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Abstract

A graph is called supermagic if it admits a labeling of the edges by pairwise different consecutive positive integers such
that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In the paper we deal with
special supermagic labelings of regular graphs and their using to construction of supermagic labelings of disconnected graphs.

Keywords: Gradual labeling; Supermagic graphs; Degree-magic graphs

1. Introduction

We consider finite undirected graphs without loops, multiple edges and isolated vertices. If G is a graph, then
V (G) and E(G) stand for the vertex set and edge set of G, respectively. Cardinalities of these sets are called the
order and size of G. The union of two disjoint graphs G and H is denoted by G ∪ H and the union of m disjoint
copies of a graph G is denoted by mG. For integers p, q we denote by [p, q] the set of all integers z satisfying
p ≤ z ≤ q.

Let a graph G and a mapping f from E(G) into positive integers be given. The index-mapping of f is the
mapping f ∗ from V (G) into positive integers defined by

f ∗(v) =

∑
uv∈E(G)

f (uv) for every v ∈ V (G).

An injective mapping f from E(G) into positive integers is called a magic labeling of G for an index λ if its
index-mapping f ∗ satisfies

f ∗(v) = λ for all v ∈ V (G).

A magic labeling f of G is called a supermagic labeling if the set { f (e) : e ∈ E(G)} consists of consecutive positive
integers. We say that a graph G is supermagic (magic) whenever there exists a supermagic (magic) labeling of G.

A bijective mapping f from E(G) to
[
1, |E(G)|

]
is called a degree-magic labeling (or only d-magic labeling)

of a graph G if its index-mapping f ∗ satisfies

f ∗(v) =
1 + |E(G)|

2
deg(v) for all v ∈ V (G).
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A d-magic labeling f of G is called balanced if for all v ∈ V (G) it holds

|{uv ∈ E(G) : f (uv) ≤ ⌊|E(G)|/2⌋}|

= |{uv ∈ E(G) : f (uv) > ⌊|E(G)|/2⌋}|.

We say that a graph G is degree-magic (balanced degree-magic) (or only d-magic) when there exists a d-magic
(balanced d-magic) labeling of G.

The concept of magic graphs was introduced by Sedláček [1]. Supermagic graphs were introduced by M. B.
Stewart [2]. There is by now a considerable number of papers published on magic and supermagic graphs; we single
out [3–8] as being more particularly relevant to the present paper, and refer the reader to [9] for comprehensive
references. The concept of degree-magic graphs was introduced in [10]. Some properties of degree-magic graphs
and characterizations of some classes of degree-magic and balanced degree-magic graphs were described in [10–15].
Clearly, any degree-magic labeling of a regular graph is supermagic. Nay, degree-magic graphs extend supermagic
regular graphs because the following result holds.

Proposition 1 ([10]). Let G be a regular graph. Then G is supermagic if and only if it is degree-magic.

In the paper we deal with special degree-magic labelings of graphs. Inter alia we describe a construction of
supermagic labeling of the disjoint union of graphs admitting such special labelings.

2. Gradual labelings

A spanning subgraph H of a graph G is called a proportional factor of G whenever |E(G)| degH (v) =

|E(H )| degG(v) for every vertex v ∈ V (G). For a positive integer q , q ≥ 2, a proportional factor H of a graph
G is called a 1

q -factor of G when |E(H )| = |E(G)|/q (i.e., degH (v) = degG(v)/q for every vertex v ∈ V (G)).
For conciseness, we will denote by F(q) the family of all graphs G whose edge set can be decomposed into q
pairwise disjoint subsets each of which induces a 1

q -factor of G. A bijection f from E(G) onto
[
1, |E(G)|

]
is called

q-gradual if the set

Fq ( f ; i) := {e ∈ E(G) : (i − 1)|E(G)|/q < f (e) ≤ i |E(G)|/q}

induces a 1
q -factor of G for each i ∈ [1, q]. Evidently, G admits a q-gradual bijection if and only if G ∈ F(q).

We say that a graph G is q-gradual d-magic (q-gradual supermagic) when there exists a q-gradual d-magic
(a q-gradual supermagic) labeling of G. The concept of gradual labelings was introduced in [6], where supermagic
labelings of generalized double graphs were constructed using some gradual labelings.

The family of all q-gradual d-magic graphs we will denote by G(q). Clearly, G(2) is the family of all balanced
d-magic graphs and G(q) ⊂ F(q) for every q ≥ 2. Moreover, we have

Theorem 1. The following statements hold:

(i) Let q be a divisor of a positive integer k. Then G(k) ⊂ G(q).
(ii) Let G be a graph obtained from a graph H by an identification of two vertices whose distance is at least

three. If H ∈ G(q), then G ∈ G(q).
(iii) Let H1,. . . , Hk be pairwise edge-disjoint proportional factors of a graph G which form its decomposition.

Let H j ∈ G(q j ) for j ∈ [1, k]. If there is an integer m such that |E(H j )|/q j = m for each j ∈ [1, k], then
G ∈ G(q), where q =

∑k
j=1 q j .

Proof. (i) As q is a divisor of k, there is a positive integer s such that k = sq . Let G be a graph belonging
to G(k). Then there is a k-gradual d-magic labeling f of G. Therefore, Fk( f ; i) induces a 1

k -factor of G for each
i ∈ [1, k]. Moreover, Fq ( f ; j) = ∪

js
i=( j−1)s+1 Fk( f ; i) for every j ∈ [1, q]. So Fq ( f ; j) induces a subgraph of G in

which every vertex v has degree s 1
k degG(v) =

1
q degG(v). This means that f is q-gradual. Thus, G ∈ G(q).

(ii) Let f be a q-gradual d-magic labeling of H . Let u and v be two vertices of H such that the distance
between them is at least three. Let G be a graph obtained from H by an identification of vertices u and v, and let
w denote the vertex of G obtained by the identification. Thus, we can assume that H and G have the same edges.
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However, if an edge e is incident with u or v in H then e is incident with w in G. Now it is easy to see that the
mapping g from E(G) into integers given by g(e) := f (e) is a desired q-gradual d-magic labeling of G.

(iii) As |E(H j )| = q j m for each j ∈ [1, k],

|E(G)| =

k∑
j=1

|E(H j )| =

k∑
j=1

q j m =

⎛⎝ k∑
j=1

q j

⎞⎠m = qm.

Thus, degH j
(v) = |E(H j )| degG(v)/|E(G)| = q j degG(v)/q for every vertex v ∈ V (G). As H j belongs to G(q j ),

there is a q j -gradual d-magic labeling f j of H j . For any vertex v ∈ V (G) we have

f ∗

j (v) =
1
2

(
1 + |E(H j )|

)
degH j

(v) =
1
2

(
1 + q j m

) q j

q
degG(v).

Moreover, the set Fq j ( f j ; i) induces a 1
q j

-factor of H j for each i ∈ [1, q j ]. This means that any vertex v ∈ V (G)
has degree degH j

(v)/q j in the induced subgraph. However, degH j
(v)/q j = degG(v)/q and so the set Fq j ( f j ; i)

induces a 1
q -factor of G for each i ∈ [1, q j ].

Now consider the mapping g from E(G) into the set of positive integers given by

g(e) = f j (e) +

j−1∑
i=1

|E(Hi )| when e ∈ E(H j ).

Clearly, g is a bijection from E(G) onto
[
1, |E(G)|

]
. Moreover, for every vertex w ∈ V (G) we have

g∗(w) =

k∑
j=1

(
f ∗

j (w) + degH j
(w)

j−1∑
i=1

|E(Hi )|

)

=

k∑
j=1

(
1
2

(1 + q j m)
q j

q
degG(w) +

q j

q
degG(w)

j−1∑
i=1

qi m

)

=
1
2

k∑
j=1

(
q j + q2

j m + 2
j−1∑
i=1

qi q j m

)
1
q

degG(w)

=
1
2

⎛⎝ k∑
j=1

q j +

k∑
j=1

(
q2

j + 2
j−1∑
i=1

qi q j

)
m

⎞⎠ 1
q

degG(w)

=
1
2

⎛⎝ k∑
j=1

q j +

⎛⎝ k∑
j=1

k∑
i=1

qi q j

⎞⎠m

⎞⎠ 1
q

degG(w)

=
1
2

⎛⎜⎝ k∑
j=1

q j +

⎛⎝ k∑
j=1

q j

⎞⎠2

m

⎞⎟⎠ 1
q

degG(w)

=
1
2

(
q + q2m

) 1
q

degG(w) =
1
2

(1 + qm) degG(w)

=
1
2

(
1 + |E(G)|

)
degG(w).

Therefore, g is a degree-magic labeling of G.
For any t ∈ [1, q] there is j ∈ [1, k] such that

∑ j−1
i=1 qi < t ≤

∑ j
i=1 qi . Then r := t −

∑ j−1
i=1 qi belongs to [1, q j ]

and Fq (g; t) = Fq j ( f j ; r ). Thus, Fq (g; t) induces a 1
q -factor of G for each t ∈ [1, q], i.e., g is a q-gradual d-magic

labeling of G. □

Theorem 2. A graph G is q-gradual d-magic if and only if there exist a mapping ϕ from E(G) onto [1, |E(G)|/q]
and a decomposition of E(G) into pairwise disjoint subsets X1, X2, . . . , Xq with the following properties
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• each X i induces a 1
q -factor of G,

• ϕ(X i ) = [1, |E(G)|/q] for each i ,
• ϕ∗(v) =

1+|E(G)|/q
2 deg(v) for all v ∈ V (G).

Proof. First suppose that G is a q-gradual d-magic graph. Then there is a q-gradual d-magic labeling f of G. For
any j ∈ [1, q], put X j = Fq ( f ; j) and define a mapping ϕ from E(G) into the set of integers by

ϕ(e) = f (e) − ( j − 1)|E(G)|/q when e ∈ X j .

As f is a q-gradual labeling, each X j induces a 1
q -factor of G and consequently ϕ(X j ) = [1, |E(G)|/q]. Moreover,

for any vertex v ∈ V (G), we have

ϕ∗(v) = f ∗(v) −

q∑
j=1

( j − 1)
(
|E(G)|/q

)(
deg(v)/q

)
= f ∗(v) − (0 + 1 + · · · + q − 1)|E(G)| deg(v)/q2

=
1 + |E(G)|

2
deg(v) −

(q − 1)|E(G)|
2

deg(v)/q

=
1 + |E(G)|/q

2
degG(v).

On the other hand, assume that ϕ is a mapping from E(G) onto the set [1, |E(G)|/q] and that X1, X2, . . . , Xq

is a decomposition of E(G) into pairwise disjoint subsets with the considered properties. Define a mapping f from
E(G) into the set of integers by

f (e) = ϕ(e) + ( j − 1)|E(G)|/q when e ∈ X j .

It is easy to see that f is a bijection onto [1, |E(G)|]. Similarly, for any vertex v ∈ V (G), we have

f ∗(v) = ϕ∗(v) +

q∑
j=1

( j − 1)
(
|E(G)|/q

)(
deg(v)/q

)
= ϕ∗(v) + (0 + 1 + · · · + q − 1)|E(G)| deg(v)/q2

=
1 + |E(G)|/q

2
deg(v) +

(q − 1)|E(G)|
2

deg(v)/q

=
1 + |E(G)|

2
degG(v).

Therefore, f is a d-magic labeling of G. Moreover, the set Fq ( f ; j) = X j induces a 1
q -factor of G, i.e., f is

q-gradual. □

3. Complete graphs

A complete k-partite graph is a graph whose vertices can be partitioned into k (k ≥ 2) disjoint classes V1, . . . , Vk

such that two vertices are adjacent whenever they belong to distinct classes. If |Vi | = n, for each i ∈ [1, k], then the
complete k-partite graph is denoted by Kk[n]. The complete graph Kk[1] is usually denoted by Kk and the complete
bipartite graph K2[n] is mostly denoted by Kn,n .

For any graph G we define a graph G▷◁ by V (G▷◁) =
⋃

v∈V (G){v
0, v1

} and E(G▷◁) =
⋃

vu∈E(G){v
0u1, v1u0

} ∪⋃
v∈V (G){v

0v1
}. It is easy to see that G▷◁ is a generalized double graph denoted by D(G; ∅, V (G)) in [6]. Therein

there was also proved the following result.

Proposition 2 ([6]). Let G be a 2r-regular Hamiltonian graph of odd order. Then G▷◁ is a (2r + 1)-gradual
supermagic graph.

As K ▷◁
n is isomorphic to Kn,n , we immediately have

Corollary 1. The complete bipartite graph Kn,n is n-gradual supermagic for every odd integer n ≥ 3.
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The complete bipartite graph Kn,n is balanced d-magic (i.e., 2-gradual supermagic) for every even integer n ≥ 4
(see [10]). Similarly, the complete graph K4n+1 is 2-gradual supermagic for every integer n ≥ 2 (see [11]) and K4n
is not supermagic for every integer n ≥ 1 (see [16]). Using Theorem 2, we obtain similar results for other complete
graphs.

Theorem 3. The complete graph K2n is (2n − 1)-gradual supermagic for every odd integer n ≥ 3.

Proof. Denote the vertices of K2n by w, v0, v1, . . . , v2n−2 and for every k ∈ [0, 2n − 2] define the set of edges
Xk = {wvk} ∪ {vk−ivk+i : i ∈ [1, n − 1]}, the indices being taken modulo 2n − 1. It is easy to see that X0, X1,
. . . X2n−2 form a decomposition of E(K2n) and each Xk is a perfect matching (i.e., induces a 1

2n−1 -factor) of K2n .
Now consider a mapping ϕ from E(K2n) into the set of positive integers given by

ϕ(e) =

⎧⎪⎨⎪⎩
i if e = vk−ivk+i , for k ∈ [0, 2n − 2], 1 ≤ i ≤

n−1
2 ,

n+1
2 if e = wvk , for k ∈ [0, 2n − 2],

1 + i if e = vk−ivk+i , for k ∈ [0, 2n − 2], n+1
2 ≤ i ≤ n − 1.

Evidently, ϕ(Xk) = [1, n]. Each vertex v j , j ∈ [0, 2n − 2], is incident with two edges of type vk−ivk+i (v j−2iv j ,
v jv j+2i ) for each i ∈ [1, n − 1] and with one edge of type wvk (wv j ). Thus, we have

ϕ∗(v j ) = 2
n∑

i=1

i −
n + 1

2
=

1
2

(1 + n)(2n − 1)

Any edge incident with w is of type wvk , so ϕ∗(w) =
1
2 (1 + n)(2n − 1). Therefore, by Theorem 2, K2n is

a (2n − 1)-gradual supermagic graph. □

Theorem 4. The complete graph K4n+3 is (2n + 1)-gradual supermagic for every positive integer n.

Proof. Denote the vertices of K4n+3 by w, v0, v1, . . . , v2n , u0, u1, . . . , u2n and for every k ∈ [0, 2n} define the set
of edges

Xk = {vkuk, wuk, wvk} ∪

n⋃
i=1

{vk−ivk+i , uk−ivk+i , uk−i uk+i , vk−i uk+i },

the indices being taken modulo 2n +1. It is not difficult to see that the sets X0, X1, . . . X2n form a decomposition of
E(K4n+3) and each Xk induces a 2-regular spanning subgraph (i.e., a 1

2n+1 -factor) of K4n+3 isomorphic to K3∪nK2,2.
Now consider a mapping ϕ from E(K4n+3) into positive integers given by

ϕ(e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if e = vkuk , for k ∈ [0, 2n],
2 if e = wuk , for k ∈ [0, 2n],
4n + 2 if e = wvk , for k ∈ [0, 2n],
3i if e = vk−ivk+i , for k ∈ [0, 2n], i ∈ [1, n],
3i + 1 if e = uk−ivk+i , for k ∈ [0, 2n], i ∈ [1, n],
3i + 2 if e = uk−i uk+i , for k ∈ [0, 2n], i ∈ [1, n],
3n + 2 + i if e = vk−i uk+i , for k ∈ [0, 2n], i ∈ [1, n − 1],
4n + 3 if e = vk−nuk+n , for k ∈ [0, 2n].

Evidently, ϕ(Xk) = [1, 4n + 3]. Each vertex v j , j ∈ [0, 2n], is incident with two edges of type vk−ivk+i (v j−2iv j ,
v jv j+2i ) for each i ∈ [1, n], with one edge of type uk−ivk+i (u j−2iv j ) for each i ∈ [1, n], with one edge of type
vk−i uk+i (v j u j+2i ) for each i ∈ [1, n], with one edge of type vkuk (v j u j ), and with one edge of type wvk (wv j ).
Thus, we have

ϕ∗(v j ) = 1 + (4n + 2) +

n∑
i=1

(
2 · 3i + (3i + 1)

)
+

n−1∑
i=1

(3n + 2 + i) + (4n + 3)

= 8n2
+ 12n + 4 =

(
1 + (4n + 3)

)
(4n + 2)/2.
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Similarly, for every vertex u j , j ∈ [0, 2n], we have

ϕ∗(u j ) = 1 + 2 +

n∑
i=1

(
(3i + 1) + 2 · (3i + 2)

)
+

n−1∑
i=1

(3n + 2 + i) + (4n + 3)

= 8n2
+ 12n + 4 =

(
1 + (4n + 3)

)
(4n + 2)/2

The vertex w is incident with (2n + 1) edges of type wuk and with (2n + 1) edges of type wvk . Thus

ϕ∗(w) =
(
2 + (4n + 2)

)
(2n + 1) =

(
1 + (4n + 3)

)
(4n + 2)/2.

Therefore, by Theorem 2, K4n+3 is a (2n + 1)-gradual supermagic graph. □

4. Union of graphs

M. Doob [3] proved that a regular graph of degree d ≥ 3 with connected components G1, . . . , Gn is magic if
and only if G i is magic for each i . A similar characterization of all disconnected magic graphs was given by R.H.
Jeurissen [4]. For supermagic graphs the following holds:

Proposition 3 ([5]). Let G be a kr-regular supermagic graph which can be decomposed into k pairwise
edge-disjoint r-regular spanning subgraphs. Then the following statements hold:

• if k is even, then mG is supermagic for every positive integer m,
• if k is odd, then mG is supermagic for every odd positive integer m.

A similar result for k-regular supermagic k-edge-colorable graphs (they admit a decomposition into k 1-regular
spanning subgraphs) was presented in [7]. For degree-magic graphs we have

Proposition 4 ([10]). Let H1 and H2 be edge-disjoint subgraphs of a graph G which form its decomposition. If
H1 is d-magic and H2 is balanced d-magic then G is a d-magic graph. Moreover, if H1 and H2 are both balanced
d-magic then G is a balanced d-magic graph.

Evidently, if G is an r -regular balanced d-magic (and so supermagic) graph and H is an r -regular supermagic
graph then G ∪ H is a supermagic graph. Therefore, we have a technique for constructing supermagic labeling of
the disjoint union of some supermagic regular graphs. However, all balanced d-magic graphs are of even size, thus
this method cannot be used for graphs of odd size.

In this section we introduce a construction of d-magic (supermagic, for regular graphs) labeling of the disjoint
union of q-gradual d-magic graphs which is usable for graphs of odd size. For the family G(q) we have

Theorem 5. Let G ∈ F(q), q ≥ 2, be a d-magic graph. Then the graph qG belongs to G(q).

Proof. As G is d-magic, there is a d-magic labeling f of G. As G ∈ F(q), there is a decomposition of the edge
set of G into pairwise disjoint subsets Y 1, Y 2, . . . , Y q such that Y i induces a 1

q -factor of G for each i ∈ [1, q].
For j ∈ [1, q], let G j be a copy of G and let e j (v j ) be its edge (vertex) corresponding to e ∈ E(G) (v ∈ V (G)).
Suppose that qG = G1 ∪ G2 ∪ · · · ∪ Gq .

For i, j ∈ [1, q], denote by Y i
j the set {e j ∈ E(G j ) : e ∈ Y i

}. Clearly, Y i
j induces a 1

q -factor of G j for each
i ∈ [1, q]. For any k ∈ [1, q] set

Xk = {e j ∈ E(qG) : e ∈ Y i when i + j ≡ k (mod q)}.

Evidently, for any j ∈ [1, q] there exists unique i ∈ [1, q] such that Xk ∩ E(G j ) = Y i
j . Similarly, for any e ∈ E(G)

there exists unique j ∈ [1, q] such that e j ∈ Xk . Therefore, X1, X2, . . . Xq form a decomposition of E(qG) and
each Xk induces a 1

q -factor of qG. Now consider a mapping ϕ from E(qG) into positive integers given by

ϕ(e j ) = f (e)

Clearly, ϕ(Xk) = [1, |E(G)|] and for every vertex v j , we have

ϕ∗(v j ) = f ∗(v) =
1 + |E(G)|

2
degG(v) =

1 + |E(qG)|/q
2

degqG(v j ).

Thus, by Theorem 2, qG is a q-gradual d-magic graph. □
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Theorem 6. Let m and q be odd integers, m ≥ 3, q ≥ 3. If G1, G2, . . . , Gm are q-gradual d-magic graphs of
the same size, then G1 ∪ G2 ∪ · · · ∪ Gm ∈ G(q).

Proof. First consider a mapping r from [1, m] × [1, q] to integers defined by

r (i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

i − 1 for j ≡ 1 (mod 2) and j < q,
m − i for j ≡ 0 (mod 2) and j < q − 1,
i + (m − 3)/2 for j = q − 1 and i ≤ (m + 1)/2,
i − (m + 3)/2 for j = q − 1 and i > (m + 1)/2,
m − 2i + 1 for j = q and i ≤ (m + 1)/2,
2m − 2i + 1 for j = q and i > (m + 1)/2.

It is easy to see that {r (1, j), r (2, j), . . . , r (m, j)} = [0, m − 1], for each j ∈ [1, q], and r (i, 1) + r (i, 2) + · · · +

r (i, q) = q(m − 1)/2, for each i ∈ [1, m].
Let ε denote the size of G i for each i ∈ [1, m]. Since G i ∈ G(q), there is a q-gradual d-magic labeling fi of

G i . Set H = G1 ∪ G2 ∪ · · · ∪ Gm and define a mapping h from E(H ) into integers by

h(e) = fi (e) +
(
r (i, j) + ( j − 1)(m − 1)

)
ε/q when e ∈ Fq ( fi ; j).

Since fi
(
Fq ( fi ; j)

)
=
[
1 + ( j − 1)ε/q, ε/q + ( j − 1)ε/q

]
,

h
(
Fq ( fi ; j)

)
=
[
1 +

(
( j − 1)m + r (i, j)

)
ε/q, ε/q +

(
( j − 1)m + r (i, j)

)
ε/q

]
.

As ∪
m
i=1r (i, j) = [0, m − 1],

h
(
∪

m
i=1 Fq ( fi ; j)

)
=
[
1 +

(
( j − 1)m + 0

)
ε/q, ε/q +

(
( j − 1)m + 0

)
ε/q

]
∪
[
1 +

(
( j − 1)m + 1

)
ε/q, ε/q +

(
( j − 1)m + 1

)
ε/q

]
. . .

∪
[
1 +

(
( j − 1)m + m − 1

)
ε/q, ε/q +

(
( j − 1)m + m − 1

)
ε/q

]
= [1 + ( j − 1)mε/q, mε/q + ( j − 1)mε/q] .

Now it is easy to see that h is a bijection onto [1, |E(H )|] and that

∪
m
i=1 Fq ( fi ; j) = Fq (h; j).

As Fq ( fi ; j) induces a 1
q -factor of G i , the set Fq (h; j) induces a 1

q -factor of H for each j ∈ [1, q]. Moreover, for
any vertex v ∈ V (G i ) we have

h∗(v) =

∑
uv∈E(H )

h(uv) =

∑
uv∈E(Gi )

h(uv) =

q∑
j=1

∑
uv∈Fq ( fi ; j)

h(uv)

=

q∑
j=1

∑
uv∈Fq ( fi ; j)

(
fi (uv) +

(
r (i, j) + ( j − 1)(m − 1)

)
ε/q

)

= f ∗

i (v) +

q∑
j=1

((
r (i, j) + ( j − 1)(m − 1)

)
ε/q

)
degGi

(v)/q

= f ∗

i (v) +

⎛⎝ q∑
j=1

r (i, j) +

q∑
j=1

( j − 1)(m − 1)

⎞⎠ ε degGi
(v)/q2

= f ∗

i (v) +
(
q(m − 1)/2 + q(q − 1)(m − 1)/2

)
ε degGi

(v)/q2

= f ∗

i (v) + (m − 1)ε degGi
(v)/2.
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Since f ∗

i (v) = (1 + ε) degGi
(v)/2, degGi

(v) = degH (v), |E(H )| = mε, we obtain

h∗(v) = (1 + mε) degGi
(v)/2 =

1 + |E(H )|
2

degH (v).

Therefore, h is a q-gradual d-magic labeling of H . □

Corollary 2. Let m and q be odd integers, m ≥ 3, q ≥ 3. For i ∈ [1, m], let G i ∈ F(q) be a supermagic r-regular
graph. Let ε be a common multiple of integers |E(G1)|, |E(G2)|, . . . , |E(Gm)|. If εi := ε/|E(G i )| is an odd integer
for each i ∈ [1, m], then the graph ε1qG1 ∪ ε2qG2 ∪ · · · ∪ εmqGm is q-gradual supermagic.

Proof. By Proposition 1, G i is a d-magic graph for each i ∈ [1, m]. According to Theorem 5, qG i belongs to G(q).
As εi is odd, εi qG i is a q-gradual d-magic graph of size εq and consequently G = ε1qG1 ∪ε2qG2 ∪· · ·∪εmqGm ∈

G(q). Since G is a d-magic r -regular graph, it is supermagic. □

As any regular graph of even degree contains a 2-regular spanning subgraph, any 2r -regular graph belongs to
F(r ). Thus, we immediately have

Corollary 3. Let m and q be odd integers, m ≥ 3, q ≥ 3. For i ∈ [1, m], let G i be a supermagic 2r-regular
graph. Let ε be a common multiple of integers |E(G1)|, |E(G2)|, . . . , |E(Gm)|. If εi := ε/|E(G i )| is an odd integer
for each i ∈ [1, m], then the graph ε1qG1 ∪ ε2qG2 ∪ · · · ∪ εmqGm is q-gradual supermagic.

Let G be a graph and let n be a positive integer. Denote the lexicographic product of G and a totally disconnected
graph of order n by G(n). Thus, the vertices of G(n) are all ordered pairs (v, i), where v is a vertex of G, 1 ≤ i ≤ n,
and two vertices (u, i), (v, j) are joined by an edge in G(n) if and only if u, v are adjacent in G.

Theorem 7. Let G be a graph of odd size. Then the graph G(n) belongs to G(n) for every odd integer n, n ≥ 3.
Moreover, if G ∈ F(q), then G(n)

∈ G(qn).

Proof. For any edge e = uv ∈ E(G), let G(n)
e be a subgraph of G(n) induced by {(u, i) : 1 ≤ i ≤ n} ∪ {(v, j) :

1 ≤ j ≤ n}. Evidently, G(n)
e is isomorphic to Kn,n . According to Corollary 1, it is n-gradual d-magic. Then the

disjoint union ∪e∈E(G)G(n)
e belongs to G(n) because of Theorem 6. The graph G(n) is decomposed into edge-disjoint

subgraphs G(n)
e for all e ∈ E(G). Therefore, by Theorem 1 (multiple using (ii)), G(n)

∈ G(n).
Now suppose that G ∈ F(q). Then there is a decomposition of E(G) into pairwise disjoint subsets X1, X2,

. . . , Xq such that the subgraph Si induced by X i is a 1
q -factor of G for each i ∈ [1, q]. As G is a graph of odd

size, q and |X i | = |E(G)|/q are odd integers. For each i ∈ [1, q], let Hi be the subgraph of G(n) induced by
∪e∈Xi E(G(n)

e ). Clearly, Hi is isomorphic to S(n)
i . Since S(n)

i ∈ G(n), Hi is an n-gradual d-magic spanning subgraph
of G(n). Moreover, degHi

(v) =
1
q degG(n) (v) =

n
nq degG(n) (v) for every vertex v ∈ V (G(n)). Thus, according to

Theorem 1 (statement (iii)), G(n) is a qn-gradual d-magic graph. □

For regular graphs we immediately obtain

Corollary 4. Let G be a regular graph of odd size. Then the graph G(n) is n-gradual supermagic for any odd
integer n, n ≥ 3.

Corollary 5. Let r , ν, and m be odd positive integers. For each i ∈ [1, m], let ri and ni be divisors of r such
that ri · ni = r and ni > 1. Suppose that G1, G2, . . . , Gm are graphs satisfying one of the following conditions

• G i ∈ F(ri ) is an ri -regular graph of order 2νri for all i ,
• G i is a 2ri -regular graph of order νri for all i .

Then the graph G(n1)
1 ∪ G(n2)

2 ∪ · · · ∪ G(nm )
m is r-gradual supermagic.

Proof. For each i ∈ [1, m], the graph G i ∈ F(ri ) has νr2
i edges in both cases. Since r is odd, ri and also ni are

odd integers. As ni > 1, ni ≥ 3. According to Theorem 7, G(ni )
i belongs to G(r ) and it has νr2 edges. Therefore,

the graph H = ∪
m
i=1G(ni )

i belongs to G(r ) by Theorem 6. Since H is a d-magic regular graph, it is supermagic. □
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Corollary 6. Let Kk[n] be a regular complete multipartite graph of odd size. If kn ≥ 6, then the following statements
hold:

• if k is even, then Kk[n] ∈ G((k − 1)n),
• if k is odd, then Kk[n] ∈ G((k − 1)n/2).

Proof. Evidently, the size of Kk[n] is odd if and only if n is odd and either k ≡ 2 (mod 4) or k ≡ 3 (mod 4).
Suppose that k ≡ 2 (mod 4). If n = 1, then Kk belongs to G(k − 1) by Theorem 3. Since Kk ∈ G(k − 1) ⊂

F(k − 1), the graph Kk[n] (isomorphic to K (n)
k ) belongs to G((k − 1)n), for every odd integer n ≥ 3, because of

Theorem 7.
Suppose that k ≡ 3 (mod 4). If n = 1, then Kk belongs to G((k − 1)/2) by Theorem 4. As Kk ∈ G((k − 1)/2) ⊂

F((k −1)/2), the graph Kk[n] (isomorphic to K (n)
k ) belongs to G((k −1)n/2), for every odd integer n ≥ 3, according

to Theorem 7. □

Corollary 7. Let m be an odd positive integer. For i ∈ [1, m], let G i be an r-regular complete multipartite graph
of odd size, where r ≥ 3. Let ε be an odd common multiple of integers |E(G1)|, |E(G2)|, . . . , |E(Gm)|, and let
εi := ε/|E(G i )| for each i ∈ [1, m]. Then ε1G1 ∪ ε2G2 ∪ · · · ∪ εm Gm is a q-gradual supermagic graph, where q
is equal to r when r is odd, and r/2 otherwise.

Proof. As ε is odd, its divisors εi are odd for all i ∈ [1, m]. The complete multipartite graph G i belongs to G(q) by
Corollary 6. According to Theorem 6, the graph εi G i is q-gradual d-magic. As εi G i has ε edges for each i ∈ [1, m],
G = ε1G1 ∪ ε2G2 ∪ · · · ∪ εm Gm ∈ G(q). Since G is a d-magic r -regular graph, it is supermagic. □

Acknowledgments

This work was supported by the Slovak VEGA Grant 1/0368/16 and by the Slovak Research and Development
Agency under the contract No. APVV-15-0116.

References
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