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Total resolving number of edge cycle graphs

J. Paulraj Joseph and N. Shunmugapriya

Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India

ABSTRACT
Let G ¼ ðV, EÞ be a simple connected graph. An ordered subset W of V is said to be a resolving
set of G if every vertex is uniquely determined by its vector of distances to the vertices in W. The
minimum cardinality of a resolving set is called the resolving number of G and is denoted by
rðGÞ: Total resolving number is the minimum cardinality taken over all resolving sets in which hWi
has no isolates and it is denoted by trðGÞ: In this paper, we determine the exact values of total
resolving number of K1, n�1ðCkÞ, Bs, tðCkÞ, CnðCkÞ, PnðCkÞ and KnðCkÞ: Also, we obtain bounds for the
total resolving number of GðCkÞ when G is an arbitrary graph and characterize the
extremal graphs.
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1. Introduction

Let G ¼ ðV ,EÞ be a finite, simple, connected and undirected
graph. The degree of a vertex v in a graph G is the number of
edges incident with v and it is denoted by dðvÞ: The maximum
degree in a graph G is denoted by DðGÞ and the minimum
degree is denoted by dðGÞ: The distance d(u, v) between two
vertices u and v in G is the length of a shortest u-v path in G.
The maximum value of distance between vertices of G is called
its diameter. Let Pn denote any path on n vertices, Cn denote
any cycle on n vertices and Kn denote any complete graph on n
vertices. A complete bipartite graph is denoted by Ks, t: K1, n�1

is called a star. A tree containing exactly two vertices that are
not end vertices is called a bistar and it is denoted by Bs, t: The
join GþH consists of G [ H and all edges joining a vertex of
G and a vertex of H. Let P denote the set of all pendent edges
of G and jPj ¼ p: Vertices which are adjacent to pendent verti-
ces are called support vertices.

A graph H is called a subgraph of a graph G if VðHÞ �
VðGÞ and EðHÞ � EðGÞ: A subgraph F of a graph G is called
an induced subgraph hFi of G if whenever u and v are vertices
of F and uv is an edge of G, then uv is an edge of F as well. For
a non empty set X of edges, the subgraph hXi induced by X
has edge set X and consists of all vertices that are incident with
at least one edge in X. This subgraph is called an edge induced
subgraph of G. A set of edges in a graph is independent if no
two edges in the set are adjacent. The edge independence num-
ber b1ðGÞ of a graph G is the maximum cardinality taken over
all maximal independent set of edges.

If W ¼ w1,w2, :::,wkf g � VðGÞ is an ordered set, then
the ordered k-tuple ðdðv,w1Þ, dðv,w2Þ, :::, dðv,wkÞÞ is called
the representation of v with respect to W and it is denoted

by rðvjWÞ: Since the representation for each wi 2 W con-
tains exactly one 0 in the ith position, all the vertices of W
have distinct representations. W is called a resolving set for
G if all the vertices of V nW also have distinct representa-
tions. The minimum cardinality of a resolving set is called
the resolving number of G and it is denoted by rðGÞ:

In 1975, Slater [5] introduced these ideas and used locat-
ing set for what we have called resolving set. He referred to
the cardinality of a minimum resolving set in G as its loca-
tion number. In 1976, Harary and Melter [1] discovered
these concepts independently as well but used the term met-
ric dimension rather than location number. In 2003, Ping
Zhang and Varaporn Saenpholphat [6, 7] studied connected
resolving number and in 2015, we introduced and studied
total resolving number in [3]. In this paper, we use the
term resolving number to maintain uniformity in the cur-
rent literature.

If W is a resolving set and the induced subgraph hWi
has no isolates, then W is called a total resolving set of G.
The minimum cardinality taken over all total resolving sets
of G is called the total resolving number of G and is denoted
by trðGÞ: We introduced edge cycle graph in [2] and studied
the resolving number of edge cycle graph GðCkÞ and we
studied the total resolving number of edge cycle graph
GðC3Þ in [4].

In this paper, we investigate the total resolving number
of the edge cycle graph GðCkÞ, k � 4:

Theorem 1.1. [3] Let w1,w2f g � VðGÞ be a total resolving
set in G. Then the degrees of w1 and w2 are at most 3.

Lemma 1.2. [3] For n � 3, trðPnÞ ¼ 2 and trðCnÞ ¼ 2:
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Observation 1.3. [3] For any graph G, 2 � trðGÞ � n� 1:

Theorem 1.4. [3] For n � 3, trðGÞ ¼ n� 1 if and only if
G¼Kn or K1, n�1:

Definition 1.5. A block of G containing exactly one cut
vertex of G is called an end block of G.

Lemma 1.6. [2] Let G be a 1-connected graph with dðGÞ �
2: Then every resolving set contains at least one non cut
vertex of each end block.

Definition 1.7. A cycle Cr is called an end cycle if Cr

contains exactly one vertex of degree at least 3.

Notation 1.8. Let ec denote the number of end cycles of the
graph G.

Lemma 1.9. Let G be a graph with ec � 1 and each end cycle
of size at least 4. Then trðGÞ � 2ec:

Proof. Let W be a total resolving set of G. Let C1,C2, :::,Cec be
the end cycles of G. By Lemma 1.6,W \ ðVðCiÞ n fvgÞ 6¼ ; for
all 1 � i � ec: Let v be the common vertex of some end cycles
C1,C2, :::,Cr: If v 62 W, then clearly, W \ ðVðCiÞ n fvgÞ � 2,
for each 1 � i � r: If v 2 W, then we claim that jW \ Xj �
2r, where X ¼ [r

i¼1VðCiÞ: Suppose jW \ Xj � 2r � 1:
Clearly, exactly two neighbors of v in VðC1Þ [ VðC2Þ belongs
to W. Without loss of generality, let v1, v2 2 W: Then
rðv3jWÞ ¼ rðv4jWÞ, which is a contradiction. Thus jW \
Xj � 2r: Consequently, trðGÞ � 2ec: w

2. Resolving number of edge cycle graphsGðCkÞ, k � 4

The following results are proved in [2].

Definition 2.1. An edge cycle graph of a graph G is the
graph GðCkÞ formed from one copy of G and jEðGÞj copies
of Pk, where the ends of the ith edge are identified with the
ends of ith copy of Pk: A graph G and its edge cycle graph
GðCkÞ are shown in Figure 1.

Lemma 2.2. Let v be a vertex of degree r in G and
e1, e2, :::, er be edges incident with v and Ci be the edge cycle

of ei, 1 � i � r: Then every resolving set of GðCkÞ contains at
least one vertex of degree 2 from Ci for all 1 � i � r with at
most one exception.

Lemma 2.3. Let e be an edge of degree s and e1, e2, :::, es�2 be
the edges adjacent to e in G. If any resolving set W of GðCkÞ
does not contain any internal vertex of the edge cycle of e,
then W contains at least one internal vertex from each edge
cycle of ei, 1 � i � s� 2:

Theorem 2.4. Let E1 ¼ fe1, e2, :::, etg be a subset of edges of
G and W be a resolving set of GðCkÞ: If W does not contain
any internal vertex of edge cycle of ei, then E1 is independent.

Lemma 2.5. Let G be a graph of order n � 3 and dðGÞ � 2:
Then rðGðCkÞÞ � m� b1ðGÞ:

Lemma 2.6. Let G be a graph of order n � 3 and dðGÞ ¼ 1:
Then rðGðCkÞÞ � m� b1ðG n PÞ:

Theorem 2.7. Let G be a graph of order n � 5 and size m. If
k is odd and dðGÞ � 2, then rðGðCkÞÞ ¼ m� b1ðGÞ:

Theorem 2.8. Let G be a graph of order n � 5, size m and
dðGÞ ¼ 1: If k is odd, then rðGðCkÞÞ ¼ m� b1ðG n PÞ:

3. Total resolving number of GðCkÞ, k � 4:

In this section, we determine the exact values of total resolving
number of K1, n�1ðCkÞ,Bs, tðCkÞ, CnðCkÞ, PnðCkÞ and KnðCkÞ:
Definition 3.1. A vertex cover in a graph G is a set of verti-
ces that covers all edges of G. The minimum cardinality
taken over all minimal vertex covers of G is the vertex cov-
ering number aðGÞ of G.
Theorem 3.2. Let G be a graph of order n � 4 and size m.
Let M1,M2, :::,Mr be the collection of all maximum edge
independent sets of G and Gi ¼ hG nMii, 1 � i � r: If dðGÞ �
2, then trðGðCkÞÞ�m�b1ðGÞþt, where t¼minfaðG1Þ,
aðG2Þ,:::, aðGrÞg:

Proof. Let Y ¼ fv1, v2, :::, vtg be the minimum vertex cover-
ing of Gi for some i and W1 be any total resolving set of
GðCkÞ: By Theorem 2.5, rðGðCkÞÞ � m� b1ðGÞ: Let W0 be a
minimum resolving set of GðCkÞ: Using Lemmas 2.2, 2.3
and 2.5, hW0i is �Km�b1ðGÞ: Thus jW1j � m� b1ðGÞþ
jYj ¼ m� b1ðGÞ þ t: w

Theorem 3.3. Let G be a graph of order n � 4, size m and
dðGÞ ¼ 1: Let M1,M2, :::,Mr be the collection of all max-
imum edge independent sets of G and Gi ¼ hG n ðMi [ PÞi,
1 � i � r: Then trðGðCkÞÞ � m� b1ðG n PÞ þ t þ p, where
t ¼ minfaðG1Þ, aðG2Þ, :::, aðGrÞg:

Proof. Let Y ¼ fv1, v2, :::, vtg be the minimum vertex covering
of Gi for some i and W1 be any total resolving set of GðCkÞ: By
Lemma 2.6, rðGðCkÞÞ � m� b1ðG n PÞ: Let W0 be a minimum
resolving set of GðCkÞ: Using Lemmas 1.6, 2.2, 2.3 and 2.6, hW0i

Figure 1. A graph G and its edge cycle graph.
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is �Km�b1ðGnPÞ: Thus jW1j � m� b1ðG n PÞ þ jYj þ jPj ¼ m�
b1ðG n PÞ þ t þ p: w

Theorem 3.4. Let G be a graph of order n � 3, size m and
k � 4: If dðGÞ � 2, then trðGðCkÞÞ � 2½m� b1ðGÞ�:

Proof. Let EðGÞ ¼ fe1, e2, :::, emg: Let b1ðGÞ ¼ s and M ¼
fe1, e2, :::, esg be the maximum edge independent set of G.
Let Ci be the edge cycle of ei: Let VðCiÞ ¼ fvi1, vi2, :::, vikg
and ei ¼ vi1vik: If n ¼ 3, then we can easily verify that
trðGðCkÞÞ � 4: So we may assume that n � 4: By Theorem
2.7, if k is odd, then rðGðCkÞÞ � m� b1ðGÞ: Therefore, if k
is odd, then trðGðCkÞÞ � 2rðGðCkÞÞ � 2½m� b1ðGÞ�: Now
we claim that if k is even, then trðGðCkÞÞ � 2½m� b1ðGÞ�:
Let W ¼ fvik2, viðk2þ1Þ=sþ 1 � i � mg: We claim that W is a

resolving set of GðCkÞ: Let x, y be two distinct vertices of
VðGðCkÞÞ nW: We consider the following two cases.

Case 1: x 2 VðCiÞ for some 1 � i � s:
Without loss of generality, let x 2 VðC1Þ: Then x lies on

either v11-v1k2 path or v1ðk2þ1Þ-v1k path. Without loss of gener-

ality, let x lie on v11-v1k2 path. Since dðGÞ � 2, there exist

two distinct edges er, er0 2 EðGÞ n fe1g such that er is inci-
dent with v1 and er0 is incident with v2: Since e1 2 M, by
Lemma 2.3, er, er0 62 M: Without loss of generality, let er ¼
em and er0 ¼ em�1: Let S ¼ fvmk

2
, vmðk2þ1Þ, vðm�1Þk2, vðm�1Þðk2þ1Þg:

If y 2 VðC1 [ Cm�1 [ CmÞ, then rðxjSÞ 6¼ rðyjSÞ: It follows
that rðxjWÞ 6¼ rðyjWÞ: So we assume that y 2 VðCiÞ for
some 2 � i � m� 2: If dðx, sÞ 6¼ dðy, sÞ for some s 2 S, then
rðxjWÞ 6¼ rðyjWÞ: So we may assume that dðx, sÞ ¼ dðy, sÞ
for all s 2 S: Therefore y-vmk

2
path and y-vmðk2þ1Þ path passes

through v11 and y-vðm�1Þk2 path and y-vðm�1Þðk2þ1Þ path passes

through v11 and v1k:
If y 2 VðCiÞ for some sþ 1 � i � m� 2, then without loss

of generality, let y 2 VðCm�2Þ: Thus either dðx, vðm�2Þk2Þ>
dðy, vðm�2Þk2Þ or dðx, vðm�2Þðk2þ1ÞÞ> dðy, vðm�2Þðk2þ1ÞÞ: If y 2
VðCiÞ for some 2 � i � s, then without loss of generality, let
y 2 VðC2Þ: Since dðGÞ � 2, there exist two distinct edges
et , et0 2 EðGÞ n fe1, e2g such that et is incident with v21 and et0
is incident with v2k: Since e1 2 M, by Lemma 2.3, et , et0 62 M:
If either et 6¼ em or et0 6¼ em�1, then without loss of generality,
let et 6¼ em: Let et ¼ em�2 and vðm�2Þ1 ¼ v11: Then
dðx, vðm�2Þk2Þ> dðy, vðm�2Þk2Þ: If et ¼ em, et0 ¼ em�1, then rðxjSÞ 6
¼ rðyjSÞ: It follows that rðxjWÞ 6¼ rðyjWÞ:
Case 2: x 62 VðCiÞ for all 1 � i � s:

Then without loss of generality, let x 2 VðCmÞ: Let X ¼
fvmk

2
, vmðk2þ1Þg: If y 2 VðCmÞ, then rðxjXÞ 6¼ rðyjXÞ: It follows

that rðxjWÞ 6¼ rðyjWÞ: So we may assume that x 62 VðCmÞ:
If d x, vmk

2ð Þ 6¼ d y, vmk
2ð Þ, then rðxjWÞ 6¼ rðyjWÞ: So we may

assume that d x, vmk
2ð Þ ¼ d y, vmk

2ð Þ: Therefore x ¼ vmk and y is

the neighbor of vm1: Thus d x, vmðk2þ1Þð Þ ¼ d y, vmðk2þ1Þð Þ � 2: It

follows that rðxjWÞ 6¼ rðyjWÞ:
Hence trðGðCkÞÞ � 2½m� b1ðGÞ�: w

Open problem 3.5. Let G be a graph of order n � 3, size
m, k � 4: If dðGÞ � 2, then characterize G for
which trðGðCkÞÞ ¼ 2½m� b1ðGÞ�:
Theorem 3.6. Let G be a graph of order n � 3, size m. If
dðGÞ ¼ 1, then trðGðCkÞÞ � 2½m� b1ðG n PÞ�:

Proof. Let VðGÞ ¼ fv1, v2, :::, vng, EðGÞ ¼ fe1, e2, :::, emg: Let
b1ðG n PÞ ¼ s: Let M ¼ fe1, e2, :::, esg be the maximum edge
independent set of G n P and P ¼ fesþ1, esþ2, :::, esþpg: Let Ci

be the edge cycle of ei and VðCiÞ ¼ fvi1, vi2, :::, vikg, 1 � i �
m: Let ei ¼ vi1vik, 1 � i � m: If n ¼ 3, then we can easily
verify that trðGðCkÞÞ � 4: So we may assume that n � 4: By
Theorem 2.8, if k is odd, then rðGðCkÞÞ � m� b1ðG n PÞ:
Therfore trðGðCkÞÞ � 2rðGðCkÞÞ � 2½m� b1ðG n PÞ�: Now
we claim that if k is even, then trðGðCkÞÞ �
2½m� b1ðG n PÞ�:

Let Wi ¼ fvik2, vik2þ1g, sþ 1 � i � m and W ¼ [m
i¼sþ1Wi:

We claim that W is a resolving set of GðCkÞ: Let x, y be two
distinct vertices of VðGðCkÞÞ nW:

If x, y 2 VðCiÞ for some sþ 1 � i � sþ p, then without
loss of generality, let x, y 2 VðCsþ1Þ: Let dðvðsþ1Þ1Þ ¼ 2 in
GðCkÞ: If d x, vðsþ1Þk2ð Þ 6¼ d y, vðsþ1Þk2ð Þ, then rðxjWÞ 6¼ rðyjWÞ:
So we may assume that d x, vðsþ1Þk2ð Þ ¼ d y, vðsþ1Þk2ð Þ: Then x

lies on vðsþ1Þk2-vðsþ1Þ1 path and y lies on vðsþ1Þk2-vðsþ1Þk path.

Therefore dðx,wÞ ¼ dðy,wÞ þ 1 for all w 2 W n fvðsþ1Þk2g: It
follows that rðxjWÞ 6¼ rðyjWÞ: If x 2 VðCsþ1Þ, y 62 VðCsþ1Þ,
then d x, vðsþ1Þk2ð Þ < d y, vðsþ1Þk2ð Þ: It follows that rðxjWÞ 6¼
rðyjWÞ: If x, y 62 VðCiÞ for all sþ 1 � i � sþ p, then the
proof is similar to Case 1 and Case 2 of Theorem 3.4. Thus
trðGðCkÞÞ � 2½m� b1ðG n PÞ�: w

Open problem 3.7. Let G be a graph order of n � 3, size
m and dðGÞ ¼ 1: Then characterize G for which
trðGðCkÞÞ ¼ 2½m� b1ðG n PÞ�:
Theorem 3.8. For n � 2, trðK1, n�1ðCkÞÞ ¼ 2ðn� 1Þ:

Proof. By Theorem 3.6, trðK1, n�1ðCkÞÞ � 2ðn� 1Þ and by
Lemma 1.9,

trðK1, n�1ðCkÞÞ � 2ðn� 1Þ: Hence trðK1, n�1ðCkÞÞ ¼ 2ðn� 1Þ:

w

Theorem 3.9. For s, t � 1, trðBs, tðCkÞÞ ¼ 2ðsþ tÞ:

Proof. By Lemma 1.9, trðBs, tðCkÞÞ � 2ðsþ tÞ and by
Theorem 3.6,

trðBs, tðCkÞÞ � 2ðsþ tÞ:
w

Theorem 3.10. Let G be a graph of order n � 3 and dðGÞ ¼ 1:
Then trðGðCkÞÞ ¼ 2p if and only if G is either a star or bistar.

Proof. Let trðGðCkÞÞ ¼ 2p and W be a total resolving set of
GðCkÞ: Let EðGÞ ¼ fe1, e2, :::, emg, P ¼ fe1, e2, :::, epg be the
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set of pendent edges of G and Ci be the edge cycle of ei: Let
VðCiÞ ¼ fvi1, vi2, :::, vikg and VðAiÞ ¼ fvi2, vi3, :::, viðk�1Þg: By
proof of Lemma 1.9, jW \ ð[p

i¼1VðCiÞÞj � 2p: Therefore
W \ VðAiÞ ¼ ; for all pþ 1 � i � m: Let E1 ¼
fepþ1, epþ2, :::, emg: By Theorem 2.4, E1 is independent,

which is a contradiction to GðCkÞ n [p
i¼1VðCiÞ is connected

and hence jE1j � 1: If jE1j ¼ 0, then G ffi K1, n�1: If jE1j ¼
1, then G ffi Bs, t:

The proof of the converse part follows from Theorems 3.8
and 3.9. w

Theorem 3.11. For n � 3,

trðCnðCkÞÞ ¼ nþ 1 if n is odd and k � 6 or n ¼ 3
n otherwise:

�

Proof. Let VðCnÞ ¼ fv1, v2, :::, vng and

EðCnÞ ¼ fviviþ1 = 1 � i � n� 1g [ fvnv1g:
Let M¼fe1 ¼ v1v2,e2 ¼ v3v4,e3 ¼ v5v6, :::,ebn2c ¼ vn�2vn�1g

and en ¼ vnv1, en�1 ¼ vn�1vn, ebn2cþ1 ¼ v2v3, ebn2cþ2 ¼ v4v5, :::,
en�2 ¼ vn�3vn�2: Let W be a total resolving set of CnðCkÞ and
Ai be the edge cycle of ei: Let VðAiÞ¼ fvi1,vi2, :::,vikg, vi1vik ¼
ei: If n is even, then the proof follows from Theorems 3.2 and
3.4. So we may assume that n is odd. If n¼ 3, then we can eas-
ily verify that trðCnðCkÞÞ¼ 4: So we may assume that n� 5:
We consider the following two cases.

Case 1: k¼ 4 or 5.
Let vn ¼ vðn�1Þk ¼ vn1, v11 ¼ v1, vn1 ¼ vn, vðn�1Þ1 ¼ vn�1

and vbn2c1 ¼ vn�2: Let Wi ¼ fvi2, vi3=bn2c þ 1 � i � n� 2g,
W0 ¼ [n�2

bn2cþ1Wi and W00 ¼ fvðn�1Þðk�1Þ, vn1, vn2g and W ¼
W0 [W00: We claim that W is a resolving set of CnðCkÞ: Let
x, y be two distinct vertices of VðCnðCkÞÞ nW: Let B ¼
V A1 [ Abn2c [ An�1 [ An
� �

: If either x, y 2 VðCnðCkÞÞ n B or

x 2 VðCnðCkÞÞ n B and y 2 B, then rðxjW0Þ 6¼ rðyjW0Þ: It
follows that rðxjWÞ 6¼ rðyjWÞ: So we may assume that x, y 2
B: If dðx,wÞ 6¼ dðy,wÞ for some w 2 W0, then rðxjWÞ 6¼
rðyjWÞ: So we may assume that dðx,wÞ ¼ dðy,wÞ for all
w 2 W0: Therefore either x ¼ vnðk�1Þ and y ¼ v12 or x ¼
vðn�1Þ2 and y ¼ vbn2cðk�1Þ: Without loss of generality, let x ¼
vnðk�1Þ and y ¼ v12 or x ¼ vðn�1Þ2: Then dðy, vn2Þ ¼ 3 and

dðx, vn2Þ ¼ 1 if k ¼ 4
2 if k ¼ 5:

�
It follows that rðxjWÞ 6¼

rðyjWÞ: Thus W is a resolving set of CnðCkÞ and hence
trðCnðCkÞÞ � n: By Theorem 3.2, trðCnðCkÞÞ � n and
hence trðCnðCkÞÞ ¼ n:

Case 2: k � 6:
By Theorem 3.2, trðCnðCkÞÞ � n: But we claim that

trðCnðCkÞÞ � nþ 1: Suppose trðCnðCkÞÞ ¼ n: Since W is a
total resolving set, hWi contain at most bn2c components.

Then W \ fvi2, vi3, :::, vidk2eg [ fvj2, vj3, :::, vjdk2eg
� �

¼ ; since

some Ai and Aj meet the common vertex v. Let vi1 ¼ vj1 ¼ v
and vi1vik ¼ ei, vj1vjk ¼ ej: Then rðvi2jWÞ ¼ rðvj2jWÞ,
which is a contradiction. Hence trðCnðCkÞÞ � nþ 1: By

Theorem 3.4, trðCnðCkÞÞ � 2½n� bn2c� ¼ nþ 1 and hence
trðCnðCkÞÞ ¼ nþ 1: w

Theorem 3.12. For n � 3,

trðPnðCkÞÞ ¼ nþ 1 if n is odd and k � 6 or n ¼ 3
n otherwise:

�

Proof. Let VðPnÞ ¼ fv1, v2, :::, vng and

EðPnÞ ¼ fviviþ1 = 1 � i � n� 1g:
Let M¼fe1 ¼ v2v3,e2 ¼ v4v5, :::,ebn�2

2 c ¼ vn�3vn�2g, en�2 ¼
vn�2vn�1,en�1 ¼ vn�1vn: Let W be a total resolving set of
PnðCkÞ and Ci be the edge cycle of ei: Let VðCiÞ¼
fvi1,vi2, :::,vikg, vi1vik ¼ ei: If n is even, then the proof fol-
lows from Theorems 3.3 and 3.6. So we may assume that n
is odd. If n¼ 3, then we can easily verify that trðPnðCkÞÞ¼
4: So we may assume that n� 5: We consider the following
two cases.

Case 1: k¼ 4 or 5.
Let vðn�2Þ1 ¼ vn�2, vðn�1Þ1 ¼ vn�1 and vbn�2

2 c1 ¼ vn�3: Let

Wi ¼ fvi2, vi3 = bn�2
2 c þ 1 � i � n� 3g, W0 ¼ [n�3

bn�2
2 cþ1Wi

and W00 ¼ fvðn�2Þðk�1Þ, vðn�1Þ1, vðn�1Þ2g and W ¼ W0 [W00:
We claim that W is a resolving set of PnðCkÞ: Let x, y be
two distinct vertices of VðPnðCkÞÞ nW: Let B ¼
V Cbn�2

2 c [ Cn�2 [ Cn�1
� �

: If either x, y 2 VðPnðCkÞÞ n B or

x 2 VðPnðCkÞÞ n B and y 2 B, then rðxjW0Þ 6¼ rðyjW0Þ: It
follows that rðxjWÞ 6¼ rðyjWÞ: So we may assume that x, y 2
B: If dðx,wÞ 6¼ dðy,wÞ for some w 2 W0, then rðxjWÞ 6¼
rðyjWÞ: So we may assume that dðx,wÞ ¼ dðy,wÞ for all
w 2 W0: Therefore x ¼ vbn�2

2 cðk�1Þ and y ¼ vðn�2Þ2: Then

dðx,vðn�2Þðk�1ÞÞ ¼ 3 and dðy,vðn�2Þðk�1ÞÞ ¼ 1 if k ¼ 4
2 if k ¼ 5:

�
It

follows that rðxjWÞ 6¼ rðyjWÞ: Thus W is a resolving set of
PnðCkÞ and hence trðPnðCkÞÞ� n: By Theorem 3.3,
trðPnðCkÞÞ� n and hence trðPnðCkÞÞ¼ n:

Case 2: k � 6:
By Theorem 3.3, trðPnðCkÞÞ � n: But we claim that

trðPnðCkÞÞ � nþ 1: Suppose trðPnðCkÞÞ ¼ n: Since W is a
total resolving set, hWi contain at most bn2c components.

Then W \ fvi2, vi3, :::, vidk2eg [ fvj2, vj3, :::, vjdk2eg
� �

¼ ; since

some Ci and Cj meet the common vertex v. Let vi1 ¼ vj1 ¼ v
and vi1vik ¼ ei, vj1vjk ¼ ej: Then rðvi2jWÞ ¼ rðvj2jWÞ, which
is a contradiction. Hence trðPnðCkÞÞ � nþ 1: By Theorem
3.6, trðPnðCkÞÞ � nþ 1 and hence trðPnðCkÞÞ ¼ nþ 1: w

Theorem 3.13. For n � 3 and k � 6,

trðKnðCkÞÞ ¼ n2 � 2n if n is even
n2 � 2nþ 1 if n is odd:

�

Proof. Let VðKnÞ¼ fv1,v2, :::,vng and EðKnÞ¼ fe1,e2, :::,emg:
Let C1,C2,C3, :::,Cm be the edge cycles of e1,e2,e3, :::,em
respectively. Let VðCiÞ¼ fvi1,vi2, :::,vikg, 1� i�m: Let W
be a total resolving set of KnðCkÞ: First we claim that
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trðKnðCkÞÞ� 2½m�bn2c�: Suppose that trðKnðCkÞÞ� 2½m�
bn2c��1: Since KnðCkÞ contain nðn�1Þ

2 edge cycles, hWi con-

tain union of at most ½nðn�1Þ
2 �bn2c��1 components. Then

W\ fvi2,vi3, :::,vidk2eg [ fvj2,vj3, :::,vjdk2eg
� �

¼ ; since Ci and

Cj meet the common vertex and hence we have rðvi2jWÞ¼
rðvj2jWÞ, which is a contradiction. Thus trðKnðCkÞÞ�
2½m�bn2c�: By Theorem 3.4, trðKnðCkÞÞ� 2½m�bn2c� and

hence trðKnðCkÞÞ¼ n2�2n if n is even
n2�2nþ1 if n is odd:

�
w

4. General bounds and extremal graphs

In this section, we obtain bounds for the total resolving
number of GðCkÞ and characterize the extremal graphs.

Theorem 4.1. Let G be a graph of order n � 3 and
k � 6: Then 4 � trðGðCkÞÞ � n2 � 2nþ 1:

Proof. Let W be a total resolving set of GðCkÞ:
Claim 1: trðGðCkÞÞ � 4:

If G is a tree, then G has at least two pendent edges.
Therefore by Lemma 1.9, trðGðCkÞÞ � 4: If G contains a
cycle, then we claim that trðGðCkÞÞ � 4: Suppose

trðGðCkÞÞ � 3: Then hWi is connected. Then W \
fvi2, vi3, :::, vidk2eg [ fvj2, vj3, :::, vjdk2eg

� �
¼ ; since some Ci and

Cj meet the common vertex v: Let vi1 ¼ vj1 ¼ v and
vi1vik ¼ ei, vj1vjk ¼ ej: Then rðvi2jWÞ ¼ rðvj2jWÞ, which is a
contradiction. Hence trðGðCkÞÞ � 4:

Claim 2: trðGðCkÞÞ � n2 � 2nþ 1:
The upper bound depends on the number of edges and

by Theorem 3.4, trðGðCkÞÞ � 2½nðn�1Þ
2 � bn2c�: Thus

trðGðCkÞÞ �
n2 � 2n if n is even

n2 � 2nþ 1 if n is odd:

(

w

Theorem 4.2. Let G be a graph of order n � 3 and k �
6: Then trðGðCkÞÞ ¼ 4 if and only if G ffi P3, C3, P4 or C4:

Proof. Let trðGðCkÞÞ ¼ 4 and W be a total resolving set of
GðCkÞ: If G is a tree, then G has at least two pendent edges.
By Lemma 1.9, G has exactly two pendent edges. Therefore
G ffi Pn: By Theorem 3.12, G ffi P3 or P4:

If G contains a cycle, then we claim that n ¼ 3 or
4: Suppose n � 5: Then m � 5 and m � n: Let EðGÞ ¼
fe1, e2, :::, emg and M ¼ fe1, e2, :::, esg be the maximum edge
independent set of G: Let Ci be the edge cycle of ei, 1 �
i � m: Since trððCkÞÞ ¼ 4, hWi is either connected or 2K2:

Then all the vertices of W belong to union of two edge
cycles of GðCkÞ: Without loss of generality, let W �
ðVðCmÞ [ VðCm�1ÞÞ: Then W \ VðCiÞ ¼ ; for all 1 � i �
m� 2: Since m� 2 > bn2c and s � bn2c, m� 2 > s: Then we
have W \ ðVðCiÞ [ VðCjÞÞ ¼ ; since some Ci and Cj meet
the common vertex v: Let vi1 ¼ vj1 ¼ v and vi1vik ¼ ei,
vj1vjk ¼ ej: Then rðvi2jWÞ ¼ rðvj2jWÞ, which is a contradic-
tion. Hence n ¼ 3 or 4: If n ¼ 3, then G ffi C3: If n ¼
4, then G ffi C4 or K1 þ ðK2 [ K1Þ or K4 � e or K4: If G
is K1þ ðK2 [ K1Þ or K4 � e or K4, then we can easily verify
that trðGðCkÞÞ > 4, which is a contradiction and
hence G ffi C4:

Conversely, let G ffi P3, C3, P4 or C4: Then by Theorems
3.11 and 3.12, trðGðCkÞÞ ¼ 4: w

Theorem 4.3. Let G be a graph of order n � 3 and k �
6: Then trðGðCkÞÞ ¼ n2 � 2nþ 1 if and only if n is odd
and G ffi Kn:

Proof. Let trðGðCkÞÞ ¼ n2 � 2nþ 1: If n is even, by
Theorem 3.6, trðGðCkÞÞ � n2 � 2n, which is a contradiction.
Therefore n is odd. Now we claim that G ffi Kn: It is enough

to prove that m ¼ nðn�1Þ
2 : Suppose m < nðn�1Þ

2 : If dðGÞ � 2,

then by Theorem 3.4, trðGðCkÞÞ � 2½m� b1ðGÞ�: Since m <
nðn�1Þ

2 and b1ðGÞ � bn2c, trðGðCkÞÞ < 2½nðn�1Þ
2 � bn2c� ¼ n2�

2n� 1, which is a contradiction. If dðGÞ ¼ 1, then we can
similarly prove that trðGðCkÞÞ < n2 � 2n� 1: Hence G ffi
Kn: Conversely, let G ffi Kn, n is odd. Then by Theorem
3.13, trðGðCkÞÞ ¼ n2 � 2nþ 1: w
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