Some identities for generalized Fibonacci and Lucas numbers

Anetta Szynal-Liana, Iwona Włoch \& Mirosław Liana

To cite this article: Anetta Szynal-Liana, Iwona Włoch \& Mirosław Liana (2020) Some identities for generalized Fibonacci and Lucas numbers, AKCE International Journal of Graphs and Combinatorics, 17:1, 324-328, DOI: 10.1016/j.akcej.2019.06.007

To link to this article: https://doi.org/10.1016/j.akcej.2019.06.007

© 2018 Kalasalingam University. Published with license by Taylor \& Francis Group, LLC.

Published online: 04 Jun 2020.

Submit your article to this journal

Article views: 237

View related articles

View Crossmark data \nearrow

Some identities for generalized Fibonacci and Lucas numbers

Anetta Szynal-Liana ${ }^{\text {a, }}$, Iwona Włoch ${ }^{\text {a }}$, Mirosław Liana ${ }^{\text {b }}$
${ }^{\text {a }}$ Rzeszow University of Technology, The Faculty of Mathematics and Applied Physics, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
${ }^{\mathrm{b}}$ Rzeszow University of Technology, The Faculty of Management, al. Powstańców Warszawy 10, 35-959 Rzeszów, Poland

Received 9 November 2018; received in revised form 24 March 2019; accepted 17 June 2019

Abstract

In this paper we study one parameter generalization of the Fibonacci numbers, Lucas numbers which generalizes the Jacobsthal numbers, Jacobsthal-Lucas numbers simultaneously. We present some their properties and interpretations also in graphs. Presented results generalize well-known results for Fibonacci numbers, Lucas numbers, Jacobsthal numbers and Jacobsthal-Lucas numbers.

Keywords: Fibonacci numbers; Jacobsthal numbers; Recurrence relations

1. Introduction and preliminary results

The Fibonacci numbers F_{n} are defined by the recurrence relation $F_{n}=F_{n-1}+F_{n-2}$, for $n \geq 2$ with $F_{0}=0$, $F_{1}=1$.

The nth Lucas number L_{n} is defined recursively by $L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2$ with initial terms $L_{0}=2$, $L_{1}=1$.

Apart from the Fibonacci numbers and the Lucas numbers the well-known are the Jacobsthal numbers and the Jacobsthal-Lucas numbers.

For an integer $n \geq 0$ the nth Jacobsthal number J_{n} is defined recursively by $J_{n}=J_{n-1}+2 J_{n-2}$, for $n \geq 2$ with $J_{0}=0, J_{1}=1$. The nth Jacobsthal-Lucas number j_{n} is defined by $j_{n}=j_{n-1}+2 j_{n-2}$, for $n \geq 2$ with $j_{0}=2, j_{1}=1$.

Let us consider one parameter generalization of the Fibonacci numbers.
Let $n \geq 0, t \geq 1$ be integers. The nth generalized Fibonacci number $J_{t, n}$ is defined recursively as follows

$$
\begin{equation*}
J_{t, n}=J_{t, n-1}+t \cdot J_{t, n-2} \tag{1}
\end{equation*}
$$

for $n \geq 2$ with initial conditions $J_{t, 0}=0$ and $J_{t, 1}=1$.
It is interesting to note that $J_{t, n}$ generalizes the Fibonacci numbers and the Jacobsthal numbers. If $t=1$ then $J_{1, n}=F_{n}$ and for $t=2$ holds $J_{2, n}=J_{n}$. For these reasons numbers $J_{t, n}$ also are named as generalized Jacobsthal numbers.

[^0]In the same way we can define the generalized Lucas numbers, which are a generalization of Lucas numbers and Jacobsthal-Lucas numbers.

Let $n \geq 0, t \geq 1$ be integers. The nth generalized Lucas number $j_{t, n}$ is defined recursively as follows

$$
\begin{equation*}
j_{t, n}=j_{t, n-1}+t \cdot j_{t, n-2} \tag{2}
\end{equation*}
$$

for $n \geq 2$ with initial conditions $j_{t, 0}=2$ and $j_{t, 1}=1$.
If $t=1$ then $j_{1, n}=L_{n}$ and for $t=2$ holds $j_{2, n}=j_{n}$.
Since the characteristic equation of relations (1) and (2) is $r^{2}-r-t=0$, so roots of it are $\alpha=\frac{1+\sqrt{1+4 t}}{2}$, $\beta=\frac{1-\sqrt{1+4 t}}{2}$. Consequently for $n \geq 0$ the direct formulas (named also as Binet formulas) for $J_{t, n}$ and $j_{t, n}$ have the forms

$$
\begin{align*}
& J_{t, n}=\frac{1}{\sqrt{1+4 t}}\left[\left(\frac{1+\sqrt{1+4 t}}{2}\right)^{n}-\left(\frac{1-\sqrt{1+4 t}}{2}\right)^{n}\right] \tag{3}\\
& j_{t, n}=\left(\frac{1+\sqrt{1+4 t}}{2}\right)^{n}+\left(\frac{1-\sqrt{1+4 t}}{2}\right)^{n} \tag{4}
\end{align*}
$$

The Fibonacci numbers have many interpretations also in graph theory, see [1-6]. It was shown that the generalized Fibonacci numbers $J_{t, n}$ are related to the Merrifield-Simmons index of a special graph product, see for details [7]. In this paper we show another graph interpretation of $J_{t, n}$.

Only undirected, connected simple graphs are considered. A subset $S \subseteq V(G)$ is independent if for each $x, y \in S$, there is no edge between them. Moreover the empty set and every subset containing exactly one vertex are independent. Let $n \geq 1$ be an integer. Let us consider n copies of edgeless graph N_{t} of order $t, t \geq 1$, denoted by N_{t}^{i}, with $V\left(N_{t}^{i}\right)=\left\{x_{1}^{i}, \ldots, x_{t}^{i}\right\}$ for $i=1, \ldots, n$. Then G_{n} is a graph such that $V\left(G_{n}\right)=\bigcup_{i=1}^{n} V\left(N_{t}^{i}\right)$ and $E\left(G_{n}\right)=\bigcup_{i=1}^{n}\left\{x_{j}^{i} x_{k}^{i+1} ; 1 \leq i \leq n, 1 \leq j, k \leq t\right\}$. Let $\sigma\left(G_{n}\right)$ be the number of all independent sets S of G_{n} such that $\left|S \cap V\left(N_{t}^{i}\right)\right| \leq 1$ for $i=1, \ldots, n$.

Theorem 1. Let $n \geq 1, t \geq 1$ be integers. Then

$$
\begin{equation*}
\sigma\left(G_{n}\right)=J_{t, n+2} \tag{5}
\end{equation*}
$$

Proof (By Induction on n). Let n, t be as in the statement of the theorem. If $n=1,2$ then the result is obvious. Suppose that $n \geq 3$ and let $\sigma\left(G_{k}\right)=J_{t, k+2}$ for $k<n$. We shall show that $\sigma\left(G_{n}\right)=J_{t, n+2}$. Let $S \subseteq V\left(G_{n}\right)$ be an arbitrary independent set such that $\left|S \cap V\left(N_{t}^{i}\right)\right| \leq 1$ for $i=1, \ldots, n$. We consider the following cases.

1. $S \cap V\left(N_{t}^{n}\right)=\emptyset$.

Then S is an arbitrary independent set of a graph G_{n-1} with the condition $\left|S \cap V\left(N_{t}^{j}\right)\right| \leq 1$ for $j=$ $1, \ldots, n-1$. By the induction hypothesis there are $\sigma\left(G_{n-1}\right)=J_{t, n+1}$ subsets S in this case.
2. $S \cap V\left(N_{t}^{n}\right) \neq \emptyset$.

Clearly $\left|S \cap V\left(N_{t}^{n}\right)\right|=1$ and by the definition of the graph G_{n} holds $S \cap V\left(N_{t}^{n-1}\right)=\emptyset$. Since the unique vertex belonging to $S \cap V\left(N_{t}^{n}\right)$ can be chosen in t ways and by induction hypothesis there are $t \cdot \sigma\left(G_{n-2}\right)=t \cdot J_{t, n}$ subsets S in this case.
Finally $\sigma\left(G_{n}\right)=\sigma\left(G_{n-1}\right)+t \cdot \sigma\left(G_{n-2}\right)=J_{t, n+1}+t \cdot J_{t, n}=J_{t, n+2}$ which ends the proof.

2. Identities for generalized Fibonacci and Lucas numbers

In this section we give some properties of generalized Fibonacci numbers and generalized Lucas numbers.
Theorem 2. Let $n \geq 0, t \geq 1$ be integers. Then

$$
\begin{equation*}
J_{t, n+2}+t \cdot J_{t, n}=j_{t, n+1} \tag{6}
\end{equation*}
$$

Proof (By Induction on n). For $n=0$ we have $J_{t, 2}+t \cdot J_{t, 0}=1+t \cdot 0=1=j_{t, 1}$.

Let $k \geq 0$ be given and suppose that (6) is true for all $n=0,1,2, \ldots, k$. We shall show that (6) holds for $n=k+1$. Using induction's assumption for $n=k$ and $n=k-1$ and (1), (2) we have

$$
\begin{aligned}
& J_{t,(k+1)+2}+t \cdot J_{t, k+1}= \\
& =J_{t, k+3}+t \cdot J_{t, k+1}= \\
& =\left(J_{t, k+2}+t \cdot J_{t, k+1}\right)+t \cdot\left(J_{t, k}+t \cdot J_{t, k-1}\right)= \\
& =\left(J_{t, k+2}+t \cdot J_{t, k}\right)+t \cdot\left(J_{t, k+1}+t \cdot J_{t, k-1}\right)= \\
& =j_{t, k+1}+t \cdot j_{t, k}=j_{t, k+2}=j_{t,(k+1)+1} .
\end{aligned}
$$

Thus, (6) holds for $n=k+1$, and the proof of the induction step is complete.
Theorem 3. Let $n \geq 0, t \geq 1$ be integers. Then

$$
\begin{equation*}
J_{t, n}+j_{t, n}=2 \cdot J_{t, n+1} \tag{7}
\end{equation*}
$$

Proof (By Induction on n). For $n=0$ we have $J_{t, 0}+j_{t, 0}=0+2=2 \cdot 1=2 \cdot J_{t, 1}$.
Let $k \geq 0$ be given and suppose that (7) is true for all $n=0,1,2, \ldots, k$. We shall show that (7) holds for $n=k+1$. Using induction's assumption for $n=k$ and $n=k-1$ and (1), (2) we have

$$
\begin{aligned}
& J_{t, k+1}+j_{t, k+1}= \\
& =\left(J_{t, k}+t \cdot J_{t, k-1}\right)+\left(j_{t, k}+t \cdot j_{t, k-1}\right)= \\
& =\left(J_{t, k}+j_{t, k}\right)+t \cdot\left(J_{t, k-1}+j_{t, k-1}\right)= \\
& =2 \cdot J_{t, k+1}+t \cdot 2 \cdot J_{t, k}= \\
& =2 \cdot\left(J_{t, k+1}+t \cdot J_{t, k}\right)=2 \cdot J_{t, k+2}=2 \cdot J_{t,(k+1)+1} .
\end{aligned}
$$

Thus, (7) holds for $n=k+1$, and the proof of the induction step is complete.
Theorem 4. Let $n \geq 0, t \geq 1$ be integers. Then

$$
\begin{equation*}
\sum_{i=0}^{n} J_{t, i}=\frac{J_{t, n+2}-J_{t, 1}}{t} \tag{8}
\end{equation*}
$$

Proof. Using (1) we have $J_{t, n}=\frac{1}{t}\left(J_{t, n+2}-J_{t, n+1}\right)$.
For integers $0,1, \ldots, n$ we obtain

$$
\begin{aligned}
J_{t, 0} & =\frac{1}{t}\left(J_{t, 2}-J_{t, 1}\right) \\
J_{t, 1} & =\frac{1}{t}\left(J_{t, 3}-J_{t, 2}\right) \\
J_{t, 2} & =\frac{1}{t}\left(J_{t, 4}-J_{t, 3}\right) \\
\vdots & \\
J_{t, n-1} & =\frac{1}{t}\left(J_{t, n+1}-J_{t, n}\right) \\
J_{t, n} & =\frac{1}{t}\left(J_{t, n+2}-J_{t, n+1}\right) .
\end{aligned}
$$

Adding these equalities we obtain (8).
In the same way one can easily prove the next theorem.
Theorem 5. Let $n \geq 0, t \geq 1$ be integers. Then

$$
\begin{equation*}
\sum_{i=0}^{n} j_{t, i}=\frac{j_{t, n+2}-j_{t, 1}}{t} \tag{9}
\end{equation*}
$$

From the above theorems we obtain the well-known identities for Fibonacci numbers, Lucas numbers, Jacobsthal numbers and Jacobsthal-Lucas numbers.

Corollary 6. Let $n \geq 0$ be an integer. Then

$$
\begin{aligned}
& \sum_{i=0}^{n} F_{i}=F_{n+2}-F_{1}=F_{n+2}-1, \\
& \sum_{i=0}^{n} L_{i}=L_{n+2}-L_{1}=L_{n+2}-1, \\
& \sum_{i=0}^{n} J_{i}=\frac{J_{n+2}-J_{1}}{2}=\frac{J_{n+2}-1}{2}, \\
& \sum_{i=0}^{n} j_{i}=\frac{j_{n+2}-j_{1}}{2}=\frac{j_{n+2}-1}{2} .
\end{aligned}
$$

Some identities for numbers $J_{t, n}$ and $j_{t, n}$ can be found using their matrix generators.
For integers $n \geq 1$ and $t \geq 1$ let $J(t, n)=\left[\begin{array}{ll}J_{t, n} & J_{t, n-1} \\ J_{t, n+1} & J_{t, n}\end{array}\right]$ be a matrix with entries being generalized Fibonacci numbers.

Theorem 7. Let $n \geq 1, t \geq 1$ be integers. Then

$$
\left[\begin{array}{ll}
J_{t, n} & J_{t, n-1} \\
J_{t, n+1} & J_{t, n}
\end{array}\right]=\left[\begin{array}{ll}
J_{t, 1} & J_{t, 0} \\
J_{t, 2} & J_{t, 1}
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 1 \\
t & 0
\end{array}\right]^{n-1}
$$

Proof (By Induction on n). If $n=1$ then the result is obvious. Assume that

$$
\left[\begin{array}{ll}
J_{t, n} & J_{t, n-1} \\
J_{t, n+1} & J_{t, n}
\end{array}\right]=\left[\begin{array}{ll}
J_{t, 1} & J_{t, 0} \\
J_{t, 2} & J_{t, 1}
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 1 \\
t & 0
\end{array}\right]^{n-1} .
$$

We shall show that

$$
\left[\begin{array}{cc}
J_{t, n+1} & J_{t, n} \\
J_{t, n+2} & J_{t, n+1}
\end{array}\right]=\left[\begin{array}{cc}
J_{t, 1} & J_{t, 0} \\
J_{t, 2} & J_{t, 1}
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & 1 \\
t & 0
\end{array}\right]^{n} .
$$

By simple calculation using induction's hypothesis we have

$$
\begin{aligned}
& {\left[\begin{array}{ll}
J_{t, 1} & J_{t, 0} \\
J_{t, 2} & J_{t, 1}
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 1 \\
t & 0
\end{array}\right]^{n-1} \cdot\left[\begin{array}{ll}
1 & 1 \\
t & 0
\end{array}\right]=\left[\begin{array}{ll}
J_{t, n} & J_{t, n-1} \\
J_{t, n+1} & J_{t, n}
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 1 \\
t & 0
\end{array}\right]=} \\
& =\left[\begin{array}{ll}
J_{t, n}+t \cdot J_{t, n-1} & J_{t, n} \\
J_{t, n+1}+t \cdot J_{t, n} & J_{t, n+1}
\end{array}\right]=\left[\begin{array}{ll}
J_{t, n+1} & J_{t, n} \\
J_{t, n+2} & J_{t, n+1}
\end{array}\right],
\end{aligned}
$$

which ends the proof.
This generator immediately gives the Cassini formula for the generalized Fibonacci numbers.
Corollary 8. Let $n \geq 1, t \geq 1$ be integers. Then

$$
J_{t, n}^{2}-J_{t, n-1} \cdot J_{t, n+1}=\left(J_{t, 1}^{2}-J_{t, 0} \cdot J_{t, 2}\right) \cdot(-t)^{n-1}=(-t)^{n-1} .
$$

If $t=1$ and $t=2$ then we obtain the well-known Cassini formulas for the Fibonacci numbers and the Jacobsthal numbers, respectively.

Corollary 9. Let $n \geq 1$ be an integer. Then

$$
\begin{gathered}
F_{n}^{2}-F_{n-1} \cdot F_{n+1}=(-1)^{n-1} \\
J_{n}^{2}-J_{n-1} \cdot J_{n+1}=(-2)^{n-1} .
\end{gathered}
$$

Analogously we can define the matrix generator and the Cassini formula for the generalized Lucas numbers.
For integers $n \geq 1$ and $t \geq 1$ let $j(t, n)=\left[\begin{array}{ll}j_{t, n} & j_{t, n-1} \\ j_{t, n+1} & j_{t, n}\end{array}\right]$ be a matrix with entries being generalized Lucas numbers.

Theorem 10. Let $n \geq 1, t \geq 1$ be integers. Then

$$
\left[\begin{array}{ll}
j_{t, n} & j_{t, n-1} \\
j_{t, n+1} & j_{t, n}
\end{array}\right]=\left[\begin{array}{ll}
j_{t, 1} & j_{t, 0} \\
j_{t, 2} & j_{t, 1}
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 1 \\
t & 0
\end{array}\right]^{n-1}
$$

Corollary 11. Let $n \geq 1, t \geq 1$ be integers. Then

$$
j_{t, n}^{2}-j_{t, n-1} \cdot j_{t, n+1}=(-1-4 t) \cdot(-t)^{n-1}
$$

If $t=1$ and $t=2$ then we have the well-known Cassini formulas for the Lucas numbers and the Jacobsthal-Lucas numbers, respectively.

Corollary 12. Let $n \geq 1$ be an integer. Then

$$
\begin{gathered}
L_{n}^{2}-L_{n-1} \cdot L_{n+1}=-5 \cdot(-1)^{n-1} \\
j_{n}^{2}-j_{n-1} \cdot j_{n+1}=-9 \cdot(-2)^{n-1}
\end{gathered}
$$

References

[1] L.A. Dosal-Trujillo, H. Galeana-Sánchez, The Fibonacci numbers of certain subgraphs of circulant graphs, AKCE Int. J. Graphs Combin. 12 (2015) 94-103.
[2] M. Kwaśnik, I. Włoch, The total number of generalized stable sets and kernels of graphs, Ars Combin. 55 (2000) $139-146$.
[3] H. Prodinger, R.F. Tichy, Fibonacci numbers in graphs, Fibonacci Quart. 20 (1982) 16-21.
[4] Z. Skupień, Sums of powered characteristic roots count distance-independent circular sets, Discuss. Math. Graph Theory 33 (2013) 217-229.
[5] A. Włoch, On generalized Fibonacci numbers and k-distance K_{p}-matchings in graphs, Discrete Appl. Math. 160 (2012) $1399-1405$.
[6] A. Włoch, Some identities for the generalized Fibonacci numbers and the generalized Lucas numbers, Appl. Math. Comput. 219 (2013) 5564-5568.
[7] A. Szynal-Liana, I. Włoch, On distance Pell numbers and their connections with Fibonacci numbers, Ars Combin. CXIIIA (2014) 65-75.

[^0]: Peer review under responsibility of Kalasalingam University.

 * Corresponding author.

 E-mail addresses: aszynal@prz.edu.pl (A. Szynal-Liana), iwloch@prz.edu.pl (I. Włoch), mliana@prz.edu.pl (M. Liana).

