# Some results on the existence of Hamiltonian cycles in $\mathcal{P}$-compositions of bipartite digraphs 

Pilar Cano, Hortensia Galeana-Sánchez \& Ilan A. Goldfeder

To cite this article: Pilar Cano, Hortensia Galeana-Sánchez \& llan A. Goldfeder (2020)
Some results on the existence of Hamiltonian cycles in $\mathcal{P}_{\text {-compositions of bipartite digraphs, }}$ AKCE International Journal of Graphs and Combinatorics, 17:3, 713-719, DOI: 10.1016/ j.akcej.2019.09.002

To link to this article: https://doi.org/10.1016/j.akcej.2019.09.002


Published online: 26 May 2020.

Submit your article to this journal

Article views: 141

View related articles

View Crossmark data 『

# Some results on the existence of Hamiltonian cycles in $\mathcal{P}$-compositions of bipartite digraphs 

Pilar Cano ${ }^{\text {a }}$, Hortensia Galeana-Sánchez ${ }^{\text {b }}$, and Ilan A. Goldfeder ${ }^{\text {c }}$<br>${ }^{a}$ Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México; ${ }^{\text {b }}$ Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad de México, México; ${ }^{\text {ºn }}$ Departamento de Matemáticas, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México, México


#### Abstract

Let $D$ be a digraph on $n$ vertices $s_{1}, \ldots, s_{n}$ and let $D_{1}, \ldots, D_{n}$ be a family of vertex-disjoint bipartite digraphs. We think of $D_{1}, \ldots, D_{n}$ as 2-colored digraphs with the same color set. The $\mathcal{P}$-composition $D\left[D_{1}, \ldots, D_{n}\right]^{\mathcal{P}}$ is the digraph obtained from $D$ by replacing each vertex $s_{i}$ of $D$ by $D_{i}$ and adding an arc from each vertex of $D_{i}$ to each vertex of $D_{j}$ if and only if those vertices have different color and $s_{i} \rightarrow s_{j}$ is an arc of $D$ (with $i, j \in[n]$ and $i \neq j$ ). Notice that this is a generalization of the usual composition $D$, whenever each of the digraphs $D_{1}, \ldots, D_{n}$ are $k$-partite, we obtain a $k$-partite digraph as a $\mathcal{P}$-composition and this digraph is a subdigraph of the usual composition $D\left[D_{\mathcal{P}}, \ldots, D_{n}\right]$. In our case, we obtain a bipartite digraph. Particularly, the $\mathcal{P}$-composition $\mathcal{C}_{n}\left[D_{1}, \ldots, D_{n}\right]^{\mathcal{P}}$, when $\mathcal{C}_{n}$ is the 2- or 3 -cycle and each $D_{i}$ is a semicomplete bipartite digraph, is also a semicomplete bipartite digraph. Gutin, Häggkvist and Manoussakis proved that a semicomplete bipartite digraph has a Hamiltonian cycle if and only if it is strong and has a cycle-factor. In this article, we prove that a digraph $\mathcal{C}_{n}\left[D_{1}, \ldots\right.$, $\left.D_{n}\right]^{\mathcal{P}}$, where $\mathcal{C}_{n}$ is the $n$-cycle and each $D_{i}$ is a strong semicomplete bipartite digraph, has a Hamiltonian cycle if and only if it is strong and has a cycle-factor.


## KEYWORDS

Generalization of
tournaments; bipartite tournaments; Hamiltonian cycles; graph products; cycle factors

## 2010 MSC

Primary: 05C20;
Secondary: 05C45

The study of the generalizations of tournaments, as they were posed by Bang-Jensen in [1], had involved several classes of digraphs, like locally semicomplete digraphs, quasi-transitive digraphs, arc-locally semicomplete digraphs, path mergeable digraphs, etc. (see [2]). Those classes of digraphs are mainly couched in terms of properties on the adjacency, their neighborhoods or the structure of their paths. From those studies have arisen characterizations in terms of operation of digraphs and, particularly, in terms of compositions of digraphs. In this work, we are interested in an analogous operation which preserves the property of being multipartite.

The compositions $\mathcal{C}_{n}\left[S_{1}, \ldots, S_{n}\right]$, where $\mathcal{C}_{n}$ is the $n$-cycle and each $S_{i}$ is a semicomplete digraph, are locally semicomplete digraphs, this is, for each vertex $v$ of $\mathcal{C}_{n}\left[S_{1}, \ldots, S_{n}\right]$, the subdigraphs spanned by the out-neighborhood and inneighborhood of $v$ are semicomplete. In [1], Bang-Jensen proved that a locally semicomplete digraph has a Hamiltonian cycle if and only if it is strong.

Gutin, Häggkist and Manoussakis characterized the existence of Hamiltonian cycles in semicomplete bipartite digraphs in $[5,6]$ :
Theorem 1. A semicomplete bipartite digraph $D$ has a Hamiltonian cycle if and only if $D$ is strong and contains a
cycle-factor (that is, a collection of vertex-disjoint cycles covering all the vertices of $D$ ).

Galeana-Sánchez and Goldfeder introduced in [3] an operation in digraphs which preserves multipartiteness, the $\mathcal{P}$-composition. Let $\mathcal{C}_{n}$ be the $n$-cycle and let $D_{1}, \ldots, D_{n}$ be strong semicomplete bipartite digraphs, $\mathcal{C}_{n}\left[D_{1}, \ldots, D_{n}\right]^{\mathcal{P}}$ is a bipartite subdigraph of $\mathcal{C}_{n}\left[S_{1}, \ldots, S_{n}\right]$. In fact, it is a maximal bipartite subdigraph.

In this work, we prove that this characterization is also true for digraphs of the kind $\mathcal{C}_{n}\left[D_{1}, \ldots, D_{n}\right]^{\mathcal{P}}$, where $\mathcal{C}_{n}$ es the $n$-cycle and $D_{1}, \ldots, D_{n}$ are strong semicomplete bipartite digraphs.
Theorem 2. Let $H$ be a digraph with vertex set $V(H)=\left\{v_{1}\right.$, $\left.\ldots, v_{n}\right\}$ and let $D_{1}, \ldots, D_{n}$ be vertex-disjoint strong semicomplete bipartite digraphs with ordered-partitions given by $\mathcal{P}$ and let $H$ be the $\mathcal{P}$-composition $\mathcal{C}_{n}\left[D_{1}, \ldots, D_{n}\right]^{\mathcal{P}}, H$ is Hamiltonian if and only $H$ has a cycle-factor.

## 1. Definitions

For general concepts we refer the reader to [2]. In this article, $D=(V(D), A(D))$ denotes a loopless directed graph

[^0](digraph) with at most one arc from $u$ to $v$ for every pair of vertices $u$ and $v$ of $V(D)$.

We denote an $\operatorname{arc}(u, v)$ in $A(D)$ by $u \rightarrow v$ or $u v$. Two distinct vertices $u$ and $v$ are adjacent if $u \rightarrow v$ or $v \rightarrow u$. An independent set is a set of vertices of pairwise nonadjacent vertices of $D$. If $A$ and $B$ are sets of vertices or subdigraphs of a given digraph, $A \rightarrow B$ means that for every vertex $a \in$ $A$ and every vertex $b \in B$, we have $a \rightarrow b$. If $A$ and $B$ are sets of vertices or subdigraphs of a given digraph, $(A, B)_{D}$ denotes the set of arcs of the digraph $D$ with tail in $A$ and head in $B$.

Our paths and cycles are always directed. A cycle-factor of a digraph $D$ is a collection $\mathcal{F}$ of pairwise vertex-disjoint cycles in $D$ such that all vertices of $D$ are in $\mathcal{F}$. A cycle-factor with $k$ elements is a $k$-cycle-factor. We denote $\mathcal{F}$ by $\mathcal{F}=$ $C_{1} \cup \cdots \cup C_{k}$. An almost cycle-factor of a digraph $D$ is a collection of vertex-disjoint subdigraphs of $D$ covering $V(D)$ and such that one of the subdigraphs is a path and the others are cycles. Given a path or a cycle $P=v_{0} v_{1} \cdots v_{p}$ and $i, j \in\{1, \ldots, p\}$ such that $i<j, P\left[x_{i}, x_{j}\right]$ denotes the subpath $v_{i} v_{i+1} \cdots v_{j}$ of $P$.

A digraph is said to be strong if for each pair of vertices $u, v$ there exists a path from $u$ to $v$.

A digraph $D$ is multipartite or $k$-partite if there exists a $k$-partition $V_{1}, \ldots, V_{k}$ of the vertex set of $D\left(i . e ., \cup_{i=1}^{k} V_{i}=\right.$ $V(D), V_{i} \neq \emptyset$ for all $i$ and, $V_{i} \cap V_{j}=\emptyset$ whenever $i \neq j$ ) such that each $V_{i}$ is an independent set. When $k=2$, we say that $D$ is bipartite.

A tournament is a digraph such that for any distinct vertices $u, v$, exactly one of $u \rightarrow v$ and $v \rightarrow u$ is an arc of $D$. A digraph $D$ is semicomplete if for each pair of distinct vertices $u, v$, there exists at least one arc $u \rightarrow v$ or $v \rightarrow u$ in $A(D)$.

A spanning cycle $C$ of $D$ is a Hamiltonian cycle and $D$ is Hamiltonian if it has a Hamiltonian cycle.

For an positive integer $n,[n]$ will denote the set $\{1,2$, $\ldots, n\}$ and $[n]_{0}$ will denote the set $\{0,1, \ldots, n-1\}$.

### 1.1. P-composition

Definition 3. Let $D$ be a multipartite digraph. An orderedpartition $\mathcal{P}(D)=\left(V_{k}, \ldots, V_{k}\right)$ of $D$ is a fixed ordering of the partite sets of $D$.

Definition 4. Let $D$ be digraph with vertex set $V(D)=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ and let $D_{1}, \ldots, D_{\mathrm{n}}$ be k-partite digraphs with ordered-partitions $\mathcal{P}\left(D_{i}\right)=\left(V_{1}^{i}, \quad \ldots, \quad V_{k}^{i}\right)$, the $\mathcal{P}$-composition according to the ordered-partition $\mathcal{P}=$ $\left(\left(\cup_{i=1}^{n} V_{1}^{i}\right)=V_{1}, \ldots, \quad\left(\cup_{i=1}^{n} V_{k}^{i}\right)=V_{k}\right)$, denoted by $D\left[D_{1}\right.$, $\left.\ldots, D_{n}\right]^{\mathcal{P}}$, is the digraph $H$ with vertex set $V(H)=\cup_{i=1}^{k} V_{i}$ and, for $w, z \in V(H)$, the arc $w \rightarrow z$ is in $A(H)$ if and only if

- $w$ and $z$ are both in $D_{\mathrm{i}}$ and $w \rightarrow z$ is in $D_{\mathrm{i}}$ or
- $w$ is in $V_{k}^{i}, z$ is in $V_{g}^{j}$ with $k \neq g, i \neq j$ and $s_{i} \rightarrow s_{j}$ is in $D$.

We call $D_{i}$ a summand of $H$, for all $i \in[n]$. See Figure 1 .


Figure 1. $C_{3}\left[C_{4}, C_{4}, C_{4}\right]^{\mathcal{P}}$.

Definition 5. If $A$ and $B$ are sets of vertices or subdigraphs of a multipartite digraph $D$ with ordered-partition $\mathcal{P}(D), A \rightarrow{ }^{\mathcal{P}} B$ means that for every vertex $a \in A$ and every vertex $b \in B$ in different partite sets, we have $a \rightarrow b$.

In what follows, we only consider compositions of the type $\mathcal{C}_{n}\left[D_{1}, \ldots, D_{n}\right]^{\mathcal{P}}$, where $\mathcal{C}_{n}$ is the $n$-cycle and each $D_{i}$ is a strong semicomplete bipartite digraph, let us call it $H$. Notice that $H$ is always strong because $\mathcal{C}_{n}$ is strong. Furthermore, if $C$ is a cycle in $H$, then either there exists $i \in$ $[n]$ such that $C$ is contained in the summand $D_{i}$ or $C$ passes through every summand of $H$. Since we only work on bipartite digraphs, we assume that each digraph $D_{i}$ has an ordered-partition given by $\mathcal{P}\left(D_{i}\right)=\left(\mathcal{P}_{1}\left(D_{i}\right), \mathcal{P}_{2}\left(D_{i}\right)\right)$. Consequently, for $H$ we have that $\mathcal{P}_{1}(H)=\cup_{i=1}^{n} \mathcal{P}_{1}\left(D_{i}\right)$ and $\left.\mathcal{P}_{2}(H)=\cup_{i=1}^{n} \mathcal{P}_{2}\left(D_{i}\right)\right)$. Notice that the set $\left\{\left(\mathcal{P}_{1}(H)\right.\right.$, $\left.\left.\mathcal{P}_{2}(H)\right)_{H},\left(\mathcal{P}_{2}(H), \mathcal{P}_{1}(H)\right)_{H}\right\}$ is a partition of the arc set of $H$. If we take $g \in\{1,2\}$, then $\mathcal{P}_{g}(H)$ is either $\mathcal{P}_{1}(H)$ or $\mathcal{P}_{2}(H)$, and $\mathcal{P}_{3-g}(H)$ is either $\mathcal{P}_{2}(H)$ or $\mathcal{P}_{1}(H)$, respectively.

Henceforth, $C_{1}$ and $C_{2}$ wil be the cycles $u_{0} \cdots u_{p-1} u_{0}$ and $v_{0} \cdots v_{q-1} v_{0}$, respectively.

### 1.2. Concordant cycles

Definition 6. Let $D$ be a digraph and let $C_{1}=u_{0} \cdots u_{p-1} u_{0}$ and $C_{2}=v_{0} \cdots v_{q-1} v_{0}$ be two cycles in $D$. We say that $C_{1}$ and $C_{2}$ have a good pair of arcs if there exist $i \in[p]_{0}$ and $j \in[q]_{0}$ such that both arcs $u_{i} \rightarrow v_{j}$ and $v_{j-1} \rightarrow u_{i+1}$ are in $\mathrm{A}(D)$.

Proposition 7 (Galeana-Sánchez and Goldfeder [4]). Let $C_{1}$ and $C_{2}$ be two vertex-disjoint cycles in a digraph $D$. If there
is a good pair of arcs between them, then there exists a cycle on the vertex set $V\left(C_{1}\right) \cup V\left(C_{2}\right)$.

Definition 8. Let $D$ be a digraph on n vertices and let $D_{1}$, $\ldots, D_{\mathrm{n}}$ be bipartite digraphs with ordered-partitions given by $\mathcal{P}$. Consider the $\mathcal{P}$-composition $H=D\left[\begin{array}{lll}D_{1} & , \ldots, D_{n}\end{array}\right]^{\mathcal{P}}$ and take $C_{1}$ and $C_{2}$ two vertex-disjoint cycles in $H$ such that each one passes through all the summands. Recall that for each $\quad i \in[n],\left\{\left(D_{i}, D_{i+1}\right)_{H} \cap\left(\mathcal{P}_{1}(H), \mathcal{P}_{2}(H)\right)_{H},\left(D_{i}, D_{i+1}\right)_{H} \cap\right.$ $\left.\left(\mathcal{P}_{2}(H), \mathcal{P}_{1}(H)\right)_{H}\right\}$ is a partition of $\left(D_{i}, D_{i+1}\right)_{H}$, where $i+1$ is taken modulo $n$. We say that $C_{1}$ and $C_{2}$ are concordant if for some $i \in[n]$, one element in $\left\{\left(D_{i}, D_{i+1}\right)_{H} \cap\right.$ $\left.\left(\mathcal{P}_{1}(H), \mathcal{P}_{2}(H)\right)_{H},\left(D_{i}, D_{i+1}\right)_{H} \cap\left(\mathcal{P}_{2}(H), \mathcal{P}_{1}(H)\right)_{H}\right\}$ has arcs from both cycles $C_{1}$ and $C_{2}$, See Figure 2.

Proposition 9. Let $H$ be the $\mathcal{P}$-composition $\mathcal{C}_{n}\left[D_{1}, \ldots, D_{n}\right]^{\mathcal{P}}$, where $\mathcal{C}_{n}$ is the $n$-cycle, $D_{1}, \ldots, D_{n}$ are bipartite digraphs with ordered-partitions given by $\mathcal{P}$ and $C_{1}$ and $C_{2}$ are two vertex-disjoint and non-concordant cycles in $H$ such that each one passes through all the summands. For each $i \in[n]$, there exists $g \in\{1,2\}$ such that $\left(D_{i}, D_{i+1}\right)_{H} \cap A\left(C_{1}\right)=\left(D_{i}\right.$, $\left.D_{i+1}\right)_{H} \cap\left(\mathcal{P}_{g}(H), \mathcal{P}_{3-g}(H)\right)$ and $\left(D_{i}, D_{i+1}\right)_{H} \cap A\left(C_{2}\right)=\left(D_{i}\right.$, $\left.D_{i+1}\right)_{H} \cap\left(\mathcal{P}_{3-g}(H), \mathcal{P}_{g}(H)\right)$.

Proof. Take $i \in[n]$. Recall that both $\left\{\left(D_{i}, D_{i+1}\right)_{H} \cap\right.$ $\left.A\left(C_{1}\right),\left(D_{i}, D_{i+1}\right)_{H} \cap A\left(C_{2}\right)\right\} \quad$ and $\quad\left\{\left(D_{i}, D_{i+1}\right)_{H} \cap\left(\mathcal{P}_{1}(H)\right.\right.$, $\left.\mathcal{P}_{2}(H)\right)_{H},\left(D_{i}, D_{i+1}\right)_{H} \cap\left(\mathcal{P}_{2}(H), \mathcal{P}_{1}(H)\right)_{H}$ are partitions of $\left(D_{i}, D_{i+1}\right)_{H}$, where the subscripts are taken modulo $n$. Since $C_{1}$ and $C_{2}$ are non-concordant, no element in $\left\{\left(D_{i}, D_{i+1}\right)_{H} \cap\right.$ $\left.\left(\mathcal{P}_{1}(H), \mathcal{P}_{2}(H)\right)_{H},\left(D_{i}, D_{i+1}\right)_{H} \cap\left(\mathcal{P}_{2}(H), \mathcal{P}_{1}(H)\right)_{H}\right\}$ has arcs from both cycles, $C_{1}$ and $C_{2}$. Suppose without loss of generality that $\left(D_{i}, D_{i+1}\right)_{H} \cap\left(\mathcal{P}_{1}(H), \mathcal{P}_{2}(H)\right)_{H}$ has one arc from $C_{1}$. Since $C_{1}$ and $C_{2}$ are non-concordant, there is no arc of $C_{2}$ in $\left(D_{i}, D_{i+1}\right)_{H} \cap\left(\mathcal{P}_{1}(H), \mathcal{P}_{2}(H)\right)_{H}$. Since $C_{2}$ passes through all the summands of $H$, all the arcs of $C_{2}$ in $\left(D_{i}, D_{i+1}\right)_{H}$ are in $\left(\mathcal{P}_{2}(H), \mathcal{P}_{1}(H)\right)_{H}$. This is, $\left(D_{i}, D_{i+1}\right)_{H} \cap$ $A\left(C_{2}\right) \subseteq\left(D_{i}, D_{i+1}\right)_{H} \cap\left(\mathcal{P}_{2}(H), \mathcal{P}_{1}(H)\right)_{H}$. Since $C_{1}$ and $C_{2}$ are non-concordant, there is no arc of $C_{1}$ in $\left(D_{i}, D_{i+1}\right)_{H} \cap$ $\left(\mathcal{P}_{2}(H), \mathcal{P}_{1}(H)\right)_{H}$. This is, $\left(D_{i}, D_{i+1}\right)_{H} \cap A\left(C_{2}\right)=\left(D_{i}, D_{i+1}\right)_{H} \cap$ $\left(\mathcal{P}_{2}(H), \mathcal{P}_{1}(H)\right)_{H} . \quad$ Furthermore, $\quad\left(D_{i}, D_{i+1}\right)_{H} \cap A\left(C_{1}\right)=\left(D_{i}\right.$, $\left.D_{i+1}\right)_{H} \cap\left(\mathcal{P}_{1}(H), \mathcal{P}_{2}(H)\right)_{H}$.

Corollary 10. Let $H$ be the $\mathcal{P}$-composition $\mathcal{C}_{n}\left[D_{1}, \ldots, D_{n}\right]^{\mathcal{P}}$, where $\mathcal{C}_{n}$ is the $n$-cycle and $D_{1}, \ldots, D_{n}$ are ordered-bipartite digraphs. If $\mathcal{F}$ is a minimum cycle-factor of $H$, then there is at most two cycles in $\mathcal{F}$ which pass through all the summands.

Proposition 11. Let $H$ be the $\mathcal{P}$-composition $D\left[D_{1}, \ldots, D_{n}\right]^{\mathcal{P}}$, where $D$ is a digraph with vertex set $V(D)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $D_{1}, \ldots, D_{n}$ are ordered-bipartite digraphs. Take $C_{1}=$ $u_{0} \cdots u_{p-1} u_{0}$ and $C_{2}=v_{0} \cdots v_{q-1} v_{0}$ two vertex-disjoint cycles in $H$ such that each one passes through all the summands. If $C_{1}$ and $C_{2}$ are concordant, then they have a good pair of arcs.

Proof. Since $C_{1}$ and $C_{2}$ are concordant cycles, there exist $t \in[n]$ and $g \in\{1,2\}$, such that both $\left(\left(D_{t}, D_{t+1}\right)_{H} \cap\left(\mathcal{P}_{g}(H), \mathcal{P}_{3-g}\right.\right.$ $\left.(H))_{H}\right) \cap A\left(C_{1}\right) \quad$ and $\quad\left(\left(D_{t}, D_{+1}\right)_{H} \cap\left(\mathcal{P}_{g}(H), \mathcal{P}_{3-g}(H)\right)_{H}\right) \cap$


Figure 2. Example of two concordant cycles.
$A\left(C_{2}\right)$ are non-empty. This is, there exist $i \in[p]_{0}$ and $j \in[q]$ such that $u_{i} \rightarrow u_{i+1}$ is in $\left(D_{t}, D_{t+1}\right)_{H} \cap\left(\mathcal{P}_{g}(H), \mathcal{P}_{3-g}(H)\right)_{H}$, where $i+1$ is taken modulo $p$, and $v_{j} \rightarrow v_{j+1}$ is in $\left(D_{t}, D_{t+1}\right)_{H} \cap\left(\mathcal{P}_{g}(H), \mathcal{P}_{3-g}(H)\right)_{H}$, where $j+1$ is taken modulo $q$. From the definition of $\mathcal{P}$-composition, we have that $u_{i} \rightarrow$ $v_{j+1}$ and $v_{j} \rightarrow u_{i+1}$ are in $H$, which are a good pair of arcs.

## 2. Main result

Lemma 12. Let $D_{1}, \ldots, D_{n}$ be vertex-disjoint strong semicomplete ordered bipartite digraphs and let $D$ be the $\mathcal{P}$-composition $\mathcal{C}_{n}\left[D_{1}, \ldots, D_{n}\right]^{\mathcal{P}}$. If $H$ has a cycle-factor such that exactly one of its elements passes through all the summands, then $H$ is Hamiltonian.
Proof. If $n$ is equal to two or three, then $H$ is a semicomplete bipartite digraph. Since $H$ has a cycle-factor, it follows that $H$ is Hamiltonian by Theorem 1. Hence, we can suppose that $n$ is greater than or equal to 4 .

We proceed by induction on $k$, where $k$ is the cardinality of the cycle-factor. If $k=1$, then $H$ is Hamiltonian. Thus, assume that the lemma holds for $k \geq 1$ and suppose that $H$ has a $(k+1)$-cycle-factor, such that exactly one of the cycles passes through for all the summands. Notice that each one of the other cycles is contained in one summand.

Let $C_{1}$ and $C_{2}$ be vertex-disjoint two cycles in the cyclefactor, such that $C_{1}$ passes through all the summands and $C_{2}$ is contained in the summand $D_{j}$, for some $j \in[n]$. There exists a subpath $T=u_{t_{1}} \cdots u_{t_{r}}$ of $C_{1}$ such that $u_{t_{1}}$ is in $V\left(D_{j-1}\right), u_{t_{r}}$ is in $V\left(D_{j+1}\right)$ and the other vertices of $T$ are in $V\left(D_{j}\right)$. Since $C_{2}$ is contained in the summand $D_{j}$ and by the definition of $D$, we have that $\left\{u_{t_{1}}\right\} \rightarrow{ }^{\mathcal{P}} C_{2} \rightarrow{ }^{\mathcal{P}}\left\{u_{t_{r}}\right\}$.

Let $u_{s}$ be the first vertex in $T$ such that $\left(C_{2},\left\{v_{s}\right\}\right)_{H}$ is nonempty. Notice that $u_{s}$ is different from $u_{t_{1}}$. Take $v$ in $C_{2}$ such that $v \rightarrow u_{s}$. Since $v$ and $u_{s}$ are in different partite sets, we have that $u_{s-1}$ and $v^{+}$, the succesor of $v$ in $C$, are in same summand of $H$ but in different partite sets, hence they are adjacent. By the definition of $u_{s}$, we have that $u_{s-1} \rightarrow v^{+}$. See Figure 3.

The arcs $v \rightarrow u_{s}$ and $u_{s-1} \rightarrow v^{+}$are a good pair of arcs. Hence, we can merge both $C_{1}$ and $C_{2}$ into one single cycle by Proposition 7. It follows that $H$ has a $k$-cycle-factor such that one of the cycles passes for all the summands and each of the others is contained in only one summand. Therefore $H$ is Hamiltonian.

Now, let $D_{1}, \ldots, D_{n}$ be vertex-disjoint strong semicomplete bipartite digraphs with an ordered-partition given by $\mathcal{P}$ and let $H$ be the $\mathcal{P}$-composition $\mathcal{C}_{n}\left[D_{1}, \ldots, D_{n}\right]^{\mathcal{P}}$, where $n$ is a positive odd number and $\mathcal{C}_{n}$ is the $n$-cycle. Assume that $C_{1}$ is a cycle in $H$ which passes through all the summands of $H$. It could happen that $C_{1}$ winds several times through $H$ (each time, $C_{1}$ passes through all summands). Let $\alpha_{i}^{j}$ be the number of vertices of $C_{1}$ in $D_{i}$ at the $j$-th turn. If $k$ is the total number of winds of $C_{1}$ around $H$, we have that the length of $C_{1}$ is equal to $\sum_{j=1}^{k} \sum_{i=1}^{n} \alpha_{i}^{j}$.

Recall that $C_{1}$ has even length, i.e., $\sum_{j=1}^{k} \sum_{i=1}^{n} \alpha_{i}^{j}$ is even. If $C_{1}$ passes through an odd number of vertices for each summand in each turn, this is, $\alpha_{i}^{j}$ is an odd number for all $i$ and $j$, then $k n$, the total number of summands in $\sum_{j=1}^{k} \sum_{i=1}^{n} \alpha_{i}^{j}$, has to be even. Since we assumed that $n$ is odd, it follows that $k$ is even.

Lemma 13. Let $D_{1}, \ldots, D_{n}$ be vertex-disjoint strong semicomplete bipartite digraphs with an ordered-partition given by $\mathcal{P}$ and let $H$ be the $\mathcal{P}$-composition $\mathcal{C}_{n}\left[D_{1}, \ldots, D_{n}\right]^{\mathcal{P}}$. Assume that $\left\{C_{1}, C_{2}\right\}$ is a cycle-factor in $H$ such that both cycles pass through all the summands. Let $\alpha_{i}^{j}$ (respectively $\beta_{i}^{j}$ ) be the number of vertices of $C_{1}\left(\right.$ resp. $\left.C_{2}\right)$ in $D_{i}$ at the $j$-th turn. If $C_{1}$ and $C_{2}$ are non-concordant cycles, then $\alpha_{i}^{j}$ and $\beta_{i}^{j}$ have the same parity.

Proof. Let $D_{i}$ be any summand in $H$. Let $\rho(i, r)$ (respectively $\sigma(i, r)$ ) be the unique integer in $\{0, \ldots, p-1\}$ (respect. $\{0, \ldots, q-1\})$ such that $u_{\rho(i, r)}\left(\right.$ resp. $\left.v_{\sigma(i, r)}\right)$ is the first vertex of $C_{1}$ (resp. $C_{2}$ ) in $D_{i}$ at the $r$-th turn. Since $C_{1}$ and $C_{2}$ are non-concordant cycles, Proposition 9 implies that there exist $g_{1}, g_{2} \in\{1,2\}$ such that $\left(D_{i-1}, D_{i}\right)_{H} \cap\left(\mathcal{P}_{g_{1}}(H)\right.$, $\left.\mathcal{P}_{3-g_{1}}(H)\right)_{H}=\left(D_{i-1}, D_{i}\right)_{H} \cap A\left(C_{1}\right) \quad$ and $\quad\left(D_{i}, D_{i+1}\right)_{H} \cap\left(\mathcal{P}_{g_{2}}\right.$ $\left.(H), \mathcal{P}_{3-g_{2}}(H)\right)_{H}=\left(D_{i}, D_{i+1}\right)_{H} \cap A\left(C_{1}\right)$. Hence, $u_{\rho(i, j)}$ is in $\mathcal{P}_{3-g_{1}}(H)$ and $u_{\rho(i, j)+\alpha_{i}^{j}}$ is in $\mathcal{P}_{g_{2}}(H)$. Moreover, $v_{\sigma(i, j)}$ is in $\mathcal{P}_{g_{1}}(H)$ and $v_{\sigma(i, j)+\beta_{i}^{j}}$ is in $\mathcal{P}_{3-g_{2}}(H)$. We have two cases.

Case 1. $\mathcal{P}_{3-g_{1}}(H)$ and $\mathcal{P}_{g_{2}}(H)$ are equal. This implies that $\alpha_{i}^{j}$ is odd. Furthermore, $\mathcal{P}_{g_{1}}(H)$ and $\mathcal{P}_{3-g_{2}}(H)$ are equal and $\beta_{i}^{j}$ is also odd.

Case 2. $\mathcal{P}_{3-g_{1}}(H)$ and $\mathcal{P}_{g_{2}}(H)$ are different. This implies that $\alpha_{i}^{j}$ is even. Furthermore, $\mathcal{P}_{g_{1}}(H)$ and $\mathcal{P}_{3-g_{2}}(H)$ are different and $\beta_{i}^{j}$ is also even.

Lemma 14. Let $D_{1}, \ldots, D_{n}$ be vertex-disjoint strong semicomplete bipartite digraphs with an ordered-partition given by $\mathcal{P}$ and let $H$ be the $\mathcal{P}$-composition $\mathcal{C}_{n}\left[D_{1}, \ldots, D_{n}\right]^{\mathcal{P}}$. If $H$ has a cycle-factor $\left\{C_{1}, C_{2}\right\}$ such that both cycles pass through all the summands, they are non-concordant and $n$ is odd, then there exists $j \in[n]$ such that the summand $D_{j}$ has arcs of both cycles, this is, the sets $A\left(D_{j}\right) \cap A\left(C_{1}\right)$ and $A\left(D_{j}\right) \cap A\left(C_{2}\right)$ are non-empty.

Proof. Let $t$ be the total number of winds of $C_{1}$ around $D$ and let $\alpha_{i}^{j}$ be the number of vertices of $C_{1}$ in $D_{i}$ at the $j$-th turn. Recall that $C_{1}=u_{0} \cdots u_{p-1} u_{0}$.


Figure 3. Proof of Lemma 12.
First, we show that there exist $j \in[t]$ and $i \in[n]$ such that in the $j$-th turn, the cycle $C_{1}$ passes through an even number of vertices in the summand $D_{i}$, this is, that $\alpha_{i}^{j}$ is even. Suppose that, on the contrary, $\alpha_{i}^{j}$ is odd for all $i \in[n]$ and for all $j \in[t]$. Since the length of $C_{1}$ is even, it follows that $t$ has to be even, so that $C_{1}$ passes for at least twice in each summand.

Let $\rho(i, r)$ be the unique integer in $\{0, \ldots, p-1\}$ such that $u_{\rho(i, r)}$ is the first vertex of $C_{1}$ in $D_{i}$ at the $r$-th turn. Hence, $u_{\rho(i, r)+\left(\alpha_{i}^{r}-1\right)}$ is the last vertex in which $C_{1}$ passes through the summand $D_{i}$ in the $r$-th turn. We know that $u_{\rho(i, r)}$ is in $\mathcal{P}_{g}(H)$, for some $g \in\{1,2\}$. It follows that $u_{\rho(i, r)+\left(\alpha_{i}^{r}-1\right)}$ has to be in $\mathcal{P}_{g}(H)$ because $\alpha_{i}^{r}$ is odd. We are interested in analyzing how the cycle $C_{1}$ jumps from one summand to the next one in each turn, this is, if that arc is either in $\left(\mathcal{P}_{1}(H), \mathcal{P}_{2}(H)\right)_{H}$ or in $\left(\mathcal{P}_{2}(H), \mathcal{P}_{1}(H)\right)_{H}$. For this, we can assume without loss of generality that each time $C_{1}$ passes through each summand, just passes through exactly one vertex in that summand, i.e., that $\alpha_{i}^{r}$ is one. Moreover, let us assume without loss of generality that $u_{0}$ is in $\mathcal{P}_{1}(H) \cap V\left(D_{1}\right)$. Since $n$ is odd and we are assuming that $C_{1}$ passes through exactly one vertex by each summand in each turn, it follows that $u_{n-1}$ is in $\mathcal{P}_{1}(H) \cap V\left(D_{n}\right)$. Furthermore, $u_{n}$ is in $\mathcal{P}_{2}(H) \cap V\left(D_{1}\right)$. The arc $u_{0} \rightarrow u_{1}$ is in $\left(D_{1}, D_{2}\right)_{H} \cap$ $\left(\mathcal{P}_{1}(H), \mathcal{P}_{2}(H)\right)_{H}$ and the arc $u_{n} \rightarrow u_{n+1}$ is in $\left(D_{1}, D_{2}\right)_{H} \cap$ $\left(\mathcal{P}_{2}(H), \mathcal{P}_{1}(H)\right)_{H}$. Recall that Proposition 9 implies that it exists $g \in\{1,2\}$ such that $\left(D_{1}, D_{2}\right)_{H} \cap A\left(C_{1}\right)=\left(D_{1}, D_{2}\right)_{H} \cap$ $\left(\mathcal{P}_{g}(H), \mathcal{P}_{3-g}(H)\right)_{H}$, which is a contradiction.

Hence, there exist $i_{0} \in[t]$ and $j_{0} \in[n]$ such that in the $j_{0^{-}}$ th turn, the cycle $C_{1}$ passes through an even number of vertices in the summand $D_{i_{0}}$, this is, that $\alpha_{i_{0}}^{j_{0}}$ is even. Therefore $\beta_{i_{0}}^{j_{0}}$ is also even by Lemma 13. Thus $A\left(D_{i_{0}}\right) \cap A\left(C_{2}\right)$ is non-empty.

Therefore, we have that both $A\left(D_{i_{0}}\right) \cap A\left(C_{1}\right)$ and $A\left(D_{i_{0}}\right) \cap A\left(C_{2}\right)$ are non-empty.

Lemma 15. Let $D_{1}, \ldots, D_{n}$ be vertex-disjoint strong semicomplete bipartite digraphs with an ordered-partition given by $\mathcal{P}$ and let $H$ be the $\mathcal{P}$-composition $\mathcal{C}_{n}\left[D_{1}, \ldots, D_{n}\right]^{\mathcal{P}}$. Assume that $H$ has a cycle-factor $\left\{C_{1}, C_{2}\right\}$ such that both cycles pass through all the summands and they are not concordant. If there exists $j \in[n]$ such that the summand $D_{j}$ has arcs from both cycles, then they have a good pair of arcs.

Proof. Recall that $C_{1}=u_{0} \cdots u_{p-1} u_{0}$ and $C_{2}=v_{0} \cdots v_{q-1} v_{0}$. Take $i \in[k]_{0}$ and $j \in[m]_{0}$ such that $u_{i} \rightarrow u_{i+1}$ and $v_{j} \rightarrow v_{j+1}$


Figure 4. No matter which arc is in $H$, either $u_{i} \rightarrow v_{j}$ or $v_{j} \rightarrow v_{i}$, it does appear a good pair of arcs.
are the first arcs of $C_{1}$ and $C_{2}$, respectively, in $D_{t}$, for some $t \in[n]$. Hence, $u_{i-1}$ and $v_{j-1}$ are in $D_{t-1}$. Without loss of generality, suppose that $u_{i-1} \rightarrow u_{i}$ is in $\left(D_{t-1}, D_{t}\right)_{H} \cap$ $\left(\mathcal{P}_{2}(D), \mathcal{P}_{1}(D)\right)_{H} . \quad$ It follows that $\left(D_{t-1}, D_{t}\right)_{H} \cap\left(\mathcal{P}_{2}(D)\right.$, $\left.\mathcal{P}_{1}(D)\right)_{H}=\left(D_{t-1}, D_{t}\right)_{H} \cap A\left(C_{1}\right)$ and $\left(D_{t-1}, D_{t}\right)_{H} \cap\left(\mathcal{P}_{1}(H)\right.$, $\left.\mathcal{P}_{2}(H)\right)_{H}=\left(D_{t-1}, D_{t}\right)_{H} \cap A\left(C_{2}\right)$, since $C_{1}$ and $C_{2}$ are nonconcordant cycles. Notice that $u_{i}$ and $v_{j}$ are in the same summand but in different partite sets, hence they are adjacent, as $D_{t}$ is a semicomplete bipartite digraph.

Case 1. The arc $v_{j} \rightarrow u_{i}$ is in $H$. Notice that $v_{j+1}$ is in $\mathcal{P}_{1}(H) \cap V\left(D_{t}\right)$ and $u_{i-1}$ is in $\mathcal{P}_{2}(H) \cap V\left(D_{t-1}\right)$, by the definition of the $\mathcal{P}$-composition, we have that the arc $u_{i-1} \rightarrow$ $v_{j+1}$ is in $H$. Hence, the arcs $v_{j} \rightarrow u_{i}$ and $u_{i-1} \rightarrow v_{j+1}$ are a good pair of arcs. See Figure 4.

Case 2. The arc $u_{i} \rightarrow v_{j}$ is in $H$. The proof is analogous to the previous case.

Therefore, the cycles $C_{1}$ and $C_{2}$ have a good pair of arcs.
Lemma 16. Let $D_{1}, \ldots, D_{n}$ be vertex-disjoint strong semicomplete bipartite digraphs with an ordered-partition given by $\mathcal{P}$ and let $H$ be the $\mathcal{P}$-composition $\mathcal{C}_{n}\left[D_{1}, \ldots, D_{n}\right]^{\mathcal{P}}$. Assume that:
i. $\quad\left\{C_{1}, C_{2}\right\}$, with $C_{1}=u_{0} \cdots u_{p-1} u_{0} \quad$ and $\quad C_{2}=v_{0} \cdots$ $v_{q-1} v_{0}$, is a cycle-factor in $H$ such that both cycles pass through all the summands,
ii. $\quad C_{1}$ and $C_{2}$ have no good pairs of arcs and
iii. no summand of $H$ has arcs from both cycles.

Let $\alpha_{i}^{j}\left(\right.$ respectively $\left.\beta_{i}^{j}\right)$ denote the number of vertices of $C_{1}$ (resp. $C_{2}$ ) in $D_{i}$ at the $j$-th turn. Let $\lambda$ and $\mu$ be the number of times the cycles $C_{1}$ and $C_{2}$ wind through $H$, resp. Let $\rho(i, r)$ (resp. $\sigma(i, r)$ ) be the unique integer in $[p]_{0}$ (resp. in $\left.[q]_{0}\right)$ such that $u_{\rho(i, r)}$ (resp. $\left.v_{\sigma(i, r)}\right)$ is the first vertex of $C_{1}$ (resp. $C_{2}$ ) in $D_{i}$ at the $r$-th turn. Notice that $u_{\rho(i, r)+\left(\alpha_{i}^{r}-1\right)}$ is the last vertex of $C_{1}$ in $D_{i}$ at the $r$-th turn and $v_{\sigma(i, r)+\left(\beta_{i}^{r}-1\right)}$ is the last vertex of $C_{2}$ in $D_{i}$ at the r-th turn.

1. If $\alpha_{i}^{j}>1$ for some $i \in[n]$ and $j \in[\lambda]$, then $\alpha_{i}^{j}$ is odd and $\beta_{i}^{r}=1$ for all $r \in[\mu]$.
2. If $\beta_{i}^{j}>1$ for some $i \in[n]$ and $j \in[\mu]$, then $\beta_{i}^{j}$ is odd and $\alpha_{i}^{r}=1$ for all $r \in[\lambda]$.
3. Take $g \in\{1,2\}$ and suppose that $u_{\rho(1,1)}$ is in $\mathcal{P}_{g}(H)$. For every integer odd $i \in[n], u_{\rho(i, r)}$ and $u_{\rho(i, r)+\left(\alpha_{i}^{r}-1\right)}$ are
in $\mathcal{P}_{g}(H)$ and $v_{\sigma(i, r)}$ and $v_{\sigma(i, r)+\left(\beta_{i}^{r}-1\right)}$ are in $\mathcal{P}_{3-g}(H)$. And for every integer even $i \in[n], u_{\rho(i, r)}$ and $u_{\rho(i, r)+\left(\alpha_{i}^{r}-1\right)}$ are in $\mathcal{P}_{3-g}(H)$ and $v_{\sigma(i, r)}$ and $v_{\sigma(i, r)+\left(\beta_{i}^{r}-1\right)}$ are in $\mathcal{P}_{g}(H)$.
4. If $\alpha_{i}^{j}>1$, for some $i \in[n]$, then $u_{\rho(i, j)+\left(\alpha_{i}^{j}-1\right)} \rightarrow v_{\sigma(i, r)} \rightarrow$ $u_{\rho(i, j)}$ for every $r \in[\lambda]$.
5. If $\beta_{i}^{j}>1$, for some $i \in[n]$, then $v_{\sigma(i, j)+\left(\beta_{i}^{j}-1\right)} \rightarrow u_{\rho(i, r)} \rightarrow$ $v_{\sigma(i, j)}$ for every $r \in[\mu]$.
6. For all $i \in[n]$ and all $r, s \in[\lambda], u_{\rho(i, r)-1} \rightarrow u_{\rho(i, s)}$.
7. For all $i \in[n]$ and all $r, s \in[\mu], v_{\sigma(i, r)-1} \rightarrow v_{\sigma(i, s)}$.

Proof. Since $C_{1}$ and $C_{2}$ have no good pairs of arcs, Proposition 11 implies that they are non-concordant. Furthermore, since no summand of $H$ has arcs of both cycles, Lemma 15 implies that $n$ is even.

If $\alpha_{i}^{r}$ is greater than one for some $r \in[\lambda]$, then $C_{1}$ has at least one arc entirely contained in the summand $D_{i}$. Since no summand of $H$ has arcs from both cycles, that implies that $\beta_{i}^{s}=1$ for every $s \in[\mu]$. Analogously, if $\beta_{i}^{s}$ is greater than one for some $s \in[\mu]$, then $C_{2}$ has at least one arc entirely contained in the summand $D_{i}$. Since no summand of $H$ has arcs from both cycles, that implies that $\alpha_{i}^{r}=1$ for every $r \in[\lambda]$. This proves Claims 1 and 2 .

Since $\alpha_{i}^{r}$ and $\beta_{i}^{s}$ are always odd for every $i \in[n], r \in[\lambda]$ and $s \in[\mu]$ (recall Lemma 13) and $H$ are bipartite, $u_{\rho(i, r)}$ and $u_{\rho(i, r)+\left(\alpha_{i}^{r}-1\right)}$ are in the same part and $v_{\sigma(i, s)}$ and $v_{\sigma(i, s)+\left(\beta_{i}^{s}-1\right)}$ are in the same part. This proves Claim 3.

Proposition 9 implies that there exists $g \in\{1,2\}$ such that $\left(D_{1}, D_{2}\right)_{H} \cap\left(\mathcal{P}_{3-g}(H), \mathcal{P}_{3-g}(H)\right)_{H}=\left(D_{1}, D_{2}\right)_{H} \cap A\left(C_{1}\right)$ and $\quad\left(D_{1}, D_{2}\right)_{H} \cap\left(\mathcal{P}_{3-g}(H), \mathcal{P}_{g}(H)\right)_{H}=\left(D_{1}, D_{2}\right)_{H} \cap A\left(C_{2}\right)$. Moreover, $u_{\rho(1, r)}, u_{\rho(1, r)+\left(\alpha_{1}^{r}-1\right)} \in \mathcal{P}_{g}(H)$ for every $r \in[\lambda]$ and $v_{\sigma(1, s)}, v_{\sigma(1, s)+\left(\beta_{1}^{s}-1\right)} \in \mathcal{P}_{3-g}(H)$ for every $s \in[\mu]$. This implies that $u_{\rho(2, r)}, u_{\rho(2, r)+\left(\alpha_{2}^{r}-1\right)} \in \mathcal{P}_{3-g}(H)$ for every $r \in[\lambda]$ and $v_{\sigma(2, r)}, v_{\sigma(2, r)+\left(\beta_{2}^{r}-1\right)} \in \mathcal{P}_{g}(H)$ for every $s \in[\mu]$. Furthermore, since $H$ is bipartite and $n$ is even, we have that:

- $u_{\rho(i, r)}, u_{\rho(i, r)+\left(\alpha_{i}^{r}-1\right)} \in \mathcal{P}_{g}(H)$ for every $i$ odd in $[n]$ and for every $r \in[\lambda]$,
- $u_{\rho(i, r)}, u_{\rho(i, r)+\left(\alpha_{i}^{r}-1\right)} \in \mathcal{P}_{3-g}(H)$ for every $i$ even in $[n]$ and for every $r \in[\lambda]$,
- $v_{\sigma(i, s)}, v_{\sigma(i, s)+\left(\beta_{i}^{s}-1\right)} \in \mathcal{P}_{3-g}(H)$ for every $i$ odd in $[n]$ and for every $s \in[\mu]$, and
- $v_{\sigma(i, s)}, v_{\sigma(i, s)+\left(\beta_{i}^{s}-1\right)} \in \mathcal{P}_{g}(H)$ for every $i$ even in $[n]$ and for every $s \in[\mu]$.

This and the definition of $\mathcal{P}$-composition imply Claims 6 and 7.

Notice that $u_{\rho(i, r)-1}=u_{\rho(i-1, r)+\left(\alpha_{i-1}^{r}-1\right)}$, whenever $i>1$, and $u_{\rho(i, r)-1}=u_{\rho_{n}^{r-1}+\left(a_{n}^{r-1}-1\right)}$, if $i=1$. Analogously, $v_{\sigma(i, r)-1}=$ $v_{\sigma(i-1, r)+\left(\beta_{i-1}^{r}-1\right)}$, if $i>1$, and $v_{\sigma(i, r)-1}=v_{\sigma_{n}^{r-1}+\left(\beta_{n}^{r-1}-1\right)}$, if $i=1$.

Finally, since $v_{\sigma(i, r)-1}$ and $u_{\rho(i, j)+1}$ are in different parts, $v_{\sigma(i, r)-1}$ is in $D_{i-1}$ and $u_{\rho(i, j)+1}$ is in $D_{i}$, there exists the arc $v_{\sigma(i, r)-1} \rightarrow u_{\rho(i, j)+1}$. This implies that $v_{\sigma(i, r)} \rightarrow u_{\rho(i, j)}$ (otherwise, we obtain a good pair of arcs). Similarly, since
$u_{\rho(i, j)+\left(\alpha_{i}^{j}-2\right)}$ and $v_{\sigma(i, r)+1}$ are in different parts, $u_{\rho(i, j)+\left(\alpha_{i}^{j}-2\right)}$ is in $D_{i}$ and $v_{\sigma(i, r)+1}$ is in $D_{i+1}$, there exists the arc $u_{\rho(i, j)+\left(\alpha_{i}^{j}-2\right)} \rightarrow v_{\sigma(i, r)+1}$. This implies that $u_{\rho(i, r)} \rightarrow v_{\sigma(i, j)}$ (otherwise, we obtain a good pair of arcs). This proves Claims 4 and 5.

Lemma 17. Let $D_{1}, \ldots, D_{n}$ be vertex-disjoint strong semicomplete bipartite digraphs with an ordered-partition given by $\mathcal{P}$ and let $H$ be the $\mathcal{P}$-composition $\mathcal{C}_{n}\left[D_{1}, \ldots, D_{n}\right]^{\mathcal{P}}$. If $n$ is odd and $H$ has a 2-cycle-factor, then $H$ is Hamiltonian.

Proof. Let $C_{1}=u_{0} \cdots u_{p-1} u_{0}$ and $C_{2}=v_{0} \cdots v_{q-1} v_{0}$ be the two cycles in the cycle-factor. We consider the following cases:

Case 1. Suppose that $C_{1}$ passes through all the summands of $H$ and $C_{2}$ is contain in one summand. Hence, by Lemma 12, it follows that $H$ is Hamiltonian.

Case 2. Suppose that $C_{1}$ and $C_{2}$ are contained in different summands. Therefore $n$ has to be two, which is a contradiction since $n$ is odd.

Case 3. Suppose that each cycle $C_{1}$ and $C_{2}$ pass through all the summands.

If $C_{1}$ and $C_{2}$ are concordant cycles, then they have a good pair of arcs and we can merge both into one cycle, a Hamiltonian one. Hence, assume that $C_{1}$ and $C_{2}$ are nonconcordant cycles. Lemmas 14 and 15 imply that $C_{1}$ and $C_{2}$ have a good pair of arcs, so we are done.

Lemma 18. Let $D_{1}, \ldots, D_{n}$ be vertex-disjoint strong semicomplete bipartite digraphs with an ordered-partition given by $\mathcal{P}$ and let $H$ be the $\mathcal{P}$-composition $\mathcal{C}_{n}\left[D_{1}, \ldots, D_{n}\right]^{\mathcal{P}}$. If $H$ has a cycle-factor such that each cycle is completely contained in only one summand, then $D$ is Hamiltonian.

Proof. Since each one of the cycles of the cycle-factor is contained in only one summand, then each of the summands is strong and has a cycle-factor. Hence, Theorem 1 implies that each summand is Hamiltonian. Let $C_{i}$ be the Hamiltonian cycle in the summand $D_{i}$, for each $i \in[n]$. Recall that $\left\{\mathcal{P}_{1}(H), \mathcal{P}_{2}(H)\right\}$ is the partition of $V(H)$ and that all our cycles are even. Let $C_{i}=u_{0}^{i} u_{2}^{i} \cdots u_{k_{i}-1}^{i} u_{0}^{i}$ be the Hamiltonian cycle in the summand $D_{i}$. Without loss of generality, assume that $u_{0}^{i}$ is in $\mathcal{P}_{1}(H)$, for every $i \in[n]$. Hence, $u_{k_{i}-1}$ is in $\mathcal{P}_{2}(H)$. The definition of the $\mathcal{P}$-composition implies the existence of the arcs $u_{k_{i-1}-1}^{i-1} \rightarrow u_{0}^{i}$ in $D$. Therefore, the cycle

$$
C^{\prime}=C_{1}\left[u_{0}^{1}, u_{k_{1}-1}^{1}\right] C_{2}\left[u_{0}^{2}, u_{k_{2}-1}^{2}\right] \cdots C_{n}\left[u_{0}^{n}, u_{k_{n}-1}^{n}\right] u_{0}^{1}
$$

is Hamiltonian in $H$.

Lemma 19. Let $D_{1}, \ldots, D_{n}$ be vertex-disjoint strong semicomplete bipartite digraphs with an ordered-partition given by $\mathcal{P}$ and let $H$ be the $\mathcal{P}$-composition $\mathcal{C}_{n}\left[D_{1}, \ldots, D_{n}\right]^{\mathcal{P}}$. Assume that $\left\{C_{1}, C_{2}\right\}$ is a cycle-factor in $H$ such that both
cycles pass through all the summands. If there exists $i \in[n]$ such that $A\left(D_{i}\right) \cap A\left(C_{1}\right)$ and $A\left(D_{i}\right) \cap A\left(C_{2}\right)$ are empty sets, then for each $u$ in $V\left(C_{1}\right) \cap V\left(D_{i}\right)$, there exists $v$ in $V\left(C_{2}\right) \cap$ $V\left(D_{i}\right)$ such that $u \rightarrow v$ and vice versa, for each $w$ in $V\left(C_{2}\right) \cap$ $V\left(D_{i}\right)$ there exists $z$ in $V\left(C_{1}\right) \cap V\left(D_{i}\right)$ such that $w \rightarrow z$.

Proof. Proposition 9 implies that for each $i \in[n]$, there exists $g \in\{1,2\} \quad$ such that $\left(D_{i-1}, D_{i}\right)_{H} \cap\left(\mathcal{P}_{g}(H), \mathcal{P}_{3-g}\right.$ $(H))_{H}=\left(D_{i-1}, D_{i}\right)_{H} \cap A\left(C_{1}\right) \quad$ and $\quad\left(D_{i-1}, D_{i}\right)_{H} \cap\left(\mathcal{P}_{3-g}(H)\right.$, $\left.\mathcal{P}_{g}(H)\right)_{H}=\left(D_{i-1}, D_{i}\right)_{H} \cap A\left(C_{2}\right)$ because $C_{1}$ and $C_{2}$ are nonconcordant. Since there is no arcs of $C_{1}$ and $C_{2}$ in $D_{i}$, it follows that $V\left(C_{1}\right) \cap V\left(D_{i}\right)=\mathcal{P}_{3-g}(H) \cap V\left(D_{i}\right)$ and $V\left(C_{2}\right) \cap$ $V\left(D_{i}\right)=\mathcal{P}_{g}(H) \cap V\left(D_{i}\right)$ (also, we know that $\left(D_{i}, D_{i+1}\right)_{H} \cap$ $\left(\mathcal{P}_{3-g}(H), \mathcal{P}_{g}(H)\right)_{H}=\left(D_{i}, D_{i+1}\right)_{H} \cap A\left(C_{1}\right)$ and $\left(D_{i}, D_{i+1}\right)_{H} \cap$ $\left.\left(\mathcal{P}_{g}(H), \mathcal{P}_{3-g}(H)\right)_{H}=\left(D_{i}, D_{i+1}\right)_{H} \cap A\left(C_{2}\right)\right)$. For each vertex $u \in V\left(C_{1}\right) \cap V\left(D_{i}\right)$, we know that $u$ is in $\mathcal{P}_{3-g}(H) \cap V\left(D_{i}\right)$. Because $D_{i}$ is strong, it follows that there exists $v$ in $\mathcal{P}_{g}(H) \cap V\left(D_{i}\right)$ such that $u \rightarrow v$. Notice that $v$ is in $V\left(C_{2}\right) \cap$ $V\left(D_{i}\right)$. The other case is analogous.

Lemma 20. Let $D_{1}, \ldots, D_{n}$ be vertex-disjoint strong semicomplete bipartite digraphs with an ordered-partition given by $\mathcal{P}$ and let $H$ be the $\mathcal{P}$-composition $\mathcal{C}_{n}\left[D_{1}, \ldots, D_{n}\right]^{\mathcal{P}}$. If $H$ has a 2-cycle-factor, then $D$ is Hamiltonian.

Proof. Let $\left\{C_{1}, C_{2}\right\}$, with $C_{1}=u_{0} \cdots u_{p-1} u_{0}$ and $C_{2}=$ $v_{0} \cdots v_{q-1} v_{0}$, be the cycle-factor in $H$. We can assume that both cycles pass through all the summands by Lemmas 12 and 18. We can assume that $C_{1}$ and $C_{2}$ have no good pairs of arcs. Thus, Proposition 11 implies that $C_{1}$ and $C_{2}$ are non-concordant cycles. Lemma 15 implies that no summand of $H$ has arcs from both cycles. Lemma 14 implies that $n$ is even.

Let $\alpha_{i}^{j}$ (respectively $\beta_{i}^{j}$ ) denote the number of vertices of $C_{1}\left(\operatorname{resp} . C_{2}\right)$ in $D_{i}$ at the $j$-th turn. Let $\lambda$ and $\mu$ be the number of times the cycles $C_{1}$ and $C_{2}$ wind through $H$, respectively. Suppose without loss of generality that $\lambda \leq \mu$. Let $\rho(i, r)$ (resp. $\sigma(i, r)$ ) be the unique integer in $[p]_{0}$ (resp. $[q]_{0}$ ) such that $u_{\rho(i, r)}$ (resp. $\left.v_{\sigma(i, r)}\right)$ is the first vertex of $C_{1}$ (resp. $C_{2}$ ) in $D_{i}$ at the $r$-th turn. Notice that $u_{\rho(i, r)+\left(\alpha_{i}^{r}-1\right)}$ is the last vertex of $C_{1}$ in $D_{i}$ at the $r$-th turn and $v_{\sigma(i, r)+\left(\beta_{i}^{r}-1\right)}$ is the last vertex of $C_{2}$ in $D_{i}$ at the $r$-th turn.

Now, we are going to take one turn of $C_{2}$ around $H$ and inserting it into $C_{1}$, obtaining a new 2 -cycle-factor which does have a good pair of arcs. In order to do that, we have to establish some previous results.

Take $i \in[n]$ and two different integers $r, s \in[\lambda]$. We have that $C_{1}\left[u_{\rho(i, r)}, u_{\rho(i, r)+\left(\alpha_{i}^{r}-1\right)}\right]$ and $C_{1}\left[u_{\rho(i, s)}, u_{\rho(i, s)+\left(\alpha_{i}^{s}-1\right)}\right]$ are the subpaths of $C_{1}$ in the summand $D_{i}$ at the $r$-th and $s$-th turns, respectively. Moreover, $u_{\rho(i, r)-1}$ and $u_{\rho(i, s)-1}$ are the previous vertices and $u_{\rho(i, r)+\alpha_{i}^{r}}$ and $u_{\rho(i, s)+\alpha_{i}^{s}}$ are the following vertices of those subpaths, respectively. By Claim 6 of Lemma 16, we have that $u_{\rho(i, r)-1} \rightarrow u_{\rho(i, r)}, u_{\rho(i, s)-1} \rightarrow$ $u_{\rho(i, s)}, u_{\rho(i, r)+\left(\alpha_{i}^{r}-1\right)} \rightarrow u_{\rho(i, r)+\alpha_{i}^{r}}$ and $u_{\rho(i, s)+\left(\alpha_{i}^{s}-1\right)} \rightarrow u_{\rho(i, s)+\alpha_{i}^{s}}$. By interchanging $\quad C_{1}\left[u_{\rho(i, r)}, u_{\rho(i, r)+\left(z_{i}^{r}-1\right)}\right] \quad$ and $C_{1}\left[u_{\rho(i, s)}, u_{\rho(i, s)+\left(x_{i}^{s}-1\right)}\right]$ in $C_{1}$, we obtain a new cycle with the


Figure 5. If $\mathcal{C}_{n}\left[D_{1}, \ldots, D_{n}\right]^{\mathcal{P}}$ is strong and has a cycle-factor, then $\mathcal{C}_{n}\left[D_{1}, \ldots, D_{n}\right]^{\mathcal{P}}$ is not necessarily Hamiltonian.
same vertex set as $C_{1}$ and which preserves the hypothesis of the lemma. We can perform similar interchanges in $C_{2}$.

The previous paragraph allows us to suppose, without loss of generality, that if $C_{1}$ or $C_{2}$ has an arc entirely contained in the summand $D_{i}$, for some $i \in[n]$, and that arc appears in the first turn, this means, $\alpha_{i}^{1}$ or $\beta_{i}^{1}$ is greater than one. Recall that Claims 4 and 5 of Lemma 16 implies that $u_{\rho(i, 1)+\left(\alpha_{i}^{1}-1\right)} \rightarrow v_{\sigma(i, 1)} \rightarrow u_{\rho(i, 1)}$, if $\alpha_{i}^{1}$ is greater than one or $v_{\sigma(i, 1)+\left(\beta_{i}^{1}-1\right)} \rightarrow u_{\rho(i, 1)} \rightarrow v_{\sigma(i, 1)}$, if $\beta_{i}^{1}$ is greater than one.

On the other hand, we have that there is no arcs of $C_{1}$ and $C_{2}$ entirely contained in the summand $D_{i}$, for some $i \in$ [n]. In this case, all the subpaths of $C_{1}$ and $C_{2}$ in $D_{i}$ have length zero. The former argument also allows us to interchange that subpaths. Lemma 19 implies that for every $r \in$ $[\lambda]$, there exists $s \in[\mu]$ such that $u_{\rho(i, r)} \rightarrow v_{\sigma(i, s)}$ and, conversely, for every $s^{\prime} \in[\mu]$, there exists $r^{\prime} \in[\lambda]$ such that $v_{\sigma\left(i, s^{\prime}\right)} \rightarrow u_{\rho\left(i, r^{\prime}\right)}$. Hence, we can suppose, without loss of generality, that for every even integer $i \in[n]$, there exists the arc $v_{\sigma(i, 1)+\left(\beta_{i}^{1}-1\right)} \rightarrow u_{\rho(i, 1)}$ and that for every odd integer $i \in[n]$, there exists the arc $u_{\rho(i, 1)+\left(\alpha_{i}^{1}-1\right)} \rightarrow v_{\sigma(i, 1)}$.

Now, we construct the new cycle-factor. Let $C_{1}^{\prime}$ be the cycle

$$
\begin{aligned}
& C_{1}\left[u_{\rho(1,1)}, u_{\left.\rho(1,1)+\left(\alpha_{1}^{1}-1\right)\right]} C_{2}\left[v_{\sigma(1,1)}, v_{\sigma(2,1)+\left(\beta_{2}^{1}-1\right)}\right]\right. \\
& C_{1}\left[u_{\rho(2,1)}, u_{\left.\rho(3,1)+\left(\alpha_{3}^{1}-1\right)\right]} C_{2}\left[v_{\sigma(3,1)}, v_{\sigma(4,1)+\left(\beta_{4}^{1}-1\right)}\right] \cdots\right. \\
& C_{2}\left[v_{\sigma(n-1,1)}, v_{\left.\sigma(n, 1)+\left(\beta_{n}^{1}-1\right)\right]} C_{1}\left[u_{\rho(n, 1)}, u_{\rho(1,1)}\right] .\right.
\end{aligned}
$$

Notice that the path $C_{1}\left[u_{\rho(n, 1)}, u_{\rho(1,1)}\right]$ starts in the first vertex of $C_{1}$ in $D_{n}$ at the first turn and passes through the rest of the turns of $C_{1}$ around $H$ up to return to $u_{\rho(1,1)}$ and that the winding number of $C_{1}^{\prime}$ around $H$ is still $\lambda$.

If the winding number of $C_{2}$, denoted by $\mu$, is one, then $C_{1}^{\prime}$ is a Hamiltonian cycle. Otherwise, let $C_{2}^{\prime}$ be the cycle $C_{2}\left[v_{\rho(1,2)}, v_{\rho(n, \mu)+\left(\beta_{n}^{\mu}-1\right)}\right] v_{\rho(1,2)}$. Notice that the winding number of this new cycle is $\mu-1$. The arcs $v_{\sigma(1,1)+\left(\beta_{1}^{1}-1\right)} \rightarrow$ $v_{\sigma(2,2)}$ and $v_{\sigma(1,2)+\left(\beta_{1}^{2}-1\right)} \rightarrow v_{\sigma(2,2)}$ are in $A\left(C_{2}\right)$. Since $C_{1}$ and $C_{2}$ are non-concordant, there exists $g \in\{1,2\}$ such that both arcs are in $\left(D_{1}, D_{2}\right)_{H} \cap\left(\mathcal{P}_{g}(H), \mathcal{P}_{3-g}(H)\right)_{H}$. In the new cycle-factor $\left\{C_{1}^{\prime}, C_{2}^{\prime}\right\}$, those arcs are in different cycles.

Hence, those cycles are concordant by definition. Proposition 11 implies that those cycles have a good pair of arcs, therefore we can merge into only one cycle, a Hamiltonian one.

Proof of Theorem 2. Assume that $H$ has a cycle-factor. We proceed by induction on $k$, where $k$ is the cardinality of the cycle-factor. If $k=2$, then Lemma 17 or Lemma 20 implies that $H$ is Hamiltonian. Thus, assume that for $k \geq 2$, the theorem holds and suppose that $H$ has a $(k+1)$-cycle-factor. If each element of the cycle-factor is completely contained in one summand, Lemma 18 implies that $H$ is Hamiltonian. So suppose that there exists one element $C_{i}$ in the cycle-factor which passes through all the summands. If there is a cycle $C_{j}$ in the cycle-factor which is completely contained in one summand, we can merge both cycles into one cycle by Lemma 12, so the induction hypothesis implies that $H$ is Hamiltonian. Hence, all the cycles pass through all the summands of $H$. Since the cycle-factor has at least three elements, Corollary 10 implies that two of them are concordant. Proposition 11 implies that there is a good pair of arcs, so we can merge both cycles into one cycle. Therefore, $H$ is Hamiltonian by the induction hypothesis.

As a last remark, let $H$ be the $\mathcal{P}$-composition $\mathcal{C}_{n}\left[D_{1}, \ldots, D_{n}\right]^{\mathcal{P}}$, where $\mathcal{C}_{n}$ is the $n$-cycle and each $D_{i}$ is a semicomplete bipartite digraph, not necessarily strong. If $\mathcal{C}_{n}\left[D_{1}, \ldots, D_{n}\right]^{\mathcal{P}}$ is strong and has a cycle-factor, then $\mathcal{C}_{n}\left[D_{1}, \ldots, D_{n}\right]^{\mathcal{P}}$ is not necessarily Hamiltonian. See Figure 5.

## Disclosure statement

No potential conflict of interest was reported by the author(s).

## Funding

This research was supported by grants UNAM-DGAPA-PAPIIT IN104717 and CONACyT 219840. The third author was also supported by grant SEP-PRODEP UAM-PTC-634.

## References

[1] Bang-Jensen, J. (1990). Locally semicomplete digraphs: a generalization of tournaments. J. Graph Theory 14(3): 371-390.
[2] Bang-Jensen, J., Gutin, G. (2009). Digraphs: Theory, Algorithms, and Applications. London: Springer, 811 p.
[3] Galeana-Sánchez, H., Goldfeder, I. A. (2012). A classification of all arc-locally semicomplete digraphs. Discrete Math. 312(11): 1883-1891.
[4] Galeana-Sánchez, H., Goldfeder, I. A. (2014). Hamiltonian cycles in a generalization of bipartite tournament with cyclefactor. Discrete Math. 315-316: 135-143.
[5] Gutin, G. (1984). Criterion for complete bipartite digraphs to be Hamiltonian. Vestsì Acad. Navuk BSSR Ser. Fīz.-Mat. Navuk 1: 109-110.
[6] Häggkvist, R., Manoussakis, Y. (1989). Cycles and paths in bipartite tournament with spanning configurations. Combinatorica 9(1): 33-38.


[^0]:    CONTACT Ilan A. Goldfeder ilan.goldfeder@gmail.com, ilan@xanum.uam.mx E Departamento de Matemáticas, Universidad Autónoma Metropolitana, Iztapalapa, Av. San Rafael Atlixco 186, col. Vicentina, Iztapalapa, 09340 Ciudad de México, México.
    © 2020 The Author(s). Published with license by Taylor \& Francis Group, LLC
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

