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ABSTRACT 

Due to the rotational needs of crops, homogenous crop fields, and external 

influences such as market and policy changes, crop production generates significant 

changes to the landscape on annual and semi-annual basis. In this study we looked at 

two aspects of this change.  

In the first aspect of the study, we attempt to account for market and policy driven producer’s decision making through a new model constructed by pairing an 

economics model with the ALMANAC crop simulation model via a two-way coupling.  This coupled model approach integrated farmer’s land-use choices based on relative 

economic returns and produced dynamic land use probabilities for ALMANAC 

simulations through a feedback loop.  The coupled model approach was inter-

compared with static crop modeling through a historic acreage approach, and 

comparable accuracies were found from both modeling efforts for the 2014 growing 

season. Furthermore, as a proof-concept effort, the method was applied to evaluate 

the impact of two scenarios on crop simulations: major crops (maize, soybean, and 

wheat) intensification through price increases (e.g. market change), as well as 

incentivized grassland conservation (e.g. policy change). The results of this sensitivity 

study suggest that the coupled system has the capability of integrating economic 

factors into traditional crop simulation, allowing for insight into the impacts of 

changes in markets and policies on agricultural landscapes and crop yields. 



 

xiii 

 

In the second aspect of this study, changes to surface albedo driven by these 

landscape changes are investigated. Using collocated Moderate Resolution Imaging 

Spectroradiometer (MODIS) derived Bidirectional Reflectance Distribution Function 

(BRDF) with the Cropland Data Layer (CDL), we computed the daily albedo of 

homogenous agricultural fields across the United States for 55 crop types by wavelength, 

sky-type, day of year, crop, and hardiness zone over a four-year period (2015-2018).  This 

study suggests that cropland spectral albedo is complicated by large variations over the 

course of the growing season, which can result in changes in reflectivity up to a factor of 

2 at most wavelengths. This change was found to be unique per crop type, but predictable 

year-to-year for individual crops within specific regions, so generating a lookup table that 

incorporates these factors for use in remote sensing and atmospheric modeling applications 

is viable for albedo estimation. Additionally, impacts of crop types on broadband albedo 

were studied and found to be less conspicuous than the individual wavelength counterpart, 

but still significant over cropland. The results were used to evaluate the accuracy of a 

common method of albedo estimation, where NDVI is used as a proxy for albedo over 

cropland, and the NDVI method was found to have some significant limitations dependent 

on wavelength and day of year.  Finally, a database of surface albedo variations as a 

function of growing period is constructed for 55 crops common to croplands across the 

United States.  The constructed database can be used to aid both satellite remote sensing 

applications and long-term weather modeling efforts by providing a method for parameter 

adjustments based on crop driven albedo changes, including changes in cropland 

composition related to commodity markets and other external factors. 
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CHAPTER 1 

INTRODUCTION 

Due to the high acreage demands required for food production, much of the land-

surface of earth, that is productive, is utilized as cropland, leading to large areas on 

homogeneous land surfaces. However, this cropland is undergoing changes in appearance, 

soil coverage, and ecosystem functionality at both seasonal and annual timescales due to 

the cyclical nature of crop growth. This can lead to complications in both modeling and 

remote sensing algorithms which require these properties as part of their equations.  

For example, to promote soil health and increase yields crop producers change crop 

selection in a rotation on, typically, an annual basis. This rotation can follow a pattern 

defined by standard practices or can be improvised by the producer’s evaluations and 

reactions to market changes, weather trends, risk management, as well as other factors. As 

a result, the crop present at any given location varies at annual timescales in a challenging 

to predict manner. 

 To study the potential impacts on yields and soil health of these crop selections, 

along with associated agricultural practices and management techniques, crop simulation 

models are frequently employed. These simulation models, such as ALMANAC or EPIC, 

typically work on a daily timestep, calculating the crop growth, stages, and demands 

throughout the growing season. Meteorological inputs, such as precipitation, temperature, 

wind, and humidity, as well soil inputs, such as water holding capacity and porosity, are 

combined in the model to calculate biomass gain, crop maturity, stress factors, yields, and 

soil impacts. These crop simulations can further be scaled to decades or centuries to 

investigate long-term impacts and incorporate multiple scenarios, climates, or management 

practices, allowing for the investigation into a wide variety of agricultural research 
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questions. However, while these models can simulate crop rotations, and are often utilized 

in fixed, standard rotations, the impacts of the producers decision making is not typically 

incorporated, particularly with the sophistication to account for feedback effects of large-

scale market changes. 

 Additionally, the changes/rotations of crop types can have a significant impact on 

the surface albedo at a given location, due to the disparity in both maturity timing and 

overall reflectivity of the planted crops. Impacts to this area are essential to ascertain as 

albedo is a critical input variable into several atmospheric science research areas, including 

atmospheric models and remote-sensing based instruments. Studies that incorporate these 

tools often deal with these vegetation induced albedo changes in a static manner, or through 

generic assumptions, and as a result albedo changes cause by specific crop coverage are 

not accounted for. 

In this thesis we strive to tackle some of the questions brought from the constantly 

changing nature of cropland through two different approaches: first, we attempt to model 

the interaction of market forces with the crop landscape, and the subsequent impacts to 

yields through a coupled, two-way interaction between a crop simulation model and an 

economics model; secondly, we investigate the impacts of the changing agricultural 

landscape to surface albedo through satellite-based observations over a multi-year period. 

Through these methods we hope to answer two main questions: 1) can an economics and 

crop-simulation coupled model be constructed, and if so what impacts to the landscape will 

be observed?; and 2) does the albedo of cropland across the United States change 

significantly across crops and regions, and if so, can the results from this study be utilized 

to construct a crop-focused albedo database?  
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CHAPTER 2 

DATASETS 

 

In this chapter, datasets and models used are discussed in details for 1) modeling 

and studying of the two-way interactions between crop models and an economics model 

(the first part of this study as illustrated in chapter 3); 2) the study of changes in narrowband 

and broad band surface albedo during the plant growth period (the second part of the study 

as shown in chapter 4).  

 

2.1 The SSURGO database 

 The SSURGO database is a spatially referenced database containing soil profile 

and general characteristics information for the majority of the United States land area at a 

scale varying from 1:12,000 to a max of 1:63,360. This dataset was chosen as the soil input 

for crop modeling in the first section of the study due to its extensive scope and high spatial 

resolution as the proper fit to simulate the prairie pothole area at a fine spatial scale. 

Internally the ALMANAC model utilizes the SSURGO information to generate soil 

profiles based on water holding capacity, soil depth, and chemical components (Kiniry, et 

al. 1992). The database contains a collection of uniquely identified soil types covering the 

whole of North Dakota, with each soil characterized by the depth of each layer of the profile 

as well as the overall properties of the soil, expressed in means and ranges, for each 

independent layer of soil. Typically, these soil files are divided into separate databases for 

each county or distinct geographic region. For the Prairie Pothole Region included in the 
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first part of the study (chapter 3) there are a total of 6,995 unique soil profiles (median area 

of 328 ha) broken into 39 unique databases with a scale of 1:12,000. The SSURGO dataset 

was acquired from the NRCS data gateway website (https://datagateway.nrcs.usda.gov/) 

(Soil Survey Staff 2016).  

The non-irrigated Land Capability Class (Nirr LCC) in SSURGO database, which 

defines a soil’s potential for crop production during standard rain-fed farming practices, is 

used to determine the soil productivity in the first part of the study. Soils in North Dakota 

fall into the range of LCC 2 to LCC 8 classifications; these groups have increasing levels 

of limitations on crop growth, with LCC 2 containing the least, LCC 8 the most, which 

reduce overall potential productivity to varying degrees. (Soil Conservation Service, 

USDA 1961). LCC is used in the first part of the study to identify the potential impacts of 

migration patterns in land uses as demands for crops increase or decrease total acreages 

over finite resources. 

 

2.2 The North American Regional Reanalysis (NARR) data 

The North American Regional Reanalysis database, used in the first part of the 

study, is generated by combining research weather models with past observations to 

complete a gridded summary of the local atmospheric conditions at resolutions up to 32 

km per grid. This data is provided in eight-times daily and daily summary formats at 

defined model pressure levels. For the Prairie Pothole study region (for the first study as 

described in chapter 3) the grid spacing is on average 32.40 km, +/- 0.05km. While this 

resolution is coarser than other available datasets, such as the 4km PRISM dataset (Daly, 

Taylor and Gibson 1997), this system was chosen due to the similar lineage to data 

https://datagateway.nrcs.usda.gov/
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generated from current generation climate models.  This allows for past, present, and future 

climate simulations to be run without recalibration of the crop models when utilizing the 

same assumptions. The NARR dataset provides a wide variety of meteorological variables, 

such as wind speed and temperature.  For the first part of the study temperature at the 3-

hour time step scale was used, while precipitation, wind speed, relative humidity, and solar 

energy inputs were derived from the daily summaries. The ALMANAC model uses the 

solar radiation, temperature, and precipitation to calculate growth rates and stresses, while 

wind speed, relative humidity, and solar radiation are used to determine potential 

evaporation. The NARR dataset was acquired from the Earth Systems Research Laboratory 

(https://www.esrl.noaa.gov/psd/data/gridded/data.narr.html) (Mesinger, et al. 2006).  

 

2.3 The Cropland Data Layer data 

In this study the Cropland Data Layer (CDL) is used to provide annual locations 

and crop identifications for all cropland and other land uses within the United States at a 

30m resolution.  For the first part of this study (chapter 3) we utilized the CDL to map the 

seven major crop types: spring wheat, maize, soybean, oats, sunflower, canola, and alfalfa 

inside the Prairie Pothole Region, but accounted for other crops and land uses given by the 

CDL in our final land use area estimates. Within the Prairie Pothole Region, a total of 

1.5·105 ha or 74.7% is in land cover accounted for in the first study, leaving 25.2% of the 

area consisting of wetlands, other non-farmable, and non-study crops which are held static.   

For the second part of the study (chapter 4), to calculate the impact of crop type on surface 

albedo, precise information about the crop composition present within each MODIS pixel 

is required. The CDL is an annually produced georeferenced raster file that defines surface 

https://www.esrl.noaa.gov/psd/data/gridded/data.narr.html
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crop types for the majority of the United States at a resolution of 30 to 56 m. Crop types 

are determined through analysis of satellite imagery (Boryan, et al. 2011). The data is then 

processed and verified against the National Agricultural Statistics Service (NASS) and the 

Farm Service Agency (FSA) farmer records to increase accuracy of the detection algorithm 

(Boryan, et al. 2011). A total of 132 land use types are included in the CDL data, of which 

a total of 47 are found within the study region. In this study The CDL dataset was obtained 

from the Cropscape web site (https://nassgeodata.gmu.edu/CropScape/) (USDA-NASS 

2016).  

 

2.4 The ALMANAC model 

In the first part of the study, the USDA’s ALMANAC model is selected for use 
in crop simulation for its inherent connections with the Soil Survey Geographic 

Database (SSURGO) (Soil Survey Staff 2016) database, its ability to accurately 

simulate a wide range of crops, the depth of its field management options (Xie, 

Kiniry and Nedbalek, et al. 2001), as well as the extensive reviews on the input 

sensitivities that have been completed, such as Xie, Kiniry and Williams (2003). The 

ALMANAC model is a daily time step crop simulation model originally based on the 

EPIC model (Mearns, Mavromatis and Tsvetsinska 1999). The ALMANAC model 

produces a point based, soil specific simulation of the growth, health, and yield of a 

variety of crops including the seven selected crops as mentioned in the introduction 

section for this study. Additionally, the ALMANAC model was chosen due to its 

ability to simulate at a per-soil basis, directly matching the input of the economics 

model, allowing for the investigation of land use migration at this same level.  

https://nassgeodata.gmu.edu/CropScape/
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The ALMANAC model requires three main inputs: management protocols, 

soil characteristics, and local meteorological conditions. For management, planting 

and harvesting dates from statewide climatological averages are used for each 

study crop, fertilizer applications are static and set to once at planting if required 

by the crop, no irrigation or other in-season intervention is included. Soil 

characteristics and components are handled internally through the ALMANAC 

model utilizing the SSURGO soil dataset dated 2015. Meteorological information 

derived from the NCEP North American Regional Reanalysis (NARR) dataset. Each 

SSURGO soil area in the study region is geometrically subsected by the native NARR 

grid spacing of 32km using geometric intersection and treated independently, 

resulting in 18,136 individual simulations for each crop with a median area of 119.7 

ha. For this study, each simulation was run for the specified year after a one-year 

spin-up; with longer time frame spin-ups tested for this study but no major changes 

in results were found.  

2.5 The economics land use model  

The individual-based economics land-use model focuses on the agricultural 

profitability of producing different crops under policy and market assumptions 

(Kharel, Zheng and Kirilenko 2016). The spatially-explicit land-use model calculates 

net return of each crop and determines the crop composition for a given unit using 

crop yields simulated by the ALMANAC model. The net return of a soil unit 𝑠 (𝑠 =1 … 𝑆) in year 𝑡, to be assigned for a certain use or grow a particular crop 𝑐 (𝑐 =1 … 𝐶) , is calculated as 𝜋𝑠,𝑐,𝑡 = 𝑃𝑐,𝑡𝑌𝑠,𝑐,𝑡−1 − 𝐶𝑐,𝑡 , where 𝑌𝑠,𝑐,𝑡−1  is the crop yield 

simulated by the ALMANAC model for a particular soil type and productivity in year 
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𝑡 − 1, 𝐶𝑐,𝑡 is the crop production cost, and 𝑃𝑐,𝑡 is the expected price for a crop 𝑐 in 

year 𝑡 . We assume that individual landowner estimates the expected economic 

return to grow a certain crop based on the previous observations, knowledge of the 

soil type, productivity of the land, as well as the current price information of future 

market movements. Therefore, the likelihood of growing certain crop in a given unit 

is determined by the relative profitability of that crop compared to other competing 

land-use alternatives, by assuming that each landowner makes optimal choices to 

maximize the total economic return.  

           In this modeling exercise, we simplified the management details and used 

static managements in ALMANAC by assuming that farmers grow certain crop 

under a general fixed management scheme. However, in reality, the choices of management practices as well as their costs likely affect farmer’s decision making 
on land use and crop type selections. The profit maximization, therefore, can be further achieved by modeling farmer’s management choices based on physical 

conditions related to soil and climate as well as economic factors such as the 

fluctuations of input prices.  
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Table 1: Direct Production Costs and Economic Net Returns of Crops 

 Corn Soybeans Wheat Oats Sunflowers Canola Alfalfa Grass Forest 

Direct cost ($/acre)1          
  Seed                              87.63 68.64 19.09 12.75 39.06 54.34 2.93   
  Fertilizer                        111.95 15.35 67.96 37.81 57.73 72.00 5.80   
  Crop chemicals                    22.79 22.48 34.73 14.97 43.47 30.30 0.93   
  Crop insurance                    22.08 17.84 15.61 14.55 12.88 12.97 5.17   
  Fuel & oil                        27.26 19.21 17.62 15.46 18.87 22.11 12.50   
  Repairs                           31.07 19.98 18.76 19.22 20.45 21.67 17.20   
  Custom hire                       5.05 4.24 7.58 14.28 11.88 5.32 2.15   
  Land rent                         49.34 53.91 34.62 17.59 34.22 28.99 20.31   
  Operating interest                6.89 4.34 4.13 3.29 5.02 4.23 3.11   
  Miscellaneous                     1.78 0.95 1.58  0.93 0.29 0.60   
  Drying expense                    9.84         
  Storage                           0.76         

Crop prices ($/unit)2          
Baseline 3.70 10.10 5.99 2.58 20.10 16.73 74.04   “Crop Intensive” 4.44 12.12 7.19 2.58 20.10 16.73 74.04   
Net returns ($/acre)3          
Baseline 45.32 55.97 28.79 2.33 20.10 16.73 12.59 4.76 3.03 “Crop Intensive” 56.65 66.04 34.61 2.33 20.10 16.73 12.59 4.76 3.03 “Grassland Incentive” 45.32 55.97 28.79 2.33 20.10 16.73 12.59 44.76 3.03 

1 The direct costs of crop productions were collected from FINBIN, the FINPACK financial 

database (https://finbin.umn.edu/Home/AboutFinbin) for the ND state in 2014.  
2 The crop prices are in $/bushel for corn, soybeans, wheat, and oats, in $/cwt for 

sunflowers and canola, and in $/ton for alfalfa/hay. Same crop prices were used in the Baseline and “Grassland Incentive” scenario. 
3 The economic net returns of grassland and forestland were adopted from Lubowski et 

al. 2006, 2008.   

For the first part of the study, we treated prices as exogenously determined 

outside of the system based on the fact that the study region is relatively small and has played a moderate role as a “price-taker” in the domestic commodity markets. 
We collected crop price information for small crops (oats, sunflowers, canola, and 

alfalfa/hay) and production cost data, shown in table 1, for all seven crops in the 

study region from the Farm Financial Data Base (http://www.finbin.umn.edu) 

hosted by the Center for Farm Financial Management at the University of 

Minnesota. We chose this dataset to utilize the real-world farmers’ budgetary 
information by considering farming itself is a systematic decision-making process 

and each management choice is made in conjunction with the others. We imported 
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annual 2014 market year prices from USDA National Agricultural Statistics Services 

(NASS) (USDA-NASS 2018) for the major crops to reflect the general fluctuations 

across domestic markets. For scenario analyses, we used a different set of prices to 

demonstrate the potential increases in market demand for the major crops. We used 

FINBIN prices information for the small crops given these prices are likely 

determined by the regional/local market. To focus on modeling land productivity 

for crop production, we simplified the modeling of grassland and forestland by 

using a static average net return reported by Lubowski (2006, 2008) based on the 

spatial association of individual soil unit with each ND county and adjusted for 

inflation. The final estimated net return of each land use alternative was 

transformed to a probabilistic surface using logistic distribution to represent the 

likelihood of the land-use transition (Lubowski, Plantinga and Stavins 2006; 

Lubowski, Plantinga and Stavins 2008; Lewis and Plantinga 2007).  

 

2.6 MODIS BRDF Albedo Product: 

The MODIS Bidirectional Reflectance Distribution Function (BRDF) / Albedo 

Parameter level 3, 500m gridded, dataset (collection 6) is used in the second part of the 

study (chapter 4) for estimating surface albedo at seven wavelengths (0.47, 0.56, 0.65, 

0.86, 1.24, 1.64, and 2.13µm). This dataset calculates the effective black- and white-sky 

albedo parameters using a kernel driven approach over a 16-day moving window (Schaaf, 

et al., 2002). Through black- and white-sky albedo the surface albedo can be calculated 

for specific solar zenith angle and atmospheric scattering ratio, from (Lucht, et al., 2000) 
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as follows: 𝛼 = (1 − 𝑆𝑅𝑑𝑖𝑓) ∙ 𝛼𝑏 + 𝑆𝑅𝑑𝑖𝑓 ∙ 𝛼𝑤 (1) 

where 𝛼  is the total albedo, 𝑆𝑅𝑑𝑖𝑓  is the ratio of indirect to direct sunlight 

reaching the surface, 𝛼𝑤 is the white-sky albedo, and 𝛼𝑏 is the black-sky albedo. This 

dataset further includes quality control flags for both the overall pixel quality and the 

snow coverage of any given pixel within the area during the 16-day moving window. 

Throughout this study, only snow/ice-free “good” or “best” quality pixels were utilized 

to focus on changes seen to the land surface due to crop growth and/or producer 

management.  

The MODIS BRDF dataset additionally provides a calculated broadband albedo 

for three spectral ranges, Visible (300-700nm), IR(700-5000nm), and Shortwave(300-

5000nm), derived from the reflectance of the individual channels as shown in equation 2 

(Lucht, et al., 2000): 𝛼𝑟 =  ∑ 𝑤𝑖𝛼𝑖𝑖 (2) 

Where the 𝛼𝑟 is the albedo of the spectral range, 𝛼𝑖 is the albedo as calculated for 

each independent channel, and 𝑤𝑖  is the weighting factor for each channel. 𝑤𝑖  was 

calculated through computational means to derive the relative impact of each channel to 

the overall albedo.   

 

2.7 Plant Hardiness Zone 

To account for changes in growing seasons the impacts of each zone to albedo in 

the second study  the selected locations are separated into specific hardiness zones (HZ) 
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using the USDA’s Plant Hardiness Zone (PHZM) defined zones (USDA-ARS, 2012). 

The PHZM zones are split into half-zone divisions of 2.8°C defined through the 

calculation of the 30-year average extreme minimum temperatures of 7,983 North 

American weather stations. These are then interpolated, with elevation impacts 

incorporated, into the final map (Daly, et al., 2012). However, in order to streamline the 

categories in the final database, this study combines the PHZM half-zone divisions into 

their full zone (5.6°C) counterparts.  

By accounting for the growing season length and temperature, the calculations of 

crop albedo can be grouped by commonality of growth cycles. This is possible as the 

local climate largely defines both the planting and harvest dates, along with growth rate 

of particular crops, resulting in common growth patterns within a given HZ. Grouping 

by HZ could potentially lead to reduction in uncertainty due to plants of the same type 

being planted and harvested near the same time within each HZ, thus having a similar 

growth profiles throughout the year.  

 

2.8 MODIS Reflectance data 

To aid in the application of using NDVI as a proxy for per-channel albedo, level 

2 MODIS surface reflectance (MOD09 + MYD09)  (Vermote, 2015) was utilized. Data 

was extracted from both Aqua and Terra satellites at a 500m resolution for the 2013 

season, giving two independent reference points each day for calculating NDVI. The 

NDVI calculation utilizes the red (645nm center) and near infrared (860nm center) 

channels to determine the vegetation index as follows (Rouse Jr, et al., 1973): 

𝑁𝐷𝑉𝐼 = (𝑅𝐸𝐹𝑁𝐼𝑅 − 𝑅𝐸𝐹𝑅𝑒𝑑)(𝑅𝐸𝐹𝑁𝐼𝑅 + 𝑅𝐸𝐹𝑅𝑒𝑑) (3) 
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where 𝑅𝐸𝐹𝑁𝐼𝑅  is the reflectance of the near infrared MODIS channel (860nm) and 𝑅𝐸𝐹𝑅𝑒𝑑 is the reflectance of the red MODIS channel (650nm). The resulting unitless 

index ranges from -1 to 1.  NDVI allows for the analysis of plant growth and activity due 

to the increased absorption of the red channel and increased reflectance, relative to the 

underlying soil, of the near infrared channel of the chlorophyll active within plants.  

NDVI values > 0.4 are generally associated with levels of plant growth with especially 

high values (>0.8) possible during times of peak growth of field crops. Finally, for the 

investigation into NDVI as a proxy of albedo, both the NDVI and albedo pixels were 

masked using the MODIS annual land cover in place of the CDL layer, allowing for both 

single and multi-crop MODIS pixels to be included in this aspect of the study. 
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CHAPTER 3 

Evaluating sensitivities of economic factors through coupled Economics-

ALMANAC model system 

3.1 Rationale 

To accurately estimate crop yields at regional scales for economic analysis 

and prediction crop models have been developed and used in simulating crop yields 

and soil health over selected regions (Williams, Renard and Dyke 1983; Hertel and 

Rosch 2010). Some crop models commonly used for this simulation include 

Environmental Policy Integrated Climate (EPIC) model (Williams, Renard and Dyke 

1983); the Agricultural Land Management Alternative with Numerical Assessment 

Criteria (ALMANAC) model (Kiniry, et al. 1992); the Decision Support System for 

Agrotechnology Transfer (DSSAT) (Jones, et al. 2003); the Agricultural Production 

Systems sIMulator (APSIM) (Keating, et al. 2003); and Crop Environment REsource 

Synthesis (CERES) (Ritchie and Otter 1985). 

However, while these crop simulation models take into account both 

weather and soil changes, one factor lacking in the above crop models is the 

dynamic impact of land use changes due to economic factors, such as market fluctuations and changes in policy. These factors can influence landowner’s 
decision-making on land uses and management practices, and thus further affect 

crop yields. The inherent agricultural productivity of land is determined by its 

biophysical characteristics and the surrounding climate, making inputs in these 

areas near static at annual time scales.  However, decisions on land-use and 

management practices are dynamically driven by the individual landowner and can 
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change at an annual time scale based on the economic return from each available 

alternative. Studies at the regional scales often simulate crop yields with a set of 

fixed assumptions on land uses and management practices throughout the analyses. However, this process ignores the impact of landowner’s dynamic decision-making 

at a local scale with multiple soil profiles as responses to changes in local economic 

conditions, such as changes in market and policy conditions, reflected by crop prices 

and policy incentives. Furthermore, over decadal time scales, the policy-induced 

changes in land allocation and in farming practices for crop production will, in turn, 

impact soil health and its agricultural productivity at longer time scales, which feeds 

back into the decision-making process.  

While coupling crop models with economic models to adjust for this impact 

has been the topic of several studies, these studies are typically setup in a one 

directional fashion with results from the economic model feeding the crop 

simulation model (e.g. Briner, et al. 2012; Robertson, et al. 2012) or the crop 

simulation model results feeding the economic model (e.g. García-Vila and Fereres 

2012) without a two-way interaction as attempted in this study. Additionally, while 

looking at long term changes, crop production simulations of responses to future 

scenarios often either utilize gridded data, include few locations, or utilize a single 

soil profiles per location (White, et al. 2011). Therefore, without taking into account 

the feedback loop between soil health and economic decision-making at a finite, 

individual soil-based resolution, the simulation results from the traditional crop 

modeling approaches typically ignore the two-way interaction between annual 

yields and profits and the resulting land use changes.  This shortcoming likely leads 
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to a tendency to move towards unrealistic depictions during these longer-term 

simulations.  

In this study, we expand upon the standard crop simulation model paradigm 

by generating dynamic agricultural land use choices and implementing them into 

large scale crop simulations. We accomplish this through a two-way linked 

economics land use model and crop model at an annual time step looking at seven 

crops common to the study area, maize (Zea mays), soybean (Glycine max), spring 

wheat (Triticum aestivum), oats (Avena sativa), alfalfa (Medicago sativa), canola 

(Brassica napus), and sunflower (Helianthus annuus). In this proof of concept study, 

we focus our preliminary studies on the following questions: 

(1) Can a linked system be developed to incorporate economic factors in modeling 

land-use at soil-based resolution and offer advantages in crop simulations? 

(2) Can we use the linked economics-crop modeling system to further evaluate the 

sensitivity of economic factors, such as policy and market changes, on crop 

yields and soil health prediction?  

3.2 Data and Models 

The selected area for the study is the Prairie Pothole region of North Dakota 

(Figure 1), a region spanning east and north of the Missouri River with extensive 

grassland and wetland coverages for providing crucial habitats for endangered 

species and other ecosystem services. This region was selected for its well-known 

high soil productivity as well as the recent significant grassland conversion to corn 

and soybean cultivation (Ojima, et al. 2002, Wright and Wimberly 2013). 
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Figure 1: Locations included in this study and their relative positioning inside the United States Prairie Pothole Region. 

For the simulations three primary environmental datasets were used. The 

structure and properties of the soils in the study region were obtained by using the 

2015 version of the Soil Survey Geographic database (SSURGO) (Soil Survey Staff 

2016) covering the state of North Dakota. Meteorological variables were acquired 

through the North American Regional Reanalysis (NARR) (Mesinger, et al. 2006) 

dataset from the National Center for Environmental Prediction. Finally, the 

Cropland Data Layer (CDL) (USDA-NASS 2016) was used to determine the historic 

crop locations and total area. In addition to these datasets, an economics framework 

(Kharel, Zheng and Kirilenko 2016) and the ALMANAC crop model (Kiniry, et al. 

1992) were linked together, referred to as ALM-EC through the rest of the study, 

and are applied in this study.  
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3.2.1 Model Calibration 

Before the study the ALMANAC model was calibrated for the study region by 

adjusting the built-in crop parameters within the model to match local crop varieties. This 

calibration step is needed as varieties of commonly grown crops differ from region to 

region due to the specific needs or limitations of each area. To compensate for this impact 

on the overall growth and eventual yield each crop requires separate calibration to the 

ALMANAC parameters.  

Calibration was completed for the study crops utilizing annual yield as the primary 

factor for a single year. A randomized set of points (set so as n > 1000 per crop) was 

generated within the state of North Dakota based on the estimated crop grown within that 

year at that location as reported by the CDL (Figure 2). These were then repeated for each 

year through the 2001-2013 growing seasons using a similar technique, each year 

individually simulated, with spin-up period, but with a shared point selection filtered to 

only include those locations with frequent reoccurrence of the selected crop. The county 

by county yield aggregates were tabulated and compared to the NASS given statistics for 

that county in that year. As an example, Figure 2 shows the validation points selected to 

compare model-simulated yields with the reference county reported yields for spring 

wheat, maize, and soybean respectively. The primary parameters adjusted included total 

growing degree days to account for the shorter growing season as well as increased water 

stress tolerance to compensate for both the climate of the area as well as the diffuse nature 

of the precipitation in the weather model data used in this study; additional minor growth 

parameters for each crop were adjusted as needed. The parameters were calibrated until the 
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resulting simulation annual county level means were within 10% of NASS reported annual 

mean yields at the county level.  

 
Figure 2: Locations used to simulate spring wheat (a), soybean (b), and maize (c) during model calibration over North 

Dakota with the native NARR weather data grid superimposed. 

3.3 Methods and Experimental design 

In this study, we developed a linked crop-economics model and inter-compared the 

performance of the linked crop-economics model with crop simulations from a static crop 

modeling approach. After completion of this initial stage, the linked crop-economics model 

is used, as a concept proofing effort, to investigate the sensitivity of crop simulations with 

respect to major crops intensification as well as grassland conservation scenarios as a proxy 

for perturbations in market and policy conditions respectively. 

3.3.1 Description of the economics and crop model feedback loop 

 A primary goal of this study is developing a linked economics land-use and crop 

model system which integrates economic-based land use changes into the crop simulation 

modeling process. To facilitate this, we established the looped-feedback pattern as 

described in Figure 3, interconnecting the models directly. At the beginning of the process, 

weather, soil, and crop datasets for the previous year are used as inputs to the ALMANAC 

model for estimating yield performance for all crop and soil combinations within the study 

area for the previous year. The yields are used as inputs, along with policy and markets 

information, to the economics model. The economics component calculates the economic 
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return of each land-use alternative and the relative likelihood of each crop being grown in 

a specific location with a unique combination of soil and weather for the current year. In 

other words, the land-use probabilities from the economics land-use model can further 

prescribe the allocation of land within a particular unit.  This structure demonstrates 

farmer’s decision-making process uses simulated crop yields in previous year as a 

reflection of farmer’s knowledge or observation of land productivity as well as the current 

prices as a proxy of market and policy changes. With the detailed information of crop 

allocations within in each individual soil unit, ALMANAC model produces the final yields 

over those areas and soil information for the study region for the current year. Each 

subsequent (annual) time step repeats the entire process save for the calibration stage, using 

the soil state from the previous year’s simulation. As an example of this connection, Figure 

3 shows this study’s concept proof design, focused on simulating land use probabilities for 

the year 2014 (as shown in Figure 4).  Note that in this practice, yields from 2013 are used 

for predicting agricultural land use and land change for 2014, using price and policy as 

control variables. This provides a potential forecasting capability for future studies. 
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Figure 3: Study workflow for crop simulation using land use probability from the economics model. 

 
Figure 4: Resulting land use probabilities for a) grassland and b) soybean generated by the economic model for the 2014 

season. 
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3.3.2 Evaluation of land use area and yield simulated using the linked economics-

crop model system  

Crop simulations without (section 3.3.3; standalone crop simulation) and with 

(section 3.3.4; linked crop-economics model) the use of the economics land-use model are 

performed and inter-compared for year 2014, setting the basis for evaluating the influence 

of crop and market changes on crop simulations as laid out in section 3.4.  

The standalone crop simulation approach follows a simplified process that 

determines the composition of land uses for 2014 based solely on historical records of crop 

patterns observed over the period of 2010-2013, at the coarsest resolution (30 m) the CDL 

supplies during that timeframe. The linked crop-economic model approach utilizes a paired 

crop simulation and economics land-use model to determine the most likely cropping 

patterns in the 2014 season, emphasizing the two-way linkage as a more systematic 

method. The results from each of these two approaches were used in the simulations of the 

2014 growing season for comparison. Crop yields and land use simulations from both 

approaches were then compared with both the estimated land uses as described by the 2014 

CDL as well as actual yields reported by NASS. 

 

3.3.3 Crop simulation with historical crop patterns  

As seen in the flowchart of Figure 5, the standalone model approach used the 

ALMANAC model to simulate crop yields for the 2014 season using the fixed historical 

crop percentages. To determine the historic crop planting percentage utilized in each soil 

type, the CDL from 2010-2013 was geospatially intersected with the individual SSURGO 

soil types to determine the most commonly seen crops for each soil area. These were then 
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applied to determine the soil and crop combinations for the ALMANAC model and run for 

the 2014 growing season. The resulting yields were tabulated at an individual SSURGO 

soil type calculating areas using the CDL’s historic area percentage of each crop in that 

soil type for direct comparison to the ones generated by the economics land-use model.  

 
Figure 5: Study workflow for the non-coupled, standalone crop simulations using historical acreages 
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3.3.4 Crop simulation with land use probability from the economics model 

As a comparison, the second approach simulates crop yields using land use 

probability prescribed by the ALM-EC model. CDL, SSURGO, and NARR data from 2013 

are used as inputs for the ALMANAC model which simulates soybean, maize, spring 

wheat, sunflower, canola, oats, and alfalfa yields for all soil map units over North Dakota 

for 2013 (Figure 3). These simulated crop yields for 2013, along with crop prices and 

management costs determined by a specific scenario, are used as inputs for the economics 

model. The land use probability (Figure 4), as the outcome from the economics model, is 

utilized to generate possible soil-crop combinations for ALMANAC to simulate for the 

2014 season, with the resulting total land area and production for each soil-crop simulation 

weighted by the economic probability per soil.  

To test the integrated approach via coupling the two models, the simulated land use 

composition was then compared with the estimated acreage derived from the previous 

years’ CDL as well as the CDL estimated 2014 crop acreages.  

 

3.3.5 Evaluation of the impacts of market price and policy changes on crop 

simulations 

Upon evaluation of the linked crop and economics modeling system, we extended 

crop simulation from a non-perturbed setting to two alternative scenarios to quantify the 

impact of changes in market prices and policy incentives on crop yields, soil health, and 

nutrients for the year 2014. The first scenario is based on historic occurrences where the 

market prices of the major crops (maize, soybeans, and wheat) are increased, resulting in 

higher net returns to major crop productions. In contrast, the second scenario evaluates the 
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impact of incentivizing grassland with a subsidy, as an illustration of the U.S. Conservation 

Reserve Program, with all prices and costs remaining the same as in the non-perturbed. 

 

Major crops intensification scenario (market price change) 

 The first alternative scenario corresponds to an intensive crop production related to 

either agricultural market shocks or energy policies to expand biofuel production. The 

scenario assumes a 20% increase compared to the non-perturbed in maize, soybean, and 

wheat market prices likely resulting from higher demands for these major crops in the 

region. As shown in Table 1, the prices under the intensive cropping scenario fall well 

within the range of the most recent price surge during 2012-2013 (USDA NASS). 

Similarly, the economics land use model used the 2013 simulated yields for all study crops 

in the prairie pothole region of North Dakota to calculate the net return of each potential 

land use alternative under the scenario prices and transformed to the land use probability 

for each crop. We then implemented the ALMANAC simulations for the 2014 growing 

season with the scenario land use probabilities (Figure 6) under all soil and weather 

combinations. 
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Figure 6: Probability of planting for each SSURGO soil type for maize (a and b), and grassland (c and d) using the ALM-

EC model for two scenarios, crop intensive, representing the increased market prices for maize, soybean, and wheat (a 

and c), and grassland incentive, representing the policy change of enacting a flat per acre payment for grassland acreage 

(b and d). Darker gray indicates a higher probability of planting.  

Grassland conservation scenario (policy change) 

 In contrast to the non-perturbed, where a constant net return to grassland was 

assigned for each land unit, the second scenario considers policies that increase subsidies 

or payments for ecosystems services or land rents for conservation easements such as 

USDA Conservation Reserve Program (CRP) land and wetland. It is assumed that an 

incentive of $40 per acre was added to the net return of grassland for encouraging cropland 

conversion to grass/pasture land with forestland remaining constant. The $40/acre rate of 

compensation was a midpoint of CRP rental payment ranged from $30/acre to $50/acre 

reported by the USDA NASS database over the past 10 years among all ND counties. With 

the additional $40 per acre added to the net return of grass/pasture land, it is expected that 
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less productive lands are more likely to remain or convert to grass/pasture use due to 

increased grassland profitability. To highlight the effect of this conservation effort, all other 

crop prices stayed at the baseline level. This generated a unique probability of planting 

dataset which was then fed back into the ALMANAC model to simulate the resulting yields 

and soil health in 2014 growing season. 

 

3.4 Results and discussions 

3.4.1  Comparison of historically-based and economics model-based crop acreages  

 We compared the projected land use through the ALM-EC model to both the CDL 

derived land use probabilities and the NASS statistics.  Land use areas are aggregated to 

the agricultural districts and the results of which are shown in Table 2 for each of the three 

major crop types in the area.  Note that as mentioned in section 3.3.4, yields for the seven 

crop types were simulated for all soil types and are used as inputs for the economics model. 

However, a total of 47 crop types are found through the CDL layer over the study region. 

We assume the land cover that is not modeled by this study, such as non-agricultural land 

cover and minor crops, stay constant over the study timeframe, and their acreages are 

removed from the analysis.  However, this does not include  

non-crop land uses that are accounted for by the economic model, such as grassland and 

forest. 
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Table 2: Table of 2014 land uses area in ha for each agricultural district as calculated by the ALM-EC model, the CDL 

derived 2010-2013 mean planted area, and the estimated planting percentages for 2014 as reported by the CDL. 

  

    Land Use Area (ha) Error 

Crop Ag. District ALM-EC Model 2010-13 CDL 2014 CDL ALM-EC 2010-13 CDL 

M
a

iz
e

 Central 113,948 126,410 164,308 -31% -23% 

East Central 115,262 266,064 227,441 -49% 17% 

North Central 151,309 50,575 65,966 129% -23% 

Northeast 87,690 89,282 84,987 3% 5% 

Northwest 145,919 11,980 17,402 739% -31% 

Southeast 317,059 341,253 341,567 -7% 0% 

  

Other 65,407 75,676 88,571 -26% -15% 

Maize Total 996,594 961,239 990,243 1% -3% 

S
o

y
b

e
a

n
 

Central 460,482 336,395 443,551 4% -24% 

East Central 805,314 536,348 577,507 39% -7% 

North Central 170,726 115,360 224,204 -24% -49% 

Northeast 400,553 273,257 390,536 3% -30% 

Northwest 56,628 14,489 75,679 -25% -81% 

Southeast 497,438 440,948 564,152 -12% -22% 

  

Other 20,807 31,077 79,692 -74% -61% 

Soybean Total 2,411,948 1,747,875 2,355,320 2% -26% 

W
h

e
a

t Central 74,443 199,669 192,233 -61% 4% 

East Central 27,599 158,064 137,598 -80% 15% 

North Central 250,607 271,498 271,554 -8% 0% 

Northeast 591,991 517,693 534,204 11% -3% 

Northwest 603,268 230,651 418,865 44% -45% 

Southeast 40,801 110,151 111,293 -63% -1% 

  

Other 242,915 192,209 194,135 25% -1% 

Wheat Total 1,831,624 1,679,935 1,859,880 -2% -10% 
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The historic crop hectares were derived from the historical dataset given by the 

CDL for the years 2010-2013 to determine the probability of each crop within each soil 

type within that timeframe. Finally, the 2014 data was derived from the 2014 version of 

the same CDL dataset to compare directly with the projected hectares from both the 

historical and the economics land use model. Note that the CDL measures area for each 

crop independently which accounts for the impacts of both non-cropland and crops not 

covered in this study, as such the CDL areas do not need an adjustment to account for non-

study land uses. 

As shown in Table 2, maize was closely predicted by both the ALM-EC model as 

well as the historic mean.  However, while the ALM-EC model produced a more accurate 

estimation of the total 2014 planted area, the 2010-2013 CDL mean was able to more 

accurately project within most agricultural districts based on goodness of fit (estimated 

using R Project for Statistical Computing). Overall the ALM-EC model performs well for 

the region but does not factor in some of the limitations of planting such a resource 

intensive crop in regions not historically seen. Land use dedicated to soybean for the whole 

area is well projected by the ALM-EC model, surpassing the accuracy of the 2010-2013 

CDL means both overall and within the majority of agricultural districts. In contrast to 

maize, the ALM-EC model’s expansion of crops into regions not historically planted 

contributed to an increase in accuracy, judged by goodness of fit, within these divisions. 

Finally, ALM-EC’s projection of spring wheat land use area is a noticeable improvement 

over the 2010-2013 CDL means for the whole area, but similar to maize does poorer than 

the 2010-2013 CDL means within most of the individual agricultural districts. Unlike 

maize this inaccuracy appears to be centered around the regions that experienced little to 
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no change in planted area from the past 3 years. As illustrated, by configuring economic 

factors to current market and policy conditions the ALM-EC model can reproduce the 

landscape of a specified year with similar, and in some cases better (e.g. Soybean), 

accuracy compared with using a historic mean approach.   

 

3.4.2 Impacts of the economics model-based simulation to crop yields  

With the use of agricultural land use probability from the economics model as 

described in Section 3.4.1 as inputs and with the methodology described in section 2.4, 

crop yields were simulated based on the ALMANAC model for 2014 for maize, soybean 

and spring wheat. Figure 7 shows the range of simulated yields in counties where the crops 

were commonly seen to be grown, derived from NASS quickstats total planted area for 

2014 (USDA-NASS 2018). The box whisker chart is used to compare simulated crop 

yields, contrasted with NASS records for the mean, countywide yield for the same year 

represented by the red dot.  
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Figure 7: Simulated yields for simulations including the ALM-EC model, or the ALM-EC scenario (upper) and the static 

area CDL scenario (lower) scenarios of maize (a), soybean (b), and spring wheat (c) using box whisker for simulated 

yields, mean yields for each county as reported by NASS represented as a red dot. Simulation medians represented by 

the solid line. 

Here the ALM-EC scenario refers to the ALM-EC model configured to replicate 

conditions as found in 2014, whereas the CDL scenario refers to the static-area based 
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standalone ALMANAC simulations based on land use mean from 2010-2013 as 

determined from the CDL. Simulated yields of spring wheat and soybean under the ALM-

EC system remain relatively unchanged compared to the results of the static CDL-based 

scenario.  

In contrast, maize yields under the ALM-EC overall declined compared to the 

NASS reported yields. This yield underperformance is likely caused by simulated 

expansion of maize acreage into sub-optimal productivity soils both within individual 

LCCs and migration to poorer productivity LCCs resulting in lower overall yields. 

Ultimately this expansion to poorer productivity soils is due to limited quantities of the 

higher quality soils, once saturation of these higher productivity soils is reached, lower 

quality soils are used to fulfil the remaining demand. A factor of the overall low range seen 

in both scenario’s maize yields may be a result of the crop moving outside of the calibration 

soils, as only frequently planted sites between 2001-2013 were included in calibration. This 

greatly limited the amount of soils used during calibration, with only the highest quality 

soils seeing frequent maize planting during that period, relative to soybeans and wheat. 

Still, other factors, such as soil profile inaccuracies, calibration method, and model 

processes could add to this yield discrepancy.   

Using the ALM-EC model resulted in soybean yields of 2.84 t∙ha-1, which is 22% 

higher than NASS reported for the region (2.33 t∙ha-1), and wheat yields of 3.88 t∙ha-1, 

which is 17% higher than NASS reported (3.29 t∙ha-1). Similarly, simulated yields were 

found to be 21% and 20% higher than NASS reported for soybean and wheat respectively 

for crop simulations with the use of historic area. The estimated maize yields are 6.02 t∙ha-
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1 and 6.88 t∙ha-1, which are 25% and 14% lower than NASS reported average (7.97 t∙ha-1) 

for crop simulations with the non-perturbed and the historic scenario respectively. 

While a yield underperformance is found for maize, the overall performance of crop 

simulations, through the use of land use probabilities generated from the economics land 

use model, compare reasonably well with the crop simulations using CDL based land use 

acreage. Distinct from the standalone crop simulations, the ALM-EC modeling system 

treats economic factors, such as policy and market changes, as fully incorporated variables, 

which enables the feasibility of studying the influence/sensitivity of market and policy on 

crop simulations. 

 

3.4.3 Proof-of-concept study of the impact of market and policy on crop simulations  

Using the developed ALM-EC system, as a proof-of-concept study, we have 

perturbed the market and policy conditions for two scenarios as explained in section 3.3.5, 

for a total of three competing simulations: a non-perturbed simulation with a “business-as-

usual” assumption to represent the conditions of the 2014 growing season with no changes 

(non-perturbed); a perturbation in market forces where the price of maize, soybean, and 

wheat are increased (crop intensive); a perturbation in policy changes where grassland is 

incentivized through a flat per acre payment (grass incentive). The corresponding changes 

to crop acreage, crop yields and soil conditions from the three simulations are documented 

as below. 

 

Impacts on Crop planted areas 
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 With the increase in demand for major crops (maize, soybean and spring wheat) the 

crop intensification scenario found a significant increase in simulated planted area of two 

of the crops, with maize experiencing the largest impact, a 157% increase in planting area, 

while soybean experienced gains of 49%, comparing with the non-perturbed case (Figure 

8). The other two major land uses fell with grasslands experiencing a 47% decrease and 

wheat seeing a drop of 24% over non-perturbed planted area. Notably, while spring wheat’s 

price was increased in this scenario, and expanded acreages in the western half of the study 

area, it lost ground to maize and soybeans in the eastern half where the profits, and with it 

increased acreage, from those crops overwhelmed the potential spring wheat acreage gains. 

 
Figure 8: Total planted area of each crop under the non-perturbed scenario, crop intensification scenario, and the 

grassland incentive scenarios. 

 Conversely, with the incentivized grassland production the planted area of the 

major crops: maize, soybean and wheat fell by 35%, 12%, and 19% respectively while 

grasslands increased planting by 43% with respect to non-perturbed grassland area. In all 

scenarios the minor crops, such as sunflowers or oats, dropped in planting area by 34% to 

71% depending on the crop and scenario as both the major crops and grasslands utilized 

areas previously containing these crops during their respective scenarios.  
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 As planting incentives were modified, crops began migrating from their original 

state to cover LCCs not seen in the non-perturbed study. This can be demonstrated in Figure 

9 where during the crop price intensive scenario a majority of the additional maize acreage 

went onto the higher potential productivity soils in LCC 2 (Figure 9), but also increased 

acreage on the less favorable LCCs. Similarly, when grassland is incentivized the majority 

of the acreage growth can be found at more productive LCCs, albeit at the simulated lower 

yielding soils within this class, while the less productive LCCs saw a smaller overall 

acreage growth. 

 
Figure 9: Total study-wide planted hectares of maize (a) and grasslands (b) by non-irrigated land capability class for 

the non-perturbed as well as the crop intensification and grassland incentive scenarios in hectares. 
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Impacts on Yields and production 

Due to the expansion of acreages and prioritization of more productive soils for the 

more profitable crops, a similar change in yields based on the scenarios is observed (Figure 

10). In the crop intensive scenario, maize, soybean, and wheat are given priority over the 

other four crops, resulting in expansion of those crops into less productive soils, and 

subsequently an overall drop in yields for maize as it’s moved into the lower potential LCC 

(Figure 11), but not as large of an impact as its largest increase in area is found on the 

higher productive LCC2. Minimal impact, leading to non-significant differences in total 

mean yield, are found on the soybean yield as the yield drop-off from LCC2 to lower LCCs 

is less severe than maize during this study year and its increased area on higher productivity 

soil helps offset these already smaller losses. Similarly, no major change is found for spring 

wheat yield. Mean yield drops are found in all four of the remaining crops as those crops 

are forced to more marginal lands by the encroaching maize and soybean, suppressing their 

yields.  

 
Figure 10: Mean study-wide yields for the study crops under non-perturbed, crop intensive, and grass incentive 

scenarios. 
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Figure 11: Mean study-wide yields for maize and soybeans crops under non-perturbed scenario grouped by LCC 

However, in the grassland incentivized scenario, a grassland conversion on less 

productive lands limiting crop expansion is observed. As a result of this land-use change, 

a slight boost in mean yields are found for all crops. This is because although decreases in 

acreage relative to non-perturbed are observed for those crops, the poorly producing lands 

are removed from farming which ultimately achieves the typical conservation goal for this 

type of environmental policy.  

Additionally, we combine the changes in acreage with the changes in yields to 

calculate the total production change of each study crop in the study (Figure 12). In the 

crop intensification study, in the study region total production increases of 152% and 48% 

total are found for maize and soybean respectively. This is slightly less of than the amount 

expected from the overall increase in acreage due to the yield impacts of planting on lower 

productivity soils. In contrast, the decreased in yields of alfalfa, canola, oats, and 

sunflowers amplifies the impact of the decrease in acreage which causes the total 

production of each to drop more significantly than otherwise expected when looking at 

each impact individually. However, for the grassland incentivized scenario, the increase in 

yields of the non-priority crops caused a weakening of the impacts of the acreage decrease, 
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where while overall production is down, the increased yields help to mitigate the loss of 

production relative to acreage losses. The end result being production of each crop falling 

relative to non-perturbed, but not to the extent we would expect if the new grassland 

acreage was equally distributed on all soils regardless of productivity. 

 
Figure 12: Total study-wide production under non-perturbed and each scenario. 

3.4.4 Additional details of future scientific potential for the coupled model 

 The ALMANAC model also provides outputs from each soil layer about changes 

in soil carbon, nitrogen, and other key components in soil health.  However, due to the 

short-term nature of this study these results for the combined ALM-EC model were 

generated but not formally included in this study. Given a longer-term study and sufficient 

calibration data the impacts of the annually changing land use could be measured with this 

system, which could provide valuable insight into long term changes and their subsequent 

impact to overall soil health. Furthermore, due to the single year status of the simulations 

impacts from rotations were not analyzed within this study. These effects can be handled 

by the ALM-EC model via an assumption that all crop movement will follow standardized 

rotations predefined prior to the simulations, creating best-fits for each possible 
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combination, or through a statistical likelihood approach using historic records of 

representative acreage within the area to project future probabilities.  

  

3.5 Conclusions and discussions 

In this concept demonstration study, a crop and economics modeling system 

is developed through a two-way linkage of an economics land use model with the 

ALMANAC model for crop simulation. The designed goal for this system is to include 

economic factors as fully incorporated variables in crop simulations, allowing the 

study of sensitivity of crop simulations with respect to market and policy changes. 

We have demonstrated and tested the concept for the 2013-2014 season over North 

Dakota and inter-compared the new crop simulation concept with a static approach 

which uses historical acreage data to simulate seven crops common to North 

Dakota. This study finds: 

(1) For the 2014 study period, dynamic crop acreages can be generated using the 

ALM-EC system while producing similar performances in acreage and yields 

in comparison to a static, standalone crop simulation. 

(2) Comparing to the non-perturbed case in market and policy conditions, crop 

simulations under a crop intensified scenario where market prices for major 

crops are increased, the model introduces increases in acreages for the in-

demand crops on the remaining higher productivity soils, both of these factors 

impact other competing crops negatively leading to decreases in both acreage 

and yields. 
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(3) Repeating this study with a policy change that favored grasslands we observed 

a grassland expansion due to an increase in its net return. However, unlike the 

market price study we found that the grassland conversion was mainly focused 

on the lower productivity soils. As a result of the removal of these lower 

productivity soils from the available planting pool for the minor crops, yields 

increased and slightly offset the overall loss of acreage for these crops. 

Note that in the newly developed ALM-EC, land use probabilities are 

derived from the economics land use model. This allows us to examine the 

impacts of likely crop locations and the effect of specific soil types on yields 

even when lacking accurate land use information, which may enable a more 

realistic long-term crop simulation and forecast.  

This study suggests that with the use of two-way linkage between an 

economics land use model and a crop model, economic factors can be included 

as control variables and be further used to study the sensitivity of market 

drivers on crop simulations. This study serves as a foundational step towards 

the goal of reducing the impact of unrealistic depictions of static agricultural 

land use in both short- and long-term simulations by incorporating high-

resolution dynamic land use, through a coupled economic model, into crop 

simulations. The developed system, in theory, may be used to gain an insight 

into the changes in agricultural practice due to policy and market changes for 

potential policy and decision making. 
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CHAPTER 4 

Albedo Impacts of Changing Agricultural Practices in the United States through 

Space-Borne Analysis 

 

 

4.1 Rationale 

Surface albedo, which is the ratio of outgoing to incoming solar irradiance at a 

given wavelength, is a key component to a range of scientific applications such as the 

lower boundary conditions for the remote sensing of surface and atmospheric properties 

(Seidel, et al., 2012), climate studies (Zelinka, et al., 2020), and atmospheric modeling 

parameters (Jandaghian, et al., 2020).  Changes in surface albedo over cropland occur at 

daily, weekly, and seasonal scales due to crop growth. Yet, while seasonal changes in 

surface characteristics are accounted for in some applications, these daily or weekly 

changes in surface albedo are less frequently considered. Still, significant variation in 

both timing and range of surface albedo are observed for crops from initial planting to 

harvest stages, which can be noted simply by the significant variation of color hues 

displayed over croplands during maturation (e.g. Figure 13). 
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Figure 13: National Agriculture Imagery Program (NAIP) visible aircraft image of 
farmland in Cass County, ND on 08/19/2017 (USDA-FSA, 2019). The spring wheat field 
has matured before the three neighboring crops producing a higher surface albedo relative 
to the nearby fields. Note that although a visible image is shown, surface albedo over 
crop land also drastically changes as a function of wavelength. 

 

To maintain soil health, to suppress pests and disease, and thereby maximize 

long-term productivity and profits, farmers routinely use cyclical crop rotations at a given 

location such that the crop planted (along with pest and disease pressure) varies on an 

annual to semi-annual basis. As a result of historically routine crop rotation practices and 

new rotational practices related to market conditions and US agricultural policy, surface 
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characteristics of cropland derived from prior years may not be representative of current 

or future conditions. Additionally, in-season surface albedo variation caused by both crop 

rotation and crop growth throughout the growing season are a non-negligible issue due 

to the large spatial extent of agricultural lands.  For example, in the continental United 

States in 2019, farmland covered a total of 895 million acres (USDA - NASS, 2020) 

(47.4% of total land area), with 308 million acres of that in harvestable crops (USDA - 

NASS, 2020) (16.3% of total land area). 

Several approaches have been attempted to account for changes in surface albedo 

resulting from plant growth.  For example, Houldcroft et al. (2009) defined albedo 

parameters for five vegetation categories (and the corresponding bare soil) worldwide 

using MODIS derived albedo, calculating albedo as a combination of plant and soil 

reflectivity. Hsu et al. (2019) used the normalized difference vegetation index (NDVI) to 

account for cropland surface albedo changes for satellite aerosol retrievals, whereas 

Zhang et al. (2020) produced time-series forecasts for albedo of a specific area including 

croplands through empirical mode decompositions and neural networks.  Still, for most 

prior research applications, surface albedo values have either been assumed to be 

invariant throughout the study period or estimated through the use of a static look-up 

table based on generic cropland albedo changes.   

In this study, through collocation of the crop land data layer (CDL) with the 

Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance 

distribution function data, the variations of surface albedo during the crop growing 

season are studied for 55 crop types, seven spectral channels (ranging from visible to 

shortwave infrared), and nine different plant hardiness zones across the United States.  
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From this collocation a database was created for applications that require accurate 

estimations of daily surface albedo changes over cropland. Using this database this study 

tackles three overarching questions: 1) what are the impacts of crop variations in growth 

and reflectivity on spectral surface albedo, and are these impacts consistent on a per-

wavelength, crop type, day of year, and hardiness zone basis?; 2) can cropland NDVI 

values be used as a proxy for the variations in surface albedo over cropland caused by 

plant growth?; and, 3) are the broadband albedo changes due to crop growth significant 

for climate applications?  

 

4.2 Methodology 

The changes in spectral albedo as a function of crop growth were studied over the 

continental United States during a four-year period (2015-2018). Four datasets, including 

USDA-NASS’s CDLs, USDA’s Plant Hardiness Zones database, and MODIS derived 

albedo and reflectivity were collocated and used for the study.  The study’s region and 

timing were chosen due to the availability and consistency of the CDL data, which allows 

for identification and inclusion of a large number of homogeneous single-crop locations 

overlaying MODIS pixels. 

4.2.1 Collocation of CDL and MODIS data 

To calculate the seasonal change in albedo of specific crops requires collocation 

of the CDL with the MODIS gridded BRDF dataset. Figure 14 shows the flow chart of 

the collocation steps. Colocation was performed by locating the center of each BRDF 

grid pixel and locating the corresponding CDL pixel found at that location. Due to the 

resolution difference (30m CDL vs 500m MODIS) an appropriate buffer area around the 
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BRDF pixels was selected extending beyond the MODIS pixel. All CDL pixels within 

the area + buffer were checked for single crop homogeneity, with the overlaying BRDF 

pixel discarded from the study if any pixel within the area + buffer was classified as a 

different crop or land cover from the central CDL pixel. As a result, all MODIS BRDF 

pixels used in this study are considered to be comprised entirely of a single crop as 

interpreted by the CDL.  The remaining, single crop, BRDF pixels were grouped by crop 

and HZ, and the mean albedo, standard deviation of that albedo, and raw pixel counts for 

each day of the year calculated from the merged four-year BRDF dataset.  

 
Figure 14: Flowchart for pixel selection and calculation 

 

As the result of colocation, 20,345,626 MODIS pixels across all land cover types 

were found that matched the criteria over the four year period (roughly 5,000,000 per 
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year); which are shown below grouped by land cover type (figure 15a), by HZ (figure 

15b), and the selected points of several common US crops (figure 16) for reference. Using 

these reference points both mean and standard deviation of albedo for each crop, HZ, 

Julian day, wavelength (including broadband), and sky-type combination were 

calculated. Additionally, means and standard deviations of the albedo for the remaining 

homogeneous, but non-cropland, land covers were derived and included in the final 

database, but not focused upon in this study. 
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Figure 15: Selected Points by a) landcover type and b) HZ as defined by USDA  
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Figure 16: Locations of selected points of in this study, colored by plant hardiness zone 
for four example crops of (a) maize, (b) soybeans, (c) spring wheat, and (d) cotton 

 

4.3 Results and discussions 

The black- and white-sky albedo are studied as functions of crop type and 

growing period over the four-year study period in this section.  Again, the goal of this 

effort is to construct a database providing for the fast derivation of albedo changes over 

cropland through the growing period, examples of the seasonal variations of which are 

shown in Table 3.  The database includes the mean and standard deviation of the albedo, 

at each MODIS visible and near IR wavelength, including broadband, for both sky types, 

for every Julian day of the year for a total of 55 crop types. Also included in the dataset 

are ancillary parameters such as valid MODIS pixel counts. The dataset is included as a 

supplement for this study.  Examples of the albedo changes as a function of growing days 

at visible, near IR, and SWIR channels, as well as the broadband SW spectrum, are shown 

in the following sections for maize, soybean, spring wheat and cotton.  These are four of 

the most commonly planted spring to fall cycle crops in the US, and are shown as 
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examples  (Maize with 91.7mil acres, soybeans with 80.0mil acres, spring wheat with 

12.4mil acres, and cotton with 13.7mil acres (USDA - NASS, 2020). 
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Table 3:Mean albedo range of common US crops (HZs 3-6) for the growing season (June-August) by MODIS channel wavelength (nm) 
  BLACK SKY ALBEDO WHITE SKY ALBEDO 

CROP H

Z 

470nm 555nm 645nm 860nm 1240nm 1640nm 2130nm 470nm 555nm 645nm 860nm 1240nm 1640nm 2130nm 

ALFALFA 4 0.034-0.062 0.076-0.105 0.062-0.116 0.346-0.397 0.340-0.375 0.234-0.303 0.125-0.179 0.038-0.070 0.087-0.118 0.068-0.128 0.381-0.445 0.381-0.406 0.258-0.326 0.134-0.188 

ALFALFA 5 0.040-0.052 0.080-0.094 0.074-0.097 0.367-0.386 0.337-0.366 0.239-0.274 0.124-0.153 0.045-0.058 0.092-0.105 0.083-0.108 0.406-0.436 0.377-0.398 0.263-0.298 0.132-0.164 

ALFALFA 6 0.045-0.057 0.085-0.101 0.083-0.106 0.350-0.376 0.328-0.359 0.240-0.276 0.144-0.163 0.051-0.064 0.098-0.113 0.093-0.118 0.394-0.413 0.364-0.389 0.266-0.301 0.156-0.176 

BARLEY 4 0.032-0.088 0.075-0.140 0.058-0.183 0.321-0.404 0.322-0.391 0.215-0.344 0.108-0.204 0.035-0.093 0.088-0.151 0.064-0.195 0.371-0.466 0.363-0.419 0.241-0.367 0.115-0.213 

BARLEY 5 0.026-0.089 0.068-0.144 0.048-0.186 0.363-0.457 0.326-0.399 0.178-0.338 0.078-0.208 0.030-0.097 0.086-0.156 0.057-0.198 0.394-0.524 0.382-0.437 0.210-0.360 0.087-0.217 

CANOLA 3 0.026-0.073 0.077-0.120 0.051-0.147 0.218-0.483 0.285-0.368 0.161-0.311 0.064-0.238 0.028-0.077 0.086-0.129 0.056-0.156 0.250-0.533 0.316-0.393 0.180-0.335 0.071-0.255 

DRY BEANS 4 0.033-0.067 0.075-0.112 0.063-0.133 0.251-0.390 0.304-0.366 0.225-0.309 0.109-0.221 0.037-0.071 0.085-0.120 0.069-0.142 0.286-0.441 0.336-0.402 0.246-0.326 0.116-0.229 

DURUM WHEAT 3 0.030-0.082 0.073-0.130 0.057-0.174 0.253-0.377 0.316-0.386 0.218-0.361 0.104-0.225 0.031-0.089 0.083-0.142 0.060-0.190 0.286-0.440 0.345-0.417 0.236-0.385 0.107-0.230 

FALLOW/IDLE  3 0.053-0.079 0.091-0.119 0.102-0.151 0.250-0.273 0.306-0.331 0.291-0.359 0.187-0.248 0.055-0.084 0.098-0.129 0.107-0.161 0.272-0.319 0.340-0.358 0.308-0.378 0.191-0.257 

FALLOW/IDLE  4 0.053-0.082 0.092-0.124 0.102-0.158 0.251-0.279 0.310-0.344 0.292-0.368 0.183-0.247 0.055-0.089 0.099-0.134 0.106-0.170 0.272-0.325 0.346-0.370 0.308-0.386 0.187-0.255 

FALLOW/IDLE  5 0.061-0.073 0.104-0.115 0.122-0.144 0.272-0.281 0.319-0.338 0.308-0.346 0.210-0.241 0.063-0.079 0.111-0.127 0.126-0.156 0.299-0.325 0.351-0.376 0.323-0.364 0.213-0.247 

FALLOW/IDLE  6 0.062-0.082 0.104-0.128 0.125-0.165 0.275-0.294 0.312-0.351 0.299-0.346 0.211-0.245 0.065-0.087 0.113-0.138 0.131-0.177 0.317-0.328 0.348-0.381 0.318-0.370 0.217-0.256 

MAIZE 3 0.017-0.039 0.057-0.072 0.033-0.071 0.210-0.439 0.265-0.362 0.191-0.267 0.073-0.203 0.021-0.042 0.068-0.081 0.039-0.077 0.245-0.488 0.300-0.402 0.214-0.293 0.081-0.215 

MAIZE 4 0.018-0.046 0.053-0.078 0.034-0.089 0.213-0.452 0.283-0.366 0.199-0.309 0.076-0.241 0.021-0.050 0.063-0.086 0.039-0.096 0.243-0.500 0.314-0.407 0.226-0.335 0.085-0.257 

MAIZE 5 0.018-0.052 0.050-0.089 0.032-0.103 0.258-0.455 0.321-0.363 0.199-0.326 0.074-0.245 0.021-0.055 0.059-0.096 0.038-0.108 0.290-0.506 0.349-0.405 0.226-0.350 0.083-0.256 

MAIZE 6 0.022-0.055 0.056-0.096 0.042-0.108 0.295-0.422 0.333-0.353 0.211-0.313 0.090-0.220 0.026-0.058 0.066-0.103 0.048-0.114 0.335-0.468 0.363-0.395 0.238-0.331 0.099-0.228 

HAY/NON ALFALFA 4 0.031-0.049 0.070-0.086 0.058-0.093 0.289-0.319 0.310-0.349 0.220-0.297 0.108-0.161 0.035-0.055 0.085-0.098 0.065-0.104 0.331-0.388 0.363-0.388 0.249-0.321 0.116-0.172 

HAY/NON ALFALFA 5 0.030-0.053 0.069-0.094 0.056-0.103 0.321-0.353 0.306-0.371 0.205-0.296 0.103-0.160 0.035-0.060 0.086-0.107 0.065-0.117 0.362-0.421 0.364-0.408 0.237-0.322 0.114-0.173 

SORGHUM 5 0.047-0.079 0.089-0.124 0.088-0.153 0.283-0.350 0.332-0.354 0.284-0.353 0.170-0.255 0.052-0.083 0.100-0.133 0.098-0.161 0.317-0.383 0.359-0.388 0.309-0.374 0.181-0.259 

SORGHUM 6 0.042-0.071 0.082-0.113 0.081-0.141 0.276-0.354 0.324-0.349 0.273-0.344 0.160-0.238 0.048-0.075 0.094-0.122 0.091-0.150 0.312-0.387 0.354-0.382 0.299-0.362 0.174-0.243 

SOYBEANS 3 0.020-0.041 0.061-0.083 0.040-0.079 0.197-0.413 0.250-0.363 0.201-0.256 0.081-0.191 0.022-0.044 0.071-0.091 0.044-0.086 0.226-0.460 0.281-0.398 0.223-0.278 0.087-0.203 

SOYBEANS 4 0.019-0.048 0.055-0.080 0.037-0.094 0.216-0.456 0.286-0.376 0.214-0.310 0.084-0.239 0.022-0.051 0.063-0.087 0.042-0.099 0.245-0.498 0.316-0.413 0.235-0.335 0.091-0.254 

SOYBEANS 5 0.015-0.053 0.046-0.089 0.027-0.104 0.253-0.488 0.319-0.384 0.207-0.328 0.073-0.246 0.018-0.054 0.054-0.094 0.031-0.108 0.284-0.529 0.348-0.419 0.229-0.352 0.081-0.257 

SOYBEANS 6 0.017-0.054 0.049-0.094 0.031-0.105 0.284-0.461 0.329-0.374 0.211-0.312 0.079-0.221 0.019-0.056 0.056-0.100 0.035-0.110 0.325-0.499 0.361-0.409 0.231-0.333 0.086-0.231 

SPRING WHEAT 3 0.024-0.063 0.065-0.107 0.047-0.130 0.230-0.409 0.274-0.360 0.195-0.304 0.088-0.190 0.027-0.067 0.076-0.116 0.052-0.140 0.267-0.470 0.308-0.398 0.220-0.322 0.096-0.200 

SPRING WHEAT 4 0.028-0.060 0.067-0.103 0.054-0.126 0.281-0.375 0.316-0.361 0.219-0.318 0.107-0.188 0.031-0.065 0.078-0.114 0.059-0.138 0.324-0.438 0.351-0.402 0.242-0.335 0.112-0.196 

SPRING WHEAT 6 0.032-0.100 0.069-0.159 0.063-0.222 0.338-0.368 0.309-0.413 0.208-0.371 0.114-0.225 0.035-0.106 0.081-0.171 0.069-0.238 0.393-0.434 0.358-0.440 0.231-0.395 0.119-0.236 

SUGARBEETS 4 0.019-0.041 0.062-0.079 0.037-0.073 0.202-0.453 0.255-0.359 0.181-0.267 0.071-0.212 0.022-0.044 0.073-0.086 0.042-0.078 0.229-0.500 0.283-0.400 0.207-0.290 0.078-0.226 

SUNFLOWER 4 0.034-0.055 0.077-0.093 0.068-0.110 0.275-0.387 0.333-0.357 0.244-0.329 0.118-0.211 0.038-0.056 0.087-0.099 0.077-0.114 0.316-0.429 0.364-0.401 0.268-0.345 0.126-0.215 

WINTER WHEAT 3 0.039-0.084 0.077-0.128 0.073-0.167 0.279-0.334 0.309-0.353 0.240-0.364 0.144-0.236 0.042-0.089 0.088-0.138 0.078-0.180 0.303-0.402 0.355-0.383 0.257-0.385 0.147-0.245 

WINTER WHEAT 4 0.034-0.080 0.072-0.125 0.065-0.165 0.278-0.353 0.314-0.364 0.230-0.359 0.128-0.216 0.038-0.085 0.085-0.136 0.071-0.178 0.304-0.418 0.366-0.398 0.254-0.378 0.135-0.224 

WINTER WHEAT 5 0.044-0.067 0.084-0.109 0.084-0.139 0.275-0.331 0.315-0.344 0.250-0.330 0.160-0.211 0.049-0.076 0.099-0.127 0.094-0.158 0.306-0.389 0.361-0.389 0.279-0.351 0.170-0.220 

WINTER WHEAT 6 0.045-0.066 0.084-0.110 0.092-0.142 0.293-0.306 0.305-0.352 0.249-0.332 0.162-0.221 0.052-0.071 0.101-0.119 0.106-0.152 0.329-0.365 0.353-0.384 0.279-0.356 0.173-0.232 
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4.3.1 Variations in cropland albedo at visible, NIR, and SWIR channels due to the 

crop growth cycle 

Figure 17 shows the change in black-sky surface albedo as a function of the 

growing period for maize, soybeans, spring wheat, each in HZ4, and cotton, in HZ8, for 

the seven spectral MODIS channels (470nm, 555nm, 645nm, 860nm, 1240nm, 1640nm, 

2130nm). The solid lines show the daily mean albedo for the seven wavelengths, while 

the shaded area shows the standard deviation.  For illustration purposes, for maize, 

soybeans, and spring wheat, HZ4 is shown as the spatial overlap of these three crops is 

high in this HZ, allowing for direct comparison. However, as displayed in Figure 16, 

cotton does not appear in HZ4 and as such HZ8 is included for reference, but does not 

spatially overlap with the other three crops. 

 
Figure 17: Visible mean (solid line) and standard deviation (bars) of BSA for four 
popular crops in selected HZs for 470nm (blue), 555nm (green), and 645nm (red) 
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As shown in Figure 17, significant changes in black-sky cropland albedos in the 

visible spectrum, particularly with respect to the 645 nm channel, are clearly observable.  

For maize fields, black-sky albedo is reduced from 0.1 at the beginning of the planting 

season (day 100) to a low of 0.03 during the peak growing season (day 200), representing 

a 70% relative decrease in black-sky albedo due to plant photosynthesis.  Following the 

peak growth period, the black-sky albedo for maize fields increases to 0.15 to 0.2 during 

and after the harvesting period (after day 275), as plant photosynthesis activity 

diminishes during crop maturity and the crop is ultimately removed from the surface. 

Near identical patterns in black-sky albedo are found for soybean fields compared 

with maize fields, suggesting that the two crops share similar growth and photosynthesis 

activity cycles.  In comparison, spring wheat fields are planted earlier and mature at a 

much faster rate relative to maize and soybeans.  Consequently, the minimum black-sky 

albedo is centered around late June (day 175), which is around 25 days earlier than 

soybean or maize fields (day 200), and the change is sustained for a much shorter period 

of time. 

The black-sky albedo change for cotton is shown in Figure 5d for HZ8, which 

again is chosen as a representative zone as cotton is not commonly found in HZ4.  Note 

that cotton fields in the United States are planted around mid-May (day 150) and 

harvested in late October (day 290).  Still, both greater variance as well as a less 

significant overall change, with the black-sky albedo changing from 0.10 to 0.15, was 

found during the peak growing season. This lack of definable response could be a result 
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of the agricultural practices around cotton; as cotton has a wider range of planting and 

harvesting dates than maize and soybean, as well as the extended growth cycle relative 

to the other US annual crops based on the NASS’ annual reports (USDA - NASS, 2010). 

In comparison with the 645 nm spectral channel, lower black sky albedo values 

are found for both 470nm and 555nm channels for most crops.  For example, maize field 

albedo values are around 0.1 for the 645nm channel during the planting period while the 

values are around 0.075 and 0.05 for 555nm and 470nm spectral channels, respectively.  

Lower relative changes between planting and peak growing seasons are also found, with 

a 50% decrease in black-sky albedo for the blue 470nm channel and a similarly muted 

33% reduction in black-sky albedo in the green channel. This change is in line with 

expectations of albedo changes caused by photosynthesis activity as the majority of 

chlorophyll absorption is found in the red and blue areas of the spectrum, with relatively 

less absorption of green by chlorophyll a and b (Chappelle, et al., 1992). 

Plants have a high albedo at the 860 nm spectral channel, and therefore, as LAI 

increases nearly opposite patterns from the visible channels are observed for the 860 nm 

channel (e.g. Figure 18).  Lower black-sky albedo values on the order of 0.2 are found 

for maize, soybeans, and spring wheat during the planting season, while maximum mean 

black-sky albedo values around 0.4 are found during the peak growing season as 

identified in Figure 17. A similar, however more muted, increase is observed in black-

sky albedo for cotton fields, with an increase from .25 to .35 from planting through peak 

growing season. 
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Figure 18: IR mean (solid line) and standard deviation (bars) of BSA for four popular 
crops in selected HZs for 860nm (red), 1240nm (orange), 1640nm (green), and 2130nm 
(blue) 

  

The black-sky albedo values at 1640 nm channel behave similar to the visible 

channels but with a more drastic change in absolute magnitude between planting and 

peak growth periods.  The changes in mean black-sky albedo values are from 0.3 to 0.2, 

0.3 to 0.22, and 0.35 to 0.22 for maize, soybean, and spring wheat, respectively, from 

planting to peak growth periods. A 0.05 change in black sky albedo value from 0.35 to 

0.3 is also found for cotton fields from the start of planting to peak growth.  Similar 

patterns are also seen for the 2140 nm channel, although the absolute values are lower 

and the seasonal change is relatively more magnified. Surface albedo values of soil at 

these wavelengths is relatively high in comparison with healthy plants (Richards, 2013) 

which would explain the more muted response with respect to the lower wavelengths. 
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Distinct patterns, however, are observed for the 1240 nm spectral channels for 

most crops.  In general, lower black-sky albedo values are found at the planting stage, 

with mean values of 0.25, 0.25, 0.3 and 0.33 for maize, soybean, spring wheat and cotton, 

respectively, that increases to approximately 0.35 for all four crop types around the peak 

of the growing season.  Still, two local maximum black sky albedo values at day 160 and 

day 220 are found for spring wheat, which represents a unique pattern relative to all other 

channels.  Also, higher black sky albedo values are also found during and after harvesting 

seasons that is also in contradiction to patterns as observed from other channels.  Whereas 

similar albedo values are found for planting and harvesting seasons.  

The white-sky albedo values show similar behavior as the black-sky albedos, and 

similar figures as Figures 17 and 18 are included in the supplement document.  In 

summary, drastic changes in both black- and white-sky albedos are found, on the order 

of 30-75% for the major United States crops of maize, soybean, and spring wheat during 

the growth cycle for visible, NIR, and SWIR MODIS spectral channels.  A similar, but 

lesser, change in magnitude is also found for cotton fields.  Clearly, changes as significant 

as this in surface albedo during the plant growing period, as a function of plant type, may 

need to be taken into account when undertaking either remote sensing applications that 

require a knowledge of lower boundary conditions over cropland, or regional to global 

scale numerical weather/climate prediction and simulation models. 

Of particular importance is the predictability of the annual cycle in cropland 

albedo as defined independently by each crop type. If there are significant annual 

inconsistencies in this cycle, on a per-crop basis, driven by external factors then the 
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overall benefit of applying these albedo changes to future studies decreases substantially. 

To investigate the annual variations and their potential impacts we separated each crop 

into its annual components and applied the earlier analysis over all wavelengths and 

albedo types independently. As observed in Figures 19 and 20 crops typically followed 

the same pattern of albedo changes, indicating the overall annual pattern as found from 

the study are recurring patterns. 

 
Figure 19: Year-by-year variation in albedo in HZ4 for maize for all MODIS reflectance 
channels, black-sky albedo (BSA) & white-sky albedo (WSA) 
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Figure 20: Year-by-year variation in albedo in HZ4 for spring wheat for all MODIS 
reflectance channels, black-sky albedo (BSA) & white-sky albedo (WSA) 

 

 

4.3.2 Variations in broadband SW cropland albedo due to the crop growth cycle  

In addition to the individual channels, the MODIS BRDF product provides 

broadband albedo calculations in visible (0.3-0.7nm), NIR (0.7-3.0nm), and shortwave 

(SW; 0.3-3.0nm) (Schaaf, et al. 2002).  These have been compiled in a similar manner to 

the individual MODIS channels in this study with the mean and standard deviation 

calculated for each crop, HZ, and day of year.  While the impact of crops on SW 

broadband albedo is less significant than the impacts on the individual channels, it is still 

non-negligible.  
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Figure 21a shows the mean broadband black-sky SW albedo for maize, and spring 

wheat for HZ4.  Of the two crops, maize is found to have the larger seasonal swing in 

SW albedo, with an average SW black-sky albedo of 0.13 during the planting and early 

growing season with the SW black-sky albedo values changing to 0.17-19 during and 

after harvesting seasons.  This still represents around a 30% change in broadband black-

sky albedo during the crop growing period, which could have a non-negligible impact on 

regional climates.  A similar, but lesser, change in magnitude is found for spring wheat 

where the SW black-sky albedo values are observed to undergo a 10-20% change during 

the growing period.  The relative change of SW black-sky albedo, however, is observed 

to be only ~10% for cotton fields.  Very similar patterns are found for the white sky 

albedo, with an approximately 30% change in SW white-sky albedo for both corn and 

spring wheat as shown in Figure 21b. 
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Figure 21: (a) Total shortwave, black-sky albedo by Julian day of maize (red) and spring 
wheat (blue) in HZ4. (b) Total shortwave, white-sky albedo by Julian day of maize (red) 
and spring wheat (blue) in HZ4. 
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As suggested from Figure 21, variation in broadband albedo exists for different 

HZs and crops due to a range of reasons including distinct planting date ranges, growing 

season length, and local crop varieties. For example, cropland planted in maize in HZ4 

reaches the highest albedo around August 4th, whereas further south in HZ8 the peak in 

albedo can be found a full month earlier, around July 1st. Sensitivity to albedo timing and 

range can lead to significant changes in energy balance calculations, and accounting for 

these changes may improve long-term climate models (Sellers, et al., 1995) (Davidson, 

et al., 2004). As a result of this sensitivity, investigations into the long-term impacts of 

evolving cropping pattern effects on atmospheric changes should also consider effects of 

the overall albedo shift caused by the changes in the growth profile and reflectivity of 

each crop. 

 

4.3.3 Uncertainty analysis 

As mentioned in the dataset section, CDL data, which are constructed using 

satellite observations from satellites such as RESOURCESAT-1 and Landsat, contain 

uncertainties.  Provided with the CDL dataset is the uncertainty of each classified crop 

type in the form of accuracy assessments.  Based on these NASS accuracy assessments 

the overall user accuracy of the CDL was calculated to be ~80% on average for all land 

cover types each year; however, the major croplands utilized in this study generally fared 

better, with user accuracies averaging near 90% annually (as shown in popular US crops 

listed in Table 4). To minimize the impact of this uncertainty in crop type classification, 

only MODIS pixels that contained completely homogenous CDL croplands were 
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selected for analysis. Areas that appear noisy due to the difficulty of classification, such 

as field edges or variable wetlands, were also excluded. In addition, due to the extensive 

replication of both points and years, effects from erroneous classifications would be 

reduced in the final albedo calculations due to the sheer number of correctly classified 

croplands incorporated into the analysis. 

Table 4: National CDL User Accuracy of Popular Crops from 2015-2018, note that in 2015 user accuracy was 

calculated using a buffered method, while 2016-2018 was calculated through an unbuffered method (source: (USDA-

NASS, 2020)). 

 Total Count User Accuracy 

 2015 2016 2017 2018 2015* 2016 2017 2018 

Soybeans 4,579,903 4,618,482 5,022,357 4,945,568 93% 91% 92% 92% 

Maize 4,651,997 4,839,604 4,639,961 4,713,799 95% 92% 93% 94% 

Winter Wheat 2,165,988 2,030,583 1,730,739 1,504,814 91% 89% 88% 87% 

Other Hay/Non Alfalfa 1,270,865 1,596,983 1,689,644 1,518,819 78% 76% 80% 81% 

Alfalfa 1,241,323 1,380,339 1,419,039 1,288,739 87% 84% 84% 85% 

Cotton 783,641 632,168 705,317 1,105,499 85% 81% 84% 86% 

Spring Wheat 539,928 451,067 472,286 472,955 87% 84% 82% 84% 

 

For the MODIS BRDF albedo product used in the study, evaluation efforts were 

undertaken to determine the validity of both the broadband and individual albedo 

channels under multiple conditions and testing regimes ( (Disney, et al., 2004), (Jin, et 

al., 2003), (Knobelspiesse, et al., 2008)), which found general agreement of other 

measurement techniques with the MODIS albedo. Still, it is possible that regions with 

the presence of thin clouds and aerosol layers may be misidentified as clear regions, as 

MODIS is insensitive to very optically thin cirrus clouds with optical depth less than 0.3 

( (Huang, et al., 2011) (Minnis, et al., 2008)).  It is worth noting that the MODIS albedo 

product from the MODIS MAIAC data (Lyapustin, et al., 2012) is also available.  
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However, the MODIS MAIAC albedo product is only available every 8 days at a spatial 

resolution of 1 km.  Yet, typical field sizes in the United States do not exceed 0.5 miles 

per side, effectively limiting the resolution to 800m or better for an albedo dataset to 

encompass MODIS pixels within single, homogeneous fields. Due to this spatial 

resolution limitation, as well as the reduced temporal resolution of 8 days between albedo 

calculations, the albedo product from the MAIAC data is not used.  

Another area of concern is the level-3 nature of the MODIS BDRF product, which 

features a 16-day weighted method to estimate the albedo on the middle-most day of the 

sequence.  This provides a continuous albedo curve for the entire reference period but 

can serve to smooth out both peaks and valleys of the albedo function, reducing accuracy 

at those transition points during the growing season. However, the advantage of using 

level-3 gridded data is consistent size and location of the derived pixels, which allows 

the field locations to be constant throughout the study period, eliminating possible 

uncertainty arising from a daily changing pixel size and location as we would see with 

similar level-1, non-gridded, datasets.  

Finally, while this study focused on crops in the United States, varieties and 

management practices vary greatly on a global scale. For example, planting date and 

irrigation practices of maize in regions that often double crop (such as those seen in the 

southern Asia region) can vary greatly from similar climatological areas found in the 

United States. Additionally, each individual crop can have several varieties, for example, 

as of February 2020 the USDA’s Plant Variety Protection office lists 2134 varieties of 

field corn, 2752 varieties of soybean, and 1294 varieties of common wheat (USDA-AMS, 
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2020). Due to the differences in both climate and management practices these varieties 

can vary in both growth speed, stage timing, and overall leaf area index impacting the 

timing and scope of albedo changes throughout the season. As such, albedo changes 

derived from varieties found in the US may not be representative of albedo changes cause 

by varieties found outside the study area, even when factoring in planting dates, 

management, and weather conditions. As such studies into the specific region’s crop 

growth patterns and timings should be completed to verify albedo patterns are similar to 

US results before incorporating the results from this database into studies outside this 

study’s scope. 

 

4.3.4 Evaluating the feasibility of using changes in NDVI as a proxy for changes in 

albedo over cropland 

In some of the previous studies, the changes in albedo over cropland during the 

growing seasons are approximated using NDVI values (e.g.  (Hsu, et al., 2013)).  The R2 

values between NDVI and black sky albedo values at seven wavelengths (470nm, 555nm, 

645nm, 860nm, 1240nm, 1640nm, and 2130nm) are studied (Figure 22) using 4 years 

data as mentioned in Section 4.2.  On an annual basis, a maximum R2 value of 0.75 is 

found at 650 nm and the minimum R2 value of 0.2 is found at 1240nm.  Also as shown 

in Figure 22, this correlation on a daily scale increases over cropland from near zero 

correlation early in the growing season, reaching maximum correlation in the late peak 

growth season, and decreasing shortly thereafter back to near zero as crops are removed 

from the surface during harvest.  This exercise suggests that NDVI may not be an ideal 
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proxy for capturing albedo changes over cropland during the growing seasons and, as a 

result, further investigation into the impacts of surface crop type and land-use mixture on 

remote sensing applications may be warranted. 

 
Figure 22: Coefficient of determination for each wavelength’s albedo using NDVI over 
United States cropland areas for 2015-2018 by day of year (colored dots) and annual total 
(black dots). 

 

 

4.4 Conclusion  

Using four-year (2015-2018) of CDL and MODIS BRDF data, the changes in 

black- and white-sky albedo at seven visible to Shortwave IR wavelengths (470nm, 

555nm, 645nm, 860nm, 1240nm, 1640nm, 2130nm) as well as the broadband SW (300-

5000nm) during the planting, growing and harvesting periods were studied as functions 

of crop type and plant hardiness zones (HZ) over the continental United States.  A total 
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of 55 types of crop were included in the study, with an emphasis on four commonly 

planted crops: maize, soybean, spring wheat and cotton.  This study found: 

1. Significant change in black-sky surface albedo at all seven channels are found 

between planting, peak growing, and harvest period for maize, soybean, and spring 

wheat. A total of a 70% decrease in 645 nm channel albedo is found for maize and 

soybean from early planting to the peak of the growing season, similar but less significant 

changes on the order of 60% and 30% are also found for spring wheat and cotton 

respectively. Additionally, similar but less significant changes are also found for the blue 

(470 nm) and green (555nm) channels.    

2. For 1640 and 2140nm spectral channels, although the overall black-sky albedo 

is much higher compared with the visible channels, lower albedo values are also observed 

at the peak growing period, with a ~0.1 lower albedo found for the planting season for 

all four types of crops.  The opposite pattern, however, is found for the 860 nm channels, 

with the peak surface albedo found during the peak growing season with a ~0.2 albedo 

rise, compared to the planting season for maize, soybean, and spring wheat.  A similar 

pattern, albeit weak in magnitude is found for cotton fields. Also note that the white-sky 

albedo behavior is nearly indistinguishable to the black sky albedo and therefore are not 

mentioned hereafter. 

3. An interesting pattern is found for the 1240 nm spectrum channel, with lower 

black-sky albedo values found for the planting seasons and higher black-sky albedo 

values found in both peak growing and harvesting seasons for maize, soybean, and spring 

wheat.  The reason for this observed pattern is not known, but may be due to the closeness 
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of the soil/plant reflectivity coupled with the sensitivity to shallow surface water 

conditions at this channel. 

4. In the broadband shortwave, both crop type and growth cycle were found to 

affect the overall black-sky albedo, varying by 40% relative (0.04 absolute) to the black-

sky albedo at planting for maize, soybeans, and spring wheat, with cotton black-sky 

albedo changing only slightly, 25% relative (0.02 absolute).  The significant variation in 

broadband albedo should be taken into consideration in climate applications over 

croplands in future studies. 

5. We also found that NDVI may not be a good proxy for simulating cropland 

albedo changes during the growing cycle, as the R2 values range from 0.2 to 0.75 between 

NDVI and black-sky surface albedo, for the seven spectral channels used in this study; 

including the key 555nm channel which has an R2 value of approximately 0.4. 

Lastly, the goal of the study is to construct a cropland surface albedo database relating 

plant type, hardiness zone, and day of year to expected surface albedo using averages of 

nationwide, single-crop MODIS BRDF values over a four-year period (2015-2018) for a 

total of 55 crop types. This database provides the means to calculate appropriate albedo 

parameters for albedo sensitive applications, such as long-term weather modeling, for the 

included cropland variations within the United States. The database includes the mean, 

standard deviation, and pixel counts for matching crop, location, and time conditions for 

both white- and black-sky albedo allowing for a broad use of the data across multiple 

types of studies. For example, linking the resulting albedo parameters to economic 

modelling of crop acreage response functions could allow estimation of currently 
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unquantified surface albedo and regional climate effects of US agricultural and trade 

policies that affect farmers’ choice of crops via the price mechanism. The database is 

attached as a supplement for this study for potential remote sensing, weather, and climate 

applications that require accurate quantification of lower boundary conditions.   
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

 In this thesis two different studies were conducted, centered on crop land and 

agricultural related efforts, for studying the impacts of economics factors on 

agricultural activities as well as the changes in narrowband and broad band albedo 

over the crop land during the plant growing period that could impact a variety of 

applications in remote sensing and atmospheric modeling.   

 Through the two-way coupling of an economics model with the ALMANAC 

crop simulation model we found the prairie pothole region of North Dakota could be 

simulated under multiple economics scenarios.  This is a one of its kind proof-of 

concept study that aims for accounting for economic factors in crop simulations.  This 

study suggests that it is feasible to incorporate economics factors in crop simulations 

to account for economical-induced land use change due to crop rotation and enabled 

the exploration of policies, such as grassland incentives, and market influences, such 

as crop price surges, at a fine scale over a large area.  

 Additionally, crop land albedo varies significantly during the plant growing 

period that can impact applications over crop land regions that using crop land 

surface albedo as one of the low boundary conditions, such as remote sensing and 

aerosol modeling applications.  Through the evaluation of the MODIS BRDF product 

collocated with the CDL, we constructed a database of both channel and broadband 

albedo values found separated into individual crops, HZs, and day of year. This 
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database will allow future studies and models to incorporate specific crop albedos 

throughout the growing season with a minimal impact to computational resources. 
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