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ABSTRACT
Proportional-integral-plus (PIP) control provides a logical extension to conventional two- or three-term
(proportional-integral-derivative) industrial control, with additional dynamic feedback and input compen-
sators introduced when the process has second order or higher dynamics, or time delays. Although PIP
control has been applied in a range of engineering applications, evaluation of closed-loop robustness has
generally relied on empirical methods. In the present article, expressions for the H∞ norm of two com-
monly used PIP control implementations, the feedback and forward path forms, are used, for the first time,
to quantify closed-loop robustness. It is shown that the forward path form is not robust for unstable plants.
Additional expressions for theH∞ norm that encompass frequency weightings of generalised disturbance
inputs are also determined. Novel analytical expressions to minimise theH∞ norm are derived for the sim-
plest plant, while simulation results based on numerical optimisation are provided for higher order exam-
ples. We show that, for certain plants, there are (non-unique) sets of PIP control gains that minimise theH∞
norm. TheH2 norm is introduced in these cases to determine the controller that balances performancewith
robustness. Finally, theH∞ norm is used as a design parameter for a practical example, namely control of
airflow in a 2 m by 1 m by 1 m forced ventilation chamber. The performance of the new PIPH∞ controller is
compared to previously developed PIP controllers based on pole placement and linear quadratic design.

1. Introduction
This article considers the robustness of proportional-integral-
plus (PIP) controllers using H∞ methods. PIP control can be
interpreted as a logical extension of conventional proportional-
integral (PI) or proportional-integral-derivative (PID) control,
with additional dynamic feedback and input compensators
introducedwhen the process has second order or higher dynam-
ics, or pure time delays greater than one sampling interval (e.g.
Taylor, Chotai, & Cross, 2012; Taylor, Young, & Chotai, 2013;
Young, Behzadi, Wang, & Chotai, 1987). The approach is based
on the definition of non-minimal state space (NMSS) models,
which are formulated so that full state variable feedback con-
trol can be implemented directly from the measured signals of
the controlled process. For discrete-time models, the states of
the NMSS representation are the present and past values of the
outputs and the past values of the inputs. An integral-of-error
state is commonly included to ensure Type 1 servomechanism
performance.

More generally, controllers based onNMSSmodels have been
successfully used by researchers working in a wide range of
application areas, including, for example: micro-climate con-
trol in buildings (Taylor et al., 2004) and vehicles (Quanten
et al., 2003); positioning of industrial piling rigs (Seward, Scott,
Dixon, Findlay, & Kinniburgh, 1997) and ground compaction
systems (Shaban, Ako, Taylor, & Seward, 2008) on construction
sites; laboratory coupled tank experiments (Fletcher, Wilson, &
Cox, 1994); active noise control (Yucelen & Pourboghrat, 2009);
and in relation to recent advances in process control (Bigdeli,
2015), such as coke furnaces (Zhang & Gao, 2013) and crude
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distillation columns (Khalilipour, Sadeghi, Shahraki, & Razza-
ghi, 2016), among other examples in the literature.

For controlling real systems, closed-loop robustness is a key
concern. Robust control design aims to ensure satisfactory per-
formance in the presence of uncertainty, e.g. parametric and
non-parametric modelling errors, external disturbances and
sensor noise. TheH∞ control problem, as originally formulated
by Zames (1981), is concerned with minimising appropriately
defined H∞ norms (Green & Limebeer, 2012; Zhou & Doyle,
1998) to maximise the robustness properties of the controller. A
key research question in this regard is how to design a controller
which minimises theH∞ norm of a pre-designated closed-loop
transfer function matrix (Francis, 1987). Considerable research
effort has been made over many years towards answering this
question, e.g. Kwakernaak (1993), Zhou et al. (1996), Zhou and
Doyle (1998) and Green and Limebeer (2012).

In spite of significant research over the last three decades,
with numerous theoretically optimalH∞ norm solutions in the
literature, the approach is rarely used in industrial applications.
This is in part because the order of the ideal H∞ optimal con-
troller is often high, and robust solutions can be mathematically
complex, hence relatively inaccessible to users (Ho, 2003). It is
not surprising, therefore, that H∞-based methods have been
similarly developed to enable use of robust design for PI/PID
control (Åström, Panagopoulos, & Hägglund, 1998; Goncalves,
Palhares, &Takahashi, 2008;Ho, 2003;Ho&Lu, 2005; Kristians-
son&Lennartson, 2002). In such cases,H∞ (and oftenH2) costs
are used to tune the gains of PID control structures to improve
their robustness.
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However, despite providing a closely related butmore general
alternative to PID control, no equivalent design methods cur-
rently exist for PIP control. The NMSS/PIP approach has been
extended, or constrained, and used to mimic exactly a number
of other design methods including, for example, minimal lin-
ear quadratic (LQ) and generalised predictive control (Taylor,
Chotai, & Young, 2000), other forms of model-predictive con-
trol (Exadaktylos & Taylor, 2010;Wang&Young, 2006), and sta-
tistical regret-regression (Clairon,Wilson,Henderson, &Taylor,
2017). Taylor, Young, and Chotai (1996) and Taylor et al. (2013)
utilise linear-exponential-of-quadratic cost functions (Whittle,
1981) to link PIP design to H∞ concepts but subsequently rely
entirely onMonte-Carlo simulation to investigate robustness. In
the present contribution, by contrast, we derive appropriateH∞
norms in order to quantitatively evaluate and hence optimise the
robustness of the closed-loop PIP control system.

To our knowledge, there have been no previous attempts
to evaluate overall PIP closed-loop performance using the H∞
norm. The robustness of the control elements within the PIP
closed-loop system were studied some years ago by Liu, Dixon,
and Daley (2001) and Liu, Duan, and Dixon (2001), who used
H∞ methods to ensure that the designed controller was sta-
ble. However, these articles did not consider the overall closed-
loop performance, which is the focus of the present work. Such
closed-loop system robustness is necessary for the system to be
insensitive to component variations.Hence, in this contribution,
we first derive analytical expressions, in terms of theH∞ norm,
for the robustness of the two main implementation forms of
NMSS/PIP control. In developing such expressions, the exoge-
nous inputs are initially assumed to be additive white Gaus-
sian noise at the plant input and output. However, additional
expressions for the H∞ norm, in which the frequency weight-
ings of generalised disturbance inputs are included in the for-
mulation, are also determined. This second approach aims to
provide a more realistic measure of the H∞ norm for the case
when unknown load disturbances and sensor noise signals can
be modelled as generalised noise processes.

The two main implementation forms of PIP control are the
‘forward path’ and ‘feedback’ control structures. The forward
path form uses an internal model of the plant to provide noise-
free estimates of the output. Hence, it generally yields smoother
control inputs in comparison to the feedback form, typically at
the cost of a qualitative reduction in robustness, as evaluated by
Monte-Carlo simulation (Taylor, Chotai, & Young, 1998). In this
article, a significant limitation of the forward path form is deter-
mined for unstable plants.

A second contribution of the article concerns the optimisa-
tion (minimisation) of theH∞ norm to improve the robustness
of the controller. Numerical examples demonstrate how theH∞
norm of the PIP controller can beminimised through the choice
of the state variable feedback control gains. These gains are asso-
ciated with the ‘design’ closed-loop poles of the system. These
are the poles that would be obtained using the estimated control
gains when assuming an ideal model. We show that, for certain
plants, there is a non-unique solution, i.e. a range of gain values
(and hence associated closed-loop poles) that minimise theH∞
norm. In these cases, an additional constraint, namely the H2
norm, is introduced to help determine the controller that bal-
ances performancewith robustness, as jointly represented by the

H2 andH∞ norms. Joint optimisation of theH∞ norm and the
H2 norm is considered good design practice (Palhares, Taica-
hashi, & Peres, 1997), hence theH2 norm is often used alongside
the H∞ norm for robust control design (Bernstein & Haddad,
1989; Khargonekar & Rotea, 1991; Palhares et al., 1997; Toivo-
nen & Pensar, 1996; Yeh, Banda, & Chang, 1992).

Novel analytical expressions to solve the PIP H∞ problem
are derived for the simplest plant, and numerical optimisation
results are provided for a higher order example, namely a plant
based on the hair dryer system of Ljung (1987). Finally, theH∞
norm is used as a design parameter for a practical example,
namely PIP control of airflow in a 2 m by 1 m by 1 m forced
ventilation chamber that is used for research into micro-climate
control (Tsitsimpelis & Taylor, 2015). The performance of the
new PIP H∞ controller is compared to PIP control based on
both pole placement and LQ design, by implementing each to
control the airflow in a real-time laboratory experiment.

The remainder of the article is organised as follows. Section 2
reviews the standard NMSS/PIP approach, including feedback
and forward path forms. The robustness of the controllers thus
obtained are evaluated in Section 3, where expressions for the
H∞ norm are derived. In Section 4, we use the H∞ norm to
study the robustness of PIP control for illustrative plant mod-
els, both analytically and in simulation. Experimental results
are considered in Section 5, followed by the conclusions in
Section 6.

2. NMSS/PIP control design
Consider the following linear, single-input, single-output (SISO)
discrete-time system:

y(k) = B
(
z−1)

A (z−1)
u(k) = b1z−1 + · · · + bmz−m

1 + a1z−1 + · · · + anz−n u(k) (1)

where y(k) is the output, u(k) the control input and z−1 the
backward shift operator, i.e. z−ny(k) = y(k − n). A time-delay
τ > 1 is represented by b1 = . . . = bτ−1 = 0. For NMSS/PIP
control design, the model (1) is represented by the following
NMSS form (Taylor et al., 2013; Young et al., 1987):

x(k) = Fx(k − 1) + gu(k − 1) + dyd(k) ; y(k) = hx(k)
(2)

where the n +m (non-minimal) state vector

x(k) = [y(k), y(k − 1), . . . , y(k − n + 1),
u(k − 1), . . . , u(k − m + 1), q(k)]ᵀ (3)

consists of the present and past sampled values of the output,
past sampled values of the input and an integral-of-error state
variable q(k) = q(k − 1) + yd(k) − y(k), in which yd(k) is the
reference signal or command. Here, q(k) is introduced to ensure
Type 1 servomechanism behaviour, i.e. zero steady-state error
in response to a time-invariant command. Finally, F, g, d, h are
fully defined in the Appendix.
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a)

b)

Figure . PIP control block diagrams. (a) Feedback and (b) forward path implementations.

2.1 PIP control structures
The state variable feedback control law takes the usual form
u(k) = −kx(k)where k is a n+m dimensional control gain vec-
tor;

k = [ f0 f1 · · · fn−1 g1 · · · gm−1 −kI ] (4)

These gains are selected by the designer to achieve desired
closed-loop characteristics, for example by using LQmethods or
pole assignment (Taylor et al., 2013). The control input is most
commonly generated directly from the state variable feedback
algorithm above, yielding the feedback form of the algorithm,
as illustrated in Figure 1(a). An alternative, internal model con-
trol structure or forward path form utilises the estimated plant
model B̂

(
z−1) /Â

(
z−1) to determine the first n states in Equa-

tion (3) and is illustrated in Figure 1(b). In both cases, the control
polynomials are defined as follows:

F(z−1) = f0 + f1z−1 + · · · + fn−1z−n+1 (5)

G(z−1) = 1 + g1z−1 + · · · + gm−1z−m+1 (6)

while kI/� is the integral control element, in which the differ-
ence operator, defined � = 1 − z−1, is used in these figures and
in the remainder of the article.

2.2 Generalised disturbance inputs
In this article, we consider the case when the plant input is
corrupted by an unknown additive input d(k), and the out-
put by additive noise n(k). Therefore, the controlled system is
treated as a multi-input, multi-output (MIMO) process, even
though the plant model (1) is SISO. Here, the generalised inputs
are ω = (n, d) and the generalised errors, representing the
values to be minimised in the next section of the article, are
ζ = (y, −u); the negative sign is introduced to simplify the
equations but is not essential. The analysis below also assumes

a)

b)

Figure. Reduced formPIP control blockdiagrams, assuming yd =andwithexter-
nal disturbance d(k) and noise n(k) signals. (a) Feedback and (b) forward path imple-
mentations.

the reference signal yd(k) = 0. However, the resulting robust
NMSS/PIP designs can still be applied to the case when the ref-
erence is non-zero, as shown in Section 5. With these assump-
tions in place, block diagram reduction or straightforward
algebra yields the modified PIP control systems illustrated in
Figure 2.

3. Robustness evaluation for PIP control
Expressions for the H∞ norm of the feedback and forward
path implementation forms of PIP control are developed,
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followed by consideration of several methods for optimis-
ing (minimising) these norms. We use the notation HFB to
refer to a system with a feedback PIP controller, HFP to refer
to the case with a forward path PIP controller and H to
represent a generalised system without a specific controller
structure.

The H∞ space is defined as the class of systems for which
H(z−1) is defined and analytic for z−1 in the unit disk D (the
unit disk D is the set of complex numbers with modulus less
than one).

For a discrete-time MIMO system, the H∞ norm (denoted
‖H‖�) is determined as follows (e.g. Stoorvogel, 1992):

‖H(z−1)‖∞ := sup
θ∈(0,2π)

σ̄ (H(e−iθ )) (7)

where σ̄ (·) denotes the largest singular value, as follows:

σ̄ (H(e−iθ )) =
√

λmax(H(e−iθ )∗H(e−iθ )) (8)

inwhich λmax is themaximumeigenvalue andH(e−iθ )* the com-
plex conjugate transpose of H(e−iθ ).

Theorem 3.1: (Feedback PIP H∞ norm) If X̄ is used to denote
the complex conjugate of X, theH∞ norm of the feedback PIP con-
trolled system (Figure 2(a)) is as follows:

‖HFB(z−1)‖∞ = sup
θ∈(0,2π)

√
AG�AG� + BG�BG� + A(F� + kI )A(F� + kI ) + B(F� + kI )B(F� + kI )

AG� + B(F� + kI )AG� + B(F� + kI )
(9)

Here, A,B,G,F ,� are all functions of e−iθ but this notation
has been omitted to simplify the expression. Note that A(z−1) ≡
A(e−iθ ) and each of these expressions is defined in terms of the
model parameters (a1, . . . , an, b1, . . . , bm) and controller param-
eters ( f0, . . . , fn−1, g1, . . . , gm−1, kI) using Euler’s formula (eix =
cos x + isin x).

Proof of Theorem 3.1: The transfer function H(z−1) describes
how the generalised error ζ relates to the generalised input ω,

ζ = H(z−1)ω (10)

The generalised inputs are equivalent to the exogenous variables
and are ω = (n, d) for the system in Figure 2. The generalised
errors represent the values to beminimised, here the systemout-
put and control input ζ = (y, −u). From Figure 2(a), the gener-
alised errors y and −u are

y = 1

1 + B(z−1)

A(z−1)

1
G(z−1)

(
F(z−1) + kI

�

)n

+
B(z−1)

A(z−1)

1 + B(z−1)

A(z−1)

1
G(z−1)

(
F(z−1) + kI

�

)d (11)

− u =
1

G(z−1)

(
F(z−1) + kI

�

)

1 + B(z−1)

A(z−1)

1
G(z−1)

(
F(z−1) + kI

�

)n

+
B(z−1)

A(z−1)

1
G(z−1)

(
F(z−1) + kI

�

)

1 + B(z−1)

A(z−1)

1
G(z−1)

(
F(z−1) + kI

�

)d (12)

simplified, and in matrix form, this yields

ζ = HFB(z−1)ω (13)

ζ =

⎛
⎜⎜⎝

AG�

AG� + B(F� + kI )
BG�

AG� + B(F� + kI )
A(F� + kI )

AG� + B(F� + kI )
B(F� + kI )

AG� + B(F� + kI )

⎞
⎟⎟⎠ω (14)

Note that A, B, F and G are polynomials in z−1 but the operator
notation has been omitted for brevity here and in later equations.
Equivalent to Equation (14),

H =

⎛
⎜⎜⎝

1
1 + PC

P
1 + PC

C
1 + PC

PC
1 + PC

⎞
⎟⎟⎠ (15)

which is a standard result for a general system. Again, P and C
are polynomials in z−1, with (z−1) omitted, while P represents
the plant, i.e. P = B/A. For the feedback PIP controller,

C = 1
G

(
F + kI

�

)
(16)

To calculate σ̄ (H(e−iθ )) as in Equation (8), the matrix H(e−iθ )
and its complex conjugate transposeH(e−iθ )* are represented as

HFB(e−iθ ) =
(
O Q
R E

)
HFB(e−iθ )∗ =

(
Ō R̄
Q̄ Ē

)
(17)

Here,

O = AG�

AG� + B(F� + kI )
Q = BG�

AG� + B(F� + kI )

R = A(F� + kI )
AG� + B(F� + kI )

E = B(F� + kI )
AG� + B(F� + kI )

(18)

The eigenvalues λ of HFB(e−iθ )*HFB(e−iθ ) are

λ = ŌO + R̄R + Q̄Q + ĒE, or zero (19)
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Hence,

λmax
(
HFB(e−iθ )∗HFB(e−iθ )

) = ŌO + R̄R + Q̄Q + ĒE (20)

As a result, theH∞ norm can be expressed as

‖HFB(z−1)‖∞ = sup
θ∈(0,2π)

√
ŌO + R̄R + Q̄Q + ĒE (21)

From the definitions ofO, E,Q, R (see Equation (18)), this yields
Equation (9) of Theorem 3.1. �
Theorem 3.2 (Forward path PIP H∞ norm): The H∞ norm of
the forward path PIP controlled system (Figure 2(b)) is as follows:

‖HFP(z−1)‖∞ = sup
θ∈(0,2π)

√
n f p

d f p
(22)

where

n f p = A(GÂ + FB̂)�A(GÂ + FB̂)�

+ B(GÂ + FB̂)�B(GÂ + FB̂)�

+ kIAÂkIAÂ + kIBÂkIBÂ (23)

d f p = A(GÂ + FB̂)� + BkIÂA(GÂ + FB̂)� + BkIÂ
(24)

Here, Â and B̂ are the denominator and numerator, respectively
of the estimated model (as distinct from the nominal plant).

Proof of Theorem 3.2: The proof is similar to that of Theorem
3.1 with the definitions of O, E, Q, Rmodified to reflect the dif-
ferent controller design. From Figure 2(b),

ζ = HFP(z−1)ω (25)

ζ =

⎛
⎜⎜⎜⎝

A(GÂ + FB̂)�

A(GÂ + FB̂)� + BkIÂ

B(GÂ + FB̂)�

A(GÂ + FB̂)� + BkIÂ
kIAÂ

A(GÂ + FB̂)� + BkIÂ

kIBÂ

A(GÂ + FB̂)� + BkIÂ

⎞
⎟⎟⎟⎠ ω

(26)

where HFP(z−1) is represented by Equation (15), here with,

C = kIÂ
(GÂ + FB̂)�

(27)

This yields the following definitions of O, E, Q, R:

O = A(GÂ + FB̂)�

A(GÂ + FB̂)� + BkIÂ
Q = B(GÂ + FB̂)�

A(GÂ + FB̂)� + BkIÂ

R = kIAÂ
A(GÂ + FB̂)� + BkIÂ

E = kIBÂ
A(GÂ + FB̂)� + BkIÂ

(28)

Following through with the same arguments as provided in the
proof of Theorem 3.1 yields Equation (22) of Theorem 3.2. �
Corollary 3.1 (Forward path PIP control for an unstable plant):
The value of the forward path H∞ norm, ‖HFP‖�, is infinite for
the case when the identified plant is unstable, i.e. Â has poles that
lie outside the unit circle on the complex z-plane. Hence, the for-
ward path PIP controller is not robust to exogenous inputs d if
the plant being controlled is unstable (even if the plant is modelled
correctly, i.e. Â = A and B = B̂).

3.1 Observations on Corollary 3.1
If the magnitude of any pole, in any of the transfer functions
contained in the matrix HFP in Equation (26) is greater than
unity, there is a component without bound, causing the system
to be unstable and the value of ‖HFP‖� to be infinite. From the
observation of Equation (26), the (1,2) element of thematrixHFP
contains no pole-zero cancellations of the unstable plant poles
in A. Therefore, the forward path PIP controller is not robust
to exogenous inputs at the plant input d if the plant being con-
trolled is unstable.
Corollary 3.2: If a frequency weighting is included in the for-
mulation, in order to remove the implicit assumption above that
all disturbances and frequencies are equally important, then as
a corollary of Theorems 3.1 and 3.2, a new expression for the
H∞ norm that takes into account the frequency weighting of dis-
turbance and noise inputs can be determined. The corresponding
weightedH∞ norm is

‖Hwt (z−1)‖∞ = sup
θ∈(0,2π)

√
ŌwtOwt + R̄wtRwt + Q̄wtQwt + ĒwtEwt

(29)

where Owt = FnO, Rwt = FnR, Ewt = FdE, Qwt = FdQ and O, R,
E, Q are defined as before for the forward and feedback path PIP
controllers (see Equations (18) and (28), respectively), where Fd
and Fn are the following filters. In particular, Fd is the filter used
to weight the disturbance at the plant input:

Fd = Dd
(
z−1)

Cd (z−1)
= dd0 + dd1z−1 + · · · + ddqz−q

1 + cd1z−1 + · · · + cdpz−p (30)

where, consistent with previous notation, Dd(z−1) ≡ Dd(e−iθ )

and Cd(z−1) ≡ Cd(e−iθ ). Similarly, Fn is the filter used to weight
the additive noise at the plant output:

Fn = Dn
(
z−1)

Cn (z−1)
= dn0 + dn1z−1 + · · · + dnsz−s

1 + cn1z−1 + · · · + cnrz−r (31)

where Dn(z−1) ≡ Dn(e−iθ ) and Cn(z−1) ≡ Cn(e−iθ ).

3.2 Observations on Corollary 3.2
Introducing weighting filters on the exogenous inputs modi-
fies the problem so that disturbances of different frequencies
are given different emphasis. For example, instead of assuming
Gaussian white noise, the additive noise terms are described by
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the following auto-regressive moving average models,

n(k) = Dn(z−1)

Cn(z−1)
n̄(k) (32)

and

d(k) = Dd(z−1)

Cd(z−1)
d̄(k) (33)

where n̄(k) and d̄(k) are independent Gaussian white noise
terms. Althoughnot the focus of the present article, system iden-
tificationmethods can be utilised to estimate these models from
the experimental data; see Section 4.4 for an example. Themod-
ified system is represented as z = H(P, C, Fd, Fn)ω. The expres-
sion for H(e−iθ ) in Equation (17) when frequency weighting is
included is

Hwt (e−iθ ) =
(
FnO FdQ
FnR FdE

)
(34)

Using these updated definitions yields ‖Hwt(z−1)‖� given by
Equation (29).

3.3 Constrained optimisation for a simple plant
The simplest digital control model is based on Equation (1) with
n = m = 1 (and τ = 1):

y(k) = b1z−1

1 + a1z−1 u(k) (35)

The corresponding NMSS/PIP control system reduces to a form
of digital PI control, with two closed-loop poles and two state
variable feedback control gains, namely the integral gain kI and
an output proportional gain f0 (Taylor et al., 2013; Young et al.,
1987). In this case, F(z−1) = f0 and G(z−1) = 1. If the control
law is designed using pole assignment methods, such that the
two closed-loop poles lie at positions p1 and p2 on the complex
z-plane, this yields the following control gains:

f0 = − 1
b1

(p1p2 + a1) (36)

kI = − 1
b1

(p1 + p2 − p1p2 − 1) (37)

For the plant (35), if the design poles are further constrained to
be repeated and real, i.e. p1 = p2 = p, and assuming a1 and b1 are
also real, then an analytical expression can be determined that
yields constraints on values of p that minimise the H∞ norm.
For the feedback PIP controller, using Equations (36) and (37),

this yields

‖HFB(z−1)‖
= sup

θ∈(0,2π)

1
(p2 − 2 cos θ + 1)

×
(

(a21 + 2a1 cos θ + 1)(2 − 2 cos θ ) + b21(2 − 2 cos θ )

+ 1
b21

(2p+ a1 − 1)2(a21 + 2a1 cos θ + 1)

×
(

(p2 + a1)2

(2p+ a1 − 1)2
− 2

p2 + a1
2p+ a1 − 1

cosθ + 1
)

+ (2p+ a1 − 1)2

×
(

(p2 + a1)2

(2p+ a1 − 1)2
− 2

p2 + a1
2p+ a1 − 1

cosθ + 1
) )1/2

(38)

A minimum for theH∞ norm is determined in the usual man-
ner by differentiating the above expression and setting the solu-
tion to zero. The value of θ is

θ = {
π − cos−1 (

f (b1, a1, p)
)
, 0, π

}
(39)

where f(b1, a1, p) is the appropriate function obtained from dif-
ferentiation of (38). TheH∞ norm is minimised if θ occurs at 0
orπ . Therefore, theH∞ norm isminimised if cos −1(f(b1, a1, p))
= π (equivalently f(b1, a1, p) = −1) and there are real solutions
to this equation. Hence, the roots of the following polynomial
yield design constraints on the choice of repeated real closed-
loop poles p that minimise theH∞ norm:

c4p4 + c3p3 + c1p2 + c1p+ c0 = 0 (40)

where c4 = a1, c3 = −4a1 and

c2 = (−a31 − a1b21 − 5a21 − 3b21 − a1 − 3)
c1 = (−2a31 − 2a1b21 − 2a21 + 2b21 − 2a1 + 2)
c0 = (−a41 − 2a21b

2
1 − b41 − a31 − a1b21 + a21 − b21 + 2a1)

Although the above utilises pole assignment as the control
design framework, the control gains are determined by choosing
the poles fromwithin the constrained set that minimise theH∞
norm. Hence, f0 and kI are chosen according to a constrained
H∞ optimisation problem rather than purely by pole placement.
An example of this novel PIP H∞ approach for simple plant
models is presented in Section 4.2.

3.4 Numerical optimisation ofH∞ norm
The analytical expressions above that minimise the H∞ norm
can only be used for a simple plant, with structure equivalent
to Equation (35), so that the values of a1 and b1 ensure Equa-
tion (40) has real roots. Numerical optimisation, which allows
for fewer constraints, is used for the higher order examples in
this article. For such optimisation, initial pole positions are allo-
cated randomly within the unit disk on the complex z-plane (i.e.
all the initial closed-loop poles are assumed stable with magni-
tude less than 1) and complex poles are always initialised as a
complex conjugate pair. From the initial estimate, the MATLAB
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function fminsearch is utilised to find a local minimum of the
H∞ norm and the poles that corresponded to this minimum.
Where the local minimum was unchanging, regardless of the
initial conditions, we used this as the minimum. Although this
does not guarantee a global minimum, the method yields good
results for the particular simulation and practical examples con-
sidered in this article.

3.5 Multi-objective optimisation ofH∞ andH2 norms
For some plants, the approach above yields a range of solutions
that minimise the norm ‖HFB‖�, i.e. the surface is approxi-
mately flat. In order to select a suitable solution from this set we
use an additional design constraint, theH2 norm. Whereas the
H∞ norm reflects the maximum amplification of input signals,
theH2 norm reflects how much a dynamic system amplifies its
input over all frequencies (Valério & da Costa, 2006). For the
feedback PIP controller, this is determined from Equations (17)
and (18) using the following definition ofH2 (Zhou et al., 1996):

‖HFB(z−1)‖2 =
√

1
2π

∫ π

−π

Trace
(
HFB(e−iω)∗HFB(e−iω)

)
dω

(41)

where the Trace of a matrix is defined as the sum of the elements
on the main diagonal. A similar expression is used to calculate
the H2 norm of the forward path PIP controller but with HFB
replaced by HFP.

3.6 Frequencyweighted optimisation
The above discussion assumes that the noise and disturbance
signals are both zeromeanGaussianwhite noise termswith vari-
ance σ 2, i.e. the load disturbance and noise inputs are equally
important over all frequencies. The formulation can be modi-
fied to instead reflect disturbances at user selected frequencies
by using the expression given by Equation (29), i.e. to include
frequency weightings in the H∞ norm and associated numeri-
cal optimisation.

4. Simulation results
We first demonstrate a limitation of forward path PIP control.
Subsequent results in this section focus on the feedback PIP
form. Numerical results are considered when the expression in
Equation (9) is used to evaluate theH∞ norm for a range of dif-
ferent plants.

4.1 Simple unstable plant
We consider theH∞ norm of the simplest digital control model
(Equation (35)). Parameters b1 = 0.1 and a1 = −1.05 are chosen
such that the plant is unstable (this is an arbitrary example of an
unstable plant). The PIP control gains are determined using pole
placement, for which the closed-loop poles 0.95± 0.16i are also
arbitrarily selected for the purpose of this example. The resul-
tantH∞ norm of the forward path system is infinity, as expected
from Corollary 3.1, while ‖HFB(z−1)‖� = 6.72. The response of
both controllers to additive Gaussian white noise at the plant
input d(k) or plant output n(k) are shown in Figure 3. With
noise at the plant input, the closed-loop response of the forward
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Figure . Forward path (thin trace, red) and feedback (thick trace, blue) PIP control
of the unstable plant. (a) Output responses with d=  and zeromean, σ  = , Gaus-
sian white noise n at the plant output. (b) Output responses with n =  and zero
mean, σ  = , Gaussian white noise d at the plant input.

path controller is unstable, as expected from the observations in
Section 3.

4.2 Simple stable plant
The H∞ norm for a simple stable plant, again based on Equa-
tion (35), is determined for a range of controller gains (and
associated desired pole locations). Initially the poles are con-
strained to be real, repeated, and the plant parameters b1 = 0.1
and a1 = 0.55 are deliberately chosen (as an illustrative scenario)
such that the polynomial Equation (40) yields real roots. In this
case, the bounds of the roots of Equation (40) yield the range
of closed-loop poles that minimise the H∞ norm. These ana-
lytically derived bounds are illustrated by the shaded area in
Figure 4(a), along with the numerical values of the H∞ norm
for a range of repeated, real pole positions. There is an agree-
ment between the analytical and numerical methods. However,
if the constraints that the poles are repeated and real are now
relaxed, then Equation (40) can no longer be used to determine
bounds on the poles. Numerical optimisation is used instead, as
discussed in Section 3.4, with the results (i.e. pole positions that
minimise the H∞ norm) for the present example illustrated in
Figure 4(c).

Even with the repeated, real pole constraints in place, if the
polynomial Equation (40) does not yield real roots, then we can-
not use this expression to find bounds on the poles. Numerical
optimisation remains an option, as illustrated in Figure 4(b,d) .
A numerical example showing ‖HFB‖� for a range of repeated,
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Figure . Minimising theH∞ norm of the first-order plant Equation (). (a) Closed-loop poles determined from Equation () (bounds indicated by shaded region) and
numerically determined ‖HFB‖� for a range of real, repeated poles (solid trace) when b = . and a = −.. (b) Numerically determined ‖HFB‖� for a range of repeated
closed-loop poleswhen b = . and a =−.. (c) Poles plotted on the complex z-plane thatminimise ‖HFB‖� when b = . and a =−., togetherwith the constraints
determined from Equation () for real, repeated poles (vertical bounds). (d) Poles plotted on the complex z-plane that minimise ‖HFB‖� when b = . and a = −..
(e) Output y and (f ) control input−u, for b = . and a = −. when theH∞ norm is minimised, showing the case that theH2 norm is maximised (thin trace, red) and
minimised (thick trace, blue). (g) Output y and (h) control input−u, for b = . and a = −. when theH∞ norm is minimised.

real pole positions when b1 = 0.3 and a1 = −0.8 is illustrated in
Figure 4(b). Relaxing the constraint on the design poles, Figure
4(d) shows the estimated closed-loop poles that minimise the
H∞ norm. In this case, the closed-loop poles converge around
a single optimal solution.

For certain plant parameters, such as a1 = −0.55 and b1 =
0.1 discussed above, it is clear that a range of closed-loop poles
(andhence an associated range of possible controller gains)min-
imises the H∞ norm. This result is illustrated by the ‘flat’ part
of the H∞ norm trace in Figure 4(a) but also applies when
unconstrained poles are utilised. Optimal poles from the set
given in Figure 4(c) that minimise the H∞ norm, are subse-
quently selected by determining the poles within this set that
yield the smallest H2 norm. For the present example, based on
a1 = −0.55 and b1 = 0.1, these poles are p1 = 0.27 and p2 =
0.96. As a comparison, poles within the set with the largest H2
norm are also determined, i.e. p1 = 0.63 + 0.1j and p2 = 0.63
− 0.1j. The closed-loop responses, i.e. the generalised outputs
ζ when the H2 norm is minimised, are compared to the case
when the H2 norm is maximised in Figure 4(e,f) . Minimising
theH2 norm yields a significantly smaller magnitude, smoother

control input (u) in this case. Similar output responses are shown
in Figure 4(g,h) for the plant with b1 = 0.3 and a1 = −0.8
(the optimal closed-loop poles converge around a single solu-
tion hence only one set of responses are shown).

4.3 Stable plant with frequencyweighting
We use a weighting filter for low-frequency additive distur-
bances at the plant input d, in order to estimate poles (and asso-
ciated PIP control gains) that minimise the H∞ norm for the
plant in Equation (35) with b1 = 0.1 and a1 = −0.55. This is
achieved using a third order, low pass, Butterworth filterDd/Cd,
where Dd(z−1) = 0.0004 + 0.0012z−1 + 0.0012z−2 + 0.0004z−3

andCd(z−1)= 1.0000− 2.6862z−1 + 2.4197z−2 − 0.7302z−3 are
chosen by trial and error for the purpose of this example. Addi-
tive noise at the plant output is ignored, hence Dn/Cn = 0. To
evaluate the effect of including a frequency weighting, the input
n(k) is set to zero, while d(k) is represented using both filtered
(using the filter described above) and unfiltered Gaussian white
noise with variance σ 2 = 1. For comparison, the H∞ norm is
minimised with and without frequency weightings for both the
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Figure . The effect of including frequency weightings when minimising theH∞ norm. (a) Filtered disturbance input; (b) output and (d) control input in response to a
filtered disturbance when the frequency weighting is not used to minimise theH∞ norm; (c) output and (e) control input in response to a filtered disturbance when the
frequency weighting is used to minimise theH∞ norm. (f ) Unfiltered, Gaussian white noise disturbance input; (g) output and (i) control input in response to an unfiltered
disturbance when the frequency weighting is not used to minimise the H∞ norm; (h) output and (j) control input in response to an unfiltered disturbance when the
frequency weighting is used to minimise theH∞ norm.

filtered and unfiltered disturbances, with the results illustrated
in Figure 5. When there are no frequency weightings, a range
of gains that minimise the H∞ norm arises, similar to the pre-
vious example, hence the optimal gains are determined by also
minimising theH2 norm.

To investigate model uncertainty in the simulation study,
the plant parameters are varied from the nominal values (used
for PIP control system design) using Monte-Carlo simulation,
with 50 realisations based on a diagonal covariance matrix N ,
and diagonal elements all 10−4. Figure 5(b–e) compares the
generalised errors, ζ = (y, −u), when the H∞ norm is min-
imised without (Figure 5(b,d)) and with (Figure 5(c,e)) fre-
quency weighting, for the case that the disturbance input is
filtered (Figure 5(a)). For this example, use of the frequency
weighting approach proposed in Section 3.6 successfully min-
imises the effect of the low-frequency disturbance inputs on
the magnitude of the output y. It also yields reduced variations
between the responses when the plant parameters are varied,
i.e. improved robustness to model mismatch represented by the
smaller envelope ofMonteCarlo realisations. By contrast, Figure
5(g–j) compares the generalised errors when the disturbance
input is not filtered, i.e. the disturbance is Gaussian white noise
(Figure 5(f)). In this case, the generalised errors (y, −u) are
greater when including the frequency weighting (using the fil-
ter described above) in the optimisation, i.e. as expected, the

more robust solution is to use the unweighted approach based
on Gaussian noise inputs. To conclude, the frequency weighting
approach can be used to improve the robustness of the system
to certain types of generalised input signals, ω = (n, d), which is
useful in cases when these input signals can be well described as
appropriately modelled noise.

4.4 Higher order plant (hair dryermodel)
TheH∞ norm for a more complex plant model, Equation (42),
is considered. This example is based on the Ljung (1987) labo-
ratory hair dryer system. A fan blows heated air through a tube
and the air temperature is measured by a thermocouple at the
outlet. The input and output variables are the voltage over the
heating device (a mesh of resistor wires) and the voltage from
the thermocouple, respectively. The sampling interval is �t =
0.08 s. The plant model is adapted from a Box–Jenkins model
with an auto-regressive noise term that has been identified from
the experimental data (available in the MATLAB System Iden-
tification Toolbox) using the optimal refined instrumental vari-
able (RIV) algorithm (Taylor et al., 2013; Young, 2012):

y(k) = b2z−2 + b3z−3 + b4z−4

1 + a1z−1 + a2z−2 u(k) + 1
1 + c1z−1 e(k) (42)
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Figure . Minimising theH∞ norm of the hair dryer model. Results when theH2 norm is minimised (thick trace, blue) andmaximised (thin trace, red) are both shown. (a)
Estimated poles plotted on the complex z-plane that minimise theH∞ norm. (b) Control input response and (c) output response to filtered noise n and disturbance d.

where a1 = −1.3145, a2 = 0.4325, b2 = 0.0017, b3 = 0.0655, b4
= 0.0406, c1 = −0.9230 and e(k) is Gaussian white noise with σ 2

= 0.00142. To calculate theweightedH∞ norm,we use the noise
filter, Equation (32) with Dn(z−1) = 0.0014 and Cn(z−1) = 1 −
0.923z−1. We assume the additive disturbance at the plant input
d is Gaussian white noise with σ 2 = 0.01, hence the weighting
filter Dd/Cd = 0.01.

The weightedH∞ norm, expressed in Equation (29), is used
to numerically estimate the controller parameters that minimise
theH∞ norm. A wide range of poles (and so control gains) are
found to minimise the H∞ norm, as illustrated in Figure 6(a).
Therefore, the poles (from the set that minimises theH∞ norm)
that both minimise and (for comparison purposes) maximise
the H2 norm are determined. The response to filtered exoge-
nous input signals, when using the filters described above, are
illustrated in Figure 6(b). Jointly minimising theH∞ norm and
H2 norm for this simulation example yields a relatively very low
variance control input signal (implying reduced actuator wear
and tear in some applications). Whilst the H∞ norm reflects
the worst case, or maximum amplification at a single frequency
between the errors and exogenous inputs, the H2 norm repre-
sents amplification over all frequencies. In this example, max-
imum amplification across all frequencies occurs when θ = 0,
hence introducing the H2 norm ensures that the gain over all
frequencies is reduced, yielding the significantly smaller input
amplitudes seen in Figure 6(b).

5. Experimental example
To demonstrate the practical utility of the proposed approach,
the final example concerns control of the air velocity within a
2 m by 1 m by 1 m ventilation chamber at Lancaster University.
The chamber contains an array of 30 thermocouples, air velocity
transducers at the inlet and outlet, and three actuators, namely
axial fans at the inlet and outlet, and a 400 W heating element,
used to generate various micro-climatic conditions within the
chamber. Operation of the chamber is controlled by National

Instruments hardware/software, with the control input signals
in the range 0–5 V in each case. For more information, see,
e.g. Tsitsimpelis and Taylor (2015) and the references therein.

The outlet ventilation rate is usually controlled via the out-
let axial fan. However, to increase the control challenge for the
purpose of the present article, the outlet axial fan u(k) is instead
used to control the inlet air velocity v(k), increasing the noise
and uncertainties involved in the system dynamics. In fact, to
use the reduced block diagram form in Figure 2(a), the con-
trolled output y(k) = v(k) − y0 where y0 is an off-set to allow
for non-zero reference inputs. To identify the control model, a
pseudo-random-binary-signal with 1 Hz sampling frequency is
applied to the fan, and the airflow is measured at the same sam-
pling frequency. Use of Young’s Information Criteria and the
RIV algorithm (Taylor et al., 2013; Young, 2012), both imple-
mented within the CAPTAIN toolbox (Taylor, Pedregal, Young,
& Tych, 2007), yields the following model for air velocity at the
inlet:

y(k) = b2z−2

1 + a1z−1 u(k) (43)

The identified model is based on Equation (1), with n = 1,
m = 2 and b1 = 0, i.e. there are two samples pure time
delay. The time delay is automatically compensated for by the
third-order NMSS representation in this case, based on x(k) =[
y(k)˜u(k − 1)˜q(k)]ᵀand the associated PIP control elements,
F(z−1) = f0, G(z−1) = 1 + g1z−1 and kI/�.

Following a similar approach to the earlier examples, val-
ues of the PIP control gains that minimise the H∞ norm are
estimated numerically, with the results shown in Table 1. Ini-
tially, the minimal H∞ norm yields an integral gain kI = 0,
which is unsatisfactory in practice since the controller would
not ensure Type 1 servomechanism performance. The present
example addresses step changes in the reference signal for a
real (nonlinear) system, hence for good steady-state control
performance, low-frequency signals have increased importance.
Therefore, using the frequency weighting approach described in
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Figure . Experimental results showing the control input (left-hand side subplots) and output (right) for each PIP control algorithm. The controllers are all based on an air
velocity operating condition of approximately m/s but the reference signal is  for  s, m/s for  s and m/s for a further  s. (a) Control input and (b) output for pole
placement. (c) Control input and (d) output for LQ optimisation with unity weights. (e) Control input and (f ) output for LQ optimisation with the integral-of-error weight
set to . and the other weights unity. (g) Control input and (h) output using the weightedH∞ norm.

Section 3.6, a low-pass filter 0.1z−1/(1 − 0.98z−1) is designed,
and the PIP control gains thatminimise the weightedH∞ norm,
and within this set theH2 norm, are determined. For compari-
son, PIP controllers are designed using standard pole placement
and LQmethods without considering robustness in terms of the
H∞ norm. For pole placement, closed-loop poles were placed
at 0.6, 0.7, 0.8 to obtain a relatively fast response, while for LQ
optimisation two options are considered: (1) with the control
weights set to unity (the ‘default’ in many applications) and (2)
with the weight for the integral-of-error state reduced to 0.1 to
obtain a slower response; see Chapter 5 in Taylor et al. (2013) for
details. The corresponding control gains are listed in Table 1.

Earlier articles (e.g. Tsitsimpelis & Taylor, 2015) demon-
strate a nonlinear relationship between fan input voltage
and steady-state air velocity, hence the standard concept of

selecting an operating condition for designing a linear con-
troller is important. To investigate the significance of H∞
design, the design operating condition and associated con-
trol model, Equation (43), are deliberately based on a rela-
tively low magnitude input, 1 − 2 V, associated with steady-
state air velocities of approximately 1 m/s, while the con-
trollers are evaluated for reference outputs in the range 0 − 4
m/s, as shown in Figure 7. This represents significant model
mismatch in practice and is the reason for the oscillatory
responses observed, particularly for the controllers designed
without considering robustness. By contrast, the response of
the controller designed using the weighted H∞ norm yields
a slower response time but is less oscillatory (Figure 7(g,h)),
especially over the last 200 s where the model mismatch is
greatest.
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Table . Model parameters and various PIP control designs for the ventilation
chamber. The control model is defined by Equation (). The coefficient of
determination Rt provides a measure of the model fit, where Rt = . indi-
cates an exact fit to the data. PIP control parameters (i.e. control gains and
associated pole positions) are estimated using the H∞ norm, the weighted
H∞ norm, pole placement and LQ optimisation. The closed-loop poles refer
to the poles of the closed-loop systemwhen there is no model mismatch. For
example, the weightedH∞ approach yields control gains f = ., g = −.
and kI = ., and these gains are utilised to determine the poles ., .
and .. For LQ design,We is the weight associated with the integral-of-error
state variable.

Model a −.
parameters b .

Model fit Rt .

H∞ ., .,−.
Closed-loop WeightedH∞ . . .
poles Pole placement ., ., .

LQ (We = ) ., .± .i
LQ (We = .) ., .± .i

H∞ ., ., .
PIP control WeightedH∞ .,−., .
gains Pole placement .,−., .
(f, g, kI) LQ (We = ) ., ., .

LQ (We = .) . . .

6. Conclusions
The article has presented new analytical expressions for evalu-
ating the robustness of feedback and forward path PIP control.
The robustness of the closed-loop system is a key concern when
controlling real systems that are subject to uncertainty. Our ana-
lytical expressions are used to evaluate the robustness of existing
PIP controllers, as well as to provide an additional design con-
straint for determining control gains that result in amore robust
closed-loop system.

The forward path PIP structure was originally introduced to
provide smoother input signals for some types of control prob-
lem (Taylor et al., 1998). However, the present article shows that
it is not robust when the controlled system is unstable. More-
over, methods to jointly minimise the H∞ and H2 norms, as
developed in this article, provide an alternative way to reduce
the variance of the control input signals, while using the more
robust, feedback PIP control structure: see Figure 6(b) for an
example.More generally, theH∞ norm (or weightedH∞ norm)
provides an alternative model-based approach to tuning the PIP
control gains, in comparison to trial and error adjustment of the
pole positions or optimal LQ design. Nonetheless, the PIP algo-
rithm obtained in this way has the same, relatively straightfor-
ward implementation form as the conventional PIP approach,
often with a similar degree of complexity to PI/PID control.

Each design approach (e.g. LQ, pole placement and H∞
norm) represents a model-basedmethod to determine the gains
of the PIP control system, based on the ‘desired’ performance of
the closed-loop system. For the pole assignment method, per-
formance relates to the poles of the closed-loop system, for LQ
optimisation, it is the minimisation of the ubiquitous LQ cost
function, and forH∞ optimisation, theminimisation of theH∞
norm of the closed-loop system. Of course, each method could
produce the sameoutcome if the design criteria are set ‘correctly’.
For example, the conventional PIP pole assignment algorithm
(Taylor et al., 2013) can be utilised to set the closed-loop poles
corresponding to the poles that minimise the H∞ norm (once

these are known). Hence, it can be argued that the choice of
poles, LQ weights and the weighting filter used in the ventila-
tion control example (Section 5) are somewhat arbitrary. How-
ever, the advantage of theH∞ design criteria is that it provides
a quantitative method of determining the closed-loop poles
(or equivalently control gains) that result in a robust control
design.

Classical solutions of theH∞ control problemusually refer to
the full order case, where the size and structure of the controller
is not constrained. By contrast, the expressions given in this arti-
cle are for a specific form of the controller, i.e. PIP control. As
a result, the comparative study presented here concerns differ-
ent approaches to selecting the control coefficients (H∞, LQ and
pole assignment) within this constrained case. Nonetheless, the
relationship between PIPH∞ control and otherH∞ approaches
(e.g. Grimble, 1989; Kwakernaak, 1993) will be investigated in
future work.

TheH∞ approach is most useful in cases where large uncer-
tainties are involved, and stability across a range of operating
conditions is required. However, the examples in this article
show that the increased robustness is often synonymous with
slower performance; in other words, they demonstrate the clas-
sical trade-off between speed of response and robustness. There-
fore, in cases when the model is well defined and there are
no significant sources of noise, a ‘non-robust’ (e.g. LQ opti-
mal) solution is likely to provide better performance in terms
of settling times. Finally, where there are multiple constraints
on the closed-loop performance, the H∞ norm can be used in
combination with multi-objective optimisation techniques (e.g.
Exadaktylos & Taylor, 2010) to provide the most robust design
(in terms of the H∞ norm) that also meets defined perfor-
mance criteria, and this is the subject of on-going research by
the authors.
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Appendix
The elements of the NMSS equations (given in Equation (2)) are
defined in this Appendix. The state transition matrix F , input
vector g, command input vector d and output vector h are

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1 −a2 · · · −an−1 −an b2 b3 · · · bm−1 bm 0
1 0 · · · 0 0 0 0 · · · 0 0 0
0 1 · · · 0 0 0 0 · · · 0 0 0
...

...
. . .

...
...

...
...

. . .
...

...
...

0 0 · · · 1 0 0 0 · · · 0 0 0
0 0 · · · 0 0 0 0 · · · 0 0 0
0 0 · · · 0 0 1 0 · · · 0 0 0
0 0 · · · 0 0 0 1 · · · 0 0 0
...

...
. . .

...
...

...
...

. . .
...

...
...

0 0 · · · 0 0 0 0 · · · 1 0 0
a1 a2 · · · an−1 an −b2 −b3 · · · −bm−1 −bm 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A1)

g = [
b1 0 0 · · · 0 0 0 0 · · · 0 −b1

]ᵀ (A2)

d = [
0 0 0 · · · 0 0 0 0 · · · 0 1

]ᵀ (A3)

h = [
1 0 · · · 0 0 0 0 · · · 0 0 0

]
(A4)
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