

AKCE International Journal of Graphs and Combinatorics

ISSN: 0972-8600 (Print) 2543-3474 (Online) Journal homepage: https://www.tandfonline.com/loi/uakc20

Some identities for generalized Fibonacci and Lucas numbers

Anetta Szynal-Liana, Iwona Włoch & Mirosław Liana

To cite this article: Anetta Szynal-Liana, Iwona Włoch & Mirosław Liana (2020) Some identities for generalized Fibonacci and Lucas numbers, AKCE International Journal of Graphs and Combinatorics, 17:1, 324-328, DOI: 10.1016/j.akcej.2019.06.007

To link to this article: https://doi.org/10.1016/j.akcej.2019.06.007

AKCE
International
Journal of
Graphs and
Combinatorics

Some identities for generalized Fibonacci and Lucas numbers

Anetta Szynal-Liana^{a,*}, Iwona Włoch^a, Mirosław Liana^b

^a Rzeszow University of Technology, The Faculty of Mathematics and Applied Physics, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
 ^b Rzeszow University of Technology, The Faculty of Management, al. Powstańców Warszawy 10, 35-959 Rzeszów, Poland

Received 9 November 2018; received in revised form 24 March 2019; accepted 17 June 2019

Abstract

In this paper we study one parameter generalization of the Fibonacci numbers, Lucas numbers which generalizes the Jacobsthal numbers, Jacobsthal-Lucas numbers simultaneously. We present some their properties and interpretations also in graphs. Presented results generalize well-known results for Fibonacci numbers, Lucas numbers, Jacobsthal numbers and Jacobsthal-Lucas numbers.

Keywords: Fibonacci numbers; Jacobsthal numbers; Recurrence relations

1. Introduction and preliminary results

The Fibonacci numbers F_n are defined by the recurrence relation $F_n = F_{n-1} + F_{n-2}$, for $n \ge 2$ with $F_0 = 0$, $F_1 = 1$.

The *n*th Lucas number L_n is defined recursively by $L_n = L_{n-1} + L_{n-2}$ for $n \ge 2$ with initial terms $L_0 = 2$, $L_1 = 1$

Apart from the Fibonacci numbers and the Lucas numbers the well-known are the Jacobsthal numbers and the Jacobsthal-Lucas numbers.

For an integer $n \ge 0$ the *n*th Jacobsthal number J_n is defined recursively by $J_n = J_{n-1} + 2J_{n-2}$, for $n \ge 2$ with $J_0 = 0$, $J_1 = 1$. The *n*th Jacobsthal–Lucas number j_n is defined by $j_n = j_{n-1} + 2j_{n-2}$, for $n \ge 2$ with $j_0 = 2$, $j_1 = 1$.

Let us consider one parameter generalization of the Fibonacci numbers.

Let $n \ge 0$, $t \ge 1$ be integers. The nth generalized Fibonacci number $J_{t,n}$ is defined recursively as follows

$$J_{t,n} = J_{t,n-1} + t \cdot J_{t,n-2},\tag{1}$$

for $n \ge 2$ with initial conditions $J_{t,0} = 0$ and $J_{t,1} = 1$.

It is interesting to note that $J_{t,n}$ generalizes the Fibonacci numbers and the Jacobsthal numbers. If t = 1 then $J_{1,n} = F_n$ and for t = 2 holds $J_{2,n} = J_n$. For these reasons numbers $J_{t,n}$ also are named as generalized Jacobsthal numbers.

E-mail addresses: aszynal@prz.edu.pl (A. Szynal-Liana), iwloch@prz.edu.pl (I. Włoch), mliana@prz.edu.pl (M. Liana).

https://doi.org/10.1016/j.akcej.2019.06.007

© 2018 Kalasalingam University. Published with license by Taylor & Francis Group, LLC

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer review under responsibility of Kalasalingam University.

^{*} Corresponding author.

In the same way we can define the generalized Lucas numbers, which are a generalization of Lucas numbers and Jacobsthal–Lucas numbers.

Let $n \ge 0$, $t \ge 1$ be integers. The nth generalized Lucas number $j_{t,n}$ is defined recursively as follows

$$j_{t,n} = j_{t,n-1} + t \cdot j_{t,n-2},$$
 (2)

for $n \ge 2$ with initial conditions $j_{t,0} = 2$ and $j_{t,1} = 1$.

If t = 1 then $j_{1,n} = L_n$ and for t = 2 holds $j_{2,n} = j_n$.

Since the characteristic equation of relations (1) and (2) is $r^2 - r - t = 0$, so roots of it are $\alpha = \frac{1 + \sqrt{1 + 4t}}{2}$, $\beta = \frac{1 - \sqrt{1 + 4t}}{2}$. Consequently for $n \ge 0$ the direct formulas (named also as Binet formulas) for $J_{t,n}$ and $j_{t,n}$ have the forms

$$J_{t,n} = \frac{1}{\sqrt{1+4t}} \left[\left(\frac{1+\sqrt{1+4t}}{2} \right)^n - \left(\frac{1-\sqrt{1+4t}}{2} \right)^n \right],\tag{3}$$

$$j_{t,n} = \left(\frac{1 + \sqrt{1 + 4t}}{2}\right)^n + \left(\frac{1 - \sqrt{1 + 4t}}{2}\right)^n. \tag{4}$$

The Fibonacci numbers have many interpretations also in graph theory, see [1–6]. It was shown that the generalized Fibonacci numbers $J_{t,n}$ are related to the Merrifield–Simmons index of a special graph product, see for details [7]. In this paper we show another graph interpretation of $J_{t,n}$.

Only undirected, connected simple graphs are considered. A subset $S \subseteq V(G)$ is independent if for each $x, y \in S$, there is no edge between them. Moreover the empty set and every subset containing exactly one vertex are independent. Let $n \ge 1$ be an integer. Let us consider n copies of edgeless graph N_t of order $t, t \ge 1$, denoted by N_t^i , with $V(N_t^i) = \{x_1^i, \ldots, x_t^i\}$ for $i = 1, \ldots, n$. Then G_n is a graph such that $V(G_n) = \bigcup_{i=1}^n V(N_t^i)$ and $E(G_n) = \bigcup_{i=1}^n \{x_j^i x_k^{i+1}; 1 \le i \le n, 1 \le j, k \le t\}$. Let $\sigma(G_n)$ be the number of all independent sets S of G_n such that $|S \cap V(N_t^i)| \le 1$ for $i = 1, \ldots, n$.

Theorem 1. Let $n \ge 1$, $t \ge 1$ be integers. Then

$$\sigma(G_n) = J_{t,n+2}. \tag{5}$$

Proof (By Induction on n). Let n, t be as in the statement of the theorem. If n = 1, 2 then the result is obvious. Suppose that $n \ge 3$ and let $\sigma(G_k) = J_{t,k+2}$ for k < n. We shall show that $\sigma(G_n) = J_{t,n+2}$. Let $S \subseteq V(G_n)$ be an arbitrary independent set such that $|S \cap V(N_t^i)| \le 1$ for i = 1, ..., n. We consider the following cases.

1. $S \cap V(N_t^n) = \emptyset$.

Then S is an arbitrary independent set of a graph G_{n-1} with the condition $\left|S \cap V(N_t^j)\right| \leq 1$ for $j = 1, \ldots, n-1$. By the induction hypothesis there are $\sigma(G_{n-1}) = J_{t,n+1}$ subsets S in this case.

2. $S \cap V(N_t^n) \neq \emptyset$.

Clearly $|S \cap V(N_t^n)| = 1$ and by the definition of the graph G_n holds $S \cap V(N_t^{n-1}) = \emptyset$. Since the unique vertex belonging to $S \cap V(N_t^n)$ can be chosen in t ways and by induction hypothesis there are $t \cdot \sigma(G_{n-2}) = t \cdot J_{t,n}$ subsets S in this case.

Finally $\sigma(G_n) = \sigma(G_{n-1}) + t \cdot \sigma(G_{n-2}) = J_{t,n+1} + t \cdot J_{t,n} = J_{t,n+2}$ which ends the proof. \square

2. Identities for generalized Fibonacci and Lucas numbers

In this section we give some properties of generalized Fibonacci numbers and generalized Lucas numbers.

Theorem 2. Let $n \ge 0$, $t \ge 1$ be integers. Then

$$J_{t,n+2} + t \cdot J_{t,n} = j_{t,n+1}.$$
 (6)

Proof (By Induction on n). For n = 0 we have $J_{t,2} + t \cdot J_{t,0} = 1 + t \cdot 0 = 1 = j_{t,1}$.

Let $k \ge 0$ be given and suppose that (6) is true for all n = 0, 1, 2, ..., k. We shall show that (6) holds for n = k + 1. Using induction's assumption for n = k and n = k - 1 and (1), (2) we have

$$J_{t,(k+1)+2} + t \cdot J_{t,k+1} =$$

$$= J_{t,k+3} + t \cdot J_{t,k+1} =$$

$$= (J_{t,k+2} + t \cdot J_{t,k+1}) + t \cdot (J_{t,k} + t \cdot J_{t,k-1}) =$$

$$= (J_{t,k+2} + t \cdot J_{t,k}) + t \cdot (J_{t,k+1} + t \cdot J_{t,k-1}) =$$

$$= j_{t,k+1} + t \cdot j_{t,k} = j_{t,k+2} = j_{t,(k+1)+1}.$$

Thus, (6) holds for n = k + 1, and the proof of the induction step is complete. \Box

Theorem 3. Let $n \ge 0$, $t \ge 1$ be integers. Then

$$J_{t,n} + j_{t,n} = 2 \cdot J_{t,n+1}. \tag{7}$$

Proof (By Induction on n). For n=0 we have $J_{t,0}+j_{t,0}=0+2=2\cdot 1=2\cdot J_{t,1}$.

Let $k \ge 0$ be given and suppose that (7) is true for all n = 0, 1, 2, ..., k. We shall show that (7) holds for n = k + 1. Using induction's assumption for n = k and n = k - 1 and (1), (2) we have

$$J_{t,k+1} + j_{t,k+1} =$$

$$= (J_{t,k} + t \cdot J_{t,k-1}) + (j_{t,k} + t \cdot j_{t,k-1}) =$$

$$= (J_{t,k} + j_{t,k}) + t \cdot (J_{t,k-1} + j_{t,k-1}) =$$

$$= 2 \cdot J_{t,k+1} + t \cdot 2 \cdot J_{t,k} =$$

$$= 2 \cdot (J_{t,k+1} + t \cdot J_{t,k}) = 2 \cdot J_{t,k+2} = 2 \cdot J_{t,(k+1)+1}.$$

Thus, (7) holds for n = k + 1, and the proof of the induction step is complete. \square

Theorem 4. Let $n \ge 0$, $t \ge 1$ be integers. Then

$$\sum_{i=0}^{n} J_{t,i} = \frac{J_{t,n+2} - J_{t,1}}{t}.$$
(8)

Proof. Using (1) we have $J_{t,n} = \frac{1}{t}(J_{t,n+2} - J_{t,n+1})$. For integers $0, 1, \dots, n$ we obtain

$$J_{t,0} = \frac{1}{t}(J_{t,2} - J_{t,1})$$

$$J_{t,1} = \frac{1}{t}(J_{t,3} - J_{t,2})$$

$$J_{t,2} = \frac{1}{t}(J_{t,4} - J_{t,3})$$

$$\vdots$$

$$J_{t,n-1} = \frac{1}{t}(J_{t,n+1} - J_{t,n})$$

$$J_{t,n} = \frac{1}{t}(J_{t,n+2} - J_{t,n+1}).$$

Adding these equalities we obtain (8). \square

In the same way one can easily prove the next theorem.

Theorem 5. Let $n \ge 0$, $t \ge 1$ be integers. Then

$$\sum_{i=0}^{n} j_{t,i} = \frac{j_{t,n+2} - j_{t,1}}{t}.$$
(9)

From the above theorems we obtain the well-known identities for Fibonacci numbers, Lucas numbers, Jacobsthal numbers and Jacobsthal-Lucas numbers.

Corollary 6. Let n > 0 be an integer. Then

$$\sum_{i=0}^{n} F_i = F_{n+2} - F_1 = F_{n+2} - 1,$$

$$\sum_{i=0}^{n} L_i = L_{n+2} - L_1 = L_{n+2} - 1,$$

$$\sum_{i=0}^{n} J_i = \frac{J_{n+2} - J_1}{2} = \frac{J_{n+2} - 1}{2},$$

$$\sum_{i=0}^{n} j_i = \frac{j_{n+2} - j_1}{2} = \frac{j_{n+2} - 1}{2}.$$

Some identities for numbers $J_{t,n}$ and $j_{t,n}$ can be found using their matrix generators. For integers $n \ge 1$ and $t \ge 1$ let $J(t,n) = \begin{bmatrix} J_{t,n} & J_{t,n-1} \\ J_{t,n+1} & J_{t,n} \end{bmatrix}$ be a matrix with entries being generalized Fibonacci numbers.

Theorem 7. Let $n \ge 1$, $t \ge 1$ be integers. Then

$$\begin{bmatrix} J_{t,n} & J_{t,n-1} \\ J_{t,n+1} & J_{t,n} \end{bmatrix} = \begin{bmatrix} J_{t,1} & J_{t,0} \\ J_{t,2} & J_{t,1} \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ t & 0 \end{bmatrix}^{n-1}.$$

Proof (By Induction on n). If n = 1 then the result is obvious. Assume that

$$\left[\begin{array}{cc} J_{t,n} & J_{t,n-1} \\ J_{t,n+1} & J_{t,n} \end{array} \right] = \left[\begin{array}{cc} J_{t,1} & J_{t,0} \\ J_{t,2} & J_{t,1} \end{array} \right] \cdot \left[\begin{array}{cc} 1 & 1 \\ t & 0 \end{array} \right]^{n-1}.$$

We shall show that

$$\begin{bmatrix} J_{t,n+1} & J_{t,n} \\ J_{t,n+2} & J_{t,n+1} \end{bmatrix} = \begin{bmatrix} J_{t,1} & J_{t,0} \\ J_{t,2} & J_{t,1} \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ t & 0 \end{bmatrix}^n.$$

By simple calculation using induction's hypothesis we have

$$\begin{bmatrix} J_{t,1} & J_{t,0} \\ J_{t,2} & J_{t,1} \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ t & 0 \end{bmatrix}^{n-1} \cdot \begin{bmatrix} 1 & 1 \\ t & 0 \end{bmatrix} = \begin{bmatrix} J_{t,n} & J_{t,n-1} \\ J_{t,n+1} & J_{t,n} \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ t & 0 \end{bmatrix} = \begin{bmatrix} J_{t,n} + t \cdot J_{t,n-1} & J_{t,n} \\ J_{t,n+1} + t \cdot J_{t,n} & J_{t,n+1} \end{bmatrix} = \begin{bmatrix} J_{t,n+1} & J_{t,n} \\ J_{t,n+2} & J_{t,n+1} \end{bmatrix},$$

which ends the proof.

This generator immediately gives the Cassini formula for the generalized Fibonacci numbers.

Corollary 8. Let n > 1, t > 1 be integers. Then

$$J_{t,n}^2 - J_{t,n-1} \cdot J_{t,n+1} = \left(J_{t,1}^2 - J_{t,0} \cdot J_{t,2}\right) \cdot (-t)^{n-1} = (-t)^{n-1}.$$

If t = 1 and t = 2 then we obtain the well-known Cassini formulas for the Fibonacci numbers and the Jacobsthal numbers, respectively.

Corollary 9. Let $n \ge 1$ be an integer. Then

$$F_n^2 - F_{n-1} \cdot F_{n+1} = (-1)^{n-1}$$

 $J_n^2 - J_{n-1} \cdot J_{n+1} = (-2)^{n-1}$.

Analogously we can define the matrix generator and the Cassini formula for the generalized Lucas numbers.

For integers $n \ge 1$ and $t \ge 1$ let $j(t, n) = \begin{bmatrix} j_{t,n} & j_{t,n-1} \\ j_{t,n+1} & j_{t,n} \end{bmatrix}$ be a matrix with entries being generalized Lucas numbers.

Theorem 10. Let n > 1, t > 1 be integers. Then

$$\begin{bmatrix} j_{t,n} & j_{t,n-1} \\ j_{t,n+1} & j_{t,n} \end{bmatrix} = \begin{bmatrix} j_{t,1} & j_{t,0} \\ j_{t,2} & j_{t,1} \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ t & 0 \end{bmatrix}^{n-1}.$$

Corollary 11. Let $n \ge 1$, $t \ge 1$ be integers. Then

$$j_{t,n}^2 - j_{t,n-1} \cdot j_{t,n+1} = (-1 - 4t) \cdot (-t)^{n-1}.$$

If t = 1 and t = 2 then we have the well-known Cassini formulas for the Lucas numbers and the Jacobsthal-Lucas numbers, respectively.

Corollary 12. Let $n \ge 1$ be an integer. Then

$$L_n^2 - L_{n-1} \cdot L_{n+1} = -5 \cdot (-1)^{n-1},$$

$$j_n^2 - j_{n-1} \cdot j_{n+1} = -9 \cdot (-2)^{n-1}.$$

References

- [1] L.A. Dosal-Trujillo, H. Galeana-Sánchez, The Fibonacci numbers of certain subgraphs of circulant graphs, AKCE Int. J. Graphs Combin. 12 (2015) 94–103.
- [2] M. Kwaśnik, I. Włoch, The total number of generalized stable sets and kernels of graphs, Ars Combin. 55 (2000) 139-146.
- [3] H. Prodinger, R.F. Tichy, Fibonacci numbers in graphs, Fibonacci Quart. 20 (1982) 16–21.
- [4] Z. Skupień, Sums of powered characteristic roots count distance-independent circular sets, Discuss. Math. Graph Theory 33 (2013) 217–229.
- [5] A. Włoch, On generalized Fibonacci numbers and k-distance K_p-matchings in graphs, Discrete Appl. Math. 160 (2012) 1399–1405.
- [6] A. Włoch, Some identities for the generalized Fibonacci numbers and the generalized Lucas numbers, Appl. Math. Comput. 219 (2013) 5564–5568.
- [7] A. Szynal-Liana, I. Włoch, On distance Pell numbers and their connections with Fibonacci numbers, Ars Combin. CXIIIA (2014) 65-75.