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Abstract

Radio k-coloring of graphs is one of the variations of frequency assignment problem. For a simple connected graph G
and a positive integer k ⩽ diam(G), a radio k-coloring is an assignment f of positive integers (colors) to the vertices of
G such that for every pair of distinct vertices u and v of G, the difference between their colors is at least 1 + k − d(u, v).
The maximum color assigned by f is called its span, denoted by rck ( f ). The radio k-chromatic number rck (G) of G is
min{rck ( f ) : f is a radio k-coloring of G}. If d is the diameter of G, then a radio d-coloring is referred as a radio coloring
and the radio d-chromatic number as the radio number, denoted by rn(G), of G. The corona G ⊙ H of two graphs G and H
is the graph obtained by taking one copy of G and |V (G)| copies of H , and joining each and every vertex of the i th copy of
H with the i th vertex of G by an edge. In this paper, for path Pn and cycle Cm , m ≥ 5, we determine rn(Pn ⊙ Cm ) when n
is even, and give an upper bound for the same when n is odd. Also, for m ≥ 4, we determine the radio number of Pn ⊙ Pm
when n is even, and give both upper and lower bounds for rn(Pn ⊙ Pm ) when n is odd.

Keywords: Radio k-coloring; Radio k-chromatic number; Radio coloring; Radio number

1. Introduction

The problem of obtaining an assignment of frequencies to transmitters in some optimal manner is said to be
Frequency Assignment Problem (FAP). Due to rapid growth of wireless networks and to the relatively scarce radio
spectrum, the importance of FAP is growing significantly. One of the FAPs is the problem of assigning radio
frequencies to transmitters at different locations without causing interference and reducing maximum frequency
used. Hale [1] has modeled FAP as graph labeling problem as follows. Transmitters are represented by vertices
of a graph and those vertices corresponding to very close transmitters are joined by edges. Maximum interference
occurs among transmitters corresponding to adjacent vertices. Now, assigning frequencies to transmitters is same
as assigning positive integers (colors) to vertices.

Motivated by channel assignment to radio stations, Chartrand et al. [2] have introduced radio k-coloring of graphs.
For a simple connected graph G and an integer k, 1 ⩽ k ⩽ diam(G), a radio k-coloring of G is an assignment f
of positive integers to the vertices of G such that | f (u) − f (v)| ⩾ 1+k −d(u, v) for all distinct vertices u and v of
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G. The maximum color assigned by f is called the span of f , denoted by rck( f ). The radio k-chromatic number
rck(G) of G is the minimum of spans over all radio k-colorings of G. A radio k-coloring f of G with span rck(G)
is referred as a minimal radio k-coloring of G. For some special values of k, there are some special names of radio
k-colorings and as well as radio k-chromatic numbers in the literature. A radio 1-coloring is a proper coloring of
G and rc1(G) = χ (G). If k = d, the diameter of G, then a radio d-coloring is called a radio coloring and the radio
d-chromatic number is said to be the radio number. Radio (d − 1)-coloring and radio (d − 2)-coloring are called
antipodal coloring and nearly antipodal coloring respectively. The radio (d − 1)-chromatic number and the radio
(d − 2)-chromatic number are called the antipodal number and the nearly antipodal number respectively.

If we see the literature of radio k-coloring for operation between graphs, it is studied only for Cartesian product
of graphs. Even though, radio k-coloring is defined for k ⩽ diam(G), some authors have studied it for k ⩾ diam(G)
as it is useful in finding radio k-chromatic number of larger graphs. Kchikech et al. [3] have given lower and upper
bounds for rck(Pn□Pn) when k ⩾ 2n − 3. Also, they have given an upper bound for radio k-chromatic number of
Cartesian product of two arbitrary graphs. Kim et al. [4] have determined the radio number of Cartesian product
of path Pn and complete graph Km as mn2

−2n+4
2 if n is even and mn2

−2n+m+4
2 if n is odd. Ajayi and Adefokun [5]

have given bounds for the radio number for Cartesian product of path and star. Morris-Rivera [6] has determined
that rn(Cn□Cn) is 2p3

+ 4p2
− p if n = 2p and is 2p3

+ 4p2
+ 2p + 1 if n = 2p + 1. Saha and Panigrahi [7]

found the exact value of radio number of Cm□Cn , toroidal grid, when at least one of m and n is even. Kola and
Panigrahi [8] have given a lower bound for rck(G) for an arbitrary graph G and using this lower bound, they have
given a lower bound for radio k-chromatic number of prism graph Cn□Pm . Further, they proved this lower bound
is exact for the radio number of Cn□P2, when n ≡ 1 mod 4 and n ≡ 2 mod 8. The corona G ⊙ H of two graphs G
and H is the graph obtained by taking one copy of G and |V (G)| copies of H , and joining each and every vertex
of the i th copy of H with the i th vertex of G by an edge. It is easy to see that G ⊙ H ≇ H ⊙ G if G ≇ H . Also,
diam(G ⊙ H ) = diam(G) + 2.

In this article, for m ≥ 5, we determine the radio number for Pn ⊙ Cm when n is even and we give lower and
upper bounds for rn(Pn ⊙ Cm) when n is odd. Also, for m ≥ 4, we determine rn(Pn ⊙ Pm) when n is even and
give lower and upper bounds for the same when n is odd.

2. Results

We use the following definition and lemma to get the span of a radio coloring.

Definition 2.1. For a graph G of order n and a radio k-coloring f of G, let x1, x2, x3, . . . , xn be an ordering of
vertices of G such that f (xi ) ≤ f (xi+1), 1 ≤ i ≤ n − 1. We define ϵi = f (xi ) − f (xi−1) − (1 + k − d(xi , xi−1)),
2 ≤ i ≤ n.

Lemma 2.2. For any radio k-coloring f of a graph G of order n,

rck( f ) = (n − 1)(1 + k) −

n∑
i=2

d(xi , xi−1) +

n∑
i=2

ϵi + 1

where xi s are as given in Definition 2.1.

Proof.

f (xn) − f (x1) =

n∑
i=2

[ f (xi ) − f (xi−1)]

=

n∑
i=2

[1 + k − d(xi , xi−1) + ϵi ]

= (n − 1)(1 + k) −

n∑
i=2

d(xi , xi−1) +

n∑
i=2

ϵi .

Since f (x1) = 1, rck( f ) = f (xn) = (n − 1)(1 + k) −

n∑
i=2

d(xi , xi−1) +

n∑
i=2

ϵi + 1. ■
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To get a lower bound for the radio number of the graph under discourse, we use the lower bound technique for
radio k-coloring given by Das et al. [9]. For a subset S of the vertex set of a graph G, let N (S) be the set of all
vertices of G adjacent to at least one vertex of S.

Theorem 2.3 ([9]). If f is a radio k-coloring of a graph G, then

rck( f ) ≥ |Dk | − 2p + 2
p∑

i=0

|L i |(p − i) + α + β,

where Dk and L i ’s are defined as follows. If k = 2p + 1, then L0 = V (C), where C is a maximal clique in G.
If k = 2p, then L0 = {v}, where v is a vertex of G. Recursively define L i+1 = N (L i )\(L0 ∪ L1 ∪ · · · ∪ L i ) for
i = 0, 1, 2, . . . , p − 1. Let Dk = L0 ∪ L1 ∪ · · · ∪ L p. The minimum and the maximum colored vertices among the
vertices of Dk are in Lα and Lβ respectively.

As a direct consequence of Theorem 2.3, we have the theorem below.

Theorem 2.4. For any graph G and 1 ≤ k ≤ diam(G), we have

rck(G) ≥

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|Dk | − 2p + 2

p∑
i=0

|L i |(p − i) i f k = 2p + 1,

|Dk | − 2p + 2
p∑

i=0

|L i |(p − i) + 1 i f k = 2p.

Following theorem gives an upper bound for the radio number of corona of path and cycle Pn ⊙ Cm . We refer
the condition in the definition of radio k-coloring as radio k-coloring condition.

Theorem 2.5. For m ≥ 5,

rn(Pn ⊙ Cm) ≤

⎧⎪⎨⎪⎩
(2m + 2)p2

+ 2p i f n = 2p,

(2m + 2)p2
+ (2m + 4)p + m + 2 + ( m

2 − 1)p, i f n = 2p + 1 and m is even,

(2m + 2)p2
+ (2m + 4)p + m + 2 + ( m−1

2 )p, i f n = 2p + 1 and m is odd.

Proof. To give an upper bound for the radio number, we define a radio coloring of Pn ⊙ Cm . Let v1v2v3 . . . vn be
the path Pn and for i = 1, 2, 3, . . . , n, let C i

m be the copy of Cm in Pn ⊙ Cm corresponding to the vertex vi of Pn .

Case 1: Let n = 2p. To give a radio coloring, we first order the vertices of Pn ⊙ Cm as follows. Let x1 = vp.
We label the vertices of Cn+1−i

m , i = 1, 2, 3, . . . , p, as x2, x4, x6, . . . , xmn starting from the vertices of Cn
m and

once all vertices of Cn
m are labeled, we label the vertices of Cn−1

m and so on, in such a way that d(xi , xi+2) > 1
for i = 2, 4, 6, . . . , mn − 2. We label the vertices vn, vn−1, vn−2, . . . , vp+1 as xmn+2, xmn+4, xmn+6, . . . , xmn+n

respectively. Now, we label the vertices of C p+1−i
m , i = 1, 2, 3, . . . , p, as x3, x5, x7, . . . , xmn+1 starting from the

vertices of C p
m and once all vertices of C p

m are labeled, we label the vertices of C p−1
m and so on, in such a

way that d(xi , xi+2) > 1 for i = 3, 5, 7, . . . , mn − 1. Finally, we label the vertices vp−1, vp−2, vp−3, . . . , v1 as
xmn+3, xmn+5, xmn+7, . . . , xmn+n−1 respectively.

Now, we define a coloring f by f (x1) = 1 and for i = 2, 3, 4, . . . , mn + n, f (xi ) = f (xi−1) + 1 + (2p + 1) −

d(xi , xi−1). Next, we show that f is a radio coloring of Pn ⊙Cm with span (2m +2)p2
+2p. By definition of f , xi

satisfies radio coloring condition with xi+1. Also it is easy to see that f (xi )− f (xi+3) ≥ 2p+1 = 1+(2p+1)−1 ≥

1 + (2p + 1) − d(xi , xi+3). So, it remains to check the radio coloring condition for xi and xi+2. Suppose that xi and
xi+2 are on the same copy of Cm . Then by the ordering, d(xi , xi+2) = 2 and d(xi , xi+1) = d(xi+1, xi+2) = p + 2.
Therefore,

f (xi+2) − f (xi ) = f (xi+2) − f (xi+1) + f (xi+1) − f (xi )
= p + p
= 1 + (2p + 1) − d(xi , xi+2).
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Suppose that xi and xi+2 are on different copies of Cm . Then d(xi , xi+2) = 3 and one of d(xi , xi+1) and d(xi+1, xi+2)
is p + 2 and the other is p + 1. Therefore,

f (xi+2) − f (xi ) = f (xi+2) − f (xi+1) + f (xi+1) − f (xi )
= 2(1 + (2p + 1)) − d(xi , xi+1) − d(xi+1, xi+2)
= 2p + 1
> 1 + (2p + 1) − d(xi , xi+2).

Suppose that xi is on a copy of Cm and xi+2 is on Pn . Then i = mn or i = mn + 1. If i = mn, then
d(xmn, xmn+2) = p, d(xmn, xmn+1) = p + 2 and d(xmn+1, xmn+2) = 2p. Therefore,

f (xmn+2) − f (xmn) = f (xmn+2) − f (xmn+1) + f (xmn+1) − f (xmn)
= p + 2
= 1 + (2p + 1) − d(xmn, xmn+2).

If i = mn + 1, then d(xmn+1, xmn+3) = p − 1, d(xmn+1, xmn+2) = 2p and d(xmn+2, xmn+3) = p + 1. Therefore,

f (xmn+3) − f (xmn+1) = f (xmn+3) − f (xmn+2) + f (xmn+2) − f (xmn+1)
= p + 3
= 1 + (2p + 1) − d(xmn+1, xmn+3).

Suppose that xi is on path Pn and xi+2 is on a copy of Cm . Then i = 1, d(x1, x3) = 1, d(x1, x2) = p + 1 and
d(x2, x3) = p + 2. Therefore,

f (x3) − f (x1) = f (x3) − f (x2) + f (x2) − f (x1)
= p + 1 + p

= 1 + (2p + 1) − d(x1, x3).

Suppose both xi and xi+2 are on Pn . Then d(xi , xi+2) = 1 and one of d(xi , xi+1) and d(xi+1, xi+2) is p + 1 and the
other is p. Therefore,

f (xi+2) − f (xi ) = f (xi+2) − f (xi+1) + f (xi+1) − f (xi )
= 2(1 + (2p + 1)) − d(xi , xi+1) − d(xi+1, xi+2)
= 2p + 3
> 1 + (2p + 1) − d(xi , xi+2).

Therefore f is a radio coloring of Pn ⊙ Cm . From the definition of f , we have
mn+n∑
i=2

ϵi = 0. Since the sequence

of distances {d(xi , xi−1)}mn+n
i=2 is such that the 2m terms p + 1, p + 2, p + 2, . . . , p + 2 repeated p times, that is,

up to d(xmn+1, xmn), d(xmn+2, xmn+1) = 2p and an alternating sequence of p + 1 and p from d(xmn+3, xmn+2) to
d(xmn+n, xmn+n−1), we have

mn+n∑
i=2

d(xi , xi−1) =

mn+1∑
i=2

d(xi , xi−1) + d(xmn+2, xmn+1) +

mn+n∑
i=mn+3

d(xi , xi−1)

= ((p + 2)(2m − 1)p + (p + 1)p) + 2p + ((p + 1)(p − 1) + p(p − 1))
= (2m + 2)p2

+ 4pm − 1.

Now, by Lemma 2.2, rn( f ) = (mn + n − 1)(2p + 1 + 1) − ((2m + 2)p2
+ 4pm − 1) + 1 = (2m + 2)p2

+ 2p.

Case 2: Let n = 2p + 1 and m be even. As in Case 1, here also first we order the vertices of Pn ⊙ Cm . Let
x1 = vp+1. We label x2, x4, x6, . . . , xmn as in Case 1 starting from the vertices of Cn

m ending after labeling m
2

vertices of C p+1
m . We label the vertices vp+1, vp+2, vp+3, . . . , vn as xmn+2, xmn+4, xmn+6, . . . , xmn+n−1 respectively.

Now, we label x3, x5, x7, . . . , xmn+1 as in Case 1 starting from the vertices of C p+1
m ending after labeling all the

vertices of C1
m . Finally, we label the vertices v1, v2, v3, . . . , vp as xmn+3, xmn+5, xmn+7, . . . , xmn+n respectively.
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Now, we define a coloring f by f (x1) = 1 and for i = 2, 3, 4, . . . , mn + n,

f (xi ) =

{
f (xi−1) + 1 + (2p + 2) − d(xi , xi−1) + 1, if i is even and d(xi , xi−1) = p + 3,

f (xi−1) + 1 + (2p + 2) − d(xi , xi−1), otherwise.

Checking the radio coloring condition for xi and xi+2 is similar to the previous case except for the case that
both xi and xi+2 are on same copy of Cm . Then we have either d(xi+1, xi ) = d(xi+1, xi+2) = p +2 or d(xi+1, xi ) =

d(xi+1, xi+2) = p + 3. As in the previous case, we can check the condition if d(xi+1, xi ) = d(xi+1, xi+2) = p + 2.
Suppose that d(xi+1, xi ) = d(xi+1, xi+2) = p+3. Since only one of i +1 and i +2 is even, by the definition of f , we
have either f (xi+1) = f (xi )+1+ (2p +2)−d(xi+1, xi )+1 or f (xi+2) = f (xi+1)+1+ (2p +2)−d(xi+2, xi+1)+1.
Therefore,

f (xi+2) − f (xi ) = f (xi+2) − f (xi+1) + f (xi+1) − f (xi )

= 2(1 + (2p + 2)) − d(xi , xi+1) − d(xi+1, xi+2) + 1

= 2p + 1

= 1 + (2p + 2) − d(xi , xi+2).

Hence f is a radio coloring. By the definition of f , we get
mn+n∑
i=2

ϵi = (
m
2

− 1)p and by the ordering of vertices,

we have
mn+n∑
i=2

d(xi , xi−1) = 2mp2
+ (6m + 1)p + 2m + 1. Now, by Lemma 2.2, we have

rn( f ) = (mn + n − 1)(2p + 2 + 1) − (2mp2
+ (6m + 1)p + 2m + 1) +

(m
2

− 1
)

p + 1

= (2m + 2)p2
+ (2m + 4)p + m + 2 +

(m
2

− 1
)

p.

Case 3: Let n = 2p + 1 and m be odd. First we order the vertices of Pn ⊙ Cm , similar to Case 2, with some

modification. We label x2, x4, x6, . . . , xmn−1 as in Case 2 starting from the vertices of Cn
m ending after labeling m−1

2
vertices of C p+1

m . We label the vertices vn, vn−1, vn−2, . . . , vp+1 as xmn+1, xmn+3, xmn+5, . . . , xmn+n respectively.
Now, we label x1, x3, x5, . . . , xmn , starting from the vertices of C p+1

m ending after labeling all the vertices of C1
m as

in Case 1. Finally, we label the vertices vp, vp−1, vp−2, . . . , v1 as xmn+2, xmn+4, xmn+6, . . . , xmn+n−1 respectively.
Now, we define a coloring f by f (x1) = 1 and for i = 2, 3, 4, . . . , mn + n,

f (xi ) =

{
f (xi−1) + 1 + (2p + 2) − d(xi , xi−1) + 1 if i is even and d(xi , xi−1) = p + 3,

f (xi−1) + 1 + (2p + 2) − d(xi , xi−1) otherwise.

As in Case 2, we can show that f is a radio coloring. Using Lemma 2.2, rn( f ) = (2m + 2)p2
+ (2m + 4)p +

m + 2 + ( m−1
2 )p. ■

Example 2.6. The three cases of Theorem 2.5 are illustrated in Figs. 1–3.

Theorem 2.7. If n = 2p and m ≥ 5, then rn(Pn ⊙ Cm) = (2m + 2)p2
+ 2p.

Proof. To show rn(Pn ⊙Cm) ≥ (2m +2)p2
+2p, we use Theorem 2.4. Let v1v2v3 . . . vn be the path Pn . We choose

L0 = {vp, vp+1}. Then we get, |L i | = 2m+2, for 1 ≤ i ≤ p−1, |L p| = 2m and |D2p+1| = |V (Pn ⊙ Cm)| = mn+n.
Now, by Theorem 2.4, we have

rn(G) ≥ mn + n − 2p + 2(2p) + 2
p−1∑
i=1

(2m + 2)(p − i) + 2(2m)(0)

= (2m + 2)p2
+ 2p.

Therefore, rn(Pn ⊙ Cm) ≥ (2m + 2)p2
+ 2p. ■
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Fig. 1. The ordering vertices of P4 ⊙ C6 and the radio coloring of P4 ⊙ C6 given in Case 1 of Theorem 2.5.

Fig. 2. The ordering vertices of P5 ⊙ C6 and the radio coloring of P5 ⊙ C6 given in Case 2 of Theorem 2.5.

Fig. 3. The ordering vertices of P5 ⊙ C5 and the radio coloring of P5 ⊙ C5 given in Case 3 of Theorem 2.5.

Theorem 2.8. If n = 2p + 1 and m ≥ 5, then rn(Pn ⊙ Cm) ≥ (2m + 2)p2
+ (2m + 4)p + m + 2.
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Proof. Let v1v2v3 . . . vn be the path Pn . By choosing L0 = {vp+1} and using Theorem 2.4, we get the required
lower bound. ■

In the remaining part of the paper, we determine the radio number of Pn ⊙ Pm when n is even. For n odd, we
give upper and lower bounds for the same. It is easy to see that Pn ⊙ Pm is a subgraph of Pn ⊙ Cm .

Theorem 2.9. If n = 2p and m ≥ 4, then rn(Pn ⊙ Pm) = (2m + 2)p2
+ 2p.

Proof. Since Pn ⊙ Pm is a subgraph of Pn ⊙ Cm , by Theorem 2.5, we have rn(Pn ⊙ Pm) ≤ (2m + 2)p2
+ 2p

for m ≥ 5. For m = 4, we do exactly same as in Case 1 of Theorem 2.5 and get rn(Pn ⊙ P4) ≤ 10p2
+ 2p.

Now, to get the lower bound for rn(Pn ⊙ Pm), we choose L0 same as in the proof of Theorem 2.7 and we get
rn(Pn ⊙ Pm) ≥ (2m + 2)p2

+ 2p. ■

Following theorem gives upper and lower bounds for rn(Pn ⊙ Pm) when n is odd.

Theorem 2.10. If n = 2p + 1 and m ≥ 4, then

rn(Pn ⊙ Pm) ≤

{
(2m + 2)p2

+ (2m + 4)p + m + 2 + ( m
2 − 1)p i f m is even,

(2m + 2)p2
+ (2m + 4)p + m + 2 + ( m−1

2 )p i f m is odd,

and rn(Pn ⊙ Pm) ≥ (2m + 2)p2
+ (2m + 4)p + m + 2.

Proof. Since Pn ⊙ Pm is a subgraph of Pn ⊙ Cm , by Theorem 2.5, we have rn(Pn ⊙ Pm) ≤ (2m + 2)p2
+ (2m +

4)p + m + 2 + ( m
2 − 1)p if m ≥ 6 is even and rn(Pn ⊙ Pm) ≤ (2m + 2)p2

+ (2m + 4)p + m + 2 + ( m−1
2 )p if m ≥ 5

is odd. For m = 4, we do exactly same as in Case 2 of Theorem 2.5 and get rn(Pn ⊙ P4) ≤ 10p2
+ 13p + 6.

Now, to get the lower bound for rn(Pn ⊙ Pm), we choose L0 same as in the proof of Theorem 2.8 and obtain
rn(Pn ⊙ Pm) ≥ (2m + 2)p2

+ (2m + 4)p + m + 2. ■
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