The 6-girth-thickness of the complete graph

Héctor Castañeda-López, Pablo C. Palomino, Andrea B. Ramos-Tort, Christian Rubio-Montiel \& Claudia Silva-Ruiz

To cite this article: Héctor Castañeda-López, Pablo C. Palomino, Andrea B. Ramos-Tort, Christian Rubio-Montiel \& Claudia Silva-Ruiz (2020) The 6-girth-thickness of the complete graph, AKCE International Journal of Graphs and Combinatorics, 17:3, 856-861, DOI: 10.1016/ j.akcej.2019.05.004

To link to this article: https://doi.org/10.1016/j.akcej.2019.05.004

© 2020 The Author(s). Published with
license by Taylor \& Francis Group, LLC

Published online: 12 May 2020.

Submit your article to this journal \square

Article views: 748

View related articles

View Crossmark data ${ }^{\wedge}$

The 6-girth-thickness of the complete graph

Héctor Castañeda-López ${ }^{\text {a }}$, Pablo C. Palomino ${ }^{\text {b }}$, Andrea B. Ramos-Tort ${ }^{\text {b }}$, Christian Rubio-Montiel ${ }^{\text {c (D) }}$, and Claudia Silva-Ruiz ${ }^{\text {b }}$
${ }^{\text {a }}$ Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Mexico; ${ }^{\text {b }}$ Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico; ' $D i v i s i o ́ n ~ d e ~ M a t e m a ́ t i c a s ~ e ~ I n g e n i e r i ́ a, ~ F E S ~ A c a t l a ́ n, ~ U n i v e r s i d a d ~ N a c i o n a l ~ A u t o ́ n o m a ~ d e ~ M e ́ x i c o, ~$ Naucalpan, Mexico

ABSTRACT

The g-girth-thickness $\theta(g, G)$ of a graph G is the minimum number of planar subgraphs of girth at least g whose union is G. In this paper, we determine the 6 -girth-thickness $\theta\left(6, K_{n}\right)$ of the complete graph K_{n} in almost all cases. And also, we calculate by computer the missing value of $\theta\left(4, K_{n}\right)$.

KEYWORDS

Thickness; planar
decomposition; complete
graph; girth
2010 MATHEMATICS SUBJECT CLASSIFICATION 05C10

1. Introduction

In this paper, all graphs are finite and simple. A graph in which any two vertices are adjacent is called a complete graph and it is denoted by K_{n} if it has n vertices. If a graph can be drawn in the Euclidean plane such that no inner point of its edges is a vertex or lies on another edge, then the graph G is called planar. The girth of a graph is the size of its shortest cycle or ∞ if it is acyclic. It is known that an acyclic graph of order n has size at most $n-1$ and a planar graph of order n and finite girth g has size at most $\frac{g}{g-2}(n-$ 2), see [8].

The thickness $\theta(G)$ of a graph G is the minimum number of planar subgraphs whose union is G. Equivalently, it is the minimum number of colors used in any edge coloring of G such that each set of edges in the same chromatic class induces a planar subgraph.

The concept of the thickness was introduced by Tutte [19]. The problem to determine the thickness of a graph G is NP-hard [15], and only a few of exact results are known, for instance, when G is a complete graph $[2,5,6]$, a complete multipartite graph $[7,11,18,21,22]$ or a hypercube [14].

Generalizations of the thickness for the complete graphs also have been studied such that the outerthickness θ_{o}, defined similarly but with outerplanar instead of planar [12], and the S-thickness θ_{S}, considering the thickness on a surface S instead of the plane [4]. The thickness has many applications, for example, in the design of circuits [1], in the

Ringel's earth-moon problem [13], or to bound the achromatic numbers of planar graphs [3]. See also [16].

In [17], the g-girth-thickness $\theta(g, G)$ of a graph G was defined as the minimum number of planar subgraphs of girth at least g whose union is G. Indeed, the g-girth thickness generalizes the thickness when $g=3$ and the arboricity number when $g=\infty$.

This paper is organized as follows. In Section 2, we obtain the 6 -girth-thickness $\theta\left(6, K_{n}\right)$ of the complete graph K_{n} getting that $\theta\left(6, K_{n}\right)$ equals $\left\lceil\frac{n+2}{3}\right\rceil$, except for $n=3 t+1, t \geq 4$ and $n \neq 2$, for which $\theta\left(6, K_{2}\right)=1$. In Section 3, we show that there exists a set of 3 planar tri-angle-free subgraphs of K_{10} whose union is K_{10}. The decomposition was found by computer and, as a consequence, we disproved the conjecture that appears in [17] about the missing case of the 4 -girth-thickness of the complete graph.

2. Determining $\theta\left(6, K_{\boldsymbol{n}}\right)$

A planar graph of n vertices with girth at least 6 has size at most $3(n-2) / 2$ for $n \geq 6$ and size at most $n-1$ for $1 \leq$ $n \leq 5$, therefore, the 6-girth-thickness $\theta\left(6, K_{n}\right)$ of the complete graph K_{n} is at least

$$
\left\lceil\frac{n(n-1)}{3(n-2)}\right\rceil=\left\lceil\frac{n+1}{3}+\frac{2}{3 n-6}\right\rceil=\left\lceil\frac{n+2}{3}\right\rceil
$$

for $n \geq 6$, as well as, $\left\lceil\frac{n+2}{3}\right\rceil$ for $n \in\{1,3,4,5\}$. We have the following theorem.

[^0]

Figure 1. A decomposition of K_{n} into $\theta\left(6, K_{n}\right)$ planar subgraphs of girth at least 6: (a) for $n=2$, (b) for $n=4$, (c) for $n=7$ and (d) for $n=10$.

Theorem 2.1. The 6-girth-thickness $\theta\left(6, K_{n}\right)$ of K_{n} is equal to $\left\lceil\frac{n+2}{3}\right\rceil$ except possibly when $n=3 t+1$, for $t \geq 4$, and $n \neq 2$ for which $\theta\left(6, K_{2}\right)=1$.
Proof. To begin with, Figure 1 displays equality for $n=$ $2,4,7,10$ with $\theta\left(6, K_{n}\right)=1,2,3,4$, respectively. The rest of the cases for $1 \leq n \leq 10$ are obtained by the hereditary property of the induced subgraphs. We remark that the decomposition of K_{10} was found by computer using the database of the connected planar graphs of order 10 that appears in [9].

Now, we need to distinguish two main cases, namely, when t is even or t is odd for $n=3 t$, that is, when $n=6 k$ and $n=6 k+3$ for $k \geq 2$. The cases $n=6 k-1$ and $n=$ $6 k+2$, i.e., for $n=3 t+1$, are obtained by the hereditary property of the induced subgraphs, that is, since $K_{6 k-1} \subset$ $K_{6 k}$ and $K_{6 k+2} \subset K_{6 k+3}$, we have

$$
\begin{gathered}
2 k+1 \leq \theta\left(6, K_{6 k-1}\right) \leq \theta\left(6, K_{6 k}\right) \text { and } \\
2 k+2 \leq \theta\left(6, K_{6 k+2}\right) \leq \theta\left(6, K_{6 k+3}\right), \text { respectively. }
\end{gathered}
$$

Therefore, the case of $n=6 k$ shows a decomposition of $K_{6 k}$ into $2 k+1$ planar subgraphs of girth at least 6 , while the case of $n=6 k+3$ shows a decomposition of $K_{6 k+3}$ into $2 k+2$ planar subgraphs of girth at least 6 . Both constructions are based on the planar decomposition of $K_{6 k}$ of Beineke and Harary [5] (see also [2, 6, 20]) but we use the combinatorial approach given in [3]. Then, for the sake of completeness, we give a decomposition of $K_{6 k}$ in order to obtain its usual thickness. In the remainder of this proof, all sums are taken modulo $2 k$.

We recall that complete graphs of even order $2 k$ are decomposable into a cyclic factorization of Hamiltonian paths, see [10]. Let G^{x} be a complete graph of order $2 k$, label its vertex set $V\left(G^{x}\right)$ as $\left\{x_{1}, x_{2}, \ldots, x_{2 k}\right\}$ and let \mathcal{F}_{i}^{x} be the Hamiltonian path with edges

$$
x_{i} x_{i+1}, x_{i+1} x_{i-1}, x_{i-1} x_{i+2}, x_{i+2} x_{i-2}, \ldots, x_{i+k+1} x_{i+k}
$$

for all $i \in\{1,2, \ldots, k\}$. The partition $\left\{E\left(\mathcal{F}_{1}^{x}\right), E\left(\mathcal{F}_{2}^{x}\right), \ldots\right.$, $\left.E\left(\mathcal{F}_{k}^{x}\right)\right\}$ is such factorization of G^{x}. We remark that the center of \mathcal{F}_{i}^{x} has the edge $e_{i}^{x}=x_{i+\left\lceil\frac{k}{2}\right]} x_{i+\left\lceil\frac{3 k}{2}\right]}$, see Figure 2.

Let G^{u}, G^{v} and G^{w} be the complete subgraphs of $K_{6 k}$ having $2 k$ vertices each of them and such that G^{w} is $K_{6 k} \backslash$ $\left(V\left(G^{u}\right) \cup V\left(G^{v}\right)\right)$. The vertices of $V\left(G^{u}\right), V\left(G^{v}\right)$ and $V\left(G^{w}\right)$ are labeled as $\left\{u_{1}, u_{2}, \ldots, u_{2 k}\right\},\left\{v_{1}, v_{2}, \ldots, v_{2 k}\right\}$ and $\left\{w_{1}, w_{2}, \ldots\right.$, $\left.w_{2 k}\right\}$, respectively.

Let x be an element of $\{u, v, w\}$. Take the cyclic factorization $\left\{E\left(\mathcal{F}_{1}^{x}\right), E\left(\mathcal{F}_{2}^{x}\right), \ldots, E\left(\mathcal{F}_{k}^{x}\right)\right\}$ of G^{x} into Hamiltonian paths and denote as $P_{x_{i}}$ and $P_{x_{i+k}}$ the subpaths of \mathcal{F}_{i}^{x} containing k vertices and the leaves x_{i} and x_{i+k}, respectively. We define the other leaves of $P_{x_{i}}$ and $P_{x_{i+k}}$ as $f\left(x_{i}\right)$ and $f\left(x_{i+k}\right)$, respectively and according to the parity of k, that is (see Figure 2),

$$
\begin{aligned}
f\left(x_{i}\right) & =\left\{\begin{array}{ll}
x_{i+\left\lceil\frac{3 k}{2}\right\rceil} & \text { if } k \text { is odd } \\
x_{i+\left\lceil\frac{k}{2}\right\rceil} & \text { if } k \text { is even. }
\end{array}\right. \text { and } \\
f\left(x_{i+k}\right) & = \begin{cases}x_{i+\left\lceil\frac{k}{2}\right\rceil} & \text { if } k \text { is odd } \\
x_{i+\left\lceil\frac{3 k}{2}\right\rceil} & \text { if } k \text { is even. }\end{cases}
\end{aligned}
$$

We remark that the set of edges $\left\{x_{i} x_{i+k}: 1 \leq i \leq k\right\}$ is the same set of edges that $\left\{f\left(x_{i}\right) f\left(x_{i+k}\right): 1 \leq i \leq k\right\}$.

Figure 2. The Hamiltonian path \mathcal{F}_{i}^{x} : Left (a) The edge e_{i}^{x} in bold for k odd. Right (b) The edge e_{i}^{x} in bold for k even.

Figure 3. (Left) The octahedron subgraph of the graph G_{i}. (Right) The graph G_{i}.

Figure 4. Partial modification of the subgraph G_{i}.

Now, we construct the maximal planar subgraphs G_{1}, G_{2}, \ldots, G_{k} and a matching G_{k+1} with $6 k$ vertices each in the following way. Let G_{k+1} be the perfect matching with the edges $u_{j} u_{j+k}, v_{j} v_{j+k}$ and $w_{j} w_{j+k}$ for $j \in\{1,2, \ldots, k\}$.

For each $i \in\{1,2, \ldots, k\}$, let G_{i} be the spanning planar graph of $K_{6 k}$ whose adjacencies are given as follows: we take the 6 paths, $P_{u_{i}}, P_{u_{i+k}}, P_{v_{i}}, P_{v_{i+k}}, P_{w_{i}}$ and $P_{w_{i+k}}$ and insert them in the octahedron with the vertices $u_{i}, u_{i+k}, v_{i}, v_{i+k}, w_{i}$ and w_{i+k} as is shown in Figure 2 (Left). The vertex x_{j} of each path $P_{x_{j}}$ is identified with the vertex x_{j} in the corresponding triangle face and join all the other vertices of the path with both of the other vertices of the triangle face, see Figure 3 (Right).

By construction of $G_{i}, K_{6 k}=\cup_{i=1}^{k+1} G_{i}$, see $[2,5]$ to check a full proof. In consequence, the $k+1$ planar subgraphs G_{i} show that $\theta\left(3, K_{6 k}\right) \leq k+1$ and then, $\theta\left(3, K_{6 k}\right)=$ $k+1$ owing to the fact that $\theta\left(3, K_{6 k}\right) \geq\left\lceil\frac{\binom{6 k}{2}}{3(6 k-2)}\right\rceil=k+1$.

Now, we proceed to prove that $\theta\left(6, K_{6 k}\right) \leq 2 k+1$ in Case 1 and $\theta\left(6, K_{6 k+3}\right) \leq 2 k+2$ in Case 2 . The main idea of both cases is divide each G_{i} into two subgraphs of girth 6 for any $i \in\{1, \ldots, k\}$.

1. Case $n=6 k$.

Consider the set of planar subgraphs $\left\{G_{1}, G_{2}, \ldots, G_{k+1}\right\}$ of $K_{6 k}$ which is described above.
Step 1. For each $i \in\{1, \ldots, k\}$, remove the six edges of the triangles $u_{i} v_{i} w_{i}$ and $u_{i+k} v_{i+k} w_{i+k}$.
Step 2. For each $i \in\{1, \ldots, k\}$, divide the obtained subgraph into two subgraphs H_{i}^{1} and H_{i}^{2} as follows: The maximum matching of $P_{x_{i}}$ incident to the vertex $f\left(x_{i}\right)$ belongs to H_{i}^{1} (see dotted subgraph in Figure 4) while the maximum matching of $P_{x_{i+k}}$ incident to the vertex $f\left(x_{i+k}\right)$ belongs to H_{i}^{2}.
Next, the rest of the edges joined to the vertices of the paths $P_{x_{i}}$ and $P_{x_{i+k}}$, in an alternative way from the exterior region to the region with the vertices $\left\{u_{i}, v_{i}, w_{i}\right\}$, belong to H_{i}^{1} and H_{i}^{2} respectively, such that the edges $f\left(w_{i}\right) u_{i+k}, f\left(v_{i}\right) w_{i+k}$ and $f\left(u_{i}\right) v_{i+k}$ belong to H_{i}^{1} and the edges $f\left(w_{i}\right) v_{i+k}, f\left(v_{i}\right) u_{i+k}$ and $f\left(u_{i}\right) w_{i+k}$ belong to H_{i}^{2}, see Figure 4.

Figure 5. Subgraphs H_{i}^{1} and H_{i}^{2} for the Case 1.

Figure 6. Subgraphs H_{i}^{1} and H_{i}^{2} for Case 2.

Figure 7. Partial subgraphs H_{k+1}^{1} and H_{k+1}^{2}.

Step 3. Consider the removed edges in Step 1, add the edges $f\left(v_{i+k}\right) f\left(u_{i+k}\right)$ and $f\left(u_{i+k}\right) f\left(w_{i+k}\right)$ to H_{i}^{1} and the edges $f\left(w_{i}\right) f\left(v_{i}\right)$ and $f\left(v_{i}\right) f\left(u_{i}\right)$ to H_{i}^{2}, see Figure 5. The rest of the edges removed in Step 1 are added to G_{k+1} getting the subgraph H_{k+1} which is the union of the paths $\left\{f\left(v_{i}\right), f\left(v_{i+k}\right), f\left(w_{i+k}\right), f\left(w_{i}\right), f\left(u_{i}\right), f\left(u_{i+k}\right)\right\}$.
2. Case $n=6 k+3$.

Consider the set of planar subgraphs $\left\{G_{1}, G_{2}, \ldots, G_{k+1}\right\}$ of $K_{6 k}$ which is described above as well as Step 1 and 2 of the previous case.

Step 3. Add three vertices u, v and w in the subgraphs H_{i}^{1} and H_{i}^{2}, for each $i \in\{1, \ldots, k\}$, and the edges $u w_{i}$, $u f\left(v_{i+k}\right), v u_{i}, v f\left(w_{i+k}\right), w v_{i}, w f\left(u_{i+k}\right)$ into H_{i}^{1} as well as the edges $u w_{i+k}, u f\left(v_{i}\right), v u_{i+k}, v f\left(w_{i}\right), w v_{i+k}, w f\left(u_{i}\right)$ into H_{i}^{2}, see Figure 6.
Step 4. On one hand, remains to define the adjacencies between u, v, w and all the adjacencies between u and u_{i}, v and v_{i}, w and w_{i}, for each $j \in\{1, \ldots, k\}$. On the other hand, the edges of the graph G_{k+1} together with the removed edges of the Step 1 form a set of triangle

Figure 8. Two planar decompositions of K_{10} into three subgraphs of girth 4.
prisms which we split into two subgraphs called H_{k+1}^{1} and H_{k+1}^{2} in the following way:
(a) The adjacency $v w$ is in H_{k+1}^{1} while the adjacencies $u v$ and $u w$ are in H_{k+1}^{2}, see Figure 7.
(b) The set of adjacencies $v v_{j+k}, w w_{j}, w w_{j+k}$ and $u u_{j+k}$ are in H_{k+1}^{1} while the set of adjacencies $v v_{j}$, and $u u_{j}$ are in H_{k+1}^{2}, for each $j \in\{1, \ldots, k\}$, see Figure 7.
(c) The subgraph H_{k+1}^{1} contains the adjacencies $v_{j+k} v_{j}, v_{j} u_{j}, u_{j} w_{j}$ and $w_{j+k} u_{j+k}$ (a set of subgraphs $P_{4} \cup K_{2}$) and the subgraph H_{k+1}^{2} contains the adjacencies $u_{j} u_{j+k}, u_{j+k} v_{j+k}, v_{j+k} w_{j+k}, w_{j+k} w_{j} \quad$ and $w_{j} v_{j}$ (a set of subgraphs P_{6}) for all $j \in\{1, \ldots, k\}$, see Figure 7.
By the small cases and the two main cases, the theorem follows.

3. The 4-girth thickness of $\boldsymbol{K}_{\mathbf{1 0}}$

In [17], Rubio-Montiel gave a decomposition of K_{n} into $\theta\left(4, K_{n}\right)=\left\lceil\frac{n+2}{4}\right\rceil$ triangle-free planar subgraphs, except for $n=10$. In that case, it was bounded by $3 \leq \theta\left(4, K_{10}\right) \leq 4$ and conjectured that the correct value was the upper bound. Using the database of the connected planar graphs of order 10 that appears in [9] and the SageMath program, we found two decompositions of K_{10} into 3 planar subgraphs of girth at least 4 illustrated in Figure 8. In summary, the correct value of $\theta\left(4, K_{n}\right)$ was the lower bound and then, we have the following theorem.

Theorem 3.1. The 4 -girth-thickness $\theta\left(4, K_{n}\right)$ of K_{n} equals $\left\lceil\frac{n+2}{4}\right\rceil$ for $n \neq 6$ and $\theta\left(4, K_{6}\right)=3$.

Acknowledgments

Part of the work was done during the IV Taller de Matemáticas Discretas, held at Campus-Juriquilla, Universidad Nacional Autónoma de México, Querétaro City, Mexico on June 11-16, 2017. We thank

Miguel Raggi and Jessica Sánchez for their useful discussions and help with the SageMath program.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

C. Rubio-Montiel was partially supported by PAIDI grant 007/19 and PAPIIT grant IN107218.

ORCID

Christian Rubio-Montiel (iD http://orcid.org/0000-0003-1474-8362

References

[1] Aggarwal, A., Klawe, M, Shor, P. (1991). Multilayer grid embeddings for VLSI. Algorithmica 6(1-6):129-151.
[2] Alekseev, V. B, Gončakov, V. S. (1976). The thickness of an arbitrary complete graph. Mat. Sb. (N.S.) 101(143):212-230.
[3] Araujo-Pardo, G., Contreras-Mendoza, F. E., Murillo-García, S. J., Ramos-Tort, A. B, Rubio-Montiel, C. (2019). Complete colorings of planar graphs. Discrete Appl. Math. 255:86-97.
[4] Beineke, L. W. (1969). Minimal decompositions of complete graphs into subgraphs with embeddability properties. Can.J. Math. 21:992-1000.
[5] Beineke, L. W, Harary, F. (1964). On the thickness of the complete graph. Bull. Am. Math. Soc. 70(4):618-620.
[6] Beineke, L. W, Harary, F. (1965). The thickness of the complete graph. Can. J. Math. 17:850-859.
[7] Beineke, L. W., Harary, F, Moon, J. W. (1964). On the thickness of the complete bipartite graph. Proc. Cambridge Philos. Soc. 60:1-5.
[8] Bondy, J. A, Murty, U. S. R. (2008). Graph Theory, Graduate Texts in Mathematics, Vol. 244. New York: Springer.
[9] Brinkmann, G., Coolsaet, K., Goedgebeur, J, Mélot, H. (2013). House of Graphs: a database of interesting graphs. Discrete Appl. Math. 161(1-2):311-314.
[10] Chartrand, G, Zhang, P. (2009). Chromatic graph theory. Discrete Mathematics and Its Applications. Boca Raton, FL: CRC Press.
[11] Chen, Y, Yang, Y. (2017). The thickness of the complete multipartite graphs and the join of graphs. J. Comb. Optim. 34(1): 194-202.
[12] Guy, R. K, Nowakowski, R. J. (1990). The outerthickness \& outercoarseness of graphs. I. The complete graph \& the n-cube. In: Bodendiek, R., ed. Topics in Combinatorics and Graph Theory (Oberwolfach, 1990). Heidelberg: Physica, pp. 297-310.
[13] Jackson, B, Ringel, G. (2000). Variations on Ringel's earthmoon problem. Discrete Math 211(1-3):233-242.
[14] Kleinert, M. (1967). Die Dicke des n-dimensionalen WürfelGraphen. J. Comb. Theory 3(1):10-15.
[15] Mansfield, A. (1983). Determining the thickness of graphs is NP-hard. Math. Proc. Cambridge Philos. Soc. 93(1):9-23.
[16] Mutzel, P., Odenthal, T, Scharbrodt, M. (1998). The thickness of graphs: a survey. Graphs Comb. 14(1):59-73.
[17] Rubio-Montiel, C. (2017). The 4-girth-thickness of the complete graph. Ars Math. Contemp. 14(2):319-327.
[18] Rubio-Montiel, C. (2019). The 4 -girth-thickness of the multipartite complete graph. Electron. J. Graph Theory Appl. 7(1): 83-188.
[19] Tutte, W. T. (1963). The thickness of a graph. Indag. Math. 66: 567-577.
[20] Vasak, J. M. (1976). The thickness of the complete graphs ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.). University of Illinois at Urbana-Champaign, Champaign, IL.
[21] Yang, Y. (2014). A note on the thickness of $K_{l, m, n}$. Ars Comb. 117:349-351.
[22] Yang, Y. (2016). Remarks on the thickness of $K_{n, n, n}$. Ars Math. Contemp. 12(1):135-144.

[^0]: CONTACT Christian Rubio-Montiel christian.rubio@acatlan.unam.mx División de Matemáticas e Ingeniería, FES Acatlán, Universidad Nacional Autónoma de México, 53150, Naucalpan, Mexico.
 © 2020 The Author(s). Published with license by Taylor \& Francis Group, LLC
 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

