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ABSTRACT
In this paper, we present a novel multiple input multiple output (MIMO) linear parameter varying (LPV)
state-space refinement system identification algorithm that uses tensor networks. Its novelty mainly lies
in representing the LPV sub-Markov parameters, data and state-revealing matrix condensely and in exact
manner using specific tensor networks. These representations circumvent the ‘curse-of-dimensionality’
as they inherit the properties of tensor trains. The proposed algorithm is ‘curse-of-dimensionality’-free in
memory and computation and has conditioning guarantees. Its performance is illustrated using simulation
cases and additionally compared with existing methods.
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1. Introduction

In this paper, the focus is on linear parameter varying (LPV)
systems. Because these systems are able to describe time-
varying and non-linear systems, while allowing for powerful
properties extended from linear system theory. Also, there are
control design methods which can guarantee robust perfor-
mance (Scherer, 2001), and several convex and non-convex
identification methods exist. The dynamics of LPV systems
are a function of the scheduling sequence, which contains the
time-varying and non-linear effects. In this paper, we focus
on affine functions of known arbitrary scheduling sequences,
which are relevant towind turbine applications (Bianchi,Mantz,
& Christiansen, 2005; Gebraad, van Wingerden, Fleming,
& Wright, 2011; van Wingerden & Verhaegen, 2009). Other
applications are aircraft applications (Balas, 2002), compres-
sors (Giarré, Bauso, Falugi, & Bamieh, 2006), batteries (Remm-
linger, Buchholz, & Dietmayer, 2013) and wafer stages (van der
Maas, van der Maas, & Oomen, 2015; Wassink, van de Wal,
Scherer, & Bosgra, 2005). The scheduling sequence can be any
function of known variables. This representation allows us for
example to take the effect of blade position on gravity forces and
blade rotational speed into account (Gebraad, van Wingerden,
Fleming, & Wright, 2013).

In this paper, the focus is on LPV identification meth-
ods. That is, from input–output and scheduling data we try
to estimate an LPV model of the system. This model can
then be used to design a controller. Several methods exist,
which can be divided in two different ways. Firstly, global
and local methods can be distinguished (De Caigny, Camino,
& Swevers, 2009; Shamma, 2012; Tóth, 2010). Local meth-
ods utilise that LPV systems act as LTI systems when the
scheduling sequence is kept at constant value. These methods
identify LTI models at several fixed constant value scheduling
sequences and then combine them into an LPV model through
interpolation techniques. This does require the application to
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allow for such experiments. In contrast, global methods use
only a single experiment. In this paper, only global methods
will be considered. Secondly, input–output (Laurain, Gilson,
Tóth, & Garnier, 2010; Tóth, 2010) and state-space methods
(Cox&Tóth, 2016; Larimore&Buchholz, 2012; vanWingerden
&Verhaegen, 2009;Verdult, Bergboer,&Verhaegen, 2003) exist.
The first produces input–output models and the latter state-
space models. While in the linear time invariant (LTI) frame-
work these two types of models can be transformed back and
forth, in the LPV case this is not trivial and problematic (Tóth,
Abbas, &Werner, 2012). In this paper, the focus is on state-space
models, because they are the mainstream control design mod-
els and can inherently deal with multiple input multiple output
(MIMO) problems. More specifically, we focus on predictor-
based methods because they can deal with closed-loop data.
However, one possible drawback of these methods is the
‘curse-of-dimensionality’.

Namely, the number of to be estimated (LPV sub-Markov)
parameters scales exponentially. This can give problems with
memory usage and computational cost. Furthermore, the
number of parameters can exceed the number of data points,
resulting in ill-conditioned problems. Both problems demand
special care.

In literature, these problems have been tackled using both
convex methods and non-convex refinement methods. Convex
methods such as proposed by van Wingerden and Verhae-
gen (2009) and Gebraad et al. (2011) overcome the memory
and computation cost problem by using a dual parametrisation,
and address the ill-condition with regularisation. Regularisa-
tion is a way to introduce a bias-variance trade-off in esti-
mates. Refinement methods use a non-linear parametrisation
with few variables to overcome both problems. However, this
returns a non-convex optimisation problem which requires ini-
tialisation by an initial estimate. Hence, the goal of refinement
methods is to refine initial estimates. The method proposed by
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Verdult et al. (2003) directly parametrises the state-space matri-
ces for this purpose, and works for open-loop data.

These problems have also been tackled in Gunes, van
Wingerden, and Verhaegen (2017) and Gunes, van Winger-
den, and Verhaegen (2016). Those two papers and this paper
differ in that they use different tensors and different tensor tech-
niques. The different tensor techniques result in vastly different
methods. In Gunes et al. (2016), a parameter tensor is con-
structed whose matricisations are each low-rank. This allows
exploitation through nuclear norms and has resulted in a convex
subspace method. Tensor techniques are not used to tackle the
‘curse-of-dimensionality’ in that paper. In Gunes et al. (2017),
a parameter tensor is constructed which admits a constrained
polyadic decomposition and parametrisation. This resulted in a
refinement method. However, the computation of the polyadic
rank is NP-hard (Håstad, 1990) and approximation with a fixed
polyadic rank in the Frobenius norm can be ill-posed (De Silva
& Lim, 2008). This method is not ‘curse-of-dimensionality’-
free in memory or computation. In this paper, a tensor net-
work approach will be used. The identification problem will
be recast and optimised using tensor networks. The major dif-
ference with previous work is that this approach uses tensor
networks. These allow the method to circumvent the explicit
construction of the LPV sub-Markov parameters and makes
the proposed refinementmethod ‘curse-of-dimensionality’-free
in memory and computation. This includes a novel technique
for constructing the estimate state-revealing matrix directly
from the estimate tensor estimate. Notice that both the ‘curse-
of-dimensionality’ and novelty lie in the first regression step
and in forming the state-revealing matrix. Another difference
with Gunes et al. (2016) is that this method is a refinement
method, and does not limit the exploitation of the tensor
structure to a regularisation term. For completeness, the prob-
lem definition is to develop an LPV state-space refinement
method which by exploiting underlying tensor network struc-
ture is ‘curse-of-dimensionality’-free in memory and compu-
tation and successfully refines initial estimates from convex
methods.

In this paper, we present the following novel contribu-
tions. Firstly, the LPV identification problem is recast and
optimised using tensor networks to make the proposed refine-
ment method ‘curse-of-dimensionality’-free in memory and
computation. This is done by circumventing the explicit
construction of the LPV sub-Markov parameters. Namely,
operations can be performed directly on the tensor network
decompositions. In detail, the used class of tensor network
(Batselier, Chen, & Wong, 2017) is a generalisation of tensor
trains (Oseledets, 2011). They inherit tensor train efficiency
results, and become tensor trains for single-output problems.
These decompositions allow efficient storage and computa-
tion in the tensor network domain. This recast in tensor net-
works includes not only the LPV sub-Markov parameters, but
also the data and state-revealing matrix. More specifically, the
LPV sub-Markov parameters are shown to admit exact ten-
sor network representation with ranks equal to the model
order, and the data tensor admits exact and sparse tensor net-
work representation. Secondly, these properties are exploited
to obtain a condensed tensor network parametrisation which
can be optimised ‘curse-of-dimensionality’-free inmemory and

computation. Thirdly, we propose an efficient way to obtain
the estimate state sequence from the estimate tensor networks
without explicitly constructing the LPV sub-Markov parame-
ters. Additionally, we provide an upper bound on the condition
numbers of its sub-problems.

The paper outline is as follows. In Section 3 our LPV
identification problem is presented in the tensor network frame-
work. Subsequently in Section 4 a tensor network identifi-
cation method is proposed. Finally, simulations results and
conclusions are presented. In the next section, background is
provided on LPV identification and tensor trains (and net-
works).

2. Background

Before presenting the novel results, relevant topics are reviewed.
These topics are LPV identification with state-space matrices,
tensor trains and tensor networks. Throughout the paper, for
clarity matrices will be denoted by capital characters, tensors
which are part of a tensor network decomposition by calli-
graphic characters and other tensors by bold characters.

2.1 LPV system identificationwith state-spacematrices

In this subsection, LPV system identification with state-space
matrices is reviewed (vanWingerden & Verhaegen, 2009). First
define the following signals relevant to LPV state-space systems:

xk ∈ R
n, uk ∈ R

r , yk ∈ R
l, μk ∈ R

m, (1)

as the state, input, output and scheduling sequence vector at
sample number k. For later use, additionally define

μk =
[
μ

(1)
k . . . μ

(m)

k

]
T ,

μ = [μ1 . . . μN
]
.

(2)

Predictor-based methods (Chiuso, 2007; van Wingerden
& Verhaegen, 2009) use the innovation representation and
predictor-based representation of LPV state-space systems.
Therefore, we directly present the assumed data-generating sys-
tem as

xk+1 =
m∑
i=1

μ
(i)
k

(
A(i)xk + B(i)uk + K(i)ek

)
, (3a)

yk = Cxk + ek, (3b)

where the variables A(i), B(i), C and K(i) are appropriately
dimensioned state, input, output and observermatrices and ek is
the innovation term at sample k. Notice that the output equation
has an LTI C matrix and the feed-through term D is the zero
matrix. This assumption is made for the sake of presentation
and simplicity of derivation, similar to what has been done
in van Wingerden and Verhaegen (2009). This will not trivi-
alise the bottleneck ‘curse-of-dimensionality’. Furthermore, it is
assumed thatμk is known and this state-space system has affine
dependency onμk like in vanWingerden andVerhaegen (2009).
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That is, μ(1)
k = 1, ∀k. The predictor-based representation fol-

lows by substituting (3b) in (3a):

xk+1 =
m∑
i=1

μ
(i)
k

(
Ã(i)xk + B̄(i)

[
uk
yk

])
, (4a)

yk = Cxk + ek, (4b)

where Ã(i) is A(i) − K(i)C and B̄(i) is [B(i),K(i)]. Notice that the
states here are the observer states. Also, define p as a past win-
dow for later use. Furthermore, define the discrete-time time-
varying transition matrix (van Wingerden & Verhaegen, 2009):

Ãk =
m∑
i=1

μ
(i)
k Ã(i), (5a)

φj,k = Ãk+j−1 . . . Ãk+1Ãk. (5b)

Predictor-based methods make the assumption that this matrix
is exactly zero when j is greater than or equal to the past window
p (Chiuso, 2007; van Wingerden & Verhaegen, 2009):

φj,k ≈ 0, ∀ j ≥ p. (6)

A similar approximation is also used in several LTI meth-
ods (van der Veen, vanWingerden, Bergamasco, Lovera, & Ver-
haegen, 2013). If the predictor-based system is uniformly expo-
nentially stable, then the approximation error can be made
arbitrarily small by increasing p (Knudsen, 2001). In fact the
introduced bias disappears as p goes to infinity, but is hard to
quantify for finite p (Chiuso, 2007). This assumption results in
the predictor-based data equation.

Before presenting this data equation, first some definitions
must be given. For ease of presenting matrix sizes, define

q = (l + r)
p∑

j=1
mj. (7)

Now define the extended LPV controllability matrix (van
Wingerden & Verhaegen, 2009) as

K(p) = [Lp . . . L2 B̄] ∈ R
n×q, (8a)

B̄ = [B̄(1) . . . B̄(m)] ∈ R
n×(l+r)m, (8b)

L2 = [Ã(1)B̄ . . . Ã(m)B̄] ∈ R
n×(l+r)m2

, (8c)

Li+1 = [Ã(1)Li . . . Ã(m)Li] ∈ R
n×(l+r)mi+1

,

2 ≥ i ≥ p − 1. (8d)

For this purpose also define the data matrix (van Wingerden
& Verhaegen, 2009) as

Zk+p = Np
k+pz̄k+p ∈ R

q, (9)

where z̄k+p is

zk+p =
[
uk+p
yk+p

]
∈ R

l+r , (10a)

z̄k+p =

⎡
⎢⎢⎢⎣

zk
zk+1
...

zk+p−1

⎤
⎥⎥⎥⎦ ∈ R

p(l+r), (10b)

where the subscript of z̄k+p indicates its relation to yk+p in
Equation 14, and Np

k+p is

Pj|k = μk+j−1 ⊗ · · · ⊗ μk ⊗ Il+r ∈ R
(l+r)mj×(l+r), (11a)

Np
k+p =

⎡
⎢⎢⎢⎣
Pp|k 0 · · · 0
0 Pp−1|k+1 · · · 0
...

...
. . .

...
0 0 · · · P1|k+p−1

⎤
⎥⎥⎥⎦ ∈ R

q×p(l+r),

(11b)
whereμk is a columnvector and the operator⊗ is theKronecker
product (Brewer, 1978). Notice that Zk+p involves samples from
k to k+p−1. With these definitions and Equation (4), the states
can be described by

xk+p = φp,kxk + K(p)Zk+p. (12)

Using assumption (6) gives

xk+p ≈ K(p)Zk+p, (13)

which yields the predictor-based data equation:

yk+p ≈ CK(p)Zk+p + ek+p, (14)

where the entries of CK(p) are named the LPV sub-Markov
parameters.

However, the number of columns of K(p) (or rows of Zk+p)
is q (7), which scales exponentially with the past window.
Additionally, as argued earlier in this section the past window
affects the approximation error and bias. Hence, the resulting
matrix sizes can yield problems with memory storage, compu-
tation costs and cause ill-conditioned estimation problems. For
brevity, define:

Definition 2.1 (The curse-of-dimensionality): In this paper,
we say that a vector, matrix, tensor or set suffers from the
curse-of-dimensionality if the number of elements c scale expo-
nentially with the past window, asO(cp).

For later use, additionally define

Z = [Zp+1 . . . ZN] ∈ R
q×N−p (15)

and

z = [z1 . . . zN]. (16)

Notice that the width of Z is N−p because every Zk involves
samples from k−p to k−1. Thus when using all samples, this
yields N−pmany Zk.
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Also for later use, define the partial extended observability
matrix as in van Wingerden and Verhaegen (2009):

�f =

⎡
⎢⎢⎢⎢⎣

C
CÃ(1)

...

C
(
Ã(1)

)f−1

⎤
⎥⎥⎥⎥⎦ ∈ R

fl×n, (17)

where the future window f is chosen as p ≥ f ≥ n (van der Veen
et al., 2013). We assume that this matrix is full column rank.

An estimate of the LPV state-space matrices can be obtained
as follows (van Wingerden & Verhaegen, 2009). Firstly, the
matrixCK(p) can be estimated using linear or non-linear regres-
sion using (14). Secondly, this estimate can be used to construct
a state-revealing matrix whose singular value decomposition
(SVD) returns an estimate of the state sequence. We define the
state sequence as X = [xp+1 . . . xN] and assume it to have
full row-rank as in van Wingerden and Verhaegen (2009). If
the predictor-based assumption (6) holds exactly, the following
equality holds exactly too:

�f K(p)Z ≈ �f X, (18)

such that its SVD

�f K(p)Z = Ū�VT (19)

returns the states through X = �VT modulo global state-
coordinate transformation. Additionally, the model order can
be chosen by discarding the smallest singular values in �.

However, notice that �f K(p) is not suitable when working
with estimates, because it involves terms which are not esti-
mated. One example are its bottom rows C(Ã(1))f−1K(p). But
under the same predictor-based assumption (6), these terms can
be assumed zero to obtain the ‘state-revealing matrix’ R:

R =

⎡
⎢⎢⎢⎢⎣
CLp CLp−1 · · · CL1
0 CÃ(1)Lp−1 · · · CÃ(1)L1
...

. . . . . .
...

0 0 C
(
Ã(1)

)f−1
L1

⎤
⎥⎥⎥⎥⎦Z ∈ R

fl×N−p,

(20)
where the block-lower-triangular entries are assumed negligi-
ble. The estimate R can be constructed from the columns of
the estimate CK(p). Therefore, the SVD of R is used to obtain
an estimate state sequence. Additionally, for persistence of exci-
tation it is assumed that [μ1 . . . μN−p+1] has rank m and
N−p+1>m. Finally, the estimate state sequence allows read-
ily obtaining the state-space matrices using two least squares
problems (van Wingerden & Verhaegen, 2009).

2.2 Tensor trains and networks

In this subsection, the background on tensors and the tensor
train framework (Oseledets, 2011) is presented. Furthermore,
we also present the slightly generalised tensor network frame-
work of Batselier et al. (2017).

Firstly, the notion of a tensor has to be defined. A tensor is
a multi-dimensional generalisation of a matrix. That is, it can

have more than two dimensions. Formally define a tensor and
how its elements are accessed:

Definition 2.2: Consider a tensor T with d dimensions. Let its
size be T ∈ R

J1×···×Jd . Let j1 to jd be the d indices of the tensor,
which each correspond to one dimension. Then, T(j1, . . . , jd)
is its single element at position j1, . . . , jd. Furthermore, the
symbol ‘:’ is used when multiple elements are involved. More
specifically, ‘:’ indicates that an index is not fixed. For example,
T(:, . . . , :) = T andT(:, :, j3, . . . , jd) ∈ R

J1×J2 is amatrix obtained
by fixing the indices j3 to jd.

The multi-dimensional structure of tensors can be exploited
using techniques from the tensor framework such as tensor
networks.

Secondly, tensor trains are discussed (Oseledets, 2011). They
are condense decompositions of tensors. These tensor trains
consist of d ‘cores’ A(1) to A(d), where each core is a three-
dimensional tensor. Notice that to distinguish regular tensors
and cores, calligraphic characters have been used for cores.
The relation between a tensor and its tensor train is defined
element-wise as

T(i1, . . . , id) = A(1)(:, i1, :)A(2)(:, i2, :) . . .A(d)(:, id, :), (21)

where the left-hand side is defined in Definition 2.2. Notice that
because the left- hand side is a scalar, A(1)(:, i1, :) is a row vec-
tor and A(d)(:, id, :) is a column vector. The remaining terms
in the product are matrices. For brevity of notation, define the
generator operator g(∗) as

T = g(A(1), . . . ,A(d)), (22)

whereA(∗) are the cores of the tensor train of T.
The tensor train decomposition allows describing a tensor

with less variables and performing computations without con-
structing the original tensor and at lower computational cost.
To specify this, first, define the tensor train ranks as the first
and third dimension of each core. In this paragraph, let each
tensor train rank1 be r̄ and let the size of the original ten-
sor be ∈ R

J×···×J . Then, the memory cost of the tensor train
scales as O(Jr̄2), while the memory cost of the original ten-
sor scales as O(Jd). Hence, the memory cost can be reduced,
depending on the size of the tensor train ranks. It is also possible
to decrease the tensor train ranks by introducing an approxi-
mation (with guaranteed error bounds, Oseledets, 2011). The
computational cost can also be reduced, by performing compu-
tations using the tensor train without constructing the original
tensor. This is possible for many operations (Oseledets, 2011).
For example, consider the inner product of the example ten-
sor with itself. This is equivalent to the sum of its indi-
vidual entries squared. A straightforward computation scales
with Jd, while performing the computation directly on its
tensor train using Oseledets (2011) scales with dJr3. Hence,
the computation cost can be reduced, depending on the
size of the tensor train ranks. Most importantly, the mem-
ory and computation cost scale differently when using tensor
trains.
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This property allows tensor trains to break exponential scal-
ing and ‘curse-of-dimensionality’ (Definition 2.1). For brevity,
also define:

Definition 2.3 (‘Curse-of-dimensionality’-free in memory
and computation): In this paper, we say that an algorithm is
‘curse-of-dimensionality’-free in memory and computation if
its memory usage and computational cost does not scale expo-
nentially with the past window asO(∗p), but as a polynomial as
O(p∗).

Furthermore, in order to be able to deal with multiple out-
put systems, we use the slightly generalised tensor network
of Batselier et al. (2017). This generalisation is that we allow
A(1)(:, i1, :) to be a full matrix instead of a row vector. As a
result, the right-hand side of (21) would return a column vec-
tor instead of a scalar. This generalisation preserves the pre-
viously presented properties. In the remainder of this paper,
we will refer to this specific tensor network directly as ‘tensor
network’.

Additionally, we define the inner product for later use:

Definition 2.4: The inner product of two tensors is the sum
of their element-wise multiplication (Oseledets, 2011). This
is well defined if the tensors have the same size. If one ten-
sor has an additional leading dimension, we use the definition
of Oseledets (2011) to obtain a column vector containing
inner products of slices of the larger tensor with the other
tensor.

If the two tensors have a tensor train or network representa-
tions, then this operation can be performed directly using those
representations (Oseledets, 2011). The resulting computational
cost scales linearly with the dimension count and dimension
sizes and as a third power of the tensor train ranks.

The inner product operation can be performed using the
Tensor Train Toolbox (Oseledets, 2011). The technical descrip-
tions of this subsection will be used in the next section
to derive the tensor networks for our LPV identification
problem.

3. The LPV identification problem in tensor network
form

In this section, we present several key aspects of the LPV identi-
fication problem using tensor networks (Section 2.2). The LPV
sub-Markov parameters, their associated data matrix (9), the
system output, the model output and the state-revealing matrix
are represented using tensor networks. This allows directly for-
mulating the proposedmethod based on tensor networks in the
next section. Through the use of these tensor networks, the pro-
posed method is ‘curse-of-dimensionality’-free in memory and
computation (Definition 2.3).

3.1 An illustration for a simple case

In this subsection, we present an example to illustrate the two
more complicated tensor networks. Namely, we derive and

present the tensor networks for the LPV sub-Markov param-
eters and their associated data matrix (9). The following simpli-
fied SISO LPV state-space system is considered:

xk+1 =
m=2∑
i=1

μ
(i)
k

(
A(i)xk

)
+ Buk, (23a)

yk = Cxk + ek, (23b)

with one input, one output and two states. This simplification
also affects other equations. Because there is only one input, the
tensor network is also just a tensor train. We consider the fol-
lowing, first few, LPV sub-Markov parameters corresponding to
p= 3:

CÃ(1)Ã(1)B̄,CÃ(1)Ã(2)B̄, . . .

CÃ(2)Ã(1)B̄,CÃ(2)Ã(2)B̄, . . .

CÃ(1)B̄,CÃ(2)B̄, . . .

CB̄ ∈ R
1×7.

These parameters can be rearranged into the following
tensor:

T =
⎡
⎣ CB̄ CÃ(1)B̄ CÃ(2)B̄
CÃ(1)B̄ CÃ(1)Ã(1)B̄ CÃ(1)Ã(2)B̄
CÃ(2)B̄ CÃ(2)Ã(1)B̄ CÃ(2)Ã(2)B̄

⎤
⎦ ∈ R

3×3, (24)

where some entries appearmultiple times, such that it admits an
exact tensor train network decompositionwith its cores equal to

Notice that the ranks of this tensor network are equal to
the system order. In detail, the illustrated sub-tensors can
be accessed using for example A(1)(:, 1, :) = CI. Proof of this
decomposition follows through straightforward computations.

Details on its generalisation are as follows. Firstly, while the
parameter tensor for this example is a two-dimensional tensor
(matrix), the general case produces a higher dimensional tensor.
Secondly, while for this example thematrix B̄ is only a vector and
absorbed into the second core for simplicity, it will appear in a
separate core for the general case. The matrix C will not appear
in a separate core, because optimising this core (with alternating
least squares, ALS) would stringently require l ≥ n. The general
case will be presented in the next subsection.
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Next the tensor network of the associated data matrix (9) is
illustrated using the same example. For one sample, the follow-
ing vector is obtained:

Zk = Np
k+pz̄k+p =

⎡
⎣μk−1 ⊗ μk−2 0 0

0 μk−1 0
0 0 1

⎤
⎦
⎡
⎣uk−3
uk−2
uk−1

⎤
⎦

=
⎡
⎣(μk−1 ⊗ μk−2)uk−3

μk−1uk−2
uk−1

⎤
⎦ ∈ R

7×1,

(25)
where μk is a column vector and uj = uTj is a scalar. This data
can be rearranged into the following tensor:

Zk =
[

uk−1 μk−1
Tuk−2/2

μk−1uk−2/2 μk−1μk−2
Tuk−3

]
∈ R

3×3 (26a)

=
[

1(1 ⊗ uk−1)
T1 (μk−1 ⊗ uk−2/2)T

μk−1(1 ⊗ uk−2/2)T μk−1(μk−2 ⊗ uk−3)
T

]
, (26b)

where some entries appear multiple times (and are divided by
two), such that it admits an exact tensor train network decom-
position. We present its cores as sliced matrices:

B(1)
k (:, 1, :) = [1, 0], (27a)

B(1)
k (:, 1 + b, :) = [0,μ(b)

k−1], b ∈ {1, . . . ,m}, (27b)

B(2)
k (:, 1, :) =

[
1 ⊗ uk−1
1 ⊗ uk−2/2

]
, (27c)

B(2)
k (:, 1 + b, :) =

[
μ

(b)
k−1 ⊗ uk−2/2
μ

(b)
k−2 ⊗ uk−3

]
, b ∈ {1, . . . ,m}.

(27d)
The division by two appears in entries which appear twice in
order to allow for a simple tensor network output equation in the
next subsection. For the general case, these factors will appear
as binomial coefficients. Proof of this decomposition follows
through straightforward computations. In the next subsection,
the general case for this subsection and the tensor network
output equation are presented.

3.2 The general case

In this subsection, we present the tensor networks of the
LPV sub-Markov parameters (8) and the associated data
matrix (9) for the general case. Additionally, we present
the predictor-based data equation (14) using these tensor
networks.

The classic form of this equation is

yk ≈ CK(p)Zk + ek, (28)

which has the bottleneck that the matrices CK(p) and Zk suffer
from the ‘curse-of-dimensionality’ (Definition 2.1).

Therefore, we first present their tensor network decompo-
sitions. Define the cores of the tensor network of the LPV
sub-Markov parameters in three-dimensional view as

or equivalently,

A(1)(:, 1, :) = C, (29a)

A(1)(:, 1 + b, :) = CÃ(b), ∀b ∈ {1, . . . ,m}, (29b)

A(s)(:, 1, :) = In, ∀s ∈ {2, . . . , p − 1}, (29c)

A(s)(:, 1 + b, :) = Ã(b), ∀b ∈ {1, . . . ,m},
∀s ∈ {2, . . . , p − 1}, (29d)

A(p) = B̄. (29e)

Also, define the cores of the tensor network of the associated
data matrix (per sample) in three-dimensional view as

where [μk−j ⊗ zk−j]T is a row vector, and equivalently,

B(s)
k (:, 1, :) = [Is 0

] ∈ R
s×s+1

∀s ∈ {1, . . . , p − 1}, (30a)
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B(s)
k (:, 1 + b, :) =

⎡
⎢⎢⎢⎢⎣
0 μ

(b)
k−1 0 · · · 0

0 0 μ
(b)
k−2 · · · 0

...
...

...
. . .

...
0 0 0 0 μ

(b)
k−s

⎤
⎥⎥⎥⎥⎦ ∈ R

s×s+1

∀b ∈ {1, . . . ,m}, ∀s ∈ {1, . . . , p − 1}, (30b)

B(p)
k =

⎡
⎢⎢⎣
[μk−1 ⊗ zk−1]T

(p−1
0
)−1

...
[μk−p ⊗ zk−p]T

(p−1
p−1
)−1

⎤
⎥⎥⎦

∈ R
p×m(l+r). (30c)

Notice that these cores have this specific sparse form, because
Kronecker products of subsequent scheduling sequence samples
appear in the data (see for example (11)). Proof of both decom-
positions follows through straightforward computations. The
binomial coefficients in this last core divide entries of the full
tensor by how many times they appear in the full tensor. These
coefficientsmay give finite precision problems for p ≥ 58. These
cores are defined like this to keep the following data equation
simple.

Using these two tensor networks, the predictor-based data
equation can be recast as

yk ≈ CK(p)Zk + ek = 〈T,Zk〉 + ek, (31)

where 〈∗, ∗〉 is the inner product (Definition 2.4), and T and Zk
are defined by their tensor networks:

T = g(A(1), . . . ,A(p))

∈ R
l×(m+1)×···×(m+1)×m(l+r), (32a)

Zk = g(B(1)
k , . . . ,B(p)

k )

∈ R
1×(m+1)×···×(m+1)×m(l+r). (32b)

In detail, the full tensor T has l(l + r)m(m + 1)p−1 elements
of which l(l + r)

∑p
j=1m

j (7) are unique. The advantage
of this recast is that 〈T,Zk〉 can be computed ‘curse-of-
dimensionality’-free in memory and computation using tensor
networks (Definition 2.4).

In the next subsection, the state-revealing matrix is recast
using tensor networks.

3.3 The state-revealingmatrix

In this subsection, we present how the (estimate) state-revealing
matrix (20) can be constructed from the (estimate) param-
eter tensor network (31) and the data sequence ‘curse-of-
dimensionality’-free in memory and computation. Afterwards
the (estimate) state sequence and state-space matrices can be
obtained using Section 2.1.

Constructing the (estimate) state-revealing matrix R (20) in
straightforward manner from the (estimate) LPV sub-Markov
parameters and associated data matrix is problematic, because

they both suffer from the ‘curse-of-dimensionality’. Therefore,
we present how it can be constructedwith tensor networks using
the operator h() as

R = h(A(1), . . . ,A(p),μ, z, f ), (33a)

R(θ) = h(A(1)(θ), . . . ,A(p)(θ),μ, z, f ), (33b)

where R andA(∗) are defined in (20) and (29), respectively, and
the parametrisation is discussed in detail in the next section.
Because the definition of h() is lengthy, its details are provided
in Appendix 3. This equation allows computing the (estimate)
state-revealing matrix ‘curse-of-dimensionality’-free in mem-
ory and computation.

In the next section, the proposed method is presented.

4. The proposedmethod

In this section, the proposed method is presented. The pro-
posed refinement predictor-based method uses a tensor net-
work parametrisation in order to obtain refined LPV state-space
estimates ‘curse-of-dimensionality’-free in memory and com-
putation. This can be as exploitation of the underlying tensor
structure.

4.1 Parametrisation

A tensor network parametrisation of the LPV sub-Markov
parameters is used by the proposed method. That is, the LPV
sub-Markov parameter tensor (32) is parametrised as

T(θ) = g(A(1)(θ1), . . . ,A(p)(θp)), (34)

with each core parametrised as black-box. Using the data
equation (31), the model output can be described as

yk(θ) = 〈T(θ),Zk〉. (35)

Furthermore, the estimated state-revealing matrix (20) is

R(θ) = h(A(1)(θ1), . . . ,A(p)(θp),μ, z, f ). (36)

Notice that the system order is generally not known, so the
sizes of the cores will depend on the model order ñ instead.
We underline that this parametrisation is a free parametrisation
and not canonical. Furthermore, the core and state estimates
are modulo global state-coordinate transformation. In total
there are l(m + 1)ñ + (ñ(m + 1)ñ)(p − 2) + ñm(l + r) param-
eters to estimate. Notice that the number of LPV sub-Markov
parameters is generallymany times larger (l(l + r)

∑p
j=1m

j (7)).
The parameter tensor T(θ) has over-parametrisation: an LPV
sub-Markov parameter can appear multiple times and each will
be parametrised differently. The chosen parametrisation allows
for well-known (tensor network) optimisation techniques.

The optimisation of these parameters is performed using
ALS for tensor networks (Batselier et al., 2017; Oseledets, 2011).
That is, we start with an initialisation of the cores and iteratively
update them one-by-one. Every update boils down to solving a
least squares problem (A.16). Afterwards we make an orthogo-
nalisation step in order to improve the conditioning of the next
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sub-problem. This orthogonalisation is also performed on the
initialisation of the cores. We refer to Oseledets (2011), Batse-
lier et al. (2017) and Chen, Batselier, Suykens, andWong (2016)
for this common step. For this orthogonalisation step, some
assumptions are made on the sizes of the cores. Let A(s)(θ) be
∈ R

a×b×c. Then, for 1 ≤ s ≤ p − 1 we assume ab ≥ c, and for
2 ≤ s ≤ p we assume bc ≥ a.

This optimisation approach enjoys some nice properties.
Firstly, the optimisation has local linear convergence under
some mild condition (Holtz, Rohwedder, & Schneider, 2012;
Rohwedder &Uschmajew, 2013). Secondly, the condition num-
ber of the least squares problem of every sub-problem has upper
bounds (Holtz et al., 2012). The latter result allows exchanging
the assumption that each sub-problem is well-conditioned by
the assumption that this upper bound holds (Holtz et al., 2012)
and is finite. We show how to compute these bounds for our
problem ‘curse-of-dimensionality’-free in memory and compu-
tation in Appendix 2.

In the next subsection, the algorithmof the proposedmethod
is summarised.

4.2 Algorithm

Algorithm 4.1: The proposed method
Input: an initial estimate of the LPV state-space matrices,

μ, z, p, f , termination conditions
Output: a refined estimate of the LPV state-space matrices

(1) Initialise the tensor network cores A(θ) (34). This can
be done using an initial estimate of the LPV state-space
matrices and the formulas (29). This initial estimate can
be obtained from a (‘curse-of-dimensionality’-free in mem-
ory and computation) convex method, such as proposed
by Gunes et al. (2016) and van Wingerden and Verhae-
gen (2009).

(2) Compute the tensor network cores B of the data (30).
(3) Optimise the tensor network cores A(θ) using the tensor

network ALS (Holtz et al., 2012) and Section 4.1 until the
termination conditions(discussed in the next paragraph) are
met. The sub-problems of this ALS are given in Appendix 1.

(4) Use the estimate cores to compute the estimate state-revealing
matrix using (33).

(5) Use an SVD to obtain an estimate of the states as described
in Section 2.1.

(6) Solve two least squares problem to obtain a (refined) esti-
mate of the LPV state-space matrices as described in van
Wingerden and Verhaegen (2009).

The entire algorithm is ‘curse-of-dimensionality’-free in mem-
ory and computation. Some details on the algorithm are worth
mentioning. Firstly notice that the initial estimate also pro-
vides a well-supported choice of the tensor network ranks,
so these ranks can be kept fixed during optimisation. It
is worth remarking that methods without fixed ranks exist
such as the density matrix renormalisation group (DMRG)
algorithm (White, 1992). Secondly, there are several ways to
terminate theoptimisation. One option is to terminate when
the residual changes less than 0.1% after updating all cores
forward and backward. Another option is to terminate after

a few such ‘sweeps’. We do not recommend a termination
condition on the absolute residual itself for this application,
as the LPV data equation (14) can have non-negligible bias.
Furthermore, in the simulations we will solve the least squares
problem for every update with added Tikhonovregularisation.
More specifically, instead of solving ‖Ȳ − V̄(s)vec(A(s))‖2F we
solve ‖Ȳ − V̄(s)vec(A(s))‖2F + λ‖vec(A(s))‖2F where the defini-
tions are given in Appendix 1. The tuning parameter λ is cho-
sen using generalised cross validation (GCV) (Golub, Heath,
& Wahba, 1979). Additionally, the computation cost of this
algorithm scales favourably with the past window as a fifth
power as O(p5). This is dominated by the computation of the
inner products in the ALS step. In the next section simula-
tion results are presented to evaluate the performance of the
proposed method.

5. Simulation results

In this section, we illustrate the performance of the proposed
method with simulation results.

5.1 Simulation settings

In this section, the general simulation settings, constant over
every case, are presented.

The following information is passed to the identification
methods. All methods are passed the input, output and schedul-
ing sequences. The model order is chosen equal to the system
order. The future window in any SVD step is chosen equal to the
past window. The evaluated methods are all global LPV iden-
tification methods for known arbitrary scheduling sequences.
All cases generate data based on a finite-dimensional discrete
affine state-space LPV system. Together with the proposed non-
convex method, the convex LPV-PBSIDopt (kernel) method
by van Wingerden and Verhaegen (2009), the non-convex
predictor-based tensor regression (PBTR) method by Gunes
et al. (2017) and the non-convex polynomial method by Verdult
et al. (2003) are evaluated. More specifically, the LPV-PBSIDopt
with its own Tikhonov regularisation and GCV, and the output
error variant of the polynomial method (Verdult et al., 2003) is
used. The proposed method is terminated after five sweeps. All
the non-convex methods are initialised from the estimate of the
convex method. Additionally, results are presented of the pro-
posed method initialised in ‘random’ manner as follows. Firstly,
m (3) random, stable LTI systems with the chosen model order
and matching input and output counts are generated. Secondly,
these m LTI systems are combined in straightforward man-
ner into an LPV system. Thirdly, this LPV system is regarded
as an initial estimate. The matrix K is generated in the same
way as B. These methods are or will soon be available with
the PBSID toolbox (van Wingerden & Verhaegen, 2009). The
convex method (Gunes et al., 2016) from previous work is not
evaluated, because it is not related to the core contributions of
the current paper. All results are based on 100 Monte Carlo
simulations. For each Monte Carlo simulation, a different reali-
sation of both the input and the innovation vector is used, while
the scheduling sequence is kept the same.

The produced estimates are then scored using the Variance
Accounted For (VAF) criterion on a validation data set. That is,
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fresh data not available to the methods is used which has dif-
ferent realisations of both the input and the innovation vector.
The VAF for single-output systems is defined as follows (van
Wingerden & Verhaegen, 2009):

VAF(ȳk, ŷk) = max
{
1 − var(ȳk − ŷk)

var(ȳk)
, 0
}
100%.

The variable ȳk denotes the noise-free simulated output of
the system, and similarly ŷk denotes the noise-free (simulated)
model output. The operator var(∗) returns the variance of its
argument. If a non-convex refinement method returns an esti-
mate with identification VAF 15% lower than that of its initiali-
sation, then the refined estimate is rejected and substituted by
the initialisation. Notice that this only involves identification
data. Also notice that this does not prevent local minima, but
only serves to reject known poor optimisation results. Finally,
the computations are performed on an Intel i7 quad-core pro-
cessor running at 2.7GHzwith 8GBRAM, and the computation
times are provided. In the next subsections, we present several
cases and the parameter counts.

5.2 Simulation results – Case 1

In this subsection, a case which relates to the flapping dynamics
of a wind turbine is used to evaluate the performance of the pro-
posed method and existing methods. This case has been used
before in Felici, VanWingerden, and Verhaegen (2007) and van

Table 1. MeanVAF for differentmethods for Case 1.

Method VAF%

LPV-PBSIDopt (kernel) 92.2±0.5
PBTR 91.1±0.6
Polynomial method 94.6±0.3
Proposed method (r.i.) 94.8±0.3
Proposed method 95.8±0.2

Note: The text ‘r.i.’ indicates random initialisation, as
discussed in Section 5.1.

Wingerden and Verhaegen (2009). Consider the following LPV
state-space system (3):

[A(1),A(2)] =
[

0 0.0734

−6.5229 0.4997

∣∣∣∣∣
−0.0021 0

−0.0138 0.5196

]
,

[B(1),B(2)] =
[−0.7221
−9.6277

∣∣∣∣ 00
]
, C = [1 0

]
,

whereD is zero andK is LPV. ThematrixK(i) for i = {1, . . . ,m}
has been obtained from the discrete algebraic Ricatti equation
(DARE) usingA(i) andC and identity covariance of the concate-
nated process andmeasurement noise. The input uk is chosen as
white noise with unit power and the innovation ek is also chosen
as white noise with unit power. The past window is 6. The data
size N is 200.

The system is evaluated at the affine scheduling sequence:

μ
(2)
k = cos

(
2πk

10
N

)
/2 + 0.2.

The results are shown in Table 1, Figures 1 and 2. The average
computation times are 0.033, 15, 0.82, 10 and 9.4 s for, respec-
tively, the LPV-PBSIDopt , the PBTR, the polynomial and the
proposed method (for pseudo-random and normal initialisa-
tion) per Monte Carlo simulation.

From Table 1, Figures 1 and 2, it is visible that for this case
the proposedmethod and the polynomialmethod can refine the
initial estimates successfully. Two additional, minor results are
that the proposed method may converge quickly and perform
well for random initialisation.

5.3 Simulation results – Case 2

In this subsection, the proposed method is shown to work for
a MIMO case with higher system order. Consider the following

Figure 1. This figure shows a box-plot of the validation VAF of the 100 Monte Carlo simulations for five methods. The initialisation method is LPV-PBSIDopt (kernel), and
the other four are refinement methods. The text ‘r.i.’ indicates random initialisation, as discussed in Section 5.1.
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Figure 2. This figure shows how the validation VAF of the proposed method, averaged over the Monte Carlo simulations, is affected by the number of sweeps. The VAF
at 0 sweeps performed is the initialisation. This sweep is defined in Section 4.1.

LPV state-space system (3) with

A(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−15
30

0 0 0
2
30

−17
30

−4
30

38
30

2
30

−2
30

−19
30

2
30

0 0 0
21
30

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A(2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

24
30

0 0 0
9
30

15
30

−18
30

−18
30

9
30

−9
30

6
30

9
30

0 0 0
−1
30

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A(3) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
−2
30

2
30

4
30

−2
30−2

30
2
30

4
30

−1
30

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

A(4) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0
6
30

0 0 0 0

0 0 0
6
30

⎤
⎥⎥⎥⎥⎥⎥⎦

and

B(1) =

⎡
⎢⎢⎣
1 0
1 0
0 1
0 1

⎤
⎥⎥⎦ , B(2) = B(3) = B(4) = B(1)/4,

C =
⎡
⎣1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎦ ,

whereD is zero andK is LPV. ThematrixK(i) for i = {1, . . . ,m}
has been obtained from the DARE usingA(i) and C and identity
covariance of the concatenated process andmeasurement noise.
Every input signal is chosen as white noise with unit power and
every innovation signal is chosen as white noise with half a unit
power. The past window is 6. The data size N is 200.

The system is evaluated at the affine scheduling sequence:

μ
(2)
k = sawtooth

(
1 + 2πk

1
N

)/
3 + 0.2

μ
(3)
k = sawtooth

(
−1 + 2πk

1
N

/3.5 + 0.5π
)

μ
(4)
k = cos

(
2πk

1
N

/3
)

+ 0.2,

where ‘sawtooth’ is a sawtooth wave function with peaks of −1
and 1. It is−1 when its argument is a multiple of 2π . The results
are shown in Table 2, Figures 3 and 4. The average computa-
tion times are 0.020 and 13 s for, respectively, the LPV-PBSIDopt
method and the proposed method per Monte Carlo simulation.

From the results of Table 2, Figure 3 and 4, it is visible that
the proposed method can refine initial estimates for this case.
We do remark that a few ‘refined’ estimates have decreased VAF,
which is possible due to the two compared methods optimising
different objective functions.

Table 2. Mean VAF for different methods for Case 2.

Method Output channel VAF%

1 67.3±2.9
LPV-PBSIDopt (kernel) 2 54.5±3.0

3 60.3±3.3
1 79.7±1.9

Proposed method 2 73.9±2.3
3 74.2±2.4
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Figure 3. This figure shows a box-plot of the validation VAF of the 100 Monte Carlo simulations for two methods. The initialisation method is LPV-PBSIDopt (kernel), and
the refinement method is the proposed method.

Figure 4. This figure shows a scatter-plot of the validation VAF of the 100 Monte Carlo simulations for two methods. The initialisation method is LPV-PBSIDopt (kernel),
and the refinement method is the proposed method.

5.4 Parameter counts

For completeness, the parameter counts of several methods are
presented in Table 3. The computational cost scaling is also

briefly recapped. A more specific cost for the proposed method
is given in Section 4.2.

This table shows that a straightforward black-box parametri
sation, like LPV-PBSIDopt without kernels, results in a parameter

Table 3. Comparison of the parameter counts for the (first) estimation step for model order equal to system order, and the
computational cost scaling.

Parameter count

Method Formula Case 1 Case 2 Computation cost scaling

LPV-PBSIDopt (primal) l(l + r)
p∑

j=1

mj 252 81,900 c.o.d.

LPV-PBSIDopt (kernel) lN 200 600 c.o.d.-free
PBTR nl + n(l + r)m 50 412 c.o.d.

+n2m(p − 1)
Polynomial method nl + nrm + n2m 14 108 c.o.d.-free
Proposed method l(m + 1)n 62 460 c.o.d.-free

+n2(m + 1)(p − 2)
+n(l + r)m

Note: The abbreviation ’c.o.d.’ stands for ’curse-of-dimensionality’.
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count which scales exponentially. A more condense parametri-
sation can be obtained by using kernels (vanWingerden & Ver-
haegen, 2009) or a non-linear parametrisation. The parameter
count of the proposed method is comparable with the one of
PBTR and larger than the one of the polynomial method. The
parameter counts for Case 2 show that the parameter counts
of the evaluated methods are much smaller than the case for a
straightforward approach.

6. Conclusions

In this paper, it was shown that the MIMO LPV identifica-
tion problem with state-space matrices admits a tensor network
description. That is, the LPV sub-Markov parameters, data and
state-revealingmatrix were condensely and exactly presented as
tensor networks. Additionally, it was shown how to obtain the
(estimate) state-revealingmatrix directly from (estimate) tensor
networks. These results provided a tensor network perspective
on the MIMO LPV identification problem. Then, a refinement
method was proposed which is ‘curse-of-dimensionality’-free
in memory and computation and has conditioning guaran-
tees. The performance of the proposed method was illustrated
using simulation cases and additionally compared with existing
methods.

Note

1. Except the first and last one, as they are fixed at one (21).
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Appendices

Appendix 1. Derivation of the least squares problem
The proposed method involves the optimisation of a tensor network using
ALS. At every update of a tensor network core, a least squares problemmust
be solved. In this appendix, we derive that least squares problem.

Using the algorithm for the inner products of two tensor net-
works (Oseledets, 2011) and (29), (30), we can state that

〈T,Zk〉 =
s=p∏
s=1

ns∑
is=1

A(s)(:, is, :) ⊗ B(s)
k (:, is, :), (A1)

where ns is

ns = m + 1 for s ≤ p − 1, otherwisem(l + r) (A2)

and the operator
∏

is defined as

d∏
i=1

Mi = M1M2 . . .Md . (A3)

Then, we can isolate the sth core:

〈T,Zk〉 = V(s)
−,k

⎛
⎝ ns∑

is=1
A(s)(:, is, :) ⊗ B(s)

k (:, is, :)

⎞
⎠V(s)

+,k, (A4)

whereA(s) ∈ R
m̄×ns×n̄, B(s)

k ∈ R
p̄×ns×q̄, and

V(s)
−,k = Im̄p̄ fors = 1,

t=s−1∏
t=1

nt∑
it=1

A(t)(:, it , :) ⊗ B(t)
k (:, it , :)otherwise, (A5)

and

V(s)
+,k = In̄q̄ fors = p,

t=p∏
t=s+1

nt∑
it=1

A(t)(:, it , :) ⊗ B(t)
k (:, it , :)otherwise. (A6)

Using the Kronecker algebra trick in Batselier et al. (2017), we can rewrite

〈T,Zk〉 =
(
(V(s)

+,k)
T ⊗ V(s)

−,k

)

×
ns∑

is=1
vec
(
A(s)(:, is, :) ⊗ B(s)

k (:, is, :)
)
, (A7)

where we additionally pulled the summer out of the vectorisation operator
vec(∗). Next we use the following equivalence (Turkington, 2013). For a
matrixM of size m̄-by-n̄ and a matrix N of size p̄-by-q̄:

vec(M ⊗ N) = (In̄ ⊗ K̄q̄m̄ ⊗ Ip̄)(Im̄n̄ ⊗ vec(N))vec(M), (A8)

where the matrix K̄ is defined such that

K̄m̄n̄vec(M) = vec(MT). (A9)

Now we can fill in
M = A(s)(:, is, :),

N = B(s)
k (:, is, :)

(A10)

to obtain

〈T,Zk〉 =
(
(V(s)

+,k)
T ⊗ V(s)

−,k

)
(In̄ ⊗ K̄q̄m̄ ⊗ Ip̄)

ns∑
is=1

× (Im̄n̄ ⊗ vec(B(s)
k (:, is, :))vec(A(s)(:, is, :)). (A11)

Notice that the sizes are constant over is. Next we can rewrite without
summation:

〈T,Zk〉 =
(
(V(s)

+,k)
T ⊗ V(s)

−,k

)
(In̄ ⊗ K̄q̄m̄ ⊗ Ip̄)

× [Im̄n̄ ⊗ vec(B(s)
k (:, 1, :)) . . . ]

×

⎡
⎢⎣
vec(A(s)(:, 1, :))

...
vec(A(s)(:, ns, :))

⎤
⎥⎦ .

(A12)

We can further simplify this equation by reorganising the right-mostmatrix
into vec(A(s)) as follows. Define the matrix V̄(s)

k in pseudo-code:

V̄(s)
k = reshape(permute(reshape(

×
(
(V(s)

+,k)
T ⊗ V(s)

−,k

)
(In̄ ⊗ K̄q̄m̄ ⊗ Ip̄)

×
[
Im̄n̄ ⊗ vec(B(s)

k (:, 1, :)) . . .
]
,

[l, m̄, ns, n̄]), [1, 2, 4, 3]), [l, m̄nsn̄]), (A13)

where the two functions are defined as follows. The ‘reshape’ function
changes the size of the dimensions of its first argument as specified in its
second argument. The ordering of the elements is not changed. The ‘per-
mute’ function changes the indexing of its first argument as specified in its
second argument. Then, we obtain (using (31)):

yk ≈ 〈T,Zk〉 + ek = V̄(s)
k vec(A(s)) + ek. (A14)

We can stack this over all samples. Define

V̄(s) =

⎡
⎢⎢⎣
V̄(s)
p+1
...

V̄(s)
N

⎤
⎥⎥⎦ ∈ R

l(N−p)×m̄nsn̄, Ȳ =

⎡
⎢⎣
yp+1
...
yN

⎤
⎥⎦ ,

Ē =

⎡
⎢⎣
ep+1
...
eN

⎤
⎥⎦ ∈ R

l(N−p), (A15)

such that

Ȳ = V̄(s)vec(A(s)) + Ē, (A16)
where it is assumed that l(N − p) is greater than or equal to the number
of elements of each A(s). Additionally, upper bounds are derived on the
condition number of V̄(s) in Appendix 2. This is the least squares problem
that has to be solved when updating a core.

Appendix 2. The condition guarantee
The proposed method uses ALS to optimise its tensor network cores.
This involves solving a number of sub-problems (A.16), whose condi-
tioning depends on the condition number of V̄(s). In this appendix, we
derive an upper bound on this condition number using Holtz et al. (2012).
Notice that this property is in part due to the orthogonalisation steps
of tensor network ALS. Additionally, we provide a means to compute it
‘curse-of-dimensionality’-free in memory and computation.

Firstly, define the condition number of amatrix as the ratio of the largest
singular value of that matrix to the smallest singular value. If the smallest
singular value is zero, then the condition number is by convention infinite.
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Let ‘cond()’ be an operator whose output is the condition number of its
argument.

Define using (31):

Y̌ =

⎡
⎢⎣
yp+1

T

...
yNT

⎤
⎥⎦ , Ě =

⎡
⎢⎣
ep+1

T

...
eNT

⎤
⎥⎦ , Ž =

⎡
⎢⎣
vec(Zp+1)

T

...
vec(ZN)T

⎤
⎥⎦ , (A17)

such that we can rewrite (31) as

Y̌ ≈ (CK(p)Z)T + Ě = Ž(T〈1〉)T + Ě. (A18)

Additionally, we assume that the chosen initialisation of the tensor network
cores results in all V̄(s) (A.16) being invertible at the start of the optimisa-
tion. Then, using the results of Holtz et al. (2012), we can now state that the
condition number of each V̄(s) (A.16) is upper bounded by the condition
number of the matrix Ž.

Next, we providemeans to compute the latter condition number ‘curse-
of-dimensionality’-free in memory and computation using tensor trains.
Notice that Ž suffers from the ‘curse-of-dimensionality’, such that the com-
putation of its condition number is problematic. However, since Ž only
has N−p rows, the following trick can be applied. For any wide matrixM,
cond[M] = cond[(MMT)1/2] holds. Notice that MMT is smaller than the
wideM. Hence, we use that

cond[Ž] = cond[(ŽŽT)1/2], (A19)

where the size of (ŽŽT)1/2 is only N−p-by-N−p. Hence, cond[(ŽŽT)1/2]
can be computed if (ŽŽT) is available. In other words, the size and square
root do not induce any ‘curse-of-dimensionality’, such that the problem
reduces to computing the following equation ‘curse-of-dimensionality’-
free in memory and computation. This reduced problem can be tackled
using tensor trains. Using (A.17)

[ŽŽT](i, j) = vec(Zp+i)
Tvec(Zp+j), (A20)

or equivalently

[ŽŽT](i, j) = 〈Zp+i,Zp+j〉 (A21)
which is an inner product of two tensor trains (Definition 2.4). This inner
product and, with it, the upper bound on the condition number can be
computed ‘curse-of-dimensionality’-free in memory and computation.

Appendix 3. The operator for the state-revealingmatrix
In Section 2.1 it has been discussed how the estimate (LPV sub-Markov)
parameters can be used to obtain an estimate of the state sequence. This
is done by constructing the estimate state-revealing matrix R(θ) and tak-
ing its SVD. In this appendix, we show how to obtain this matrix from
the estimate tensor networks ‘curse-of-dimensionality’-free inmemory and
computation.

Recall that R has been defined as (20):

R =

⎡
⎢⎢⎢⎢⎢⎣

CLp CLp−1 · · · CL1
0 CÃ(1)Lp−1 · · · CÃ(1)L1
...

. . .
. . .

...

0 0 C
(
Ã(1)

)f−1
L1

⎤
⎥⎥⎥⎥⎥⎦Z ∈ R

fl×N−p. (A22)

Notice that both matrices of the product suffer from the ‘curse-of-
dimensionality’. However, we can avoid this problem by using the tenor
networks as in (33)

R = h(A(1), . . . ,A(p),μ, z, f ), (A23a)

R(θ) = h(A(1)(θ), . . . ,A(p)(θ),μ, z, f ), (A23b)
where some operator h(∗) is used which is ‘curse-of-dimensionality’-free
in memory and computation.

This operator is non-trivial, because of the following reason. The rows
of R involve subsets of the LPV sub-Markov parameters and the relation of
these subsets to the tensor network decomposition is complex. Firstly, the
LPV sub-Markov parameters appearmultiple times in the parameter tensor
and require averaging. Secondly, the tensor network cores contain identity

matrices which add further ambiguity. The remainder of this appendix pro-
vides details on the functionality of this operator. The operator is presented
formally in Algorithm A.2.

The operator h(∗) consists of several loops. The major loop is over the
outputs. That is, we split the full problem into l single-output sub-problems.
Then, we solve each sub-problem individually and merge the results. How
we split and merge is presented in full detail in Algorithm A.2. How we
solve each sub-problem will be introduced next. In the remainder of this
appendix we consider one such sub-problem with output number o for
clarity.

For each such sub-problem, we compute the state-revealing matrix (20)
with C replaced by Co = C(o, :). The top row of this matrix is CoK(p)Z and
can be computed efficiently using inner products of tensor networks (31),
where C is substituted by Co. The other rows are more involved.

The difficulty of the other rows is that we do not have a single inner
product, because these rows involve only subsets of the LPV sub-Markov
parameters. Namely, row number t only involves LPV sub-Markov param-
eters whose product begins with Co(Ã(1))t−1 (20). Therefore, we compute
these rows in two parts. The first part relates to the required begin of the
product, and the second part relates to the ‘free’ part.

Before presenting the computation, we first provide insight into how
LPV sub-Markov parameters appearmultiple times in the parameter tensor
and how to deal with this. The reason LPV sub-Markov parameters appear
multiple times in the parameter tensor is that they can be constructed in dif-
ferent ways from the tensor train cores. For example consider the (1,2,1)th
and (2,1,1)th entry of the estimate parameter tensor for three cores:

T(1, 2, 1)(θ) = [Co](θ1) [Ã(1)](θ2) [B(1)](θ3),

T(2, 1, 1)(θ) = [CoÃ(1)](θ1) [I](θ2) [B(1)](θ3).
(A24)

Both relate to the same LPV sub-Markov parameter. To be exact, LPV
sub-Markov parameters with c many Ã(∗)’s appear

(p−1
c
)
times. This phe-

nomenon poses a problem, as we have several estimates of the same LPV
sub-Markov parameter. It turns out that discarding all but one estimate is
not viable, because it changes the model output. However, averaging esti-
mates does not change themodel output and removes the ambiguity. This is
possible because the estimates are multiplied with the same data during the
computation of the model output. We will explain later in this subsection
how to perform this averaging efficiently.

First we define the matrix S in order to store all possible ways of fixing
the cores to obtain the subset of LPV sub-Markov parameters relevant to
one row of the state-revealing matrix. Let the number of cores we fix be δ.
Then, we need to fix δ cores, of which t−1 cores to Ã(1) and the rest as I.
The last core we have to fix as Ã(1), for reasons we will explain later in this
subsection. This becomes a pick t−2 cores out of δ − 1 cores problem. This
can be done in

(
δ−1
t−2
)
ways. For every possible way, we put a row in S where

the sth element of that row is a 1 if core s is fixed at Ã(1) and a 0 otherwise
for s is one to δ. We summarise this algorithm:

Algorithm A.1: S = fS(δ, t)
For every possible way of picking t−2 cores out of δ − 1 cores, put a row in

S, where the sth element of that row is a 1 if core s is picked and a 0 otherwise.
Let the δth element of that row be 1. This results in a

(
δ−1
t−2
)
-by-δ matrix.

We illustrate the result of the algorithm with an example:

fS(δ = 4, t = 4) =
⎡
⎣0 1 1 1
1 0 1 1
1 1 0 1

⎤
⎦ . (A25)

In this paragraph, we discuss why we need δ in the computations. The
LPV sub-Markov parameters related to the tth row all start withC(Ã(1))t−1,
and we can isolate these by fixing cores. This we can do by fixing the first
t−1 cores as CÃ(1) and Ã(1). The remaining cores are ‘free’. We can also
do this while fixing more cores, by fixing some at I. That can also leave a
number of cores ‘free’. Therefore, to capture all estimates of the same LPV
sub-Markov parameter, we have to consider δ = t − 1 to p−1. Additionally,
to avoid counting estimates double, we let the last fixed core always be fixed
at Ã(1). Now we return to how to perform the computations of the operator
h(∗).
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The first part of the computation relates to the fixed cores. The fixed
cores are simply matrices. More specifically, they are slices of the cores cor-
responding to either I or Ã(1). They form a series of matrix products. This
product returns a row vector, as we consider one output at a time.We define
this product as L̄.

The secondpart of the computation relates to the ‘free’ cores.Notice that
for the top row we had no fixed cores and directly used a tensor network
inner product. Here we again use inner products.We form a reduced tensor
network from the free cores. To match this smaller size tensor network in
size, we also define a reduced data tensor network. This tensor network
can simply be computed using (30) with p substituted by p − δ, and the
following change.

Additionally, we have to change the duplication correction factors (30)
to account for the effect of δ not being just zero. Therefore, we define the
matrix Dr :

Dr =

⎡
⎢⎢⎢⎣
(p−(t−1)

1
)(p−δ−1

0
)−1 · · · 0

...
. . .

...
0 · · · (p−(t−1)

p−δ

)(p−δ−1
p−δ−1

)−1

⎤
⎥⎥⎥⎦ , (A26)

such that changing the last data tensor network core as

B̌(p−δ)

k = DrB̌(p−δ)

k (A27)

ensures the correct duplication correction factors for the computation of
the state-revealing matrix. Notice that B̌(p−δ)

k is a matrix. This then forms
the tensor network of the reduced data tensor.

Then, we combine these computations to obtain the state-revealing
matrix of the sub-problem. Namely, we post-multiply L with the inner
product of the reduced parameter and reduced data tensor networks. This
is done over several loops, over: the sample, row, δ and rows of S. We
remark that the operator R(∗) is ‘curse-of-dimensionality’-free in memory
and computation.Next we summarise the computation of the operator h(∗)

in the following algorithm in pseudo-code.

Algorithm A.2: The operator h(∗)

Input: (estimate)A(1), . . . ,A(p),μ, z, f
Output: (estimate) state-revealing matrix R

(1) R = 0̄ ∈ R
fl×N−p

(2) for o= 1 to l do
(3) Ā(1)

o = A(1)(o, :, :)
(4) R(o) = h̄(Ā(1),A(2), . . . ,A(p),μ, z, f ) using Algorithm A.3
(5) v= o:l:fl
(6) R(v, :) = R(o)

(7) end for

Algorithm A.3: The operator h̄(∗)

Input: (estimate) Ā(1),A(2), . . . ,A(p),μ, z, f
Output: (estimate) state-revealing matrix R(o)

(1) R(o) = 0̄ ∈ R
f×N−p

(2) for k= p+1 to N do
(3) R(1, k − p) = 〈T,Zk〉 using (31)
(4) for row number t= 2 to f do
(5) for fixed cores number δ = t − 1 to p−1 do
(6) S = fS(δ, t)∈ R

c̄×δ using Algorithm A.1
(7) for c= 1 to c̄
(8) L̄ = A(1)(:, 1 + S(c, 1), :)
(9) for s= 2 to δ

(10) L̄ = L̄A(s)(:, 1 + S(c, s), :)
(10) end for
(12) Ť = g(A(1+δ), . . . ,A(p)) using (22)
(13) Compute B̌(1)

k to B̌(p−δ)

k using (30)
with p substituted by p − δ

(14) B̌(p−fixno)
k = DrB̌(p−δ)

k using (A.26)
(15) Žk = g(B̌(1)

k , . . . , B̌(p−δ)

k ) using (22)
(16) R(o)(t, k − p) = R(o)(t, k − p)+

L̄〈Ť, Žk〉/c̄
(17) end for
(18) end for
(19) end for
(20) end for
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