 21: As in Fig. 20, but at 21 UTC.  

 

c. Wind Direction 

 Plan-view plots of low-level average wind direction convey the presence of a drainage 

flow. Southerly winds atop the AP are evident alongside easterly flow within the CV. The 12 km 

simulation poorly replicates this pattern at 13 UTC while the other simulations resolve this 

drainage behavior (Fig. 22). More detail in directional variation is a notable feature of the higher 
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resolutions. The same cannot be stated regarding the low-level vertical average of 21 UTC wind 

directions (Fig. 23). Southerly flow reigns over each subdomain with minor terrain-relative details 

becoming the only discrepancy between the different simulations. 

 

Fig. 22: Average low-level (surface up to model level 38: approximately 1600 ft MSL) wind 

direction (°) within each subdomain at 13 UTC: a) 12 km, b) 4 km, c) 1.33 km, d) 0.444 km. 

Blue contours indicate southerly wind flow and red contours indicate easterly wind flow.  
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Fig. 23: As in Fig. 22, but at 21 UTC.  

 

 The north-south cross-sections of wind direction better exemplify the drainage flow, as 

easterly valley surface winds are notably present within each simulation at 13 UTC (Fig. 24). 

Similar to wind speed, the major discrepancy between each simulation is resolution of wave 

activity. While the 12 km domain expresses a gradual change in wind direction with height, the 

low-level variation increases with a decrease in Δx. Directional shear on the windward side of the 
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CV is captured by the 4 km, 1.33 km, and 0.444 km simulations. The easterly valley drainage flow 

is shown to reach higher elevations in the higher resolution domains. The afternoon wind direction 

cross-sections exhibit similar behavior to the horizontal plots, with southerly wind flow 

dominating the lower levels (Fig. 25). The vertical detail of the cross-sectional plots reveals surface 

easterly flow in each domain. Similar to previous results, an increase in wave detail is apparent 

with a decrease in Δx. 
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Fig. 24: North-south cross-sections of wind direction (°) at 13 UTC: a) 12 km, b) 4 km, c) 

1.33 km, d) 0.444 km. Blue contours indicate southerly wind flow and red contours indicate 

easterly wind flow.  
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Fig. 25: As in Fig. 24, but at 21 UTC.  

 

d. Vertical Velocity 

 Rising and sinking motions are a signature of the VC. For the 12 km and 4 km domains, 

13 UTC model output shows sinking motion along the CV’s walls with rising motion above its 

axis (Fig. 26). This detection of slope wind convergence and rising air in the valley’s core is lost 

in the higher resolution simulations. Wave patterns detectable with a smaller Δx create a noisy 
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visualization of vertical velocity. While weaker in the coarse resolutions, each domain replicates 

a downdraft on the windward side of the valley that is coupled with an adjacent updraft. The 

downdraft magnitude is -30.77 cm s-1, -47.29 cm s-1, -69.0 cm s-1, and -75.5 cm s-1 in the 12 km, 4 

km, 1.33 km, and 0.444 km domains, respectively. The adjacent updraft difference is larger, with 

a magnitude of 38.74 cm s-1, 53.63 cm s-1, 135.7 cm s-1, and 182.7 cm s-1 for each domain, 

respectively. Smaller Δx intervals show this behavior continuing within the air above the CV, with 

adjacently compact couplets. 

 Vertical motion fields are less chaotic by 21 UTC (Fig. 27). Sinking motion remains the 

primary feature of the CV’s windward side for each domain. Aside from the 12 km domain, 

downdraft magnitudes have increased from 13 UTC with values of -26.32 cm s-1, -75.8 cm s-1, -

106.5 cm s-1, and -112.5 cm s-1 for each domain, respectively. The 12 km domain shows weak 

synoptic-scale vertical motions, while the 1.33 km and 0.444 km domains continue to resolve wave 

detail. Vertical motion couplets are more horizontally distributed throughout the domain in the 

higher resolution domains when compared to their 13 UTC model output. Notable ascent is 

resolved in each domain on the leeward side of the CV; ascent magnitudes are resolved as 20.02 

cm s-1, 44.34 cm s-1, 82.7 cm s-1, and 126.7 cm s-1 within each domain, respectively. Overall, the 

0.444 km domain tends to resolve more vertical motions with higher magnitudes than other 

domains – including the 1.33 km Δx. 
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Fig. 26: North-south cross-sections of vertical velocity (cm s-1) at 13 UTC: a) 12 km, b) 4 

km, c) 1.33 km, d) 0.444 km. Blue contours indicate a sinking air and red contours illustrate 

rising air.  
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Fig. 27: As in Fig. 26, but at 21 UTC.  

 

e. Temperature 

 Skew-T log-p diagrams for each domain are similar, with only minor differences. Thus, 

only the 12 km and 1.33 km profiles are provided for the WEST model location. This location was 

chosen to express the inversion resolution within the CV. Each domain resolves a surface inversion 

along with an overall stable profile at 13 UTC (Fig. 28). Inversion depth and detail is better 
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depicted by the 1.33 km resolution sounding. By 21 UTC this inversion erodes, and profiles typical 

of a well-mixed PBL are present in each domain (not shown). 

 

Fig. 28: Model produced skew-T log-p profiles along with hodographs and magnified surface 

inversions at 13 UTC for WEST: a) 12 km and c) 1.33 km. WEST provides a CV sounding 
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representation that depicts valley inversion resolution. Red and blue lines represent 

temperature (°C) and dewpoint (°C), respectively. Wind barbs (m s-1) are provided for every 

model level in dark green along the right side of each image.  

 

 A better spatial visualization of temperature is provided through both horizontal and cross-

sectional plots. Horizontal temperature plots at 13 UTC show a warm CV alongside cooler elevated 

terrain (Fig. 29). A smaller Δx results in better resolution of detailed temperature changes within 

complexities of the terrain. This is also apparent in the north-south CV temperature cross-section, 

as the 12 km and 4 km domains smooth over temperature differences that are resolved in the 1.33 

km and 0.444 km domains (Fig. 30). Afternoon temperatures are not provided as PBL mixing leads 

to little temperature variation within the subdomains. 
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Fig. 29: Average low-level (surface up to model level 38: approximately 1600 ft MSL) 

temperature (°F) within each subdomain at 13 UTC: a) 12 km, b) 4 km, c) 1.33 km, d) 0.444 

km. Yellow contours are indicative of higher temperatures.  
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Fig. 30: North-south cross-sections of temperature (°F) at 13 UTC: a) 12 km, b) 4 km, c) 

1.33 km, d) 0.444 km. Yellow contours are indicative of higher temperatures.  

 

f. Airflow Stability 

 An estimation of whether airflow is turbulent or laminar — airflow stability — is provided 

by plotting the RB. Unlike previous figures, Fig. 31 & Fig. 32 showcase an east-west CV axis 

cross-section as opposed to the north-south cross-section, as depicted in Fig. 13. Air is subject to 
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be turbulent throughout the north-south cross-section, apart from the CV’s axis – therefore, RB is 

better represented by an east-west cross-section. Turbulent surface flow is expected on the eastern 

side of the CV, while a stable layer of air ~50 m thick is simulated in each domain at 13 UTC (Fig. 

31). This stable layer is rather smooth for the 12 km and 4 km Δx intervals. The 1.33 km and 0.444 

km domains show more variation, likely resolving turbulent pockets of air within the stable layer 

and 300 m – 500 m above the surface. Furthermore, the 0.444 km domain shows pockets of 

unstable air aloft and turbulent air near the CV surface that are not detected with any other domain. 

By 21 UTC, the stable layer is much smaller in the 12 km, 4 km, and 1.33 km domains and non-

existent in the 0.444 km domain (Fig. 32). Each domain suggests that turbulent flow may be 

present from the surface up to ~800 m, while more detailed pockets of turbulent air are resolved 

with higher resolution. 



REILLY  AUGUST 2020 

67 

 

Fig. 31: East-west cross-section of RB (unitless) at 13 UTC: a) 12 km, b) 4 km, c) 1.33 km, d) 

0.444 km. Air becomes turbulent when RB ≤ ~0.25, as expressed by the purple contours. Red 

contours show unstable air that is likely turbulent. If turbulent air is present in the blue contours, 

it will remain turbulent. Turbulent airflow will become laminar for a RB ≥ 1, as indicated by the 

yellow and white contours. If laminar airflow enters an area of the blue contours, it will remain 

laminar.  
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Fig. 32: As in Fig. 31, but at 21 UTC.  

 

6. DISCUSSION 

 Comparison of model output to surface observations as a means of verification reveals 

difficulties with accurate replication of local wind speeds, while wind direction is generally well-

simulated. The errant morning wind direction at the FAYE and JORD locations is likely relieved 

by the afternoon mixing of uniform southerly flow. Afternoon wind direction error at WEST 
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cannot be explained by the same means. Model errors in both wind speed and direction could rely 

upon the incorrect spatial and temporal simulation of wind features. In accordance to Wendell 

(1972), the passing of a warm front and its associated precipitation are subject to disturb the timing 

of local wind variations. The error in timing and intensity of model-produced precipitation is a 

likely contributor to this wind vector error. Error at the WEST location appears to be a result of 

the model simulation mistiming an atmospheric boundary – apparent by the phase shift between 

observations and model output in Fig. 17e. Each of these locations that exhibited notable wind 

direction error lie on the windward side of a drop off in terrain height, specifically the AP to the 

CV. 

 Terrain resolution remains imperfect – even with smaller Δx values. Terrain smoothing can 

result in the misrepresentation of NYSM locations within model output, suggesting that certain 

stations will experience larger model wind speed and/or direction error than others. Wind speed 

error is specifically notable at the WGAT and TULL locations; model output wind speed is a 

consistent overestimation at WGAT and underestimation at TULL (Fig. 14). WGAT is located 

north-east of the CV on the Adirondack Mountain slopes, while the TULL station resides within 

the AP (Fig. 12). In addition to terrain resolution issues, the wind speed bias in WRF is likely 

contributing to these errors. Utilizing the YSU and topo_wind schemes while compacting vertical 

σ levels within the lower atmosphere reduced the magnitude of error at WGAT and other NYSM 

locations by ~3 m s-1 when compared to previous model attempts. Such wind speed differences 

may also be the product of an increase in temperature resolution with a smaller Δx (Fig. 29 depicts 

the notable temperature variation within CNY’s complex terrain). Further, higher resolution 

domain soundings better depicted inversion depth (Fig. 28). Increased resolution of local 

temperature inversions and gradients should enable better localized wind vector forecasts. In 
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addition, the 12 km simulation has the best wind-speed performance at WGAT. This relationship 

is also depicted by the five-minute data at GFLD; however, the opposite relationship is evident at 

OSCE (Fig. 15). Table 4 displays that, on average, the higher resolution domains incur higher wind 

speed errors while better capturing, at times overestimating, wind speed variability when compared 

to the coarse resolutions. The higher resolution wind speed errors are hypothesized to be a result 

of unoptimized parameterization performance at higher resolutions. The error discrepancy between 

model resolutions at certain station locations and the spikes in wind speed error are hypothesized 

to be a result of representativeness error. While an average error of ±1.9 m s-1 is encouraging to 

wind forecasts, the larger magnitude errors (e.g. -8 m s-1 at TULL) within the simulation window 

must be improved upon.  

 Differences between model output and observations impact a quality sUAS-centric 

forecast. Safe flights are enabled by risk evaluation, which is less accurate with an average error 

of ±1.9 m s-1 in areas of complex terrain along expected flight paths. Optimal flight path wind 

hazard identification would require reliable wind speed output. An operator’s awareness of the 

modeled wind speed errors could result in delays or cancellation of flight – even when wind speeds 

are suitable for safe flight. With the incorporation of errors indicating an exceedance of a wind 

speed threshold, the operator would be taking a risk in conducting a planned flight. Over time, 

assimilation of sUAS flight observations will hopefully act to fill the sensing gaps and reduce wind 

speed errors by providing better knowledge of local wind patterns. This would immensely benefit 

the verification and accuracy of sUAS-centric modeling. 

 Discrepancies related to Δx are evident within the model output. While dependence of wind 

speed and direction on Δx show little difference for most locations, the features resolved by 

different Δx are significant. This agrees with the findings of Davis et al. (1999), where model 
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produced wind speed was similar for 80 km and 1.11 km Δx, but locally-forced circulations within 

the mountainous western United States were accurately depicted in the 1.11 km Δx. Comparison 

of the 12 km and 4 km domains with the 1.33 km and 0.444 km Δx domains exemplifies this, 

where wave activity is clear in the higher-resolution domains but mostly absent in lower-resolution 

domains. This level of detail comes about through the decreasing Nyquist frequency associated 

with a smaller Δx, allowing higher frequency waves to be replicated within model output. It is 

evident that an increase in terrain resolution with a decrease in Δx allows for a better simulation 

of overall wind structure. Resolution of these wave features causes differences in the spatial 

variation, and subsequent temporal evolution, of wind speed, wind direction, vertical velocity, 

temperature, and flow stability. 

 On the Weisman et al. (1997) premise that a successful simulation relies upon the onset of 

a phenomena, a smaller Δx is needed for a sUAS-centric model. Resolution of gravity wave 

activity reveals levels of both speed and directional wind shear, the presence and magnitude of 

vertical motions, and pockets of turbulent air. Wind shear identification, whether speed or 

directional, is crucial to proper battery management and flight safety, as the misidentification of a 

shear level can lead to an unexpected loss of battery life and result in a sUAS becoming 

significantly displaced. This displacement could force a sUAS into a pocket of turbulent air or an 

updraft that leads to a MAC or further loss of control, as was depicted in Fig. 5 & Fig 6. 

Identification of such features is first detected in the 4 km domain, but first notable in the 1.33 km 

Δx. For example, an operator flying on the simulated day in the CV would be encouraged to 

conduct a morning mission within laminar flow along the valley axis. Pockets of turbulent air 

within this laminar flow become more evident with a decrease in Δx (Fig. 31). The better 

identification of a near-neutral RB alongside a more detailed vertical PBL profile, as depicted in 
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Fig. 28, will aid in avoiding areas prone to wind gusts, encouraging a safer flight (Gutiérrez and 

Fovell 2018). Assuming the use of a multi-rotor sUAS with an average flight speed of 15 m s-1 

(Fig. 3), morning shear simulated at higher resolutions indicates both flyable and hazardous 

altitudes when compared to the coarser resolutions (Fig. 20 & Fig. 24). This increase in shear 

resolution with a decrease in Δx encourages better battery management and efficiency. Further, 

while 4 km output fails to detect apparent vertical motion on the windward side of the valley, 

investigation of the 1.33 km and 0.444 km Δx intervals suggests that pilots should avoid that area 

(Fig. 26). Essentially, use of a Δx ≤ 1.33 km helps in identifying areas to avoid, enabling safer 

flight. 

 In terms of valley flow dynamics, the simulated case exhibits downward transport of 

momentum. Strong southerly flow acts to mix momentum aloft with the stable valley air, eroding 

the morning drainage flow from above, while surface heating acts to deepen the PBL within the 

valley. The combined mixing unifies overall wind direction by the afternoon. The downward 

transport of momentum was noted to be more common in wide valleys that are flat along their axis 

(Whiteman and Doran 1993); with the CV possessing these characteristics, the occurrence of this 

phenomenon is expected. This behavior is demonstrated by the higher resolution domains. It is 

hypothesized that the coarse resolutions couple the CV airflow with momentum aloft through the 

PBL mixing parameterization. Forced convection is encouraged by the high wind speeds, while 

free convection within the warming valley helps to link both regimes of airflow. 

 A gap flow was not present in this experiment. Wind channeling behavior was also not 

observed for any of the domains. Future experiments with conditions more conducive of both 

phenomena should consider the potential impacts upon sUAS. 
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 Lower resolution simulations do provide value. While the higher resolution simulations 

better depict wave activity, the lower resolutions simulations can better depict the synoptic and 

higher bounds of the meso-alpha scales. This study revealed a morning VC with sinking slope 

winds, rising air in the center of the CV, and drainage flow. While the drainage flow was evident 

for each domain, the coarse resolutions best show slope wind behavior (Fig. 26). A smaller Δx 

captures local vertical motions that make it harder to visualize larger-scale ascent/descent that is 

apparent with coarser domains. Filtering the high frequency wavelengths resolved within the high-

resolution domains allows for better visualization of the larger scale flow patterns (Fig. 33). 

Understanding flow at multiple scales allows a forecaster to better identify the overall flow 

dynamic – resulting in a better forecast. In addition, results show that the coarse domains handled 

the afternoon hours rather well. Aside from the resolution of thermals, PBL mixing appears to be 

handled well for each domain. Such behavior is apparent in the minor differences for afternoon 

temperatures and overall wind speeds in each domain. More notable is the magnitude of the wind 

speed maximum above the windward side of the CV, where the afternoon instability works to 

reduce its magnitude across each domain equally. 
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Fig. 33: North-south cross-section of vertical velocity (cm s-1) at 13 UTC for the 1.33 km domain 

with a 7-factor Cressman weighting function applied. Blue contours indicate a sinking air and red 

contours illustrate rising air.  

 

 Further value of coarse domains derives from their quick execution. The same amount of 

computational power to produce one high-resolution deterministic simulation can be used to 

produce several relatively coarse resolutions simultaneously. The latter, an ensemble approach, 
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provides multiple realizations of model output that can help with forecasting wind hazards. With 

enough computational power, this ensemble could be improved upon, utilizing several PBL 

parameterizations and resolutions. The resulting probabilistic product, previously referred to as a 

threat index, could best allow a sUAS operator to conduct safe and efficient flight. Results 

encourage a sUAS-centric ensemble approach to include simulations with a Δx of at least 1.33 km. 

However, computational cost for such simulations can be a significant barrier. 

 High spatial and temporal resolutions inevitably incur higher computational cost. However, 

high resolution simulations allow for the visualization of output data at a high spatial density and 

temporal frequency, supporting precise sUAS mission planning. When attempting to plan a local 

mission, the spatial density of small Δx simulations provides drastically more information than 

that associated with a large Δx simulation (Fig. 34). Except for the 12 km image, each domain in 

Fig. 34 is filtered to enable readability; the 4 km, 1.33 km, and 0.444 km domain images show 

wind barbs every second, fifth, and twelfth grid point, respectively. Thus, local wind fields and 

inversion heights are best depicted by the spatially dense smaller Δx intervals. In addition, the 

affordability of computational storage should alleviate any issues associated with the file size of 

model output and allow for visualizations having high-temporal resolution. 
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Fig. 34: Contoured MSL terrain along with 10 m wind barbs (m s-1) within each subdomain 

at 13 UTC: a) 12 km, b) 4 km, c) 1.33 km, d) 0.444 km. Full wind barb depicts 5 m s-1.  

 

 Decreasing both Δx and Δt becomes necessary to spatially and temporally resolve wave 

patterns that are relevant to ensuring safe sUAS flight. Results show that a Δx as small as 1.33 km 

may be necessary to resolve these wave features. Resolution of wave features is crucial to the 

entrainment process, as it determines the local inversion height within a valley and, thus, a local 
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wind shear maximum. A Δx smaller than 1.33 km, such as the 0.444 km domain, intensifies the 

detected wave features, suggesting that terrain complexities smaller than the CV system may 

require smaller Δx—a Large-Eddy Simulation (LES)—to ensure safe flight. The associated 

decrease in Δt causes for an increase in simulation time. In order to maintain stability with a high 

concentration of vertical levels within the sUAS flight altitudes, a required decrease in Δt can 

effectively double simulation time. Access to a supercomputer or private computer built and 

budgeted specifically for modeling at a small Δx then becomes necessary for producing model 

output. Operators may be required to wait for a model simulation to finish before conducting flight 

– a temporally efficient simulation is desirable. Simulating up to 1.33 km would reduce the present 

experiment’s 4-hour simulation time by a significant amount, and, with proper planning, would 

allow for consistent, temporally available model output. 

a. Future Work 

 The shortcomings of this experiment hinge upon verification and ambient weather 

conditions. A less complex simulation day could enable a better evaluation of wind vectors; this 

experiment’s precipitation complicates the already complicated issue of resolving localized wind 

flows. However, situations similar to this simulation day are when NWP will be most needed and 

relied upon by sUAS operators. Therefore, future investigation of each weather parameter 

discussed in Chapter 2 and their associated phenomena resolved within higher resolutions is ideal 

for defining an optimal approach to sUAS-centric modeling. 

 In order to achieve a computationally desirable model simulation, experiments like this 

should be conducted for a variety of wind flow regimes in areas of varying terrain. These tests 

should consider the influences of: the season being simulated, surrounding complex terrain, 

removal/addition of condensed PBL vertical levels, and different available parameterizations. 
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 Additional or different parameterizations could enhance high resolution model output. An 

estimate of Turbulent Kinetic Energy (TKE), the intensity of turbulence, is produced by the 

Mellor-Yamada-Janjic (MYJ) PBL scheme. Such an estimate could better identify areas hazardous 

to sUAS. Further, implementing a well-tested, regional gust factor parameterization would be 

invaluable to sUAS wind hazard detection. Use of the aforementioned “slope_rad” and 

“topo_shading” options could also prove beneficial for WRF model simulations within areas of 

complex terrain. 

 

7. CONCLUSIONS  

 The WRF model is a valuable tool for predicting hazardous wind regimes. The goal of the 

present study is to depict the dependence of winds on resolution. The CNY area, specifically the 

CV, was chosen to analyze how wind behavior within complex terrain would change with an 

increasing resolution. The primary application of this study pertains to sUAS. Efficient 

commercial operation of sUASs will rely upon quality wind forecasts. NWP can help operators 

identify and avoid areas of hazardous winds that can result in loss of sUAS control. 

 Wind speed simulation with WRF has been shown to include a bias within areas of complex 

terrain (Jimenez and Dudhia 2012; Lee et al. 2015). While application of the topo_wind 

parameterization and increased low level vertical resolution help in reducing the bias, some bias 

persists. This is apparent through comparison of NYSM observation and model output data, where 

errors were as large as -8 m s-1 at TULL, a station surrounded by complex terrain, for all domains. 

Hypotheses for wind speed error, aside from the WRF model’s bias, are the unoptimized 

parameterization performance at higher resolutions and representativeness error. Data assimilation 
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and better verification metrics supplied by localized sUAS flight data for future simulations may 

help to reduce this error. Further, the integration of artificial intelligence/machine learning could 

help with identification and avoidance of areas that prove to be frequently hazardous. 

 Identification of a VC within this simulation was best visualized through use of each 

resolution. Detail that arises with use of higher resolution reveals the entrainment of turbulent air 

aloft with the CV’s stable regime. While each domain displayed similar performance for the 

afternoon hours, the temporal evolution of atmospheric waves is captured better with higher 

resolutions. Use of small Δx intervals and compacted vertical levels enables the better simulation 

of a wind hazard’s magnitude and temporal evolution. 

 Enhancing wind hazard identification through use of higher resolutions is necessary to 

ensure safe sUAS operations. It is important to consider that even with small Δx (and 

corresponding Δt values), a correct forecast is not guaranteed (Rife et al. 2004). The value in 

reducing these intervals pairs well with human interpretation. Comparison of model output shows 

that a deterministic simulation using 1.33 km grid spacing can provide enough information to 

support a well-informed, human interpreted forecast that helps sUAS operators avoid of hazardous 

winds. A nested simulations approach allows for a forecaster to evaluate coarse resolutions as well, 

in this case the 12 km and 4 km domains, to better understand large-scale impacts on local forcing. 

This can be improved upon with an ensemble approach, provided computational power is 

available. An optimal high-resolution simulation is hypothesized by Mass et al. (2002), in which 

an ensemble model is used to resolve relatively large-scale motions that are then weighted based 

upon performance to produce an average. This average would then provide the forcing conditions 

for a set of higher resolution simulations. Conducting several simulations that utilize various PBL 
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schemes and resolutions will improve a sUAS centric forecast – especially if ensemble output is 

paired with human interpretation (e.g. a forecast discussion). 
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APPENDIX 

List of Acronyms 

(in order of appearance): 

small Unmanned Aircraft 

System (sUAS) 

Beyond Visual Line Of 

Sight (BVLOS) 

Line Of Sight (LOS) 

Unmanned Aircraft (UA) 

Federal Aviation 

Administration (FAA) 

Central New York (CNY) 

Allegheny Plateau (AP) 

Central Valley (CV) 

Numerical Weather 

Prediction (NWP) 

Weather Research and 

Forecasting (WRF) model 

Horizontal Grid Spacing 

(Δx) 

New York State Mesonet 

(NYSM) 

Unmanned Aircraft System 

(UAS) 

Visual Line of Sight 

(VLOS) 

Detect And Avoid (DAA) 

Mid-Air Collision (MAC) 

Above Ground Level 

(AGL) 

Planetary Boundary Layer 

(PBL) 

Mixed Layer (ML) 

Mean Sea Level (MSL) 

Valley Circulation (VC) 

North American Regional 

Reanalysis (NARR) 

United States Geological 

Survey (USGS) 

Cumulus Parameterization 

(CP) 

WRF Double Moment Six 

Class scheme (WDM6) 

Microphysical 

Parameterization (MP) 

Land Surface Model 

(LSM) 

Longwave (LW) 

Shortwave (SW) 

Rapid Radiative Transfer 

Model (RRTM) 

Yonsei University Scheme 

(YSU) 

Model Time-Step (Δt) 
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University Corporation for 

Atmospheric Research 

(UCAR) 

National Center for 

Atmospheric Research 

(NCAR) 

Computational and 

Information Systems Lab 

(CISL) 

Bulk Richardson Number 

(RB) 

Belleville (BELL) 

Camden (CAMD) 

Cold Brook (COLD) 

Central Square (CSQR) 

Fayetteville (FAYE) 

Glenfield (GFLD) 

Harrisburg (HARR) 

Herkimer (HERK) 

Jordan (JORD) 

Morrisville (MORR) 

Osceola (OSCE) 

Redfield (REDF) 

Tully (TULL) 

Westmoreland (WEST) 

Woodgate (WGAT) 

Read Interpolate Plot (RIP) 

Large Eddy Simulation 

(LES) 

Turbulent Kinetic Energy 

(TKE) 

Mellor-Yamada-Janjic 

(MYJ)
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