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Abstract

An edge labeled graph is a graph G whose edges are labeled with non-zero ideals of a commutative ring R. A Generalized
Spline on an edge labeled graph G is a vertex labeling of G by elements of the ring R, such that the difference between
any two adjacent vertex labels belongs to the ideal corresponding to the edge joining both the vertices. The set of generalized
splines forms a subring of the product ring R|V |, with respect to the operations of coordinate-wise addition and multiplication.
This ring is known as the generalized spline ring RG , defined on the edge labeled graph G, for the commutative ring R. We
have considered particular graphs such as complete graphs, complete bipartite graphs and hypercubes, labeling the edges with
the non-zero ideals of an integral domain R and have identified the generalized spline ring RG for these graphs. Also, general
algorithms have been developed to find these splines for the above mentioned graphs, for any number of vertices and Python
code has been written for finding these splines.

Keywords: Generalized splines; Complete graphs; Hypercubes

1. Introduction

The term spline refers to a class of functions used in data interpolation by mathematicians. The simplest spline
is a piecewise polynomial function, defined over a subdivided domain, satisfying certain number of smoothness
conditions at the nodes (control points) of the subdivision. These smooth curves find extensive use in interpolating
complex curves, CAGD and also generate approximate solutions to differential equations. With the application
of the algebraic, geometric and topological techniques, the analytic study of splines got enriched both in terms
of understanding and applicability. Spline Theory developed independently in topology and geometry. Billera [1]
pioneered the study of algebraic splines, introducing methods from Commutative Algebra [2]. Haas [3], Rose [4]
and others [5–7] studied the homological and algebraic properties of splines.

Algebraically, the set of splines over a subdivision of domains was seen to be a subring of the product ring
R × R × R... × R (n copies), where R was the ring of polynomials and n denoted number of subdivisions
of the domain. Also, it was observed that the above spline ring was a module over the ring of polynomials.
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Identifying the dimension and finding suitable bases for the free spline modules became an active area of research for
many mathematicians, still remaining far from being completely understood [8,9]. Classical splines were piecewise
polynomials on polytopes with certain order of smoothness conditions imposed on the boundary faces [10]. Simcha
Gilbert, Shira Polster and Julianna Tymoczko [11], expanded the family of objects on which these splines were
defined to arbitrary graphs, which they called the generalized splines. Billera and Rose [4] have shown that the
spline rings built on the dual graphs of polytopes were equivalent to the generalized spline rings defined on arbitrary
graphs [11]. Handschy, Melmick and Reinders [12] have studied the generalized spline modules on cycle graphs
over the ring of integers Z . They have shown the existence of flow-up basis for the spline modules on cycle graphs,
thus proving that these spline modules are free. Bowden and Tymoczko [10] considered the module of generalized
splines over the quotient ring Z/m Z , which is not an integral domain. They have shown that over Z/m Z , the
minimum generating sets are smaller than expected. In fact, it was proved that over a domain, the module of splines
contained a free submodule of rank at least the number of vertices [10]. Handschy, Melmick and Reinders [12] have
shown that over a PID the module of splines is free with rank equal to the number of vertices. With these, many
interesting properties of the generalized splines were studied, which took into consideration the interplay between
the graph theoretic and ring theoretic properties. This opened up the possibility of further exploration in this area,
as many open questions were left unanswered in these fields.

We have extended the study further and in this paper, we have addressed the open questions posed by Gilbert,
Polster and Tymoczko in [11]. We have constructed nontrivial generalized splines for the special cases, where G is
a complete graph, complete bipartite graph and hypercubes. All these graphs find extensive applications in network
theory and hence our work is important as it adds to the understanding of the algebraic structures of these graphs. In
fact, one of the graphs that we have considered is a n-dimensional hypercube, which is used to understand structures
like communication signals, computer networks, computer graphics, space, virus, etc. We have developed a general
algorithm to express the ring of generalized splines for hypercubes of any dimension n ≥ 2, taking into account the
bipartite nature [13] and Hamiltonian property of the graph [14]. Also, Python code was developed which calculated
the elements of the generalized spline ring RG , for complete graphs and complete bipartite graphs. Throughout our
work, we have considered the ring R to be an integral domain and the edge labels as the non-zero ideals of the
ring R.

2. Results & methods used

2.1. Preliminaries

In this section, we give the formal definition of the generalized spline ring RG , for a graph G over a commutative
ring R, with the edge labels as the non-zero ideals of the ring R, as discussed in [11]. We then give the fundamental
results which describe the algebraic structure of the ring RG , along with examples, which are used to construct new
generalized splines for the complete graphs, complete bipartite graphs and hypercubes. Throughout the manuscript,
we have used the notations of [11], except in some cases which we have mentioned clearly.

The definition of an edge labeled graph is as follows:

2.1.1. Definition
Let G = (V , E) be a graph. Let R be an arbitrary commutative ring with identity which is also an integral

domain and let S denote the set of all non-zero ideals of R. Let a function α : E −→ S be an edge labeling of G
by the non-zero ideals of R. Given an edge labeling α, a vertex labeling p : V −→ R is called a generalized spline
if pu − pv is in α(e) for every edge e = ⟨uv⟩ in E. Let RG denote the set of all generalized splines of (G, α). Then
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RG is an R-module under the operations of co-ordinate wise addition and scalar multiplication.
The compatibility condition known as “edge conditions” used on the edges are defined as:

2.1.2. Definition
Let G = (V, α) be an edge labeled graph. An element p ∈

⨁
v∈V R, expressed as

p = (pv1 , pv2 , . . ., pvn ) satisfies the edge condition at an edge e = ⟨viv j ⟩ if pvi − pv j ∈ α (eij).
The set of splines with the edge conditions is denoted by RG,α . Each element of RG,α is called a generalized

spline. If the edge labeling is clear, it is denoted as RG.
We now give the definition of nontrivial generalized spline.

2.1.3. Definition
A nontrivial generalized spline is an element p ∈ RG , that is not in the principal ideal R1, where 1 is the identity

element in RG defined as 1 = (1, 1, . . . , 1).
The following theorem [11] shows that RG is a ring with unity with the operations of coordinate-wise addition

and multiplication.

2.1.4. Theorem
RG is a ring with unity 1, where 1v = 1 for each vertex v ∈ V .
It is proved [11] that RG becomes a module over the ring R with the operation of coordinate-wise addition and

scalar multiplication where multiplication by r ∈ R, gives the element

r p = (r pv1 , r pv2 , . . . , r pvn ) ∈ RG

Figs. 1 and 2 (discussed in [11]) are two examples of the ring of generalized splines RC4 and RK4 , defined on
the 4-cycle C4 and the complete graph K4. Here, R is any commutative ring with unity and (αe) denotes the ideal
generated by the single ring element of R.

Thus, p = (0, α1α4,(α1 + α2)α4,(α1 + α2 +α3)α4) = (pv1 , pv2 , pv3 , pv4 ) represents a generalized spline for C4,
because the difference pv2 − pv1 = α1α4 ∈ (α1), and similarly for other adjacent vertices.

Another example giving a generalized spline for the complete graph K4 is given in Fig. 2. Once again, a
generalized spline on K4 will be written as

p = (0, α1α4α5α6, α1α4α5α6 + α2α4α5α6, α1α4α5α6 + α2α4α5α6 + α3α4α5α6)

= (pv1 , pv2 , pv3 , pv4 , pv5 , pv6 )

which satisfies the edge conditions for all pairs of adjacent vertices. As discussed earlier, the set of generalized
splines on an edge labeled graph has a ring structure and R-module structure like classical splines. Gilbert, Polster
and Tymoczko [11] proved foundational results about the set of generalized splines, completely analyzing the ring
of generalized splines for trees. They have obtained the generalized splines for arbitrary cycles and have shown that
the study of generalized splines for arbitrary graphs can be reduced to the case of different sub graphs, especially
cycles or trees.
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Fig. 1. Example of a generalized spline on the 4-cycle C4.

Fig. 2. Example of a generalized spline on the complete graph K4.

Basic problems that arise naturally in the theory of generalized splines is that it focuses on particular examples
e.g. a particular choice of the ring R, the graph G and the edge labeling function α which maps the edges to the
ideals of the ring R. Also, the module structure of the ring of generalized splines remains far from being understood
in terms of freeness and existence of basis or generating set, for an arbitrary choice of the ring R[11]. However, it
is not clear how the ring RG will be affected under the graph theoretic constructions such as addition or deletion
of vertices.

In the rest of the paper, we have extended the study further and addressed the open question posed by Simcha
Gilbert, Shira Polster and Juliana Tymoczko in [11]. We have constructed the ring of generalized splines for the
special cases, where G is a complete graph Kn , complete bipartite graph Kn1,n2 and also for the hypercubes Qn . In
all these graphs, the ring R is a commutative ring with identity which is also an integral domain and the edge labels
are the non-zero ideals of the ring R. Also, the methods of constructing the generalized splines over the complete
graphs Kn(for any n) and complete bipartite graphs Kn1,n2 (for any n1, n2) have been generalized and Python code
is developed to write these splines. The bipartite structure and Hamiltonicity of the hypercubes (as defined in [13])
are used to find the general algorithm for writing the set of generalized splines RQn (for any n).

We discuss the example of generalized spline ring RC3 over the ring of integers for the cycle graph C3 [15].

2.1.5. Example of generalized integer spline on cycle graph C3
Here the generalized integer spline f = ( f1, f2, f3) ∈ RC3 , where C3 is a 3-cycle with the edge labels a1, a2,

a3 where a1, a2 and a3 are natural numbers (see Fig. 3).
The vertex labels ( f1, f2, f3) belonging to Z × Z × Z satisfy the following conditions

f1 ≡ f2 mod a1,

f2 ≡ f3 mod a2 and
f3 ≡ f1 mod a3.

We will refer to the preliminaries in the following subsection, throughout the manuscript.
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Fig. 3. Example of generalized integer spline on the 3-cycle C3.

2.2. Important results on RG

Some of the important results for the generalized spline ring RG , relevant to our work are mentioned in this
subsection. The first result is theorem 3.8 from [11], which is as follows:

2.2.1. Theorem
Let Cn be a finite edge labeled cycle, given by vertices v1, v2, . . . , vn in order. Define the vector p ∈ R|V | with⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pv1
pv2
pv3
...
...
...

pvn−1
pvn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= pvn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
...
...
...

1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ α1,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
1 0 · · · 0 0
1 1 · · · 0 0
...

... · · ·
...

...
...

... · · ·
...

...
...

... · · ·
...

...

1 1 · · · 1 0
1 1 · · · 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1,2
α2,3
α3,4
...
...
...

αn−2,n−1
αn−1,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
With arbitrary choices of pv1 ∈ R, αi,i+1 ∈ α(ei,i+1), and α1,n ∈ α (e1,n). Then p is a generalized spline for Cn .

The spline p is nontrivial exactly when α1,n and at least one of the αi,i+1 are non-zero.
We have used the following results (corollaries 5.4 and 5.6 from [11]) in proving our results and in obtaining

the nontrivial generalized splines for the graphs that we have considered.

2.2.2. Corollary
If G contains any subgraph G ′ for which RG′ contains a nontrivial generalized spline, then RG also contains a

nontrivial generalized spline.

2.2.3. Corollary
Let R be an integral domain. If the graph G contains at least two vertices, then RG contains a nontrivial

generalized spline.
We will be using the following result for the cycle graph C3, which is also the complete graph K3 (Theorem

3.8 [11]) to identify the ring RG , for the complete graph Kn , for n ≥ 3.

2.3. Generalized splines for complete graphs, Kn ,n ≥ 3

First we construct nontrivial generalized splines for complete graph K3 [Fig. 4]. Here the edges (v1, v2), (v2, v3)
and (v3, v1) of the graph K3 are labeled with the non-zero ideals A(1, 2), A(2, 3) and A(3, 1) respectively of the
ring R, when R is an integral domain.
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Fig. 4. Generalized spline on K3.

It follows from Theorem 3.8 in [11], a generalized spline pK3 on the complete graph K3 is

pK3 =

⎡⎣ 0
α(1, 2)α(1, 3)

(α(1, 2) + α(2, 3))α(1, 3)

⎤⎦ =

⎡⎣pv1
pv2
pv3

⎤⎦
Here we see that pK3 satisfies the edge conditions on K3, because if the vertices vi and v j are adjacent, then

pvi − pv j ∈ A(i, j), as α(i, j) is a factor of pvi − pv j . Here α(i, j) represents any element of the edge ideal A(i, j).
Let RK3 denote the set of all generalized splines of (K3, α).
Since R is an integral domain and each α(i, j) is not equal to zero, RK3 contains non-trivial generalized splines.
Using the above result, we have generated the algorithm for developing the generalized spline for the complete

graph Kn , for any n ≥ 4.
Also, we will be using the edge conditions (Section 2.1.2) to identify the ring RG , where graph G is complete

bipartite graph Kn1,n2 , for any n1 and n2.

2.4. Generalized splines for complete bipartite graphs, Kn1,n2

We have generated the algorithm for developing the generalized spline for the complete bipartite graphs with
the vertex sets V1 containing n1 vertices and V2 containing n2 vertices. We have used similar notations as above,
where we denote the edge ideal corresponding to the edge joining the i th and j th vertices by A(i, j) and α(i, j)
represents an element of the non-zero ideal A(i, j).

We will be using the edge conditions (Section 2.1.2) to identify the ring RG , where graph G is hypercube Qn ,
for n ≥ 2.

2.5. Hypercubes

We have extended the method of writing algorithm for the generalized splines to hypercubes, Qn , for n ≥ 2 in
Section 3.5. Hypercubes, denoted by Qn , are graphs which find extensive use in coding theory in Computer Science
and other areas of Mathematics.

3. Results & discussions

3.1. Complete graphs

In this section, we extend the method of constructing the ring of generalized splines RKn , for any n ≥ 4 starting
with the ring RK3 for the complete graph K3 (Section 2.3). In order to get the graph Kn , we add a new vertex to
the graph Kn−1 and join the new vertex to the existing n − 1 vertices in Kn−1. In the following constructions we
consider the ring R to be a commutative ring with identity and also an integral domain. First we construct the graph
K4 from the graph K3 and obtain the set of generalized splines RK4 from the ring RK3 .

3.1.1. Complete graph (K4), n = 4
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Fig. 5. Generalized spline on K4.

We add the vertex v4 to K3 (Fig. 4) and join the new vertex v4 with the vertices v1, v2, v3 of K3 (Fig. 5).
The new edges are labeled with the non-zero ideals A(4, 1), A(4, 2), A(4, 3) of integral domain R and α(4, 1),
α(4, 2), α(4, 3) are the elements of the respective edge ideals. It can be seen that every vertex label for pK3 ∈ RK3

(Section 2.3) is multiplied by the factor α(4, 1)α(4, 2)α(4, 3) to get the corresponding vertex labels for the spline
pK4 ∈ RK4 , where RK4 denotes the set of all generalized splines for the edge labeled graph (K4, α). It is easily
verified that if the new vertex v4 is labeled with pv4 = α(4, 1)α(4, 2)α(4, 3), then pK4 becomes a generalized spline
for RK4 since the edge conditions are satisfied for the adjacent vertices in K4. So we have

pK4 =

⎡⎢⎢⎣
0

α(1, 2)α(1, 3)⟨α(4, 1)α(4, 2)α(4, 3)⟩
(α(1, 2) + α(2, 3))α(1, 3)⟨α(4, 1)α(4, 2)α(4, 3)⟩

⟨α(4, 1)α(4, 2)α(4, 3)⟩

⎤⎥⎥⎦ =

⎡⎢⎢⎣
pv1
pv2
pv3
pv4

⎤⎥⎥⎦
pv1 − pv2 ∈ A(1, 2), since α(1, 2) ∈ A(1, 2) is a factor of pv1 − pv2 .
Similarly we have

pv1 − pv3 ∈ A(1, 3), since α(1, 3) is a factor of pv1 − pv3

pv2 − pv3 ∈ A(2, 3), since α(2, 3) is a factor of pv2 − pv3

pv4 − pv1 ∈ A(4, 1), since α(4, 1) is a factor of pv4 − pv1

pv4 − pv2 ∈ A(4, 2), since α(4, 2) is a factor of pv4 − pv2

pv4 − pv3 ∈ A(4, 3), since α(4, 3) is a factor of pv4 − pv3

Here pv4 = α(4, 1)α(4, 2)α(4, 3) is non-zero because R is an integral domain. Also since K3 is a sub-graph of
K4 and RK3 contains nontrivial generalized splines (Sections 2.2.2, 2.2.3) RK4 also contains nontrivial generalized
splines.

Using similar methods, we can identify the ring of generalized splines for the complete graph K5.
[cvskip-5pt]

3.1.2. Complete graph (K5), n = 5
We can get K5 by adding the vertex v5 to K4 and the four edges joining v5 to the four vertices v1, v2, v3, v4 of

K4 (Fig. 6).
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Fig. 6. Generalized spline on K5.

Then in order to get any element of RK5 , we multiply each element of RK4 by α(5, 1)α(5, 2)α(5, 3)α(5, 4) and
label the added vertex v5 with the element α(5, 1)α(5, 2)α(5, 3)α(5, 4) ∈ R.

Then any element of RK5 will be of the form:

pK5 =

⎡⎢⎢⎢⎢⎣
0

α(1, 2)α(1, 3)⟨α(4, 1)α(4, 2)α(4, 3)⟩⟨α(5, 1)α(5, 2)α(5, 3)α(5, 4)⟩
(α(1, 2) + α(2, 3))α(1, 3)⟨α(4, 1) . . . α(4, 3)⟩⟨α(5, 1)α(5, 2)α(5, 3)α(5, 4)⟩

⟨α(4, 1)α(4, 2)α(4, 3)⟩⟨α(5, 1)α(5, 2)α(5, 3)α(5, 4)⟩
⟨α(5, 1)α(5, 2)α(5, 3)α(5, 4)⟩

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
pv1
pv2
pv3
pv4
pv5

⎤⎥⎥⎥⎥⎦
Now, we give the algorithm for writing the generalized spline for complete graph Kn , for any n.

3.1.3. Theorem
We obtain the complete graph Kn by adding the nth vertex vn and the edges (vn , v1 ), (vn , v2 ), . . . , (vn , vn−1 )

to the complete graph Kn−1. Labeling the new edges with the ideals A(n, 1), A(n, 2), . . . , A(n, n − 1), we get the
generalized spline ring RKn , with the elements of the type:

pKn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
α(1, 2)α(1, 3)⟨N4⟩ . . . ⟨Nn⟩

(α(1, 2) + α(2, 3))α(1, 3)⟨N4⟩ . . . ⟨Nn⟩

⟨N4⟩ . . . ⟨Nn⟩

⟨N5⟩ . . . ⟨Nn⟩

...

...

...

⟨Nn⟩

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pv1
pv2
pv3
pv4
pv5
...
...
...

pvn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Here, the notations N4, N5, . . . , Nn are as follows:

N4 = α(4, 1)α(4, 2)α(4, 3)
N5 = α(5, 1)α(5, 2)α(5, 3)α(5, 4)
...
...
...

Nn = α(n, 1)α(n, 2) . . . α(n, n − 1)
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Proof. We use mathematical induction to prove the algorithm. Let the number of vertices in Kn be n. For n = 3,

K3 is a cycle graph and it has already been proved in [11] that a generalized spline on K3 is of the form:

pK3 =

⎡⎣ 0
α(1, 2)α(1, 3)

(α(1, 2) + α(2, 3))α(1, 3)

⎤⎦ =

⎡⎣pv1
pv2
pv3

⎤⎦
As discussed before, we get the generalized spline pK4 for the complete graph K4 by adding one vertex and

three edges to K3. The ring of generalized splines RK4 will have elements of the type:

pK4 =

⎡⎢⎢⎣
0

α(1, 2)α(1, 3)⟨α(4, 1)α(4, 2)α(4, 3)⟩
(α(1, 2) + α(2, 3))α(1, 3)⟨α(4, 1)α(4, 2)α(4, 3)⟩

⟨α(4, 1)α(4, 2)α(4, 3)⟩

⎤⎥⎥⎦ =

⎡⎢⎢⎣
pv1
pv2
pv3
pv4

⎤⎥⎥⎦
Clearly, the difference pvi − pv j of adjacent vertices vi and v j is a multiple of α(i, j) ∈ A(i, j), where A(i, j)

is the edge label for the edge joining vi and v j . We conclude that pK4 satisfies the edge condition for generalized

spline over the graph K4.

Inductive step: Assume that there exists a generalized spline pKn−1 for the complete graph Kn−1. Then we have

generalized spline pKn−1 defined as:

pKn−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
α(1, 2)α(1, 3)⟨N4⟩ . . . ⟨Nn−1⟩

(α(1, 2) + α(2, 3))α(1, 3)⟨N4⟩ . . . ⟨Nn−1⟩

⟨N4⟩ . . . ⟨Nn−1⟩

⟨N5⟩ . . . ⟨Nn−1⟩

...

...

...

⟨Nn−1⟩

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pv1
pv2
pv3
pv4
pv5
...
...
...

pvn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where N4, N5, . . . , Nn−1 are defined as:

N4 = α(4, 1)α(4, 2)α(4, 3)
N5 = α(5, 1)α(5, 2)α(5, 3)α(5, 4)
...
...
...

Nn−1 = α(n − 1, 1)α(n − 1, 2) . . . α(n − 1, n − 2)

Let the vertex ‘vn’ and the new edges joining the vertex vn to the remaining (n − 1) vertices be added to Kn−1

to obtain the complete graph Kn . Let the edge labels of the newly added edges be the ideals A(n, 1), A(n, 2), . . . ,

A(n, n − 1) of the ring R.

Taking the nth vertex label as pvn = α(n, 1)α(n, 2)....α(n, n − 1) = Nn , where α(n, j) ∈ A(n, j), for j =

1, 2, . . . ., n − 1 and multiplying each vertex label of the generalized spline for Kn−1 by Nn , we get the generalized
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spline pKn for Kn as:

pKn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
α(1, 2)α(1, 3)⟨N4⟩⟨N5⟩ . . . ⟨Nn⟩

(α(1, 2) + α(2, 3))α(1, 3)⟨N4⟩⟨N5⟩ . . . ⟨Nn⟩

⟨N4⟩⟨N5⟩ . . . ⟨Nn⟩

⟨N5⟩⟨N6⟩ . . . ⟨Nn⟩

...

...

...

⟨Nn⟩

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where Nn = α(n, 1)α(n, 2) . . . α(n, n − 1) is the vertex label for the new vertex vn .

Here we can see the difference between the vertex labels of the vertices vn and any of the remaining n − 1
vertices of Kn−1 is a multiple of α(n, j) ∈ A(n, j), for j = 1, 2, . . . ., n − 1.

Hence, we conclude that pKn satisfies the edge conditions for the generalized spline for Kn .

3.1.4. Python code for Kn

The Python code is given as

1 i m p o r t numpy as np
2 K3 = np . a r r a y ( [ ’ 0 ’ , ”A{1 , 2 } ∗A{1 , 3 } ” , ” (A{1 , 2 }+A{ 2 , 3 } ∗ (A{ 1 , 3 } ) ” ] )
3 d e f g e n e r a t e Kn ( n ) :
4 i f n<=3 :
5 r e t u r n K3
6 e l s e :
7 ans = K3
8 f o r i i n r a n g e ( 4 , n +1) :
9 j = np . h s t a c k ( [ ans , ” ” ] )

10 s y m b o l a r r = l i s t ( )
11 a = ” ”
12 f o r k i n r a n g e ( 1 , i ) :
13 a = a +”A{ ”+ s t r ( i ) +” , ”+ s t r ( k ) +” } ”
14 ans = [ ]
15 f o r x i n j :
16 i f x ! = ’ 0 ’ :
17 ans . append ( x+ ’∗ ’+a )
18 e l s e :
19 ans . append ( x )
20 r e t u r n ans
21 g e n e r a t e K n ( )

Listing 1: Python code for Kn

Next we discuss the complete bipartite graphs.

3.2. Complete bipartite graphs (Kn1,n2 )

Let Kn1,n2 (V1, V2, E) be a complete bipartite graph with vertices partitioned into two disjoint sets V1 and V2,
consisting of n1 and n2 vertices respectively. Let R be a commutative ring with unity which is an integral domain
and let S denote the set of all non-zero ideals of R.

We now extend our method to develop an algorithm for the elements of the generalized spline ring RKn1,n2
, for

the complete bipartite graph Kn1,n2 . We consider the simple cases for n1, n2 = 1, 2 and 3. The vertices are ordered
in the clockwise sense, starting with the first left hand side vertex in the set V1 as the initial vertex.
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Fig. 7. Generalized splines onK1,2 and K2,1.

3.2.1. Complete bipartite graph K1,2 or K2,1
It can be easily seen that p constructed in each of the following situations is a generalized spline since the edge

conditions are satisfied by the vertex labels of the adjacent vertices (see Fig. 7).

pK1,2 =

⎡⎣ 0
α(1, 2)
α(1, 3)

⎤⎦ =

⎡⎣pv1
pv2
pv3

⎤⎦

pK2,1 =

⎡⎣ 0
α(1, 2)α(2, 3)

0

⎤⎦ =

⎡⎣pv1
pv2
pv3

⎤⎦
Here the spline pK1,2 is nontrivial since α(1,2) and α(1,3) are non-zero and also the spline pK2,1 is nontrivial

since R is an integral domain.

3.2.2. Complete bipartite graph K2,2
With the clockwise ordering of the vertices, we have the generalized spline for the complete bipartite graph K2,2

as follows (see Fig. 8):

pK2,2 =

⎡⎢⎢⎣
0

α(1, 2)⟨α(4, 2)α(4, 3)⟩
α(1, 3)⟨α(4, 2)α(4, 3)⟩

0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
pv1
pv2
pv3
pv4

⎤⎥⎥⎦
Also, since K1,2 or K2,1 is a sub graph of K2,2 and RK1,2 , RK2,1 contain nontrivial generalized splines (refer Sections
2.2.2, 2.2.3) RK2,2 also contains nontrivial generalized splines. It can be easily seen that the edge conditions are
satisfied by the vertex labels of the adjacent vertices.

Fig. 8. Generalized spline on K2,2.
Now we give the generalized spline for the complete bipartite graph K3,3 as follows (Fig. 9):
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Fig. 9. Generalized spline on K3,3.

3.3. Complete bipartite graph K3,3

We define N5 and N6 as

N5 = α(5, 2)α(5, 3)α(5, 4)

N6 = α(6, 2)α(6, 3)α(6, 4)

pK3,3 =

⎡⎢⎢⎢⎢⎢⎢⎣
0

α(1, 2)⟨N5⟩⟨N6⟩

α(1, 3)⟨N5⟩⟨N6⟩

α(1, 4)⟨N5⟩⟨N6⟩

0
0

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
pv1
pv2
pv3
pv4
pv5
pv6

⎤⎥⎥⎥⎥⎥⎥⎦
Next, we consider the general case of complete bipartite graph, where the vertex sets V1 and V2 contain n1 and n2

vertices respectively (see Fig. 10). Here we introduce the notation

Nn2+i = α(n2 + i, 2)α(n2 + i, 3) . . . α(n2 + i, n2 + 1) for i = 2, 3, . . . , n1

3.3.1. Theorem

Let Kn1,n2 be a complete bipartite graph with vertices partitioned into two disjoint sets V1 and V2, consisting of

n1 and n2 vertices respectively (Fig. 10). Then, ordering the vertices in clockwise sense as before, the following
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pKn1,n2
gives a generalized spline for the complete bipartite graph Kn1,n2 .

pKn1,n2
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
α(1, 2)⟨N(n2+2)⟩⟨N(n2+3)⟩ . . . ⟨N(n2+n1)⟩

α(1, 3)⟨N(n2+2)⟩⟨N(n2+3)⟩ . . . ⟨N(n2+n1)⟩

...

...

α(1, n2 + 1)⟨N(n2+2)⟩⟨N(n2+3)⟩ . . . ⟨N(n2+n1)⟩

0
...
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pv1
pv2
pv3
...
...

pvn2+1
...
...
...

pvn2+n1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where Nn2+i = α(n2 + i, 2) α(n2 + i, 3) . . . α(n2 + i, n2 + 1), for i = 2,3, . . ., n1.

Proof. The proof of the above theorem follows from the observation that the difference of the vertex labels of

adjacent vertices is a multiple of the elements belonging to the corresponding edge ideals. However, we note that

the algorithm for generating a generalized spline for any complete bipartite graph holds only for the particular

ordering of the vertices in the clockwise sense.

Here Nn2+i = α(n2 + i, 2) α(n2 + i, 3) . . . α(n2 + i, n2 + 1),for i = 2, 3, . . . , n1 is non-zero since R is an integral

domain. Also since Kn1−1,n2−1 is sub graph of Kn1,n2 and RKn1−1,n2−1 contains nontrivial generalized splines, RKn1,n2

also contains nontrivial generalized splines.

Fig. 10. Generalized spline on Kn1,n2 .
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Here we give the software code for the above algorithm using Python. Using this we can obtain generalized
spline pKn1,n2

for Kn1,n2 , for any value of n1, n2. Here we have used the notation A(i, j) for the ideal as well as
for the elements of the ideal.

3.4. Python code for Kn1,n2

1 i m p o r t numpy as np
2 n1 = i n t ( i n p u t ( ’ E n t e r n1 ’ ) )
3 n2 = i n t ( i n p u t ( ’ E n t e r n2 ’ ) )
4 L1 = [ ]
5 f o r i i n r a n g e ( 0 , n1+n2 , 1 ) :
6 i f i < n2 +1:
7 i f i == 0 :
8 L1 . append ( s t r ( 0 ) )
9 e l s e :

10 L1 . append ( ”A{ ”+ s t r ( 1 ) + ’ , ’+ s t r ( i +1)+” } ” )
11 L1 = np . a r r a y ( L1 )
12 L1 = L1 . r e s h a p e ( −1 ,1)
13 E n t e r n1
14 E n t e r n2
15 RL = [ ]
16 L = [ ]
17 f o r i i n r a n g e ( 2 , n1 +1) :
18 f o r j i n r a n g e ( 0 , n2 , 1 ) :
19 L . append ( ”A{ ’+ s t r ( n2+ i ) + ’ , ”+ s t r ( j +2)+” } ” )
20 RL . append ( L )
21 L= [ ]
22 p r i n t ( L1 , ’∗ ’ ,RL)

Listing 2: Python code for Kn1,n2

In the following section, we give the method of writing the generalized spline for the n-dimensional hypercube
Qn .
3.5. Hypercubes

Before constructing the generalized splines for the n-dimensional hypercube Qn , we discuss about the Gray
code, which was given by Frank Gray in 1947 to prevent the spurious output from electro-chemical switches. In
the present time, they are widely used for error correction in digital communications. The Gray code is an n-bit
code which is an ordering of the 2n strings of length n over {0, 1}, such that every pair of successive strings differ
in exactly one position. For example a 2-bit Gray code is 00, 01, 11, 10 and a 3-bit Gray code is 000, 001, 101,
111, 011, 010,110, 100. These Gray codes exist for all n [16].

Here we discuss about the n-dimensional hypercube Qn , which is a regular graph with 2n vertices, where each
vertex corresponds to a binary string of length n[17] . Two vertices labeled by strings x and y are joined by an
edge if x can be obtained from y by changing a single bit. The hypercubes for n = 1,2,3 are shown in Fig. 11.

Interestingly, the existence of one dimensional Gray code is related to a basic property of the n-dimensional
hypercube Qn , which says that for every integer n ≥ 2, Qn has a Hamiltonian cycle. Here, the term Hamiltonian
cycle means a cycle in a graph G that contains all the vertices exactly once in G [14]. Fig. 12 expresses the
Hamiltonian property of Q2 and Q3.

We define an ordering of the vertices of the hypercube in the same way as they appear in the Hamiltonian cycle.
Thus, we number the vertices 1, 2, 3, . . . , 2n as shown in Fig. 12, with the vertices 2,4,8. . . expressed as 2, 22,
23, . . . . 2n and call this the Hamiltonian ordering. This helps us in identifying pattern in which the non-zero vertex
labels appear in the generalized spline for the n-dimensional hypercube. Also, hypercubes are regular graphs with
degree of each vertex equal to n. Another important property of hypercubes which we have used in the construction
of generalized splines is the bipartite nature of these graphs [13]. This means that the vertex set of hypercube can
be partitioned into two subsets V1 and V2 such that

1. No vertices of either of the subsets V1 and V2 are adjacent to vertices within the same set.
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Fig. 11. Hypercubes Q1, Q2 and Q3.

Fig. 12. Hamiltonicity of hypercubes Q2 and Q3.

2. Every vertex in V1 is adjacent to exactly n vertices V2 and vice versa.

We give the bipartite representation of the hypercubes for n = 2 and n = 3 (Fig. 13).

3.5.1. Generalized spline for the hypercube Q2

In this section we construct generalized spline for the graph Q2 over R which is a commutative ring with identity
and also an integral domain. The edges of Q2 are labeled with non-zero ideals of R. The vertices are ordered in
the way they appear in Hamiltonian cycle (Fig. 12).

Then it can be easily verified that a generalized spline for Q2 is given by:

pQ2 =

⎡⎢⎢⎣
0

α01,00α01,11
0

α10,00α10,11

⎤⎥⎥⎦ =

⎡⎢⎢⎣
pv00
pv01
pv11
pv10

⎤⎥⎥⎦ =

⎡⎢⎢⎣
pv1
pv2
pv3
pv22

⎤⎥⎥⎦
Here we have used similar notations in previous sections, i.e., αi j,rs , (for i, j, r, s = 0 or 1) denote an element

of the edge ideal associated with the edge joining the vertices vi j and vrs . Interestingly, we note that the non-zero
vertex labels in pQ2 appear for the vertices 2 and 22. Next, we construct the generalized spline for Q3.
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Fig. 13. Bipartite structure of Hypercubes Q2 and Q3.

3.6. Generalized splines for the hypercube (Q3)

To construct the generalized splines for the hypercube Q3, we refer to the bipartite structure and Hamiltonian

ordering of Q3 (Figs. 12 and 13). Then it can be easily verified that a generalized spline for Q3 is given by:

pQ3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
α001,000α001,011α001,101

0
α010,000α010,011α010,110

0
0
0

α100,000α100,101α100,110

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pv000
pv001
pv011
pv010
pv110
pv111
pv101
pv100

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pv1
pv2
pv3
pv22

pv5
pv6
pv7

pv23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The vertices of Q3 are vi1i2i3 where (i1, i2, i3) is a binary string of length 3 and two vertices are adjacent if their

respective strings differ only at one position. Also, we see that, the Hamiltonian cycle in Q3 is one in which the

vertices follow a 3-bit gray code 000, 001, 011, 010, 110, 111, 101, 100. We again give the Hamiltonian ordering

to the vertices in Q3 by numbering the vertices 000, . . . ,100 as 1,2, . . . ,8.
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Constructing the generalized spline for Q3 starts with labeling the vertex v000 as 0. Now, the vertices adjacent

to v000 are v100, v010 and v001, which are numbered as 2, 22, 23 according to Hamiltonian ordering of the vertices.

We see that these are the only vertices which are labeled with non-zero elements in pQ3 . Also the vertex labels of

these vertices are obtained by taking the product of the elements belonging to the edge ideals corresponding to the

three edges which are adjacent to these vertices.

It can be verified that with these vertex labelings, pQ3 becomes a generalized spline for the hypercube Q3,

because the edge conditions are satisfied by the vertex labels of adjacent vertices.

We can extend the above method of writing the generalized spline to higher dimensional hypercubes.

3.6.1. Generalized spline for the hypercube (Q4)

The graph of 4-dimensional hypercube Q4 is in Fig. 14.

The bipartite structure and Hamiltonian path of the hypercube Q4 are as follows (see Fig. 15):

For Q4 we have the first vertex as v0000 which is adjacent to the vertices v0001, v0010, v0100 and v1000. Using the

bipartite structure of Q4 and Hamiltonian ordering, we get the generalized spline for Q4 as follows:

pQ4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
α0001,0000α0001,0011α0001,0101α0001,1001

0
α0010,0000α0010,0011α0010,0110α0010,1010

0
0
0

α0100,0000α0100,0101α0100,0110α0100,1100
0
0
0
0
0
0
0

α1000,0000α0100,1001α1000,1010α1000,1100

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pv0000
pv0001
pv0011
pv0010
pv0110
pv0111
pv0101
pv0100
pv1100
pv1101
pv1111
pv1110
pv1010
pv1011
pv1001
pv1000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pv1
pv2
pv3
pv22

pv5
pv6
pv7

pv23

pv9
pv10
pv11
pv12
pv13
pv14
pv15
pv24

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Once again, we see that the non-zero vertex labels appear only for the vertices numbered as 2, 22, 23 and

24. These are the vertices adjacent to the vertex 1 in the Hamiltonian ordering of the vertex v0000 in the bipartite

structure. Also, the non-zero vertex labels are obtained by taking the product of the four elements of the edge ideals

corresponding to the four edges which are incident to the respective vertices. Thus, the vertex v0001 is labeled with

the product of the four elements α0001,0000α0001,0011α0001,0101α0001,1001, because it is adjacent to the vertices v0000,

v0011, v0101 and v1001.
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Fig. 14. Graph of Hypercube Q4.

Fig. 15. Bipartite structure and Hamiltonicity of Hypercube Q4.

This gives us an algorithm for writing the generalized spline for the edge labeled n-dimensional hypercube Qn ,

for any n.
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3.7. Theorem

Let Qn be an n-regular hypercube with the vertices partitioned into two disjoint subsets V1 and V2, containing
2n−1 vertices each. We introduce the Hamiltonian ordering for the vertices of Qn so that the vertices are numbered
as 1, 2, 3, 22, . . . , 2n . Let the first vertex be v00...0 in V1 and adjacent vertices v0...01, v0...010, v0...100, . . . v10...0 in V2
which are numbered as 2, 22, 23, . . . , 2n . The vertex labels corresponding to the generalized spline pQn defined for
Qn are as follows:

1. The vertex v00...0 is labeled with the element 0 ∈ R, i.e, pv0...0 = 0.
2. The vertex v0...01 which is adjacent to v0...0 is labeled as pv0...01 and is equal to the product of the n elements

belonging to the edge ideals associated with the n edges adjacent to v00...01.

Then,

pv00...01 = α0...01,0...00α00...01,0...011α00...01,0...0101 . . . α00...01,10...01

Similarly the vertex v00...10 is labeled as pv0...10 associated with the n edges adjacent to the vertex v00...010. Then,
pv00...010 = α0...10,0...00α00...10,0...011α00...10,0...0110. . . α00...10,10...010 and so on.
These are the only vertices with non-zero vertex labels where each vertex label is a product of n elements

belonging to n edge ideals and the remaining vertices are labeled as zero.
It can be easily verified that pQn is a generalized spline on the hypercube Qn as the edge conditions are satisfied

for the adjacent vertices and also, pQn is nontrivial since R is an integral domain.

4. Conclusions

We conclude our work by developing an algorithm to construct the generalized spline rings for the special graphs
such as the complete graphs, complete bipartite graphs and hypercubes. These graphs find important applications in
network and approximation theory and the present work adds to the existing knowledge and understanding in these
and related areas. Also, it opens a vast field for research as we can think of studying the generalized splines over
these and other graphs by changing the base rings to other rings such as the polynomial rings and ring of Laurent
polynomials. As these rings are PIDs, we can also try to find suitable bases for the generalized splines for these
graphs.

5. List of abbreviations

The following are the list of abbreviations used in this paper:
1. CAGD: Computer-Aided Geometric Design
2. PID: Principal Ideal Domain
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