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Folding trees gracefully

Christian Barrientosa and Sarah Minionb

aDepartment of Mathematics, Valencia College, Orlando, FL, USA; bDepartment of Mathematics, Full Sail University, Winter Park, FL, USA

ABSTRACT
When a graceful labeling of a bipartite graph assigns the smaller labels to the vertices of one of
the stable sets of the graph, the assignment is called an a-labeling. Any graph that admits such a
labeling is an a-graph. In this work we extend the concept of vertex amalgamation to generate a
new class of a-graphs obtained by a sequence of k-vertex amalgamations of t copies of an a-tree.
This procedure is also applied to any collection of a-trees such that any pair of trees in this collec-
tion have stable sets with the same cardinalities. We also use this idea on other types of a-graphs.
In addition, we present a family of a-trees of even diameter formed with four caterpillars of the
same size.
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1. Introduction

A difference vertex labeling of a graph G of size n is an
injective mapping f from V(G) into a set N of nonnegative
integers, such that every edge uv of G has assigned a weight
defined by jf ðuÞ � f ðvÞj: The labeling f is called graceful
when N ¼ f0, 1, :::, ng and the set of induced weights is
f1, 2, :::, ng: In this case, G is called a graceful graph. Let G
be a bipartite graph and {A, B} be the natural bipartition of
V(G), we refer to A and B as the stable sets of G and assume
that jAj ¼ a and jBj ¼ b: A bipartite labeling of G is an
injection f : VðGÞ ! f0, 1, :::, sg for which there is an inte-
ger k, named the boundary value of f, such that f ðuÞ � k <

f ðvÞ for every ðu, vÞ 2 A� B, that induces n different
weights. This is an extension of the definition given by Rosa
and �Sir�a�n [7]. From the definition we may conclude that
s � jEðGÞj; furthermore, the labels assigned by f on the ver-
tices of A and B are in the integer interval ½0, k� and ½kþ
1, s�, respectively. If s¼ n, the function f is an a-labeling and
G is an a-graph. If f is an a-labeling of a tree and f�1ð0Þ 2
A, then its boundary value is k ¼ a� 1:

Suppose that f : VðGÞ ! f0, 1, :::, ng is a graceful labeling
of a graph G of size n:

� g : VðGÞ ! fc, cþ 1, . . . , cþ ng, defined for every v 2
VðGÞ and c 2 N as gðvÞ ¼ cþ f ðvÞ, is the shifting of f in
c units. Note that this labeling preserves the weights
induced by f.

� f̂ : VðGÞ ! f0, 1, . . . , ng, defined for every v 2 VðGÞ as
f̂ ðvÞ ¼ k� f ðvÞ if f ðvÞ � k, and f̂ ðvÞ ¼ nþ kþ 1� f ðvÞ
if f ðvÞ > k, is the reverse labeling of f. Thus, f̂ is also an
a-labeling with boundary value k.

� g : VðGÞ ! f0, 1, . . . , nþ d � 1g, defined for every v 2
VðGÞ and d 2 N as gðvÞ ¼ f ðvÞ if f ðvÞ � k and gðvÞ ¼
f ðvÞ þ d � 1 if f ðvÞ > k, is the d-graceful labeling of G
obtained from f. The labels assigned by g on the stable
sets of V(G) are in the intervals ½0, k� and ½kþ d, nþ d �
1� and the set of induced weights is fd, d þ
1, . . . , nþ d � 1g:

For example, let f be an a-labeling of a tree T of size n
with boundary value k. Suppose that f is transformed into a
d-graceful labeling shifted c units. Then the elements of A
are labeled with the integers in ½c, kþ c�, the elements of B
are labeled with the integers in ½cþ kþ d, cþ nþþd � 1�,
and the induced weights form the interval ½d, nþ d � 1�:

In Section 2, we study a-labelings for graphs that result
of k-vertex amalgamations of smaller a-graphs. Section 3 is
devoted to a-labelings of trees, there we prove the existence
of an a-labeling for trees obatined by amalgamating caterpil-
lars. The reader interested in graph labelings is refered to
Gallian’ survey [4] for more information about the subject.
In this paper, we follow the notation and terminology used
in [3] and [4].

2. Folding a-trees

For i¼ 1, 2, let Gi be a graph of order ni and size mi. A
graph G, of order n1 þ n2 � k and size m1 þm2, is said to
be a k-vertex amalgamation (or strong vertex amalgamation)
of G1 and G2 if it is obtained identifying k independent ver-
tices of G1 with k independent vertices of G2. We use here
strong vertex amalgamation of a-graphs to construct new
classes of a-graphs.
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Suppose That G is a bipartite graph of order n and size
m, with stable sets A ¼ fu1, u2, :::, uag and B ¼
fv1, v2, :::, vbg: Let G1,G2, :::,Gt be disjoint copies of G
with Ai ¼ fui1, ui2, :::, uiag and Bi ¼ fvi1, vi2, :::, vibg: If for
every even value of i 2 f1, 2, :::, tg, the vertices of Bi are
identified with the vertices of Bi�1, in such a way that
vij ¼ vi�1

j for every 1 � j � b, and the vertices of Ai are
identified with the vertices of Aiþ1, in such a way that
uij ¼ uiþ1

j for every 1 � j � a, then we obtain a bipartite

graph of size tm and order tn
2 þ a when t is even or ðtþ1Þn

2
when t is odd. We call this graph the t-fold of G. We
claim that the t-fold of G is an a-graph when G is
an a-graph.

Notice that when t is odd, there is only one t-fold of G;
that is, the t-fold of G is independent of the stable set of G
chosen to be B. On the other hand, when t is even, there
are, in general, two non-isomorphic t-folds of G, depending
on the stable set chosen to be B. When G is vertex transi-
tive, this selection is irrelevant and there is only one t-fold
of G for any value of t.

Theorem 1. If G is an a-graph, then any t-fold of G is
an a-graph.

Proof. Suppose that G is an a-graph of order n and size m
with stable sets A ¼ fu1, u2, :::, uag and B ¼ fv1, v2, :::, vbg:
Let f be an a-labeling of G with boundary value k such that
f�1ð0Þ 2 A: Consider t copies of G, each labeled using f. For
every value of i 2 f1, 2, :::, tg, let fi be the di-graceful label-
ing of Gi, obtained from f, shifted ci units, where di ¼
1þmðt � iÞ and ci ¼ mb i2c:

Thus, the set of weights induced by fi on the edges of Gi

is ½di, di þm� 1�: This implies that the set of weights on
the edges of the t-fold of G is

[t
i¼1

di, di þm� 1½ � ¼ [t
i¼1

1þmðt � iÞ, 1þmðt � iÞ þm� 1½ �

¼ [t
i¼1

1þmðt � iÞ,mðt þ 1� iÞ½ �
¼ ½1, mt�

Suppose that r1 < r2 < ::: < ra and q1 < q2 < ::: < qb are
the labels assigned by f on the vertices of A and B, respectively.
Thus, fi assigns the labels r1 þ ci, r2 þ ci, :::, ra þ ci to the ele-
ments of Ai and the labels q1 þ di � 1þ ci,q2 þ di � 1þ
ci, :::, qb þ di � 1þ ci to the elements of Bi. Note that when i
is even, i ¼ 2s, the labels on the vertices of Bi are qj þmðt �
sÞ, 1 � j � b, and the labels on the vertices of Bi�1 are qj þ
mðt � sÞ, as well. Similarly, the labels on the vertices of Ai and
Aiþ1 are r1 þms, r2 þms, :::, ra þms: Therefore, the vertices
of the t-fold of G are labeled with integers from ½0,mt� that
induce the weights 1, 2, :::,mt: Since the labelings of the Gi are
bipartite, the final labeling is an a-labeling with boundary
value mþ bt2c þ k: Hence, the t-fold of G is an a-graph. w

In Figure 1, we show an a-labeling of the 3-fold of the
hypercube Q3.

When the graph G in Theorem 1 is the path Pn, with
n � 4, the t-fold of G results in a graph that contains as a
subgraph a convex Eulerian polyomino, the induced labeling
of this polyomino can be transformed into the a-labeling
used by Acharya [1] to prove that all convex Eulerian polyo-
minoes are arbitrarily graceful. Another nice family of
a-graphs that can be obtained using Theorem 1 is the one
containing the fractal type structure constructed by t-folding
the cycle C4m,m � 2: In Figure 2 we show an example of
one of these structures constructed using C8 folded 7 times.

Note that the a-labeling of the t-fold of an a-graph G can
be also obtained using the labeling scheme of the weak ten-
sor product of G and Ptþ1, introduced by Snevily [8] and
extended by L�opez and Muntaner-Batle [5]. The labeling
technique used in the proof of Theorem 1 is applied to

Figure 1. a-labeling of the 3-fold of Q3.

Figure 2. a-labeling of the 7-fold of C8.
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other types of folded graphs that cannot be explained using
the weak tensor product.

In the next proposition we prove that for any 1 � k � b,
there is an a-graph G that results of a k-vertex amalgam-
ation of two copies of an a-tree. Note that when k¼ 1, G is
the well-known vertex amalgamation (or one-point union)
of two copies of T. The gracefulness of this type of graph
was proven in [2]. When k¼ b, an a-labeling of G can be
obtained using Theorem 1 with t¼ 2.

Proposition 1. Let T be an a-tree of size m with one stable set
of cardinality b. If k � b is a positive integer, then there is a k-
vertex amalgamation of two copies of T that is an a-graph.

Proof. For i¼ 1, 2, let Ti be a copy of T with stable sets Ai

and Bi, where jBij ¼ b: Suppose that f is an a-labeling of T
such that f�1ð0Þ 2 A; so, its boundary value is k ¼
jAj � 1 ¼ a� 1: Let fi be the di-graceful labeling of Ti,
obtained from f, shifted ci units, where

ðdi, ciÞ ¼ ðmþ 1, 0Þ if i ¼ 1,
ð1, kþ kÞ if i ¼ 2:

�

Thus, the vertices in A1 are labeled with the integers in
f0, 1, :::, kg, the vertices in B1 are labeled with the integers
in fkþmþ 1, kþmþ 2, :::, 2mg, the vertices in A2 are
labeled with the integers in fkþ k, kþ kþ 1, :::, 2kþ kg,
and the vertices in B2 are labeled with the integers
in f2kþ kþ 1, 2kþ kþ 2, :::,mþ kþ kg:

Identifying the vertices of B1 and B2 labeled 2kþ kþ
1, 2kþ kþ 2, :::,mþ kþ k, we obtain a graph G that is a k-
vertex amalgamation of T1 and T2. Since the weights on T1

are mþ 1,mþ 2, :::, 2m and on T2 are 1, 2, :::,m, we have
that all edges of G have different weights; in addition, the
vertices of T1 and T2, with the same label, were amalga-
mated, hence there is no repetition of labels. Observe that
the labels assigned to the elements of A1 [ A2 are smaller
that those assigned to the elements of B1 [ B2, so the num-
ber 2kþ k is the boundary value of the a-labeling of G,
therefore G is an a-graph (Figure 3). w

Suppose that T is an a-labeled tree of size m, where A ¼
f0, 1, :::, kg and B ¼ fkþ 1, kþ 2, :::,mg are considered
ordered sets. By a generalized t-fold of T we mean a graph G
obtained using t a-labeled copies of T, where for every even
value of i, the copy Ti is merged with the copies Ti�1 and
Tiþ1 in such a way that the last ki vertices in Bi are

amalgamated with the first ki vertices in Bi�1, and the last
k0i vertices in Ai are amalgamated with the first k0i vertices in
Aiþ1: These amalgamations must be done in ascending
order; for example, suppose that x is amalgamated with y
and x0 is amalgamated with y0, if x < x0, then y < y0:

Theorem 2. If T is an a-tree, then any generalized t-fold of
T is an a-graph.

Proof. Suppose that T is an a-tree of size m with stable sets
A and B. Let T1,T2, :::,Tt be disjoint copies of T. Assume
that f is an a-labeling of T with boundary value k. Without
loss of generality, suppose that f�1ð0Þ 2 A: Thus, the labels
assigned to the vertices of A and B form the intervals LA ¼
½0, k� and LB ¼ ½kþ 1,m�, respectively. For each i 2
f1, 2, :::, tg, suppose that f is the initial labeling of Ti. The
final labeling of Ti, denoted by fi, is obtained by transform-
ing f into a di-graceful labeling shifted ci units, where di ¼
ðt � iÞmþ 1 and ci ¼

Pi
j¼1 nj with

ni 2 kþ 1,m½ � if n is even,
0, k½ � if n is odd:

�

Consequently, the labels assigned by fi to the vertices of
Ai and Bi are LAi ¼ ½ci, ci þ k� and LBi ¼ ½kþ ci þ di,mþ
ci þ di � 1�: In addition, the weights induced by fi on the
edges of Ti form the interval ½ðt � iÞmþ 1, ðt � iÞmþm�:
Therefore, [t

i¼1½ðt � iÞmþ 1, ðt � iÞmþm� ¼ ½1, tm�:
Since LAi ¼ ½ci, ci þ k� where ci ¼

Pi
j¼1 nj, we have that

for every feasible even value of i, LAi \ LAiþ1 ¼ ½ciþ1, ci þ k�
and jLAi \ LAiþ1 j ¼ ci þ k� ciþ1 þ 1 ¼ kþ 1� niþ1 ¼ k0i:
Thus, the number k0i, of vertices shared by Ai and Aiþ1 is
bounded by 1 � k0i � kþ 1 ¼ a: Similarly, LBi�1 \ LBi ¼
½kþ ci�1 þ di�1,mþ ci þ di � 1� and jLBi�1 \ LBi j ¼ ni � k ¼
ki: Since ni 2 ½kþ 1,m� ¼ ½kþ 1, aþ b� 1�, the number ki
of vertices shared by Bi�1 and Bi is bounded by 1 � ki � b:

Identifying the vertices with the same label, we form the
graph G that is a generalized t-fold of T. Since the labelings
used on the Ti are bipartite, the boundary value of the label-
ing of G is the largest number in LAi , that is, kþ ct:
Therefore, G is an a-graph. w

In Figure 4, we show an example of an a-labeling for a
generalized 5-fold of an a-tree of size 10, where k2 ¼ 4, k02 ¼
2, k4 ¼ 5, k04 ¼ 5, n1 ¼ 0, n2 ¼ 8, n3 ¼ 3, x4 ¼ 9, and n5 ¼ 0:

Let T1 and T2 be two a-trees of size m. We say that T1

and T2 are analogous if jA1j ¼ jA2j and jB1j ¼ jB2j: We use
this concept to extend the result of Theorem 2 by replacing
any number of copies of T with analogous trees.

Theorem 3. If G is a generalized t-fold of an a-tree T, then any
of the copies of T, used to construct G, can be replaced by any
tree T0 analogous to T, and the resulting graph is an a-graph.

Proof. Since T and T0 are analogous, there exist a-labelings f
and g, of T and T0, respectively, such that f�1ð0Þ 2 A and
g�1ð0Þ 2 A0: Let G be a generalized t-fold of T, suppose that
the a-labeling of G has been obtained using the procedure
in Theorem 2 and Ti is a copy of T in G. By transforming g
in the same way that the labeling of Ti was transformed
before, we obtain a labeling of T0 that assigns the same

Figure 3. A 3-vertex amalgamation of an a-graph of size 7.
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labels on the corresponding stable sets of Ti and T0: Thus,
we can replace the edges of Ti in G with the edges of T0 and
the resulting graph is still an a-graph. This procedure can
be applied as many times as necessary to obtain the desired
a-labeling of the aimed graph. w

In Figure 5, we show this substitution of edges on the
graph shown in Figure 4, where all the copies of T, except
T2, were replaced with analogous trees.

3. a-trees of even diameter

A caterpillar is a tree with a single path containing at least
one endpoint of every edge. Suppose that T is a caterpillar
of size 2m � 4 such that m ¼ jAj ¼ jBj � 1: We say that
T 2 Fk if T has diameter 2k or 2kþ 1, for some positive
integer k � 2: For each i 2 f1, 2, 3, 4g, let Ti 2 Fk and T5 be
the tree consisting of one central vertex, denoted by w,
which is attached to t � 0 pendant vertices, that is, T5 ffi K1

or T5 ffi K1, t: Recall that the eccentricity of a vertex in a
graph is the maximum distance to other vertices. For each
i 2 f1, 2, 3, 4g, let vi 2 VðTiÞ such that its eccentricity equals
2k. Thus, vi is a leaf of Ti when diam Ti ¼ 2k or vi is adja-
cent to a vertex of maximum eccentricity when diam Ti ¼
2kþ 1: Consider the tree T of size 4ð2mþ 1Þ þ t obtained
by connecting, with an edge, all the vertices vi to the vertex
w of T5. By Tm, t we understand the family of all trees of
size 4ð2mþ 1Þ þ t obtained in the form described above.
We claim that all the elements of Tm, t are a-trees.

Proposition 2. If T 2 Tm, t , then T is an a-tree.

Proof. Suppose that for every i 2 f1, 2, 3, 4g, vi is in the largest
stable set of Ti; let fi be an a-labeling of Ti such that fiðviÞ ¼
2m: The existence of this labeling was proven by Rosa [6]. The
labeling f5 of T5 is the a-labeling, also given by Rosa in the
same work, that assigns the label 0 to the vertex w. For i¼ 2,
4, the initial labeling of Ti is the reverse of fi, that is, f̂ i:

For each i 2 f1, 2, 3, 4, 5g, the initial a-labeling of Ti is
transformed into a di-graceful labeling shifted ci units, where

ðdi, ciÞ ¼

ð6mþ t þ 5, 0Þ if i ¼ 1,
ð4mþ t þ 4,mÞ if i ¼ 2,
ð2mþ 2, 2mþ 1Þ if i ¼ 3,
ð1, 3mþ 1Þ if i ¼ 4,
ð4mþ 3, 2mÞ if i ¼ 5:

8>>>><
>>>>:

Hence, the labels assigned to the vertices of Ti form the
set ½0,m� 1� [ ½7mþ t þ 4, 8mþ t þ 4� when i¼ 1,
½m, 2m� 1� [ ½6mþ t þ 3, 7mþ t þ 3� when i¼ 2, ½2mþ
1, 3m� [ ½5mþ 2, 6mþ 2� when i¼ 3, ½3mþ 1, 4m� [ ½4mþ
1, 5mþ 1� when i¼ 4, and f2mg [ ½6mþ 3, 6mþ t þ 2�
when i¼ 5. It follows that the labels assigned on the vertices
of T form the interval ½0, 8mþ t þ 4� ¼ ½0, 4ð2mþ 1Þ þ t�:

The weights induced on the edges of Ti form the interval
½6mþ t þ 5, 8mþ t þ 4� when i¼ 1, ½4mþ t þ 4, 6mþ t þ
3� when i¼ 2, ½2mþ 2, 4mþ 1� when i¼ 3, ½1, 2m� when
i¼ 4, and ½4mþ 3, 4mþ t þ 2� when i¼ 5.

Notice that the labels assigned to vi are 8mþ t þ 4 when
i¼ 1, 6mþ t þ 3 when i¼ 2, 6mþ 2 when i¼ 3, and 4mþ 1
when i¼ 4. Since the label of w is 2m, the edges viw have
weights 6mþ t þ 4, 4mþ t þ 3, 4mþ 2, and 2mþ 1, respect-
ively. Thus, the weighst induced on the edges of T form the

Figure 4. a-labeling of a generalized 5-fold of a tree.

Figure 5. a-labeling of a modified 5-fold of a tree.
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interval ½1, 8mþ t þ 4� ¼ ½1, 4ð2mþ 1Þ þ t�: The form in
which the initial a-labelings are combined guarantees that the
final labeling is also an a-labeling; its boundary value is
k ¼ 4m: w

We must observe that the caterpillars used above can be
replaced by a-trees for which there exist a-labelings that
place the label 0 on vertices ui satisfying the same conditions
that the vi. In Figure 6, we show an example of this labeling
on a tree with four branches of length 5.

A rooted tree is a tree with a distinguished vertex r, called
the root. The last proposition tells us that any rooted tree T is
an a-tree if T – r consists of four caterpillars of equal size and
diameter 2k or 2kþ 1 for certain positive integer k. Is it pos-
sible to extend this result to trees T such that T – r result in any
number of caterpillars of equal size and similar diameters?
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