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ABSTRACT  
   
Using surface observations from the Integrated Surface Database (ISD), remotely sensed 

data from Moderate Resolution Imaging Spectroradiometer (MODIS), and modeled data 

from National Centers of Environmental Prediction (NCEP) and United Kingdom Met 

Office (UKMO) models, the aerosol induced surface cooling effect is studied for eight 

selected regions.  The results of this study indicate that aerosol plumes could impact surface 

temperature forecasts for all four seasons in East Asia and India and for seasons with heavy 

aerosol plumes in the Middle East and South Africa. No clear signals are found for either 

the impact of cloud contamination or the impact of aerosol type on the aerosol cooling 

effect. Overall, the findings of the study suggest the need for including aerosols in 

numerical forecasts for regions that experience heavy aerosol plumes, as well as highlights 

the regions and seasons that would require the consideration of such an effort.         
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CHAPTER 1 

INTRODUCTION  
Aerosol particles include sea salt, black carbon, organic carbon, dust and pollutants, 

with different source and sink mechanisms associated with various aerosol types within 

distinct regions. These particles, as a common component of the atmosphere, are known to 

have a non-trivial effect on climate through alteration of the radiation balance of the earth-

atmospheric system. Aerosol particles can affect climate directly, through scattering and 

absorbing short-wave radiation during daytime and absorption, and emission of long-wave 

radiation for both day- and night-time (Coakley et al., 1992). Indirectly, aerosol particles 

can act as cloud condensation nuclei (CCN), changing cloud particle size and distribution, 

further affecting precipitation (Wang et al., 2014). Semi-indirectly, aerosol particles could 

absorb solar energy, heat the air column and thus alter cloud properties (Painemal and 

Zuidema, 2013).  

Alternatively, aerosol particles could have both direct and indirect effects on 

weather, as well as introduce perturbations to surface and atmospheric properties such as 

changes in surface temperature, wind patterns and regional precipitation activities (e.g. 

Zhang et al., 2016). Observational evidences have been reported for the impacts of dust 

storms or smoke plumes from wildfires on meteorological properties. For example, Zhang 

et al. (2016) showed that biomass burning aerosol plumes could introduce a 2-5 °C drop in 

surface temperature, and an estimated aerosol cooling efficiency of 1.5 °C per unit aerosol 

optical depth (AOD) at 550 nm, during a biomass burning aerosol episode that occurred in 

summer 2015 over the Northern Great Plains.   
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Similarly, modeling based studies have reported the potential changes in various 

meteorological parameters due to aerosol events. For example, a simulation experiment 

(Benedetti and Vitart, 2018) showed that the presence of aerosol particles had reduced wind 

speed and precipitation amounts in East Asia by approximately 1-2 m s-1 and 0.5-1 mm 

day-1, respectively.   

Although recent observational and modeling studies have indicated the impacts of 

aerosol particles on weather patterns, unlike climate models, aerosol particles are often not 

considered in numerical weather forecasts. This is partially because the impacts of aerosol 

particles on weather are not well understood. Also, justification is needed for the inclusion 

of aerosol particles in numerical weather forecasts due to the additional computational 

expenses of inclusion of associated processes.   

Therefore, it is necessary to study the impacts of aerosol particles on weather 

forecasts, at both regional and global scales to quantify the necessity of including aerosol 

particles in numerical weather forecasts. In this thesis, the uncertainties of forecasted near 

surface temperatures in the United Kingdom Met Office (UKMO) and the National Centers 

for Environmental Prediction (NCEP) are investigated as functions of aerosol properties. 

Modeled temperatures are compared to observed temperatures from the integrated surface 

database (ISD) stations, with aerosol properties over the study scenes quantified using 

retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) and ground-

based observations from the Aerosol Robotic Network (AERONET).  This study focuses 

on answering the following questions:   

1. Do aerosol cooling effects vary spatially and temporally across multiple 

scales? 
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2. While aerosol cooling effects are often quantified over cloud free skies, 

what are aerosol cooling effects be under partially cloud covered skies? 

3. What are the impacts of aerosol particles on short-term weather forecasted 

temperatures? 

4. Do dust and smoke aerosol particles have different aerosol cooling effects? 

 

The thesis is divided into the following sections: Chapter 2 introduces the data 

sources, Chapter 3 includes the methodology of the study, Chapter 4 discusses the results 

from the analysis, and Chapter 5 summarizes the discussions and future outlook of this 

research. 
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CHAPTER 2 

DATASET 

This section describes the data used in this study. These datasets include 2-m 

temperature analyses and forecasts from the Global Forecast System (GFS) from NCEP 

and the Unified model from UKMO; observed surface temperatures and sky conditions 

from the Integrated Surface Database (ISD) and AOD data from Aerosol Robotic NET 

work (AERONET) and Moderate Resolution Imaging Spectroradiometer (MODIS) 

collection 6.1 Dark Target (DT) aerosol products. 

2.1 Integrated Surface Database (ISD) 

ISD data include meteorological parameters such as temperature, dewpoint, wind 

speed and direction, precipitation, cloud fraction, and snow depth (Lott et al., 2001) with 

unified parameter units under the same time scale compare to modeled forecast period (in 

UTC).  Quality control steps are applied which include cross checks among related 

stations and the implementation of an automated correction system 

(https://www.ncdc.noaa.gov/isd). 

In this study, the surface temperature (in ℃) and sky condition (in 0-6 oktas) were 

used to evaluate modeled temperature values under different sky conditions (source: 

ftp://ftp.ncdc.noaa.gov/pub/data/noaa/isd-lite).  Figure 1 shows the map of the stations used 

in the study, which represents a total of 12,406 stations for the period of year 2014-2017. 
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Figure 1.  Spatial distribution of ISD stations used in this study (12406 stations). 
Each blue spot represents a ground-based station with valid data for the period of 
2014-2017. 

 

The sky condition is classified based on cloud or other obscuring phenomena 

(source: ftp://ftp.ncdc.noaa.gov/pub/data/noaa/isd-format-document.pdf). The unit scale of 

sky condition is given by Table 1. 
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Table 1. Classification of sky conditions 
(source: ftp://ftp.ncdc.noaa.gov/pub/data/noaa/isd-lite/isd-lite-format.txt) 

Cloud cover units  Sky cover condition 

0: None SKC or CLR 

1: One okta 1/10 or less but not zero 

2: Two oktas 2/10 – 3/10, or FEW 

3: Three oktas 4/10 

4: Four oktas 5/10, or SCT 

5: Five oktas 6/10 

6: Six oktas 7/10 – 8/10 

7: Seven oktas 9/10 or more but not 10/10, or BKN 

8: Eight oktas 10/10, or OVC 

 

2.2 Numerical Forecast Models 

Data from two different numerical weather forecasting models, UKMO and NCEP, 

were obtained from the THORPEX Interactive Grand Global Ensemble (TIGGE) data 

archive (source: https://apps.ecmwf.int/datasets/data/tigge/levtype=sfc/type=cf/). In this 

study, 2-m surface temperature data from NCEP and UKMO models with the same forecast 

periods and time step were used.  

2.2.1 The Global Forecast System (GFS) from NCEP 

The GFS is a weather forecast model from NCEP (source: 

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-
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system-gfs). The model provides analyses and forecasts on a wide range of weather 

parameters that include surface temperature, winds, precipitation, soil moisture and 

atmospheric ozone concentration. The Grid Point Statistical Interpolation (GSI) is used as 

the data assimilation scheme (Kleist et al. 2009) for improving accuracies of initial 

conditions. The NCEP data used in this study include global forecasts of meteorological 

parameters four times a day at 0000, 0600, 1200 and 1800 UTC on a 0.5°X 0.5° grid with 

a 3-hour time step and up to a +384 hours forecast period. 

2.2.2 United Kingdom Met Office (UKMO) Forecast Model 

The UKMO model is a unified global numerical weather prediction model. Similar 

to NCEP GFS, a 4-D Var data assimilation method (Hamill T., 2011) has been incorporated 

for generating mean initial conditions. The UKMO model reports meteorological 

parameters four times a day at the same UTC times as compared to the GFS with up to a 

+174 hours forecast period. The UKMO data used in this study including forecasted 

temperature of 0h, 24h and 48h at a spatial resolution of 0.5°x 0.5° grid with a 3-hour time 

step. 

Note that missing data exist for both NCEP and UKMO data for the selected study 

period; a complied list of those missing data is included in Appendix A. 

2.3 MODIS Aerosol Data 

The collection 6.1 Level-2 DT Aqua MODIS AOD data (approximately 1:30 local 

overpass time) were used in this study. The MODIS DT algorithm, which applied on both 

over land and ocean retrievals, is based on the assumption that aerosols brighten dark 

surface regions. The retrieval process is performed by matching observed radiance values 
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with top of atmosphere (TOA) radiance values from a pre-computed look up table (LUT) 

(Levy et al., 2010). For the land retrieval, the brightest 50% and the darkest 20% of pixels 

are removed for screening out unwanted features such as clouds, water, and snow/ ice 

pixels. The expected errors for current DT AOD retrievals at 10-km resolution are [±（0.05 

+15%）] and [±（0.03+5%）], for ocean land and over ocean AOD retrievals respectively 

(e.g. Levy et al., 2013).  

The spatial resolution of the MODIS DT aerosol products is 10 km with the DT 

aerosol optical depth retrievals available at 7 wavelengths (centered on 470nm, 550nm, 

650nm, 860nm, 1240nm, 1640nm, and 2110 nm) over ocean and 3 wavelengths (centered 

on 470nm, 650nm, and 2110nm) over land. For this study only DT Aqua AOD values at 

the 550nm are used. Pixels are further quality controlled such that only the “best” quality 

over land (QA = 3) and “marginal” to “best” quality over ocean retrievals (QA = 1, 2, or 

3) were utilized in this study. 

Cloud mask data are also included in the MODIS aerosol products. The cloud mask 

data were further used to inter-compare with cloud fractions as reported from the ISD data 

in this study. 

2.4 Aerosol Robotic Network (AERONET) Observations 

AERONET data are a global collection of ground observations of aerosol properties 

from approximately 400 sun-photometer stations, with data from 311 stations used in this 

study. The sun-photometer instruments measure sun and sky radiances at 7 spectral bands 

ranging from 340 nm to 1640 nm which are further used for retrieving of aerosol optical 

and physical properties (Holben at el., 1998). Aerosol optical depths, which are the primary 



9  

product of sun-photometer measurements, are computed through Beer-Bouguer’s Law by 

accounting for attenuation of solar energy by aerosols. For sky measurements, two sky 

observation sequences, ‘almucantar’ and ‘principal plane’ are performed at 440nm, 670 

nm, 870 nm and 1020 nm (Holben at el., 1998) for retrieving related aerosol properties 

such as aerosol absorption and size parameters.  In this study, only quality controlled and 

cloud screened version 3, level 2 AERONET data were used. The reported uncertainty for 

AERONET AOD is on the order of ±0.01 per optical air mass (Giles et al., 2019). 

Note, no measurements at 550 nm is available from the sun-photometer instruments; 

yet, to be consistent with MODIS AOD retrievals, AERONET AOD values are interpolated 

to 550 nm using 440 nm and 675 nm AERONET data based on the equation as shown 

below, which assumes a constant Angstrom exponent value between 440nm-550nm and 

550nm to 670 nm, 

 ఛഊఛഊబ = ቀ ఒఒబቁିఈ        (1) 
where 𝜏ఒబ and 𝜏ఒ  are the AOD values at reference wavelengths of 𝜆଴  and 𝜆 

respectively. The Angstrom exponent parameter α is defined by equation 2 based on the 

log of ratio of 𝜏ఒ and 𝜏ఒబand the log ratio of 𝜆 and 𝜆଴. 

α = − ୪୥ ಜಓಜಓబ୪୥ ಓಓబ                                          (2) 
In addition, fine model aerosol fraction data from AERONET are also used to assist 

in discriminating aerosol types in this study. The fine model aerosol fraction refers as the 

ratio of fine mode aerosol optical depth to total aerosol optical depth, estimated based on 

the spectral de-convolution algorithm (SDA) as illustrated in O'Neill et al. (2003). Fine 
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mode fraction values range from 0 to 1 with 0 means all coarse model aerosols (particle 

size typically larger than 1 µm) and 1 means all fine model aerosols (particle size typically 

around or less than 0.25 µm).  Fine mode fraction data are included in the AERONET data 

used in this study. 
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CHAPTER 3 

METHODOLOGY 

In this chapter, data processing and analysis methods are discussed. Note that 

different type of aerosol plumes could exist at different regions and for different seasons. 

For example, dust aerosol is the dominant aerosol type over East Asia during the spring 

season, while pollutant aerosols are the primary aerosol during the winter seasons for East 

Asia (Zhang et al., 2017). Thus, regional-based analyses were implemented for eight 

selected regions, which have heavy aerosol plumes (e.g. have days with AOD at 550nm > 

0.3) for one or more seasons. The selected regions, as well as the latitude and longitude 

boundaries of the selected regions are listed in Table 2.  

Table 2. Detail information of the eight focused regions. 

Area Location (Lon/Lat)  

East Asia  9.71 N-40.98N; 95.68E-126.63E  

Europe  36.00N-71.13N; 9.52W-66.17E  

India  8.00N-36.00N; 68.00E-97.00E  

North-east Asia  45.91N-60.94N; 102.37E-144.64E  

US  25.00N-49.00N; 73.00W-125.00W  

The Middle East  12.27N-36.59N; 37.83E-61.80E  

Mid-south Africa  17.11S-2.41N; 7.41E-44.75E  

South America  18.86S-2.49W; 45.36W-82.30W;  
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3.1 Data Colocation and Binning Processes 

To study the temporal variations of aerosol cooling effects, a total of three years 

(December 2014 to November 2017) of ground based and satellite observations, as well as 

analyses and forecasts from NCEP and UKMO models were processed for four Northern 

Hemisphere seasons: spring (March, April, May), summer (June, July, August), fall 

(September, October, November), and winter (December (from previous year), January, 

February). In addition, analyses and forecasts of UKMO and NCEP are only available at 

four discrete times: 00:00, 06:00, 12:00 and 18:00 UTC. To account for the time 

discrepancy between modeled data and the ISD, AERONET and MODIS data, the 

observational data are rebinned into those four time windows. For example, observational 

data from 03:00-09:00UTC are grouped for inter-comparing with model data at 06:00UTC.  

Also, since AERONET and MODIS data are only available at daytime, for a given region, 

only daytime ISD and model (UKMO and NCEP) data are used as shown in Table 3 with 

nighttime ISD and model data discarded. 

Table 3. UTC Time for regions that experience local daytime. 
Longitude (degree) Time zone 
45E~135E                          06:00UTC 
45W~45E                           12:00UTC 
135W~45W                          18:00UTC 
180W~135W, 135E~180E  00:00UTC  
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3.2 Data Screening for ISD Data 

Despite existing quality control steps for ISD data, erroneous ISD data are still 

observable, represented by abnormally low and high temperatures found in the dataset. To 

exclude those noisy ISD data, a three-standard deviation data screening step is applied 

where the differences between ISD and modeled temperatures (T) are evaluated against 

MODIS AOD.  The MODIS AOD data are divided into 0.1 AOD bins in which mean and 

standard deviation of (T) are computed. ISD temperature data that have T values outside 

the mean ±3 standard deviation are assumed to be erroneous data and are excluded in the 

analysis.   

An example of this method is shown in Figure 2 where panels (a) and (b) shows the 

scatter plot of collocated T and AOD for the East Asia region for Northern Hemisphere 

Spring, using NCEP and UKMO analyses data (0h forecast time), respectively. T is 

computed using the difference between collocated ISD and the model temperature data.  

The red points are raw data and blue points are data pairs that passed the 3-standand 

deviation data screen method.   
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Figure 2. Differences (T) in temperature between ISD data and modeled data from 
(a) NCEP and (b) UKMO under cloud-free condition during Northern Hemisphere 
Spring for the East Asia region.  Blue dots represent T values that are within mean 
±3 standard deviation of T values for a given AOD interval of 0.1. Red dots 
represent T values that fail the standard deviation test.   

 

3.3 Linear Regression Method  

The regression between T and MODIS AOD is studied using the Theil-Sen linear 

regression method. The Theil-Sen linear regression method was first proposed by Theil. 

(1950) as a median slope estimator and expanded later by Sen. (1968) into handle pairwise 

slopes. Compared to the least square method, the Theil-Sen regression method is less 

sensitive to outliers and can tolerate arbitrary corruption of up to 29.3% of outliers without 

decreasing the accuracy (Rousseeuw et al., 2003). In this study, this regression method is 

used to calculate the slope and intercept of the relationship between surface temperature 

bias and AOD values for study areas.   

As an example, Figure 3 shows the comparison between the Theil-Sen estimator 

and the least square estimator. A total of 51 sample data points were generated that have a 

slope of two. A total of 20% outliers are also included. The linear regression results of 

slopes calculated by both Theil-Sen estimator and least square are 1.87 and 1.29, 

respectively. As shown in Figure 3, the linear regression from Theil-Sen estimator has a 
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closer convergence with the original slope which indicates that this estimator has better 

overall performance with datasets that have a high ratio of outliers. We therefore use the 

method in the remainder of this study in order to minimize the impact of such outliers.  

 

 
Figure 3. Comparison of the linear regressions of 51 data points by using the least 
squares method (red line), Theil-Sen method (green line) and the original slope 
excluding the outliers (black line). Note this is a replicate of an example from 
https://www.mathworks.com/matlabcentral/fileexchange/34308-theil-sen-estimator.   
 

In addition, the confidence intervals for the derived slopes are also computed at a 

significance level α=0.05. For N values of Theil-Sen slopes 𝑄ே, where N value is defined 

as N=௡(௡ିଵ)ଶ  and n is the total number of data points, the 𝑄௠௘ௗ (or the slope reported by the 

Theil-Sen method) is the median value computed by ranking 𝑄ே values from the smallest 

to largest. The confidence interval can be calculated as follows (Gilbert, 1987).                                               C஑ = Zଵି஑/ଶඥVar(S)                                                         (3) 
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Where 𝑍ଵିఈ/ଶ  is equal to 1.960 for significance level α=0.05 (Gilbert, 1987) and Var(S) 

is the variance of the Mann-Kendall test statistic S (Mann, 1945; Knedall,1975), which 

can be calculated through the following equation, 𝑉𝑎𝑟(𝑆) = ௡(௡ିଵ)(ଶ௡ାହ)ି∑ ௧೔(௧೔ିଵ)(ଶ௧೔೘೔సభ ାହ)ଵ଼                                            (4) 
 Where n is the total number of data points, 𝑡௜ is the 𝑖௧௛ tied value, and m is the number of 

groups with values that are equal or tied (Mann, 1945; Knedall,1975). 

Once the value of 𝐶ఈ is calculated, the slope values of 𝑀ଵ=ேି஼ഀଶ  and 𝑀ଶ=ேା஼ഀଶ   

can be also calculated. Finally, the computed slopes from the Sen’s estimator are sorted 

and the M1th and (M2+1)th largest slopes are used to define the lower and upper limited 

of the 95% confidence interval (Gilbert, 1987). 

3.4 Aerosol Angstrom Exponent 

One of the principle questions raised in this study is the examination of aerosol 

cooling effect as a function of aerosol type. Aerosol type is estimated using the Angstrom 

exponent (Angstrom,1929), which is a quantitative measure of aerosol particle size. The 

value of the Angstrom exponent (α) between the 440-675 nm wavelengths is computed 

using equation (2) from chapter 2. An analysis of Aerosol particle size distribution (Eck et 

al., 1999) showed that for the α value computed from 440-670 nm wavelengths, a larger 

value (α≥1) usually refers urban pollution or biomass burning aerosol particles whereas a 

smaller value(α≤1) usually indicates dust or sea salt aerosols. 

3.5 Sky Condition Determination 

Another component of the study is to evaluate the aerosol cooling effect under 

different cloud coverage conditions. To achieve this goal, observation scenes are divided 

into three categories: totally clear, partly cloud cover and most cloud cover conditions.  
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These are defined as follows: 0 okta represents clear conditions, 1-3 oktas refer partly 

cloudy condition and finally 4-6 oktas indicate mostly cloudy condition. Near overcast and 

overcast conditions (7-8 oktas) are not included in this study. Again, table 1 shows the 

classification of sky conditions used in this study.  

The comparison between ISD cloud coverage and MODIS cloud fraction was also 

made on a seasonal basis using three years (2015-2017) of collocated ISD and MODIS data 

as shown in Figure 4. To collocate the two datasets, MODIS cloud fraction data that are 

within 0.3 x 0.3 (Latitude/Longitude) of an ISD ground station are averaged and used to 

represent cloud fraction for the given station. As indicated from Figure 4, Could free scenes 

as reported from the ISD data (0 okta) represents mean MODIS cloud fraction of less than 

20%. The ISD data reported partly cloudy conditions (1-3 oktas) correspond to mean 

MODIS cloud fraction of around 40% and the ISD data reported mostly cloudy conditions 

(4-6 oktas) correspond to mean MODIS cloud fraction of around 60-70%. Note that since 

MODIS data within a 0.3 x 0.3 (Latitude/Longitude) area are used for representing cloud 

conditions as reported from the ISD data, which may or may not be the precise 

observational domain as reported by the ISD data. Still, Figure 4 suggests that cloud 

conditions from the ISD data can be used to represent cloud conditions of the observing 

scenes. 
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Figure 4. Box-whisker plots of seasonal averaged cloud fractions from MODIS for 
three ISD reported cloud conditions for (a) spring, (b) summer, (c) fall and (d) 
winter seasons using three years of data (2015-2017).  Red lines represent the 
median values of cloud fraction for given sky coverage conditions. 
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CHAPTER 4 

RESULTS and DISCUSSION  
4.1 Inter-comparison with A Previous Study 

In a previous study, Zhang et al. (2016) investigated the smoke surface cooling 

effect for a significant smoke aerosol episode that occurred in Midwestern United States 

from June 28th to June 30th, 2015. In Zhang et al. (2016), a daytime direct surface cooling 

effect around -1.5℃ per unit AOD at 550nm wavelength was found over Grand Forks, ND 

for June 29th, 2015.  As a self-evaluation of the algorithms and datasets used in this study, 

this effort was repeated using collocated data from ground observation stations and NCEP 

model as well as collocated AOD values at 550nm from MODIS AQUA, as shown in 

Figure 5. In Figure 5a, each point indicates a collocated pair of MODIS AOD versus the 

difference between observed near surface temperature and NCEP reported surface 

temperature (T). To match the reference study as shown in Zhang et al. (2016), the latitude 

and longitude ranges of the study area are restricted to 40.63° N to 49.63° N and 90.98° E 

to 104.98° E respectively and as well as the time frame of June 28th to 30th, 2015. As 

suggested from Figure 5b, while data are rather scattered for the AOD range of 0-0.5, a 

noticeable near linear pattern is found between MODIS AOD and T for the AOD range 

of 0.5-5. The slope of AOD versus T is estimated to be -1.55℃ per unit AOD at 550nm, 

which is very similar to the reported aerosol cooling efficiency value as reported by Zhang 

et al. (2016) of -1.5℃ per AOD at 550nm.    
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Figure 5. (a) Aqua MODIS AOD distribution (at 550nm) over ISD stations for the 

upper Mid-western United States for June 29th, 2015; (b) Scatter plot of 

temperature biases from NCEP modeled 2-m temperature (observation temperature 

– forecasted temperature; in ℃) and MODIS AOD using the collocated data from 

(a). 

 

4.2 Seasonal Distributions of AOD and Aerosol Induced Bias in Modeled Near 

Surface Temperature 

Encouraged by the consistency between the two case studies, the same method was 

then applied to a regional analysis for eight selected regions as mentioned in the previous 

chapter. Using three years (2015-2017) of the collocated dataset, the seasonal-based spatial 

distribution of Aqua MODIS AODs were studied and are shown in Figure 6 for all ground 

stations as used in this study; where each point in Figure 6 represents seasonal mean AOD 

value of a matched station. Note the total amount of data points from each season may vary 

due to more or less available data from MODIS during certain seasons.    
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Overall, among four seasons, regions with large AOD value (AOD > 0.3) include 

China and east Asia, India, The Middle East, and Mid-south Africa. For South America 

and North East Asia, high AOD value are prevalent only during certain seasons; for South 

America, the peak AOD value is reached during the fall and moderate AOD exists 

throughout the summer to winter periods. Similarly, for northeast Asia, the high AOD 

values only persist during summer period. In the remaining regions, US and Europe, there 

is a consistent pattern of mean AOD value of less than 0.3 for all four seasons. 

Similarly, using three years (2015-2017) of collocated dataset, the seasonal-based 

spatial distribution of the 2-m temperature biases (T; ground station – NCEP temperature) 

from NCEP model are shown in Figure 7 (note the same analysis was also conducted using 

UKMO data, the plots of which are shown in the Appendix B). For both NCEP and UKMO 

models, the T values have shown strong spatial and temporal variations among study 

regions.  In particular, India has shown negative T patterns throughout the four seasons.  

Such negative T patterns are not found for other regions. It is unsure if the negative T 

patterns over India as seen in Figure 7 are due to model inherited uncertainties or due to 

aerosol cooling effects, as this region is often covered with thick aerosol plumes.    

Through a surface-level cross checking between Figures 6 and 7, the relationship 

between AOD and T seems less observable. This is likely caused by other factors such as 

uncertainties in the model and observations of surface temperature, as well as potential 

cloud contamination in space-borne and surface observations, all of which could impact 

the overall accuracy of the results. 
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Figure 6. 3-year averaged seasonal mean AOD (550nm) over ISD stations for 
Northern Hemisphere (a) spring, (b) summer, (c) fall and (d) winter.  Red boxes 
highlight focused study regions. 
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Figure 7. 3-year averaged seasonal mean 2-m temperature biases (observation 
temperature – forecasted temperature in ℃) for NCEP model over ISD stations for 
Northern Hemisphere (a) spring, (b) summer, (c) fall and (d) winter. Red boxes 
highlight focused study regions. 

 

Although some regions show relationship between AOD and T for some seasons, 

especially for regions with high mean AOD value (AOD > 0.3), such a relationship is less 

clear for other regions or seasons. To further explain this phenomena, other factors that 

might have an impact on the AOD and T relationship, such as cloud contamination and 

aerosol speciation need to be considered (Painemal and Zuidema, 2013). 
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4.3 The Relation of AOD and T over Clear Free Skies   

As the base study, the relationship of AOD and T (from NCEP) was calculated, 

as shown in Table 4 for the selected regions using collocated data from cloud free skies, as 

indicated from the ISD data. Also included in Table 4 are the 95% confident intervals of 

the reported slopes.  

Table 4. Seasonal variations of slopes (with 95% confidence intervals), temperature 
biases and mean AODs of eight focused regions under cloud-free condition using 
NCEP data. 

Area Season Slope 95% confidence 
interval 

Total data 
points 

Mean AOD AOD value ratio (%) 
>0.5 >1.0 

East 
Asia 

Spring -2.5 [-2.61, -2.40] 11,182 0.61 46.97 18.13 
Summer -1.67 [-1.91, -1.42] 2,796 0.46 34.05 10.66 

Fall -2.23 [-2.39, -2.08] 8,209 0.31 18.61 3.81 
Winter -0.5 [-0.62, -0.38] 12,698 0.33 20.54 3.84 

 
India Spring -2.28 [-2.41, -2.15] 12,553 0.5 41.79 6.87 

Summer -2.5 [-2.70, -2.30] 3,058 0.96 80.61 43.39 
Fall -2.75 [-2.87, -2.64] 13,494 0.54 44.03 10.76 

Winter -2.04 [-2.12, -1.96] 20,323 0.52 39.37 13.22 
 

Europe Spring 0.03 [0.03,0.03] 27,309 0.14 2.19 0.09 
Summer 0.05 [-0.10, 0.23] 48,714 0.19 3.81 0.24 

Fall 0.06 [-0.24, 0.94] 35,662 0.13 1.88 0.22 
Winter 0.52 [0.52, 0.52] 14,311 0.09 0.49 0 

 
US Spring 1.89 [1.79, 1.97] 90,068 0.11 0.45 0 

Summer -1.02 [-1.03, -0.92,] 118,648 0.19 4.95 1.80 
Fall -0.69 [-1.17, -0.32] 118,753 0.1 2.17 0.76 

Winter 2.11 [1.63, 2.61] 53,245 0.06 0 0 
 

North 
East 
Asia 

Spring -3.95 [-5.81, -2.14] 699 0.12 0 0 
Summer -0.66 [-1.16, -0.15] 1,598 0.24 13.20 4.07 

Fall -3.47 [-4.51, -2.49] 1,701 0.1 1.88 0 
Winter -18.17 [-25.69, 15.07] 124 0.11 0 0 

 
Spring -4.88 [-9.61, -0.80] 125 0.11 0 0 

Summer -3.39 [-4.10, -2.70] 1,103 0.23 10.79 0 
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Area Season Slope 95% confidence 
interval 

Total data 
points 

Mean AOD AOD value ratio (%) 
>0.5 >1.0 

Mid-
south 
Africa 

Fall -0.47 [-1.39, 0.44] 513 0.34 21.44 0 
Winter -2.63 [-5.82, 0.21] 105 0.53 48.57 0 

 
Middle 

East 
Spring -0.39 [-0.67, -0.11] 4,360 0.43 29.95 4.50 

Summer -0.83 [-1.02, -0.64] 6,692 0.51 41.26 6.44 
Fall -0.56 [-0.80, -0.33] 5,598 0.38 21.04 3.61 

Winter -1.32 [-1.82, -0.82] 4,316 0.24 5.40 0.25 
South 

America 
Spring 2.3 [0.26, 4.35] 847 0.15 0 0 

Summer 0.1 [-1.41, 1.65] 1,986 0.11 0.60 0 
Fall -3.04 [-3.76, -2.33] 1,399 0.28 13.08 2.57 

Winter 0.12 [-1.80, 2.11] 397 0.22 5.54 0 
 

As shown in Table 4, statistically significant relationships are found between T 

and AOD for regions and seasons that have mean AOD value over 0.3 in most cases. For 

those regions, the aerosol cooling effect, which is defined as the aerosol induced surface 

cooling in C per unit AOD, is found to range from -0.39 to -2.75 C per unit AOD. This 

aerosol cooling effect is observable for all four seasons for East Asia and India regions, as 

season mean AODs are higher than 0.3 for all four seasons for the two regions. For East 

Asia in particular, the aerosol cooling effect ranges from -1.5 to -2.5 C per unit AOD for 

spring, summer and fall seasons and is -0.5 C per unit AOD for the winter season. It is 

possible that the difference in aerosol cooling effect is introduced by different aerosol 

species from different seasons, as pollutant aerosols are likely dominant in the region 

during the winter season while dust aerosols dominate the spring season, which shows the 

highest mean AOD and the largest aerosol cooling effect in magnitude of -2.5 C per unit 

AOD. Still, it is also possible that numerical models have different forecasting accuracy 

for different seasons. Although different aerosol types are expected for different seasons in 

the India region, similar aerosol cooling effect of -2.0 to -2.75 C per unit AOD are found 
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for four seasons. Regions with mean AOD higher than 0.3 are also found for the Middle 

East in spring, summer and fall seasons and for Mid-south Africa for fall and winter seasons.  

Negative aerosol cooling effect on the order of -0.39 to -2.63 C per unit AOD are found 

for those seasons, however, trends are statistically insignificant for the Mid-south Africa 

region for seasons with mean AOD values larger than 0.3.  

For regions with seasonal mean AOD less than 0.3, however, the aerosol cooling 

effect is less observable and both negative and positive slopes between T and AOD are 

found. It is not surprising, however, as with low aerosol loadings, aerosol cooling effect 

may be less significant in magnitude compared with inherited uncertainties in models. 

Table 5. Similar to Table 4, but for using UKMO data. 

Area Season Slope 95% confidence 
interval 

Total data 
points 

Mean AOD AOD value ratio (%) 
>0.5 >1.0 

East 
Asia 

Spring -0.86 [-0.94, -0.79] 10,955 0.61 47.14 18.36 
Summer -0.85 [-1.02, -0.67] 3,174 0.46 32.42 10.11 

Fall -1.75 [-1.86, -1.63] 8,376 0.31 18.74 3.88 
Winter -1.30 [-1.40, -1.20] 13,327 0.33 20.29 3.78 

 
India Spring -0.56 [-0.66, -0.45] 12,142 0.5 41.85 7.03 

Summer -2.07 [-1.16, -0.91] 3,200 0.96 79.94 43.16 
Fall -1.11 [-1.18, -1.03] 13,949 0.54 44.32 10.93 

Winter -0.49 [-0.55, -0.42] 21,620 0.52 39.05 13.02 
 

Europe Spring 0.43 [0.43, 0.43] 26,775 0.14 2.25 0.09 
Summer -0.43 [-0.69, 0.22] 53,758 0.19 3.69 0.23 

Fall -0.32 [-0.59, 0.34] 36,303 0.13 1.86 0.22 
Winter 0.52 [0.52, 0.52] 15,133 0.09 0.46 0 

 
US Spring 0.79 [0.28, 1.14] 90,289 0.11 0.45 0 

Summer -0.12 [-0.32, 0.16] 131,853 0.19 4.60 1.46 
Fall -0.56 [-0.76, -0.15] 122,546 0.1 2.10 0.74 

Winter 0.39 [0.33, 0.95] 56,743 0.06 0 0 
 

Spring -1.47 [-2.87, -0.08]                                                                                                                        690 0.12 0 0 



27  

Area Season Slope 95% confidence 
interval 

Total data 
points 

Mean AOD AOD value ratio (%) 
>0.5 >1.0 

North 
East 
Asia 

Summer 0.24 [-0.09, 0.58] 1,777 0.24 13.67 4.84 
Fall -0.83 [-1.55, -0.14] 1,731 0.1 1.91 0 

Winter -7.41 [-26.55, 9.45] 133 0.11 0 0 
 

Mid-
south 
Africa 

Spring 1.11 [-3.02, 4.82] 127 0.11 0 0 
Summer 0.53 [0.08, 0.97] 1,237 0.23 11.16 0 

Fall 0.92 [0.17, 1.64] 518 0.34 21.24 0 
Winter 0.27 [-0.95, 1.61] 106 0.53 25.84 1.87 

 
Middle 

East 
Spring -0.17 [-0.39, 0.06] 4,394 0.43 29.59 4.46 

Summer 0.06 [-0.09, 0.21] 7,384 0.51 40.99 6.07 
Fall -0.46 [-0.64, -0.27] 5,751 0.38 21.07 3.62 

Winter -0.87 [-1.17, -0.57] 4625 0.24 15.21 0 
 

South 
America 

Spring -1.59 [-2.96, -0.22] 841 0.15 0 0 
Summer -1.72 [-2.39, -1.05] 2271 0.11 1.98 0 

Fall -0.66 [-1.04, -0.28] 1405 0.28 13.02 2.56 
Winter -1.38 [-2.74, -0.01] 410 0.22 3.77 0 
 

Similar results are also found using UKMO data (Table 5) for the Indian and East 

Asia regions where mean AOD of higher than 0.3 are expected for all seasons. The aerosol 

cooling effect ranges from -0.85 to -1.75 °C per unit AOD for all seasons for East Asia. 

While for India, the aerosol cooling effect ranges from -0.49 to –0.56 °C per unit AOD for 

winter and spring season respectively and -1.11°C per unit AOD for the fall season and -

2.07 °C per unit AOD for the summer season. For the Mid-south Africa and Middle East 

regions, however, weakly negative and even positive aerosol cooling efficiencies are found, 

even for seasons with a mean AOD larger than 0.3. This is likely, although not conclusively 

known to be, due to the difference in model performance or due to insufficient data samples 

used in the analysis. Lastly, mixed negative and positive aerosol cooling efficiencies are 
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also found for other regions with less than 0.3 mean seasonal AOD values, which is similar 

to what we observed for using the NCEP data.   

Overall, this study suggests that aerosol induced surface cooling effect should be 

taken into consideration in numerical weather prediction models for India and East Asia 

for all seasons, and for Middle East for spring, summer and fall seasons. For other regions, 

heavy aerosol plumes exist only during sporadically occurring events; thus, event-based 

methods may need to be developed to account for aerosol cooling effects over those regions.   

4.4 Impacts of Cloud Contamination on Aerosol Cooling Effects  

To study the impact of cloud coverage on aerosol induced surface cooling, as the 

reference to the clear sky condition ( 0 okta), two other observing conditions, partly cloudy 

(1-3 oktas), and mostly cloudy (4-6 oktas) are selected for three regions (East Asia, India, 

The Mid-East) that are previously identified as regions with significant aerosol surface 

cooling effect. No overcast conditions are selected as MODIS DT aerosol retrievals are not 

available over cloudy skies. The results are as shown in Table 6 to Table 9.  

Table 6. Aerosol cooling efficiency (℃/τ550nm) under three sky conditions for 
NCEP and UKMO models for spring for three selected regions. Also included are 
mean MODIS AOD, AEROENT Angstrom exponent (α) and 95% confident 
intervals for slopes (aerosol cooling efficiencies). 

Area Cloud cover 
(Oktas) 

Slope/Total data points 
(℃/𝝉𝟓𝟓𝟎𝒏𝒎/number of points) 

Mean AOD 
(𝝉𝟓𝟓𝟎𝒏𝒎) 

95% confidence interval for 
slopes 

  NCEP 
 

UKMO  NCEP UKMO 

 
East 
Asia 

0 -2.50/11182 -0.86/10,955 0.61 [-2.61, -2.40] [-0.94, -0.79] 
1-3 -2.53/17266 -1.04/17,078 0.51 [-2.62, -2.44] [-1.11, -0.98] 
4-6 -1.99/11906 -1.02/11,777 0.61 [-2.07, -1.90] [-1.08, -0.95] 

       
 
India 

0 -2.28/12553 -0.56/12,142 0.50 [-2.41, -2.15] [-0.66, -0.45] 
1-3 -2.13/8254 -0.12/8,100 0.52 [-2.33, -1.94] [-0.28, 0.05] 
4-6 -2.01/6049 -0.25/5,982 0.66 [-2.19, -1.82] [-0.38, -0.11] 
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Area Cloud cover 
(Oktas) 

Slope/Total data points 
(℃/𝝉𝟓𝟓𝟎𝒏𝒎/number of points) 

Mean AOD 
(𝝉𝟓𝟓𝟎𝒏𝒎) 

95% confidence interval for 
slopes 

The 
Middle 
East 

0 -0.39/4360 -0.17/4,394 0.43 [-0.67, -0.11] [-0.39, 0.06] 
1-3 -0.45/1955 -0.02/1,948 0.42 [-0.85, -0.06] [-0.37, 0.32] 
4-6 -1.37/983 -0.64/962 0.55 [-1.87, -0.87] [-1.06, -0.23] 

 

Table 7. Similar to Table 6, but for the summer season. 

Area Cloud cover 
(Oktas) 

Slope/Total data points 
(℃/𝝉𝟓𝟓𝟎𝒏𝒎/number of points) 

Mean AOD 
(𝝉𝟓𝟓𝟎𝒏𝒎) 

95% confidence interval for 
slopes 

  NCEP 
 

UKMO  NCEP UKMO 

 
East 
Asia 

0 -1.67/2796  -0.85/3,174 0.46 [-1.91, -1.42] [-1.02, -0.67] 
1-3 -1.69/9611 -1.12/10,635 0.33 [-1.85, -1.53] [-1.23, -1.01] 
4-6 -1.28/9619 -0.90/10,608 0.40 [-1.28, -1.28] [-0.90, -0.90] 

       
 
India 

0 -2.50/3058 -1.03/3,200 0.96 [-2.70, -2.30] [-1.16, -0.91] 
1-3 -4.14/3008 -2.07/3,302 0.71 [-4.35, -3.93] [-2.22, -1.93] 
4-6 -3.07/4089 -1.41/4,544 0.74 [-3.23, -2.91] [-1.51, -1.31] 

       
The 
Middle 
East 

0 -0.83/6692 0.06/7,384 0.51 [-1.02, -0.64] [-0.09, 0.21] 
1-3 -1.13/1420 -0.01/1,582 0.59 [-1.61, -0.66] [-0.39, 0.36] 
4-6 0.14/449 -0.19/495 0.69 [-0.84, 1.12] [-0.91, 0.53] 

 

Table 8. Similar to Table 6, but for the fall season. 

Area Cloud cover 
(Oktas) 

Slope/Total data points 
(℃/𝝉𝟓𝟓𝟎𝒏𝒎/number of points) 

Mean AOD 
(𝝉𝟓𝟓𝟎𝒏𝒎) 

95% confidence interval for 
slopes 

  NCEP 
 

UKMO  NCEP UKMO 

 
East Asia 

0 -2.23/8209 -1.75/8,376 0.31 [-2.39, -2.08] [-1.86, -1.63] 
4-6 -0.96/10245 -1.03/10,541 0.30 [-0.96, -0.96] [-1.03, -1.03] 

       
 
India 

0 -2.75/13494 -1.11/13,949 0.54 [-2.87, -2.64] [-1.18, -1.03] 
1-3 -2.48/6822 -1.81/7,041 0.38 [-2.67, -2.30] [-1.96, -1.66] 
4-6 -1.38/5198 -0.91/5,343 0.45 [-1.55, -1.21] [-1.04, -0.78] 

       
The 
Middle 
East 

0 -0.56/5598 -0.46/5,751 0.38 [-0.80, -0.33] [-0.64, -0.27] 
1-3 0.31/1937 0.46/2,016 0.38 [-0.15, 0.78] [0.11, 0.80] 
4-6 -1.10/592 -0.81/605 0.47 [-1.80, -0.41] [-1.31, -0.31] 
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Table 9. Similar to Table 6, but for the winter season. 

Area Cloud cover 
(Oktas) 

Slope/Total data points 
(℃/𝝉𝟓𝟓𝟎𝒏𝒎/number of points) 

Mean AOD 
(𝝉𝟓𝟓𝟎𝒏𝒎) 

95% confidence interval for 
slopes 

  NCEP 
 

UKMO  NCEP UKMO 

 
East Asia 

0 -0.50/12698 -1.30/13,327 0.33 [-0.62, -0.38] [-1.40, -1.20] 
4-6 -2.10/8351 -1.49/8,878 0.33 [-2.25, -1.95] [-1.61, -1.38] 

       
 
India 

0 -2.04/20323 -0.49/21,620 0.52 [-2.12, -1.96] [-0.55, -0.42] 
1-3 -1.69/7924 -0.80/8,393 0.38 [-1.87, -1.51] [-0.94, -0.65] 
4-6 -1.87/4228 -0.50/4,515 0.58 [-2.05, -1.69] [-0.63, -0.38] 

 

 

For the East Asia and India regions, regardless of cloud conditions, an overall 

aerosol cooling effect is observed. The aerosol cooling effect ranges from -2.01 to -

2.28 ℃/τ_550nm from Indian during the spring season, using UKMO data, to -2.50 to -

4.14 ℃/τ_550nm for the Indian region for the summer season using NCEP data. No clear 

relationship, however, is found between cloud fraction and aerosol cooling effect.   

Positive aerosol cooling effects are also observed for the Middle East region over 

summer and fall season, which could be caused by data sample size. For example, a total 

of 495 validate data point is available for using NCEP data during the summer season under 

mostly cloudy condition, however, a total of 7384 data points is used for the similar 

situation for the cloud free condition. 

4.5 Impact of Aerosol Type on Aerosol Surface Cooling 

For different regions under different seasons, distinct types of aerosol particles may 

exist.  For example, over the east coast of China, dust aerosols are reported during spring 

(Zhang et al, 2017) while pollutant aerosols are reported during winter (Zhang et al., 2017).  

Therefore, it is interesting to study the impact of the individual aerosol type on aerosol 
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induced surface cooling.  To achieve this goal, for each region and season averaged aerosol 

Angstrom exponent values are used as a proxy for aerosol type.  Here aerosol events can 

be divided into two dominated aerosol types based on the value of α (Eck el al., 1999): fine 

model aerosols such as biomass burning / Urban pollution (α ≥1), and coarse model 

aerosols such as desert dust (α <<1). Also included in the Table 10 are the fine mode aerosol 

fraction values.  Similar to Angstrom Exponent, the fine mode fraction can be used to 

indicate particle size, with near zero values indicate coarse model aerosol domination and 

values near 1 refer fine mode aerosol domination.   

Table 10. Seasonal variations of aerosol cooling efficiency (℃/τ550nm) for the East 
Asia, India and the Middle East regions under cloud-free condition using NCEP and 
UKMO data. 

Area Season Slope(℃/τ550nm) 
NCEP/UKMO 

α-value Fine model fraction 

 
East Asia 

Spring -2.50/-0.86 1.37 0.88 
Summer -1.67/-0.85 1.25 0.77 

Fall -2.23/-1.75 1.24 0.82 
Winter -0.50/-1.30 1.28 0.86 

  
 

India 
Spring -2.28/-0.56 0.95 0.51 

Summer -2.50/-1.03 0.93 0.47 
Fall -2.75/-1.11 1.02 0.59 

Winter -2.04/-0.49 1.14 0.74 
  
 

The Middle East 
Spring -0.39/-0.17 0.31 0.12 

Summer -0.83/0.06 0.50 0.08 
Fall -0.56/-0.46 0.78 0.21 

Winter N/A 
  

For the East Asia region, as indicated from Table 10, seasonally averaged 

AERONET α values of above 1 are found for all four seasons. In comparison, seasonal 

mean α values are 1.14 and 0.93 for the winter and the summer season respectively for the 

India region.  It is not surprising as pollutant aerosols are expected during winter months 
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over the India region while dust and sea salt aerosols, which are both coarse model aerosols, 

are expected during the summertime, due to the summer monsoon of the region. 

Correspondingly, aerosol cooling efficiencies of -2.04 and -0.49 ℃/τ_550nm are found for 

the winter season using NCEP and UKMO data respectively. Similarly, for the summer 

season aerosol cooling efficiencies of -2.50 and -1.03 ℃/τ_550nm are found using NCEP 

and UKMO data respectively. This seems suggesting that a larger aerosol cooling 

efficiency (in absolute value) can be expected for the presence of coarse mode aerosols.  

Yet, much lower aerosol cooling efficiency (in absolute value) values are found over the 

Middle East region that have low mean α values ranging from 0.31 to 0.78.  Therefore, we 

may suspect that larger aerosol cooling efficiency (in absolute value) values can be 

expected for fine model aerosols, yet this conclusion is not supported by analyses within a 

region such as the India region.  

4.6 Aerosol Cooling Induced Bias as A Function of Forecast Hours 

While previous sections studied the impacts of aerosol on NCEP and UKMO 

analyses, which include data assimilation in the process. UKMO and NCEP forecasts up 

to 48 hours are also available for this study. Therefore, the impacts of aerosol particles on 

forecasted temperatures from both NCEP and UKMO model are studied as a function of 

forecasting hour as shown in Table 11 and Table 12. 
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Table 11. The variations of seasonal-based aerosol cooling efficiency (℃/AOD) for 
0h, 24h and 48h forecasts for the East Asia and India regions using NCEP model 
data.  Also included are forecasting periods, 95% confident intervals of the 
computed slopes as well as mean and median of T values. 

Aera Season Forecast period (h) Slope(℃/τ550nm) 95 % confidence 
interval 

Mean/median of △T 
bias (℃) 

 
 
 
 
 
 
 

East Asia 

Spring 00 -2.50 [-2.61, -2.40] 0.32/0.28 
24 -2.91 [-3.03, -2.79] 0.05/-0.02 
48 -3.03 [-3.16, -2.91] 0.10/0.04 

 
 

Summer 
00 -1.67 [-1.91, -1.42] 1.09/1.01 
24 -2.15 [-2.43, -1.87] 0.65/0.67 
48 -2.29 [-2.59, -2.00] 0.55/0.50 

 
 

Fall 
00 -2.23 [-2.39, -2.08] 1.29/1.07 
24 -2.70 [-2.86, -2.54] 1.48/1.29 
48 -2.75 [-2.93, -2.58] 1.55/1.41 

 
 

Winter 
00 -0.50 [-0.62, -0.38] 0.35/0.34 
24 -0.71 [-0.85, -0.57] 0.62/0.59 
48 -0.36 [-0.51, -0.21] 0.85/0.85 

 
 
 
 
 
 
 
 

India 

 
Spring 

00 -2.28 [-2.41, -2.15] -1.75/-1.80 
24 -2.61 [-2.75, -2.46] -1.72/-1.71 
48 -2.46 [-2.61, -2.32] -1.84/-1.84 

 
 

Summer 
00 -2.50 [-2.70, -2.30] -2.88/-3.36 
24 -2.06 [-2.27, -1.84] -2.79/-3.13 
48 -1.93 [-2.15, -1.71] -2.86/-3.08 

 
 

Fall 
00 -2.75 [-2.87, -2.64] -1.35/-1.19 
24 -2.63 [-2.74, -2.52] -0.89/-0.81 
48 -2.74 [-2.86, -2.62] -0.97/-0.91 

 
 

Winter 
00 -2.04 [-2.12, -1.96] -1.51/-1.44 
24 -2.11 [-2.18, -2.03] -1.28/-1.30 
48 -2.09 [-2.17, -2.01] -1.37/-1.39 

 

Table 12. Similar to Table 11, but for using UKMO model data. 

Aera Season Forecast period (h) Slope(℃/τ550nm) 95 % confidence 
interval 

Mean/median of △T 
bias (℃) 

 
 
 

 
Spring 

00 -0.86 [-0.94, -0.79] 1.27/1.15 
24 -1.58 [-1.68, -1.49] 1.39/1.28 
48 -1.79 [-1.89, -1.69] 1.45/1.31 
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Aera Season Forecast period (h) Slope(℃/τ550nm) 95 % confidence 
interval 

Mean/median of △T 
bias (℃) 

 
 
 
 

East Asia 

 
Summer 

00 -0.85 [-1.02, -0.67] 1.18/1.04 
24 -1.32 [-1.52, -1.11] 1.24/1.15 
48 -1.27 [-1.51, -1.03] 1.27/1.19 

 
 

Fall 
00 -1.75 [-1.86, -1.63] 1.60/1.42 
24 -1.86 [-1.99, -1.73] 2.25/2.10 
48 -1.56 [-1.72, -1.41] 2.52/2.39 

 
 

Winter 
00 -1.30 [-1.40, -1.20] 1.45/1.35 
24 -1.41 [-1.53, -1.30] 1.96/1.89 
48 -1.18 [-1.31, -1.04] 2.30/2.25 

 
 
 
 
 
 
 
 

India 

 
Spring 

00 -0.56 [-0.66, -0.45] -0.44/-0.55 
24 -1.27 [-1.39, -1.15] -0.33/-0.40 
48 -1.40 [-1.53, -1.27] -0.43/-0.49 

 
 

Summer 
00 -1.03 [-1.16, -0.91] -0.55/-0.76 
24 -1.44 [-1.61, -1.28] -0.89/-1.08 
48 -1.59 [-1.77, -1.41] -1.29/-1.49 

 
 

Fall 
00 -1.11 [-1.18, -1.03] -0.01/0.03 
24 -1.65 [-1.74, -1.56] -0.04/0.04 
48 -1.79 [-1.89, -1.69] -0.16/-0.08 

 
 

Winter 
00 -0.49 [-0.55, -0.42] 0.10/0.13 
24 -0.87 [-0.94, -0.81] 0.18/0.17 
48 -1.15 [-1.22, -1.08] 0.06/0.05 

 

As shown in Table 11, a decreasing trend of cooling efficiency is found over four 

seasons for 0 to 24h forecast periods and spring, summer and fall seasons for 24 to 48h 

forecast periods over East Asia using NCEP model data. Yet the decreasing trend is less 

observable for the India region.  

A similar analysis is also processed by using data from UKMO model as shown in 

Table 12.  A relatively decreasing trend of cooling efficiency is found for all four seasons 

over the India region from 0 to 48h forecast periods, and four seasons over East Asia region 

for 0 to 24h forecast periods and spring for 24 to 48h forecast periods. Note relatively 
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increasing trends also exist for certain forecast periods for the results from both NCEP and 

UKMO models.  

Although there is an overall decreasing trend in aerosol cooling efficiency as a 

function of forecasting hour, there are cases where aerosol cooling trends are independent 

of forecasting hour. We suspect that this aerosol cooling efficiency trend is likely also 

linked to the forecasting accuracies of different models at different forecasting hours.  

4.7 Issues and Discussions 

Note that the results of the study may be affect by uncertainties in data from few 

sources as identified below:  

1. Over partially cloudy or mostly cloudy regions, aerosol retrievals could still 

be available.  However, as suggested from Zhang et al. (2005), a bias may exist in those 

AOD retrievals due to misclassification of cloud signals as aerosol signals. Also, very 

optically thin cirrus clouds, which are difficulty to detect using MODIS observations alone, 

may introduce a high bias in AOD over optically thin cloud contaminated regions. 

2. The effect of cloud cover on aerosol induced surface cooling effect was 

studied; yet, different clouds, with different cloud type (e.g. ice versus water) and different 

optical properties (such as optical depth, effective radius), will have different scattering 

properties.  Therefore, over partially cloudy or mostly cloudy skies, aerosol induced surface 

cooling effect should also be a function cloud optical and physical properties. However, no 

effort was applied in this study to quantify cloud optical and physical properties as that 

would be a whole study of its own on both a regional and global scale.   
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3. Aerosol type is quantified based on AERONET reported Angstrom 

Exponent / fine model values. Yet, aerosol Angstrom Exponent / fine mode fraction can 

only be used to quantify aerosol particle size and it is rather plausible to link aerosol 

Angstrom Exponent /fine mode fraction to aerosol type. Also, AERONET data are only 

available over limited ground based AERONET sites. Both of which will unavoidably 

introduce an uncertainty in this study. 

4. Since the AERONET could only provide ground aerosol data from few 

locations on a global scale, for a larger study region, the value of α might not be 

representative due to the relative sparse of AERONET stations over a large study area. 
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CHAPTER5 

CONCLUSIONS 

Using collocated observational data from ISD, MODIS, AERONET, as well as 

modeling data from NCEP and UKMO models, the aerosol induced biases on NCEP and 

UKMO forecasted 2-m temperatures are studied (aerosol cooling effect). Major findings 

are as follows: 

1. The aerosol induced surface cooling effect is only clearly observable over 

regions / seasons with high mean AOD value (AOD≥0.3), such as all seasons for East Asia 

and India, and spring, summer and fall seasons for the Middle East region. Those are the 

regions and seasons that the impacts of aerosols on weather forecasts should be fully 

considered in future studies. 

2. For regions with lower seasonal mean AODs, aerosol surface cooling 

effects are less observable and are often statistically insignificant. This suggests that the 

impacts of aerosols on weather can be considered on event-based scenarios and methods 

needed to be developed to account for the impacts of aerosol particles on numerical weather 

forecasts only over days with heavy aerosol events such as biomass burning events or dust 

storms. For example, the US region has annually low mean AOD value, however, a former 

study (Zhang et al., 2016) indicated that forecasted surface temperature could be impacted 

by biomass burning events in a short period.   

3. The aerosol cooling effect was also studied as a function of cloud coverage.  

However, no clear impact is found. The real reason is not known. This may be due to 

uncertainties in both models and observations under cloudy skies.  
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4. Through the use of AERONET data, aerosol cooling effect is studies as a 

function of AERONET Angstrom Exponent () values. A higher aerosol cooling efficiency 

(in absolute value) is found for regions with  larger than 1, which is indicative of fine 

mode aerosols such as smoke aerosols. Still, this conclusion is less robust as within the 

India and East Asia regions, however, higher aerosol cooling efficiencies (in absolute value) 

are observed for dust dominated seasons.   

5. A plausible relationship is also found between aerosol cooling efficiency 

and forecasting hour. For most studied cases over East Asia and India, a decrease in aerosol 

cooling efficiency is found as forecast hour increases. However, there are also cases that 

aerosol cooling efficiency is independent of forecasting hour, indicating other factors such 

as model uncertainties could also affect the analysis. 

Clearly, aerosol particles could affect regional weather and regional weather 

forecasts. This study further evaluated the impacts and demonstrated the need to consider 

aerosol cooling effects in numerical weather forecasts. As the natural extension from the 

study, new methods can and should be explored to incorporate aerosol particles, either 

through in-line or off-line modes, for accounting this aerosol cooling effect for improved 

weather forecasts over regions as highlighted in the study.   
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Appendix A 

Table 13. Total number of missing data from NCEP model (Data are not available 
from the TIGGE site), ‘-’ represents no missing data for a given forecasting/analysis 
period. 

 
 

Table 14. Similar to Table 13, but for UKMO model. 

 

 

 

Date Forecast Period 
0000 0024 0048 0600 0624 0648 1200 1224 1248 1800 1824 1848 

2014.12 - - - 1 1 1 1 1 1 - - - 
2015.1 1 1 1 4 4 4 3 3 3 1 1 1 
2015.2 2 2 2 - - - - - - 1 1 1 
2015.5 - - - 1 1 1 - - - 1 1 1 
2015.6 - - - - - - - - - 3 3 3 
2015.7 - - - - - - - - - 3 3 3 
2015.8 - - - 1 1 1 1 1 1 1 1 1 
2015.12 11 11 11 12 12 12 10 10 10 - - - 
2016.1 - - - - - - - - - 1 1 1 
2016.2 - - - - - - - - - 1 1 1 
2016.5 - - - - - - 1 1 1 - - - 
2016.6 6 6 6 8 8 8 9 9 9 7 7 7 
2016.7 7 7 7 5 5 5 5 5 5 5 5 5 
2016.8 9 9 9 12 12 12 10 10 10 10 10 10 
2016.9 1 1 1 2 2 2 2 2 2 3 3 3 
2016.10 2 2 2 2 2 2 4 4 4 2 2 2 
2016.11 2 2 2 4 4 4 4 4 4 2 2 2 
2016.12 1 1 1 2 2 2 1 1 1 1 1 1 
2017.3 - - - 3 3 3 2 2 2 - - - 
2017.10 1 1 1 - - - - - - 1 1 1 
2017.11 1 1 1 - - - - - - - - - 
2017.12 2 2 2 - - - 1 1 1 - - - 
Total 46 46 46 57 57 57 54 54 54 43 43 43 

Date Forecast Period 
0000 0024 0048 0600 0624 0648 1200 1224 1248 1800 1824 1848 

2015.1 - - - 1 1 1 1 1 1 - - - 
2016.3 1 1 1 1 1 1 1 1 1 - - - 
2017.3 6 6 6 6 6 6 6 6 6 - - - 
Total 7 7 7 8 8 8 8 8 8 0 0 0 
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Appendix B 

 

Figure 8. 3-year averaged seasonal mean 2-m temperature biases (observation 
temperature – forecasted temperature, in ℃) for UKMO model over ISD stations for 
Northern Hemisphere (a) spring, (b) summer, (c) fall and (d) winter. Red boxes 
highlight focused study regions. 

  



42  

Appendix C 

Table 15. Acronyms and Definitions. 
Acronym Definition 

AERONET Aerosol Robotic NET Work 
AOD Aerosol Optical Depth 
CCN Cloud Condensation Nuclei 
DT Dark Target 
GFS Global Forecast System 
GSI Grid Point Statistical Interpolation 
ISD Integrated Surface Database 
LUT Look Up Table 
MODIS Moderate Resolution Imaging Spectroradiometer 
NCEP National Centers for Environmental Prediction 
TIGGE THORPEX Interactive Grand Global Ensemble 
TOA Top of Atmosphere 
UKMO  United Kingdom Met Office 
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