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Abstract

In this paper, we study graphs which possess an independent point-set dominating set (in short, ipsd-set). We call such a
graph as an ipsd-graph. We first provide general structural characterization of separable ipsd-graphs and thereafter, in our quest
to characterize such graphs, we establish that girth of an ipsd-graph is at most 5. We further characterize ipsd-graphs with
girth 5 and C5-free ipsd-graphs of girth 4. Then, we exhibit a class of ipsd-graphs with girth g(G) = 4 containing C5 as an
induced subgraph and in the process, we introduce a new graph equivalence relation termed as duplicated equivalence.

Keywords: Domination; Point-set domination; Independent set; Equivalence relation; Duplicated equivalent

1. Introduction

For standard terminology and notation in graph theory, as also for pictorial representations of graphs, we refer
the standard text-books such as F. Harary [1] and Chartrand [2]. For domination related concepts we refer the book
by Haynes et al. [3,4]. Further, unless mentioned otherwise, graphs will be assumed to be finite and connected.

For any given graph G = (V, E), we will denote the vertex set of G by V (G) (or simply V ) and edge set of
G by E(G) (or E). The neighborhood of a vertex v in a graph G, denoted by NG(v), is the set of all vertices in
G adjacent with the vertex v. The set NG(v) ∪ {v} is the closed neighborhood of vertex v in G and is denoted by
NG[v]. The distance dG(u, v) between two vertices u and v of graph G is the length of shortest path joining them.
The diameter of G is given by diam(G) = max{d(u, v) : u, v ∈ V }. A cycle of length n will be called an n-cycle.
If G is a separable graph, then the set of all non-trivial blocks of G will be denoted by BG .

E. Sampathkumar and Pushpa Latha [5] in 1993 defined a set D ⊆ V to be a point-set dominating set (or in
short psd-set) of graph G if for every non-empty subset S of V \ D there exists a vertex v ∈ D such that the induced
subgraph ⟨S ∪ {v}⟩ is connected. This definition can be seen as a natural extension of the concept of domination
(cf. [3,4]) by using the interpretation that a subset D of the vertex set V of G is a dominating set if and only if
for every singleton subset {s} of V \ D, there exists a vertex d in D such that the induced subgraph ⟨{s} ∪ {d}⟩ is
connected.

Peer review under responsibility of Kalasalingam University.
∗ Corresponding author.

E-mail addresses: purnimachandni1@gmail.com (P. Gupta), 09alka01@gmail.com (A. Goyal), rjain@maths.du.ac.in (R. Jain).
1 Second author is thankful to Indian organization CSIR-UGC for providing research grant to carry out the research.

https://doi.org/10.1016/j.akcej.2019.08.001

https://doi.org/10.1016/j.akcej.2019.08.001

© 2018 Kalasalingam University. Published with license by Taylor & Francis Group, LLC
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS
2020, VOL. 17, NO. 1, 229–241

http://www.elsevier.com/locate/akcej
https://doi.org/10.1016/j.akcej.2019.08.001
http://www.elsevier.com/locate/akcej
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:purnimachandni1@gmail.com
mailto:09alka01@gmail.com
mailto:rjain@maths.du.ac.in
https://doi.org/10.1016/j.akcej.2019.08.001
http://creativecommons.org/licenses/by-nc-nd/4.0/


Please cite this article as: P. Gupta, A. Goyal and R. Jain, Independent point-set dominating sets in graphs, AKCE International Journal of Graphs and Combinatorics (2019),
https://doi.org/10.1016/j.akcej.2019.08.001.

Though point-set domination as a concept was introduced purely from theoretical interest, it can be applied to
many real life situations. One such real life context where the notion of point-set domination can be noticed is
discussed in [6] when a set (D) of supervisors amongst the employees in a business organization (V ) is needed to
be identified so that each group (W ) of workers amongst the rest (V \ D) forms a task group under the leadership
of at least one of the supervisors (say u) irrespective of hierarchical relationships (adjacencies) existing within the
group of workers—the task group so formed may be visualized as the set W ∪{u}. Obviously, this task group needs
to be connected in order that each individual in the group be “relevant” in relation to others in the group towards
its collective performance of the task(s).

Another motivation to study point-set domination is discussed in [7] which is inspired from the facility location
application of domination (cf. [3]), where we want that for any chosen area (set of vertices) there should exist a
station providing facility for the whole area.

Definition 1.1. A subset D of the vertex set V of graph G is a point-set dominating set (or in short psd-set) of
graph G if for every non-empty subset S of V \ D there exists a vertex v ∈ D such that the induced subgraph
⟨S ∪ {v}⟩ is connected.

Definition 1.2 ([8]). A set I in a graph G is an independent set if ⟨I ⟩ is totally disconnected. The independence
number α(G) of G is the maximum cardinality among all independent sets of G.

Note that some authors use β0(G) (cf. [9]) instead of α(G) to represent independence number.

Definition 1.3. A set D in a graph G is an independent point-set dominating set (or in short an ipsd-set) of graph
G if D is independent and point-set dominating set of G.

In domination theory, by a well known result of Berge [10], every maximal independent set in a graph G is
an independent dominating set of G. Hence every finite graph has an independent dominating set. However, as
noted in [5,6], a graph may or may not possess an independent point-set dominating set. Thus the study of graphs
possessing an ipsd-set is an important problem in the theory of point-set domination in graphs.

Definition 1.4. A graph is said to be an ipsd-graph if it has an independent point-set dominating set (or psd-set),
otherwise it will be referred to as a non-ipsd graph.

In [5], it was proved that there does not exist any independent psd-set in a graph with diameter greater than or
equal to 5.

Proposition 1.5 ([5]). If a connected graph G possesses an independent psd-set, then its diameter does not exceed
4.

However, the condition is not sufficient and the cycle C6 is such an example. The diameter of the cycle C6 is
3 and yet it does not possess an ipsd-set. Thus it is interesting to characterize graphs having independent psd-sets.
The following are some useful results on ipsd-graphs.

Proposition 1.6 ([5]). Let D be a psd-set of a graph G and u, v ∈ V \ D. Then d(u, v) ≤ 2.

Proposition 1.7 ([6]). A graph G has an independent psd-set if there exists a vertex u ∈ V (G) such that V (G)\N (u)
is independent.

Proposition 1.8 ([6]). If G is a separable ipsd-graph and D is an ipsd-set of G such that V \ D ⊈ B for every
B ∈ BG , then there exists a cut vertex u ∈ V (G) such that V \ D = N (w). In particular, in this case V \ N (w) is
independent.

Theorem 1.9 ([6]). A tree T has an independent psd-set if and only if diam(T ) ≤ 4.

Theorem 1.10 ([6,11]). Every independent point-set dominating set of a graph G is a minimal point-set dominating
set.
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Acharya and Gupta [6,12] made an extensive study on the problem of determining graphs which possess an
independent psd-set (or an ipsd-set). In particular, they studied structure of separable graphs admitting ipsd-sets by
classifying the set Di ps(G) of all independent psd-sets of a separable graph G into three classes as follows:

Di ps(G; X ) = {D ∈ Di ps(G) : ∃ B ∈ BG with V \ D ⊊ V (B)}
Di ps(G; Y ) = {D ∈ Di ps(G) : ∃ B ∈ BG with V \ D = V (B)}
Di ps(G; Z ) = {D ∈ Di ps(G) : V \ D contains vertices of different blocks}.

For a separable graph G, if D ∈ Di ps(G; X ) and B ∈ BG is such that V \ D ⊊ V (B), then in [13], it was noted
that V (B) ∩ D may or may not be an ipsd-set of B. On this basis, the set Di ps(G; X ) was further partitioned into
two subclasses:

Di ps(G; X1) := {D ∈ Di ps(G; X ) : V (B) ∩ D is an ipsd-set of B};

Di ps(G; X2) := {D ∈ Di ps(G; X ) : V (B) ∩ D is not an ipsd-set of B}.

Thus

Di ps(G) = Di ps(G; X1) ∪ Di ps(G; X2) ∪ Di ps(G; Y ) ∪ Di ps(G; Z ).

Acharya and Gupta then obtained structural characterization of separable graphs admitting ipsd-set of each type
separately.

Theorem 1.11 ([6]). For any separable graph G with |BG | ≥ 1, Di ps(G; X1) ̸= ∅ if and only if |BG | = 1 and if
BG = {B}, then

1: B has independent psd-set F and
2: V (G) \ V (B) consists of pendant vertices with their supports lying in V (B) \ F.

Theorem 1.12 ([6]). For any separable graph G, Di ps(G; X2) ̸= ∅ if and only if |BG | = 1 and if BG = {B}, then
V (B) can be partitioned into three non-empty subsets V1, V2 and V3 satisfying following properties:

1: ⟨V1⟩ is complete and for each x ∈ V1 one has N (x)∩V2 = V2, N (x)∩V3 = ∅ and N (x)∩(V (G)\V (B)) ̸= ∅;
2: V3 is an independent psd-set of ⟨V2 ∪ V3⟩ and
3: V (G) \ V (B) consists of pendant vertices with their supports lying in the set V (B) \ V3 = V1 ∪ V2.

Theorem 1.13 ([6]). For any separable graph G, Di ps(G; Y ) ̸= ∅ if and only if |BG | = 1 and if BG = {B}, then

1: ⟨V (B)⟩ is complete and ;
2: for each x ∈ V (B), N (x) ∩ (V (G) \ V (B)) ̸= ∅ and consists of pendant vertices only.

Theorem 1.14 ([6]). For any separable graph G with |BG | ≥ 1, Di ps(G; Z ) ̸= ∅ if and only if there exists a cut
vertex w in G such that

1: d(w, V (G)) ≤ 2,
2: V (B) \ N (w) is an ipsd-set of B for every B ∈ BG and
3: if |BG | ≥ 2, then

⋂
B∈BG

V (B) = {w}.

These theorems provide structural information of separable graphs possessing ipsd-sets. But, in general, the
problem of characterizing graphs containing independent psd-sets is still open. In fact, it was noted by Acharya and
Gupta in [6] that characterizing an ipsd-graph containing a triangle and/or pentagon is one of the most important
unsolved problems in this area of the theory of domination in graphs.

Further, since any graph G can be embedded as an induced subgraph into a graph containing independent psd-sets
by adding a new vertex in G adjacent to all the vertices of G, it is not possible to obtain a necessary and sufficient
condition involving forbidden subgraphs that characterizes graphs containing an independent psd-set.

In this paper, we extend the work done by Acharya et al. in [6,11–17] on point-set domination, in particular, the
work in [6] by focusing on the girth and circumference of ipsd-graphs.

The following observations on the distance of vertices in an ipsd-graph will be useful for further study on
ipsd-graphs.
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Observation 1.15. Let D be an ipsd-set of a graph G and u, v ∈ V (G) be any two vertices.

(a) If u, v ∈ V \ D, then d(u, v) ≤ 2.

(b) If d(u, v) = 3, then at least one of u and v is in D.

(c) If d(u, v) = 4, then both u and v are in D.

(d) If M = {u ∈ V (G) : d(u, v) = 4 for some v ∈ V (G)}, then M ⊆ D.

Since our focus is on girths of ipsd-graphs, the following result due to Min-Jen Jou [8] will be helpful.

Theorem 1.16 ([8]). For cycle Cn with n ≥ 3,

α(Cn) = ⌊
n
2
⌋.

2. General results on IPSD graphs

In this section, we proceed with our investigation on graphs possessing an independent point-set dominating set
(in short, ipsd-set). We first provide general structural characterization of separable ipsd-graphs.

Theorem 2.1. Let G be a separable graph with |BG | ≥ 1. Then G is an ipsd-graph if and only if exactly one of
the following two conditions hold:

(i) |BG | = 1 and if BG = {B}, then one of the following holds

(a) B has an ipsd-set F and V (G)\V (B) consists of pendant vertices with their supports lying in V (B)\F
(b) there exists a cut vertex w in G such that V (B) \ N (w) is an ipsd-set of B and V (G) = N (N [w]).

(ii) |BG | ≥ 2 and there exists a cut vertex w in G such that

(a) ∩B∈BG V (B) = {w},
(b) V (G) = N (N [w]) and
(c) V (B) \ N (w) is an ipsd-set of B for every B ∈ BG .

Proof. Let G be an ipsd-graph and D be an ipsd-set of G. We have three cases:
Case I. V \ D ⊊ B for some B ∈ BG .

Then |BG | = 1 and D ∈ Di ps(G; X ). If D ∈ Di ps(G; X1), then condition (i)(a) follows from Theorem 1.11 and
we are done.

If D ∈ Di ps(G; X2), then BG = {B} and V (B) can be partitioned into three non-empty subsets V1, V2 and V3

satisfying the conditions of Theorem 1.12. Then any vertex w ∈ V1 is a cut vertex in G and satisfies (i) (b).
Case II. V \ D = B for some B ∈ BG .

Then D ∈ Di ps(G; Y ). From Theorem 1.13, BG = {B} and

A ⟨V (B)⟩ is complete and ;
B for each x ∈ V (B), N (x) ∩ (V (G) \ V (B)) ̸= ∅ and consists of pendant vertices only.

Then it is easy to see that any vertex w ∈ V (B), satisfies the condition (i)(b).
Case III. V \ D contains vertices of different blocks.

Then D ∈ Di ps(G; Z ). From Theorem 1.14, if |BG | = 1, then (i)(b) is satisfied and if |BG | ≥ 2 (ii) is satisfied.
Conversely, suppose either condition (i) or (ii) holds. If (i)(a) is satisfied, then F ∪ (V (G) \ V (B)) forms an

ipsd-set of G. If (i)(b) or (ii) is satisfied, then V (G) \ N (w) forms an ipsd-set of G. Thus in either case G is an
ipsd-graph. □

Next is an immediate but important consequence of the above theorem.

Corollary 2.2. If G is an ipsd separable graph, then every block of G is an ipsd-block.

Proof. Follows immediately from Theorem 2.1(b). □
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Fig. 1. Ipsd-graphs G1 and G2.

Fig. 2. Non-ipsd graph of girth 3.

Another interesting result can be derived for triangle free separable ipsd-graphs having at least two non-trivial
blocks from Theorem 2.1.

Corollary 2.3. If G is a triangle free ipsd separable graph with |BG | ≥ 2, then G is C5-free.

Proof. Since |BG | ≥ 2, by Theorem 2.1, there exists a cut vertex w such that V (G) \ N (w) is an independent
set in G. Suppose G is not C5-free graph, then there exists B∗

∈ BG such that C5 is an induced subgraph of
B∗. As G is triangle free, there exist adjacent vertices u1, u2 ∈ V (B∗) such that d(ui , w) ≥ 2 for i = 1, 2. Then
u1, u2 ∈ V (G) \ N (w), a contradiction to the fact that V (G) \ N (w) is an independent set. Thus G is C5-free. □

It is important to note that neither of the conditions i.e., being triangle free or having at least two non-trivial
blocks can be dropped, otherwise separable ipsd-graph might fail to be C5-free. For example the graphs G1 and
G2 in Fig. 1 are both ipsd-graphs but fail to be C5-free. The graph G1 is triangle free but have a unique non-trivial
block. While the graph G2 has two non-trivial blocks but has C3 as a subgraph.

Next, we proceed to prove that girth of an ipsd-graph is less than or equal to 5.

Theorem 2.4. If G is an ipsd graph, then gir th(G) ≤ 5

Proof. Let G be an ipsd-graph such that gir th(G) = k ≥ 6 and D be an ipsd-set of G. Let C be any k-cycle in
G. From Theorem 1.16, α(C) = ⌊k/2⌋, it follows that |(V \ D) ∩ V (C)| ≥ 3. If |(V \ D) ∩ V (C)| ≥ 4, then there
exist vertices u, v ∈ (V \ D)∩ V (C) such that dC (u, v) ≥ 3. As D is an ipsd-set, there exists a vertex x ∈ D \ V (C)
such that {u, v} ⊆ N (x) But then we get a cycle in G of length less than or equal to ⌊k/2⌋ + 2, a contradiction to
minimality of C . Thus |(V \ D) ∩ V (C)| = 3. Consequently, |D ∩ V (C)| = 3, |V (C)| = 6 and (V \ D) ∩ V (C) is
an independent subset of V (C).

Since (V \ D) ∩ V (C) is independent, there exists x ′
∈ D \ V (C) such that (V \ D) ∩ V (C) ⊆ N (x ′). But then

⟨V (C) ∪ x ′
⟩ contains a 4-cycle, again a contradiction to the minimality of C . Hence our assumption is wrong and

gir th(G) ≤ 5. □

The condition in Theorem 2.4 is necessary but it is not sufficient. There exist graphs with girth less than or equal
to 5 that are not i psd graphs. In fact the graph in Fig. 2 is a graph with girth 3 and yet is not an ipsd graph.

This result provides a new direction to the problem of characterizing ipsd-graphs. As trees are already
characterized, the problem of characterizing ipsd-graphs narrows down to considering ipsd graphs of girth 3,4 and
5, which we tackle in the sections to follow.
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Fig. 3. Illustration of graphs SKn for n = 2, 3.

3. Classes of IPSD graphs

In this section, we characterize ipsd-graphs of girth 5 and thereafter, present few classes of ipsd-graphs of girth
3 and 4. We first introduce following definition and notations.

Definition 3.1 ([18]). To subdivide an edge e means to delete e, add a vertex x and then join x to the end vertices
of e (when e is a link, this amounts to replacing e by a path of length two). Any graph derived from a graph G by
a sequence of edge subdivisions is called a subdivision of G or a G-subdivision.

Notation 3.2. For any positive integer n ≥ 3, we denote by SKn , the graph obtained by subdividing each edge of
a hamiltonian cycle of complete graph Kn exactly once (see Fig. 3).

Theorem 3.3. A 2-connected graph G with girth 5 is an ipsd graph if and only if G is isomorphic to either C5
or SK4.

Proof. Let G(≇ C5) be an ipsd-graph and D be an ipsd set of G. Let C = (v1, v2, v3, v4, v5, v1) be a 5-cycle in
G. Since D is independent, |D ∩ V (C)| ≤ 2.

Claim 1. |D ∩ V (C)| = 2.
If |D ∩ V (C)| = 0, then for {v1, v3} ⊂ V \ D, there exists w ∈ D such that {v1, v3} ⊆ N (w). Hence

⟨{v1, v2, v3, w}⟩ contains 4-cycle, a contradiction. If |D ∩ V (C)| = 1, w.l.o.g we can assume that D ∩ V (C) = {v1},
then for the independent set {v2, v5} in V \ D there exists w′

∈ D such that {v2, v5} ⊆ N (w′). But, in that case,
⟨{v1, v2, w

′, v5}⟩ contains either C3 or C4, a contradiction. Thus |D ∩ V (C)| = 2. Let D ∩ V (C) = {v1, v4}.
Claim 2. d(v1) = d(v4) = 2.
Suppose d(v1) ≥ 3 or d(v4) ≥ 3. W.l.o.g assume that d(v1) ≥ 3. Then there exists z ∈ (N (v1) \ V (C)) ∩ (V \ D).

Since D is an ipsd-set, for the independent set {z, v3, v5} in V \ D, there exists w ∈ D such that {z, v3, v5} ⊆ N (w).
Then ⟨{w, v3, v4, v5}⟩ ∼= C4, a contradiction. Thus d(v1) = d(v4) = 2.

Consequently, since G ≇ C5, we must have D \ V (C) ̸= ∅ and (V \ D) \ V (C) ̸= ∅.
Claim 3. |D \ V (C)| = 2 and |(V \ D) \ V (C)| = 1.
First we show that d(v) = 2 for each v ∈ D \ V (C). Let, if possible, there exists x ∈ D \ V (C) such that

d(x) ≥ 3. As girth of G is 5 and v4 ∈ D, |N (x) ∩ N (v3)| = 1 and |N (x) ∩ N (v5)| = 1. Then it is easy to see that
there exists z∗

∈ N (x) such that {z∗, v3, v5} is an independent set. Since D is psd-set, there exists w∗
∈ D \ V (C)

such that {z∗, v3, v5} ⊆ N (w∗). Then ⟨{w∗, v3, v4, v5}⟩ ∼= C4, a contradiction. Thus d(v) = 2 for each v ∈ D\V (C).
Next we show that x ∈ N (v5) \ N ({v2, v3}) for all x ∈ (V \ D) \ V (C). Since g(G) = 5, x /∈ N (v2) ∩ N (v3).

W.l.o.g assume that x /∈ N (v3). Then there exists y ∈ D \ {v1, v4} such that {x, v3} ⊆ N (y). If x ∈ N (v2), then
⟨{x, v2, v3, y}⟩ ∼= C4, a contradiction. Thus x /∈ N (v2). If x /∈ N (v5), then there exists y∗

∈ D \ {v1, v4} such that
{x, v3, v5} ⊆ N (y∗). Therefore, d(y∗) ≥ 3, a contradiction. Thus x ∈ N (v5)\ N ({v2, v3}) for all x ∈ (V \ D)\ V (C).

Finally we proceed to prove our claim that |(V \ D) \ V (C)| = 1. Suppose on the contrary, there exist distinct
vertices x1, x2 ∈ (V \ D) \ V (C). Then x1, x2 ∈ N (v5) \ N ({v2, v3}). Obviously, x1 and x2 are not adjacent, for
otherwise, ⟨{x1, x2, v5}⟩ ∼= C3. Since D is a psd-set, there exists d ∈ D such that {x1, x2} ⊆ N (d). But in that case
⟨{x1, d, x2, v5}⟩ ∼= C4, a contradiction. Hence our assumption is wrong and |(V \ D) \ V (C)| = 1.

Let (V \ D) \ V (C) = {u}. Then u ∈ N (v5) \ N ({v2, v3}) and as D is an ipsd-set, there exist u1, u2 ∈ D such
that {u, v2} = N (u1) and {u, v3} = N (u2). Now to prove that |D \ V (C)| = 2, observe that for each set S ⊆ V \ D
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such that |S| = 2, there exists z ∈ {v1, v4, u1, u2} such that S ⊆ N (z). Thus to avoid a 4-cycle in G, we must have
D = {v1, v4, u1, u2}. Hence G = ⟨D ∪ (V \ D)⟩ ∼= SK4 and the necessity follows.

Conversely, suppose either G ∼= C5 or G ∼= SK4. If G ∼= C5, then any maximal independent set of G is an
ipsd-set. If G ∼= SK4, then the set consisting of all vertices of degree 2 in G is an ipsd-set of G. Thus in either
case graph G is an ipsd-graph. □

Remark 3.4. It is interesting to note that every α-set of C5 is an ipsd-set of C5, while in case of SK4, there is
unique ipsd-set consisting of all vertices of degree 2, which also happens to be unique α-set of SK4.

Next we characterize separable ipsd-graphs of girth 5. As noted in Corollary 2.2, if G is a separable ipsd-graph
of girth 5, then every block of G must be an ipsd-block. From Theorem 2.4, every block of G must be of girth
5. Further, as every triangle free ipsd-graph having at least two non-trivial is C5-free (Corollary 2.3), the graph G
must have a unique non-trivial block isomorphic to either C5 or SK4.

Theorem 3.5. Let G be a separable graph with girth 5. Then G is an ipsd graph if and only if the following
conditions hold:

(a) G has unique non-trivial block B isomorphic to either C5 or SK4 and
(b) every vertex in V (G) \ V (B) is a pendant vertex having its support in V (B) \ Q where Q is an α-set of B.

Proof. Let G be an ipsd-graph. Since g(G) = 5, G is not C5-free, hence from Corollary 2.3, it follows that G has
unique non-trivial block (say) B. As G is an ipsd-graph, from Corollary 2.2, B is an ipsd-block in G. Consequently,
from Theorem 3.3, B is isomorphic to either C5 or SK4. Since B ∼= C5 or SK4, there does not exist any vertex
w ∈ V (B) such that V (B) \ N (w) is independent. Consequently from Theorem 2.1, B has an ipsd-set F and
V (G) \ V (B) consists of pendant vertices with their supports lying in V (B) \ F . Let P be the set of all support
vertices in G. Since B ∼= C5 or SK4 and F is an ipsd-set of B, it is easy to see that F is an α-set of B. Consequently,
Q = F ∪ (V (G) \ V (B)) is an α-set of G. As P ⊆ V (B) \ Q, all the three conditions (a), (b) and (c) follow.

Conversely, assume that (a), (b) and (c) are satisfied. Then it is easy to see that the set (V (G)\ V (B))∪ Q forms
an ipsd-set for graph G. Hence the theorem. □

Remark 3.6. Since γi ps(C5) = α(C5) = 2 and γi ps(SK4) = α(SK4) = 4, from Remark 3.4 and Theorem 3.5, for
any ipsd-graph G of girth 5,

γi ps(G) = α(G) =

{
e + 2 if B ∼= C5,

e + 4 if B ∼= SK4.

where B is the unique block of G and e is the number of pendant vertices in G.

Having characterized ipsd-graphs of girth 5, we proceed to characterize ipsd-graphs of girth 4. Again since girth
4 graphs are triangle free graphs, from Corollary 2.3 and Theorem 2.4, every block of an ipsd-graph of girth 4 is
an ipsd-block of girth 4. In view of Theorem 2.1, to have complete information about ipsd-graphs of girth 4, it
is enough to characterize 2-connected ipsd-graphs of girth 4. Moreover, if G is an ipsd-graph of girth 4 having at
least two non-trivial blocks, then every block of G is C5-free ipsd-block of girth 4. Thus to achieve our objective,
we first consider 2-connected C5-free ipsd-graphs with gir th(G) = 4.

Theorem 3.7. Let G be a 2-connected C5-free graph with gir th(G) = 4. Then G is an ipsd-graph if and only if
one of the following holds:

1. There exists w ∈ V (G) such that V (G) \ N (w) is independent.
2. There exist non-adjacent vertices u, v such that N (u), N (v) are disjoint independent subsets of V (G) and

⟨N (u)∪N (v)⟩ ∼= Km,n , where m = |N (u)| and n = |N (v)|. Moreover, for any vertex w ∈ V (G)\(N [u]∪N [v])
either N (w) ⊂ N (u) or N (w) ⊂ N (v).

Proof. For the sufficient part, observe that if (1) is satisfied, then from Proposition 1.7, G is an ipsd-graph. If (2)
holds, then D = V (G) \ (N (u) ∪ N (v)) is an ipsd-set of graph G.
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Now to prove necessary part, let G be an ipsd-graph and D be an ipsd set of G. If G satisfies condition (1),
then we are through. Therefore let condition (1) is not satisfied.
Claim 1. There exists a cycle C ∼= C4 of length 4 such that two non-adjacent vertices of C are in D.

Since gir th(G) = 4, there exists a cycle C1 of length 4 in G. If two non adjacent vertices of C1 are in D,
then C1 is the required cycle and we are done with our claim. Thus let C1

= (u1, u2, u3, u4, u1) be such that
u1, u2, u3 ∈ V \ D. Since (1) is not satisfied, there exist adjacent vertices x1, x2 ∈ V (G) \ N (u2). Since D is
independent, both x1 and x2 cannot be in D. If both x1 and x2 are in V \ D, then as x1, x2 /∈ N (u2) and D is
ipsd-set, there exists di ∈ D such that xi , u2 ∈ N (di ) for each i = 1, 2. If d1 = d2, then ⟨x1, x2, d1⟩ ∼= C3,
a contradiction to the fact that gir th(G) = 4. But then ⟨u2, d1, x1, x2, d2⟩ ∼= C5, again a contradiction as G is
C5-free. Thus exactly one of x1 and x2 is in D.

Without loss of generality, assume that x1 ∈ D and x2 ∈ V \ D. Since x2, u2 ∈ V \ D, there exists d in D such
that x2, u2 ∈ N (d). Since G is 2-connected, there exists x3 ∈ N (x1) ∩ (V \ D). Clearly, x3 and x2 are non-adjacent.
For otherwise, ⟨x1, x2, x3⟩ ∼= C3, a contradiction. If x3 ∈ N (u2), then ⟨u2, x3, x1, x2, d, u2⟩ ∼= C5, contradiction.
Thus x3 /∈ N (u2). Now {x3, x2, u2} is an independent subset of V \ D, therefore there exists d∗

∈ D such that
{x3, x2, u2} ⊆ N (d∗). If d = d∗, then C2

= ⟨x1, x2, d, x3⟩ ∼= C4 such that two non adjacent vertices d and x1 of
the cycle are in D. If d ̸= d∗, then C3

= ⟨x2, d, u2, d∗
⟩ ∼= C4 and d, d∗

∈ D. Hence the claim.
Let C = (v1, v2, v3, v4, v1) be the cycle of length 4 and v1, v3 ∈ V (C) ∩ D. Let X = (V \ D) ∩ N (v2) ∩ N (v4)

and Y = (V \ D) \ [N (v2) ∪ N (v4)].
Claim 2. V \ D = X ∪ Y and X , Y are independent sets.

Suppose there exists x ∈ V \ D such that x ∈ N (v2) \ N (v4). Since gir th(G) = 4 and x, v1, v3 ∈ N (v2),
therefore x /∈ N (v1) ∪ N (v3). Since {x, v4} is an independent set in V \ D, there exists d ∈ D \ {v1, v3} such that
{x, v4} ⊂ N (d). But then ⟨v1, v2, x, d, v4⟩ ∼= C5, contradiction. Hence V \ D = X ∪ Y .

If x1, x2 ∈ X be two adjacent vertices, then ⟨x1, x2, v2⟩ ∼= C3, contradiction. Hence X is independent set. If Y
is not independent, there exist two adjacent vertices y1, y2 ∈ Y . Since y1, y2 /∈ N (v2), there exists d1, d2 ∈ D such
that {yi , v2} ⊆ N (di ) for each i . But then ⟨v2, d1, y1, y2, d2, v2⟩ ∼= C5, a contradiction. Hence Y is independent.
Claim 3. ⟨X ∪ Y ⟩ ∼= K|X |,|Y | and X = N (u), Y = N (v) for some u, v ∈ D.

Since D is ipsd-set and X , Y are independent sets in V \ D, there exists u, v ∈ D such that X ⊆ N (u) and
Y ⊆ N (v). Suppose there exists x ∈ X and y ∈ Y such that x and y are not adjacent. As D is ipsd-set, there exists
a vertex d3 ∈ D such that x, y ∈ N (d3). But then ⟨v2, v, y, d3, x⟩ ∼= C5, a contradiction. Thus ⟨X ∪ Y ⟩ = K|X |,|Y |.
Since u ∈ D, N (u) ⊆ V \ D. If y∗

∈ Y ∩ N (u), then ⟨x∗, u, y∗
⟩ ∼= C3 for any x∗

∈ X , contradiction. Thus
X = N (u). Similarly, Y = N (v).
Claim 4. For any w ∈ V (G) \ (N [u] ∪ N [v]) either N (w) ⊂ N (u) or N (w) ⊂ N (v).

Since V \ D = X ∪ Y , therefore V (G) \ (N [u] ∪ N [v]) ⊊ D. Let w ∈ V (G) \ (N [u] ∪ N [v]) be any vertex.
Then w ∈ D. Consequently, N (w) ⊆ V \ D = N (u) ∪ N (v). If x ∈ N (u) ∩ N (w) and y ∈ N (v) ∩ N (w), then
⟨x, w, y⟩ ∼= C3, contradiction. Thus either N (w) ⊂ N (u) or N (w) ⊂ N (v). Hence the condition (2) holds. Therefore
necessity part follows. □

From Theorems 2.1 and 3.7, following theorem on separable C5-free ipsd-graphs of girth 4 can be easily obtained.

Theorem 3.8. Let G be a C5-free separable graph with girth 4. Then G is an ipsd-graph if and only if exactly
one of the following holds:

(i) |BG | = 1 and one of the following holds

(a) there exists w ∈ V (G) such that V (G) \ N (w) is independent
(b) there exist non-adjacent vertices u, v such that N (u), N (v) are disjoint independent subsets of V (G)

and ⟨N (u) ∪ N (v)⟩ ∼= Km,n , where m = |N (u)| and n = |N (v)|. Moreover, for any vertex
w ∈ V (G) \ (N [u] ∪ N [v]) either N (w) ⊂ N (u) or N (w) ⊂ N (v).

(ii) |BG | ≥ 2 and there exists a cut vertex w in G such that V (G) \ N (w) is independent

Having characterized C5-free ipsd-graphs G with gir th(G) = 4, what can we say about ipsd-graphs of girth 4
containing an induced subgraph isomorphic to C5? In what follows we make a partial answer to this question by
focusing on circumference of ipsd-graphs.
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Fig. 4. Graph S(W6) obtained from wheel W6 by subdividing each edge of the cycle.

Note that circumference of an ipsd-graph of girth 5 is either 5 or 8. But in case of ipsd-graphs of girth 4, for
any positive integer k, there always exists an ipsd-graph of girth 4 having circumference greater than k. In fact, for
an instance, for any integer n, the graph S(Wn) (see Fig. 4) obtained from wheel Wn by subdividing each edge of
the cycle Cn of Wn is an ipsd-graph of girth 4 and circumference 2n.

If we consider 2-connected ipsd-graphs with girth 4 and circumference 5, then we have its complete structural
information. Thus giving partial information about graphs with girth 4 containing an induced 5-cycle. But before
characterizing such graphs, we introduce an equivalence relation on graphs using the notion of duplicate vertices [8].

Definition 3.9 ([8]). Two vertices u and v (need not be distinct) in a graph G are said to be duplicated if
N (u) = N (v).

If vertices u and v are duplicated in G, then we say that u and v are duplicates of each other. By definition,
every vertex is a duplicate vertex of itself. It is evident that the concept of duplicate vertices in a graph G partitions
the vertex set V (G) into disjoint equivalence classes. For a vertex u in graph G, let

[u] = {v ∈ V (G) : v is a duplicate of u}

denote the equivalence class containing the vertex u. It is interesting to note that each equivalence class is an
independent set. Also, for any graph G, d(x) = d(u) for all x ∈ [u].

Notation 3.10. For any graph G and any vertex u ∈ V (G), let [u]∗ = [u] \ {u}.

Observation 3.11. If u and v are adjacent vertices of degree 2 in a graph G, then [u]∗ ̸= ∅ and [v]∗ ̸= ∅ if and
only if G ∼= C4.

Proof. Suppose [u]∗ ̸= ∅ and [v]∗ ̸= ∅ and let u∗
∈ [u]∗ and v∗

∈ [v]∗. Then N (u) = {v, v∗
}, N (v) = {u, u∗

} and
⟨u, v, u∗, v∗

⟩ ∼= C4. Since degree of each vertex u, u∗, v, v∗ is 2, therefore G ∼= C4. Hence the necessity. Sufficient
part is trivial. □

Definition 3.12 (Vertex Identification [18]). To identify non-adjacent vertices u and v of a graph G is to replace
these vertices by a single vertex adjacent to all the vertices which were adjacent in G to either u or v.

Definition 3.13 (H-Duplicate). We will call a graph G to be duplicate of graph H or H -duplicate if H can be
obtained from G by identifying all vertices in each degree-2 equivalence class of duplicate vertices.

Note that if a graph G is duplicate of graph H , then H can be treated as a subgraph of G. In that case, dG(u) = 2
for all u ∈ V (G) \ V (H ) and

V (G) =

⋃
u∈V (H )

[u]G,

where [u]G is the set of all duplicate vertices of u in G.

P. Gupta, A. Goyal and R. Jain / AKCE International Journal of Graphs and Combinatorics 17 (1) 237–241 237



Please cite this article as: P. Gupta, A. Goyal and R. Jain, Independent point-set dominating sets in graphs, AKCE International Journal of Graphs and Combinatorics (2019),
https://doi.org/10.1016/j.akcej.2019.08.001.

Definition 3.14 (Duplicated Equivalent). Two graphs G1 and G2 will be called duplicated equivalent if there exists
a graph G such that both G1 and G2 are G-duplicate. If G1 is duplicated equivalent to G2, then we will denote it
as G ≍ G2. It is easy to see that the relation ≍ is an equivalence relation on graphs.

Lemma 3.15. A 2-connected graph G is C5 duplicated if and only if either G ∼= C5 or there exists an induced
subgraph C of G isomorphic to C5 and an α-set {u, v} of C such that V (G) \ V (C) = [u]∗ ∪ [v]∗.

Proof. Let G be C5 duplicated. If G ∼= C5, then we have nothing to prove. Let G ≇ C5, then as G ≍ C5, there
exists an induced subgraph C = (u1, u2, u3, u4, u5, u1) of G isomorphic to C5 such that

V (G) \ V (C) = ∪
5
i=1[ui ]∗ and d(x) = 2 ∀ x ∈ V (G) \ V (C).

Let y ∈ V (G) \ V (C). Then y ∈ [ui ]∗ for some i = 1, 2, . . . , 5. W.l.o.g assume that y ∈ [u1]∗. Since
u1 ∈ N (u2) ∩ N (u5), y ∈ N (u2) ∩ N (u5). Consequently, [u2]∗ = [u5]∗ = ∅. Thus

V (G) \ V (C) = [u1]∗ ∪ [u3]∗ ∪ [u4]∗.

If both [u3]∗ and [u4]∗ are non-empty set, then d(u3) = d(u4) = 2, which contradicts Observation 3.11. Hence
at least one of [u3]∗ and [u4]∗ is an empty set. W.l.o.g assume that [u3]∗ = ∅. Then V (G) \ V (C) = [u1]∗ ∪ [u4]∗.
Hence the necessity. Sufficiency is trivial. □

Theorem 3.16. Let G be a 2-connected graph with girth g(G) = 4 and circumference c(G) = 5, then G is an
ipsd-graph if and only if G ≍ C5 and G ≇ C5.

Proof. Let G be an ipsd-graph girth 4 and circumference 5. Trivially, G ≇ C5. In view of Lemma 3.15, to prove
necessity, we need to show the existence of an induced subgraph C of G isomorphic to C5 and an α-set {u, v} of
C such that V (G) \ V (C) = [u]∗ ∪ [v]∗.

Since circumference c(G) = 5 and girth g(G) = 4, G has an induced subgraph isomorphic to C5. Let
C = (u1, u2, u3, u4, u5, u1) be any induced 5-cycle in G. Let D be an ipsd-set of G. Since D is independent,
|V (C) ∩ D| ≤ 2.

Claim: |V (C) ∩ D| = 2.
Suppose, on the contrary, |V (C) ∩ D| ≤ 1. W.l.o.g assume that {u2, u3, u4, u5} ⊆ V \ D. Then {u2, u4} and

{u3, u5} are independent sets in V \ D. Since D is an ipsd-set and g(G) = 4, there exist two distinct vertices
x, y ∈ D such that {u2, u4} ⊆ N (x) and {u3, u5} ⊆ N (y). But then (u2, x, u4, u5, y, u3, u2) is a 6-cycle in G,
contradiction to the fact that c(G) = 5. Thus |V (C) ∩ D| = 2.

W.l.o.g we assume that V (C) ∩ D = {u1, u3}. Two cases arise:
Case 1. |D| = 2 i.e., D = {u1, u3}

Claim 1: V (G) \ V (C) ⊆ N (u1) or V (G) \ V (C) ⊆ N (u3).
On the contrary, let x ∈ [V (G) \ V (C)] \ N (u1) and y ∈ [V (G) \ V (C)] \ N (u3). As x ∈ N (u3) \ N (u1),

y ∈ N (u1) \ N (u2) and D is an ipsd-set, x and y must be adjacent vertices. But then (u1, u5, u4, u3, x, y) forms a
6-cycle, contradiction. Hence either V (G) \ V (C) ⊆ N (u1) or V (G) \ V (C) ⊆ N (u3).

W.l.o.g assume that V (G) \ V (C) ⊆ N (u1).
Claim 2: V (G) \ V (C) ⊆ N (u3) ∪ N (u4).

Let, if possible, there exists x ∈ [V (G) \ V (C)] \ (N (u3) ∪ N (u4)). But then as {x, u4} is an independent subset
of V \ D, {u4, x} ⊈ N (u1) and {u4, x} ⊈ N (u3), we arrive at a contradiction due to the fact that D is an ipsd-set.
Hence V (G) \ V (C) ⊆ N (u3) ∪ N (u4).

Thus V (G) \ V (C) = N (u1) ∩ (N (u3) ∪ N (u4)). As G is C3-free, V (G) \ {u1, u3, u4} is an independent set and
every vertex in V (G) \ {u1, u3, u4} has degree 2. Hence V (G) \ V (C) = [u2]∗ ∪ [u5]∗. Thus, from Lemma 3.15, G
is C5-duplicated.
Case 2. |D| ≥ 2 i.e., {u1, u3} ⊊ D.
Claim 1: D ⊆ N ({u2, u4, u5}).

Suppose, on the contrary, there exists x ∈ D \ N ({u2, u4, u5}). As d(x) ≥ 2 and G is C3-free, there exist
non-adjacent vertices y, z ∈ N (x). Again, as G is C3-free, y /∈ N (u4) ∩ N (u5). W.l.o.g we can assume that
y /∈ N (u4). Since {y, u4} is an independent set in V \ D, there exists d ∈ D such that {y, u4} ⊆ N (d). If
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z ∈ N (u5), then (z, u5, u4, d, y, x, z) is a 6-cycle in G, contradiction. If z /∈ N (u5), there exists d∗
∈ D such

that {z, u5} ⊆ N (d∗). Since G is C3-free, d∗
̸= d . Consequently, (z, x, y, d, u4, u5, d∗, z) is a 7-cycle in G, a

contradiction. Hence D ⊆ N ({u2, u4, u5}).
Claim 2: D ⊆ N (u2).

Let, if possible, there exists x ∈ D \ N (u2). As G is C3-free and D ⊆ N ({u2, u4, u5}), x ∈ N (u4) △ N (u5).
W.l.o.g assume that x ∈ N (u4) \ N (u5). Since d(x) ≥ 2, there exists y( ̸= u4) ∈ N (x). If y ∈ N (u2), then
(y, x, u4, u5, u1, u2, y) is a 6-cycle, a contradiction. Hence y /∈ N (u2). Then {u4, y, u2} is an independent set in
V \ D and therefore there exists d ∈ D such that {u4, y, u2} ⊆ N (d). But then (y, x, u4, u5, u1, u2, d, y) is a 7-cycle,
yielding a contradiction. Hence our assumption is wrong and D ⊆ N (u2).
Claim 3: N (u) ⊊ {u2, u4, u5} for all u ∈ D \ {u1, u3}.

On the contrary, let w ∈ D \ {u1, u3} such that N (u) ⊈ {u2, u4, u5}. Let y ∈ N (w) \ {u2, u4, u5}. As
w ∈ N (u2) ∩ [N (u4) △ N (u5)], w.l.o.g assume that w ∈ N (u2) ∩ N (u4) and w /∈ N (u5). If y ∈ N (u5), then
(y, u5, u1, u2, u3, u4, w, y) is a 7-cycle in G, a contradiction. If y /∈ N (u5), then there exists d ∈ D such that
u5, y ∈ N (d). But then (y, d, u5, u4, u3, u2, w, y) is a 7-cycle in G, again a contradiction. Hence N (u) ⊆ {u2, u4, u5}

and d(u) = 2 (as G is C5-free) for all u ∈ D \ {u1, u3}.
Subcase I. V \ D = {u2, u4, u5}

In this case [u1]∗ = N (u5) \ {u1, u4}, [u3]∗ = N (u4) \ {u3, u5} and d(x) = 2 for every x ∈ D. It follows from
Lemma 3.15 that G is C5-duplicated.
Subcase II. {u2, u4, u5} ⊊ V \ D

Since {u1, u3} ⊊ D, there exists w ∈ D\{u1, u3}. Then d(w) = 2 and either N (w) = {u2, u4} or N (w) = {u2, u5}.
W.l.o.g we assume that N (w) = {u2, u4}. Then C∗

= (u1, u2, w, u4, u5) is a 5-cycle in G having two vertices in
D. By interchanging the roles of u3 and w, from Case 1, it follows that N (u3) = {u2, u4} and d(u3) = 2.
Claim: (V \ D) \ {u2, u4} = N (u1) ∩ N (u4).

Since N (x) ⊆ {u2, u4, u5} for every x ∈ D \ {u1} and D is a dominating set, therefore (V \ D) \ {u4} = N (u1).
Further, since G is 2-connected C5-free graph, (V \ D) \ {u2, u4} ⊆ N (u4). It follows that (V \ D) \ {u2, u4} =

N (u1) ∩ N (u4) and every vertex in (V \ D) \ {u2, u4} has degree 2.
Next we claim that D \ {u1} = N (u2) ∩ N (u4). Suppose, on the contrary, there exists w′

∈ D \ {u1} such
that w′ /∈ N (u2) ∩ N (u4). Then w′

∈ N (u2) ∩ N (u5) and for any y ∈ (V \ D) \ {u2, u4, u5}, the cycle
(u5, w

′, u2, u3, u4, y, u1) is a 7-cycle in G, contradiction. Thus D \ {u1} = N (u2) ∩ N (u4).
Observe that [u5]∗ = (V (G) \ D) \ {u2, u4, u5} and [u3]∗ = D \ {u1, u3}. Thus V (G) \ V (C) = [u3]∗ ∪ [u5]∗ and

hence G is C5-duplicated.
Conversely, suppose G ≍ C5 and G ≇ C5, then by Lemma 3.15, there exists an induced 5-cycle C in G such

that V (G) \ V (C) = [u]∗ ∪ [v]∗, where {u, v} is a maximal independent set in C . Then it is evident that D = {u, v}

is an ipsd-set of G. Hence G is an ipsd-graph. □

Remark 3.17. If G is duplicated equivalent to C5 and C = (u1, u2, u3, u4, u5, u1) is an induced 5-cycle in G such
that V (G) \ V (C) = [u1]∗ ∪ [u3]∗, then

α(G) = ∆(G) = d(u2) and γi ps(G) = 2.

In fact, the collection I =
{
{u2, u5}, {u2, u4}, [u1] ∪ {u4}, [u3] ∪ {u5}, [u1] ∪ [u3]

}
is the set of all maximal

independent sets in G. Moreover, I is also the set of all ipsd-sets of G.

The following theorem characterizes separable ipsd-graphs with girth g(G) = 4 and circumference c(G) = 5.

Theorem 3.18. Let G be a separable graph with girth g(G) = 4 and circumference c(G) = 5, then G is an
ipsd-graph if and only if the following conditions hold:

(a) G has unique non-trivial block B (≇ C5) duplicated equivalent to C5 and
(b) every vertex in V (G) \ V (B) is a pendant vertex having its support in V (B) \ Q where Q is an α-set of B.

Proof. Suppose G is an ipsd-graph. Since g(G) = 4 and c(G) = 5, G is triangle free but not C5-free. From
Corollary 2.3, G has a unique non-trivial block (say) B. Then from Corollary 2.2, B is an ipsd-block of G.
Obviously, girth of B is 4 and circumference of B is 5. Consequently, from Theorem 3.16, B ≇ C5 and B ≍ C5.
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Then there does not exist any w ∈ G such that V (G) \ N (w) is an independent set. Hence from Theorem 2.1, B
has an ipsd-set Q and V (G) \ V (B) consists of pendant vertices with their supports lying in V (B) \ Q. As noted
in Remark 3.17, every ipsd-set of B is an α-set of B. Hence the necessity follows.

For the sufficiency, observe that the set (V (G)\V (B))∪Q forms an ipsd-set of G. Hence G is an ipsd-graph. □

4. Concluding remarks

In this paper, we first proved that girth of an ipsd-graph is always less than equal to 5 and thereafter, characterized
ipsd-graphs with girth 5. We could characterize C5-free ipsd-graphs of girth 4. Also, using the graph equivalence
relation, duplicated equivalence, we exhibited a class of ipsd-graphs of girth 4 having C5 as an induced subgraph.
But the general problem of characterizing ipsd-graphs of girth 4 having C5 as an induced subgraph is still open.

Problem 1. Characterize ipsd-graphs of girth 4 containing C5 as an induced subgraph.

Also, we are yet to explore ipsd-graphs of girth 3 and it would be interesting to characterize them. As we have
seen in case of separable ipsd-graphs of girth 4, that characterizing separable graphs boils down to the problem
of characterizing 2-connected ipsd-graphs. Thus to tackle the problem of characterizing ipsd-graphs of girth 3, one
must first consider 2-connected ipsd-graphs of girth 3.

Problem 2. Characterize 2-connected ipsd-graphs of girth 3.

In this paper, we introduced a graph equivalence relation, called duplicated equivalent. In Lemma 3.15, we
presented equivalence class of C5 w.r.t duplicated relation. It would be interesting to find equivalence classes of
various other well known graphs. In [19], graph equations (w.r.t graph equivalence relation for isomorphism) for
line graphs, total graphs, middle graphs and quasi-total graphs were solved. Similar graph equations w.r.t duplicated
equivalence relation can be considered.

Problem 3. Under what condition a graph pair (G, H ) is a solution to the following equation:

[1.] L(G) ≍ M(H ) [2.] L(G) ≍ T (H ) [3.] L(G) ≍ P(H )
[4.] L(G) ≍ M(H ) [5.] L(G) ≍ T (H ) [6.] L(G) ≍ P(H )

where L(G), M(G), T (G) and P(G) represent line graph, middle graph, total graph and quasi-total graph,
respectively, of graph G.
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