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ABSTRACT 

 Passive satellites often face difficulty when detecting clouds over snow and ice 

covered surfaces beneath them.  The recent launches of active satellites, which directly 

measure cloud properties, have allowed scientists to gain a firsthand look at the complex 

cloud profiles across polar regions.  To help quantify the differences between passive and 

active satellite retrievals, cloud properties derived for the Clouds and Earth’s Radiant 

Energy System (CERES) project using MODerate Resolution Imaging Spectroradiometer 

(MODIS) data are compared with combined measurements from Cloud-Aerosol Lidar 

and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat (CC), and 

Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) observations 

at the North Slope of Alaska site, from July 2006 to June 2010.  The study was then 

extended to include the entire Arctic and Antarctic. 

 During the 4-year period, monthly mean cloud fractions (CFs) between ARM and 

CC differ by 5%.  While CERES-MODIS CF retrievals agree well with ARM and CC 

during warm months (May-October), retrievals during the cold season (November-April) 

significantly underestimate CF.  Annual mean cloud-base heights derived from ARM and 

CC agree within 200 m, while their cloud-top heights (Htop) differ by an average of 1.2 

km, due largely to CC detecting more upper-level clouds during the warm months.  

Effective cloud heights from CERES-MODIS retrievals fall between CC and ARM cloud 

bases and tops, as expected. 
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Cloud fractions and heights across the span of the Arctic depict similar features as 

those shown at the ARM NSA site.  During summer months, cloud fractions between 

CERES-MODIS and CC agree well, differing by no more than 10% across most regions 

of the Arctic.  During this same season, however, cloud heights vary by as much as 5.2 

km.  This is largely due to multi-layer cloud systems, where CC measures the uppermost 

cloud layer, and CERES-MODIS detects lower cloud layers, resulting in lower CERES-

MODIS cloud heights, but equal cloud fractions.  Winter shows a contrast to the 

similarities in cloud fraction detected in summer, with CERES-MODIS underestimating 

CF by as much as 59%.  Cloud heights between the two platforms, however, show better 

agreement during the cold months, when fewer high clouds occur. 

 The largest differences in CERES-MODIS and CC cloud fractions and heights 

occur during the cold season (JJA) in the Antarctic.  During this time period, CC detects 

cloud fractions as much as 43% higher than CERES-MODIS, over regions coupled with 

cloud heights up to 12.3 km higher than CERES-MODIS.  These extreme differences are 

caused by the presence of polar stratospheric clouds, which occur at altitudes between 15 

and 25 km, and are nearly impossible for the CERES-MODIS sensor to detect. 

 Finally, single-layered low-level stratus cloud effective radius (re), liquid water 

path (LWP), and optical depth (τ) retrieved from CERES-MODIS and surface-based 

retrievals at the ARM NSA site were investigated.  When surface snow and sea ice are 

not present, ARM and CERES-MODIS retrieved cloud droplet re, LWP, and τ agree well.  

However, when snow and sea ice are introduced, CERES-MODIS retrieved re values are 

higher than ARM results, while optical depths are lower.  These differences suggest that 
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CERES-MODIS cloud fraction retrieval algorithms during polar night and microphysical 

retrieval algorithms over snow and ice covered surfaces need future improvement. 
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CHAPTER I 

INTRODUCTION 

 Clouds play an important and complex role in the radiative energy budgets of the 

Arctic and Antarctic.  Factors such as low temperatures and moisture, reflective snow and 

ice surfaces, temperature inversions, and minimal solar radiation through a large portion 

of the year (Curry et al. 1996; Dong et al. 2010) contribute to the complexity of these 

cloud-radiative interactions in polar climates.  Numerous studies have been performed in 

this area, including the First International Satellite Cloud Climatology Project (FIRE) 

Arctic Cloud Experiment (ACE; Curry et al. 2000), the Surface Heat Budget of the Arctic 

Ocean project (SHEBA; Uttal et al. 2002), and the South Pole Atmospheric Radiation 

and Cloud Lidar Experiment (SPARCLE; Walden et al. 2001).  However, many 

questions remain in our understanding of the physical and dynamical processes of Arctic 

and Antarctic clouds.  

While the Arctic and Antarctic are typically grouped together as “polar regions,” 

their geographic and dynamic compositions are very different, leading to dissimilarities 

in satellite retrievals of cloud properties in these regions.  The Arctic, for example, is 

essentially a large body of water surrounded by land.  Alternatively, the Antarctic is 

composed of a large land mass surrounded on all sides by water.  Despite their 

differences in land and ocean partitions, however, the Arctic and Antarctic are alike in 

that both are plagued by high amounts of surface snow and ice cover, which increase the 

complexity of the regions when passive satellites are used to detect cloud properties. 
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Additional dissimilarities lie in the cloud types that prevail over the two locations.  

Although both the Arctic and Antarctic experience a high frequency of low-level 

tropospheric clouds (Shupe et al. 2011; Adhikari et al. 2012), the occurrence of polar 

stratospheric clouds (PSCs) during polar night is much higher over the southern latitudes 

than in the north (Pitts et al. 2009; Adhikari et al. 2010).  These clouds occur in two 

forms:  Type I and Type II PSCs (Toon and Turco, 1991).  Type I PSCs are nitric acid 

clouds, and are typically composed of nitric acid di- or trihydrate crystals (Type Ia; Voigt 

et al. 2000; Stetzer et al. 2006) or supercooled liquid ternary solutions (Type Ib; Carslaw 

et al. 1994), while Type II PSCs are ice clouds that consist of pure-water ice particles 

(Poole and McCormick 1988).  PSCs typically form between 15 and 25 km in the 

atmosphere when temperatures are extremely cold (less than 200 K, Steel et al. 1983), 

allowing for the low amounts of water and nitric acid vapors in the stratosphere to 

condense onto stratospheric aerosols (Wang et al. 2008).  These clouds play a key role in 

ozone depletion processes by acting as the catalysts for chemical reactions that destroy 

ozone (Toon and Turco, 1991; Pitts et al. 2007).  Although PSCs have been documented 

in the Arctic (e.g. Santee et al. 2002, Cheremisin et al. 2007), the stratosphere rarely 

grows cold enough, and chemical transport is not sufficient enough to support PSC 

formation.  

 Minimal visual and thermal contrast exists between polar clouds and the snow- 

and ice-covered surfaces beneath them, which can lead to difficulties in passive satellite 

retrievals of cloud properties.  This is especially true when visible and infrared 

wavelengths are used (Spangenberg et al. 2004; Curry et al. 1996).  In addition, 

improvements to passive satellite cloud retrievals have been hindered by a lack of 
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available ground-based data in polar regions (Curry et al. 1996).  The recent launches of 

satellites with on-board radar and lidar allow for direct measurements of cloud properties 

across both the North and South Poles and, when matched with available ground-based 

measurements, can provide a more complete picture of macrophysical cloud properties in 

polar regions. 

 The National Aeronautics and Space Administration (NASA) Clouds and Earth’s 

Radiant Energy System (CERES) project was created to aid the understanding of global 

cloud-radiative interactions by simultaneously measuring cloud properties and radiation 

fields at the top of the atmosphere using instruments onboard several satellites (Wielicki 

et al. 1998; Minnis et al. 2011a).  The goals of the CERES project are to provide global 

surface and top-of-atmosphere radiative fluxes with a higher accuracy than prior 

measurements, and to match these radiative fluxes with collocated cloud properties to 

create a climate data set valuable for investigating the role clouds play in the radiative 

balance of the climate system (Wielicki et al. 1996, 1998).  These products are designed 

to improve understanding of cloud-radiation interactions and to help answer crucial 

climate questions. 

 The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 

(CALIPSO) (Winker et al. 2007) and CloudSat (Stephens et al. 2002) satellites carry 

sensors designed to directly measure clouds and aerosols to provide vertical atmospheric 

profiles around the globe.  Both satellites became operational in June 2006 as part of the 

NASA A-Train constellation of satellites (Winker et al. 2007; Stephens et al. 2008).  

When used properly, the cloud profiles produced by the CALIPSO Cloud-Aerosol Lidar 

with Orthogonal Polarization (CALIOP; Winker et al. 2007) and the CloudSat Cloud 
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Profiling Radar (CPR; Im et al. 2005) serve as a valuable data source to validate passive 

satellite retrievals (Kato et al. 2010).  The CPR, which has a minimum detectible signal 

of -30 dBZ (Stephens et al. 2008), is unable to resolve low reflectivities, and therefore 

tends to miss some optically thin clouds.  Alternatively, CALIOP is designed to detect 

optically thin clouds, but its signals are attenuated by optically thick clouds (Kato et al. 

2010).  When CPR and CALIOP observations are used together, the full spectrum of 

cloud types can be identified, providing a more complete global vertical cloud profile. 

 This study presents a comparison of cloud properties derived from MODerate 

resolution Imaging Spectroradiometer (MODIS) data for CERES with combined 

CALIPSO and CloudSat (CC) measurements from the CALIPSO-CloudSat-CERES-

MODIS (CCCM) data set and ground-based observations taken at the Department of 

Energy (DOE) Atmospheric Radiation Measurement (ARM) program (Stokes and 

Schwartz, 1994) North Slope of Alaska (NSA) site (71.32°N, 156.62°W) near Barrow, 

AK.  Cloud fractions and heights derived from all clouds are investigated from July 2006 

through June 2010, while microphysical cloud properties are based on daytime low-level 

stratus clouds for June 2006 through December 2007 over the DOE ARM NSA site.  

Cloud microphysical properties, derived from both Terra and Aqua MODIS data using 

the NASA CERES Edition-2 algorithms (Minnis et al. 2011a) and denoted as CERES-

MODIS data are compared with ground-based retrievals.  Note that CERES uses different 

algorithms to retrieve MODIS cloud properties than those used by the MODIS 

Atmospheres Science Team (MOD06; Platnick et al., 2003).  The differences are 

discussed by Minnis et al. (2011b).  Surface and CC results are used to validate the 
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CERES cloud retrieval algorithms over open land and water, and over the complex snow 

and ice-covered terrains of the Arctic and Antarctic.   
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CHAPTER II 

DATA SETS 

 The three data sets used in this study are:  (1) Surface observations from the ARM 

NSA site, (2) CloudSat/CALIPSO combined cloud measurements, and (3) CERES-

MODIS cloud property retrievals.  CloudSat, CALIPSO, and Aqua, which houses the 

CERES and MODIS sensors, are all part of the A-train constellation of satellites.  This 

line of sensors flies at an altitude of 705 km and passes the equator at 1:30 PM local 

standard time.  Retrievals from the ARM NSA site are used as a ground truth to validate 

the satellite cloud products.  Details regarding these data sets are provided below. 

Surface Observations 

 At the Department of Energy (DOE) Atmospheric Radiation Measurements 

(ARM) North Slope of Alaska (NSA) site, cloud data are measured by several active, 

ground-based sensors, including the millimeter wavelength cloud radar (MMCR; Moran 

et al. 1998), the micropulse lidar (MPL), and the Vaisala ceilometer.  The MMCR is a 

vertically-pointed radar that operates at a wavelength of 8.6 mm.  It is able to provide 

continuous radar reflectivity profiles by sending pulses of energy into the atmosphere and 

collecting the energy scattered back to the transceiver by hydrometeors moving through 

the radar field of view.  These profiles are reported at a vertical resolution of 45 m and 

allow for the identification of both cloudy and clear conditions at the ARM sites.  The 

MPL sends and receives pulses of energy in a manner similar to that of the MMCR, but 

uses a wavelength of 532 nm and reports cloud properties at a vertical resolution of 30 m. 
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The ceilometer sends out near-infrared pulses of light, which are scattered back from 

clouds and precipitation, allowing for the detection of clouds below a height of 7.7 km 

with 10 m vertical resolution.  Cloud property data are only included when all three 

instruments are in working order. 

 The different sensitivities of the three instruments used for ARM NSA cloud 

property retrievals allow for a more accurate depiction of cloud heights and cloud 

fraction for the region.  The MMCR, which is sensitive to the sixth moment of the cloud 

particle distribution, is more sensitive to insects and drizzle or rain drops below the cloud 

base than either the MPL or ceilometer, rendering it difficult for the MMCR alone to 

consistently retrieve accurate cloud base heights.  However, the MPL and laser 

ceilometer are sensitive to the second moment of the cloud particle distribution, causing 

them to be more adept for retrieving cloud bases than the MMCR.  The MPL is also more 

sensitive to optically thin clouds, which allows for the detection of high, thin cirrus 

clouds that might remain undetected by both the MMCR and laser ceilometer.  

Consequently, many studies have combined radar and lidar measurements to estimate 

cloud fraction and boundaries (e.g. Intrieri et al. 2002; Dong et al. 2005, 2010). 

Cloud fraction is defined as the ratio of the number of samples where the radar, 

lidar, or ceilometer have detected clouds to the total number of samples when data are 

available from all three instruments within a specified time period.  For the purposes of 

this study, cloud fraction, highest cloud-top heights, and lowest cloud-base heights are 

from the Active Remote Sensing of Clouds (ARSCL) products (Clothiaux et al. 2000).  

The ARSCL products use data derived from a blend of MMCR reflectivities, which have 

the ability to clearly define the highest cloud-top heights, and MPL- and ceilometer-



8 

 

derived lowest cloud-base heights, which are more sensitive to smaller cloud particles 

and cloud bases.  Each parameter is reported at 45 m vertical intervals when the MMCR, 

MPL, and ceilometer are all in operation.  During December of 2006 and 2007, as well as 

January of 2007, MMCR faults at the ARM NSA site prevented measurements of 

macrophysical cloud properties.  Therefore, these three months are not included in 

monthly averages of cloud fraction or heights in this study.  Cloud liquid water path 

(LWP) is derived from microwave radiometer brightness temperatures at 23.8 and 31.4 

GHz using the statistical retrieval method described by Liljegren et al. (2001).  Using this 

method, the root-mean-square (RMS) accuracies of the LWP retrievals are approximately 

20 gm
-2

 for cloud LWP below 200 gm
-2

 and 10% for LWP exceeding 200 gm
-2

 (Dong et 

al. 2000; Liljegren et al. 2001). 

To retrieve the microphysical properties of single-layered stratus clouds, the 

approach taken by Dong et al. (1998) was used, with a modification to include surface 

albedo introduced by Dong and Mace (2003).  In this approach, a δ2-stream radiative 

transfer model was used with the input of ground-based measurements to retrieve layer-

averaged microphysical properties of single-layered low-level stratus clouds.  This 

scheme is based on an iterative approach in which the effective radius is varied in 

radiative transfer calculations until the solar transmission calculated by the model 

matches the observations.  From these calculations, layer-mean cloud-droplet effective 

radius (re), number concentration (N), broadband shortwave optical depth (τ), and albedos 

at the top of the cloud (Rcld) were retrieved (Dong et al. 1998).  The retrieved re and 

radiative properties were then parameterized as functions of the cloud LWP, effective 

solar transmission (γ), cosine of the solar zenith angle (µ0), and surface albedo (Rsfc) as 
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described by Dong and Mace (2003).  Compared to aircraft in situ measurements over the 

mid-latitudes, the uncertainties of the surface-retrieved re, τ, and LWP values under snow 

and ice-free conditions are approximately 10% (Dong et al. 1998, 2002).  Over the snow 

and ice covered surfaces, the uncertainties of the surface retrievals are at least doubled as 

compared to the aircraft in situ measurements during FIRE-ACE in May 1998 (Dong et 

al. 2001), and to other aircraft in situ measurements near the ARM NSA site as discussed 

in Section 4d of Dong and Mace (2003). 

Satellite Measurements 

CloudSat/CALIPSO (CC) 

 In order to develop a more thorough understanding of the cloud properties at the 

ARM NSA site, as well as across the Arctic and Antarctic, active space borne sensors are 

also used.  One such sensor, the CloudSat Cloud Profiling Radar (CPR), is a 94-GHz 

nadir-viewing radar that measures the amount of power backscattered by clouds to create 

a vertical profile of cloud structure around the globe (Im et al. 2005).  Alternatively, the 

Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the Cloud-Aerosol 

Lidar and Infrared Pathfinder Satellite Observation (CALIPSO; Winker et al. 2007), is a 

nadir-pointing polarization-sensitive lidar operating at wavelengths of 1064 and 532 nm 

to provide vertical profiles of aerosols and clouds (Winker et al. 2007). 

 The CloudSat and CALIPSO cloud properties used in this study are from the 

CALIPSO-CloudSat-CERES-MODIS (CCCM) RelB1 data product.  In this dataset, the 

CALIPSO Vertical Feature Mask (VFM; Version 3) and CloudSat Level 2B Cloud 

Scenario Classification (CLDCLASS; Revision 4) products are merged and combined 

with CERES-MODIS data to build a comprehensive dataset that includes atmospheric 
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profiles of clouds and aerosols from CALIOP and CPR, in addition to cloud properties 

derived from MODIS radiances using the CERES-Edition-3 beta-2 cloud algorithm (Kato 

et al. 2010).  

 The CloudSat CLDCLASS product, which is based on CPR reflectivity, offers a 

cloud mask that provides information at resolutions of 1.4 km cross-track, 1.8 km along-

track, and 240 m vertically (Stephens et al. 2008).  The cloud and aerosol mask provided 

by the VFM, however, offers a horizontal resolution of 333 m, with a vertical resolution 

of 30 m below 8.2 km and 60 m above (Winker et al. 2007).  To account for the 

differences in horizontal resolutions, one profile from the CloudSat CLDCLASS product 

is combined with three CALIPSO VFM profiles to produce a single profile with a 

horizontal resolution of 1 km.  During the merging process, cloud boundaries from the 

CPR are added to CALIOP-derived cloud profiles if the CPR detects a boundary more 

than 480 m above or below CALIOP-derived heights, or if the CALIOP signal is 

attenuated in its entirety by clouds and the CPR-derived cloud base is located beneath the 

level of attenuation.  Otherwise, the level of CALIOP attenuation is reported as the cloud 

base (Kato et al. 2010).  As a result, approximately 85% of cloud-top heights and 77% of 

cloud-base heights within the merged profiles are reported by CALIOP (Kato et al. 

2010). 

 After CloudSat and CALIPSO cloud profiles have been merged, they are 

collocated with CERES footprints that are roughly 20 km in size.  The 1-km atmospheric 

columns that contain similar cloud vertical profiles are then arranged together in a cloud 

grouping process.  After similar cloud profiles have been grouped together, the cloud 

fraction of each group is computed for times when both the CPR and CALIOP are in 
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operation, and then summed to produce the mean cloud fraction along the ground track 

for a given pixel (Kato et al. 2010). 

 In addition to merged profiles that allow for measurement of cloud fraction and 

heights, the CCCM data set also includes cloud microphysical properties, including 

cloud-droplet effective radius, retrieved from the CloudSat radar reflectivity.  These 

properties are derived from the CloudSat Level 2B Cloud Water Content Radar Only 

(CWC-RO; Revision 4) product.  The CWC-RO uses measured radar reflectivity as the 

only input to create composite profiles from both ice and liquid water retrievals.  For each 

profile, CWC-RO algorithms first examine cloud masks to determine which bins contain 

clouds, and then use the 2B-CLDCLASS product to eliminate any invalid or 

undetermined cloud types.  Once valid cloud profiles have been retrieved, a priori values 

are assigned to particle size distribution parameters within each cloudy bin based on 

factors such as climatology and temperature.  A priori values and radar measurements are 

then used to retrieve liquid and ice particle size distribution parameters for each cloudy 

bin, allowing for the derivation of re. 

CERES-MODIS 

 The MODerate Resolution Imaging Spectroradiometer (MODIS) sensor, which is 

on board the Aqua and Terra satellites, has a swath width of 2,330 km and provides 

global coverage of cloud and aerosol properties.  The CCCM data product provides Aqua 

FM3 (Edition 3, beta 2; Minnis et al. 2010) cloud properties within pixels limited to the 

region covering the CloudSat/CALIPSO swath, instead of using the wide footprint of a 

full MODIS sweep.  These data are used for the cloud height and cloud fraction analyses.  

Cloud microphysical parameters, however, are derived from Terra Edition2B and 
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Edition2G products, in addition to Aqua Edition2B and Edition2C products, and include 

the full CERES-MODIS swath to increase the number of cases available. 

 CERES-MODIS cloud properties were computed from the CERES Single 

Scanner Footprint (SSF) product.  The SSF combines CERES 20-km resolution 

broadband flux measurements with concurrent 1-km MODIS cloud and aerosol retrievals.  

The MODIS pixels are classified as either cloudy or clear based on a cloud mask for 

polar regions (Trepte et al. 2002) that utilizes the 0.64, 2.13, 3.78, 10.8, and 12.0 μm 

MODIS channels.  Clear and cloudy pixels are categorized as either weak or strong to 

denote the degree of confidence in the classification.  Pixels categorized as cloudy are 

analyzed to derive a series of cloud properties that include cloud phase, effective cloud 

temperature (Teff), and effective cloud height (Heff), re, τ, and LWP or ice water path 

(IWP).   

 Several retrieval methods are used by CERES to derive cloud information from 

MODIS data.  During daytime conditions, when the solar zenith angle is less than 82º, 

cloud properties are retrieved using the 4-channel visible-infrared shortwave-infrared 

split-window technique (VISST).  The VISST employs the visible (0.63 μm) channel to 

estimate τ, the shortwave-infrared (3.7 μm) band to retrieve re, the infrared (10.8 μm) 

channel to estimate Teff, and the split-window (12 μm) band to aid in thermodynamic 

phase identification.  Because of the high surface albedos at the 0.63-μm channel for 

snow and ice-covered scenes, the shortwave-infrared infrared near-infrared technique 

(SINT) introduced by Platnick et al. (2001) is used when surface snow and ice are 

present.  The SINT takes advantage of the small snow and ice albedos at some near-

infrared wavelengths, and is essentially the same as the VISST, except that the 1.6-μm 
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(Terra) or 2.1-μm (Aqua) channel is used instead of the visible channel to estimate τ.  The 

Aqua analyses used the 2.1-μm channel because its 1.6-μm channel was malfunctioning.  

This algorithm is used whenever either the scene classification from neighboring clear 

pixels or snow and ice maps from the CERES data stream identify the background 

surface as snow or ice-covered.  During nighttime, when the solar zenith angle exceeds 

82º, the solar-infrared infrared split-window technique (SIST) is used.  The SIST uses the 

3.7-, 10.8-, and 12-μm channels to retrieve the same parameters as the VISST, except that 

the useful information at these wavelengths is generally limited to clouds having an 

optical depth less than 10 (Minnis et al. 2011a). 

 The CERES-MODIS Heff is determined from Teff by matching it with a modified 

numerical weather analysis (NWA) of the vertical temperature profile.  The lower half of 

the NWA profile is replaced with temperatures computed using a 7.1ºC km
-1

 lapse rate 

anchored to the 24-hour mean surface air temperature (Dong et al. 2008) or sea surface 

temperature.  Details of the lapse rate modification are provided by Minnis et al. (2011a).  

Cloud LWP is then calculated by combining the retrieved τ and re in the equation  

             (1) 

where ρl is the density of liquid water, τ is optical depth, and re is effective radius. 
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CHAPTER III 

METHODOLOGY 

 Satellite Spatial Analysis at Barrow Site 

 When comparing surface and satellite observations, the surface radar/lidar field of 

view is much smaller than the satellite fields of view, resulting in spatial and temporal 

differences between ground-based and space-borne observations.  While the instruments 

at the ARM NSA site can provide many profiles of cloud information per hour, the polar 

orbiting nature of the satellites and narrow swath widths of the CPR and CALIOP prevent 

the satellites from taking instantaneous observations directly over the ARM site more 

than two to three times per month.  To match the temporal and spatial scales as closely as 

possible for the surface-satellite comparison, the overpass frequency, which is defined as 

the percentage of satellite overpasses per month, of the space-borne radar/lidar was first 

taken into consideration. 

 As Figure 1 shows, increasing the size of the grid box centered on the ARM NSA 

site from 1ºx1º to 7ºx7º increases the overpass frequency from approximately 20%, where 

CloudSat/CALIPSO (CC) data were available approximately six times per month, to 

100%.  At the 3ºx3º grid box, the cloud fraction percentage begins to stabilize, indicating 

that there are enough samples to produce consistent results.  At this same point, the 

overpass frequency climbs to 60%, which translates to approximately 18 samples per 

month each year, and 72 total samples per month during the 4-year period in this study.   

From this, we conclude that the use of a 3ºx3º grid box area can provide a sufficient 
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Figure 1.  CloudSat/CALIPSO cloud fraction (black triangles) and overpass frequency 

(red circles) with increasing grid box size around the ARM NSA site in Barrow, AK. 

 

 

 
Figure 2.  Reference map of Arctic locations. 
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number of CC samples for this study.  As a result, all macrophysical cloud properties 

from satellite data in this study are averaged within a 3ºx3º area (333 km latitude by 115 

km longitude) centered on the ARM NSA site near Barrow, AK, while microphysical 

properties are averaged within a 1°x3° area (111 km latitude by 115 km longitude).  

Because the NSA site is located on the north Alaska coast, as demonstrated by the blue 

asterisk in Figure 2, the surface of the comparison region is roughly half ocean and half 

land. 

Satellite Evaluation in Polar Regions 

 The use of data from sensors included in the A-train constellation of satellites 

ensures that all satellite retrievals cover the same time period.  The active sensors, 

CloudSat and CALIPSO, trail Aqua by 60 and 75 seconds, respectively.  As a result, all 

satellite measurements are collocated in both time and space.  These measurements are 

then averaged into grid boxes of 3ºx3º across the span of the Arctic and Antarctic. 

 

 
Figure 3.  CloudSat/CALIPSO overpasses over (a) the Arctic, and (b) the Antarctic, from 

July 2006 to June 2010. 
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 Although CloudSat and CALIPSO are polar-orbiting satellites, the widths of their 

swaths are so narrow that regions closest to the poles remain unsampled, as shown in 

Figure 3, which documents the locations of all overpasses made by CloudSat and 

CALIPSO between July 2006 and June 2010.  Due to the lack of available data, the 

Arctic is defined as the region covering all longitudes between 61.5ºN and 82.5ºN in this 

study.  Similarly, the Antarctic is represented by all longitudes between 61.5ºS and 

82.5ºS.   

Another complication that occurs when using data from high latitudes stems from 

the sizes of grid boxes used for averaging.  The polar regions experience a narrowing of 

longitudinal area closest to the poles.  As a consequence, the size of the 3ºx3º grid boxes 

across the focus areas range from 333 km latitude by 52 km longitude closest to 

82.5ºN/S, to 333 km latitude by 152 km longitude nearest to 61.5ºN/S.  To account for 

these large spatial differences, Arctic- and Antarctic-wide averages are weighted by grid 

box size using the equation  

          ∑   ∑  (2) 

where d represents the data being averaged (i.e. cloud fraction, cloud-top height, etc.) and 

w is the weighting function, which is equivalent to the area of the grid box. 

Selection of Single Layer Stratus Cases at ARM NSA Site 

 Initial efforts to select daytime single-layered low-level stratus clouds from ARM 

and CERES-MODIS retrievals at the ARM NSA site identified a total of 477 Terra cases, 

and 557 cases from Aqua, between July 2006 and December 2007.  Further examination 

of satellite and radar imagery was then used to screen the data and remove instances that 

included multiple stratus cloud layers and overlying cirrus.  This process reduced the 
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number of daytime low-level stratus cases to 365 and 413 for Terra and Aqua, 

respectively.  To investigate the potential effects of surface and snow cover, the data sets 

were also separated by ground cover composition.  Dong et al. (2003, 2010) found 

surface albedo at the ARM NSA site to equal ~0.2 under bare ground conditions.  

Therefore, it is assumed that the ground was bare if the ARM-derived surface albedo was 

less than 0.2, and snow and ice cover were present if the surface albedo exceeded 0.2.  

Because only observations having solar zenith angles less than 82º were considered, 

months with surface albedo higher than 0.2 ranged from October to June, but excluded 

days influenced by polar night from November through February.  This separation 

divided the total number of cases into 113 with surface snow cover and 252 without for 

Terra, and 147 with snow cover and 266 without for Aqua. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

PART 1: Comparison of Cloud Macrophysical Properties at ARM NSA Site 

 Comparisons of cloud macrophysical properties have been conducted over the 

ARM NSA site in Barrow, Alaska.  Cloud fractions and cloud heights derived from the 

CloudSat/CALIPSO radar-lidar and CERES-MODIS observations are compared with 

combined MMCR, MPL, and ceilometer observations at the ARM NSA site in Barrow, 

AK, from July 2006 to June 2010.   

Cloud Fraction 

 
Figure 4.  Monthly mean cloud fractions derived from CloudSat/CALIPSO (black), 

CERES-MODIS (red), and ARM radar-lidar (blue) over the ARM NSA site from July 

2006 to June 2010. 
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 As demonstrated in Figure 4, the monthly mean cloud fraction (CF) from the 

ARM NSA instruments increases from March through May (68% to 86%), decreases 

from May to June (86% to 76%), then rises to a secondary maximum in November (95%)  

before decreasing again through winter.  The 4-year mean of CF from the ARM 

instruments averages to 81.6%, which is comparable to the annual average of 78% 

determined by Dong et al. (2010) in a study of ARM NSA radar-lidar CFs from 1998-

2004.   

 Cloud fractions from CC follow a similar pattern to ARM results, increasing to an 

early spring maximum (82%) before subsequently decreasing in June (63%), then rising 

to a second peak in October (89%), with an annual average of 77%.  This same general 

trend is evident in CERES-MODIS results, with warm month (May through September) 

averages (80%) agreeing within 5% of ARM (85%) and CC (81%).  During the cold 

season from October to April, however, CERES-MODIS estimated CFs are much lower 

than those derived from ARM and CC, with the largest difference in December-January.    

The CERES-MODIS annual average is 66% during the 4-year period, which is 11% 

lower than CC and 15.6% lower than ARM. 

Cloud Heights 

 Figure 5 shows the monthly mean highest cloud-top (Htop) and lowest cloud-base 

(Hbase) heights observed by ARM and CC radar-lidar combinations, and cloud effective 

height (Heff) derived from CERES-MODIS over the ARM NSA site.  Monthly means of 

Hbase measured by ARM and CC agree well, with annual averages (±standard deviation) 

of 1.3±1.9 and 1.1±1.4 km, respectively, and mean differences ranging from roughly 0.15 

km in August to 0.8 km in February.  The monthly means of Htop from ARM and CC also 
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agree well through the winter and early spring months, averaging to 4.3 and 4.7 km, 

respectively, between November and April.  After April, however, the similarities in Htop 

begin to deviate.  While CC Htop begins a steady increase through the early summer, 

ARM Htop levels off or slightly decreases, until a maximum difference (4 km) is reached 

between the two in September.  To investigate these warm season discrepancies, the PDF 

and CDF of the highest cloud-top heights derived from ARM and CC are plotted at 500 

m intervals for all months (Figure 6a), March (Figure 6b), and August-September (Figure 

6c). 

 
Figure 5.  Monthly means of highest cloud-top (solid) and lowest cloud–base (dashed) 

heights derived from ARM NSA radar-MPL-ceilometer measurements (blue), 

CloudSat/CALIPSO observations, and CERES-MODIS effective cloud height (red with 

standard deviation) from July 2006 to June 2010. 
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Figure 6.  Vertical distributions of highest cloud-top height for ARM (blue), CC (black), 

and CERES-MODIS (red) for (a) July 2006 through June 2010, (b) March, and (c) 

August-September.  Solid lines represent the probability density function (PDF) of 

highest cloud-top heights, while dashed lines show the cumulative distribution function 

(CDF). 
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 Throughout the year, the ARM and CC PDFs and CDFs vary.  Figure 6b 

illustrates that, during March, the ARM and CC PDFs and CDFs are nearly identical at  

altitudes above 1 km, resulting in the similar monthly means of highest cloud-top heights 

seen in Figure 5.  During August-September, however, the PDFs and CDFs differ 

significantly.  Both ARM and CC show peaks in cloud occurrence at 1 km.  However, the 

CDFs show that the ARM radar-lidar observed approximately 40% of clouds by this 

altitude, while CC only measured 8% of total clouds below 1 km.   

Discussion  

  There are several potential reasons that lead to the 5% difference between ARM 

and CC cloud fraction, including spatial and temporal mismatches between the space- 

and ground-based radar-lidar observations and their different sensitivities and/or fields of 

view of clouds.  As demonstrated in Figure 6a, the ARM radar-lidar detected more (25% 

of total clouds) low-level clouds (cloud-top heights below 1 km) than CC (10%).  This 

result indicates that the 6% CF difference in Figure 4 is most likely due to CC 

measurement limitations in detecting clouds below 1 km.   

 During a study of radar-lidar CFs at the ARM NSA site, Dong et al. (2010) found 

that the annual CF was 78% from radar-lidar measurements during the period 1998-2004, 

which is comparable to the 4-year averages determined by the ARM and CC radar-lidar 

combinations in this study.  However, the CERES-MODIS CF is only 66%, with the 

largest underestimates found during the cold months (November-April).  The monthly 

differences are similar to those found by Kato et al. (2006) between the ARM lidar and 

CERES-MODIS cloud amounts over the NSA site from March 2000 through February 

2004.  In that study, the lidar-determined mean cloud fraction was 74% for the 4-year 
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period, compared to 71% from the CERES-MODIS.  Kato et al. (2006) also found that 

the cloud fraction over the NSA site determined using only radar data was only 57%, 

indicating that many of the clouds are very thin or tenuous. 

 During the cold months, the CERES-MODIS retrieved CFs are much lower than 

those derived from the active radar-lidar observations of ARM and CC.  ARM radar-lidar 

images (not shown) reveal that the clouds appearing over Barrow tend to be physically 

thin and closer to the ground during the cold months.  It has been documented that 

CERES-MODIS has a tendency to miss clouds with optical thicknesses less than 0.3 

(Chiriaco et al. 2007; Minnis et al. 2008), which may account for some of the differences 

in Figure 4.  During the cold months, the land and sea surrounding Barrow are typically 

covered by snow and ice, mostly in darkness, and very cold.  Thus, only infrared 

channels are used in the mask, which have difficulty detecting thin clouds in nearly 

isothermal conditions that produce small, often unambiguous signals, particularly at low 

altitudes, where the atmosphere is often warmer than the surface. 

 From May through September, however, CFs derived from the three platforms 

agree within 5%, ranging from 85% for the ARM radar-lidar, to 81% for CC, and 80% 

for CERES-MODIS.  Since the Arctic experiences nearly 24 hours of daylight during 

summer months, data are taken mostly in daylight during those months.  The visible 

contrast between clouds and background in snow-free conditions and the shortwave-

infrared and near-infrared contrast for snow-covered scenes along greater cloud-surface 

thermal contrast facilitate more accurate detection of clouds by CERES-MODIS sensors 

during that time period.  Only the thinnest or smallest clouds are missed by MODIS 

sensors during that time period. 
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When comparing cloud heights, it must first be known that Heff is converted from 

a measure of the brightness temperature, Teff, representing cloud radiative center.  It was 

expected that Heff would fall between ARM and CC radar-lidar measured Htop and Hbase 

values.  As discussed in Dong et al. (2008), Heff is generally close to Htop for optically 

thick clouds and nearer to the cloud center or Hbase for optically thin clouds.  According 

to Minnis et al. (2008), Heff should represent an optical depth of ~1.1 down from the 

cloud top, which corresponds to 1-2 km in ice clouds, even in optically thick ice clouds, 

but much less in liquid water clouds (~0.5 km in Dong et al. 2008).  This depth is 

consistent with the results in Figure 5, where monthly means and standard deviations of 

Heff basically fall within the cloud boundaries of ARM and CC measurements, with an 

annual average of 3.2±2.3 km and are 1-2 km below the ARM and CC tops. 

 As demonstrated in Figure 5, monthly means of Heff range from as low as 2.6 km 

in February to 3.9 km in July, and are very close to ARM Htop values from July to 

September.  Further investigation of cloud type using cloud radar imagery from ARM 

NSA throughout the 4-year period showed that, during this time period, the Barrow site 

tended to experience the highest frequency of both optically thick convective clouds and 

multi-layered clouds, where optically thin high-level clouds occur over lower clouds, 

than other seasons.  In optically thick convective clouds, the radiative centers are higher 

in the atmosphere and their corresponding Heff values are reported closer to the ARM-

measured cloud tops.  For multi-layered clouds, the radiative centers occur closer to the 

cloud base of the high-level cloud, or between the higher and lower cloud layers.  As a 

result, the CERES-MODIS Heff PDF and CDF values are close to those derived from 

ARM radar-lidar observations (Figure 6c).  Other seasons, however, tend to feature fewer 
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upper-level clouds, and low-level clouds become dominant as discussed in Shupe et al. 

(2011) and demonstrated in Figure 6 in this study.  This lowering of physical cloud 

heights causes Heff to be reported near the cloud physical center from November to June 

as shown in Figure 5. 

 The monthly means of Hbase measured by ARM and CC agree well, remaining 

between 1 and 2 km throughout the months and averaging within 200 m of each other.  

Similarly, the monthly means of Htop derived from ARM and CC, in general, agree well 

during the winter and early spring months as demonstrated in Figure 5.  The similarities, 

however, start to deviate after April, when CC Htop continues to increase, while ARM 

Htop levels off or slightly decreases, with a maximum difference between CC (7.3 km) 

and ARM (3.3 km) in September.   

 Figure 6b clearly illustrates that, during March, the ARM and CC PDFs and CDFs 

are nearly identical, resulting in similar monthly means of cloud-top heights (Figure 5).  

During August-September, however, both the PDFs and CDFs differ significantly and 

can be briefly summarized as follows.  Although both ARM and CC CDFs peak at 1 km, 

their CDFs show that the ARM radar-lidar observed approximately 40% of total clouds, 

while CC only measured 8% below 1 km.  The cloud-top height is about 6 km when the 

CC CDF is equal to 40%, indicating that CC detected more high-level clouds than ARM.  

This argument is further proven by greater CC occurrences above 8.5 km than ARM, and 

more clouds observed by CC above 11 km.  As shown in Figure 6c, the ARM CDF 

reported that 99% of clouds had been measured at a height of 11 km, as opposed to the 

84% measured by CC at the same height.  The clouds above 8.5 km observed by CC but 

missed by ARM (and CERES-MODIS) are optically thin cirrus clouds, which remain 
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undetected by the ARM MPL because of attenuation by low- and mid-level clouds, and 

are beyond the low detection limit of the ARM MMCR.  The optically thin clouds above 

8.5 km are entirely observed by CALIPSO, which has been shown by the PDF/CDF and 

monthly mean cloud-top height comparisons between CloudSat and ARM MMCR, where 

mean values are nearly the same during September (not shown).  Therefore, the large Htop 

difference between CC and ARM throughout the warm months in Figure 5 is due, in 

large part, to CC limitations in detecting clouds below 1 km and ARM radar-lidar 

limitations in measuring optically thin upper-level clouds, especially during the summer 

months when multi-layered clouds are present.  This effect of a thin cirrus layer occurring 

frequently helps explain why the CERES-MODIS cloud-top heights peak around 2 km 

instead of 1 km, since the thin, high layer would result in an overestimate of the heights 

for the low clouds retrieved by the algorithm. 

 
Figure 7.  Histograms of cloud-top height vs. cloud depth during the 2006-2010 period 

for (a) ARM and (b) CC radar-lidar observations.  The histograms are normalized by the 

number of cloudy counts in each 0.5×0.5 km bin to the total number of cloudy counts.  

Note that contours below the 1:1 line are due to the contouring algorithm used by the 

plotting program. 
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 To further investigate the cloud-top difference between ARM and CC, the 

histograms of cloud-top height vs. cloud depth derived from both ARM and CC during 

the 2006-2010 period are plotted in Figure 7.  The histograms first show that more deep  

clouds, which are identified where cloud-top heights equal cloud depth along the 1:1 line, 

are observed by CC than ARM.  In addition, the percentages of CC-detected highest 

cloud-top heights are higher than ARM at any given height above 1 km.  Finally, the 

cloud depth (or thickness) observed by CC is greater than that from the ARM 

observations at a given cloud-top height. 

PART 2: Comparison of Cloud Macrophysical Properties over the Arctic   

 Cloud fractions and cloud heights derived from CERES-MODIS have been 

compared to those measured by CloudSat/CALIPSO over the span of the Arctic.  Data 

are averaged into grid boxes of 3º latitude × 3º longitude, and cover all longitudes from 

61.5ºN to 82.5ºN.   

Cloud Fraction  

 Arctic-wide annual CFs from CC are plotted in Figure 8a, with differences 

between CERES-MODIS and CC shown in Figure 8b.  Differences are calculated using 

                          (3) 

where         represents CERES-MODIS cloud fraction and      is cloud fraction  

 

determined by CloudSat and CALIPSO.   

 As Figure 8a illustrates, annual cloud fractions across the Arctic reach a peak in 

the Greenland and Barents Seas where CC reports the 4-year averaged CF as high as 

91.7%.  While these averages remain between 60% and 80% across much of the rest of 
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the Arctic, including the Beaufort Sea, Russia, Siberia, and Canada, a minimum of 53.4% 

is evident across Northern and Central Greenland.   

 
Figure 8.  Arctic-wide (a) cloud fractions from CloudSat/CALIPSO and (b) differences in 

CERES-MODIS and CloudSat/CALIPSO derived cloud fractions for the 2006-2010 

period. 

 

 The average differences plotted in Figure 8b show that CFs derived from CERES-

MODIS agree well with CC through central Greenland, the Greenland and Barents Seas,  

and into the Scandinavian Peninsula, deviating by no more than ±10% in these regions.  

Across the majority of the Arctic, however, CFs from CERES-MODIS show 

underestimates of, on average, between 20% and 30%, with the largest differences of 

31% occurring in Northeastern Greenland and the Arctic Ocean, near the Beaufort Sea. 

 Figures 9 and 10 break Arctic CFs into monthly averages for Northern 

Hemisphere summer (June, July, and August; JJA) and winter (December, January, and 

February; DJF) months, respectively.  Cloud fractions derived from CC are shown in the 

top panel, while the differences between CERES-MODIS and CC are presented in the 

bottom panel.  
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Figure 9.  Arctic-wide averaged cloud fractions derived from CC (upper panel) and their 

differences with CERES-MODIS (lower panel) for JJA. 

 

 During the Northern Hemisphere summer, Arctic-wide CFs average to 

approximately 77.1%, with a range of monthly means from 74.9% in July to 80.2% in 

August as illustrated in Figure 9.  These results are consistent with Kay and Gettelman 

(2009), who reported a CloudSat/CALIPSO JJA average CF of 77% for the region 

extending from 65-82ºN.  As demonstrated in Figure 9, the averaged CF patterns derived 

from CC do not vary significantly during the 3-month period.  Measurements from CC 

show the highest cloud fractions occurring over the Greenland and Barents Seas, where 

CFs are as high as 97.2% in August.  Over the Arctic Ocean and into the seas bordering 

Siberia and Russia, CFs remain nearly constant, averaging between 80% and 90%.  

Across land areas, CFs are slightly lower, and average to 70-80% in Siberia and Russia, 

while Greenland and regions of northern Canada experience cloud amounts as low as 

43.7% in July. 

 In general, differences between the active and passive satellite summertime 

retrievals, shown in the lower panel of Figure 9, remain small, averaging between ±10% 



31 

 

throughout the majority of the Arctic.  Deficits in CERES-MODIS CF increase over 

Greenland, where retrievals dip 20-25% lower than CC through JJA.  These 

underestimates are coupled with overestimates in CERES-MODIS retrieved CFs over the 

Greenland Sea during June and July, where values exceed those from CC by 21.3% and 

16.4%, respectively.   

 
Figure 10.  Same as Figure 9, but for DJF. 

 

 

 During DJF, the monthly means of CF derived from CC across the Arctic are 

slightly lower than those reported during summer months.  While Arctic-wide summer 

averages reach 77.1%, CFs decrease in some regions during the winter, leading to a DJF 

average CF of 72.4% (Figure 10).  These differences mainly stem from a decrease in CF 

across the Arctic Ocean and its surrounding seas, where, in general, values range from 

50-70%, with some higher amounts included.  When compared to CC, CERES-MODIS 

significantly underestimates cloud fractions in these regions, with monthly deviations of  

-48.7%, -59.2%, and -50.4% in December, January, and February, respectively, as shown 

in the lower panels of Figure 10.  Despite these differences, however, similarities in CF 
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are seen in DJF and JJA across the Greenland and Barents Seas, where differences 

between CERES-MODIS and CC fall between ±10%. 

Cloud Heights 

 The 4-year averages of highest cloud-top heights measured by CC, which are 

displayed in Figure 11a, follow a distinct pattern across the Arctic latitudes.  Closest to 

the North Pole, extending into the Laptev and East Siberian Seas and across the Queen 

Elizabeth Islands north of Canada, Htop is at its lowest, with heights averaging as low as 

5.8 km.  As latitudes decrease away from the North Pole, Htop increases, averaging 

between 7 and 8 km across Siberia and parts of Russia, and reaching as high as 10.1 km 

in Iceland. 

 
Figure 11.  Same as Figure 8, but for cloud heights. 

 

 

 Arctic-wide effective cloud heights from CERES-MODIS over the 4-year period 

behave similarly to those investigated at the ARM NSA site, as shown in Figure 11b.   

Differences between CERES-MODIS and CC (Figure 11b) show that CERES-MODIS 

derived Heff are 0-4 km lower than the Htop derived from CC at any given Arctic grid 

point, with differences increasing toward the North Pole.  Over land areas, the cloud 
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heights derived from CERES-MODIS and CC agree within 1 km.  The effective cloud 

heights over oceanic regions, however, are reported as much as 4.6 km lower than the 

Htop derived from CC.   

 
Figure 12.  Arctic-wide highest cloud-top heights derived from CC (upper panel) and 

their differences with CERES-MODIS effective cloud heights (lower panel) for JJA. 

 

 

 During JJA, the CC Htop patterns are similar to those shown in annual Htop 

averages (Figure 11a), where the highest clouds occur mainly over the land regions 

(<65ºN), while the lowest clouds are mostly confined to the oceanic regions.  As 

illustrated in the upper panel of Figure 12, the monthly means of CC Htop increase from 

7.8 km in June to 9.0 km and 8.8 km in July and August, reaching a peak of 12.2 km in 

localized regions in August.  Averages in the interior Arctic, along the Arctic Ocean and 

its surrounding seas, however, increase from June into July, where heights raise from 

around 6 km to 7-8 km, before decreasing again in August to between 6 and 7 km in the 

northern regions of the Barents and Greenland seas. 

 Patterns in differences between CERES-MODIS Heff and CC Htop during JJA are 

also similar to the 4-year average differences in Figure 11b.  In general, differences in 
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satellite-derived cloud heights over land areas, including Siberia, Russia, Greenland, and 

Canada, are small, as displayed in the lower panels of Figure 12.  Over these areas, 

CERES-MODIS Heff fall 0-1 km below CC Htop in June and July.  One exception is 

witnessed over Siberia in June, however, where CERES-MODIS overestimates cloud 

heights by as much as 1.5 km.  The largest differences between CERES-MODIS and CC 

in June and July occur over oceanic regions, where CC detects clouds as much as 5.2 km 

higher than CERES-MODIS.  During August, however, these dissimilarities decrease 

slightly, with CERES-MODIS derived Heff falling, on average, 3-4 km below the CC-

measured Htop.  Conversely, over land areas, differences in satellite retrievals increase 

slightly to 1-2 km. 

 
Figure 13.  Same as Figure 12, but for DJF. 

 

 While clouds measured by CC during the Northern Hemisphere summer follow 

patterns similar to those displayed in Figure 11a, measurements during DJF, shown in the 

upper panel of Figure 13, differ significantly.  In JJA, the Htop weighted average is 8.5 km 

(Figure 12), but cloud heights over many regions, including the Arctic Ocean, Beaufort 
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Sea, Siberia, and Canada, decrease during the winter, resulting in an averaged Htop of 6.9 

km.  The highest CC cloud altitudes occur over the Barents and Greenland Seas during 

winter, where regional averages reach 7.5, 9.9, and 6.6 km in December, January, and 

February, respectively.  Alternatively, over the Beaufort, East Siberian, and Laptev Seas, 

cloud heights are much lower with an average value of ~6 km. 

 During the winter months (DJF), the CERES-MODIS Heff values agree relatively 

well with CC Htop, particularly over land areas, where differences lie mainly within ±1 

km, as demonstrated in the lower panels of Figure 13.  The largest differences in 

December and February occur across the Beaufort, East Siberian, and Laptev Seas, where 

the lowest Arctic cloud heights occur, while January shows CERES-MODIS Heff 

underestimates across the Barents and Greenland Seas.   

 Discussion 

 Cloud macrophysical properties retrieved from CERES-MODIS face unique 

struggles during winter months when direct solar radiation is not available.  During this 

time, sea ice is prevalent across most Arctic waterways, as Figure 14 from the National 

Snow and Ice Data Center (NSIDC) shows.  This image documents the extent of sea ice 

concentration in January of 2007 and shows a distinct line bordering Greenland and the 

Barents Sea where the edge of sea ice meets open water.  This region tends to remain free 

of sea ice year-round, mainly because of the influx of warm currents from the Atlantic 

Ocean (Arthun et al. 2012).   
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Figure 14.  Image of sea ice extent for the week of January 1, 2007, from the National 

Snow and Ice Data Center. 

 

 

 Differences between CERES-MODIS and CC cloud fractions during DJF capture 

the regions of sea ice and open water well.  In the lower panels of Figure 10, a distinct 

line nearly identical to the edges of the sea ice extent shown in Figure 14 separates the 

Greenland and Barents Seas from the rest of the Arctic.  Across these two bodies of 

water, cloud fractions between CC and CERES-MODIS are similar.  However, 

throughout the rest of the Arctic, CERES-MODIS severely underestimates CF.  Similar 

results were found by Liu et al. (2010), who used data from July 2006 to December 2008 

and concluded that MODIS CFs during polar night decrease with increasing sea ice 

concentration compared to CloudSat and CALIPSO results.  This indicates that SINT 

algorithms used in retrieving CERES-MODIS cloud properties over snow and ice 

surfaces struggle to capture accurate cloud fractions during polar night. 
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Figure 15.  Vertical distribution of CC highest cloud-top heights (black) and CERES-

MODIS effective cloud heights (red) across the entire Arctic for (a) DJF, and (b) JJA.  

Solid lines represent the PDF, while dashed lines represent the CDF. 

 

 

 As discussed above, the CERES-MODIS derived CFs during winter months are 

much lower than those derived from CC, however, this is not the case for the cloud height 

comparison.  In fact, differences in cloud heights are actually smaller during DJF than 

during JJA.  To further investigate these differences, the PDFs and CDFs of Htop and Heff 

during DJF and JJA are plotted in Figures 15a and 15b, respectively.  As demonstrated in 



38 

 

Figure 15a, the cloud heights derived from CC and CERES-MODIS over the Arctic 

during DJF have a bimodal distribution with a lower peak between 1.5 and 2.5 km and a 

higher one between 8 and 10 km. In addition to the good agreement in their PDFs, their 

CDFs also agree well, particularly in the lowest levels and above 9 km.  The vertical 

distributions of Htop and Heff during JJA are similar to their winter counterpart with a 

bimodal distribution.  However, CC detected clouds about 2 km higher than those 

retrieved from CERES-MODIS. At an altitude of 12 km, the CERES-MODIS CDF is 

100%, while the CC CDF is only 90%.  These clouds (above 12 km) are likely optically 

thin cirrus clouds that the CERES-MODIS channels have difficulty detecting, due to its 

limit in detecting clouds with optical depths less than 0.3 (Chiriaco et al. 2007; Minnis et 

al. 2008).    

PART 3: Comparison of Cloud Macrophysical Properties over the Antarctic  

 Cloud fractions and cloud heights derived from CERES-MODIS have been 

compared to similar measurements from CloudSat/CALIPSO over the Antarctic.  Data 

are averaged into grid boxes of 3º latitude × 3º longitude, and cover all longitudes from 

61.5ºS to 82.5ºS. 

Cloud Fraction  

Across the Antarctic, distinct differences in cloud fraction are seen over land and 

ocean areas.  Unlike the Arctic, which is characterized by a large body of water and ice 

surrounded by land (Figure 2), Figure 16 shows that the Antarctic is composed of a large 

land mass surrounded by water, known as the Southern Hemisphere storm track.  Over 
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Figure 16.  Reference map of Antarctic locations. 

 

 
Figure 17.  Antarctic-wide (a) cloud fractions derived from CC radar-lidar measurements 

and (b) CERES-MODIS and CC differences during the period 2006-2010. 
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land, especially in the interior regions of the continent east of the Transantarctic 

Mountains, which run along a line from the coast of the Ross Sea up to the Weddell Sea, 

cloud fractions are small.  As shown in Figure 17a, the mean CFs average as low as 

43.6% across this region during the 4-year period.  Around the land-ocean border of 

Antarctica, however, cloud fractions range between 70 and 80%, increasing to as much as 

80-90% over the Antarctic Peninsula between the Weddell and Bellingshausen Seas and 

across most of the oceanic area surrounding the continent.   

 Compared to CC-detected CFs, CERES-MODIS CFs across the ocean and over 

the East Antarctic Ice Sheet are nearly the same, with agreements within ±10% in the 4-

year averages (Figure 17b).  Around the border of Antarctica, into the Ross Sea, and 

across the Weddell Sea, the CF differences between CC and CERES-MODIS increase to 

10-20%, with a peak difference of -29.5% occurring over the land south of the Ross Sea.   

 During December-February, the Southern Hemisphere summer months, cloud 

fractions over the waters surrounding Antarctica are much higher than their annual 

averages (Figure 17a).  This is evident in Figure 18, where the CFs derived from CC 

reach peaks between 96% and 98% during each of the 3 months.  Across the East 

Antarctic Ice Sheet, CC cloud fractions remain low through the duration of the season, 

averaging to 50.3%, 55.0%, and 50.0% in December, January, and February, 

respectively.  This coupling of high and low CFs leads to a seasonal average of 76.1%.  

These results are consistent with those from both Bromwich et al. (2012) and Adhikari et 

al. (2012), who investigated CFs from CloudSat and CALIPSO during similar 4-year 

periods.   
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Figure 18.  Antarctic-wide CC detected CFs (upper panels) and differences with CERES-

MODIS (lower panels) for DJF. 

 

 

 CERES-MODIS captures CFs over the ocean, Antarctic Peninsula, and most of 

Marie Byrd Land well.  The lower panels of Figure 18 show that CERES-MODIS CFs 

range no more than 10% higher or lower than CC in these regions.  Cloud fractions over 

the East Antarctic Ice Sheet present more of an issue, however.  During December, 

differences between CERES-MODIS and CC CFs are, in general, small, though localized 

regions across Wilkes Land and in the East Antarctic Ice Sheet closer to the South Pole 

experience CERES-MODIS CF deficits of as much as 38.2%.  During January, CERES-

MODIS underestimates of 20-30% spread across the majority of the East Antarctic Ice 

Sheet.  In February, however, CERES-MODIS detects, in general, between 10 and 30% 

more clouds than CC over the same location, with overestimates of up to 46% reported 

nearest to the South Pole at a longitude of ~70ºE. 
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Figure 19.  Same as Figure 18, but for JJA. 

 

 

 Cloud fraction patterns derived from CC during the Southern Hemisphere winter 

months, June-August, are very similar to their DJF counterparts as illustrated in Figure 

18.  As shown in Figure 19, CC CFs are, once again, highest over the ocean, with 

decreasing cloud amounts over the interior part of the continent.  During JJA, however, 

cloud fractions across the Southern Hemisphere storm track are noticeably lower than 

those in the same region during DJF, remaining, in general, between 70 and 90%, except 

in August when CFs jump a bit higher near the Amundsen and Bellingshausen Seas.  

High CFs are also prevalent along Wilkes Land and Ellsworth Land in coastal Antarctica, 

where values exceeding 70% persist during July and August.  A lower average of 64.4% 

is found over the extent of the East Antarctic Ice Sheet, with values as low as 35% 

reported to the east of the Transantarctic Mountains in both June and August.  

 The bottom panels of Figure 19 show that CERES-MODIS algorithms 

underestimate CF by a large percentage across many parts of the Antarctic during JJA.  

Through the duration of the Southern Hemisphere winter months, CERES-MODIS CFs 
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reported across the Southern Hemisphere storm track, west of the Transantarctic 

Mountains, and into Wilkes Land fall 20-30% lower than the CFs (80-90%) derived from 

CC.  The largest differences occur in June, however, when CERES-MODIS CFs are 

around 43% lower than those derived from CC in the Ross Sea.  The CERES-MODIS 

derived CFs overestimate values by 10-20% than CC results over regions east of the 

Transantarctic Mountains and across portions of the East Antarctic Ice Sheet, as 

demonstrated in the lower panels of Figure 19.   

Cloud Heights 

 
Figure 20.  Same as Figure 17, but for cloud heights. 

 

 Figure 20a shows the 4-year averages of CC-measured highest cloud-top heights 

over the entire Antarctic where more high-level clouds occur over land, whereas more 

low-level or mid-level clouds occur over the surrounding oceans.  Cloud heights in the 

central portion of the continent, extending across Ellsworth Land, Queen Maud Land, and 

the interior portion of the East Antarctic Ice Sheet, range between 10 and 11 km and 
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represent the highest averages during the 4-year period.  Along the Antarctica coast, 

including Wilkes Land and the outer reaches of Marie Byrd Land, cloud heights drop to 

8-9 km, and decrease further into the Southern Hemisphere storm track, where Htop 

ranges between 6 and 9 km.   

           Effective cloud heights retrieved from CERES-MODIS agree with CC results in 

most of the surrounding water areas well, falling no more than 1 km lower than CC in all 

regions except the Weddell Sea and near the land bordering the Bellingshausen, 

Amundsen, and Ross Seas.  As illustrated in Figure 20b, these 1-km discrepancies 

continue across Wilkes Land and into coastal portions of the East Antarctic Ice Sheet.  

Differences in measured CC Htop and CERES-MODIS derived Heff increase as latitudes 

progress towards the South Pole.  These differences are maximized in the two locations 

closest to the Weddell and Ross Seas, where CERES-MODIS Heff values fall between 4 

and 5 km lower than CC. 

 

 
Figure 21.  Antarctic-wide CC highest cloud-top heights (upper panels) and their 

differences with CERES-MODIS effective cloud heights (lower panels). 
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 During DJF, the cloud heights measured by CC are much lower than the annual 

mean, with an average of 6.9 km and similar monthly means during the 3 months (Figure 

21).  The lower cloud-top heights occur over the land bordering the Ross Sea, where 

averages of CC Htop do not exceed 6 km throughout the duration of the season.  A string 

of higher Htop, with altitudes of 7-10 km, connects the South Pacific and Indian Oceans.  

Similar cloud heights stretch across the East Antarctic Ice sheet through the duration of 

the summer.   

 Presented in the lower panels of Figure 21 for DJF, the effective cloud heights 

retrieved from CERES-MODIS agree with CC Htop within ±1 km throughout a large 

portion of the Antarctic.  Regions of slightly larger underestimates in Heff occur along a 

band connecting the South Pacific and Indian Oceans, over the land near the Ross Sea, 

and over a small portion of the West Antarctic Ice Sheet near the Weddell Sea through 

the duration of the season.  Among these locations, Heff values from CERES-MODIS fall 

roughly 2-3 km lower than Htop values from CC.  The maximum underestimate of Heff 

throughout the season occurs over the land near the Weddell Sea in February, where 

CERES-MODIS Heff retrievals fall ~2.9 km below CC.  The largest overestimates of 

CERES-MODIS Heff are also seen in February, when CERES-MODIS retrievals exceed 

CC Htop measurements over a majority of the East Antarctic Ice Sheet.  These 

overestimates reach as high as 2.4 km above CC, though most of the overestimates range 

1-2 km higher. 

During JJA, cloud heights derived from CC (Figure 22) are much higher than 

their annual mean and DJF averages over most of the Antarctic regions, particularly over 

land.  In June, Htop values are greater than 12 km across the Weddell Sea and most of the 
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Antarctic land mass, with maximum values reaching 18.4 km into the atmosphere.  This 

region of high Htop remains a constant feature through the JJA months, with the July 

maximum reaching 19.0 km, and August experiencing a slightly decreased maximum 

Htop of 17.7 km.  The lowest cloud heights reported throughout the season occur over 

Wilkes Land and the oceans surrounding Antarctica, where Htop falls between 5 and 8 

km. 

 

 
Figure 22.  Same as Figure 21, but for JJA. 

 

 

While CERES-MODIS is able to detect the lower cloud heights over Wilkes 

Land, the South Pacific Ocean, and the Indian Ocean, it is clear from the lower panels of 

Figure 22 that the algorithms are unable to detect the high clouds that CC measured 

across the remaining portions of the Antarctic.  The pattern of large differences closely 

resembles the patterns of highest cloud heights in the upper panels.  Within these regions, 

the differences between Heff and Htop have a large range from 1 km to 12.3 km in July. 
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Discussion 

 Across the Antarctic, cloud fractions and heights derived from the satellites 

exhibit similar features as discussed for the Arctic.  In general, CERES-MODIS and CC 

both report similar cloud heights and cloud fractions during DJF, while JJA are 

characterized by large underestimates in CERES-MODIS retrievals of cloud 

macrophysical properties.  One clear difference, however, is the presence of large 

CERES-MODIS overestimates in CF during February over Antarctica.  Similar findings 

were reported by Minnis et al. (2007), who compared global mean CF from CERES-

MODIS, CALIPSO, and CloudSat for April of 2007.  In this study, it was found that 

CALIPSO cloud fractions exceeded those from both CloudSat and CERES-MODIS in 

most regions.  Over the Antarctic, however, CERES-MODIS results were substantially 

higher, due to the instrument detecting too many extremely cold clouds.  The reasons for 

this phenomenon are still under investigation. 

 During DJF, Arctic CFs derived from CERES-MODIS were much lower than CC 

results, resulting from little to no direct solar radiation and small thermal contrast 

between clouds and snow-ice covered surfaces.  While this effect undoubtedly causes 

similar issues in the Antarctic during JJA, it does not explain the extreme differences 

witnessed in retrievals of cloud heights that were not present in ARM NSA or Arctic 

comparisons.   

 To further investigate these discrepancies, the PDF and CDF for Antarctic-wide 

Htop and Heff during JJA were plotted using 500 m height bins.  As demonstrated in 

Figure 23, both the PDF and the CDF from CC and CERES-MODIS are nearly the same 

below 8 km, and start to deviate above 8 km.  Both platforms show that cloud heights  
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Figure 23.  Vertical distribution of CC highest cloud-top heights (black) and CERES-

MODIS effective cloud heights (red) across the Antarctic for JJA.  Solid lines denote the 

PDF, while dashed lines represent the CDF. 

 

exhibit an initial peak near 2 km, and CDFs show that CERES-MODIS and CC have both 

observed approximately 40% of total clouds by a height of 8 km.  After this level, 

CERES-MODIS shows an overall peak in clouds at 10 km, with the CDF reporting that 

99% of CERES-MODIS clouds were detected within the lowest 14 km of the 

atmosphere.  At this same altitude, however, CC has only detected 66% of its total 

clouds.  The CC distributions, overall, are more spread out, with relative PDF maximums 

of 0.04 occurring at 8 and 19.5 km.  It is not until a height of nearly 20 km that 99% of 

CC clouds have been detected.  This percentage of clouds detected by CC at high 

altitudes, coupled with higher CC cloud fractions during the JJA season suggests that CC 
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is detecting polar stratospheric clouds that are beyond the detection limits of the CERES-

MODIS instruments. 

 Many studies (e.g. Wang et al. 2008; Pitts et al. 2007; Noel and Pitts 2012) have 

stated that the occurrence of PSCs drops significantly after mid-late September, when 

solar radiation returns to Antarctica and stratospheric ozone loss begins.  This is reflected 

by Verlinden et al. (2011), who investigated the vertical profiles of cloud occurrence over 

several regions across the Antarctic using combined CloudSat and CALIPSO data.  From 

this study, it was shown that, across the Antarctic Peninsula, West Antarctica, and the 

Antarctic Plateau, which extends across the East Antarctic Ice Sheet, clouds occur as high 

as 25 km during JJA, indicating the presence of PSCs.  During September, October, and 

November, however, the occurrences of clouds above 20 km decreases to nearly 0, 

indicating that both the height and frequency of PSCs decreases after the winter months.  

This is indicated further during DJF, where no clouds were reported above ~11 km, 

regardless of location.  Similar patterns of high clouds during winter are not present in the 

Arctic cloud heights shown in Figure 13.  While PSCs have been studied in the Arctic 

(e.g. Santee et al. 2002; Cheremisin et al. 2007), the Arctic stratosphere is rarely cold 

enough and lacks the chemical transport required  to support PSC formation (Santee et al. 

2002; Waibel et al. 1999).  

PART 4: Comparison of Single-Layered Low-Level Cloud Microphysical Properties at 

ARM NSA Site 

 

 Time series plots for all daytime, single-layered stratus cases, without and with 

snow and ice covered surfaces are shown in Figures 25-27, respectively.  Figure 24 

shows all available instances when daytime low-level stratus clouds occurred between 

July 2006 and December 2007 for both Terra (Figure 24a, c, and e) and Aqua (Figure  



50 

 

 

Figure 24.  Time series of ARM retrieved cloud-droplet effective radius (a and b), liquid 

water path (c and d), and optical depth (e and f) with matched MODIS Terra (a, c, and e) 

and Aqua (b, d, and f) and CloudSat radar-only retrievals for daytime single-layered 

stratus clouds from July 2006 through December 2007.  The cases are ordered from July 

2006 to December 2007 for both Terra and Aqua, and exclude dates during polar night 

when SZA < 82º. 

 

24b, d, and f).  The CERES-MODIS retrieved re values for both Terra and Aqua are 

nearly identical and agree well with the ARM results, showing a deviation of about 2.6 

μm above the ARM means of 11.5±4.2 μm and 11.5±4.5 μm, respectively.  Similar 

disagreements are seen in the τ retrievals, where the Terra averages are 11.7±9.2 

compared to the ARM-derived 13.4±7.5, while the Aqua mean drops to 10.3±9.6 in 

contrast to the 13.5±8.6 reported by ARM.  Liquid water paths for CERES-MODIS were 
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calculated based on the relationship between re and τ in Equation 1, and also reflect small 

disagreements similar to those seen in re and τ.  Looking at Figure 24 carefully, it is found 

that there are considerable differences in re and τ in Terra from 31 August 2006 to 10 

May 2007 (cases 100 through 200) and in Aqua over roughly the same time period (cases 

100 through 250).   These cases warrant further investigation. 

 
Figure 25.  Same as Figure 24, but for cases when land was snow-free. 

 

  

 To investigate the impact of snow and ice on the cloud microphysical retrievals, 

the stratus cases in Figure 24 have been broken down into those without and with snow 

and ice covered surfaces, as shown in Figures 25 and 26, respectively.  As illustrated in 

Figure 25, the ARM and CERES-MODIS retrieved re values without snow are slightly  
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Figure 26.  Same as Figure 24, but for cases when land was covered by snow. 

 

larger than those from all stratus cases, and their differences fall with ~1.5 μm.  The 

CERES-MODIS retrieved τ values for Terra improve slightly relative to ARM, but much 

greater improvements are seen for Aqua when compared to those from all stratus cases.  

Similar trends also occur for the LWP comparisons.  With the presence of snow 

influencing the background surface, the average re differences between ARM and 

CERES-MODIS for Terra and Aqua, respectively, are ~5.4 and 4.8 μm, values ~3.5 times 

greater than those without snow (Figure 26).  The τ differences between ARM and 

CERES-MODIS for both Terra and Aqua become larger with the addition of snow at the 

surface. 
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Discussion   

 The ARM surface retrievals in Figures 25 and 26 are nearly the same as those in 

Dong and Mace (2003).  In Table 2 of Dong and Mace (2003), they summarized that the 

monthly mean re values increased from 7.8 µm in May to 13.4 µm in July and fell to 11.5 

µm in September, whereas the τ (LWP) values decreased from 17.7 (94.1 gm-2
) in May to 

8.6 (74.8 gm
-2

) in July and climbed to 13.8 (107.4 gm
-2

) in September.  Minnis et al. 

(2011b) noted that the 2.1 µm retrievals of τ for Aqua MODIS data are roughly half those 

retrieved from Terra MODIS using the 1.6 µm channel, mainly because the wrong 

atmospheric absorption optical depths were used in the retrievals.  However, the large 

discrepancies between CERES and ARM over snow surfaces cannot be explained by 

incorrect atmospheric absorption since both satellites produce similar discrepancies. 

 

Table 1.  Daytime cloud microphysical property differences (CERES – ARM) and 

correlation coefficients (R
2
), July 2006 – December 2007. 

 Terra Aqua 

 No Snow 

 Mean  
Mean 

(%) 
SD 

SD 

(%) 
R2 Mean  

Mean 

(%) 
SD 

SD 

(%) 
R2 

re  1.3 µm 9.6 5.2 µm 38 -0.01 1.7 µm 12.3 5.3 µm 38 -0.03 

 -0.6 -4.9 7.5 61 0.53 -1.2 -9.4 10.2 80 0.41 

LWP  1.7 gm-2 1.5 86.6 gm-2 79 0.44 -7.6 gm-2   -6.4 132 gm-2 111 0.21 

 Snow 

re  5.4 µm 76.0 3.9  µm 55 0.23 4.8 µm 66.7 3.5 µm 49 0.28 

 -4.4 -27.2 12.6 78 0.15 -7.1 -47.0 10.5 70 0.23 

LWP  26.3 gm-2 35 108.4 144 0.26 -8.6 gm-2 -11.8 76.5 105 0.35 

 

 

 Table 1 summarizes the comparisons of the microphysical properties for both 

snow-covered and snow-free conditions.  Despite the good agreement for snow-free 
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surfaces, the standard deviations (SD) of the differences are quite large for most 

parameters, reaching as high as 111% for Aqua LWP.  Similarly, the SDs over snow-

covered surfaces are as great as 144% for Terra LWP.  The correlation coefficients, R
2
, 

are relatively low, particularly for re.  These results contrast with earlier comparisons of 

CERES-MODIS data with retrievals from data at the ARM Southern Great Plains Central 

Facility (Dong et al. 2008).  There, in snow-free conditions, R
2
 was ~0.41, 0.92, and 0.91 

for re, τ, and LWP, respectively.  The corresponding mean standard deviations were ~24, 

25, and 35%.  Thus, over NSA, the comparison uncertainties increased by a factor of 2-3. 

 The large discrepancies in SD and R
2
 between the NSA and SGP results are likely 

due to several factors, especially averaging area and surface albedo differences.  Dong et 

al. (2008) used pixel-level results averaged over a 30 km × 30 km area centered on the 

SGP site. For this study, since pixel-level results were not saved for CERES Ed2 over the 

NSA, SSF data within the 1° latitude × 3° longitude box centered over the NSA site were 

averaged.  Thus, the averaging box is roughly 111 km × 115 km.  Increasing the 

comparison box size from 30 km to more than 100 km will raise the variability in the 

differences and make the satellite results less representative of the instant surface 

observations, but can be representative over the long term.  Increasing the averaging area 

further will eventually disconnect satellite averages from the ground-based means. For 

example, if a 3°×3° average is used, the mean non-snow Terra and Aqua  values are 

only about half of their ARM counterparts, while they are in good agreement for the grid 

box size used here. 

 The grid box centered at the Barrow NSA site likely increases the complexity of 

surface albedo effect on satellite retrievals because the site is located on the coast with 
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variable sea ice and snow cover. The specification of surface albedo in the retrieval 

algorithm relies on relatively coarse ice-snow maps that are themselves more uncertain in 

coastal areas. Conversely, the SGP is in an area having a relatively homogeneous 

land/vegetation cover with few snow episodes throughout the year. In addition to the 

potential for albedo effects on the satellite retrievals, the properties of the clouds over 

water could differ from those over the adjacent land in any given situation. The NSA site 

will experience one type or the other depending on the winds at the measurement time, 

while the satellite will measure both. Thus, greater SDs and reduced correlations are 

expected over the NSA compared to the same parameters over the SGP site for both snow 

and snow-free scenes. 

 The averaged re values, retrieved from CloudSat radar and matched ARM and 

MODIS samples, are 10.6 µm, 11.5, and 14.2 µm, respectively, for all stratus cases. Both 

CloudSat radar and MODIS retrieved re values for snow-free (22 samples) and snow–

covered (16 samples) surfaces are roughly the same as their respective values for all 

stratus cases, but the ARM retrievals are 13.7 and 7.2 µm, respectively, for snow-free and 

snowy surfaces. The radar retrieval is not affected by variations in surface albedo or 

partially absorbing bands as seen for the CERES-MODIS retrievals, yet no changes are 

seen in the results when surface conditions change. This lack of variation when snow and 

ice are present may be due to the inability of the radar to detect the smaller droplets in the 

clouds present during snowy periods. The retrieval may also be affected by the radar 

missing lower portions of some of the clouds.  
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CHAPTER V 

CONCLUSIONS 

 In this study, an evaluation of passive satellite retrievals in polar regions has been 

conducted.  Cloud macrophysical cloud properties derived from active and passive 

sensors have been compared at the DOE ARM NSA site in Barrow, Alaska, across the 

extent of the Arctic, and across the Antarctic.  At the DOE ARM NSA site, cloud 

fractions and heights derived from ARM MMCR, MPL, and ceilometer are compared to 

CC and CERES-MODIS from July 2006 to June 2010.  Over the Arctic and Antarctic, 

CC and CERES-MODIS cloud fractions and heights are compared over the same time 

period.  On the basis of analyses of the 4-year dataset and comparisons between the 

platforms, several conclusions are reached. 

1) At the ARM NSA site, all three CFs show the same general trend of increasing to 

an early spring maximum before subsequently decreasing in June, then rising to a 

secondary maximum in late summer and early fall with annual averages of 81.6%, 

77.0%, and 66.0% for ARM, CC, and CERES-MODIS, respectively.  The 5% CF 

difference between ARM and CC is mainly due to the CC measurement limitation 

in detecting clouds below 1 km.  The CERES-MODIS CFs agree well with ARM 

and CC results during warm months (May-October), but are significantly lower 

during cold months (November-April).  Therefore, it is concluded that the passive 

CERES-MODIS retrieved CFs agree well with those from CC and ARM during 

warm months, but the CERES Edition 3 polar cloud detection algorithms have 
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trouble distinguishing thin clouds from cold surface temperatures present during 

winter when only infrared data can be used. 

2) Monthly means of CERES-MODIS Heff over the ARM NSA site remain nearly 

constant, close to the cloud center, and basically fall within the cloud boundaries 

of ARM and CC measurements with an annual average of 3.2±2.3 km.  The ARM 

and CC Htop means agree well during winter months and early spring, but start to 

deviate after April, when CC Htop continues to increase, whereas ARM Htop levels 

off or slightly decreases with a maximum difference between CC (7.3 km) and 

ARM (3.3 km) in September, which results from CC limitations in detecting 

clouds below 1 km and ARM radar-lidar limitations in measuring optically thin 

upper-level clouds, especially for multi-layered clouds.  Cloud-base heights for 

both CC and ARM agree well, with a small difference of ~200 m.  

3) Arctic-wide cloud fractions from CC during JJA are high, averaging to 77.1% for 

the season.  CERES-MODIS retrievals over the same months show agreement 

with CC, deviating only ±10% across the majority of the Arctic.  This agreement 

remains consistent across the Greenland and Barents Seas in DJF, where the 

warm currents from the Atlantic Ocean keep the area free of sea ice.  However, 

across the remainder of the Arctic, CERES-MODIS underestimates CF by as 

much as 59%, indicating that the infrared techniques used in retrieving CERES-

MODIS cloud properties over snow and ice surfaces struggle to capture accurate 

cloud fractions during polar night.   

 Differences in Htop and Heff during JJA exceed those present during DJF.  The 

PDFs and CDFs of Htop and Heff during the winter months show that CERES-MODIS 
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cloud retrievals agree well in the lowest levels, as well as above an altitude of 9 km, 

leading to similarities in the DJF cloud heights.  During JJA, however, CC detects a much 

higher frequency of clouds above 14 km that are likely optically thin cirrus clouds that 

CERES-MODIS algorithms cannot detect.  The PDF of JJA cloud heights shows a higher 

frequency of low and mid-level CERES-MODIS cloud heights, indicating that these 

might be instances of multi-layer clouds, where CC detects the highest cloud layer, and 

CERES-MODIS detects the lowest, resulting in similar cloud fractions, but much 

different cloud heights. 

4) Cloud fractions during the Antarctic summer average to 76.1%, with the highest 

CFs measured by CC over the surrounding oceans, and the lowest over the East 

Antarctic Ice Sheet.  CERES-MODIS results agree well with CC over the ocean 

and coastal regions, typically remaining within 10% of CC retrievals.  Over the 

East Antarctic Ice Sheet, however, CERES-MODIS struggles, underestimating 

CFs during December and January, but overestimating CFs in February.  Through 

JJA, CFs from CC are slightly lower than those measured in DJF, but CERES-

MODIS again shows underestimates of 20-30% in cold-season CFs. 

 Cloud heights from CC in DJF are low across the Antarctic, typically ranging 

between 5 and 8 km.  CERES-MODIS Heff values are similar, showing deviations of no 

more than ±3km. Htop values during JJA increase significantly with averages reaching 

higher than 12 km across the Antarctic land mass.  Vertical distributions of cloud heights 

during these months show that CC distributions are more spread out than CERES-

MODIS, with a relative maximum in occurrence at an altitude of 19.5 km.  This 

percentage of clouds detected by CC at high altitudes, coupled with higher CC cloud 
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fractions during the JJA season, suggest that CC is detecting polar stratospheric clouds 

that are beyond the detection limits of the CERES-MODIS instruments.   

5) CERES-MODIS retrieved cloud microphysical properties agree well with ARM 

retrievals during the summer months when the surface is free of snow and ice.  

The introduction of snow and ice below the cloud layers results in a significant 

disagreement in averages for  and re between the surface and satellite retrievals.  

However, the average LWPs agree relatively well with the surface because of 

compensating errors.  The optical depths retrieved from Aqua, which uses the 2.1 

µm channel instead of the 1.6 µm near-infrared channel used by Terra, are 

underestimated too much because of errors in the retrieval input.  These large 

discrepancies over snow surfaces may be due, in large part, to the presence of ice 

in the stratus clouds.  These effects will need to be examined in detail to 

determine how they affect the retrievals and how they may be taken into account 

in future retrievals. 

Future Work 

 The main focus of this study was to evaluate CERES-MODIS Edition 3 cloud 

property retrievals across the complicated terrain of polar regions.  In the time that has 

passed since this project began, a fourth edition of CERES-MODIS cloud property 

retrievals has been produced, with distribution of these products expected to begin in the 

fall of 2012.  Once this product has been released, a similar study of cloud fractions and 

cloud heights should be conducted to evaluate the new algorithms. 

 CERES-MODIS products include many cloud properties, including effective 

cloud particle phase, sizes, liquid and ice water paths, and cloud optical depths.  
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Investigating these cloud properties across the expanses of the Arctic and Antarctic, 

rather than in a localized region, will allow for a better understanding of any 

discrepancies that might be detected between the passive sensor onboard CERES-MODIS 

and the active sensors on CloudSat and CALIPSO.   

 While it is possible that these analyses will be used as references for the 

evaluation of other data sets, the main focus of this study was to show the areas where 

CERES-MODIS cloud retrievals in the Arctic and Antarctic struggle the most, and where 

they perform the best.  It is the hope that this study will offer insight into the areas that 

need future improvement within CERES-MODIS retrievals, possibly leading to 

algorithms with the ability to more accurately depict polar cloud scenarios in the future. 
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