
University of North Dakota

UND Scholarly Commons

Theses and Dissertations Theses, Dissertations, and Senior Projects

January 2018

Implementation Of Computational Resources
Focusing On Forecast Model Access For
Universities
Timothy Wayne See Jr

Follow this and additional works at: https://commons.und.edu/theses

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been

accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact

zeineb.yousif@library.und.edu.

Recommended Citation
See Jr, Timothy Wayne, "Implementation Of Computational Resources Focusing On Forecast Model Access For Universities" (2018).
Theses and Dissertations. 2340.
https://commons.und.edu/theses/2340

https://commons.und.edu?utm_source=commons.und.edu%2Ftheses%2F2340&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2340&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/etds?utm_source=commons.und.edu%2Ftheses%2F2340&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2340&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/2340?utm_source=commons.und.edu%2Ftheses%2F2340&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:zeineb.yousif@library.und.edu

IMPLEMENTATION OF COMPUTATIONAL RESOURCES
FOCUSING ON FORECAST MODEL ACCESS FOR

UNIVERSITIES

by

Timothy W See Jr.
Bachelor of Science, Millersville University of Pennsylvania, 2014

A Thesis

Submitted to the Graduate Faculty

of the

University of North Dakota

in partial fulfillment of the requirements

for the degree of

Master of Science

Grand Forks, North Dakota
May
2018

Copyright 2018 Timothy W See Jr.

ii

This thesis, submitted by Timothy W See Jr. in partial fulfillment of the
requirements for the Degree of Master of Science from the University of North
Dakota, has been read by the Faculty Advisory Committee under whom the work
has been done and is hereby approved.

Gretchen Mullendore

Aaron Kennedy

Joshua Hacker

This thesis is being submitted by the appointed advisory committee as
having met all of the requirements of the School of Graduate Studies at the
University of North Dakota and is hereby approved.

Grant McGimpsey
Dean of the School of Graduate Studies

April 5th 2018

iii

PERMISSION

Title Implementation of Computational Resources Focusing on
Forecast Model Access for Universities

Department Atmospheric Sciences

Degree Master of Science

In presenting this thesis in partial fulfillment of the requirements for a
graduate degree from the University of North Dakota, I agree that the library of
this University shall make it freely available for inspection. I further agree that
permission for extensive copying for scholarly purposes may be granted by the
professor who supervised my thesis work or, in her absence, by the Chairperson of
the department or the dean of the School of Graduate Studies. It is understood that
any copying or publication or other use of this thesis or part thereof for financial
gain shall not be allowed without my written permission. It is also understood that
due recognition shall be given to me and to the University of North Dakota in any
scholarly use which may be made of any material in my thesis.

Timothy W See Jr.
April 5th, 2018

iv

Table of Contents

List of Figures . vii

List of Tables . viii

Acknowledgments . ix

Abstract . x

Chapter

1 Introduction . 1

2 Tools . 5
2.1 Weather Research and Forecasting (WRF) model 5
2.2 Docker . 6

2.2.1 Docker Images . 6
2.2.2 Docker Containers 9
2.2.3 DockerHub . 10

2.3 Cloud Computing . 11

3 Classroom Usage of WRF in a Box 14
3.0.1 WRF in a Box . 15

3.1 AWS Instance . 19
3.1.1 Assignment Cost Analysis 20
3.1.2 Technical Challenges 25

4 Student Usage Analysis . 27
4.1 Classroom Module Overview 27
4.2 Learning Outcomes and Goals 29
4.3 Pre-and-Post Assessment Analysis 31

5 Economic, Policy, and Privacy Considerations 35
5.1 Computational Scenario . 36

5.1.1 Cloud Computing Infrastructure 36

v

5.1.2 Low Budget Lab 37
5.1.3 University Funded Lab 38
5.1.4 Infrastructure Comparison 39

5.2 Economics of Computational Infrastructures 40
5.2.1 Cloud Computing Infrastructure 42
5.2.2 University Funded Facility 43
5.2.3 Low Budget Lab 44
5.2.4 Economic Analysis Summary 45

5.3 Policy Considerations . 46
5.4 Privacy Consideration . 47

5.4.1 Docker Local Installation 47
5.4.2 Docker Cloud Computing Installation 48
5.4.3 Summary . 50

6 Conclusion . 52

References . 57

Appendix A Contains all module documents 61

Appendix B Contains interview transcripts 83

vi

List of Figures

Figure Page

1 Library dependency output for the wrf.exe executable, showing all neces-
sary libraries and binaries needed for the script to successfully run. . . . 8

2 An example of the DockerFile responsible for creating the wrf input files
container for the main WRF program to access. 9

3 Schematic showing the interconnectivity of local computers, containers,
DockerHub, and other computers. 10

4 A listing of the containers on DockerHub that were associated with the
classroom implementation during the Fall 2016 Semester. 11

5 WRF model domain, 40km grid spacing, over North Dakota. 16

6 A chart from Amazon Web Services depicting pricing per computational
instance regarding computing power. 21

7 Graph of cost per day of total EC2 (blue) and EBS (orange) usage, in-
cluding all student generated instances. Y axis is cost in USD, X axis
is the date in MM/DD/YYYY format. The red box highlights the large
instance uptime charges due to poor instance monitoring. 24

vii

List of Tables

Table Page

1 Full listing of the parameterizations associated with the WRF model run. 17

2 A list of the ensemble members generated within the classroom. The
differences from the control run are highlighted in red and similarities are
highlighted in green. 18

3 A comparison of pre and post assessment averages for the class through
the implementation of the WRF in a box module. Confidence ranked from
1 being least confident to 4 being most confident. 32

4 Computational comparison of each computing scenario, comparing CPUs,
cores, computations per second, disk space, RAM, total compute power,
and cost. 39

5 Cost analysis for each lab environment with and without cloud computing
use for per class comparison. 42

6 Subjective rankings for computing scenarios for policy compliance, eco-
nomic impact, security and overall categories. 1 being the best and 4
being the worst. 50

viii

ACKNOWLEDGMENTS

I would like to awknolwedge my committee members, family, and friends for

supporting me through my studies at the University of North Dakota. Without

their support and guidance this research wouldn’t have been possible.

ix

I would like to dedicate this research to my family. Their belief in my studies, while
rarely understanding ’what’ I do, helped to ensure my progress forward. I also

would like to dedicate this work to Leon Osborne. Leon offered drastically different
opinions and points of view from other committee members. This required me to

think outside my comfort zone and apply my research to more real world
applications. Thank you for your constant questioning, Leon.

ABSTRACT

This research combines recent technological advances (i.e. Docker software

containers, and cloud computing) in conjunction with the WRF model to create a

portable NWP educational module. Incorporating the educational module into a

senior level numerical methods course at the University of North Dakota allowed

for analysis of the economic, policy, and privacy issues associated with using new

software/tools. It also allowed for documentation of the benefits of tool usage within

the classroom, both positive and negative. Use of these new tools also allowed for

greater computational power to be accessed within the university computer labs.

While the university labs were fully capable of running this module, Docker was

unable to be installed due to security concerns. Through usage of Amazon Web

Services cloud computing platform, the security issues associated with Docker were

mitigated. Compliance of policy with the University of North Dakota was no issue,

due to their policy not restricting the usage of cloud computing within the educational

environment. The economic impact that cloud computing has on the university was

found to be minor and easily reduced with proper AWS instance monitoring and use

of the AWS Educate program. Use of these tools within the educational environment

allowed for students to be exposed to hands on usage of NWP models and emerging

tools. While these tools are associated with an increase in cost for the university, that

cost is minimal in comparison to the workforce preparedness that can be generated

from tool exposure. Due to the benefit associated with exposure to these tools,

the recommendation of this work is to use the module within a cloud computing

x

environment, such as AWS, to help better equip students for their careers following

graduation.

xi

CHAPTER 1

INTRODUCTION

Breakthroughs in numerical weather predictions (NWP) often revolve around tech-

nology. Some recent technological advances include emerging tools such as software

containers and cloud computing. These emerging tools are most frequently being

used within the private sector, government funding agencies, and universities. The

Big Weather Web (BWW), as part of a National Science Foundation grant, is inves-

tigating the use of these new emerging computational tools. The BWW is creating a

sustainable big data infrastructure for university members of the NWP community.

Discovering the benefits and limitations of cloud computing in an educational setting

is the primary goal of the University of North Dakotas inclusion in the BWW.

The exposure to emerging tools is beneficial to a students future career. Pri-

vate sector companies, such as The Weather Company, have shifted from traditional

computing to a more cloud based operation (AWS 2017), and are therefore looking for

graduates with cloud computing skills on their resumes. Additionally, as the author

learned at a 2017 workshop on atmospheric modeling in the cloud, funding agencies,

such as the NSF, are looking to more frequently fund proposals that prioritize a cloud

computing research aspect. Educational institutions are also utilizing the cloud; In-

diana University has created a cloud computing server know as Jetstream through

NSF funding. (Indiana University 2016) While exposure to these new tools is clearly

beneficial, the process of how best to integrate these tools into the curriculum remains

uninvestigated.

1

The research conducted in this thesis focuses on the combination of Docker

software containers, a NWP model, and cloud computing to create a portable NWP

model for classroom use. After successful creation of a portable NWP model environ-

ment, it was incorporated into a senior-level numerical methods course, ATSC 405,

at the University of North Dakota. The course allowed for testing of the workflow

advantages and disadvantages of the portable NWP model, through hands on student

use. Students were introduced to the new tools and computing environments, which

included: Docker container software, the Weather Research and Forecasting (WRF)

NWP model (Skamarock et al. 2008), and cloud computing through both lecture

materials and a hands-on homework assignment. The WRF is the community stan-

dard mesoscale numerical model for the atmosphere, and represented state-of-the-art

NWP.

In addition to the student experience, one must also consider additional con-

cerns of importance to the university. One such concern is the cost . Costs include, but

are not limited to hardware purchases, IT personnel, and cloud computing charges.

A detailed breakdown of the cost comparison of local versus cloud computing use is

conducted to highlight the strengths and weaknesses of both scenarios. Further, the

local use of cloud computing and software containers is compared through different

university funding scenarios, such as a lab with high funding compared with low or

no funding.

Another area of concern is security. Implementing new software into a lab

environment must be secure for all computers associated with the network. Interviews

with the local IT support are presented to explain their views on introducing these

products in the university computer labs. For example, security concerns regarding

Docker were discussed when first considering local installation. These concerns, and

2

their possible solutions, are discussed in depth to ensure that multiple usage pathways

are possible.

Along with the security considerations, installation and use of new tools must

abide by policies set by the institution. Interviews with personnel associated with

various levels of the North Dakota University Systems group were conducted. These

interviews are discussed in the context of possible policy compliance concerns associ-

ated with new technology use.

While the testing of this process is done locally at the University of North

Dakota, this education module can be applied to other institutions. Universities

with atmospheric sciences degrees do not necessarily offer undergraduate classes in

NWP. Of the 8 BWW university members 6 of them have undergraduate degrees

in atmospheric sciences or meteorology. Of those 6 universities, 2 require a NWP

course to graduate, 2 offer it as an elective, and 2 do not offer it at all. Some possible

reasons for not offering the course are that the staff does not have the ability to teach

the course, the course does not fit within the curriculum, or the department lacks

equipment to successfully teach the course. The education module has the potential

to increase the number of NWP classes offered across undergraduate programs. The

module may also be used to augment current NWP classes by adding a hands-on

model investigation portion to the class.

The hypothesis behind this project is that combining cloud computing and

software containers enables educational institutions, with outdated computational

infrastructure and or the lack of Linux systems admin support, to affordably access

NWP models in the classroom for the benefit of NWP education. This research is

anticipated to increase the availability of NWP models for education, combine emerg-

ing tools to create a portable NWP model, and discover the benefits and limitations

of applying the emerging tools within an educational setting. First, the tools used

3

within the research are presented. Then in Chapter 3 the classroom implementation

process is reviewed. Chapter 4 presents the outcomes of the classroom implementa-

tion process. Economic, privacy, and policy considerations associated with the use

of these tools, in an educational environment are presented in Chapter 5. Lastly,

Chapter 6 presents discussion and comparison between scenarios.

4

CHAPTER 2

TOOLS

This research used new and emerging tools to create a new easy workflow for NWP

model usage. The Weather Research and Forecasting (WRF) model, Docker con-

tainerization software, and the Amazon Web Services cloud computing platform com-

prised the set of tools. WRF is already utilized as an educational tool within the

atmospheric sciences community (University of Albany: Kevin Tyle 2016). However,

the daunting process of setting up WRF locally within a computing infrastructure

can limit student and faculty use. Installation of WRF can be time consuming and

requires a different set of skills than setting up an actual model run. Someone with

little to no experience in setting up and executing numerical models may fail numer-

ous times, spending weeks to month on before success (Hacker Et al. 2016). This

extraneous process may discourage professors, whose time is limited, from learning

how to build a new installation and implementation of the WRF. The combination

of these new and emerging tools can alleviate the process of configuration and com-

pilation and allow professors to use hands on models to their advantage for teaching.

This section briefly introduces each tool and their components utilized in creation of

the portable NWP module.

2.1 Weather Research and Forecasting (WRF) model

WRF is an atmospheric scientist community NWP model (Skamarock Et al. 2008).

The model is maintained at the National Center for Atmospheric Research (NCAR)

5

for the community wide usage for teaching, operations, and research. There are two

differing models available for public download, the WRF Non-hydrostatic Mesoscale

(NMM) model, and the Advanced Research WRF (ARW) model. The WRF ARW

model was selected due to the partnership with NCAR and the ties with the BWW

research project. WRF was paired with Docker container software to allow for WRF

to be easily transferred between computers and operating systems.

2.2 Docker

Containerization software allows for packaging of applications to help with version

control, portability, and reduce limitations due to operating system differences (Docker

2016). Container software is comparable to Virtual Machines (VM); the main dif-

ference is the that containers only contain necessary components of the operating

system (OS), whereas VM’s include a full OS (Docker 2016). Docker is one of many

containerization software packages available for public use. Docker was chosen over

numerous other companies containerization software. Through personal conversa-

tion with Josh Hacker, the selection of Docker was due itsetting the standard in the

software container community when the educational model was being developed. Fur-

thermore, the open source community and extensive documentation available allowed

for relatively easy use of this new software. This enabled the team working to develop

the WRF in a container, hereafter WRF in a box, to access all the necessary infor-

mation regarding creation of this new tool. Creation of WRF in a box was successful

through the use of Dockers images, containers, and online repository DockerHub.

2.2.1 Docker Images

Docker uses ’images’ to create containers. Images are essentially a snapshot in time

of the operating system necessary for an application to execute, along with the appli-

6

cation and any libraries necessary for execution. All libraries and binaries associated

with that specific application must be properly installed and referenced in order for

successful image execution. Referencing wrong library paths, or improperly installing

a library will result in a failed state for the application to execute. Figure 1 shows

an example library dependency for the wrf.exe executable. The command output

shows that in order for WRF to properly execute, there must be roughly 50 libraries

installed. Again, any missing libraries will result in failure to run the necessary ap-

plication.

7

Figure 1: Library dependency output for the wrf.exe executable, showing all necessary
libraries and binaries needed for the script to successfully run.

Creating an image can be done by manually installing everything from the

terminal command line (through pip, yum etc.), or through a ’recipe’ encoded in a

DockerFile. Figure 2 is an example DockerFile used to create a WRF input container

used within the module. This specific DockerFile created a container for a specific

run configuration based on Global Forecasting System (GFS) input data. Line 1

8

of the DockerFile designates the OS platform to build from, which was a generic

CentOS operating system image. CentOS was chosen due to it being a base image

with minimal installations of other unused binaries or libraries. Line 3 simply creates

a directory within the images, and line 4 makes that the current working directory.

Line 6 deposits a tarball within that directory. A tarball compresses and saves many

files into a single compact directory or file structure (Linux Tar 2010). When the

tarball is unpacked the directory is populated with all the necessary files. Line 8

designates this container as a volume called /wrfinput. Designating a container as a

volume allows for it to be mounted to another existing container for referencing of its

content.

DockerFiles give explicit instructions for installation of libraries, creating di-

rectories, and or adding files. DockerFiles were created to generate all of the necessary

images for this project, thus allowing for them to be reproduced using this recipe on

any computer with Docker and internet access.

Figure 2: An example of the DockerFile responsible for creating the wrf input files
container for the main WRF program to access.

2.2.2 Docker Containers

A Docker container is the in-use (i.e. instantiated) version of a Docker image. Images

have all the necessary components to properly execute the desired programs, but an

image is a static representation of those components. Through the terminal command

9

line or a script, one can use the image to create a running version of that static

environment, known as a container. One benefit of using images and containers is

that once a container is started, the environment is unique. Any changes that are

made to the environment can be saved as a version that differs from the original.

Containers can also be stopped and restarted as new from the same image. Any

mistakes that prove to be fatal to the computing environment are of little concern

due to the ability to recreate the same environment effortlessly. As will be discussed

later, this ability proved to be useful within the classroom as students inevitably

made some mistakes in working with the WRF model that were most easily fixed by

starting a new container from the original image.

2.2.3 DockerHub

Docker has its own online repository known as DockerHub. DockerHub offers free

and private storage of Docker containers. Figure 3 shows an example schematic of

how a Docker container can be shared to DockerHub. The image is created on a

local workstation and then pushed to DockerHub. Any computer that has the correct

linkage to the DockerHub repository can then download it. Images can only be

edited by those with proper permissions, but any container that can be accessed can

be manipulated and stored in a personal DockerHub repository as a separate image.

Figure 3: Schematic showing the interconnectivity of local computers, containers,
DockerHub, and other computers.

10

DockerHub enabled easy distribution of the WRF in a box module in the

classroom environment. Note that DockerHub is free to use, but that all repositories

hosted under free access are public. These repositories may be made private through

Docker for an additional cost.

Figure 4 shows an example online repository associated with DockerHub. Users

use simple terminal commands to pull down some of the listed repositories, such as

twsee/atsci405. An example terminal command would be docker pull twsee/atsci405;

this command downloads the image to the users workspace.

Figure 4: A listing of the containers on DockerHub that were associated with the
classroom implementation during the Fall 2016 Semester.

2.3 Cloud Computing

The National Institute of Standards and Technology (NIST) defines cloud computing

as an on-demand network with access to a shared pool of customizable computer

resources that can be promptly distributed and released with minimal personal man-

agement (Mell and Grance 2011). NIST has designated a list of essential characteris-

11

tics, service models, and deployment models that encompass cloud computing. The

essential characteristics are on-demand self-service, broad network access, resource

pooling, rapid elasticity, and measured services. The characteristics that applied to

this research were the on-demand self-service, broad network access, and measured

service. Each student started their own cloud computing instance, needed to have

broad network access through some medium, i.e. the internet, and the measured

service applied to the charges accrued from each hour of usage from each student.

The service models of cloud computing are Infrastructure as a Service (Iaas),

Platform as a Service (Paas), and Software as a Service (SaaS). This research utilized

the IaaS portion of cloud computing through Amazon Web Services (AWS). AWS, like

many other cloud computing providers, offer these services to the public. The IaaS

services allow for the use of a computing environments with complete control over

all aspects within the environment (software installation and OS selection), without

the need to maintain the physical hardware (Mell and Grance 2011). IaaS would be

equivalent to setting up your own computing cluster in the cloud and configuring and

compiling WRF from scratch.

NIST also states that cloud computing has four deployment models. The

models are private, public, hybrid, and community cloud. This research used the

public cloud model. Use of Amazon Web Services is a form of public cloud, which

designates that the public must be able to gain access to the cloud in an on demand

(Mell and Grance 2011).

There are numerous cloud computing providers available for use, such as Ama-

zon, Google, HP, IBM, and Microsoft. AWS was chosen due to its use within the Big

Weather Web project (BWW, http://bigweatherweb.org) that funded this research.

AWS also offered financial support in the form of credits to users that were using

12

its services for educational aspects. AWS Educate allows students and professors to

acquire credits through signing up with an education associated e-mail address.

AWS offers many different cloud capabilities, ranging from application devel-

opment to supercomputing. For this research, the Amazon Elastic Compute Cloud

(EC2) service was used. EC2 uses a web service interface that allows users to con-

figure and maintain complete control over their computing resources (Amazon Web

Services 2017). EC2 allows a user to designate operating system, storage, and com-

puting power within each instance. An instance is analogous to a personal desktop,

where a user can access that desktop via a Secure Shell (SSH) connection. The EC2

service charges per hour for the use of the designated storage, data transfer (based

on data amount transferred), and computational infrastructure selected. Supported

operating systems varies across cloud providers, and AWS offers several versions of

Linux (Ubuntuu, Redhat, etc.) and windows servers dating back to 2003. EC2 offers

a variety of different compute-oriented platforms ranging from general computing to

storage optimized , which are used for large data sets that require sequential read and

write access. (EC2 Storage Optimized Instances 2017) Each platform specializes in a

different area of computing; for this research the general computing platforms were

used.

13

CHAPTER 3

CLASSROOM USAGE OF WRF IN A BOX

With the combination of Docker, WRF, and Amazon Web Services, a NWP system

was available for use within the classroom. The Fall 2016 Numerical Methods (ATSC

405) course at the University of North Dakota was used as a first test case for the

Docker WRF implementation. Students within the classroom had access to their own

lab computer and personally started their own AWS cloud instance. Instructions and

lectures were given to increase student understanding of the software tools and cloud

computing environment.

While the previous chapter presented the software tools in a more general

sense, this chapter will cover the specific methodologies by which these tools (and ad-

ditionally WRF) were implemented by the instructors and then used by the students.

All aspects of the classroom implementation process were documented, including the

creation of the use case for investigation (Docker Images created), WRF configu-

ration, AWS student access, usage cost analysis, and the issues and successes with

implementation.

An assignment was created that required students to change portions of the

WRF control run to create an ensemble forecasting system within the classroom. Stu-

dents ran three separate model implementations for the classroom assignment. One

control model run, a data initialization change, and a parameterization change. This

generated a class model ensemble with 8 members total. Although the assignment is

14

referred to in this chapter, a more detailed overview of the entire classroom module

and assessment of student learning, including the homework, is given in Chapter 4.

3.0.1 WRF in a Box

Separate Docker containers were created for the WRF model, GFS input data, GEFS

input data, and the NCAR Command Language (NCL) post processing portions of

the module (see https://hub.docker.com/u/twsee/). As stated in the previous

chapter, Docker containers are running versions of images, which were generated for

this research through the use of DockerFiles.

Besides the ease of use discussed in Chapter 2, Docker containers also guaran-

tee that model output is reproducible (Hacker et al. 2016). Containerization allows

for WRF to be used within different operating systems and hardware configurations

and produce bit by bit replicable output. Reproducibility is advantageous for re-

search, but also advantageous for education, as the instructors can know a priori the

model output, and not worry differences in results that may arise from computational

differences such as round-off error or compiler re-ordering of instructions. Having the

same reproducible output generated for each student allows for the assignment to

focus more on the differences generated from other sources of uncertainty, e.g., pa-

rameterizations and initial conditions.

WRF in a box was developed at NCAR, but this study was one of the first

use cases and led to a lot of feedback to the NCAR team during the development

stages, an overview of the process is given here. The containerized WRF used for

this classroom integration differs from the current containerized WRF available from

NCAR (https://github.com/NCAR/container-wrf) as it is slightly less automated

in order to give the students a more hands-on experience.

15

WRF v3.7.1 was pre-configured to simulation a historical event at the Univer-

sity of North Dakota on a Linux-based research computer. The use case for the model

run was a tornadic supercell occurring in North Dakota, on August 3rd 2016. The

model domain uses a Lambert conformal projection (figure 5) with 40-km horizontal

grid spacing. The model runs begin August 2nd 00 UTC and end August 5th 12

UTC (i.e., an 84-hour simulation).

Figure 5: WRF model domain, 40km grid spacing, over North Dakota.

Table 1 shows the associated parameterizations used within the control model

run. The selected parameterizations for the WRF control run match the control

run used in the BWW project (e.g., http://schumacher.atmos.colostate.edu/

weather/csuwrf_info_bww.php). The Assigned Changes column shows the param-

eterization and initialization changes used by the students for the assignment. The

modifications to the control run are some of the same modifications chosen to create

16

Table 1: Full listing of the parameterizations associated with the WRF model run.

Parameterization Control Run Assigned Changes
GFS Input Data GEFS Input Data

Microphysics Thompson WRF Single Moment
Cumulus Kain-Fritsch Grell-Devenyi Scheme
Radiation RRTMG Short and Long
Boundary Layer Mellor-Yamada-Janjic Yonsei University Scheme
Land Surface Unified Noah Land Surface
Surface Layer Eta Similarity Scheme

the much larger BWW ensemble. Parameterization changes were executed within the

Docker containers through VIM text editing of the WRF namelist file.

Two separate input data sets were used within the classroom implementation.

The Global Forecasting System (GFS) and a single member of the Global Ensemble

Forecasting System (GEFS) were used as initial conditions to generate differences

within model runs. The GFS and GEFS initialization data are both half-degree spac-

ing and are produced by the National Center for Environmental Prediction (NCEP).

Both of these input data sets were placed in separate Docker containers. These data

containers were labeled as volumes, which allowed for mounting onto other existing

containers for interaction. This allowed the students to change the initialization data

to be pulled into the WRF container. The initialization data (both GFS and GEFS)

are used in creation of the BWW ensemble. Note that the GEFS is operationally

archived by NCEP at a degraded resolution, but the half-degree data for this case

was available through the BWW archive.

Table 2 lists each ensemble member generated by the students. Together the

class generated a total of 8 ensemble members. Red cells highlight the parameteriza-

tion change and/or initialization changes assigned to different groups of students.

The final container created for WRF in a box was the NCAR Command Lan-

guage (NCL) post-processing container. The NCL software was already being used

17

Table 2: A list of the ensemble members generated within the classroom. The differ-
ences from the control run are highlighted in red and similarities are highlighted in
green.

Member
Number

Initialization
Data

Microphsics Cumulus Boundary Layer

Control GFS
Thompson
Scheme

Kain-Fritsch
Scheme

Mellor-Yamada-Janjic

2 GFS
Thompson
Scheme

Kain-Fritsch
Scheme

Yonsei University
Scheme

3 GFS
Thompson
Scheme

Grell-Devenyi
Scheme

Mellor-Yamada-Janjic

4 GFS
WRF
Single-Moment

Kain-Fritsch
Scheme

Mellor-Yamada-Janjic

5 GEFS
Thompson
Scheme

Kain-Fritsch
Scheme

Mellor-Yamada-Janjic

6 GEFS
Thompson
Scheme

Kain-Fritsch
Scheme

Yonsei University
Scheme

7 GEFS
Thompson
Scheme

Grell-Devenyi
Scheme

Mellor-Yamada-Janjic

8 GEFS
WRF
Single-Moment

Kain-Fritsch
Scheme

Mellor-Yamada-Janjic

by the NCAR team for other WRF in a box cases and was therefore a logical starting

point for implementation at UND. The post-processing container is a separate con-

tainer that references output files from the main Docker WRF container. Five scripts

are in the container, four of which generated output plots for each model output file

and one that ran all of the scripts in succession. The students used these plots to

investigate and reflect on the model results.

A negative aspect of choosing NCL for the post-processing container is that

NCL is not taught in the current undergraduate curriculum at UND (students are

primarily exposed to C and Python), so students were unlikely to adapt the post-

processing scripts to address their own questions. However, the suite of plots pro-

vided was sufficient for this implementation, and containerized applications allows

18

post-processing codes written in other languages to be easily added in future imple-

mentations.

3.1 AWS Instance

To access AWS, one can either make a personal account or use a central account, such

as a professor account, with generated usernames and passwords for whoever needs

access. While creating a personal account can be beneficial for future use, it requires

the input of credit card information. To reduce the amount of information required for

a student to gain access to AWS, a central account with multiple users was established

for the classroom implementation. Dr. Gretchen Mullendore created a master account

and separate accounts for each of the students within the classroom. After successful

creation of the classroom usernames and passwords students were given a tutorial,

located within appendix A Instructions for launching AWS instance, installing Docker,

and running Docker WRF, providing step-by-step details for instance set up.

A local computer lab was used to access AWS and utilize Docker in the cloud.

The local computational infrastructure used for this project was a university funded

lab located in the John D. Odegard School of Aerospace Sciences at UND. The lab

computers were unable to have Docker installed due to initial security concerns (see

Chapter 5). Docker could then be utilized on AWS without any local security con-

cerns. While this added another layer of difficulty to accessing the workspace, it

allowed access to greater computational power and provided easier access for stu-

dents who might chose to work remotely using their laptops.

AWS offers tiered computing capability and capacity, and the computing in-

stance selected from AWS EC2 was the t2.large. It provided sufficient computing

power at a cost that was reasonable for classroom use. The t2.large instance is ideal

for processes that usually have a large amount of downtime and then occasionally need

19

a high amount of computing power in small bursts (Amazon Web Services 2017). The

forecast model configuration used for this project was relatively computationally in-

expensive; the model run completes on a university funded local lab workstation in

roughly 20 minutes . However, should a future model simulation require greater com-

puting power, a different instance may be selected to handle the higher computing

needs. The elasticity of cloud computing allows for numerous model configurations to

be used regardless of their computational needs (e.g., high or low resolution, added

nested grids, global or regional models).

The actual process of signing into and starting an instance can be seen from the

tutorial video located at (http://gretchen.atmos.und.edu/AWS-Instance-Set-Up.

mov). The video demonstrates the steps required to start an AWS EC2 t2. large in-

stance and generate the IP address for subsequent command line access via ssh. This

video includes several changes to the default settings needed by for this class, specifi-

cally changing the instance type from t2.micro to t2.large and increasing the storage

size from 8 GB to 60 GB.

3.1.1 Assignment Cost Analysis

Amazon offers their services based on fees revolving around instance type/uptime, the

storage space used, and data transfer fees. As mentioned previously, instance type is

chosen based upon the type of computing a user desires to complete the work. Figure

6 represents the different instance types associated with the general computing cloud

infrastructure that AWS offers.

20

Figure 6: A chart from Amazon Web Services depicting pricing per computational
instance regarding computing power.

The general purpose compute infrastructure, t2.large, is highlighted in yellow

within figure 6. The t2.large instance charges $0.094 per hour of instance uptime,

which is only charged while an instance is in the running state as shown within the

21

video tutorial. Note that should an increase in compute power be desired, the cost of

the instance per hour uptime would also increase with it.

The use of instances are charged per hour uptime, storage costs increase based

on the number of gigabytes (GB) partitioned for use within an instance. As shown

in the tutorial video, and as noted in Appendix A: Instructions for launching AWS

instance, students were required to change the instance storage configuration from 8

GB to 60 GB. This increases the total cost for each instance. Storage cost is based on

a monthly rate, which can be prorated to hourly. The hourly cost changes based upon

the type of storage selected. (Since the completion of this classroom implementation,

AWS has changed the charging structure to prorate to the second, instead of to the

hour. This change is not reflected in this cost analysis.)

AWS storage types range from low to high traffic and differ between Solid

State Drives (SSD) and Hard Disk Drives. The class assignment used the Elastic

Block Storage (EBS) General Purpose SSD. The use of the EBS General purpose

SSD simply was due to it being the default option for the instance selected. No

comparisons of the EBS volumes were conducted to assess if one performed better

than the other. This was due to the low volume of data generated and the infrequency

at which the data was accessed . The cost calculation for the allotted storage used

with the EBS is

$0.1GB

Month
∗

1Month

30days
∗

1day

24hours
= $0.000139

GB

hour
(3.1)

and is applied to the account until the instance is terminated. The cost per hour

for each instance storage, increased from 8 GB to 60 GB, partitioned increases from

$0.000139 to $0.0083 per hour.

22

Within research of atmospheric sciences, the NWP data output files are large,

and traditionally stored locally. In contrast, the model output generated from the

classroom simulations was kept in the cloud. Students used the post-processing con-

tainer discussed in Section 3.1 to visualize the supercell evolution and then transferred

the images only to their local machine. The visualizations were significantly smaller

data files than the model output, which allowed for a lower magnitude of data trans-

fer, reducing the data egress costs. The resulting data egress costs for this study were

zero. Data egress costs as per Amazon EC2 Pricing is $0.00 per GB when below 1

GB of data per month (AWS EC2 Pricing 2017). Plots created were 100kb in size,

which allows for roughly 1 million of these images to be transferred from AWS to

the local machine before costs start to accrue. The classroom as a whole transferred

much less than the threshold for charges to begin.

In total, the project tested thirteen students simultaneously creating instances,

running the models, and transferring data. Figure 7 shows cost per day during in-

stance use (blue) and storage costs (orange). Billing for EC2 instances only starts

when an instance is in the running state (AmazonWeb Services FAQs 2016). However,

for EBS charges it occurs from the moment the instance is created until termination.

In other words, while an instance is stopped there are no hourly instance EC2 charges,

but the EBS charges continue. These charges continue to accrue until the instance is

terminated (i.e., stopped instances can be started back up for use, but termination

wipes them from AWS). Diligent management of instance uptime is crucial to utiliz-

ing the economic advantages of Amazon Web Services as an on-demand computing

environment.

23

Figure 7: Graph of cost per day of total EC2 (blue) and EBS (orange) usage, in-
cluding all student generated instances. Y axis is cost in USD, X axis is the date in
MM/DD/YYYY format. The red box highlights the large instance uptime charges
due to poor instance monitoring.

Most of the days within figure 7 show a low cost per daily use of instance

uptime (EC2 costs; blue columns), except for two. November 28th-29th were the

days spent introducing cloud computing and Docker. November 28th was the day all

instances were created. The class simply created their instance and then connected to

them. While the instances were not used after the initial connection, they remained

running due to instructor failure to relay the importance of stopping instances after

the end of its use. This inflated cost of November 28th-29th is due to the instances

running for roughly 36 hours without changing the instance state from running to

stopped.

Even with these inflated costs, total cost for AWS integration into the class-

room was only $70.98, with the cost per student being $5.46. Future implementations

24

could easily lower total costs by approximately $20 just by using better instance mon-

itoring. Additionally, the storage allocated for each instance was 60 GB, which in

retrospect is larger than the necessary storage for each instance; possible reductions

in storage are discussed further in Chapter 5. Proper monitoring of the instances

uptime and more appropriate storage allocation size would help to significantly lower

the costs of this assignment.

3.1.2 Technical Challenges

As with any implementation of new teaching material and/or new software, issues are

certain to be encountered. This section looks at the several specific technical chal-

lenges encountered during implementation. Assessment of specific learning outcomes

of this module will be discussed within the next chapter.

During instance set up, numerous students had issues connecting to the AWS

instances after creation. After some research of the issue, it was found to be related

to the AWS security groups associated with the instances. During the creation of

each instance, a new security group was created to be referenced for that instance.

Students were simultaneously creating their instances. Should a student start cre-

ating an instance at the same time as another, it is possible that a single security

group could be referenced for multiple instances (particularly as they were all under

the same instructor account). This restricted the remainder of classroom time to

troubleshooting each of the students instances, rather than introducing them to the

new environment and installing Docker. An easy correction was documented so that

this should not be an issue for future implementations. By naming the security group

of each instance a unique name upon creation of the instance this can reduce the

amount of security group overlap when creating instances.

25

The lack of structured introduction to Docker proved to be detrimental to the

students for the remainder of the assignment. The introduction of Docker showed

students how to pull images, start containers from images, start and stop containers,

and properly remove images and containers. The syntax that was expected to be

taught, seen in Appendix A: Docker Introduction and Syntax Tutorial, was necessary

for successful completion of the assignment. While step-by-step instructions were

given to the students, a mistyped word could break an instruction requiring them to

use Docker commands to restart. Without the initial introduction to Docker syntax

the students needed extra help for mistakes relating to Docker.

Another unanticipated hurdle was the lack of students experience in command-

line text editing. While programming is taught within the curriculum at UND, many

students choose to use graphical editors such as gedit and gvim to do their text

editing. However, for the software setup used in this module, students could only

use command line editing to change text files in the Docker containers. For example,

most of the students needed instructor help to edit the namelist.input file within the

WRF model. The Virtual Improved (vim) editor was used in this class, and vim has

a steep initial learning curve. More instruction is needed on vim to reduce student

frustration in future implementations.

26

CHAPTER 4

STUDENT USAGE ANALYSIS

This chapter assesses the learning goals and outcomes and the student experience of

this module. Many of the details of the classroom module were already introduced

in Chapter 3; here is presented a brief overview but with added information on how

the module fit into the class schedule and the overall undergraduate curriculum.

The assessments presented were gathered using various methods including, surveys,

homework questions, and instructor observation.

4.1 Classroom Module Overview

The module was incorporated into an the upper level, required, ATSC 405 course

at UND in the Fall 2016 semester. The course was designed to introduce numeri-

cal methods and their purposes, focusing on numerical problems encountered in the

Atmospheric Sciences field. This includes, but is not limited to, how models handle

data, model uncertainty, parameterizations, and ensemble forecasting. Pre-requisites

for this course were Introduction to Scientific Programming (CSCI 130) and Com-

puter Concepts in Meteorology (ATSC 270). Introduction to Scientific Programming

is a computer science course that introduces problem solving, algorithm development,

and structure programming using C with an engineering and mathematical focus.

Computer Concepts in Meteorology introduces students to programming knowledge

needed for manipulating observational and model data in earth sciences (using C,

bash, and Python). This includes data visualization, Linux and shell scripting, ad-

27

vanced file I/O, and memory management. These classes allowed students to utilize

Linux environments and some of its tools, such as SSH, to complete the assignment.

Having knowledge of a general Linux environment and the use of terminal command

line was pertinent to completion of the tasks set for the students. Hence, this partic-

ular course was chosen for module testing because the material was a good fit with

the existing course learning objectives and the prerequisites ensured a basic level of

understanding of the Linux environment.

Two weeks of the sixteen-week class were designated to the classroom module:

introduction of Docker, WRF and AWS, one homework assignment, and a classroom

discussion. The homework assignment required completion of tasks related to Docker

and WRF through the use of AWS. This assignment was used to tie together the use of

models, and the associated theory taught in previous weeks. As discussed in Chapter

3, the assignment required students to complete NWP model runs, create output

plots, and compare the results. The three tasks for completion were completing the

control run, changing the initialization data from GFS to GEFS, and changing a single

parameterization. The parameterization change required that the students navigate

to the proper directory, provided within the instructions, and replace a value within

the namelist.input document. The initialization data change, from GFS to GEFS,

was completed through referencing of a separate Docker image that encompassed

the associated input data. All of the simulations were completed within the AWS

environment.

After completion of all model runs students transferred the output plots, gen-

erated within a bash script provided for them, to the local desktop. To assess comple-

tion of the simulations and the student experience, students submitted the following

items for grading: designated model output plots, feedback regarding ease of use

of the module, and a report comparing model outputs to radar observations of the

28

event. The comparison of model output to radar (and to different model realizations)

built upon the causes of model uncertainty learned about previously in the course.

The assignment required that students recognize the differences generated from each

model setup and apply their knowledge from previous years of classes to understand

how the model output responded to changes in parameterizations and initialization

(e.g., relating fundamental knowledge of physical meteorology to estimates made in

the microphysical parameterizations).

4.2 Learning Outcomes and Goals

Learning objectives of this assignment were to 1) gain knowledge of cloud computing

and container software, 2) know how to run a forecast model, and 3) understand

model uncertainty. Our expectation was that all three of these learning objectives

would benefit from the hands-on nature of the module.

One of the ways the first learning objective was assessed was via a short essay

question on the final exam:

The Weather Research and Forecasting (WRF) model was run in class by

using software containers (Docker). Explain a minimum of two advantages

of using containerized WRF over running WRF outside of a container.

This question was not answered properly by most students. Many were unable to

decipher the differences between Docker and cloud computing. Through instructor

discussion and observation, it was clear that many students struggled to differentiate

between cloud computing and container software. Equating the Docker software with

the AWS instance was common among students. Ultimately, students did not under-

stand why the container software was involved in the exercise. While the students

were exposed to these new tools, the learning objective of understanding their usage

29

and differences failed to be met. In future iterations of this educational module, it

should be restructured to establish a distinct difference between the tools being used.

This should allow for a better overall understanding by the students.

As all students completed the assignment, the second learning objective, ability

to run a forecast model, was met. Having the ability to run a NWPmodel and interact

with its components is greatly beneficial to students (e.g., seeing what is included in

the input and output components cements learning more strongly than just hearing

about the processes in a lecture). Additionally, having knowledge of running a NWP

model is useful for multiple careers and also for graduate school. Several students

stated that having experience with WRF prior to going to graduate school was one

positive aspect taken away from this assignment. Running the model is not indicative

of complete knowledge of the processes behind it, but it does help to lessen the learning

curve associated with models should they be exposed to it in the future. The use of

this module removes a lot of extensive tasks that need to take place prior to running

the model. Data collection, configuration, and compilation are a few steps that can

require weeks or months of work to set up based upon a users knowledge level of the

processes.

The final learning objective was to gain an understanding of model uncer-

tainty. Students spent the previous weeks in the class learning about the theories

behind NWP. This class in previous years only used a 1-D model to investigate nu-

merical instability. However, with the addition of this new assignment, students were

also able to apply their knowledge of parameterization and initialization errors by

manipulating the model configuration and analyzing the output. Through generating

multiple model outputs and analyzing the differences, students were able to identify

the changes associated with each of the models. This enabled them to analyze that a

30

change in a microphysical parameterization has effects on other processes rather than

just microphysics.

Every change within the model has broad impacts, related to more than just

that specific part of the model. The differences may be widespread, some minute in

magnitude and others much more drastic. Students recognized the differences gen-

erated within the model outputs within their analysis and comparison section of the

homework assignment. Most, if not all students, alluded to the fact that every single

measured quantity that had plots generated for it changed to some degree within the

model output. Their discussion sections of the homework showed that they did in

fact recognize the differences generated within each of the model outputs. Analyzing

and deciphering the differences generated from changes allows for uncertainty to be

understood through hands-on analysis rather than theory.

4.3 Pre-and-Post Assessment Analysis

A pre-and post self-assessment questionnaire was given to the students to help quan-

tify the success of this classroom module. Table 3 shows the full survey and the

pre-and post average scores for the class. The pre-assessment was written before the

module itself was finalized and taken by students at the beginning of the semester.

Giving the assessment at the beginning of the semester most likely resulted in a lot

of the increase in confidence for the students. The materials taught leading up to the

module covered much of the content asked about within the survey.

Several of the questions were asked as control questions to ensure that a true

self-assessment was conducted on the students behalf. Questions 1 and 3 were asked

strictly to demonstrate that their numbers should not increase. Question 1, Your

ability to configure and compile a forecast model on a computer from beginning to

end, was not demonstrated or taught by any means. Question 3, Ability to locate and

31

Table 3: A comparison of pre and post assessment averages for the class through the
implementation of the WRF in a box module. Confidence ranked from 1 being least
confident to 4 being most confident.

Fall 2016
Pre Post

1) Your ability to configure and compile a forecast model on
a computer from beginning to end.

1.2 3.0

2) Confidence to explain why models arent perfect to the
general public.

2.9 3.9

3) Ability to locate and download necessary model input
data.

2.2 3.0

4) Confidence to explain what contributes to model error. 2.3 3.6
5) Manipulate a forecast models configuration to change
parameterizations utilized.

1.2 2.9

6) Manipulate a forecast model to use different input data. 1.3 3.3
7) You have a high level of understanding of instrument error. 2.6 3.4
8) You have a high level of understanding of model
truncation error.

1.3 3.1

9) You have a high level of understanding of model
parameterizations.

1.3 3.1

10) You have a high level of understanding of a staggered
grid and its benefits within models.

1.2 2.6

11) You have a high level of understanding of ensemble
forecasting.

2.2 3.7

12) Confidence to interpret ensemble forecast products. 2.3 3.8
13) Ability to explain ensemble forecasting benefits. 2.5 3.6

32

download necessary model input data, was also not covered in the lessons. Prepared

input data was given to the students. The increase of confidence for students for these

two portions of the assessment should not have occurred. As discussed in Hacker et al.

(2016), compilation and configuration is extraneous to actual model understanding,

and is a task that may take weeks to months to perform.

The increase in confidence level indicates an inflated self-assessment. A study

by Dunning (2004) states that self-assessments are flawed because people overestimate

themselves, holding inflated views of their expertise, skill and character. This can,

in part, be attributed to the vast increase of the average in Questions 1 and 3 for

the pre-and post assessment comparison. It is likely that students also do not yet

understand the process of compilation or input data gathering. Students lack of

insight to the configuration, compilation, and gathering of input data processes likely

can be attributed to the large increase in confidence.

Questions 2 and 4 show that students increased their ability to explain model

uncertainty to the public and their understanding of model uncertainty. While the

increase in confidence is not surprising, it is unclear whether the increase is due to

the materials taught over the course of the semester or from the model portion of

the homework. Questions 5 and 6 show an increase in confidence to manipulate pa-

rameterizations and input data. While students did complete the tasks within the

assignment, this is with a specific set of instructions for a unique task. Their confi-

dence lies within this WRF in a box model, and not within other forecasting models.

The increase is realistic but potentially misplaced in terms of forecast models as a

whole. Questions 12 and 13 are associated with the model output generated from the

assignment. As part of the assignment, students interpreted multiple plots from a

small ensemble forecasting system allowing them to see the differences generated be-

33

tween all model runs. The increases in confidence associated with these two questions

are likely a result of the assignment itself.

Questions 7 through 11 were worded vaguely and offer little insight to the

confidence levels. It is unclear as to what a high level of understanding is, and a

students threshold of high level is likely variable between students. The overall take

away from this assessment is that it was poorly constructed and offers little insight

to the actual outcomes of the assignment in terms of student confidence. Conducting

the assessment immediately before the module, and consulting with an educational

assessment expert, could help create a more useful survey.

34

CHAPTER 5

ECONOMIC, POLICY, AND PRIVACY CONSIDERATIONS

One of the goals of this research is to investigate the broader implications of us-

ing software containers and cloud computing in an academic setting. A university

considering a change from local computing to cloud-based computing needs to con-

sider cost differences, and whether such a change complies with university policies

on computing and privacy. In order to discuss these considerations, three scenar-

ios are presented: cloud computing (use case and the classroom module presented

in this research), a low-budget computer lab such as might be supported within an

individual department or research group, and a university-funded (i.e., well-funded)

computer lab meant for broad use across the university. Each of the computing sce-

narios includes a description of computational infrastructure: hardware, operating

system, and expected length of use/update time. The time between upgrades is a

primary difference between a low-budget lab (8-10 years) and a university-funded

facility (roughly every 3-5 years).

As part of the data collection process for this chapter, interviews1 were con-

ducted with University of North Dakota IT support within the Scientific Computing

Center (SCC), Computational Research Center, and the North Dakota University

System Core Technology Services (NDUS CTS) regarding the economic, policy, and

1Following the interviews the Computer Science department was transferred to the College of

Engineering. Interviewee comments that may reflect the change of department were not gathered

or used in the analysis here.

35

privacy considerations for usage of cloud computing within the classroom. The SCC

provides support to the John D. Odegard School of Aerospace Sciences (JDOSAS), the

Computational Research Center provides high performance computing support to the

University of North Dakota researchers, and the NDUS CTS provides secure informa-

tion management and technology services to the NDUS. Personnel interviewed within

the SCC were Andrew Kuelbs (Lead Client Support), Derek Stinchfield (Systems

Administrator), and John Wold (Information Systems Manager). Aaron Bergstrom

(High Performance Computing Specialist) from the Computational Research Center

and Darin King (Chief Information Officer) of NDUS CTS were also interviewed.

5.1 Computational Scenario

5.1.1 Cloud Computing Infrastructure

Amazon Web Services offers a multitude of computing services. For the classroom

implementation process we utilized only the Amazon Elastic Compute Cloud (EC2).

EC2 provides scalable compute environments that eliminate the need to invest in

hardware upfront (Amazon Web Services 2017). EC2 provides a user with virtual

computing environments known as instances, access to preconfigured operating sys-

tem templates known as Amazon Machine Images (AMIs), various configurations of

CPU, memory, storage, and networking capacity for instances, secure login informa-

tion, storage volumes for temporary data, dynamic cloud computing , metadata, and

virtual private clouds isolated from the rest of AWS cloud (Amazon Web Services

2017).

The specific cloud computing instance used within the classroom was on the

t2.large hardware. The t2.large instance consists of 2 Intel Xeon 2.4 GHz vCPUs

(virtual central processing unit), 8GB RAM, and a variable amount of storage set

36

during creation of the instance (Table 4). T2 is one of several instance choices and it

provides a baseline level of CPU performance. The base operating systems available

for quickly launching an instance are the Amazon Linux AMI, Red Hat Enterprise

Linux 7.3, SUSE Linux Enterprise Server, Ubuntu Server 16.04, and many Windows

server versions.

For this specific classroom use, the Ubuntu Server 16.04 was chosen as the

operating system. The Ubuntu Server 16.04 was chosen because of its low costs

(due to Ubuntu being open source OS) and because the Ubuntu environment was

comparable to the operating system used at the university at that time, Mint OS.

AMIs such as the Ubuntu AMI are updated by AWS as Ubuntu released new OS

versions . Updates to the operating system within a previously created instance must

take place by the user, i.e., when an instance is started, it will remain the same until

the user personally prompts the upgrade. The storage volume size of the instance

used was changed from the default size of 8 GB to 60 GB. This ensured enough

storage was allocated for installation of Docker WRF, the generated output files, and

plots. Finally, security group configuration ensured that only a student with their

unique generated key was able to access their created instance.

5.1.2 Low Budget Lab

At the University of North Dakota, Dr. Leon Osborne leads a computing center known

as the Regional Weather Information Center (RWIC). RWIC is used for student

computing for several classes taught at both the undergraduate and graduate level.

The computing power within RWIC is comprised of completely repurposed machines

from the University of North Dakota Streibel Hall computing lab.

RWIC is a prime example of a low budget computational infrastructure. The

lab consists of 14 Linux machines. The computing power within the lab is variable

37

due to computers being acquired at different times throughout RWICs lifetime, but a

computer representative of the lab has a single Intel Core 2 Duo @ 3.00Ghz CPU, 250

GB storage, and 8 GB RAM. The machines acquired were excessed by the Scientific

Computing Center within the university during an upgrade, and given to the RWIC

center. The machines were converted to the Mint OS to ensure homogeneity through

the department. The periodicity of hardware upgrades within the lab is variable and

relies on the availability of new refurbished equipment.

5.1.3 University Funded Lab

The University of North Dakotas computer science department has numerous com-

puter labs set up for educational use. The specific lab used by the fall 2016 ATSC

405 course contained 36 computers. The lab hardware consisted of Dell Optiplex 990s

with 8GB of RAM, 250GB SATA Hard Drives, and 1 Intel core i5 2500 3.30 GHz

CPU (Table 4). The most recent upgrades to hardware were in February of 2012.

Hardware upgrades are not on a set schedule; they are upgraded when the computer

science department has the money available from the university for upgrading. All

the desktops are standalone machines, so the computational work is done locally. The

lab computers use a shared home directory server hosted in the Scientific Computing

Center as primary storage. All the lab computers used Mint OS. Mint is a free open

source OS that is community driven while also safe and reliable (Linux Mint 2017).

Requests for new software installation, such as Docker, on lab computers can be com-

pleted as early as the same day, or may take up to three days. After new software is

requested, its installation time is dependent upon the amount of investigation that is

necessary to ensure safe incorporation into the network.

38

Table 4: Computational comparison of each computing scenario, comparing CPUs,
cores, computations per second, disk space, RAM, total compute power, and cost.

Computational
Comparison

CPUs Cores
Computations
/Second

Disk
Space

Memory
(RAM)

Total
Compute
Power

Cost

t2.large Instance 2 8 2.40GHz Variable 8GB 38.4GHz 0.094/hr
University Funded 1 4 3.30GHz 250GB 8GB 13.2GHz $986.00
Low Budget 1 2 3.00GHz 250GB 8GB 6GHz $0.00

5.1.4 Infrastructure Comparison

A comparison between the computing infrastructure in each scenario is necessary to

properly assess the impacts of using one scenario over another. To highlight the com-

pute differences, Table 4 compares single machines in the t2.large AWS instance, Uni-

versity Funded lab (the University of North Dakota Streibel Lab), and a low-budget

lab (the University of North Dakota RWIC lab). The table shows the differences be-

tween each scenario in terms of their compute power, storage, RAM, and cost. Disk

space within the cloud is variable and cost increases with storage requirements. Table

4 shows the available raw compute power for each scenario. Note that total compute

power is an upper limit; increases in compute power may not be realized if software

is not optimized properly.

The low-budget lab has the lowest compute power per machine at 6 GHz,

university-funded lab has more than twice as much computing power as low budget

(13.2 GHz), and the cloud computing instance has roughly three times as much

computing power as the university funded lab (38.4 GHz). Note that there are other

various factors and way to determine peak performance. However, due to the inability

to measure in other ways, clock speed (Table 4 Computations/Second) will be our

deterministic value for computer power. For this specific implementation process

the use of cloud computing was not necessary. The university funded lab computers

were more than sufficient to run the Docker simulation. While it was possible to run

39

the simulation, installing and using Docker within the lab environment is prohibited.

More information on Docker local installation is provided later in this chapter. There

is little to no difference in the operating systems associated with any of the scenarios.

However, this may differ for other universities and potentially cause issues due to

differences in syntax between operating systems. For example, use of Docker on a

Windows machine as compared to a Linux machine will require different referencing

file and directory path referencing (i.e. / for Linux and

for Windows).

5.2 Economics of Computational Infrastructures

This section presents a more in-depth assessment of the costs of each computational

scenario summarized above. To generalize these results, we assume a classroom size

of 30 students for all implementations, and each student completing the assignment

within 6 hours of compute time used.

Table 5 shows the costs per classroom breakdown for a university-funded lab

using cloud computing, a low-budget lab using cloud computing, a university-funded

lab (no cloud component), and a low budget lab (no cloud component). The table

includes the costs of IT support, which is assumed to be a quarter year salary of a

full time IT support staff member. This quarter time salary assumption is due to the

fact that IT staff member would not only support the lab computers, but they would

also support the lab servers. It is assumed that the IT staff member is fully engaged

in other university duties the other 9 months of the year (i.e., paid by the university

to conduct other duties).

These scenarios all utilize Linux OS. Linux OS requires specialized system

administrators to configure and maintain hardware, operating systems, and software

(James 2016). James states that skilled and reliable Linux system administrators

40

are hard to find and have a mean salary ($69,380) comparable to that of a tenured

professor (James 2016) . The mean salary within an educational institution is based

off of a 2,080 yearly working, which translates to a $33.35/hr wage. The required

assistance expected from the systems admin is quarter time employee for the duration

of the use (1 month) which totals at $66.71 . The total is calculated with 10 hours

per week (quarter time employee) for 4 weeks and is split amongst the classrooms

associated with the lab for the entire year. For the 2016/2017 school year, the Streibel

Hall 115 lab held approximately 20 classes, so the cost is split up between each of

those classes for systems admins support. Calculation is shown below.

IT Cost =
$33.35

hr
∗

10hrs

week
∗ 4weeks ∗

1

20classes
(5.1)

Calculations for cloud costs are based upon 2 weeks of instance set up by a

professor (assuming 6 hours of instance compute time, and 2 weeks of storage time),

Professor Cost =

(

$0.094

hr
∗ 6hrs

)

+

(

60GB ∗

$0.1GB

month
∗

1month

30days
+ 14days

)

(5.2)

and 2 weeks of student use, with 30 students (assuming 6 hours of instance compute

time with 2 weeks of storage time).

Student Cost =

(

$0.094

hr
∗ 6hr ∗ 30students

)

+ (5.3)

(

60GB ∗

$0.1GB

month
∗

1month

30days
∗ 14days ∗ 30students

)

The Class breakdown shows the amount each class pays to use the computing

resources for one month out of the year.

41

Table 5: Cost analysis for each lab environment with and without cloud computing
use for per class comparison.

Class Breakdown IT Support Hardware Costs Compute Costs Storage Costs Total
University funded using Cloud Computing $ 66.71 $ 24.65 $ 17.48 $ 89.51 $ 198.36
Low budget lab using Cloud Computing $ 66.71 $ 12.33 $ 17.48 $ 89.51 $ 186.03
University funded $ 66.71 $ 24.65 - - $ 91.36
Low budget $ 66.71 $ 12.33 - - $ 79.04
Personal laptops - Personal $ 17.48 $ 89.51 $ 106.99

5.2.1 Cloud Computing Infrastructure

The cost of cloud computing is based off instance uptime, hardware selected, mem-

ory/storage allocated for use, and the location of the services. AWS provides an online

cost calculator (available online at; https://calculator.s3.amazonaws. com/index.html)

for estimating costs due to instance type selected, location, operating system, esti-

mated uptime, and any additional desired services paired with EC2 in advance of

requesting an allocation. The t2.large instances used for this research charged $0.094

per instance hour uptime. The general expected uptime of each instance, in a profi-

cient class, should not exceed 6 instance hours per student. Using the online Amazon

price calculator shows that in an idealized scenario the two weeks of class use of the

AWS Docker WRF should cost no more than $17.48 for 31 instances at 6 hours up-

time (30 students, 1 professor). This low cost per instance is in part attributed to the

current low compute time of the WRF model as configured for the UND classroom

(coarse resolution over a limited domain). Any sort of manipulation to the WRF

model simulation would likely result in an increase in needed computational power

or runtime, which would result in increased cost for the homework assignment.

Storage costs per instance are in addition to the computational charges dis-

cussed above. AWS charges for Elastic Block Storage, which is the amount of storage

set within the instance created. For the classroom implementation the storage was

60 GB per instance. The storage costs, as discussed in section 3.3 (Assignment Cost

42

Analysis), are charged whether or not the instance is stopped or started, and recurs

until the instance is terminated. Storage costs are per GB-month and prorated to

the nearest hour. With the GB-hour cost coming to $0.000139, the total cost for the

entire assignment, assuming 2 weeks to complete, increases the total costs by $86.80

to a total of $104.28. The increase from 8GB to 60GB was to ensure the capacity

within the instance was more than enough to successfully hold all data. After further

investigation, the use of 15GB of storage would suffice for the instance size, and de-

crease the cost of storage from $86.80 to $21.70. Reducing the total from $104.28 to

$39.18.

However, with any new module to be included in the classroom, professors

need to test the material. Therefore, total AWS costs for the entire semester would

likely increase due to professor testing of the module in the cloud prior to classroom

activities. Professor costs have been considered in Table 5, adding an additional 6

hours of instance uptime and 2 weeks of storage.

While the cost of cloud computing is relatively cheap, the use of either lab

scenario adds to the cost. The added cost of cloud computing almost doubles the

cost of use within the classroom for the single month of use.

5.2.2 University Funded Facility

When the Streibel Hall lab hardware was upgraded in February 2012 the cost per

computer was $986 for each of the 30 lab computers. This puts the periodic upgrade

cost at roughly $29,580. The depreciated value of the hardware over the upgrade

periodicity (5 years) is $5,916.00. While the costs of upgrades are outdated, this can

be used as a template to estimate costs of periodic hardware updates. The educational

computer lab uses Linux operating systems. The JDOSAS lab currently has a single

systems administrator who devotes an estimated quarter of his time to lab upkeep

43

and the rest of it to the server upkeep. The cost for a class to use the university

funded labs for the assignment totals at $91.36 without cloud computing.

As stated previously, the use of AWS within this computational environment

was not needed for completion of the homework assignment. This should be taken

into account when looking to use cloud computing within a lab environment.

5.2.3 Low Budget Lab

The RWIC computer lab located at UND is comprised of entirely repurposed ma-

chines, so the hardware costs are assumed to be zero for its economic assessment.

Therefore, the yearly lab cost of hardware and IT support within a low budget lab

environment, such as RWIC, depends solely on IT support costs. However, within

Table 5, we include hardware costs over a 10-year depreciated value, using the same

budget for the February 2012 hardware upgrade of the university funded lab men-

tioned above. This is to highlight the fact that not all low-budget labs may have the

ability to acquire free refurbished or repurposed hardware from elsewhere. The costs

of classroom use of one month for a low-budget lab without cloud computing comes

to $79.04. We were unable to test Docker in this environment, but these computers

are approximately as powerful as the authors university provided research computer

which has a total clock speed of 6.00 GHz. The research computer successfully com-

pleted the simulation, with longer simulation times associated with the runs.

The use of the containerized WRF within this computational environment may

not be viable, and is dependent upon the modeling details and specific hardware. In

such a scenario, cloud computing will have to be used. The use of cloud computing

increases the cost to $186.03, more than doubling the cost of local hardware only.

While the increase in cost is significant, it guarantees the students are able to complete

44

this module and homogenizes the student experience, a possible issue is a lab filled

with a motley assortment of surplus machines.

5.2.4 Economic Analysis Summary

For use of AWS within any computing scenario there is an estimated increase of cost

by $106.99. The cost increase is accompanied by greater computing power and intro-

duction to new and beneficial computational tools. While the use of cloud computing

increases costs overall, it benefits the students to learn new tools for their future

careers. The increased expense versus the benefit to exposure to cloud computing

is the fundamental tradeoff that will need to be assessed by each school considering

adoption of this cloud-based learning module.

During interviews conducted with university personnel there was a large em-

phasis on the question Who funds the use within the classroom?. The use of AWS was

seen as a great solution to using Docker WRF within the classroom, but this research

was funded under a research grant (NSF). For regular use in the classroom, other

funding sources must be identified. Within AWS there is AWS Educate, mentioned

previously, which allows for students and faculty to apply for educational credits to

use toward computing with AWS. As of 5/4/2017, AWS educate offered $200 credits

per educator (at member institutions) and $75 dollars at a non-member institution,

which can be renewed yearly (UND is a non-member institution). For each student,

AWS educate also offered $100 in credits at member institutions and $40 in credits at

non-member institutions (AWS Educate 2017). For the class containing 13 students,

which is offered every year, an educator doing the same computing as mentioned

previously theoretically should not have an issue in gaining the credits to cover a

majority of the cost of computing for the homework assignment. To obtain these

credits, the students would have to sign up with a credit card, which was not done

45

for the classroom testing in this project. Additionally, there is no guarantee that free

AWS Educate credits will remain available in the future.

5.3 Policy Considerations

This section is focused around speculated changes to the computer labs used within

JDOSAS and how the changes may affect the implementation process. Currently the

North Dakota University System (NDUS) is moving toward centralization of hardware

and services within the universities. This was expected to have some effect on the

location of labs and/or on personnel that support the labs. The following information

regarding policy reformation is from interviews conducted with Dr. King and Mr.

Bergstrom and can be found within Appendix B.

The goal of a more centralized infrastructure through a transition from existing

systems to functional consolidation is to realize cost efficiencies and improved quality

of service(Feldner 2016). Initially there was concern that the JDOSAS Linux labs

would be affected, either by changing their operating system or relocating the labs

themselves. The consensus from the interviews is that the computing environment

within JDOSAS will remain untouched by centralization. The computing infrastruc-

ture within JDOSAS is specialized compared to the rest of university. The scientific

computing and educating done within JDOSAS is based within the Linux operating

system. JDOSAS needs to have specialized Linux system administrators and staff

for maintenance of the computer labs. Mr. King stated that labs as a whole are

not affected by the centralization; the closer you are to a system the easier it is to

maintain. In Mr. Bergstroms interview, he noted that even if there was a relocation

of the IT help for JDOSAS, the centralized IT team would provide the needed Linux

administration.

46

Policy concerning cloud computing within the university was also a topic of

discussion during interviews. Mr. King commented that the use of cloud computing is

not prohibited within the classroom, and it is viewed as a more campus level decision

rather than consolidation. Also, cloud computing is already used by various entities

at the university. The usage of cloud computing within the classroom does not conflict

with any policies, but the university will not pay for something that potentially could

be done locally within their current hardware infrastructure.

5.4 Privacy Consideration

Privacy considerations involve the security concerns associated with local Docker

installations and the usage of cloud computing within an educational environment.

These security concerns include a discussion of the Family Educational Rights and

Privacy Act (FERPA), which was enacted by the U.S. Department of Education to

ensure student information confidentiality. To gain a better understanding as to why

Docker was unable to be installed on lab computers, interviews with Mr. Stinchfield

and Mr. Kuelbs were conducted.

5.4.1 Docker Local Installation

Local installation of Docker was not completed prior to the testing of this teaching

module. Originally, this project had meant to test both local and non-local (i.e.,

cloud) use of Docker. The reason for solely non-local use of Docker was due to

the possible security risks for the university. The main security concerns regarding

Docker are related to the fact that Docker has root access to the system. While the

student may not have root access, they have the ability to download any container

from the DockerHub repository online. Instantiating a container online is a security

risk because containers can possibly hold malicious software. While the downloading

47

of a malicious container may be unintentional on the part of the student, it remains

a security issue for the network.

A statewide policy mentioned by Mr. Kuelbs is that any computer within the

network cannot affect another workstation. A malicious container could contain a

script to further the network access of that user through Docker. The script may

contain superfluous requests to the network causing a denial of service or create a

spam bot, as a few examples. Regardless of the type of malicious software in place

within that container, it hinders the ability of another user to utilize that computer

efficiently. For Docker to be used safely within a university setting either the images

used for running containers must be vetted and stored locally or Docker must be

customizable for each user.

Note that after further investigation into Docker installation, Mr. Stinchfield

and Mr. Kuelbs stated that they could allow for Docker to only access a certain

set of local in-house containers for use by the lab users. This would limit which

containers a student could download, making Docker more secure to install on shared

lab machines. With that security measure, Docker was deemed a software package

that can be implemented into the UND lab environment.

5.4.2 Docker Cloud Computing Installation

One of the benefits to using AWS is that it offloads any security concerns that may

arise from locally installed software. By moving Docker into a cloud computing

instance, any malicious software that is installed onto the instance remains there

and is isolated from the local computing infrastructure. However, while using cloud

computing helps to reduce the security issues surrounding malicious containers, it

potentially causes another privacy issue. FERPA protects the privacy of student

educational records, including but not limited to student name, address, class list,

48

and grades. The use of AWS within a classroom environment could potentially lead to

leaking information such as student name, class name, and university name outside of

the network. While this is a concern, an AWS FERPA Whitepaper states that AWS

provides services to set security controls that meet the data privacy and data security

requirements to ensure protection of education data in compliance with FERPA (AWS

FERPAWhitepaper 2015). AWS abides by the policy to protect sensitive information

within their cloud computing environment.

While AWS provides the ability to create secure environments, it has proven to

be difficult to set up. The way permissions get set is very difficult to understand, even

from an IT admin point of view. Mr. Kuelbs stated in his interview that the AWS

permissions are tedious and difficult to understand. The initial attempt at creation

of security permissions for the classroom failed. Following a white paper published

by AWS on example classroom permissions (Amazon ECS IAM Policy Examples

2017) allowed for the author to reduce student access to many AWS applications.

The permissions were so restrictive that students users would be unable to launch

instances, and were thus not followed because they would have inhibited the students

in completing their work. That resulted in additional vulnerabilities. For example,

with the permissions set for our instance use, the students had the ability to interact

with one anothers instances. One student could start, stop, and terminate another

students instance causing disruption to someones work. Use of a more secure set of

permissions is recommended for further usage of AWS within the classroom.

The consensus from all interviews is that AWS was a good solution to possible

security risks introduced by using of Docker within the classroom environment. The

on-demand style of AWS for a short period of time, and off-site computing, ensures

that the use of Docker WRF within the class is not detrimental to the security of the

local network.

49

Table 6: Subjective rankings for computing scenarios for policy compliance, economic
impact, security and overall categories. 1 being the best and 4 being the worst.

Policy Compliance Economic Impact Security Rank
University funded using Cloud Computing 1 4 1 2
Low budget lab using Cloud Computing 1 3 1 1
University funded 1 2 2 4
Low budget 1 1 2 3

5.4.3 Summary

To summarize the findings in this chapter simply, a table has been created to reference

the ranking of each of the computing scenarios based upon the economic, policy and

privacy information gathered. Table 6 shows the rankings of each scenario from 1

to 4. With 1 being the best choice for that particular aspect and 4 being the worst

choice.

All scenarios receive equal marks for policy compliance. Due to there being

no issues regarding using cloud computing or installing new software that is blessed

by IT, they are all an equal decision regarding policy.

The economic impact is directly related to the cost of each computing scenario.

The low budget lab receiving the top rank due to these labs, such as RWIC, having

the ability to acquire hardware without any upfront purchasing costs. The university

funded lab using cloud computing received the worst mark. Overall for economic

impacts, the majority of the impact can be reduced due to the use of AWS educate,

allowing for each of the cloud computing scenarios to be very competitive with local

computing.

Security ranks are tied between the two sets of computing scenarios, local and

cloud computing. Cloud computing adds an extra layer of security to the already

in place lab securities. It also reduces the issues associated with Docker installation

on a computer lab environment. Disallowing for images pulled from the web to have

direct access to the local computational infrastructure within the university. The

50

local usages of the module receives lower security markings due to the vulnerabilities

regarding Docker installation locally that were discussed in this chapter.

After reviewing the economic, policy, and privacy considerations for each of the

computing scenarios, each has their strengths and weaknesses. The use of university

labs, whether they are well funded or not, allows for a reduced cost due to not using

cloud computing. The use of Docker within the local environment poses some security

threats to the system, but can be alleviated if the IT support has the knowledge to

do so. Alleviation of the threats can be done through vetting containers or restricting

user access to unknown Docker containers.

While the use of cloud computing adds additional cost, it alleviated the possible

security risks associated with Docker and allowed for access to increased computa-

tional power. As stated earlier, the usage of cloud computing also promotes use of

tools that are being used in future career options. Because of these additional ben-

efits, it is the opinion of the author that provided there is a way to cover expenses

of AWS, through AWS Educate or some technology fee associated with the class, the

usage of cloud computing is the preferred scenario.

51

CHAPTER 6

CONCLUSION

Recent technological advances (i.e. software containers, and cloud computing) were

used in conjunction with the WRF model to create a portable NWP module. The

goals of creating this module were to investigate how the use of these new technologies

might reduce barriers to module use in the classroom setting. In addition to simpli-

fying access to WRF, the module would also increase student exposure to modern

computing environments. With private sector and even funding agencies gravitating

towards these new tools, exposure earlier in a students academic career can be of

great benefit. This research created the teaching module, but also investigated the

student experience in the classroom, the economic scenarios under which this module

might be applied, and compliance with university privacy and computing policies.

The research conducted helps to enlighten the need for introduction and use

of emerging tools within education. Use of these new tools during classes allows for

workforce preparedness for graduating students. Private sector businesses such as

The Weather Company are utilizing these tools within their work environment. Gov-

ernment agencies are also pushing to use more tools such as container software. The

National Aeronautics and Space Administration (NASA) is utilizing Docker software

containers for some of their numerical models. (NASA Supercomputing 2017). They

have containerized their NASA Land Information System Framework due to the dif-

52

ficulty of non-experts to install. Introducing students to such tools can allow for a

wider skillset that may potentially be used within a future career.

Conducting the implementation within a real classroom environment allowed

for insight to be provided regarding the issues and successes with the process. The

information gathered allows for others, that wish to use such modules, to learn from

past processes. This helps to reduce the issues associated with setting up and using

these modules and may help to increase the success of others usage.

Major outcomes of this research include creation of WRF in a box, a teaching

module and the investigation of economic, security, and policy impacts of AWS on

institutions. WRF in a box was made possible through the use of new emerging

technologies. Docker paired with AWS enabled WRF to be effectively placed into

an educational environment and used without the need for updated computational

infrastructure or systems administrator support. Use of these tools proved to be

difficult initially for students but their confidence increased as they continued to

work on the assignment. Student exposure prior to graduation may help to increase

their workforce readiness due to private sector, government agencies, and universities

using these tools within their workflow.

A teaching module incorporating hands-on NWP model use allowed for stu-

dents to experience how models are run and their associated outputs. The learning

goals associated with this research were each individually met. First, the students

gained knowledge of cloud computing and container software through using them

while completing their assignment. Second, each student successfully completed their

model runs for analysis, successfully completing the NWP class assignment. Lastly,

each student recognized the widespread difference caused by parameterization and

initialization differences which are both sources of uncertainty, a significant aspect of

NWP.

53

The use of AWS and Docker within an educational environment had some

economic and security impacts on the university. The policy impacts that were con-

sidered, mainly centralization, had little to no effect upon implementation of these

tools into the classroom setting. Using AWS required funds to be placed aside for

assignment completion. The economic impact of using AWS was just over $100. With

the utilization of AWS Educate credits the price can be mitigated further. The se-

curity concerns associated with use of Docker in the local lab setting were mitigated

through by using AWS, which allowed for computing off-site.

Based on the research conducted during the implementation of WRF in a box

into the University of North Dakota Fall 2016 ATSC 405 classroom, it is recommended

that the use of cloud computing paired with Docker is the best course of action for

implementation of WRF in a box. The usage of cloud computing is recommended

regardless of the computational infrastructure set in place within the institution. The

reason for this decision is that the benefits of introduction to tools needed for career

development far outweigh the economic costs of cloud computing. With private sector,

graduate schools, and funding agencies moving toward cloud computing and software

containers it is beneficial to expose undergraduate students to the tools potentially

being used in their future careers. Experience from the in-class exercise suggested

that the exposure to new tools also outweighs the burden of increased learning curves

for both professor and students.

While the recommendation is to use cloud computing and Docker, there are

many other avenues that are possible for use. If the local computing infrastructure

allows for Docker to be seamlessly and securely incorporated into the system, then

local use is possible. The local use of WRF, without cloud computing and Docker,

is also a viable option. One scenario that was not tested, with the exception of a

few students within the fall 2016 class, is to require a laptop or access to a personal

54

computer for enrollment in the class. An assumption can be made, given the techno-

logical advances in past years, that most students have access to a home computer

or personal laptop. The use of personal laptops removes the financial burden, total-

ing 91.36forafundedlaband79.04 for a low-budget lab, for that class to utilize the

lab computers for class time. Two students in the Fall 2016 classroom were able to

complete this module on their personal laptops instead of the computers within the

lab. Requiring laptops for class enrollment would reduce the cost for implementa-

tion. Only cloud computing costs are incurred, eliminating costs for IT support and

physical hardware at the university.

The process outlined for usage provided in this document is not rigid, and there

are numerous ways to utilize the module. The authors hope is other universities will

be able to follow this plan to integrate emerging tools such as cloud computing and

software containers into the undergraduate curriculum. Ultimately, this research pro-

vides universities with the basic information needed to decide on the implementation

method that will work best for their institution .

The research presented in this thesis has much room for improvement. Delivery

and structure of the entire educational module could be manipulated to allow for bet-

ter delivery to the students. The restructuring of the educational module would allow

for more focus to be placed on the theory behind NWP and how it is applied within

these tools, rather than deciphering between the tools. With some minor issues fixed

through this first application, more time can be allotted for proper introduction of

the new tools. This would help with the students ability to separate cloud computing

from the concept of containers, which proved to be a challenge during the implemen-

tation process. The restructure could move the assessment to a more useful timeline

within the class, allowing for more useful results to be collected. Use of a professional

55

to create the confidence assessment would allow for a better understanding how the

module affected the students knowledge, as well as better assessment questions.

Cleaning up of the trivial code would allow for more focus to be place analyz-

ing output rather than stressful syntactical errors frequently generated when following

directions. This module can also be expanded to incorporate other investigative as-

pects of NWP. For example, setting up a model run to fail due to exceeding the

Courant-Friedrichs-Lewy condition. This would allow for students to do an investi-

gation of module code and apply mathematical solutions learned in previous class.

There are countless ways to improve this module related to NWP for student learning

experiences.

Two comparisons that should be investigated is the use of local versus a cloud

computing NWP, and the use of personal laptops versus lab computers. Due to the

extensive time it took to create this module, comparison of local versus cloud and

laptop versus lap computers were unable to be properly assessed and incorporated

into this research.

56

REFERENCES

Amazon EBS Pricing., 2017: Amazon EBS Pricing. Amazon Web Services, INC.

[Available online at https://aws.amazon.com/ebs/pricing/]

Amazon EC2 Pricing., 2017: Amazon EC2 Pricing. Amazon Web Services. [Available

online at https://calculator.s3.amazonaws.com/index.html]

Amazon EC2 Storage optimized Instances., 2017: Amazon

EC2 Instances. Amazon Web Services.[Available online at

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/storage-optimized-

instances.html]

Amazon Web Services., 2017: Amazon Elastic Compute Cloud: User Guide for Linux

Instances. Amazon Web Services, Inc. 817pp

Amazon Web Services FAQs., 2017: Amazon EC2 FAQs. Amazon Web Services, INC.

[Available online at https://aws.amazon.com/ec2/faqs/]

Amazon Simple Storage Service., 2017: Amazon Simple Storage Service: Getting

Started Guide. Amazon Web Services, Inc. 19pp

AWS Case Study: The Weather Company, 2017: AWS Case Study. Amazon

Web Servics, INC. [Available online at: https://aws.amazon.com/solutions/case-

studies/the-weather-company/]

57

AWS Educate, 2017: Teach Tomorrows Cloud Workforce Today. Ac-

cessed 05 May 2017. Amazon Web Services. [Available online at

https://aws.amazon.com/education/awseducate/]

AWS FERPA Whitepaper, 2015: FERPA Compliance on

AWS. AWS Whitepaper. 17 pp, [Available online at

http://d0.awsstatic.com/whitepapers/AWS FERPA Whitepaper.pdf]

Docker, 2017; Dockerfile reference. March 2017, [Available online at

https://docs.docker.com/engine/reference/builder/]

Docker Docs, 2017; Overview of Docker Hub. March 2017 [Available online at

https://docs.docker.com/docker-hub/]

Dunning, D., C. Heath, and J. M. Suls, 2004: Flawed self-assessment: Implications

for health, education, and the workplace. Psychol. Sci. Public Interest, 5, 69106,

doi:10.1111/j.1529-1006.2004.00018.x.

Feldner, L., 2016: North Dakota University System Information Technology - Strate-

gic Plan 2017-2019 NDUS Information Technology, 30 pp.

Hacker J., Exby J., Gill D., Jimenez I., Maltzahn C., See T., Mullendore G., Fossell K..

2016: A containerized mesoscale model and analysis toolkit to accelerate classroom

learning, collaborative research, and uncertainty quantification. Bull. Amer.Meteor.

Soc., accepted for publication.

James C.N., Weber J. 2016: Cloud Computing in Oceanic and Atmospheric Sciences.

Cloud Computing in Education, Vance T., Merati N., Yang C., Yuan M., Elsevier,

107-120.

58

Indiana University 2016; Jetstream, first NSF-supported cloud infrastructure for

science & engineering research, to launch September 1. IT News and Events March

2017, [Available online at https://itnews.iu.edu/articles/2016/jetstream,-first-

nsf-supported-cloud-infrastructure-for-science–engineering-research,-to-launch-

september-1.php]

Linux Mint, 2017: About Us. Linu Mint, 6/13/17, [Available online at

https://www.linuxmint.com/about.php]

Linux Tar, 2010: tar(1) - Linux man page, 05/02/18,[Available online at

https://linux.die.net/man/1/tar]

Mell, P., Grance, T. 2011: The National Institute of Standards and Technology Def-

inition of Cloud Computing. U.S. Department of Commerce Special Publication,

7pp.

Mullendore G.L., Tilley J.S., 2014: Integration of Undergraduate Education and

Field Campaigns: A Case Study from Deep Convective Clouds and Chemistry.

Bull. Amer Meteor. Soc., October 2014.

National Oceanic and Atmospheric Administration, cited 2016: Numerical Weather

Prediction. [Available online at https://www.ncdc.noaa.gov/data-access/model-

data/model-datasets/numerical-weather-prediction.]

National Aeronautics and Space Administration Supercomputing, cited 2018: Con-

tainerizing the NASA Land Information System Framework. [Available online at

https://www.nas.nasa.gov/SC17/demos/demo29.html]

Singh, KD., Zhadanovsky, L., 2013: Setting Up Multiuser Environments in the

AWS Cloud (for Classroom Training and Research). AWS Whitepaper. 21 pp,

59

https://d0.awsstatic.com/whitepapers/aws-setting-up-multiuser-environments-

education.pdf

Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Re-

search WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp,

doi:10.5065/D68S4MVH.

Sultan, N., April 2010: Cloud computing for education: a new dawn? International

Jounral of Information Management 30 (2), 109-116.

Thompson, G. Field, P.R., Rasmussen, R.M., Hall, W.D, 2008: Explicit Forecasts

of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II:

Implementation of a New Snow Parameterization. Mon. Wea. Rev., 136, 5095-5115.

Warner T.T., 2011: Numerical Weather and Climate Prediction, Cambridge, 526 pp.

60

APPENDIX A

CONTAINS ALL MODULE DOCUMENTS

61

1

APPENDIX A

DOCUMENTS FOR LECTURE MATERIAL, HOMEWORK ASSIGNMENT, PRE/POST ASSESSMENT

QUESTIONAIRRE, AND INSTRUCTIONS FOR DOCKER/AMAZON WEB SERVICES SET UP

The following pages include the documents used during the Docker WRF implementation into the

Numerical Methods Course during the Fall 2016 semester at the University of North Dakota.

Cloud Computing Lecture Notes 1 page

Introduces cloud computing to the class and touches base on some known challenges and

benefits.

Docker Introduction and Syntax Tutorial 4 pages

 Introduces Docker software and what it is used for. After discussing what Docker is, it then goes

through a tutorial for setting up AWS, install Docker, and utilize the common commands they will need to

complete the assignment.

Weather Research and Forecasting Model (WRF) Notes 2 pages

 Introduces WRF with differences between each type of WRF model available and compares

workflows of the models.

Big Weather Web Notes 1 page

 Summarizes the NSF Big Weather Web Project, the primary funding source for development of this

classroom module.

Instructions for launching AWS instance, installing Docker, and running Docker WRF 4 pages

 Tutorial for accessing AWS, installing Docker, and running the Containerized WRF.

62

2

Assignment: Docker WRF Container 2 pages

 Homework assignment given to the students after the lab session that launched AWS and installed

Docker and Containerized WRF was completed.

Pre/Post - Assessment Questions 1 page

 Assessment questionnaire for quantification of student experience using cloud computing and

Docker WRF.

Instructions for creating classroom environment for AWS usage 4 pages

 Instructions for instructor use of AWS and setting up class usernames, permissions, and access to

the cloud environment.

63

3

Cloud Computing Lecture Notes

What is Cloud Computing?

Cloud computing is a way to access data, programs, and applications over the internet instead of

your computer’s hard drive. The cloud is simply a metaphor for the internet. Cloud computing is a way

to reduce the need for physical servers, personnel, and hassles of upkeep.

Benefits

Reasonably priced compared to costs of hardware, system support and maintenance.

Provides computing resources that can be expanded or adapted to changing needs.

Does not require hardware maintenance.

Containerization is possible for usage on practically operating system.

Reduces the need for costly and time consuming data backups.

Access to cloud is easy and convenient from anywhere with internet access.

Challenges

Dynamic cost structure requires constant oversight and monitoring.

Parallel processes can be slowed due to lack of physical proximity between cloud networks.

It is still necessary to maintain OS and software.

User insecurity when storing data remotely within the cloud.

Computations are subject to latency when/where internet connectivity is unreliable.

(James and Webber 2016 Poster)

Simple examples of cloud computing

E-mail, Microsoft Office online, general internet browsing.

Amazon Web Services Products

Computation, Storage and Content Delivery, Databasing, Networking, Developer Tools,

Management Tools, Security/Identity, Analytics, Game Development, Mobile Services, Application

Services, Enterprise Applications.

How are we using cloud computing?

Use of Amazon Web Services to create Linux instances to install Docker and run WRF within the

cloud. This way of running WRF highlights the ability of cloud computing to be used within an

educational setting. It reduces the time it takes to complete the compilation and configuration process

for set up and allows for results to be equivalent amongst all students (reproducibility). Increasing the

accessibility to students within universities that may not have a computational infrastructure that

supports Numerical Weather Prediction.

64

4

Docker Introduction and Syntax Tutorial

What is Docker?

Docker is a way to containerize an application. Containerization of an application means

including all of the library dependencies necessary for an application to run.

What is a library?

It is a collection of non-volatile resources used by computer programs often to develop

software. It can be anything from configuration data to subroutines and classes. programs that are

dependent upon certain libraries will only run if they are all present.

Example output for dependency check for wrf.exe. Not all are listed.

[tsee@WOPR run]$ ldd wrf.exe

libnetcdff.so.6 => /usr/local/lib/libnetcdff.so.6 (0x00007f7f34d25000)

libnetcdf.so.11 => /usr/local/lib/libnetcdf.so.11 (0x00007f7f349ff000)

libhdf5.so.7 => /opt/hdf5/lib/libhdf5.so.7 (0x00007f7f3452c000)

libhdf5_hl.so.7 => /opt/hdf5/lib/libhdf5_hl.so.7 (0x00007f7f342fc000)

libz.so.1 => /opt/zlib/lib/libz.so.1 (0x00007f7f340e2000)

For WRF to run its executable, these libraries must be installed on the machine it is running on.

How does Docker handle the dependencies?

When building an image, you start with a base version of a Linux OS, for our case Centos. From

there you add the necessary libraries that you need for the application you want to run. So all of the

above listed libraries must be incorporated to the Docker container while building it.

Example installation packages prior to building WRF.

yum -y update

yum -y install bzip2 file gcc gcc-gfortran gcc-c++ glibc.i686 libgcc.i686 libpng-devel jasper jasper-devel hostname m4

make openssh-server openssh-clients perl tar tcsh time wget which zlib zlib-devel epel-release

yum -y install netcdf-openmpi-devel.x86_64 netcdf-fortran-openmpi-devel.x86_64 netcdf-fortran-openmpi.x86_64 hdf5-

openmpi.x86_64 openmpi.x86_64 openmpi-devel.x86_64

With Docker, you create images and from those images you start containers.

An image is representative of a car engine that is not started. All the necessary parts are there for it to

work, but it has not yet been started. The Docker container is representative of the car engine after is

has been started.

65

5

Once an image is built, it can be pushed to a repository (an online central place for data aggregation)

specifically hub.docker.com. When the owner pushes it, it creates a snapshot of that entire container

allowing for others to pull it and use it as necessary. This allows for a state to be maintained, so if the

container works on the owners’ local computer, it will work on any other computer with Docker
installed.

66

6

Useful Docker Commands

docker ps lists all running containers

docker ps -a lists all containers running and stopped

ps and ps -a will have this output form

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

docker images lists all images pulled from docker hub

images will have this output form

REPOSITORY TAG IMAGE ID CREATED SIZE

docker rm “container id” removes specified container pertaining to the ID

docker rmi “image id” removes specified image pertaining to the ID

docker pull “repository/name” pulls the specified repository from dockerhub

docker start “container id” starts, in the background, a container that was stopped

docker attach “container id” allows access to the started containers terminal line

Using the “Docker Instructions for Running WRF” we will start an AWS instance, download Docker, and
then do some commands to get more comfortable with usage of the Docker syntax.

Complete steps 1, 2, and 3 on that document.

Then we will run these commands:

• docker images

o no information will be provided under all columns

• docker ps

o no information will be provided under all columns

• docker ps -a

o no information will be provided under all columns

• docker pull “repository name”

o for this example we will replace “repository name” with “centos”

o this will pull a centos repository and create an image

• docker images

o there will be information provided under all columns

• docker ps

o no information provided under all columns

• docker ps -a

o no information provided under all columns

• docker run -it --name “testcontainer” centos

o we are within a centos linux instance with the base functions already installed.

o exit the container by typing “exit”

• docker ps

67

7

o no information provided

• docker ps -a

o there will be information under each column with the name you gave the container in the

“run -it” command. this container is stopped because we exited the bash script

• docker start “testcontainer”

o this container is now started and available to be accessed.

o If you ever accidentally exit your container during the homework assignment this will be

how you enable it to be accessed again to get the terminal line.

• docker ps

o there will be information provided in each column referring to the “testcontainer” we
had created before.

• docker attach “testcontainer”

o this will place you back within the terminal line.

o if you exit the container it will again be stopped and you will need to run “docker start”
again to re-access it.

• docker ps -a

o this will list the container ID again

• docker rm “container ID”

o this will remove the container, useful if you run into errors within the container due to

changes made.

• docker rmi “IMAGE ID”

o this will remove the container, if something fatal should occur where the container is not

working properly even after removal of the old container and reinitiation of a new

container from the parent image, use this command to remove the image entirely

o if you remove the image entirely simply re pull it

▪ docker pull “repository name”

o then follow the directions

68

8

Weather Research and Forecasting Model (WRF) Notes

What is WRF?

• A next generation mesoscale numerical weather prediction system designed for atmospheric

research and operational forecasting needs.

• It features two dynamical cores, a data assimilation system, and a software architecture

facilitating parallel computation.

• It serves a wide range of meteorological applications across scales from tens of meters to

thousands of kilometers.

• WRF can generate atmospheric simulations using real data (observations, analyses) or idealized

conditions.

• Uses a range of different parameterizations for Microphysics, Convective schemes, Radiation,

and the Boundary Layer.

Characteristics of WRF

• Two different versions of WRF, ARW and NMM

o NMM – Nonhydrostatic Mesoscale Model

▪ Fully Compressible, Non-hydrostatic model with a hydrostatic option

▪ Sigma-pressure vertical coordinate system

▪ Arakawa E-grid Staggering

▪ Full physics options for land-surface, planetary boundary layer, atmospheric and

surface radiation, microphysics, and cumulus convection.

▪ One-way and two-way nesting

o ARW – Advanced Research WRF

▪ Fully Compressible, Non-hydrostatic model with a hydrostatic option

▪ Terrain following, dry hydrostatic-pressure, with vertical grid stretching, top of

the model is constant pressure surface

▪ Arakawa C-Grid Staggering

▪ One-way and two-way nesting

• Nesting is a finer resolution model run that covers a portion of the

parent domain.

• One-way – The information exchange is strictly downscale, the solution

of the nest does not feedback into the overall solution

• Two-way – the nest feedback impacts the coarse-grid domain solution

▪ Real and Idealized

• Real – takes input data such as the NAM, GFS, or GEFS and uses data at

the time step to create an input grid to do its calculations on. It requires

pre-processing of the input data to properly represent that grid points

within the model.

• Ideal – allows for a user to create a controlled scenario, typically not

requiring any input other than the namelist.input which is essentially

instructions for the model to run.

69

9

(http://www.dtcenter.org/wrf-nmm/users/overview/model_overview.php)

(http://www2.mmm.ucar.edu/wrf/users/model.html)

70

10

Big Weather Web Notes, specifically related to the NSF grant that funded this research.

The Big Weather Web (BWW) project is aimed at the combination of virtualization (AWS and Docker),

federated smart storage (AWS), and big data management.

The project is centered around creating an ensemble forecasting system aimed at research. We

populated an ensemble matrix that has 48 different members varying from the control run. We are

using an AWS instance to store all our data in one central location to remove the necessity of data

upload and downloading. The AWS instance allows for post processing to take place within the cloud

and reduces separate entities need to download data to their local computers.

The BWW is also aimed at increasing reproducibility within the research environment and “push button”
deployment of complex systems (such as our Docker WRF model). Use of Docker is being tested to

create an environment where the data is reproducible.

“The Big Weather Web will be developed in the context of numerical weather prediction with the

expectation that the resulting infrastructure can be easily adapted to other data-intensive scientific

communities”

71

11

Instructions for launching AWS instance, installing Docker, and running Docker WRF.

1. Launching an AWS instance

a. If “Account” is empty, input und-atsc405

b. Go to https://und-atsc405.signin.aws.amazon.com/console and login with your assigned

login name and password designated by Gretchen.

c. Look under All Services

i. Under “Compute” select EC2

ii. click the blue “Launch Instance” button

a. Select Ubuntu Server 16.04 LTS (HVM), SS Volume Type 64-bit.

i. fourth option from the top

b. The selected Instance type is t2.micro

c. Change the type to t2.large

i. click “Next: Configure Instance Details”(Bottom right hand corner of browser)
ii. click “Next: Add Storage”(Bottom right hand corner of browser)

1. Under the column “Size(GiB)” change from 8 to 60 GiB (fourth column)
iii. click “Next:Tag Instance”

1. under “Value” Type your first initial last name then click Review and

Launch

iv. click “Next: Configure Security Group”

1. leave the security group name, and description the same

2. Under the column labeled “Source” select the dropdown menu and
choose “My IP”

a. You will see the IP address to the right change, if you choose to

do this on a different computer you will need to change the

security group permissions before SSH’ing into the AWS instance

v. Click “launch” in the bottom right had portion of the screen.
vi. First time launching an instance

1. Select “Create a new key pair”

2. name the keypair, you will need to reference this numerous times

a. The name of your keypair will replace “Your Key name.pem” in
the instructions. (Use something similar to the ATSCI login ex.

tsee_aws_key)

3. Download the key and save the key within the directory you wish to work

from.

4. Then launch the instance

5. click the blue “View Instances” button

vii. If you have created one before

1. Select “Choose an existing key pair”

2. Then launch the instance

3. Click the blue “View Instances” button.
d. This will take you to a dashboard showing you where your instance is with numerous

columns of information. Looking at “Instance State” wait until the circle is green and says
“running”

e. Right click the instance and choose connect, there will be a pop up (“Connect to Your

Instance”) giving you steps on how to ssh into the instance

72

12

i. Keep this open you will reference it at a later time

2. Connecting to your AWS instance

a. Open a terminal and go to the directory that has the key downloaded from earlier steps.

b. Use this command: chmod 400 Your Key Name.pem

i. this just limits the access, keeping it more private which allows you to access the

instance by agreeing with the privacy settings of amazon.

c. Then within popup labeled “Connect to Your Instance” on the web browser under the
title “Example” copy the line that looks like

i. “ssh -I “Your Key Name.pem” ubuntu@ec2-IPADDRESS.us-

west.compute.amazonaws.com”
d. Paste that within the terminal to ssh into the instance.

i. In the terminal it will ask if you want to connect, type “yes”.
e. You are now within connected to your instance.

3. Install Docker

a. To install Docker, type in the terminal line

i. wget -qO- https://get.docker.com/ | sh

ii. This command accesses a script written by Docker, which alleviates our need to

install from source.

b. After installation is complete, we must join the docker group. this will allow for us to

reduce unnecessary syntax when running docker commands.

i. In the terminal line type

1. sudo usermod -aG docker ubuntu

ii. type “groups” in the terminal line will output

1. Ubuntu adm dialout cdrom floppy sudo audio dip video plugdev netdev

2. docker will not be listed on this line until we log back in

iii. Now we must log out then log back into the instance to successfully joint he

docker group

1. In the terminal type “exit”, this will log you out of the instance.
2. Now repeat the ssh command from above to re log back into the

iv. After reconnecting to the instance, type “groups” in the terminal line again.
1. You should see “docker” added to the end of the groups list.

4. Docker instructions from pull to postproc (gfs)

a. Pulling necessary Docker images

i. docker pull twsee/atsci405

ii. docker pull twsee/405gfs

iii. docker pull twsee/405postprocessing

iv. docker create -v /wrfinput --name gfsinput twsee/405gfs

1. #creates the mountable volume of wrfinput for attaching to atsci405

b. create a directory within the instance and name it wrfoutputgfs, use the command pwd

to find its full path and insert below where “/path/to/output/folder” is located

i. most likely the path will be look like “/home/ubuntu/wrfoutputgfs”

c. docker run -it --volumes-from gfsinput -v /path/to/output/folder:/wrfoutput --name

405gfswrf twsee/atsci405

i. places you within the container

ii. run the command “./run-wrf” to start the model run

73

13

iii. Roughly should take ~20 minutes to run and finish

iv. After completion:

1. ls -lR /wrfoutput/*.nc | wc -l

a. the output should be 29

v. type “exit” to get out of the container

5. Creating the post processing container for the model output created above

a. docker run -it -v /path/to/output/folder:/wrfoutput --name postprocgfs

twsee/405postprocessing

b. this places you within the NCL container

i. run the command “./ncl_run_all
1. this will loop through all the ncl files and place the output plots within

the /wrfoutput directory we mounted to the container.

ii. run the command ls -lR /wrfoutput/*.png | wc -l

1. the output should be 112 .

c. type “exit” to leave the container

6. Moving the data from the AWS instance to your local computer

a. open a terminal on the local computer

i. you will use the same ssh IP address as you did to ssh into the instance previously

ii. go to the directory which has your key you generated from the AWS console

iii. type: scp -i name_of_key.pem ubuntu@ec2-ipaddress.us-

west.2.compute.amazonaws.com:/path/to/output/folder/*.png

/path/to/local/folder/

1. You must include *.png

b. should be output showing the copying progress for each plot

c. Check your local file path you transferred to.

7. To change the input data, simply replace “gfs” with “gefs” for all of the docker commands.
a. this will create a new image to be references, container to be made, and wrfoutput files

for post processing

b. I recommend creating a separate wrfoutputgefs in the same location as wrfoutputgfs

After you are done within the instance for the day, go to the webpage that has the instance dashboard

and right click the started instance and select the “Instance state” drop menu and choose “Stop”.

To reconnect to that same instance simply right click on your instance, and select start. Once the light is

green, you may connect like previously done. However, the IP address will be different so be sure that

you’re passing the proper IP address.

1. If you have closed out of the website, here is how to get back to the instance page.

a. Go to cosole.aws.amazon.com

i. if you are still logged in, click on EC2 from the same location as earlier.

ii. instead of clicking on Launch Instance, click on “Running Instances” located
above it.

iii. You will see the same columns from earlier wand be able to locate your instance

by the Name tag, then reconnect as usual.

iv. If you are accessing this instance from a different location

1. Make sure the key you are using is available

74

14

2. On the main screen that shows all of the instances, click on yours and in

the window below it that shows “Description” “Status Checks”
“Monitoring” and “Tags”

a. Under the “Description” tab, on the right hand side there will be
a hyperlink next to “Security Groups” click on it.

b. On the bottom window it will have “Description” “Inbound”
“Outbound” “Tags”

c. Click the Inbound tab, and click on the “Edit” Button below it

i. Click “Add Rule” and Change “Type” to SSH and “Source”
to My IP

Do not under any circumstances use the TERMINATE option only STOP, this will be done by Gretchen,

Tim or Ben after the homework has passed the due date.

75

15

Assignment: Docker WRF Container

Instructions: Using the Docker tutorial handout from class complete 3 separate forecast runs.

1. Complete the control run by following the instructions for GFS

2. Change initialization data from GFS to GEFS

3. Change a parameterization, based upon what you were assigned during class.

All simulations will be done using Amazon Web Services(AWS) environment.

Summary: The tutorial has all the necessary commands to create and access the WRF container

within the cloud. For the assignment, you will need the output plots generated from the tutorial

between the times of 20160803 12 UTC to 20160804 12 UTC (plot numbers 12 -> 20) for each of the

three different runs you will be completing. A report with analysis of these times will be conducted to

subjectively highlight the differences between the runs.

Method:

1. After completing the initial control run transfer the .pdf outputs to the local computer, then

remove the container

2. Start a new container pointing to a different set of initialization data “twsee/405gefs”. Complete

the run of WRF and then NCL scripts, and transfer the .pdf output files to the local computer.

3. Depending on which of the parameterization perturbations you have been assigned, you will

again need to reinitialize the Docker WRF container. Within the directory, /wrfinput/ there is a

file, “namelist.input”, this file controls the parameterizations that are specified before running

WRF. Change the necessary parameterization under the &physics section.

mp_physics = microphysical parameterization

sf_sfclay_physics / bl_pbl_physics = surface layer and and planetary boundary layer

parameterization (same number)

cu_physics = cumulus parameterization

After completion of this model run, transfer the output plots to your local computer.

Control Run Parameterization Options Parameterization Options

mp_physics = 8 Thompson Scheme 6 WRF Single-Moment

sf_sfclay_physics = 2 1

bl_pbl_physics = 2 Mellor-Yamada-Janjic 1 Yonsei University Scheme

cu_physics = 1 Kain-Fritsch Scheme 93 Grell-Devenyi Scheme

76

16

All files and report components should be included in a tar file named “WRF_yourlastname.tar.gz”.

Model Completion: 20 Points

15 points: Provide the output plots for each model run between 0803 12 UTC and 0804 12 UTC.

5 points: Provide feedback relating to the ease of use regarding cloud computing and Docker. Do you

feel that use of these tools has helped increase your understanding of modeling? Explain your answer.

Model Validation: 20 Points

Compare and contrast the observed radar and data to the 3 different model outputs. (1-2 pages)

Observed radar and data will be provided via a tarbal through ezlms.

GFS Input Data Vs Observed

GEFS Input Data Vs Observed

Parameterization Vs Observed

Summarize relative performance of all three simulations

Assignment Answers:

While there are no specific correct answers, the students are supposed to realize that by changing one

parameterization within the model the entire solution changes. Each field represented within the plots

has some sort of difference whether minute or extreme and there should be some mention of every

field in a students’ write up. The main takeaway from this exercise is the model is interconnected and

each parameter influences the entire solution, not just that specific process in time.

77

17

Pre/Post - Assessment Questions

Rank your confidence from 1-4. 1 being “Not Confident” and 4 being “Very Confident”

1) Your ability to configure and compile a forecast model on a computer from beginning to end.

Not Confident 1 2 3 4 Very Confident

2) Confidence to explain why models aren’t perfect to the general public.

Not Confident 1 2 3 4 Very Confident

3) Ability to locate and download necessary model input data.

Not Confident 1 2 3 4 Very Confident

4) Confidence to explain what contributes to model error.

Not Confident 1 2 3 4 Very Confident

5) Manipulate a forecast models’ configuration to change parameterizations utilized.

Not Confident 1 2 3 4 Very Confident

6) Manipulate a forecast model to use different input data.

Not Confident 1 2 3 4 Very Confident

7) You have a high level of understanding of instrument error.

Not Confident 1 2 3 4 Very Confident

8) You have a high level of understanding of model truncation error.

Not Confident 1 2 3 4 Very Confident

9) You have a high level of understanding of model parameterizations.

Not Confident 1 2 3 4 Very Confident

10) You have a high level of understanding of a staggered grid and its benefits within models.

Not Confident 1 2 3 4 Very Confident

11) You have a high level of understanding of ensemble forecasting.

Not Confident 1 2 3 4 Very Confident

12) Confidence to interpret ensemble forecast products.

Not Confident 1 2 3 4 Very Confident

13) Ability to explain ensemble forecasting benefits.

Not Confident 1 2 3 4 Very Confident

78

18

Instructions for creating classroom environment for AWS usage

1. Log into your AWS account

2. From the Dashboard show “All Services” shown below

a. Under the “Security, Identity & Compliance” section, select “IAM” shown below

3. You are now at the Identity and Access Management(IAM) Dashboard

a. Customization of the classroom URL is possible by selecting customize shown below

highlighted in yellow, and changing it to the preferred name. This will change the string

of numbers “084685956777” within the URL

4. Creation of group permissions

a. Under IAM resources shown above, select “Groups: 0”

79

19

b. Choose the blue “Create New Group” button

i. Designate the group name to your choosing, likely choice is “student”

ii. The next page “Attach Policy” allows for you to designate the access each user
put within this group is allowed. For the classroom implementation the attached

policies were “AmazonEC2FullAccess” “AmazonEC2ReportsAccess” and

“AmazoElasticFileSystemFullAccess”. These three policies allowed for students

to complete all tasks required within the assignment.

iii. Screenshot provided below will be what is reviewed prior to creating the group

c. This will take you back to the group portion of the dashboard, by selecting “Dashboard”
on the left hand portion of the screen you will return to the initial screen

5. Creation of Users

a. Select “Users: 0”

i. Then click the blue button in the top left portion of the screen “Add user”

ii. Below shows an example of 3 test student usernames for creation, make sure

that “Access type Programmatic” access and “AWS Management Console
access” are both checked

iii. Password Creation: Select Autogenerated password or Custom password, ideally

Autogenerated password would be more secure as Custom password sets that

password to each generated user name listed above below. Also require

students to choose a new password when logging in for creation of a personal

password

b. Click the blue “Next: Permissions” button in the bottom right corner

i. The next web page will have the group name of permissions created earlier in

the instructions if you named it “student” you will see that name, make sure it is
check marked

ii. Click blue button in the bottom right labeled “Next:Review”

80

20

iii. Below is the information that should be shown (replacing group name and

usernames with what has been inserted)

iv. Click the blue button labeled “Create users” in the bottom right hand corner of
the web page

v. This next page will show you the created users with their Access key IDs, Secret

Access keys, Passwords, and a link to e-mail login instructions

6. Below shows the web page regarding the Users and their passwords

a. It is recommended to download the .csv file to keep the passwords and usernames

handy for student reference should they misplace it

81

21

b. On the right hand side there is a “Email login instructions” column, this allows for AWS
to send the username and URL to the students e-mail address. Password is not included

in this e-mail, so the password per student must be sent manually from the professor to

the students e-mail accounts.

7. Students can now access the classroom AWS instance through the URL provided with their

username and password generated from this document.

82

APPENDIX B

CONTAINS INTERVIEW TRANSCRIPTS

83

APPENDIX B

INTERVIEWS CONDUCTED FOR ECONOMIC, POLICY, AND PRIVACY CONSIDERATIONS

John Wold - Scientific Computing Center University of North Dakota 2 pages

Aaron Bergstrom - Computational Research Center, High Performance Computing Specialist 2 pages

Darin King - North Dakota University Systems, Chief Information Officer 2 pages

Derek Stinchfield - Scientific Computing Center Systems Administrator and Andrew Keulbs - Lead

Client Support 2 pages

84

John Wold - Scientific Computing Center University of North Dakota

Tim: We want every university to be able to take what I did and do it within their university setting

John: So, when you do that in a perfect world without Amazon use we can do it here then ship it

out, were not worried about security with what you created. you would want a saved

environment of some kind.

Tim: with the push to centralization how would this be possible?

John: Centralization has to do with more services such as e-mail rather than anything else and

commodity type services not so much scientific computing. the vast majority of hardware in there

is most likely exempt from the centralization.

Tim: most likely the labs we have will not be touched at all?

John: exactly they should stay the same.

Tim: What about some sort of community college or a university with a meteorology department

and does not have the IT infrastructure and support that UND does.

John: AWS would make sense for something like that, but who would pay for it?

Tim: do you see the university pushing for cloud use at all?

John: they use a bunch of cloud computing services already; some e-mail is cloud. they are willing

to put major services in the cloud.

Tim: is cloud computing services for SCC going to be an option going forward?

John: we find the best possible solution and most affordable solution is also important. we are

open to cloud based solutions. especially if we have people outside NDUS accessing our network

that. use of cloud computing isolates us and offloads the security to their network. if allows use

of certain applications and don’t’ have security measure that computer can become a virus bot or
denial of service bot and go after other machines in that network if they are not secure. if you can

log in to use Docker you can do whatever you want with it. scientific discovery requires openness

and the bad actors that destroy innovation and scientific discovery because you can’t keep it as
open as It needs to be. The next best thing is to dump it onto the cloud outside your environment

and whatever happens is on their end. they deal with the consequences we do not. They have

essentially what we have here but on a grander scale. They know how to isolate assets within

their physical data center. the biggest issue for you is to find the funding and continuing funding

for this.

Tim: We were thinking about tacking on some sort of fee to the class to help pay for the usage of

the cloud computing instance.

John: or you can look into a group of universities that would pay into having it stored somewhere

and they then have access to the data. but you will still need some of the expertise to manage the

dataset and ensure that it is working. The best way to isolate something is to do it physically,

purchasing hardware spending money upfront to have access to it, but that can cost a lot of

85

money. It seems like the best solution for what you are doing is a cloud based services, especially

for universities with lower IT infrastructure.

Tim: We want to either be able to get Docker installed on all lab machine or use it in a different

way so that students can access it without harming the local network

John: so being a part of computer science for 15 years I know what undergrads can do to an

environment. So, that brings us right back to AWS to create a secure environment, instead of

creating our own secure environment which causes a lot of money.

Tim: So I feel that’s best solution overall

John: it would be the quickest way to get things going

Tim: I don’t think it would cost too much to utilize also

John: if you want to run it all year long that would be much more costly The use is aimed at a

specific assignment as a teaching tool as a week or two?

Tim: yes

John: I don’t see any reason to not use amazon web services then. there are plenty of providers

out there to utilize, you really don’t’ need much of IT to get involved

Tim: there are some things IT help would be ideal, the setup of the instances allowed for all

students to access one another’s instances meaning stopping or terminating another instance

that is not theirs

John: So, you would need some consulting from us or have us set up permissions, and it seems

like it is an on-demand computing service that you use and then once you’re done you terminate

it and you no longer have access. it is hard to beat that sort of flexibility for something like this. If

you’re going to use it all semester if might be better to consider local hardware use, if it is one
little chunk it seems like you are on the right path then. and just use us as technical consulting if

you hit any issues. As far as other universities you just use communication, provide the steps by

which you did everything to someone else and they can set it up themselves whether its through

GitHub or something else. So if you throw something up in the cloud, unless you want us to open

a firewall here is basically your business and there wouldn’t be any issues. due to it being a non-

mission critical application so it is perfect for the cloud.

86

Aaron Bergstrom - Computational Research Center, High Performance Computing Specialist

Aaron: (Speaking regarding john Wolds suggestion of using it in the cloud as best practice) He

might actually be right the easiest best case scenario for small schools like that would be to deploy

it within the class. the problem with that is, as long as you have money to pay for stuff like that

its fine, but if you end up having a lot of computing in there it may impact the budget. With a lot

of container software out there, such as Docker there is a push to solve some of the security

concerns regarding Docker and container software. UND is part of the Big Data Hub which has a

lot of resources that are available that could be free for use that could maybe provide some

services. The national data service will spin up individual environments for universities to use

which is a cloud environment which is run by the national center for supercomputing applications.

so that is one option that could be considered due to the lower cost. As for locally we are

transitions to a more of a cloud computing environment, but that is a ways in the future. but we

would be able to designate the computing to general computing or hpc applications and cloud

computing services to professors and students. but just because that could be available, doesn’t
mean that it is easiest for the project itself. it just may be the easiest for them is to spin up a cloud

environment and then run that for a semester or whatever it is needed for. and there are a lot of

different options out there to deal with security issues.

Tim: So, what we did for the course of the two weeks in the class cost 40 bucks. that is with many

instances up and running without doing any actual computing causing inflated costs.

Aaron: So, that’s a cheap reasonable way of doing it and I’d say almost any place can afford it.

Tim: and you can tack on a technological fee for the students to help pay for it.

Aaron: that 40 dollars for everyone in the class? that is obviously a very low cost.

Tim: the only issues we ran into was setting up permissions for the students accounts, allowing

for much more access than needed for the assignment. Students could access one another’s
instances.

Aaron: there is a level of they all want to pass the class, they all want to learn something, why

would they go to that? even if they did, if you start from a saved instance, you can go boot it back

up. sure someone may have to start over but there is a reasonable level of security because the

people in the class are not hacker generally speaking.

Tim: looking forward with consolidation going through, do you know of anything that could

happen to the labs we used within the class?

Aaron: computer science is potentially going to be moved to engineering, but as far as I

understand they are staying in place indefinitely as far as physical location. how it gets worked

out with who would support those systems is not known currently but those systems will stay put.

Tim: there wouldn’t’ be any push to windows form the current Linux environment?

Aaron: there is no current Linux support within central IT, they know it is something that would

be needed and they would hire someone to manage that. they wouldn’t’ force people to change
to windows when computer science has been taught in Linux and always has been.

87

Tim: lets say the university system moves towards a more cloud based system, how would

educators get use of the cloud for something like this(Docker use)

Aaron: if you want to use what the campus purchases for computing then you can use that for

free, but if we set up a 128node cloud system, the idea would be that a committee meets 3 times

a year and designates the cloud usage over the year. If you wanted to host a class in the fall you

would apply for some of the compute environments and the committee would meet and decide

who gets what and it would be free. there would be a level of review to get the free services. But

purchasing of a node to connect to the environment could be done and then whomever

purchased that hardware would have access and dictation over it.

Tim: is there any push against cloud computing within the classroom?

Aaron: honestly, I don’t think there is any pushback of something like cloud computing, it comes
back to who pays for it. and if it’s 40 bucks I don’t’ think there is much issues along something
that low cost. if you have an image already defined in amazon, use this instance and image you

created and use that for student works. The thing with classroom use you won’t see large data
sets for something like what you did, the issue is that maybe a student down the line has a faulty

view of data usage and fees within the cloud from using this.

88

Darin King - North Dakota University Systems, Chief Information Officer

Darin: (Regarding the centralization changes with the upcoming policy reformation, directed at

the labs we used) Form the lab perspective the consolidation has nothing to do with them. Labs

are labs and we draw the line there because that doesn’t lend itself to centralization. The labs

must be maintained by local campuses. Trying to manage something from afar does not work.

The advantages of AWS and Google Azure is that you can spin up and spin down at will, I don’t
have any issues with things being in the cloud. Your risks change there is risks in both and my job

is built around reducing risk. It’s really not anything about the cloud it’s a different set of
thoughts

Tim: Do you see any security concerns regarding a professor spinning up an AWS cloud instance

for use in the classroom?

Darin: Depends on what they are using it for?

Tim: We used it to place Docker on an AWS instance to reduce the security concerns by

offloading them onto the cloud platform.

Darin: There is one of the inherent advantages, the ability to spin up and spin down. Microsoft

for some higher education has waived the egress fees, so that may be something to consider.

Your example of spinning up those AWS instances the data is not an issue this is a perfect use

case for this. Some of the security concerns go away, you don’t have some of the data feeds
intertwined within the network which makes it more secure.

Tim: A lot of it comes down to who pays for it, I know that AWS offers partnering with a

university and allot you educational credits per year. Use of that or a technological fee charged

to the students would be a good solution to the cost of the compute time.

Darin: What you are talking about is very course specific, it is almost like taking pottery you have

to pay for the clay. So making it very class specific costs definitely could be a good solution to

payment issues.

Tim: So you don’t think there is anything bad about a professor spinning up an instance on
campus?

Darin: Well we can’t control it, we know it happens. I would view it as a campus level decision,

rather than consolidation. Some of the work we do only here only lasts a couple months of the

year and we are looking towards using the cloud for that work, due to the small amount of time

we use the hardware that otherwise just sits there. Cloud enables us to burst our needs for a

shortened period of time and utilize the computing power just when we need it.

Tim: Another reason that we are doing this is that some lab computers may be windows based,

it is an advantage to having it in Docker which is reproducible.

Darin: To me that’s one of the inherent advantages of being in a container type world as
opposed to VM type world. I really think the container concept is maybe the next evolution. The

container type methodology makes sense. In a VM world you can take a snapshot and its

portable, but you replicate problems that way. In a container, you keep it so tightly wound that

89

it has less issues. A single advantage for smaller advantages, having a stable technology spend

rather than a big spend then nothing for years. This can provide stability to pricing with good

management.

90

Derek Stinchfield - Scientific Computing Center, Systems Admininstrator

Andrew Keulbs - Scientific Computing Center, Lead Client Support

Andrew: (Regarding the security issues regarding Docker in the lab environment) That is a

statewide policy, you can’t affect the work of other people, like your computer even as a private
workspace in your office, is affecting other people’s resources you are now impacting their

ability to do their work.

Derek: it’s not to say we can’t use the software and put them places, a lot of times we need to
isolate them.

Tim: so, the main security concern is that, that computer can’t hinder someone elses computer

around it.

Andrew: you can’t impact another person’s ability to access resources and do their job

Tim: what about Docker is the issue?

Andrew: Docker is just like vm ware, it is treated as if it’s a virtual computer.

Derek: you can get root to that system even if you don’t have root to the main system.

Andrew: let’s say Docker was in the computer lab, you don’t have root to that machine, Docker

does. so if you put Docker container in there and you have root passwords to that container,

you are container on that machine and now you are root in that network. so usually you don’t
have root access within the computer lab.

Derek: the user that runs the Docker software has elevated and almost root privileges and can

affect the system.

Tim: so it is tricky to achieve but possible?

Andrew: the thing with Docker is that containers that would be run within Docker they would

have to be vetted to ensure no malicious containers. it is like GitHub you can just tell Docker to

download a container no matter what it is. allowing for malicious scripts to possibly accompany

it. and it may have a script to act as a bot or spam bot, or act as a denial of service bot.

Derek: depending on what people script, you have root access to that container. it is potentially

possible that you can take over the entire machine through the Docker machine if they know

how to manipulate privileges

Andrew: a Docker user can elevate another fake user that within the host computer with root

access.

Derek: there is enough ways within the container to have it create malicious material within the

container so that it can do enough harm and start denial of servicing a computer or probe it to

find weaknesses.

Andrew: you can do a scan of the network from the container to see what ip addresses are live

and then do a port scan on those live ip addresses and see what ports are open and with the

91

right code you can find vulnerable spots or denial of services by making requests and never

answering them. a generic Docker install can download any hosted Docker container any of

those can be run and that’s a security issue. it can run malicious and normal ones all the same.
they have full rights to download any Docker container on the planet. there are plenty of people

that spoof repositories with malicious software. so, that’s where security concerns of Docker,

how do you know what is legitimate? you can disable the rights to download containers, and

you should hold them locally on the machine. if an instructor knew they were going to run these

3 containers we can distribute them onto a lab and just disable the ability to download

containers. we would have the authorized containers locally for access.

Derek: even with Docker and things like that, it’s not that we don’t’ want to do it. we just want

to mitigate as many of those concerns as possible before we do it.

Andrew: Docker would totally be a valid requested software, just knowing those security

concerns would need to be dealt with its just a matter of how do we do it. limiting the

containers. we can allow Docker to only access certain subset of containers, or we can allow

certain users to install whatever they need. you can’t mix match the permissions its one or the
other.

Derek: it is essentially putting more than your own data at stake anyone who has got a home

directory in the lab could potentially lose their data. professors would not like that if someone

wiped all the home directories.

Andrew: with multiple user environments, it is just key that you don’t’ hinder anyone’s ability to

access any resource on the computer on any day at any time. which is why we need to know

which containers are being used and we know they are not malicious.

Tim: as far as new software requests, what is the process by which you consider it

Andrew: we get the official version of the software that is requested. and for some software

some more in-depth security checked within the environment. we may spin up a new isolated

system to test the new software in the environment and make sure it is ok.

Tim: how long does it normally take for installation of a software

Andrew: it can be the same day or depending on the accessibility of the software and any

complications it may take several days.

Tim: you guys think cloud computing is secure enough to use it with lab environments?

Andrew: connecting to an external service is usually never a problem if what you are doing is

handled by the external service. accessing a remote service is never usually a problem. it is not

in house it is not here being affected. any virtual computer that is being run somewhere else,

that means whatever you are doing is on that computer and not here. if it is a legitimate service.

a professor using containers on an amazon hosted instance should never affect the local

network or resources. just ensure that password management is held, don’t’ share the
username and passwords with the class. just abide by FERPA. you can’t share names and
information, if they are personally doing it themselves then its fine but for a professor to

request that information within the instance is not allow.

92

	University of North Dakota
	UND Scholarly Commons
	January 2018

	Implementation Of Computational Resources Focusing On Forecast Model Access For Universities
	Timothy Wayne See Jr
	Recommended Citation

	tmp.1559259364.pdf.RIfnY

