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ABSTRACT

Let G = (V,E) be a simple connected graph. An ordered subset W of V is said to be a resolving
set of G if every vertex is uniquely determined by its vector of distances to the vertices in W. The
minimum cardinality of a resolving set is called the resolving number of G and is denoted by
r(G). Total resolving number is the minimum cardinality taken over all resolving sets in which (W)
has no isolates and it is denoted by tr(G). In this paper, we determine the exact values of total
resolving number of K, ,_1(Ck), Bs,+(Ck), Cn(Ck), Pn(Cx) and K,(Cx). Also, we obtain bounds for the
total resolving number of G(Cx) when G is an arbitrary graph and characterize the

extremal graphs.

1. Introduction

Let G = (V,E) be a finite, simple, connected and undirected
graph. The degree of a vertex v in a graph G is the number of
edges incident with v and it is denoted by d(v). The maximum
degree in a graph G is denoted by A(G) and the minimum
degree is denoted by 6(G). The distance d(u, v) between two
vertices u and v in G is the length of a shortest u-v path in G.
The maximum value of distance between vertices of G is called
its diameter. Let P, denote any path on n vertices, C,, denote
any cycle on n vertices and K,, denote any complete graph on n
vertices. A complete bipartite graph is denoted by K ;. K}, ,—1
is called a star. A tree containing exactly two vertices that are
not end vertices is called a bistar and it is denoted by B, ;. The
join G+ H consists of G U H and all edges joining a vertex of
G and a vertex of H. Let P denote the set of all pendent edges
of G and |P| = p. Vertices which are adjacent to pendent verti-
ces are called support vertices.

A graph H is called a subgraph of a graph G if V(H) C
V(G) and E(H) C E(G). A subgraph F of a graph G is called
an induced subgraph (F) of G if whenever u and v are vertices
of F and uv is an edge of G, then uv is an edge of F as well. For
a non empty set X of edges, the subgraph (X) induced by X
has edge set X and consists of all vertices that are incident with
at least one edge in X. This subgraph is called an edge induced
subgraph of G. A set of edges in a graph is independent if no
two edges in the set are adjacent. The edge independence num-
ber f5,(G) of a graph G is the maximum cardinality taken over
all maximal independent set of edges.

If W= {w,wy,...,w}C V(G) is an ordered set, then
the ordered k-tuple (d(v,w)),d(v,w2),....,d(v,wx)) is called
the representation of v with respect to W and it is denoted
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by r(v|W). Since the representation for each w; € W con-
tains exactly one 0 in the i position, all the vertices of W
have distinct representations. W is called a resolving set for
G if all the vertices of V'\ W also have distinct representa-
tions. The minimum cardinality of a resolving set is called
the resolving number of G and it is denoted by r(G).

In 1975, Slater [5] introduced these ideas and used locat-
ing set for what we have called resolving set. He referred to
the cardinality of a minimum resolving set in G as its loca-
tion number. In 1976, Harary and Melter [1] discovered
these concepts independently as well but used the term met-
ric dimension rather than location number. In 2003, Ping
Zhang and Varaporn Saenpholphat [6, 7] studied connected
resolving number and in 2015, we introduced and studied
total resolving number in [3]. In this paper, we use the
term resolving number to maintain uniformity in the cur-
rent literature.

If W is a resolving set and the induced subgraph (W)
has no isolates, then W is called a total resolving set of G.
The minimum cardinality taken over all total resolving sets
of G is called the total resolving number of G and is denoted
by tr(G). We introduced edge cycle graph in [2] and studied
the resolving number of edge cycle graph G(Cy) and we
studied the total resolving number of edge cycle graph
G(GCs) in [4].

In this paper, we investigate the total resolving number
of the edge cycle graph G(Cy), k > 4.

Theorem 1.1. [3] Let {wy,w,} C V(G) be a total resolving
set in G. Then the degrees of w; and w, are at most 3.

Lemma 1.2. [3] For n > 3, tr(P,) =2 and tr(C,) = 2.
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G G(Cy)
Figure 1. A graph G and its edge cycle graph.

Observation 1.3. [3] For any graph G, 2 < tr(G) <n — 1.

Theorem 1.4. [3] For n >3, tr(G) =n—1 if and only if
G:Kn or Kl)nfl.

Definition 1.5. A block of G containing exactly one cut
vertex of G is called an end block of G.

Lemma 1.6. [2] Let G be a 1-connected graph with 6(G) >
2. Then every resolving set contains at least one non cut
vertex of each end block.

Definition 1.7. A cycle C, is called an end cycle if C,
contains exactly one vertex of degree at least 3.

Notation 1.8. Let e. denote the number of end cycles of the
graph G.

Lemma 1.9. Let G be a graph with e, > 1 and each end cycle
of size at least 4. Then tr(G) > 2e,.

Proof. Let W be a total resolving set of G. Let C;, C;, ..., C,, be
the end cycles of G. By Lemma 1.6, W N (V(G;) \ {v}) # 0 for
all 1 <i < e. Let v be the common vertex of some end cycles
C,Cy, ... Cr. If v € W, then clearly, WN (V(C) \ {v}) > 2,
for each 1 <i<r. If v W, then we claim that |WNX| >
2r, where X =U[_ V(C;). Suppose |WNX|<2r—1.
Clearly, exactly two neighbors of v in V(C;) U V(C,) belongs
to W. Without loss of generality, let v;,v, € W. Then
r(vs) W) = r(v4| W), which is a contradiction. Thus |W N
X| > 2r. Consequently, tr(G) > 2e,. O

2. Resolving number of edge cycle graphs G(Cy), k > 4
The following results are proved in [2].

Definition 2.1. An edge cycle graph of a graph G is the
graph G(Cy) formed from one copy of G and |E(G)| copies
of P, where the ends of the i edge are identified with the
ends of i"™ copy of Py. A graph G and its edge cycle graph
G(Cy) are shown in Figure 1.

Lemma 2.2. Let v be a vertex of degree r in G and
e1, e, ..., e, be edges incident with v and C; be the edge cycle

of e;, 1 <i < r. Then every resolving set of G(Cy) contains at
least one vertex of degree 2 from C; for all 1 <i <r with at
most one exception.

Lemma 2.3. Let e be an edge of degree s and ey, e, ...,es_; be
the edges adjacent to e in G. If any resolving set W of G(Cy)
does not contain any internal vertex of the edge cycle of e,
then W contains at least one internal vertex from each edge
cycle of e, 1 <i<s—2.

Theorem 2.4. Let E; = {e}, s, ....e;} be a subset of edges of
G and W be a resolving set of G(Cy). If W does not contain
any internal vertex of edge cycle of e;, then E; is independent.

Lemma 2.5. Let G be a graph of order n > 3 and 0(G) > 2.
Then r(G(Cy)) > m — f,(G).

Lemma 2.6. Let G be a graph of order n > 3 and 6(G) = 1.
Then r(G(Cy)) > m — $,(G\ P).

Theorem 2.7. Let G be a graph of order n > 5 and size m. If
k is odd and 6(G) > 2, then r(G(Cy)) = m — B,(G).

Theorem 2.8. Let G be a graph of order n > 5, size m and
0(G) = 1. If k is odd, then r(G(Cx)) = m — ,(G\ P).

3. Total resolving number of G(Cy), k > 4.

In this section, we determine the exact values of total resolving
number of Kj,,—1(Cx), Bs,:(Ck), Cn(Ck), P,(Ci) and K,,(Cy).

Definition 3.1. A vertex cover in a graph G is a set of verti-
ces that covers all edges of G. The minimum cardinality
taken over all minimal vertex covers of G is the vertex cov-
ering number o(G) of G.

Theorem 3.2. Let G be a graph of order n > 4 and size m.
Let My, M,,...,M, be the collection of all maximum edge
independent sets of G and G; = (G\ M;), 1 <i <r. If§(G) >
2, then tr(G(Cy))>m—p,(G)+t, where t=min{a(G),
o(Gz)s...r a(Gy) }.

Proof. Let Y = {v,v,,...,v;} be the minimum vertex cover-
ing of G; for some i and W; be any total resolving set of
G(Cy). By Theorem 2.5, r(G(C¢)) > m — f,(G). Let W' be a
minimum resolving set of G(Ci). Using Lemmas 2.2, 2.3
and 2.5, (W) is K,_pg . Thus |[W|>m—p (G)+
Y[ =m—p,(G) +¢. O

Theorem 3.3. Let G be a graph of order n > 4, size m and
0(G) =1. Let My, M,,....,M, be the collection of all max-
imum edge independent sets of G and G; = (G \ (M; U P)),
1<i<r. Then tr(G(Cx)) > m— B,(G\P)+t+p, where
t = min{o(Gy), 2(Ga), ..., a(G,) }.

Proof. Let Y = {v1, v, ..., v} be the minimum vertex covering
of G; for some i and W, be any total resolving set of G(Cy). By
Lemma 2.6, r(G(Cy)) > m — (G \ P). Let W’ be a minimum
resolving set of G(Cy). Using Lemmas 1.6, 2.2, 2.3 and 2.6, (W')



is Km*ﬁﬁ(G\P)' Thus |Wi| > m — ﬁl(G\P) + Y|+ |P| = m—
B(G\P)+t+p. O

Theorem 3.4. Let G be a graph of order n > 3, size m and
k> 4. If §(G) > 2, then tr(G(Cy)) < 2[m — B,(G)].

Proof. Let E(G) = {e1,ez,....em}. Let f,(G) =s and M =
{e1, €2, ...,e;} be the maximum edge independent set of G.
Let C; be the edge cycle of ;. Let V(C;) = {vi1, vz, ..o Vi }
and e; = vyv. If n=3, then we can easily verify that
tr(G(Cx)) < 4. So we may assume that n > 4. By Theorem
2.7, if k is odd, then r(G(Cy)) < m — ,(G). Therefore, if k
is odd, then #r(G(Cy)) < 2r(G(Cy)) <2[m — ,(G)]. Now
we claim that if k is even, then tr(G(Cy)) < 2[m — B,(G)].
Let W= {viv,/s+1<i<m} We claim that W is a
resolving set of G(Cy). Let x, y be two distinct vertices of
V(G(Ck)) \ W. We consider the following two cases.

Case 1: x € V(C;) for some 1 <i <s.
Without loss of generality, let x € V(C;). Then x lies on
either vi;-vyx path or vy y)-vix path. Without loss of gener-

ality, let x lie on vi;-vyx path. Since 0(G) > 2, there exist

two distinct edges e,, ey € E(G) \ {e;} such that e, is inci-
dent with v, and e, is incident with v,. Since e; € M, by
Lemma 2.3, e,,ex ¢ M. Without loss of generality, let e, =
e, and ey = e,_1. Let S= {vmg, Vin(es 1) V(m—-1)%0 V(m—l)(§+1)}'
If ye V(C,UC,-1UC,), then r(x|S) # r(y|S). It follows
that r(x|W) # r(y]W). So we assume that y € V(C;) for
some 2 <i<m—2.If d(x,s) # d(y,s) for some s € S, then
r(x|W) # r(y|W). So we may assume that d(x,s) = d(y,s)
for all s € S. Therefore y-v,x path and y-v,,«,,) path passes

through vy, and y-v,,_ path and y-v(,,_;e ki) path passes

through v;; and vyy.

Ify € V(C;) for some s + 1 < i < m — 2, then without loss
of generality, let y € V(Cy—2). Thus either d(x, v, _5x)>
d(y, V(mfz)g) or d(x, (m—2)(+1) )> d()’ (m—2 (k+1)) If ye
V(C;) for some 2 < i <s, then without loss of generality, let
y € V(C,). Since 0(G) > 2, there exist two distinct edges
e ep € E(G) \ {e1,e,} such that e, is incident with v,; and ey
is incident with vy. Since e; € M, by Lemma 2.3, e;, ey & M.
If either e, # e, or ey # e,_1, then without loss of generality,
let e #e,. Let and Then

d(x, vy, )> d(y, v
= r(y|S). It follows that r(x|W) # r(y|W).
Case 2: x ¢ V(C;) forall 1 <i<s.

Then without loss of generality, let x € V(C,,). Let X =
{vmg, (1) }.Ify € V(Cp), then r(x|X) # r(y|X). It follows
that r(x|W) # r(y|W). So we may assume that x & V(C,,).
If d(x,v,x) # d(y, V), then r(x|W) # r(y|W). So we may

assume that d(x,v K) = d(y,v £)- Therefore x = v and y is

€t = em—2 V(m-2)1 = V11-

the neighbor of v,,;. Thus d(x, (k1)) = d(y, (k1)) — 2. 1t
follows that r(x|W) # r(y|W).
Hence tr(G(Cy)) < 2[m — f,(G)]. O

)5)’ If e = e, ey = €1, then r(x|S) /

AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS 889

Open problem 3.5. Let G be a graph of order n > 3, size
m, k>4. If 0(G)>2, then characterize G for
which tr(G(Cy)) = 2[m — S,(G)].

Theorem 3.6. Let G be a graph of order n > 3, size m. If
0(G) =1, then tr(G(Cy)) < 2[m — S,(G\ P)].

Proof. Let V(G) = {v1,v3, ... Va}» E(G) ={e1, e, ....en}. Let
B1(G\ P) =s. Let M = {ej,e,,...,e;} be the maximum edge
independent set of G\ P and P = {es1,€2,...,x4p}. Let C;
be the edge cycle of e; and V(Ci) = {vi, Vi, ., ik}, 1 <i <
m. Let e =vyvir, 1 <i<m. If n=3, then we can easily
verify that tr(G(Cy)) < 4. So we may assume that n > 4. By
Theorem 2.8, if k is odd, then r(G(Cy)) < m — ,(G\ P).
Therfore tr(G(Cy)) < 2r(G(Cy)) < 2[m — ,(G\ P)]. Now
we claim that if k is even, then tr(G(Cy)) <
2[m— (G \ P)].

Let Wi={vpve,}s+1<i<m and W=UL_ W,
We claim that W is a resolving set of G(Cy). Let x, y be two
distinct vertices of V(G(Cy)) \ W.

If x,y € V(C;) for some s+ 1<i<s+p, then without
loss of generality, let x,y € V(Cy;1). Let d(v(s41)1) =2 in
G(Cy). If d(% V(s 418) 7 A5 Vss1)t) then r(x|W) # r(y|W).
So we may assume that d(x, (s+1f) = d( s V(sr 1) Then x
lies on Vist 1t V(s+1)1 path and y lies on Vist 1)k V(s+1k path.
Therefore d(x,w) = d(y,w) + 1 for all w € W\ {v ). It
follows that r(x|W) # r(y|W). If x € V(Cs11), ¥ & V(Cst1)s
then d(x,v(g 1)) < d(y,v(o ). It follows that r(x|W) #
riy|W). If x,y € V(C;) for all s+1<i<s+p, then the
proof is similar to Case 1 and Case 2 of Theorem 3.4. Thus
tr(G(Cy)) < 2[m — B, (G \ P)]. m

Open problem 3.7. Let G be a graph order of n > 3, size
m and O(G)=1. Then characterize G for which

tr(G(Cx)) = 2[m — p1(G\ P)].
Theorem 3.8. For n > 2, tr(Ky,,—1(Cy)) = 2(n —1).

Proof. By Theorem 3.6, tr(Ky,,—1(Cy)) <2(n—1) and by
Lemma 1.9,

tr(Ky,n-1(Cx)) > 2(n — 1). Hence tr(Ky,,—1(Cy)) = 2(n —1).

O
Theorem 3.9. For s,t > 1, tr(B(Cy)) = 2(s + t).
Proof. By Lemma 19, tr(B;:(Cy))>2(s+¢t) and by
Theorem 3.6,
tr(Bs:(Cx)) < 2(s+1).
O

Theorem 3.10. Let G be a graph of order n > 3 and 6(G) =
Then tr(G(Cy)) = 2p if and only if G is either a star or bistar.

Proof. Let tr(G(Cy)) =2p and W be a total resolving set of
G(Ck). Let E(G) = {e1,e2,....em}, P ={ei,es....,e,} be the
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set of pendent edges of G and C; be the edge cycle of e;. Let
V(Cl) = {Vi1>vi27 ...,V,‘k} and V(Al) = {V,‘z,VB, ~~~:Vi(k—1)}~ BY
proof of Lemma 1.9, |WnN (UL, V(C))| > 2p. Therefore
WNV(A)=0 for al p+1<i<m. Let E =
{ep+1-€p42,..em}. By Theorem 2.4, E; is independent,
which is a contradiction to G(Cy) \ UL_, V(C;) is connected
and hence |E;| < 1. If |E;| =0, then G= Ky . If |Ej| =
1, then G = B; ;.

The proof of the converse part follows from Theorems 3.8
and 3.9. 0

Theorem 3.11. For n > 3,

_Jn+1 ifnisoddandk > 6 orn=3
r(Cn(C)) = {n otherwise.

Proof. Let V(C,) = {v1,v2,...,vs} and
E(Cy) ={vivis1 / 1 <i<n—1tU{vani}.

Let M={ei=vivz,es=v3v4,€3= V5Ve, ., €2) = Vp—2Vn—1}
and ey = VuVi,en—1=Vu—1Vn, 6L§J+1 =VV3, EL§J+2 = V4V5,...
en—2 = Vn_3Vn_2. Let W be a total resolving set of C,(Cy) and
A, be the edge cycle of e;. Let V(A;) = {vi1,Viz, .- Vik }> VirVik =
e;. If n is even, then the proof follows from Theorems 3.2 and
3.4. So we may assume that # is odd. If n =3, then we can eas-
ily verify that tr(C,(Cy)) =4. So we may assume that n > 5.
We consider the following two cases.

Case 1: k=4 or 5.

Let vy = V(u-1)k = Vnl> Vi1 = V1, Vil = V> V(n-1)1 = Vn—1
and vjgp =v,2. Let W;= {visvis/15] +1<i<n-2}
W' = u@ﬁlwf and W’ = {v(,_1)k-1)» Va1, Via} and W =
WU W”. We claim that W is a resolving set of C,(C). Let
x, y be two distinct vertices of V(C,(Cy))\ W. Let B=
V(Al UAp UA, UAn). If either x,y € V(C,(Cy)) \ B or
x € V(C,(Ck))\ B and y € B, then r(x|W') # r(y|W'). It
follows that r(x|W) # r(y|W). So we may assume that x,y €
B. If d(x,w) # d(y,w) for some we& W', then r(x|W) #
r(y|W). So we may assume that d(x,w) = d(y,w) for all
w € W'. Therefore either x = v,;_;) and y =vy; or x =
V(n—1)2 and y = Viz)(k-1)- Without loss of generality, let x =
Vnk=1) and y = vy or x = v(,_1);. Then d(y,v,,) = 3 and
d(x, Vi) = {; gf o (W) #
r(y|W). Thus W is a resolving set of C,(Cx) and hence
tr(Cy(Ck)) < n. By Theorem 3.2, tr(C,(C)) >n and
hence tr(C,(Cy)) = n.

Case 2: k > 6.
By Theorem 3.2, tr(C,(Cy)) > n. But we claim that
tr(C,(Cx)) > n+ 1. Suppose tr(C,(Cx)) = n. Since W is a
n

total resolving set, (W) contain at most || components.

Then WnN ({Vl‘z,‘l/,g, - vi[zﬂ} U {vj2, Vj3s .- vjm}) = since
some A; and A; meet the common vertex v. Let v;; = vj; = v
and  vivi = e, viivik = ¢ Then  r(vp|W) = r(vp|W),
which is a contradiction. Hence tr(C,(Cy)) >n+1. By

It follows that

Theorem 3.4, tr(C,(Ci)) <2[n—[4]]=n+1 and hence
tr(C,(Cr)) =n+ 1. O

Theorem 3.12. For n > 3,

_fn+1 ifnisoddand k > 6o0rn=3
tr(Pu(Ci)) = { n otherwise.

Proof. Let V(P,) = {v1,V2,..., v} and
E(P,) = {vvis1 / 1 <i<n—1}.

Let M= {61 =1VV3, € = V4V5,...,€LnT—2J = Vn_3‘Vn_2}, €p—2 =
Vn—2Vn—1,€n—1 =Vn—1Vn. Let W be a total resolving set of
P,(Cy) and C; be the edge cycle of e. Let V(C;)=
{vit,vi2,-.»Vik}» viivik =e;. If n is even, then the proof fol-
lows from Theorems 3.3 and 3.6. So we may assume that n
is odd. If n=3, then we can easily verify that tr(P,(Cy)) =
4. So we may assume that n>5. We consider the following
two cases.

Case 1: k=4 or 5.

Let V(y_2)1 = Vu—2, V(n—1)1 = Va1 and Vin2)) = V3. Let
Wi={va,va [ "P]+1<i<n—3},  W=U3, W
and W' = {V(n—2)(k—1))V(n—l)bv(n—l)z} and W=WUuUWwW".
We claim that W is a resolving set of P,(Ci). Let x, y be
two distinct vertices of V(P,(Cy))\ W. Let B=
V(Cluz2) UGy UC,y). If either x,y € V(P,(Cy)) \ B or
x € V(P,(Cy))\ B and y € B, then r(x|W’') # r(y|W'). It
follows that r(x|W) # r(y|W). So we may assume that x, y €
B. If d(x,w) # d(y,w) for some we€ W', then r(x|W) #
r(y|W). So we may assume that d(x,w)=d(y,w) for all
w € W'. Therefore x = V]2 (k1) and y = v(,_2). Then

1 ifk =4
A6 Vp-2)k-1) =3 and d(yv-)k-1) = {2 if k = 5.
follows that r(x|W) #r(y|W). Thus W is a resolving set of
P,(Cy) and hence #r(P,(Cy))<n. By Theorem 3.3,
tr(P,(Cx)) > n and hence tr(P,(Cy)) =n.

Case 2: k > 6.

By Theorem 3.3, tr(P,(Cx)) > n. But we claim that
tr(P,(Cx)) > n+ 1. Suppose tr(P,(Cy)) =n. Since W is a
total resolving set, (W) contain at most |5| components.

Then WN ({Vl‘z,Vl‘g, - Vi(’ﬂ} U {vj2, vj3» ...,vj%]}> = since
some C; and C; meet the common vertex v. Let v;; = Vi =V
and vy vik = e;, Vjivjx = ¢j. Then r(vp|W) = r(vi|W), which
is a contradiction. Hence tr(P,(Cx)) > n+ 1. By Theorem
3.6, tr(P,(Cy)) < n+ 1 and hence tr(P,(Cy)) = n+ 1. O

It

Theorem 3.13. For n > 3 and k > 6,

n? —2n

if nis even
if nis odd.

Proof. Let V(K,)={v1,v2,...v,} and E(K,)={e1,e2,....em}.
Let C;,C,,Gs,...,C, be the edge cycles of ej,ep,es,....em
respectively. Let V(C;)={vi,vio,...vik}, 1<i<m. Let W
be a total resolving set of K,(Cy). First we claim that



tr(Ku(Cr)) = 2[m — [3]].

|5]] — 1. Since K,(Ci) contain

—n(n{ b_ |4]] =1 components. Then

wn ({Viz,m,...,vi@} U {vjz,vﬁ,...,vﬂg}) = () since C; and

Suppose that tr(K,(Cy)) <2[m—
n(n—1

T) edge cycles, (W) con-

tain union of at most |

Cj meet the common vertex and hence we have r(v,|W) =
r(vp|W), which is a contradiction. Thus tr(K,(Cy))>
2[m—|5]]. By Theorem 3.4, tr(K,(Cy))<2[m—[5]] and
hence tr(K,(Cy)) = { nz —2n
n°—2n+1

if nis even
if nis odd. =

4. General bounds and extremal graphs

In this section, we obtain bounds for the total resolving
number of G(Cy) and characterize the extremal graphs.

Theorem 4.1. Let G be a graph of order n>3 and
k > 6. Then 4 < tr(G(Cy)) < n* —2n+ 1.

Proof. Let W be a total resolving set of G(Cy).

Claim 1: #(G(Cy)) > 4.

If G is a tree, then G has at least two pendent edges.
Therefore by Lemma 1.9, tr(G(Cy)) > 4. If G contains a
cycle, then we claim that #(G(Cy)) > 4. Suppose

tr(G(Cx)) < 3. Then (W) is connected. Then WnN

({V,'z,‘l/ig,, - Vi[’ﬂ} U {vi2> Vi3> --0s vj(ﬂ}) = () since some C; and
C; meet the
VilVik = e, Vj1Vik = ej. Then r(vip|W) = r(vp|W), which is a
contradiction. Hence tr(G(Cy)) > 4.

common vertex v. Let v = Viip =V and

Claim 2: tr(G(Cy)) < n* —2n+ 1.
The upper bound depends on the number of edges and

by Theorem 3.4, tr(G(Cy)) < 2[@ — [5J]. Thus
n* —2n
n* —2n+1

if nis even

tr(G(Cy)) < { if n is odd.

O

Theorem 4.2. Let G be a graph of order n >3 and k >
6. Then tr(G(Cy)) = 4 ifand only if G = P;, C3, Py or Cy.

Proof. Let tr(G(Cy)) =4 and W be a total resolving set of
G(Cy). If G is a tree, then G has at least two pendent edges.
By Lemma 1.9, G has exactly two pendent edges. Therefore
G = P,. By Theorem 3.12, G = P5 or Py.

If G contains a cycle, then we claim that n=3 or
4. Suppose n > 5. Then m > 5 and m > n. Let E(G) =
{e1, €2, ...,e,,} and M = {ej,e;, ..., €5} be the maximum edge
independent set of G. Let C; be the edge cycle of ¢;, 1 <
i < m. Since tr((Cy)) =4, (W) is either connected or 2K,.
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Then all the vertices of W belong to union of two edge
cycles of G(Cy). Without loss of generality, let W C
(V(Cn)UV(Cyp_1)). Then WNV(C;) =0 for all 1<i<
m — 2. Since m —2 > [4] and s < [5], m —2 > 5. Then we
have W N (V(C;) UV(C;)) =0 since some C; and C; meet
the
vj1vjk = ¢;. Then r(vi|W) = r(viy|W), which is a contradic-
tion. Hence n=3o0r4. If n=3, then G=C;. If n=
4, then G= Cy or K; + (KUK;) or Ky — e or Ky. If G
is K+ (K, UK;) or Ky — e or Ky, then we can easily verify

common vertex v. Let v;; = Vi =V and vj1vik = e,

that tr(G(Cy)) >4, which is a contradiction and
hence G = Cy.

Conversely, let G = P;, Cs;, P4y or Cy. Then by Theorems
3.11 and 3.12, #r(G(Cy)) = 4. O

Theorem 4.3. Let G be a graph of order n >3 and k >
6. Then tr(G(Cy)) =n*> —2n+1 if and only if n is odd
and G =2 K,,.

Proof. Let tr(G(Cy))=n*—2n+1.1f n is even, by
Theorem 3.6, tr(G(Cy)) < n* — 2n, which is a contradiction.
Therefore n is odd. Now we claim that G = K,,. It is enough

to prove that m = @ Suppose m < @ If 6(G) > 2,
then by Theorem 3.4, tr(G(Cy)) < 2[m — $,(G)]. Since m <
Wt and f1(G) < 8, r(G(GY) < 25— 3] = -
2n — 1, which is a contradiction. If §(G) = 1, then we can
similarly prove that tr(G(Cx)) < n* —2n— 1. Hence G =
K,. Conversely, let G~ K,, n is odd. Then by Theorem
3.13, tr(G(Cy)) = n* — 2n + 1. O
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