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Abstract

Let R be a commutative ring with identity. The comaximal ideal graph G(R) of R is a simple graph with its vertices
are the proper ideals of R which are not contained in the Jacobson radical of R, and two vertices I1 and I2 are adjacent
if and only if I1 + I2 = R. In this paper, a dominating set of G(R) is constructed using elements of the center when R is
a commutative Artinian ring. Also we prove that the domination number of G(R) is equal to the number of factors in the
Artinian decomposition of R. Also, we characterize all commutative Artinian rings(non local rings) with identity for which
G(R) is planar.

Keywords: Comaximal ideal graph; Artinian ring; Nilpotency; Domination number; Planar

1. Introduction

In recent years, the interplay between ring structure and graph structure is studied by many researchers. For
such kind of study, researchers define a graph whose vertices are a set of elements in a ring or a set of ideals in a
ring and edges are defined with respect to a condition on the elements of the vertex set. A graph is defined out of
nonzero zero divisors of a ring and is called zero-divisor graph of a ring [1]. Interesting variations are also defined
like comaximal graph [2], total graph [3] and unit graph [4] associated with rings. In ring theory, the structure
of a ring R is closely tied to ideal’s behavior more than elements, and so it is deserving to define a graph with
vertex set as ideals instead of elements. In view of this, M. Behboodi and Z. Rakeei [5,6] have introduced and
investigated a graph called the annihilating-ideal graph of a commutative ring. The annihilating-ideal graph AG(R)
of R is defined as the graph with the vertex set A(R)∗ and two distinct vertices I1 and I2 are adjacent if and only if
I1 I2 = (0). In 2012, M. Ye and T. Wu defined a new graph structure on commutative rings in [7]. They used ideals
instead of elements of a ring, and they named such a graph structure, the comaximal ideal graph. The comaximal
ideal graph G(R) of R is a simple graph with its vertices the proper ideals of R which are not contained in the
Jacobson radical of R, and two vertices I1 and I2 are adjacent if and only if I1 + I2 = R.

In 2016, Azadi et al. [8] studied the graph structure defined by M. Ye and T. Wu. They investigated the
planarity and perfection of comaximal ideal graph. Later, Visweswaran et al. [9] studied the same and independently
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characterized commutative ring whose comaxial ideal graph is planar. The graphs constructed from rings help us
to study the algebraic properties of rings using graph theoretical tools and vice-versa.

Let G = (V, E) be a simple graph. The distance between two vertices x and y, denoted d(x, y), is the length of
the shortest path from x to y. The diameter of a connected graph G is the maximum distance between two distinct
vertices of G. The eccentricity of x , denoted e(x), is the maximum of the distances from x to the other vertices of
G. The set of vertices with minimum eccentricity is called the center of the graph G, and this minimum eccentricity
value is the radius of G. The status of v is sum of the distance from v to other vertices of G and is denoted by
s(v). The set of vertices with minimal status is called the median of the graph G. For basic definitions on graphs,
one may refer [10].

In this paper, we find certain central sets in the comaximal ideal graph and use the same to obtain the value of
certain domination parameters of the comaximal ideal graph. Also, we discuss about the planarity condition of the
comaximal ideal graph of a commutative ring. The following results are useful for further reference in this paper.

Theorem 1.1 ([11, Theorem 8.7]). An Artinian ring is uniquely (up to isomorphism) a finite direct product of
Artinian local rings.

Theorem 1.2 ([7, M. Ye and T. Wu]). Let R be a commutative ring. Then G(R) is the empty graph if and only if
R is a local ring.

Theorem 1.3 ([7, M. Ye and T. Wu]). Let R be a commutative ring. Then the following statements are equivalent:
(i) G(R) is a complete graph
(i i) diam(G(R)) = 1
(i i i) G(R) = K2

(iv) R = F1 × F2, where F1 and F2 are fields.

Theorem 1.4 ([7, M. Ye and T. Wu]). For a ring R, the following statements are equivalent:
(i) G(R) is a complete bipartite graph
(i i) G(R) is a bipartite graph
(i i i) R has only two maximal ideals.

In view of Theorem 1.2, all rings are assumed to be non-local with identity, i.e., there are at least two maximal
ideals in the ring.

2. Central sets in G(R)

In 2016, Azadi et al. [8] studied the comaximal ideal graph and determined conditions for the distance between
two vertices is 1 or 2 or 3. By using these results one can conclude the central sets. But unfortunately, after finalising
our manuscript for publication we came across this journal. Though we share the same results provided by us is
independent.

In this section, we determine independently certain central sets in the comaximal ideal graph and use the same to
obtain the value of certain domination parameters of the comaximal ideal graph. By Theorem 1.4, if |Max(R)| = 2,
then the radius of G(R) is either one or two. Hence in this section, we assume that R is a finite commutative ring
with |Max(R)| ≥ 3.

Remark 2.1. By Theorem 1.3, the radius of G(R) is one if and only if R = F1 × F2, where F1 and F2 are fields.

Let R = R1 × · · · × Rn × F1 × · · · × Fm be a finite commutative ring with |Max(R)| ≥ 3, where each
(Ri ,mi ) is a local ring but not a field and F j is a filed. Then Max(R) = {M1, . . . , Mn, M ′

1, . . . , M ′
m}, where Mi =

R1×· · ·×Ri−1×mi ×Ri+1×· · ·×Rn ×F1×· · ·×Fm and M ′

k = R1×· · ·×Rn ×F1×· · ·×Fk−1×(0)×Fk+1×· · ·×Fm

for 1 ≤ i ≤ n and 1 ≤ k ≤ m.

Remark 2.2. Let R = R1 × · · · × Rn × F1 × · · · × Fm be a finite commutative ring with |Max(R)| ≥ 3, where
each (Ri ,mi ) is a local ring but not a field and F j is a filed. Then ∆(G(R)) = degG(R)(M) for some M ∈ Max(R).
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Theorem 2.3. Let R = R1 × · · · × Rn × F1 × · · · × Fm be a finite commutative ring with |Max(R)| ≥ 3, where
each (Ri ,mi ) is a local ring but not a field and F j is a filed. Then the radius of G(R) is 2 and the center of G(R)
is Max(R).

Proof. Let I =
∏n

i=1 Ii ×
∏m

k=1 I ′

k be any ideal of R with I ⊈ J (R), where Ii is an ideal in Ri and I ′

k is an ideal
in Fk .

Case 1. m = 0. Then I =
∏n

i=1 Ii .
By the assumption that |Max(R)| ≥ 3, n ≥ 3. For any ideal K in G(R), K is adjacent to some maximal ideal

in R and Mi + M j = R for i ̸= j .
Suppose I is maximal. Then I = Mi for some i . Note that each Mi is only not adjacent to J = R1 × · · · ×

Ri−1 × Ii × Ri+1 ×· · ·× Rn for every ideal Ii ⊂ mi . Then by definition, J + Mk = R for all k ̸= i and so I − Mk − J
is a path of length 2 in G(R). Hence e(I ) = 2 and so e(I ) = 2 for all I ∈ Max(R).

Suppose I is not maximal. Then I ⊂ Mi for some i and so Mi +I ̸= R. If I = R1×· · ·×Ri−1×Ii ×Ri+1×· · ·×Rn

for Ii ⊂ mi , then there exist an ideal I ′
= R1 × · · · × Ri−1 × Ii × Ri+1 × · · · × R j−1 × I j × R j+1 × Rn(i ̸= j)

for some I j ⊂ m j such that I ′
+ M j ̸= R, I + I ′

̸= R and I + M j = R. Since I ′
+ Mk = R for some k ̸= i, k,

I − M j − Mk − I ′ is a path of length 3 and hence e(I ) = 3. From this, we have e(I ) = 3 for all ideal I ⊈ J (R)
and I /∈ Max(R).

Case 2. n = 0. Then m ≥ 3 and I =
∏m

k=1 I ′

k .
Suppose I is maximal. Then I = M ′

k for some k and I is not adjacent to J for all J =
∏m

k=1 J ′

k with J ′

k = (0),
J ̸= M ′

k and J ⊈ J (R). Since J + M ′
t = R for some t , I − M ′

t − J is a path of length 2, e(I ) = 2 and hence
e(I ) = 2 for all I ∈ Max(R).

If I is not maximal, then I ′

i = (0) and I ′
t = (0) for some i ̸= t and so I + M ′

i ̸= R, I + M ′
t ̸= R. Since m ≥ 3,

there exist an ideal I ′
=

∏m
ℓ=1 J ′

ℓ ⊈ J (R) with J ′
t = (0) such that I + I ′

̸= R, I ′
+ Mt ̸= R and I ′

+ M ′

i . Since
I ′

+ M ′

j = R for j ̸= i, t , I − M j − M ′

i − J is a path of length 3 and so e(I ) = 3. From this, we have e(I ) = 3
for all ideal I ⊈ J (R) and I /∈ Max(R).

Case 3. n ≥ 1 and m ≥ 1. Then n + m ≥ 3.
Let I be any nonzero ideal of R with I ⊈ J (R). Suppose I is maximal. Note that any ideal is adjacent to some

maximal ideal. If J is an ideal not adjacent to I , then J + M = R for some maximal ideal M in R and M ̸= I
and so I − M − J is a path of length 2. Hence e(I ) = 2 for all I ∈ Max(R).

Suppose I is not maximal. Then I ⊂ M for some M ∈ Max(R). As in the proof of case 1 and case 2, we can
find an ideals I ′ ⊈ J (R) and M ′, M ′′

∈ Max(R) such that I ′ is not maximal and I − M ′
− M ′′

− I ′ is a path of
length 3 and hence e(I ) = 3. From this, we have e(I ) = 3 for all ideal I ⊈ J (R) and I /∈ Max(R).

Hence in all cases, the center of G(R) is Max(R). □

Theorem 2.4. Let R = R1 × · · · × Rn × F1 × · · · × Fm be a finite commutative ring with |Max(R)| ≥ 3, where
each (Ri ,mi ) is a local ring but not a field and F j is a filed. Then the median is a subset of the center of G(R).

Proof. By Theorem 2.3, the radius of G(R) is 2 and the center of G(R) is Max(R). Let k be the number of proper
ideals in G(R). Let I be any ideal in R with I ⊈ J (R). Suppose I is maximal. Then

s(I ) = degG(R)(I ) + 2(k − 1 − degG(R)(I )) = 2k − degG(R)(I ) − 2 (1)

Note that Eq. (1) implies that all the vertices of the median must have the same degree. If J is any ideal in G(R)
but J is not maximal, then there exists an ideal J ′ such that d(J, J ′) = 3 and so

s(J ) > degG(R)(J ) + 2(k − 1 − degG(R)(J )) = 2k − degG(R)(J ) − 2 (2)

Thus there is a maximal ideal I with s(I ) < s(J ) for J /∈ Max(R) and so any ideal not in the center of G(R)
cannot be in the median of G(R). Hence the median is a subset of the center of G(R). □

Corollary 2.5. Let R = R1 × · · · × Rn × F1 × · · · × Fm be a finite commutative ring with |Max(R)| ≥ 3, where
each (Ri ,mi ) is a local ring but not a field and F j is a filed. Then the median of G(R) is {M ′

j : 1 ≤ j ≤ m}.
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Proof. Let ki be the number of ideals in Ri for 1 ≤ i ≤ n. Then ki ≥ 3. Clearly by the definition of G(R),
degG(R)(Mi ) = 2m ∏n

t=1
t ̸=i

ki − 1, degG(R)(M ′

j ) = 2m−1 ∏n
t=1 ki − 1 and so degG(R)(Mi ) < degG(R)(M ′

j ). By Eq. (1),

s(M ′

j ) < s(Mi ). Since degG(R)(M ′

j ) = degG(R)(M ′

ℓ) for all j ̸= ℓ, s(M ′

j ) = s(M ′

ℓ) for all j ̸= ℓ and hence the
median of G(R) is {M ′

j : 1 ≤ j ≤ m}. □

Corollary 2.6. Let R = F1 × · · · × Fm be a finite commutative ring with |Max(R)| ≥ 3, where each Fi is a filed.
Then the median and center of G(R) are equal.

Proof. This follows from Corollary 2.5. □

Theorem 2.7. Let R = R1 × · · · × Rn be a finite commutative ring with |Max(R)| ≥ 3, where each (Ri ,mi ) is a
local ring but not a field. Let ki be the number of ideals in Ri for 1 ≤ i ≤ n. Then the median and center of G(R)
are equal if and only if ki = k j for all i ̸= j .

Proof. Suppose ki = k j for all i ̸= j . Then by definition of G(R), degG(R)(Mi ) = degG(R)(M j ) for all i ̸= j . By
Theorems 2.3 and 2.4, the median of G(R) is Max(R).

Conversely, assume that the median and center of G(R) are equal. As in proof of Theorem 2.3, the median of
G(R) is Max(R). Suppose ki ̸= k j for some i ̸= j . Without loss of generality, we assume that ki < k j . Then
degG(R)(M j ) < degG(R)(Mi ) and so s(Mi ) < s(M j ), a contradiction. □

The following result proved by Meng Ye et al. [7, Theorem 4.8] is used frequently and hence given below.

Theorem 2.8 ([7, Theorem 4.8]). (1) For a ring R, G(R) is the finite complete bipartite graph Kn,m (where n and
m are finite integers) if and only if R ∼= R1 × R2, where R1 and R2 are artinian local rings with n + 1 and m + 1
ideals respectively.

(2) For a ring R, G(R) is a finite star graph K1,n if and only if R ∼= F × R1, where F is a field and R1 is an
artinian local ring with exactly n + 1 ideals.

In view of Theorem 2.8(2), we have the following, γ (G(R)) = 1 if and only if R ∼= F × R1, where F is a field
and R1 is an artinian local ring.

Also γ (G(R)) = 2 if and only if R ∼= R1 × R2, where each Ri is an artinian local ring but not a field.

Theorem 2.9. Let R = R1 × · · · × Rn × F1 × · · · × Fm be a finite commutative ring with |Max(R)| ≥ 3, where
each (Ri ,mi ) is a local ring but not a field and F j is a filed. Then γ (G(R)) = |Max(R)|.

Proof. Let D = {M1, . . . , Mn, M ′

1, . . . , M ′
m} = Max(R). Let I be any ideal in G(R). Then by definition, I is

adjacent to some maximal ideal in R. Hence D is a dominating set of G(R) and so γ (G(R)) ≤ n + m.
Suppose S is a dominating set for G(R). Since G(R) has no vertex adjacent to all others, |S| ≥ 2. For each

k = 1, 2, . . . , n + m, let Ak =
∏n+m

i=1 Ii , where Ik ̸= (0) or Fk and I j = R j or F j for all j ̸= k. For each
k = 1, 2, . . . , n + m, let Bk =

∏n+m
i=1 Ii , where Ik = Rk or Fk and I j ̸= R j or F j for all j ̸= k. Then, each Ak and

Bk is a vertex of G(R). For each k = 1, 2, . . . , n + m, the element Bk is only adjacent with the element Ak . That
is, for each k, either Ak ∈ S or Bk ∈ S. Thus S contains at least n + m elements and so γ (G(R)) = n + m. □

In view of Theorem 2.9, we have the following, Max(R) is a γ -set of G(R).

Theorem 2.10. Let R = R1 × · · · × Rn × F1 × · · · × Fm be a finite commutative ring with |Max(R)| ≥ 3, where
each (Ri ,mi ) is a local ring but not a field and F j is a filed. Then i(G(R)) ≤ |V (G(R))| − ∆(G(R)).

Proof. For each M ∈ Max(R), V (G(R)) − NG(R)(M) is an independent set of G(R). Let M ∈ Max(R)
with ∆(G(R)) = degG(R)(M). Then V (G(R)) − NG(R)(M) is an independent dominating set of G(R) and so
i(G(R)) ≤ |V (G(R))| − ∆(G(R)). □
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Fig. 3.1. G(R) ∼= G(S).

3. Isomorphism properties of G(R) and planarity of G(R)

Consider the question: If R and S are two rings with G(R) ∼= G(S), then do we have R ∼= S? The following
example shows that the above question is not valid in general.

Example 3.1. Let R = Z2 × Z3 × Z5 and S = Z7 × Z11 × Z13. Then G(R) ∼= G(S) (see. Fig. 3.1). But R and S
are not isomorphic.

Theorem 3.2. Let R =
∏n

i=1 Ri ×
∏m

j=1 F j and S =
∏n

i=1 R′

i ×
∏m

j=1 F ′

j be finite commutative rings with n+m ≥ 2,
where each (Ri ,mi ) and (Ri ,m

′

i ) are local rings but not field and each Fi and F ′

j are field. Let ki be the number
of ideals in Ri and k ′

i be the number of ideals in R′

i . Then G(R) ∼= G(S) if and only if ki = k ′

i for all i , 1 ≤ i ≤ n.

Proof. If R ∼= S, then the result is obvious. Assume that R ≇ S. Suppose ki = k ′

i for all i , 1 ≤ i ≤ n. Then
|V (G(R))| = |V (G(S))|. Let I j (R j ) = {I1 j = (0), I2 j = m j , I3 j , . . . , Ik j j = R j } be the set of ideals in R j and
I ′

j (R′

j ) = {I ′

1 j = (0), I ′

2 j = m j , I ′

3 j , . . . , I ′

k j j = R′

j } be the set of ideals in R′

j . Then the map It j → I ′

t j is a bijection
from I j (R j ) onto I ′

j (R′

j ). Define φ : V (G(R)) −→ V (G(S)) by φ(
∏n

i=1 Iti ×
∏m

j=1 J j ) =
∏n

i=1 I ′

ti ×
∏m

j=1 J ′

j where

J ′

j =

{
F ′

j if J j = F j

(0) if J j = (0)

Then φ is well-defined and bijective. Let I =
∏n

i=1 Ii ×
∏m

j=1 J j and J =
∏n

i=1 Ai ×
∏m

j=1 B j be two non-zero
ideals in R. Suppose I and J are adjacent in G(R). Then I + J = R and so Ii + Ai = Ri and J j + B j = F j for
all i, j . Let f (I ) =

∏n
i=1 I ′

i ×
∏m

j=1 J ′

j and f (J ) =
∏n

i=1 A′

i ×
∏m

j=1 B ′

j . By definition of φ, I ′

i + A′

i = R′

i and
J ′

j + B ′

j = F j for all i, j and so f (I ) + f (J ) = S. Hence f (I ) and f (J ) are adjacent in G(S). Similarly one can
prove that f preserves non-adjacency also. Hence G(R) ∼= G(S).

Conversely, assume that G(R) ∼= G(S). Suppose ki ̸= k ′

i for some i . Then |V (G(R))| ̸= |V (G(S))|, a
contradiction. Hence ki = k ′

i for all i . □

Example 3.3. Let R = Z4 ×Z2 and S = Z9 ×Z3. Then G(R) ∼= G(S) ∼= K1,2 (by Theorem 2.8). But R and S are
not isomorphic.

Using Theorem 3.2, one can have the following corollary.

Corollary 3.4. Let R1 =
∏n

i=1 Fi and R2 =
∏n

j=1 F ′

i , where each Fi and F ′

j are fields and n ≥ 2. Then
G(R1) ∼= G(R2).

Corollary 3.5. Let R =
∏n

i=1 Ri and S =
∏n

i=1 R′

i be finite commutative rings with n ≥ 2, where each (Ri ,mi )
and (Ri ,m

′

i ) are local rings but not field. Let ki be the number of ideals in Ri and k ′

i be the number of ideals in
R′

i . Then G(R) ∼= G(S) if and only if ki = k ′

i for all i , 1 ≤ i ≤ n.

In view of the above it is natural to consider the question that whether the comaximal-ideal graph is isomorphic
to the zero-divisor graph or the annihilating ideal graph. In [7], it has been proved that for a finite commutative
ring R =

∏n
i=1 Fi , where Fi is field and n ≥ 2, the co-maximal graph G(R) of R is isomorphic to the zero-divisor

graph of Zn
2 . In this section, we prove that the comaximal ideal graph of a particular ring is isomorphic to the

annihilating-ideal graph of an another ring.
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Fig. 3.2(a). ⟨Ω⟩ is a subgraph of G(R).

Theorem 3.6. Let R1 = Zn
2 and R2 =

∏n
k=1 Fk where each Fi is a field and n ≥ 2. Let Γ (R1) be the zero-divisor

graph of R1. Then G(R2) ∼= AG(R2) ∼= Γ (R1).

Proof. Note that V (AG(R2)) = {I =
∏n

i=1 Ii : Ii ∈ {(0), Fi }, 1 ≤ i ≤ n} ∖ {(0), R2}, V (Γ (R1)) = {a =

(a1, a2, . . . , an) : ai ∈ {0, 1}, 1 ≤ i ≤ n} ∖ {(0, 0, . . . , 0), (1, 1 . . . , 1)} and |V (AG(R2))| = |V (Γ (R1))| = 2n
− 2.

Define f : V (AG(R2)) −→ V (Γ (R1)) by f (
∏n

i=1 Ii ) = (a1, a2, . . . , an) where

ai =

{
1 if Ii = Fi

0 if Ii = (0)

Clearly f is well-defined and bijective. Let I =
∏n

i=1 Ii and I ′
=

∏n
i=1 I ′

i be two non-zero ideals in R2. Suppose
I and I ′ are adjacent in AG(R2). Then I I ′

= (0) and so Ii I ′

i = (0) for all i . Hence Ii = (0) or I ′

i = (0) for all
i . Suppose f (I ) = (b1, b2, . . . , bn) and f (I ′) = (c1, c2, . . . , cn). Then either bi = 0 or ci = 0 and so bi ci = 0 for
all i . i.e, f (I ) f (I ′) = 0 and so f (I ) and f (I ′) are adjacent in Γ (R1). Similarly one can prove that f preserves
non-adjacency also. Hence AG(R2) ∼= Γ (R1) ∼= G(R2). □

In [8], Azadi et al. have proved that the comaximal ideal graph is planar, when |max(R)| = 4. But here we
proved that the comaximal ideal graph is non-planar, when |max(R)| ≥ 4 by the simple observation of the following
remark. In [9], Visweswaran et al. have characterized the commutative ring whose comaxial ideal graph is planar.
Here we give a simple proof of the same.

Remark 3.7. Note that if n ≥ 4, then Γ (Zn
2) is nonplanar. Hence if R =

∏n
i=1 Fi where Fi is field and n ≥ 2.

Then G(R) is planar if and only if R ∼= F1 × F2 or R ∼= F1 × F2 × F3.

Theorem 3.8. Let R =
∏n

i=1 Ri ×
∏m

j=1 F j be a finite commutative ring with n + m ≥ 2, where each (Ri ,mi )
is a local ring but not field and each Fi is a field. Then G(R) is planar if and only if R satisfies any one of the
following conditions: (i) F1 × F2 × F3 or R1 × F1 × F2 and m1 is the only nonzero proper ideal in R1 (i i) F1 × F2

or R1 × F1 (i i i) R1 × R2 where R1 has at most 3 nonzero ideals and R2 has at most 2 nonzero ideals and R1 has
at most 2 nonzero ideals and R2 has at most 3 nonzero ideals.

Proof. Suppose G(R) is planar. Note that Γ (Zn+m
2 ) is a subgraph of G(R). Suppose n + m ≥ 4. Since Γ (Zn+m

2 ) is
nonplanar, G(R) is nonplanar and hence n + m ≤ 3.

Case 1.Suppose n + m = 3.
subcase 1. n = 0 and m = 3. Then by Remark 3.7, R = F1 × F2 × F3.
subcase 2. m = 0 and n = 3. Let Ω = {x1, x2, x3, y1, y2, y3, z1, z2, z3} where x1 = m1×R2×R3, x2 = R1×m2×R3,
x3 = R1×R2×m3, y1 = (0)×R2×R3, y2 = R1×(0)×R3, y3 = R1×R2×(0), z1 = R1×(0)×(0), z2 = (0)×R2×(0),
z3 = (0) × (0) × R3. Then ⟨Ω⟩ is a subgraph of G(R), ⟨Ω⟩ contains a subdivision of K3,3 (see Fig. 3.2(a)) and
hence G(R) is nonplanar.
subcase 3. If n = 2 and n = 1, then R = R1 × R2 × F1.
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Fig. 3.2(b).
⟨
Ω ′

⟩
is a subgraph of G(R).

Fig. 3.2(c). G(R).

Let Ω ′
= {a1, a2, a3, a4, a5, b1, b2} where a1 = m1 × R2 × F1, a2 = R1 × m2 × F1, a3 = R1 × R2 × (0),

a4 = (0) × R2 × F1, a5 = R1 × (0) × F1, b1 = R1 × (0) × (0), b2 = (0) × R2 × (0). Then
⟨
Ω ′

⟩
is a subgraph of

G(R),
⟨
Ω ′

⟩
contains a subdivision of K5 (see Fig. 3.2(b)) and hence G(R) is nonplanar.

subcase 4. If m = 1 and n = 2, then R = R1 × F1 × F2. Suppose I is any nonzero proper ideal in R1 and
I ⊂ m1. Let Ω ′′

= {d1, d2, d3, e1, e2, e3} where d1 = m1 × F1 × F2, d2 = I × F1 × F2, d3 = (0) × F1 × F2,
e1 = R1 × (0)× (0), e2 = R1 × (0)× F2, e2 = R1 × F1 × (0). Then

⟨
Ω ′′

⟩
is a subgraph of G(R),

⟨
Ω ′′

⟩
contains a K3,3

as a subgraph and so G(R) is nonplanar. Hence m1 is only nonzero proper ideal in R1. Let V (G(R)) = {v1, . . . , v9}

where v1 = (0) × F1 × F2, v2 = m1 × F1 × F2, v3 = R1 × (0) × F2, v4 = R1 × F1 × (0), v5 = R1 × (0) × (0),
v6 = (0) × F1 × (0), v7 = m1 × F1 × (0), v8 = (0) × (0) × F2, v9 = m1 × (0) × F2. Since G(R) is planar and by
Fig. 3.2(c), R ∼= R1 × F1 × F2 and m1 is only nonzero proper ideal in R1.

Case 2. n + m = 2. Then by Theorem 2.8, G(R) is a complete bipartite graph. Since G(R) is planar, R ∼= R1 × F1
or F1 × F2.

If R ∼= R1 × R2, then by Theorem 2.8, G(R) ∼= Kt,k where t and k are number of nonzero ideals in R1 and R2
respectively. Since G(R) is planar, either t ≤ 3 and k ≤ 2 or t ≤ 2 or k ≤ 3.

Converse is obvious. □

Acknowledgments

The authors wish to record their sincere thanks to the anonymous referees for carefully reading the manuscript
and making suggestions that improve the content and presentation of the paper.

References
[1] D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434–447.
[2] H.R. Maimani, C. Wickham, S. Yassemi, Comaximal graph of commutative rings, J. Algebra 319 (2008) 1801–1808.
[3] D.F. Anderson, A. Badawi, The total graph of a commutative ring, J. Algebra 320 (2008) 2706–2719.
[4] N. Ashrafia, H.R. Maimanibc, M.R. Pournakicd, S. Yassemie, Unit graphs associated with rings, Comm. Algebra 38 (2010) 2851–2871.

S. Kavitha and R. Kala / AKCE International Journal of Graphs and Combinatorics 17 (1) 459–460 459

http://refhub.elsevier.com/S0972-8600(18)30196-8/sb1
http://refhub.elsevier.com/S0972-8600(18)30196-8/sb2
http://refhub.elsevier.com/S0972-8600(18)30196-8/sb3
http://refhub.elsevier.com/S0972-8600(18)30196-8/sb4


Please cite this article as: S. Kavitha and R. Kala, A note on comaximal ideal graph of commutative rings, AKCE International Journal of Graphs and Combinatorics (2019),
https://doi.org/10.1016/j.akcej.2019.06.004.

[5] M. Behboodi, Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl. 10 (4) (2011) 727–739.
[6] M. Behboodi, Z. Rakeei, The annihilating-ideal graph of commutative rings II, J. Algebra Appl. 10 (4) (2011) 741–753.
[7] M. Ye, T.S. Wu, Comaximal ideal graph of commutative rings, J. Algebra Appl. 11 (2012) 1250114, 14 pages.
[8] M. Azadi, Z. Jafari, C. Eslahchi, On the comaximal ideal graph of a commutative ring, Turkish J. Math. 40 (2016) 905–913.
[9] S. Visweswaran, J. Parejiya, Some results on the comaximal ideal graph of a commutative ring, J. Algebra Combin. Discrete Struct.

Appl. 5 (2) (2018) 85–99.
[10] G. Chartrand, L. Lesniak, Graphs and Digraphs, Wadsworth and Brooks/ Cole, Monterey, CA, 1986.
[11] M.F. Atiyah, I.G. Macdonald, Introduction To Commutative Algebra, Addison-Wesley Publishing Company, 1969.

S. Kavitha and R. Kala / AKCE International Journal of Graphs and Combinatorics 17 (1) 460–460460

http://refhub.elsevier.com/S0972-8600(18)30196-8/sb5
http://refhub.elsevier.com/S0972-8600(18)30196-8/sb6
http://refhub.elsevier.com/S0972-8600(18)30196-8/sb7
http://refhub.elsevier.com/S0972-8600(18)30196-8/sb8
http://refhub.elsevier.com/S0972-8600(18)30196-8/sb9
http://refhub.elsevier.com/S0972-8600(18)30196-8/sb9
http://refhub.elsevier.com/S0972-8600(18)30196-8/sb9
http://refhub.elsevier.com/S0972-8600(18)30196-8/sb10
http://refhub.elsevier.com/S0972-8600(18)30196-8/sb11

	A note on comaximal ideal graph of commutative rings
	Introduction
	Central sets in 
	Isomorphism properties of  and planarity of 
	Acknowledgments
	References


