On the 2-token graph of a graph

J. Deepalakshmi, G. Marimuthu, A. Somasundaram \& S. Arumugam

To cite this article: J. Deepalakshmi, G. Marimuthu, A. Somasundaram \& S. Arumugam (2020) On the 2-token graph of a graph, AKCE International Journal of Graphs and Combinatorics, 17:1, 265-268, DOI: 10.1016/j.akcej.2019.05.002

To link to this article: https://doi.org/10.1016/j.akcej.2019.05.002

© 2018 Kalasalingam University. Published with license by Taylor \& Francis Group, LLC.

Published online: 04 Jun 2020.

Submit your article to this journal ©

Article views: 138

View related articles

View Crossmark data \triangle

On the 2-token graph of a graph

J. Deepalakshmi ${ }^{\mathrm{a}, *}$, G. Marimuthu ${ }^{\mathrm{b}}$, A. Somasundaram ${ }^{\text {c }}$, S. Arumugam ${ }^{\mathrm{d}, 1}$
${ }^{\text {a }}$ Department of Mathematics, Mepco Schlenk Engineering College, Sivakasi, 626 005, Tamil Nadu, India
${ }^{\mathrm{b}}$ Department of Mathematics, The Madura College, Madurai, 625011, Tamil Nadu, India
${ }^{\text {c }}$ Department of Mathematics, Birla Institute of Technology \& Science, Pilani, Dubai Campus Dubai International Academic City, P. O. Box No. 345055, Dubai, United Arab Emirates
${ }^{\mathrm{d}}$ National Centre for Advanced Research in Discrete Mathematics, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnankoil, 626 126, Tamil Nadu, India

Received 23 March 2019; received in revised form 29 April 2019; accepted 4 May 2019

Abstract

Let $G=(V, E)$ be a graph and let k be a positive integer. Let $P_{k}(V)=\{S: S \subseteq V$ and $|S|=k\}$. The k-token graph $F_{k}(G)$ is the graph with vertex set $P_{k}(V)$ and two vertices A and B are adjacent if $A \Delta B=\{a, b\}$ and $a b \in E(G)$, where Δ denotes the symmetric difference. In this paper we present several basic results on 2-token graphs.

Keywords: k-token graph; Line graph; Chordal graph; Independence number

1. Introduction

By a graph $G=(V, E)$ we mean a finite undirected graph with neither loops nor multiple edges. The order $|V|$ and the size $|E|$ are denoted by n and m respectively. For graph theoretic terminology we refer to Chartrand and Zhang [1].

For any set V we denote by $P_{k}(V)$ the set of all k-element subsets of V. Monray et al. [2] introduced the notion of k-token graph of a graph G.

Definition 1.1 ([2]). Let $G=(V, E)$ be a graph and let $k \geq 1$ be an integer. The k-token graph $F_{k}(G)$ of G is the graph with vertex set $P_{k}(V)$ and two vertices A and B are adjacent if $A \Delta B=\{a, b\}$ where $a b \in E(G)$.

Clearly $\left|V\left(F_{k}(G)\right)\right|=\binom{n}{k}$ and $\left|E\left(F_{k}(G)\right)\right|=\binom{n-2}{k-1}|E(G)|$.
We need the following theorems.

[^0]Theorem 1.2 ([2]). If $F_{k}(G)$ is bipartite for some $k \geq 1$, then $F_{l}(G)$ is bipartite for all $l \geq 1$.
Theorem 1.3 ([3]). Let $G=(V, E)$ be a graph of order n and let $v_{i}, v_{j} \in V$. Then

$$
\operatorname{deg}_{F_{2}(G)}\left(\left\{v_{i}, v_{j}\right\}\right)= \begin{cases}\operatorname{deg}\left(v_{i}\right)+\operatorname{deg}\left(v_{j}\right) & \text { if } v_{i} v_{j} \notin E \\ \operatorname{deg}\left(v_{i}\right)+\operatorname{deg}\left(v_{j}\right)-2 & \text { if } v_{i} v_{j} \in E\end{cases}
$$

In this paper we investigate the 2-token graph $F_{2}(G)$. We repeatedly use the following observation.
Observation 1.4. Two vertices x and y of $F_{2}(G)$ are adjacent if and only if $x=\{a, b\}$ and $y=\{a, c\}$ with $b c \in E(G)$.

2. Main results

We first prove that for complete graphs the 2-token graph is its line graph.
Theorem 2.1. Let G be a graph of order $n \geq 2$. Then $F_{2}(G)$ is isomorphic to the line graph $L(G)$ if and only if $G=K_{n}$.

Proof. Suppose $G=K_{n}$. Let $\left\{v_{i}, v_{j}\right\} \in V\left(F_{2}(G)\right)$. Since $v_{i} v_{j} \in E(G)$, it follows that $\left\{v_{i}, v_{j}\right\}$ is adjacent to $\left\{v_{i}, v_{k}\right\}$ and $\left\{v_{j}, v_{k}\right\}$ for all $k \neq i, j$. Thus $N_{F_{2}(G)}\left(\left\{v_{i}, v_{j}\right\}\right)=N_{L(G)}\left(v_{i} v_{j}\right)$. Hence $F_{2}(G)$ is isomorphic to $L(G)$. Conversely, suppose that $F_{2}(G)=L(G)$. Then $|E(G)|=|V(L(G))|=\left|V\left(F_{2}(G)\right)\right|=\binom{n}{2}$ and hence it follows that $G=K_{n}$.

Lemma 2.2. If a graph G contains two vertex disjoint paths $P_{2}=\left(v_{1}, v_{2}\right)$ and $P_{r}=\left(w_{1}, w_{2}, \ldots, w_{r}\right)$, then $F_{2}(G)$ contains a cycle of length $2 r$.

Proof. Let $X_{i}=\left\{v_{1}, w_{i}\right\}$ and $Y_{i}=\left\{v_{2}, w_{i}\right\}$ where $1 \leq i \leq r$. Then $\left(X_{1}, X_{2}, \ldots, X_{r}, Y_{r}, Y_{r-1}, \ldots, Y_{2}, Y_{1}, X_{1}\right\}$ is a cycle of length $2 r$ in $F_{2}(G)$.

Observation 2.3. If $v_{1} w_{1}$ and $v_{2} w_{2}$ are two nonadjacent edges in G, then the corresponding cycle C_{4} given in Lemma 2.2 is an induced cycle.

Lemma 2.4. Let $G=(V, E)$ be a graph. Then G is triangle free if and only if $F_{2}(G)$ is triangle free.
Proof. Suppose G is triangle free. If $F_{2}(G)$ contains a triangle say ($\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\},\left\{v_{3}, v_{2}\right\},\left\{v_{1}, v_{2}\right\}$), then $\left(v_{1}, v_{2}, v_{3}, v_{1}\right)$ is a triangle in G which is a contradiction. The proof of the converse is similar.

In the following theorems we obtain a characterization of graph G for which $F_{2}(G)$ is a tree or chordal graph.
Theorem 2.5. Let G be a graph of order $n \geq 2$. Then $F_{2}(G)$ is a tree if and only if $G=P_{2}$ or P_{3}.
Proof. If $G=P_{2}$, then $F_{2}(G)=K_{1}$. If $G=P_{3}$, then $F_{2}(G)=P_{3}$. Conversely, suppose $F_{2}(G)$ is a tree. If there exist two nonadjacent edges $v_{1} v_{2}$ and $v_{3} v_{4}$ in G, then ($\left\{v_{3}, v_{1}\right\},\left\{v_{3}, v_{2}\right\},\left\{v_{2}, v_{4}\right\},\left\{v_{1}, v_{4}\right\},\left\{v_{3}, v_{1}\right\}$) is a cycle in $F_{2}(G)$, which is a contradiction. Hence any two edges in G are adjacent. Thus $G=K_{3}$ or $K_{1, n}$. If $G=K_{3}$, then $F_{2}(G)=K_{3}$. Now suppose $G=K_{1, n}$ where $n \geq 3$. Let v_{1} be the centre and let $v_{2}, v_{3}, \ldots, v_{n}$ be the pendent vertices of G. Then ($\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{1}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{1}, v_{4}\right\},\left\{v_{2}, v_{4}\right\},\left\{v_{1}, v_{2}\right\}$) is the cycle C_{6} in $F_{2}(G)$, which is a contradiction. Hence $G=K_{1, n}$ where $n \leq 2$. Thus $G=P_{2}$ or P_{3}.

Theorem 2.6. Let G be a connected graph of order n and let $n \geq 2$. Then $F_{2}(G)$ is a chordal graph if and only if G is isomorphic to one of the graphs P_{2}, P_{3} or K_{3}.

Proof. Suppose $F_{2}(G)$ is a chordal graph. It follows from Observation 2.3 that any two edges of G are adjacent. Now proceeding as in the proof of Theorem 2.5 we get $G=P_{2}, P_{3}$ or K_{3}. The converse is obvious.

In the following theorem we obtain a lower bound for the independence number of $F_{2}(G)$.

Theorem 2.7. Let G be a connected graph of order n with $\beta_{0}(G) \geq 2$. Then $\beta_{0}\left(F_{2}(G)\right) \geq\binom{\beta_{0}(G)}{2}+\left\lfloor\frac{n-\beta_{0}(G)}{2}\right\rfloor$ and the bound is sharp.

Proof. Let S be a β_{0}-set of G. Let $S_{1}=\left\{\left\{u_{i}, u_{j}\right\}: u_{i}, u_{j} \in S\right\}$ and let S_{2} be a collection of disjoint 2-element subsets of $V-S$. Clearly $\left|S_{2}\right|=\left\lfloor\frac{n-\beta_{0}(G)}{2}\right\rfloor$. Let $T=S_{1} \cup S_{2}$. Let $\left\{u_{i}, u_{j}\right\},\left\{u_{i}, u_{k}\right\} \in S_{1}$. Since $u_{j} u_{k} \notin E(G)$, it follows that $\left\{u_{i}, u_{j}\right\}$ is not adjacent to $\left\{u_{i}, u_{k}\right\}$ in $F_{2}(G)$. Obviously no element x of S_{2} is adjacent with any element of $T-\{x\}$. Hence T is an independent set of $F_{2}(G)$. Thus $\beta_{0}\left(F_{2}(G)\right) \geq|T|=\binom{\beta_{0}(G)}{2}+\left\lfloor\frac{n-\beta_{0}(G)}{2}\right\rfloor$. We observe that if $G=K_{4}-e$, then $\beta_{0}(G)=2$ and $\beta_{0}\left(F_{2}(G)\right)=2$, which shows that the above bound is sharp.

Theorem 2.8. Let G be a graph of order n. If there exists a vertex $v_{1} \in V(G)$ such that deg $v_{1}=2$, then G is isomorphic to a subgraph of $F_{2}(G)$.

Proof. Let $N\left(v_{1}\right)=\left\{v_{2}, v_{3}\right\}$. Let $S=\left\{\left\{v_{1}, v_{i}\right\}: i \geq 2\right\}$. Clearly the subgraph of $F_{2}(G)$ induced by S is isomorphic $G-\left\{v_{1}\right\}$. Now $\left\{v_{2}, v_{3}\right\}$ is adjacent to $\left\{v_{1}, v_{2}\right\}$ and $\left\{v_{1}, v_{3}\right\}$ in $F_{2}(G)$. Hence the subgraph of $F_{2}(G)$ induced by the set $S \cup\left\{\left\{v_{2}, v_{3}\right\}\right\}$ is isomorphic to G.

Observation 2.9. The graph $F_{2}\left(K_{4}\right)$ does not contain an induced subgraph isomorphic to K_{4}. This shows that Theorem 2.8 is not true if G has no vertex of degree 2 .

Theorem 2.10. A connected graph H is isomorphic to $F_{2}\left(K_{1, n-1}\right)$ if and only if the following conditions are satisfied.
(i) H is a bipartite graph of order $\binom{n}{2}$ with bipartition V_{1}, V_{2} where $\left|V_{1}\right|=n-1$ and $\left|V_{2}\right|=\binom{n-1}{2}$.
(ii) Every vertex of V_{1} has degree $n-2$.
(iii) Every vertex of V_{2} has degree 2.
(iv) Any two vertices of V_{1} have exactly one common neighbour.

Proof. Let $H=F_{2}(G)$ where $G=K_{1, n-1}$. Let v_{1} be the centre of the star. Let $\left\{v_{2}, v_{3}, \ldots, v_{n}\right\}$ be the set of pendent vertices of G.
(i) Let $V_{1}=\left\{\left\{v_{1}, v_{i}\right\}: 2 \leq i \leq n\right\}$ and let $V_{2}=P_{2}(V)-V_{1}$ where $P_{2}(V)$ is the set of all 2-element subsets of V. Clearly $\left|V_{1}\right|=n-1$ and $\left|V_{2}\right|=\binom{n}{2}-(n-1)=\binom{n-1}{2}$. Since $v_{i}, v_{j} \notin E(G)$ if $i, j \neq 1$, it follows that $\left\{v_{1}, v_{i}\right\}$ is not adjacent to $\left\{v_{1}, v_{j}\right\}$ in H. Hence V_{1} is independent.

Now, let $\left\{v_{i}, v_{j}\right\}$ and $\left\{v_{k}, v_{i}\right\} \in V_{2}$ since $i, k, j \neq 1$, it follows that $v_{j} v_{k} \notin E(G)$. Hence $\left\{v_{i}, v_{j}\right\}$ is not adjacent to $\left\{v_{k}, v_{i}\right\}$ in H. Hence V_{2} is independent. This proves (i).
(ii) Let $\left\{v_{1}, v_{i}\right\} \in V_{1}$. The vertices adjacent to $\left\{v_{1}, v_{i}\right\}$ in H are given by $\left\{v_{k}, v_{i}\right\}$ for any $k \neq 1, i$. Hence every vertex of V_{1} has degree $n-1$.
(iii) Let $\left\{v_{r}, v_{s}\right\} \in V_{2}$. Hence $s, r \neq 1$. The vertices adjacent to $\left\{v_{r}, v_{s}\right\}$ are $\left\{v_{1}, v_{r}\right\}$ and $\left\{v_{1}, v_{s}\right\}$. Hence any vertex of V_{2} has degree 2 .
(iv) Let $\left\{v_{i}, v_{j}\right\},\left\{v_{1}, v_{j}\right\} \in V_{1}$. Clearly $\left\{v_{i}, v_{j}\right\}$ is the unique common neighbour.

Conversely, suppose H satisfies the conditions (i), (ii), (iii) and (iv). Suppose $H=F_{2}(G)$ for some G. Since $|V(H)|=n-1+\binom{n-1}{2}=\binom{n}{2}$, it follows that $|V(G)|=n$. Now, let $m=|E(G)|$. Hence the number of edges in H is $(n-2) m$. But $|E(H)|=2\binom{n-1}{2}=(n-1)(n-2)$. Hence it follows that $m=n-1$, so that G is a tree.

Suppose G has 2 nonadjacent edges say $v_{1} v_{2}$ and $v_{3} v_{4}$. Then ($\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{2}, v_{4}\right\},\left\{v_{1}, v_{4}\right\},\left\{v_{4}, v_{3}\right\}$) is a cycle in H. Hence $\left\{v_{1}, v_{3}\right\}$ and $\left\{v_{2}, v_{4}\right\}$ have $\left\{v_{2}, v_{3}\right\}$ and $\left\{v_{1}, v_{4}\right\}$ as common neighbours which contradicts (iv).

Hence it follows that G is star $K_{1, n-1}$.
Theorem 2.11. Let $G=(V, E)$ be a connected graph of order n. Then G is bipartite if and only if $F_{2}(G)$ is bipartite.

Proof. Suppose G is bipartite. Let V_{1}, V_{2} be the bipartition of $V(G)$. If $\left|V_{1}\right|=1$, then $G=K_{1, n-1}$ and hence it follows from Theorem 2.10 that $F_{2}(G)$ is bipartite.

Suppose $\left|V_{1}\right| \geq 2$ and $\left|V_{2}\right| \geq 2$. Let $X=P_{2}\left(V_{1}\right) \cup P_{2}\left(V_{2}\right)$ and $Y=V\left(F_{2}(G)\right)-X$. We claim that X, Y is a bipartition of $F_{2}(G)$. Since V_{1} and V_{2} are independent sets in G, it follows from Theorem 2.7 that $P_{2}\left(V_{1}\right)$ and $P_{2}\left(V_{2}\right)$ are independent sets in $F_{2}(G)$. Further any element of $P_{2}\left(V_{1}\right)$ is not adjacent to any element of $P_{2}\left(V_{2}\right)$. Hence X is independent.

Theorem 2.12. The cycle C_{r} is $F_{2}(G)$ for some graph G if and only if $r=3$ or 6.
Proof. Obviously $F_{2}\left(C_{3}\right)=C_{3}$ and $F_{2}\left(K_{1,3}\right)=C_{6}$. Conversely, suppose $C_{r}=F_{2}(G)$ for some graph G. Let $|V(G)|=n$. Now since $F_{2}(G)$ is C_{4} free, it follows from Lemma 2.2 that any two edges in G are adjacent. Hence $G=K_{1, n}$ or K_{3}. If $n \geq 4$, then $\operatorname{deg}\left(v_{1}, v_{5}\right) \geq 3$ where v_{1} is the centre of $K_{1, n}$ which is a contradiction. Hence $n=3$. Thus $G=K_{1,3}$ or C_{3}. Hence $F_{2}(G)=C_{3}$ or C_{6}.

3. Conclusion and scope

We observe that if $H=F_{2}(G)$ for some graph G of order n then $|V(H)|=\binom{n}{2}$. The following fundamental problem arises naturally.

Problem 3.1. If H is a graph of order $\binom{n}{2}$, obtain a necessary and sufficient condition for the existence of a graph G of order n such that $H=F_{2}(G)$.

Theorem 2.7 gives a bound for $\beta_{0}\left(F_{2}(G)\right)$ and leads to the following problem.
Problem 3.2. Characterize graphs G for which $\beta_{0}\left(F_{2}(G)\right)=\binom{\beta_{0}(G)}{2}+\left\lfloor\frac{n-\beta_{0}(G)}{2}\right\rfloor$.

References

[1] G. Chartrand, P. Zhang, Introduction To Graph Theory, Tata McGraw Hill, 2006.
[2] R.F. Monray, D.F. Penaloza, G. Huemer, F. Hurtads, J. Urratia, D.R. Wood, Token graphs, Graphs Combin. 28 (2012) $365-380$.
[3] J. Deepalakshmi, G. Marimuthu, Characterization of token graphs, J. Eng. Math. 6 (2017) 310-317.

[^0]: Peer review under responsibility of Kalasalingam University.

 * Corresponding author.

 E-mail addresses: jdeepa@mepcoeng.ac.in (J. Deepalakshmi), yellowmuthu@yahoo.com (G. Marimuthu), asomasundaram@dubai.bits-pilani.ac.in (A. Somasundaram), s.arumugam.klu@gmail.com (S. Arumugam).

 1 Also at Department of Mathematics, Amrita Vishwa Vidyapeetham, Coimbatore, India; Department of Computer Science, Ball State University, USA; Department of Computer Science, Liverpool Hope University, Liverpool, UK.
 https://doi.org/10.1016/j.akcej.2019.05.002
 © 2018 Kalasalingam University. Published with license by Taylor \& Francis Group, LLC
 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/ by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

