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ABSTRACT
This paper presents a novel variable structure control (VSC) algorithm of event-triggered (ET) type, capable
of dealing with a class of nonlinear uncertain systems. By virtue of its ET nature, the algorithm can be used
as the kernel of a robust networked control system. The design objective is indeed to reduce the number of
transmissions over the network. The proposed ET-VSC also guarantees appropriate robustness properties,
even in the presence of delayed transmissions. It is theoretically analysed, proving that the sliding vari-
able associated with the controlled system results in being ultimately confined into a boundary layer of
prescribed amplitude. As a consequence, it is proved that the state of the considered uncertain nonlinear
system is ultimately bounded as well. Moreover, a lower bound for the time elapsed between consecutive
triggering events is provided, which excludes the notorious Zeno behaviour. Finally, the designed ET-VSC
control scheme is satisfactorily assessed in simulation.
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1. Introduction

Sliding mode control (SMC) is an effective methodology able
to guarantee satisfactory performance of the controlled sys-
tem even in the presence of matched uncertainties and external
disturbances (Utkin, 1992, 1994). By virtue of its low implemen-
tation complexity, it can be adequate also in case of networked
control systems (NCSs), i.e. feedback systems including com-
munication networks (Hespanha, Naghshtabrizi, & Xu, 2007).

In those systems, the presence of the network in the control
loop may cause the occurrence of packet loss, jitter, and delayed
transmissions, which can deteriorate the performance of the
control system (Wang & Liu, 2008). Since the networkmalfunc-
tions tend to increase with the network congestion, the design
of control approaches aimed at reducing the transmissions over
the network is often resolutive.

A methodology which is very appreciated to design NCSs
is the so-called event-triggered (ET) control (Aström, 2008;
De Persis, Sailer, & Wirth, 2013; De Persis & Tesi, 2015;
Heemels, Sandee, & Van Den Bosch, 2008; Tabuada, 2007; You
& Xie, 2013; Yu & Antsaklis, 2011). ET control, in contrast to
time-triggered control, which features periodic transmissions
of the measurements, enables the measurement transmissions
only when a pre-specified triggering condition is satisfied (or
violated, depending on the adopted logic). This implies that
the number of transmissions over the network can be sig-
nificantly reduced by suitably setting the triggering condition
threshold. By using ET control, in spite of the aperiodic trans-
mission of the measurements, satisfactory stability properties
can be enforced. Note that the basic ET control approach has
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been further elaborated so as to take into account the possible
knowledge of a nominal model of the plant. This has produced
the model-based event-triggered control discussed in Garcia
and Antsaklis (2011) and Montestruque and Antsaklis (2004).

ET control has been recently effectively exploited in con-
junction with SMC and model predictive control (MPC) (see
Cucuzzella & Ferrara, 2016, 2018; Ferrara & Cucuzzella, 2018;
Ferrara, Sacone, & Siri, 2015a, 2015b; Incremona & Fer-
rara, 2016; Incremona, Ferrara, & Magni, 2017). It is worth
noticing however that when SMC is coupled with the ET
approach, the attainment of an ideal sliding mode (SM) is not
feasible (Behera & Bandyopadhyay, 2016; Behera, Bandyopad-
hyay, Xavier, & Kamal, 2015), this is why we prefer to use in this
paper the term ‘ Variable Structure Control’ (VSC) to classify
the proposed approach.

Specifically, in this paper, we propose a novel VSC algorithm
of event-triggered type, capable of dealing with a class of non-
linear uncertain systems. The control problem to solve is chal-
lenging because the considered system is a nonlinear system
affected by uncertain terms which are exogenous signals, func-
tions of time, and the considered control architecture is of
networked type (i.e. a communication network is used to imple-
ment the control scheme), which implies that time delays can
affect the control variable/state transmission. In addition, we
want to comply with the requirement of utilising the communi-
cation network, which can be considered as a critical resource,
with parsimony.

The proposed algorithm is theoretically analysed in the
paper, proving that the sliding variable associated with the
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controlled system results in being ultimately confined into a
boundary layer of prescribed amplitude. As a consequence, it is
proved that the state of the considered uncertain nonlinear sys-
tem is ultimately bounded as well. It is worth noting that the
obtained evolution of the sliding variable within a boundary
layer implies that the state of the controlled system eventually
reaches and remains inside a ball centred at the equilibrium
point of interest, this ball in fact being an ultimately positively
invariant set of the controlled system. Note that this behaviour
can resemble that of the classical switching control with hystere-
sis (see Utkin, 1992), with the difference that in the proposed
control strategy the system state and the control input are not
always transmitted. As a further result, a lower bound for the
time elapsed between consecutive triggering events is provided
in the paper, which excludes the existence of an accumula-
tion point, i.e. the notorious Zeno phenomenon, also known as
‘Fuller phenomenon’ (see Liberzon, 2003) and long recognised
in slidingmode theory (Ames, Tabuada, & Sastry, 2006; Johans-
son, Lygeros, Sastry, & Egerstedt, 1999; Yu et al., 2012). All the
paper results have been proved in spite of the possible presence
of transmission delays.

Note that our contribution differs from those already pub-
lished in the literature and previously mentioned. In Behera
and Bandyopadhyay (2017), for instance, ET is combined
with SMC in order to guarantee the robust global stability
of linear time-invariant systems affected by matched external
disturbances. Differently from the present work, the trigger-
ing condition proposed in Behera and Bandyopadhyay (2017)
is based on the error between the actual state and the
one previously transmitted, while the threshold is not con-
stant and depends on the sampled state. A model-based ET
is used in connection with SMC in Incremona and Fer-
rara (2016), while second-order SMC laws are considered in
Cucuzzella and Ferrara (2018). Note however that both the
last two papers do not consider the presence of transmission
delays.

Note that a very preliminary version of the theory presented
in this paper, where no communication delay was considered,
and the proofs of the theoretical results, as well as the discussion
about the Zeno behaviour were not included, was provided in
Cucuzzella, Incremona, and Ferrara (2016).

Finally, we wish to underline that the authors present this
work to celebrate the 70th anniversary of Professor Fradkov. In
particular, we have selected the specific paper topics inspired by
the vast literature by Professor Fradkov on nonlinear dynam-
ics and hybrid systems (see, for instance, Fradkov, Mirosh-
nik, & Nikiforov, 1999; Leonov, Nijmeijer, Pogromsky, & Frad-
kov, 2010). Indeed, the event-triggered variable structure con-
trol proposed in this paper gives rise to a controlled system
which can be classified as a particular case of hybrid system (van
der Schaft & Schumacher, 2000).

The present paper is organised as follows. In Section 2,
the control problem under consideration is suitably formu-
lated. The proposed control strategy is described in Section 3.
In Section 4, the stability properties of the overall ET-
VSC scheme are formally discussed. The simulation results
are illustrated in Section 5 to demonstrate the efficacy
of the proposal. Some conclusions are finally gathered in
Section 6.

2. Problem formulation

In the following sections, ‖·‖ will denote the Euclidean norm
for vectors and the induced Euclidean norm for matrices, |·|
will denote the absolute value, and 〈a, b〉 will denote the scalar
product between vectors a and b. Given the setW ⊂ R, wsup �
supw∈W {|w|}. The relative degree of the system, i.e. the mini-
mum order r of the time derivative σ (r) of the output function
in which the control u explicitly appears, is considered well
defined, uniform and time-invariant.

Consider a plant (process and actuator) which can be mod-
elled as

ẋi(t) = xi+1(t), i = 1, . . . , n − 1,

ẋn(t) = f (x(t), t) + b(x(t), t)(u(t) + w(t)),
(1)

where x ∈ � (� ⊂ R
n bounded) is the state vector the value of

which at the initial time instant t0 is x(t0) = x0, u ∈ R is the
control variable, f : � × R → R, b : � × R → R are bounded
uncertain functions, and w : R → R is a bounded external dis-
turbance such that the following assumptions on the uncertainty
terms hold .1

Assumption 2.1 (Boundedness of the functions f and b):
There exist known positive constants F, Bmin and Bmax such that
for any x ∈ � and t ≥ t0, the functions f and b in system (1)
satisfy

|f (x(t), t)| ≤ F, (2)

0 < Bmin ≤ b(x(t), t) ≤ Bmax. (3)

Assumption 2.2 (Boundedness of the disturbancew): For any
t ≥ t0, the external disturbance w in system (1) satisfies

w ∈ W , (4)

wsup being a known positive constant.

Let σ : � → Y ⊆ R be the output function of system (1).
Then, the problem to solve is to design a control law u able
to stabilise system (1) even in the presence of uncertainties
and delayed transmissions due to the communication networks
represented in Figure 1. More specifically, we require that σ

is ultimately bounded in a prescribed vicinity of the manifold
σ = 0.

3. The proposal: event-triggered variable structure
control for NCSs

In practical implementation the state is sampled at certain time
instants t ∈ {t0, t1, . . . tk, . . . }, k ∈ N, and the input, com-
puted as u(tk) = κ(σ (x(tk))), with κ being a generic control law
depending on σ(x(tk)) to be designed, is held constant between
two successive samplings. This kind of implementation, called
sample-and-hold, can be expressed as

u(t) = u(tk), ∀t ∈ [tk, tk+1[, k ∈ N, (5)

where tk, tk+1 ∈ T , T being the set of the triggering time
instants. In conventional implementation, the sequence {tk}k∈N
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Figure 1. The proposed event-triggered variable structure control scheme.

is typically periodic and the time interval tk+1 − tk, is a pri-
ori fixed. The control approach, in that case, is classified as
time-triggered.

In the present paper, instead of relying on time-triggered exe-
cutions, we introduce a triggering condition which depends on
σ , so that the state of the controlled plant is transmitted over
the network only when such a condition is verified. This implies
that the control law is updated and sent to the plant only at the
triggering time instants, and the overall control strategy is of
event-triggered type. Note that, in this paper, we do not adopt a
mathematical model of the network, but we design the control
strategy in such a way to reduce data transmission as much as
possible. This in order to limit the negative effects of the network
congestion, such as packets drop, jitter, and delays. However, we
suppose that the presence of the communication network can
cause delayed transmissions due to the network unavailability
or packet losses.Moreover, we assume that the plant is equipped
with a zero-order-hold (ZOH) so that the control variable com-
puted at the last triggering time instant tk is held constant ∀ t ∈
[tk, tk+1[. Then, this approach tends to reduce the transmissions
over the network both in the direct path (from the controller to
the plant) and in the feedback path (from the sensor to the con-
troller). Now, consider the control scheme reported in Figure 1.
It contains two key blocks: the smart sensor and the sliding
mode controller. These blocks are hereafter detailed.

3.1 The smart sensor

We assume that the considered sensor is smart in the sense that
it has some computation capability, i.e. it is able to compute (in
the continuous time) the controlled variable σ and verify a trig-
gering condition. The triggering condition adopted in this paper
is the following:

|σ(x(t))| = δ, (6)

δ being a positive constant arbitrarily set. Onlywhen the trigger-
ing condition (6) holds (i.e. at the triggering time instant t = tk,
tk ∈ T ) is the actual output σ(tk) transmitted by the sensor over
the network, so that the control law is updated and u(tk) sent to
the plant.

3.2 The controller

To solve the problem formulated in Section 2, in this paper,
we rely on the SMC methodology (Utkin, 1992), and design an

event-triggered variable structure control (ET-VSC) scheme. To
this end, we denote the output function σ as the so-called ‘slid-
ing variable’, with σ = 0 being the so-called ‘sliding manifold’
and design it as a linear combination of the system state, i.e.

σ(x(t)) =
n−1∑
i=1

mixi(t) + xn(t), (7)

with mi, i = 1, . . . , n − 1, real positive constants such that the
characteristic equation

∑n−1
i=1 mi z i−1 + z n−1 = 0 has distinct

roots with negative real part. By regarding (7) as the controlled
variable, associated with system (1), it turns out that the rela-
tive degree r of the input–output map is 1, so that the so-called
‘auxiliary system’ can be determined as follows:

σ̇ (x(t)) =
n−1∑
i=1

mixi+1(t) + f (x(t), t) + b(x(t), t)(u(t) + w(t))

= ϕ(x(t), t) + b(x(t), t)u(t),
(8)

where ϕ = ∑n−1
i=1 mixi+1 + f + bw, such that the following

assumption holds.

Assumption 3.1 (Boundedness of the function ϕ): For any
x ∈ � and t ≥ t0, the uncertain function ϕ(x(t), t) in (8) sat-
isfies

|ϕ(x(t), t)| ≤ �sup, (9)

�sup being a positive constant.

Remark 3.1 (Local boundedness): If � is equal to R
n, then

ϕ(x(t), t) is only locally bounded. In this case, characterising the
region of attraction requires a careful analysis of the considered
system. Although in practical cases the region of attraction can
be estimated relaying on e.g. data analysis or physical insights, a
thorough analysis of the region of attraction is outside the scope
of this paper.

The proposed control law at the triggering time instants,
namely u(tk), k ∈ N, can be expressed as

u(tk) = −Umax sign (σ (x(tk))), (10)

with

Umax >
�sup

Bmin
. (11)
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The sample-and-hold mechanism (5), with control law u(tk) as
in (10), and the triggering condition (6) give rise to the ET-VSC
strategy that we propose to steer the sliding variable σ in a finite
time tr,σ ≥ t0 to the prescribed boundary layer Bδ ⊆ σ(�),
defined as a vicinity of the sliding manifold σ = 0, i.e.

Bδ � {σ ∈ σ(�) : |σ | ≤ δ} , (12)

δ being a positive constant arbitrarily set. Moreover, let �δ �
{x ∈ � : |σ(x)| ≤ δ}, �δ ⊆ �. Then, inside the boundary layer
Bδ , the following assumption holds.

Assumption 3.2 (Boundedness of the functions f, b and ϕ

when σ ∈ Bδ): For any x ∈ �δ and t ≥ tr,σ , i.e. when σ ∈ Bδ ,
the uncertain functions f, b and ϕ satisfy

|f (x(t), t)| ≤ Fδ , (13)

0 < Bδ,min ≤ b(x(t), t) ≤ Bδ,max, (14)

|ϕ(x(t), t)| ≤ �
sup
δ , (15)

where Fδ ≤ F,Bδ,min ≥ Bmin,Bδ,max ≤ Bmax, and �
sup
δ ≤ �sup

are known positive constants.

Remark 3.2 (Control effort reduction): By virtue of the
inequalities (13)–(15), in order to reduce the control effort and
the number of triggering events when the sliding variable σ

enters the boundary layer Bδ , the amplitude of the control law
can be reduced, i.e.

u(tk) = −KUmax sign (σ (x(tk))), (16)

with

�
sup
δ

Bδ,minUmax
< K < 1 (17)

and Umax as in (11).

Remark 3.3 (Potentiality of ET-VSC): Note that the proposed
ET-VSC approach could be extended to the so-called vector
relay control, also referred as unit-vector control (Edwards
& Spurgen, 1998; Orlov & Utkin, 1998). In fact, event-triggered
strategies may be attractive for various applications in which
vector relay control is typically applied. Specifically, vector relay
control can be used for drive control application or for regulat-
ing voltage converters, where, although a hysteretic approach is
often used, time-varying parameters, communication networks
as well as unpredictable noise spectrum make the electromag-
netic interference control problem particularly difficult to solve
(see for instance Ryvkin & Palomar Lever, 2011; Tan, Lai, & Tse,
2017).

4. Stability analysis

In this section, the stability properties of system (1) controlled
via the proposed ET-VSC strategy are analysed. To this end, it is
convenient to introduce the following definitions:

Definition 4.1 (Reachability condition): The set Bδ is said
to be attractive if the solution to the uncertain system (8),

∀ σ ∈ R \ Bδ , satisfies the so-called η-reachability condition
(see Utkin, 1992)

σ σ̇ ≤ −η|σ |. (18)

Definition 4.2 (Ultimately boundedness): The solution σ to
the uncertain system (8) is said to be ultimately bounded with
respect to the set Bδ if in a finite time tr,σ it enters the bounded
set Bδ and remains there for all subsequent time instants.

Definition 4.3 (Positively invariant set): Let σ be the solution
to the uncertain system (8) starting from the initial condition
σ(x0). A set Bδ is said to be positively invariant if σ(x0) ∈ Bδ

implies that σ(x(t)) ∈ Bδ , ∀ t ≥ t0.

Now, making reference to (8) the following results can be
proved.

Lemma 4.1 (Attractiveness of Bδ): Let the sign of the initial
condition σ(x0) be known and let |σ(x0)| > δ, with δ > 0 arbi-
trarily set. Given system (8) controlled by (5), (10) with (11)
and the triggering condition (6), then, the boundary layer Bδ is
attractive for any solution σ to (8).

Proof: Consider the η-reachability condition (18). Taking into
account that the initial condition σ(x0) = σ0 is known, one
has that sign(σ (x(t))) = sign(σ0),∀ t ∈ [t0, t1], t1 being the first
triggering time instant satisfying |σ(x(t1))| = δ. Making ref-
erence to system (8), since σ sign (σ ) = |σ |, during the time
interval [t0, t1] it yields

σ(x(t))σ̇ (x(t)) = σ(x(t))

(n−1∑
i=1

miẋi(t) + ẋn(t)

)

= σ(x(t))

(n−1∑
i=1

miẋi(t) + f (x(t), t)

+b(x(t), t)(u(t0) + w(t))

)

= σ(x(t)) (ϕ(x(t), t) + b(x(t), t)u(t0))

= σ(x(t))
(
ϕ(x(t), t) − b(x(t), t)Umax sign (σ0)

)
≤ (

�sup − BminUmax
) |σ(x(t))|. (19)

Since (11) holds, then, one can verify that

�sup − BminUmax < 0,

that is (18) holds with η = −(�sup − BminUmax) > 0. Then,
integrating the inequality σ σ̇ ≤ −η|σ | from t0 = 0 to tr,σ , one
has

tr,σ ≤ |σ(0)| − δ

η
, (20)

implying the finite time convergence of the sliding variable to
Bδ . Moreover, one can conclude that the first transmission over
the network is executed at the triggering time instant t1 = tr,σ .

�

Remark 4.4 (Reaching phase): Note that, by virtue of
Lemma 4.1, the proposed control solution avoids to transmit the
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value of σ and u over the networks during the entire reaching
phase, i.e. till the sliding variable enters the boundary layer Bδ

at the time instant tr,σ .

Lemma4.2 (Invariance ofBδ): Given system (8)with the initial
condition σ(x0) such that |σ(x0)| ≤ δ, with δ > 0 arbitrarily set,
then, the boundary layer Bδ is a positively invariant set for the
solution σ to system (8) controlled via (5), (16) with (11), (17)
and the triggering condition (6).

Proof: Consider two different cases in order to prove the result.
Case 1 (|σ | < δ): In this case, according to the proposed

event-triggered control strategy, ∀ t ∈ [tk, tk+1[ the control law
is not updated, i.e. its sign does not change. This implies that the
sliding variable cannot be steered to the slidingmanifold σ = 0,
and it evolves in the boundary layerBδ until it reaches its border,
so that Case 2 occurs.

Case 2 (|σ | = δ): In this second case the triggering condition
is verified. Then, the actual value of σ is sent to the controller
and the control law is updated. In particular, the sign of the con-
trol law changes, and the sliding variable is steered towards the
interior of Bδ , so that Case 1 occurs again. This implies that
∀ σ(x0) ∈ Bδ , then, ∀ t ≥ t0, σ(x(t)) ∈ Bδ , i.e. Bδ is a positively
invariant set according to Definition 4.3, which concludes the
proof. �

Now, one can prove themajor result concerning the auxiliary
system evolution.

Theorem 4.3 (Ultimately boundedness of Bδ): Let the sign of
the initial condition σ(x0) be known and let δ > 0 arbitrarily set.
Given the triggering condition (6) and system (8) controlled by
(5), (10)with (11) ∀ t ∈ [t0, tr,σ ), and by (5), (16)with (17) ∀ t ≥
tr,σ , then, the solution σ to system (8) is ultimately bounded with
respect to Bδ .

Proof: The proof is a straightforward consequence of
Lemmas 4.1 and 4.2. By virtue of Lemma 4.1, that is of the
attractiveness of Bδ , applying the control law (10) with (11),
there exists a time instant tr,σ when σ enters Bδ , i.e. the trigger-
ing condition (6) is verified. Then, the control law (16) with (17)
is applied, and by virtue of Lemma 4.2, ∀ t ≥ tr,σ , σ(x(t))
remains in Bδ , which implies, according to Definition 4.2, that
σ is ultimately bounded with respect to Bδ . �

Now, it is possible to prove that the state of system (1) is ulti-
mately bounded within a set depending on the desired value δ.
To this end, let us first analyse the evolution of the reduced state
defined as x̃ = [x1, . . . , xn−1]T, such that x = [x̃, xn]T. More-
over, let tr,x denote the time instant when the reduced state x̃
enters a neighbourhood of the origin of the reduced state space.

Lemma 4.4 (Ultimately boundedness of x̃): Let the sign of
the initial condition σ(x0) be known and let δ > 0 arbitrarily
set. Given the triggering condition (6) and system (8) controlled
by (5), (10) with (11)∀ t ∈ [t0, tr,σ ), and by (5), (16) with (17)

∀ t ≥ tr,σ , then, ∀, t ≥ tr,x ≥ tr,σ the following inequality is satis-
fied:

‖x̃(t)‖ ≤ 2
‖P‖δ

λmin(Q)
, (21)

where P and Q are positive definite matrices such that ATP +
PA + Q = 0, and λmin(Q) is the minimum eigenvalue of matrix
Q, with

A =

⎡
⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1
. . . 0

...
. . .

...
−m1 −m2 −m3 · · · −mn−1

⎤
⎥⎥⎥⎥⎦ . (22)

Proof: Consider the sliding variable (7), such that the state xn
can be expressed as

xn(t) = σ(x(t)) −
n−1∑
i=1

mixi(t). (23)

Then, the dynamics of the state x̃ results in being

˙̃x(t) = Ax̃(t) + Gσ(x(t)). (24)

In (24), matrixA ∈ R
(n−1)×(n−1) is given in (22), andG ∈ R

n−1

is [0 . . . 0 1]T. Now, let P be a positive definite matrix, such that
the function

V(t) = x̃T(t)Px̃(t) (25)

can be regarded as a candidate Lyapunov function. Let Q be
a positive definite matrix obtained by solving the Lyapunov
equation ATP + PA + Q = 0, as indicated in the lemma state-
ment. Compute the first time derivative of the Lyapunov func-
tion (25), i.e.

V̇(t) = x̃T(t)(ATP + PA)x̃(t) + 2x̃T(t)PGσ(x(t))

≤ −λmin(Q)‖x̃(t)‖2 + 2‖x̃(t)‖‖P‖‖G‖|σ(x(t))|. (26)

According to Theorem 4.3, ∀ t ≥ tr,σ , σ(x(t)) ∈ Bδ , i.e. (12)
holds. Then, ∀ t ≥ tr,σ one can upperbound |σ(x(t))|with δ, i.e.

V̇(t) ≤ −λmin(Q)‖x̃(t)‖2 + 2‖x̃(t)‖‖P‖δ

≤ −λmin(Q)‖x̃(t)‖
(

‖x̃(t)‖ − 2
‖P‖δ

λmin(Q)

)
, ∀ t ≥ tr,σ .

(27)

From (27), one can observe that if

‖x̃(t)‖ > 2
‖P‖δ

λmin(Q)
, (28)

then V̇ < 0, which implies that outside the ball of radius
2 ‖P‖δ

λmin(Q)
,V in (25) is a decreasing function. This in turn implies

that the reduced state x̃ is steered to that ball in a finite time tr,x.
On the other hand, if

‖x̃(t)‖ ≤ 2
‖P‖δ

λmin(Q)
, (29)

then, from (27) one can observe that two cases can occur:
V̇ ≤ 0 or V̇ > 0. If V̇ ≤ 0, ‖x̃‖ cannot increase. If V̇ > 0, ‖x̃‖
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grows until ‖x̃‖ = 2 ‖P‖δ
λmin(Q)

, then V̇ ≤ 0 again. Note also that,
if ‖x̃(tr,σ )‖ > 2 ‖P‖δ

λmin(Q)
, then tr,x > tr,σ . On the other hand,

if ‖x̃(tr,σ )‖ ≤ 2 ‖P‖δ
λmin(Q)

, then tr,x = tr,σ , which concludes the
proof. �

Theorem 4.5 (Ultimately boundedness of x): Let the sign of
the initial condition σ(x0) be known and let δ > 0 arbitrarily set.
Given the triggering condition (6) and system (8) controlled by
(5), (10)with (11) ∀ t ∈ [t0, tr,σ ), and by (5), (16)with (17) ∀ t ≥
tr,σ , then, ∀ t ≥ tr,x ≥ tr,σ the state x of system (1) is ultimately
bounded in the set

Bx �
{
x ∈ �δ : ‖x‖ ≤ δ

(
1 + 2

‖P‖
λmin(Q)

+ 2
‖P‖‖m‖
λmin(Q)

)}
,

where m = [m1, . . . ,mn−1]T, P, Q are positive definite matri-
ces such that ATP + PA + Q = 0, and λmin(Q) is the minimum
eigenvalue of matrix Q, with A ∈ R

(n−1)×(n−1) as in (22).

Proof: The proof directly follows observing that, from
Theorem 4.3, the sliding variable is ultimately bounded and
σ(x(t)) ∈ Bδ ∀ t ≥ tr,σ . According to Lemma 4.4, the com-
ponents xi(t), i = 1, . . . , n − 1, are bounded ∀ t ≥ tr,x ≥ tr,σ .
Then, from (23) one has that ∀ t ≥ tr,x ≥ tr,σ , also xn(t) is
bounded, i.e.

|xn(t)| ≤ |σ | + |〈m, x̃(t)〉|
≤ δ + ‖m‖‖x̃(t)‖

≤ δ

(
1 + 2

‖P‖‖m‖
λmin(Q)

)
. (30)

This implies that the state x of system (1) is ultimately bounded
as well, i.e. ∀ t ≥ tr,x ≥ tr,σ

‖x(t)‖ ≤
√
x21(t) + · · · + x2n−1(t) +

√
x2n(t)

≤ ‖x̃(t)‖ + |xn(t)|

≤ δ

(
1 + 2

‖P‖
λmin(Q)

+ 2
‖P‖‖m‖
λmin(Q)

)
, (31)

which proves the theorem. �

Remark 4.5 (Practical sliding mode): Note that the proposed
control scheme, because of its event-triggered nature, cannot
generate an ideal sliding mode, but only a ‘practical sliding
mode’. However, by virtue of Theorem 4.5, from (31) one can
observe that the convergence set, in which the state of system (1)
is ultimately bounded, linearly depends on the desired size δ of
the boundary layer Bδ .

Now, since the triggering time instants are implicitly defined
and only known at the execution times, we prove the existence
of a lower bound for the so-called ‘inter-execution’ or ‘inter-
event’ times (Tabuada, 2007). More specifically, let τmin be the
minimum inter-event time, such that tk+1 − tk ≥ τmin for any
k ∈ N

+.

Theorem 4.6 (Minimum inter-event time): Let δ > 0 be arbi-
trarily set. Given the triggering condition (6) and system (8)
controlled by (5), (10) with (11) ∀ t ∈ [t0, tr,σ ), and by (5), (16)
with (17) ∀ t ≥ tr,σ , then, ∀ t > tr,σ the inter-event times are
lower bounded by

τmin = 2δ
�

sup
δ + Bδ,maxKUmax

.

Proof: Since σ and u are transmitted over the network only
when the triggering condition (6) is verified, the theorem will
be proved by computing the time interval tk+1 − tk that σ takes
to evolve from −δ to δ. In order to obtain the minimum time
interval, we assume that σ evolves with the maximum veloc-
ity. According to (13)–(15) and (17), one has that the maxi-
mum velocity of the sliding variable insideBδ is σ̇max = �

sup
δ +

Bδ,maxKUmax. Then, it yields

σ(tk+1) − σ(tk) =
∫ tk+1

tk
σ̇max dτ ,

δ − (−δ) = σ̇max(tk+1 − tk),

2δ = (�
sup
δ + Bδ,maxKUmax)τmin, (32)

where the equality tk+1 − tk = τmin follows from the assump-
tion that σ evolves with constantmaximumvelocity σ̇max. Anal-
ogous considerations can be done if we consider the evolution
of σ from δ to −δ. �

Remark 4.6 (Zeno behaviour): Note that Theorem 4.6 guaran-
tees that the time elapsed between consecutive triggering events
does not become arbitrarily small, avoiding the notorious Zeno
behaviour (Ames et al., 2006; Johansson et al., 1999). In practi-
cal cases, this result is very useful to assess the feasibility of the
proposed scheduling policy.

Now, due to the presence of the communication network, we
suppose that data transmissions could occur with time-varying
delay � = �1 + �2 > 0,�1 and �2 being the time delays due
to the network unavailability in the direct and feedback path,
respectively. The following assumption is made on �.

Assumption 4.7 (Time delay): The overall time-varying delay
� can be bounded as

� ≤ �max, (33)

�max being a known positive constant.

Theorem 4.8 (Delayed communications): Let Assumption 4.7
hold. Given the triggering condition (6) and system (8) controlled
by (5), (10) with (11) ∀ t ∈ [t0, tr,σ ), and by (5), (16) with (17)
∀ t ≥ tr,σ , then, for any desired

δ > (�
sup
δ + Bδ,maxKUmax)�max (34)

the triggering condition
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|σ(x(t))| = δ′, (35)

with

δ′ = δ − (�
sup
δ + Bδ,maxKUmax)�max, (36)

enforces the following inequality:

|σ(x(t))| ≤ δ, ∀ t ≥ t′r,σ , (37)

t′r,σ being the reaching time instant of the inner boundary layer

Bδ′ � {σ(x(t)) ∈ R : |σ(x(t))| ≤ δ′}.

Proof: In analogy with Lemma 4.1, one can easily prove that
there exists a time instant t′r,σ when σ enters the inner bound-
ary layer Bδ′ . Now, suppose that the transmission of σ(tk) =
δ′ occurs with the maximum time delay �max > 0. More-
over, assume that the sliding variable evolves with constant
maximum velocity σ̇max = �

sup
δ + Bδ,maxKUmax. To enforce

inequality (37), we impose that σ(tk + �max) = δ. Then, one
has that

σ(tk + �max) − σ(tk) =
∫ tk+�max

tk
σ̇max dτ ,

δ − δ′ = σ̇max�max,

δ′ = δ − (�
sup
δ + Bδ,maxKUmax)�max.

(38)

Analogous considerations can be done if we consider that, at the
time instant tk, σ(tk) = −δ′. �

Note that in case of delayed transmissions, the lower bound
τmin can be obtained by using δ′ instead of δ in Theorem 4.6.

5. Illustrative example

In this section, in order to show the properties of the proposed
control scheme, an illustrative example is briefly discussed.
Consider the following uncertain nonlinear system:

ẋ1 = x2,

ẋ2 = x3,

ẋ3 = 0.1e−|x2|·t sin(x1) + (1 + 0.1 sin(x2))(u + w).

(39)

Let t0 be equal to 0, and the initial condition be x(0) = [1 3 4]T.
Then, the system is stabilised by choosing the sliding variable
as σ = x1 + x2 + x3. In the triggering condition (6) the thresh-
old is δ = 0.1. Thematched disturbancew = −wsup sin(t), with
wsup = 2. The control amplitude Umax is selected equal to 15,
while K = 0.4, after a trial and error procedure to estimate
the value of �sup = 10 and �

sup
δ = 5. Figure 2(a) shows the

time evolution of the system state variables that are ultimately
bounded in a vicinity of the system state space origin (see also
Figure 2(d)). In Figure 2(b) the time evolution of the slid-
ing variable in the presence of maximum time delay �max =
0.0025 s acting from t= 0 s is shown. One can observe that,
by selecting δ′ = 0.06 (see Theorem 4.8), even in the presence
of maximum time delay and maximum uncertainty, σ is ulti-
mately bounded with respect to the desired boundary layer
Bδ . Finally, from Figure 2(c) one can appreciate that the inter-
event times τk = tk+1 − tk are always higher than theminimum

Figure 2. Time evolution of the state variables, sliding variable, inter-event times and the state space trajectory.



INTERNATIONAL JOURNAL OF CONTROL 259

inter-event time τmin = 0.007 s (see Theorem 4.6). Moreover,
considering a sampling time Ts = 1 × 10−4 s, and a simulation
time T= 15 s the number of transmissions with the proposed
ET-VSC is 99.6% less than the number required by the con-
ventional (i.e. time-driven) SMCmethodology. Note that, since
the smart sensor works in continuous time, Ts is chosen small
enough so as to emulate a continuous time simulation setup.
One can observe that reducing the width δ of the boundary
layer Bδ results in improving the convergence accuracy. Obvi-
ously, the correct balance between convergence accuracy and
transmission load has to be searched depending on the specific
application.

6. Conclusions

In this paper, an Event-Triggered Variable Structure Control
scheme is presented. The main objective is to reduce the num-
ber of data transmissions over the network, while guaranteeing
satisfactory performance. A triggering condition based on a
suitably defined sliding variable and on a prescribed bound-
ary layer of the sliding manifold is introduced. As a result, the
ultimately boundedness of the solution of the controlled auxil-
iary system can be proved, which implies, under the considered
assumptions, ultimately boundedness of the solution of the con-
trolled system even in the presence of uncertainties and delayed
transmissions. The proposed control scheme has the advan-
tage of providing the way to get the desired balance between
accuracy and transmission rate. In fact, the amplitude of the
boundary layer, which is an ultimately positively invariant set,
is a design parameter and the transmission rate is directly influ-
enced by its choice. Moreover, the avoidance of the notorious
Zeno behaviour is proved.

Note

1. The case in which the conventional assumptions on the knowledge of
the uncertainty bounds are relaxed (Furtat, Orlov, & Fradkov, 2019) is
left as an interesting future endeavour.
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