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ABSTRACT
This paper proposes a decentralised second-order slidingmode (SOSM) control strategy for load frequency
control (LFC) in power networks, regulating the frequency andmaintaining the net inter-area power flows
at their scheduled values. The considered power network is partitioned into control areas, where each area
is modelled by an equivalent generator including second-order turbine-governor dynamics, and where
the areas are nonlinearly coupled through the power flows. Asymptotic convergence to the desired state
is established by constraining the state of the power network on a suitably designed sliding manifold.
This manifold is designed relying on stability considerations made on the basis of an incremental energy
(storage) function. Simulation results confirm the effectiveness of the proposed control approach.
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1. Introduction

To operate the power network successfully, the total genera-
tion should match the total load demand and associated system
losses. It is however common that over time mismatches occur,
resulting in a deviation of the system frequency from its nominal
value and in power flows between the areas that differ from their
scheduled exchanges. Aweighted combination of the deviations
in the frequency and in the tie-line power flows is generally
called the ‘Area Control Error’ (ACE). Reducing this error is
achieved by the so-called load frequency control (LFC) or auto-
matic generation control (AGC), where an appropriate control
scheme changes governor setpoints to compensate for local load
changes and to maintain the scheduled tie-line power flows
(Kundur, Balu, & Lauby, 1994).

Since the power network can be regarded as one of the
most important infrastructures, improving LFC received a con-
siderable amount of attention from various research commu-
nities (Ibraheem, Kumar, & Kothari, 2005; Pandey, Mohanty,
& Kishor, 2013). Particularly, due to the increasing share of
renewable energy sources, it is unsure if the existing imple-
mentations are still adequate (Apostolopoulou, Domínguez-
García,& Sauer, 2016). To copewith the increasing uncertainties
affecting a control area and to improve the controllers perfor-
mance, advanced control techniques have been proposed to
redesign the conventional control schemes, such as passivity-
based control (Pogromsky, Fradkov, & Hill, 1996), model pre-
dictive control (Ersdal, Imsland, & Uhlen, 2016), adaptive
control (Zribi, Al-Rashed, & Alrifai, 2005) and fuzzy control
(Chang & Fu, 1997).

In this work, we propose a new control strategy based on
the sliding mode (SM) control methodology, which is a well-
known robust control approach, especially useful to control

CONTACT Sebastian Trip s.trip@rug.nl Jan C. Willems Center for Systems and Control, ENTEG, Faculty of Science and Engineering, University of Groningen,
Nijenborgh 4, 9747 AG Groningen, Netherlands
∗Preliminary results appeared in Trip, Cucuzzella, Ferrara, and De Persis (2017).

systems subject to modelling uncertainties and external dis-
turbances (Edwards & Spurgen, 1998; Utkin, 1992). Since the
power network is typically subject to modelling uncertainties
and external disturbances (Furtat & Fradkov, 2015), there are
indeed various SM-based approaches to improve the conven-
tional LFC schemes (Dong, 2016; Mi, Fu, Wang, &Wang, 2013;
Trip, Cucuzzella, Persis, van der Schaft, & Ferrara, 2018), pos-
sibly together with fuzzy logic (Ha, 1998), genetic algorithms
(Vrdoljak, Perić, & Petrović, 2010), disturbances observers (Mi
et al., 2016) and linear matrix inequalities (LMI) based control
techniques (Prasad, Purwar, & Kishor, 2015).

1.1 Main contributions

Although the use of SMs in LFC has received a considerable
amount of attention, the solution proposed in this work and
the associated stability analysis differ substantially from the
aforementioned works. Particularly, we notice that a common
assumption in the literature is that the coupling between the
control areas is linear. Instead, we consider a more realistic
nonlinear coupling between the control areas, induced by the
nonlinear power flow equations, which poses new challenges in
the design of the slidingmanifold. To the best of our knowledge,
we are not aware of existing controllers for nonlinear power
networks (including second-order turbine-governor dynamics)
that provably achieve frequency regulation while maintaining
the scheduled tie-line power flows. We summarise the main
contributions of this work as follows:

(1) The considered nonlinear power network model is more
general than commonly considered in the analytical stud-
ies of LFC schemes. In this paper, we adopt the model of
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a power network partitioned into control areas, having an
arbitrarily complex and meshed topology. Besides includ-
ing the nonlinear coupling between the areas, we model
the generation side by an equivalent generator including
second-order turbine-governor dynamics. Particularly, the
appearance of nonlinear power flows in combination with
the second-order turbine-governor dynamics is challeng-
ing as it requires the development of a new nonlinear
storage function for the stability analysis (Trip & De Per-
sis, 2018).

(2) SM control typically generates discontinuous control
inputs that could lead to an undesired chattering effect
(Utkin, 2016; Ventura & Fridman, 2016) and/or damage
the system actuator. In this work, we argue that the use
of higher order SM schemes are beneficial to LFC, as they
result in a continuous control input, avoiding to possibly
damage the (mechanical) turbine governor. Particularly,
we focus on the suboptimal second-order sliding mode
(SSOSM) control algorithm proposed in Bartolini, Ferrara,
andUsai (1998a), and explicitly design a decentralised con-
troller.Moreover, the convergence to the slidingmanifold is
obtained neither measuring the power demand, nor using
load observers.

(3) When the power network is constrained to the designed
slidingmanifold, the convergence towards the desired state
is established relying on a Barbashin–Krasovskii–LaSalle
invariance principle, and a new incremental storage func-
tion, composed of a commonly used incremental energy
function (Trip, Bürger, & De Persis, 2016) and addi-
tional cross-terms. Particularly, the design of a nonlin-
ear sliding function is inspired by the proposed nonlin-
ear incremental storage function. A case study shows the
effectiveness of the proposed controller and demonstrates
that, besides the immediate application to LFC, the com-
bined use of sliding mode control and other nonlinear
control techniques can provide new insights and control
strategies.

1.2 Outline

The present paper is organised as follows: In Section 2, the net-
work model is introduced. In Section 3, the considered LFC
problem is formulated. The proposed controller is described
in Section 4. The stability of the controlled power network is
studied in Section 5. Simulation results are reported and dis-
cussed in Section 6, while some conclusions are finally gathered
in Section 7.

1.3 Notation

Let 0 be the vector of all zeros of suitable dimension and let 1n
be the vector containing all ones of length n. The ith element
of vector x is denoted by xi. A constant signal is denoted by
x∗. A steady-state solution to system ẋ = ζ(x), is denoted by x̄,
i.e. 0 = ζ(x̄). In case the argument of a function is clear from
the context, we occasionally write ζ(x) as ζ . Let A ∈ R

n×n be
a matrix. In case A is a positive definite (positive semi-definite)
matrix, we write A � 0 (A � 0). The sign function is defined as

follows (Shtessel, Edwards, Fridman, & Levant, 2014):

sgn(x) :=
{

−1 ifx < 0,
1 ifx > 0,

(1)

and sgn(0) ∈ [−1, 1].

2. Nonlinear power networkmodel

In this section, the dynamic model of a power network parti-
tioned into control areas is presented. The dynamic behaviour
of a single control area is described by an aggregated load
and an equivalent thermal power plant with a non-reheat tur-
bine, which is commonly represented by second-order turbine-
governor dynamics. A block diagram of the considered system
with two control areas is represented in Figure 1 (see also Table 1
for the description of the used symbols). Consequently, the
dynamic equations of the ith area are the following:

δ̇i = ωb
i

Tpiω̇
b
i = −(ωb

i − ω∗) + KpiPti − KpiPdi

− Kpi
∑
j∈Ai

V∗
i V

∗
j

Xij
sin (δi − δj), (2)

where Ai is the set of control areas connected to the ith area
by transmission lines. Note that we assume that the network is
lossless, which is generally valid in high-voltage transmission
networks where the line resistance is negligible. Moreover, Pti
in (2) is the power generated by the ith plant, and it can be
expressed as the output of the following second-order dynam-
ical system that describes the behaviour of both the governor
and the turbine:

TgiṖgi = − 1
Ri

(ωb
i − ω∗) − Pgi + ui

TtiṖti = −Pti + Pgi.
(3)

In this paper, we aim at the design of a continuous control input
ui to achieve frequency regulation and to maintain the power
flows at their desired (scheduled) values. These control objec-
tives will be made explicit in the next section. First, we suggest
a compact notation for the overall power network that is useful
for the upcoming discussions.

The considered power network consists of n interconnected
control areas, of which the topology is represented by a con-
nected and undirected graph G = (V , E), where the nodes V =
{1, . . . , n}, represent the control areas and the edges E ⊂ V ×
V = {1, . . . ,m}, represent the transmission lines connecting the
areas. The topology can be described by its corresponding inci-
dence matrix B ∈ R

n×m. Then, by arbitrarily labelling the ends
of edge k with a ‘+’ and a ‘−’, one has that

Bik =

⎧⎪⎨
⎪⎩

+1 if i is the positive end of k
−1 if i is the negative end of k
0 otherwise.

The dynamics of the overall power network can now be com-
pactly written for all areas i ∈ V as

η̇ = BTω

TpK−1
p ω̇ = −K−1

p ω + Pt − Pd − B� sin(η) (4)
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Figure 1. Block diagram of two interconnected control areas.

Table 1. Description of the used symbols.

Symbol Description

δi Voltage angle
ωb
i Frequency

ωi Frequency deviation
Pti Turbine output power
Pgi Governor output
ω∗ Nominal frequency
Tpi Time constant of the control area
Tti Time constant of the turbine
Tgi Time constant of the governor
Kpi Gain of the control area
Ri Speed regulation coefficient
V∗
i Constant voltage

Xij Line reactance
ui Control input
Pdi Unknown power demand

TgṖg = −R−1ω − Pg + u

TtṖt = −Pt + Pg ,

where ω = ωb − ω∗1n ∈ R
n is the frequency deviation, Pt ∈

R
n, Pg ∈ R

n, � = diag{�1, . . . ,�m}, with �k = V∗
i V

∗
j /Xij,

where line k connects areas i and j, sin(η) = (sin(η1), . . . ,
sin(ηm))T, Pd ∈ R

n and u ∈ R
n. Note furthermore that we

introduced the variable η = BTδ ∈ R
m, where element ηk is the

difference in voltage angles across line k between areas i and
j. Matrices Tp,Tt ,Tg ,Kp,R are positive definite n × n diagonal
matrices, e.g. Kp = diag{Kp1, . . . ,Kpn}.

3. Problem formulation

Before focussing on the controller design, we formulate the two
main objectives of LFC (automatic generation control). The first

objective is concerned with the stead-state frequency deviation
ω̄, i.e. with limt→∞ ω(t).
Objective 1 (Frequency regulation):

lim
t→∞ ω(t) = ω̄ = 0. (5)

Let (BP∗
f )i denote the total desired power flow exchanged by

control area i ∈ V , P∗
f being an external reference signal. The

second objective is to maintain the scheduled net power flows
between the control areas.
Objective 2 (Maintaining scheduled net power flows):

lim
t→∞B� sin(η(t)) = B� sin(η̄) = BP∗

f . (6)

In case the power network does not contain cycles, Objec-
tive 2 is equivalent to limt→∞ � sin(η(t)) = P∗

f , such that the
power flow on every line is regulated towards its desired value
(see also Remark 5.2 in Section 5). To be able to achieve
Objectives 1 and 2, we make the following assumption on the
feasibility of the control problem:

Assumption 3.1 (Feasibility): For a given constant P∗
d , there

exist a constant input ū and state (ω̄ = 0, η̄, P̄g , P̄t) that satisfies

0 = BT0

0 = −K−1
p 0 + P̄t − P∗

d − B� sin(η̄)

0 = −R−10 − P̄g + ū

0 = −P̄t + P̄g , (7)

where B� sin(η̄) = BP∗
f .
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To increase the practical applicability, we furthermore desire
the controllers to be decentralised and to be able to provide
a continuous control input, avoiding to damage the turbine
governor. We are now in a position to formulate the control
problem:

Control Problem 1: Let Assumption 3.1 hold. Given sys-
tem (4), design a decentralised control scheme, providing a
continuous control input u, capable of guaranteeing that the
controlled system is asymptotically stable with zero steady-state
frequency deviation (Objective 1), maintaining, at the steady
state, the scheduled (net) power flows (Objective 2).

4. The proposed robust solution

In this section, a decentralised SOSM control scheme is pro-
posed to solve the aforementioned control problem. In this
work, we focus on the well-established SSOSM controller pro-
posed in Bartolini et al. (1998a) and apply it to the power
network augmented with an additional state variable θ ∈ R

n

with dynamics

Tθ θ̇ = −θ + Pt , (8)

that will provide additional freedom to shape the transient
behaviour. To facilitate the upcoming discussion, we recall for
convenience the following definitions that are essential to slid-
ing mode control:

Definition 4.1 (Sliding function): Consider system

ẋ = ζ(x, u), (9)

with state x ∈ R
n, and input u ∈ R

m. The sliding function σ(x) :
R
n → R

m is a sufficiently smooth output function of system (9).

Definition 4.2 (r-slidingmanifold): The r-sliding manifold1 is
given by

{x ∈ R
n, u ∈ R

m : σ = Lζ σ = · · · = L(r−1)
ζ σ = 0}, (10)

where L(r−1)
ζ σ (x) is the (r − 1)th order Lie derivative of σ(x)

along the vector field ζ(x, u). With a slight abuse of notation we
also write Lζ σ (x) = σ̇ (x), and L(2)

ζ σ (x) = σ̈ (x).

Definition 4.3 (r-order sliding mode (controller)): An r-
order sliding mode is enforced from t = Tr ≥ 0, when, starting
from an initial condition, the state of (9) reaches the r-sliding
manifold, and remains there for all t ≥ Tr . The order of a sliding
mode controller that enforces an r-order sliding mode is equal
to r.

Bearing in mind the definitions above, we propose for
the system at hand, the sliding function σ(ω,Pt ,Pg , θ , η) :
R
4n+m → R

n given by

σ = M1ω + M2Pt + M3Pg + M4θ + M5B(� sin(η) − P∗
f ),
(11)

where M1, . . . ,M5 are constant n × n diagonal matrices, suit-
able selected in order to assign the dynamics of the augmented

system on the manifold σ = 0. The sliding function (11) is
stated in an ad-hoc manner to facilitate the discussion on the
controller design. Nevertheless, the choice of (11) is inspired
by the stability analysis in Section 5. Particularly, the permit-
ted values for M1, . . . ,M5 follow directly from the stability
analysis, and we provide explicit values for these matrices in
Assumption 5.1 in the next section.

Regarding the sliding function (11) as the output function2
of system (4), (8), the relative degree3 is one. This implies that
a first-order sliding mode controller can be naturally applied in
order tomake the state of the controlled system reach, in a finite
time, the manifold σ = 0. However, a sliding mode controller
typically generates a fast switching discontinuous control input
that could lead to an undesired chattering effect (Utkin, 2016;
Ventura & Fridman, 2016) and/or damage the actuator. As
a consequence, it is important to provide a continuous con-
trol input u to the governor. To obtain a continuous input u,
we adopt the procedure suggested in Bartolini et al. (1998a),
yielding for system (4) augmented with (8):

η̇ = BTω

TpK−1
p ω̇ = −K−1

p ω + Pt − Pd − B� sin(η)

TgṖg = −R−1ω − Pg + u

TtṖt = −Pt + Pg

Tθ θ̇ = −θ + Pt
u̇ = w,

(12)

where w is the new (discontinuous) input generated by a slid-
ingmode controller discussed below. Note that indeed the input
signal to the governor, u(t) = ∫ t

0 w(τ ) dτ , is continuous, since,
as will we show later, the input w is piecewise constant. Fur-
thermore, a consequence of the previous procedure is that the
system relative degree (with respect to the new control input
w) is now two, and we need to rely on a second-order sliding
mode control strategy to attain the sliding manifold σ = σ̇ = 0
in a finite time (Levant, 2003). To make the controller design
explicit, we introduce two auxiliary variables ξ1 = σ and ξ2 = σ̇

and define the so-called auxiliary system as follows:

ξ̇1 = ξ2

ξ̇2 = φ + Gw

u̇ = w,

(13)

where ξ2 is not measurable as it depends, e.g. on the unknown
power demand Pd. Bearing in mind (11) and that σ̈ = φ + Gw,
it follows that φ ∈ R

n and G ∈ R
n×n are given by

φ =
(
M1T−2

p + M3R−1T−1
p T−1

g − M2R−1T−1
t T−1

g

+M3R−1T−2
g

)
ω − (M1KpT−2

p + M3KpR−1T−1
p T−1

g

+ M1KpT−1
p T−1

t − M2T−2
t + M4T−1

t T−1
θ + M4T−2

θ )Pt

+
(
M1KpT−1

p T−1
t − M2T−2

t − M2T−1
t T−1

g + M3T−2
g

+M4T−1
t T−1

θ

)
Pg +

(
M2T−1

t − M3T−1
g

)
T−1
g u
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+
(
M1T−1

p +M3R−1T−1
g

) (
KpT−1

p Pd+KpT−1
p B� sin(η)

)

− M1KpT−1
p

(
Ṗd + B�

d
dt

sin(η)

)

+ M5B�
d2

dt
sin(η) + M4T−2

θ θ ,

G = M3T−1
g . (14)

Note that, φ,G are uncertain due to the presence of the unmea-
surable power demand Pd and possible parameter uncertainties.
However, we assume that φ and G can be bounded.

Assumption 4.1 (Bounded uncertainty): The terms φi and Gii
in (13) have known bounds, i.e.

‖φi‖ ≤ �i ∀ i ∈ V (15)

0 < Gmin
i ≤ Gii ≤ Gmax

i ∀ i ∈ V , (16)

�i, Gmin
i and Gmax

i being positive constants.

To steer ξ1i and ξ2i to zero in a finite time even in the
presence of the uncertainties, the SSOSM algorithm (Bartolini
et al., 1998a) is used. Consequently, the control law for the ith
node is given by

wi = −αiWisgn
(
ξ1i − 1

2ξ
max
1i

)
, (17)

with

Wi > max
(

�i

α∗
i G

min
i

;
4�i

3Gmin
i − α∗

i G
max
i

)
, (18)

α∗
i ∈ (0, 1] ∩

(
0,
3Gmin

i
Gmax
i

)
, (19)

αi switching between α∗
i and 1, according to Bartolini

et al. (1998a, Algorithm 1). The extremal values ξmax
1i in (17) can

be detected by implementing for instance a peak detection as in
Bartolini, Ferrara, and Usai (1998b)4, or by checking sgn(σ̇ ),
where σ̇ can be estimated by implementing the well-known
Levant differentiator (Levant, 2003).

Remark 4.1 (Adaptive SSOSM): In practical cases, the bounds
in (15) and (16) can be determined relying on e.g. data analysis
or physical insights. However, if these bounds cannot be esti-
mated a priori, the adaptive version of the SSOSM algorithm
proposed in Incremona, Cucuzzella, and Ferrara (2016) can be
used to dominate the effect of the uncertainties.

Remark 4.2 (Local measurements): Because M1, . . . ,M5 are
diagonal matrices, each sliding variable σi is defined by only
local variables at area i ∈ V and the overall control scheme is
indeed decentralised.

Remark 4.3 (Second-order sliding modes): In order to con-
strain system (4) augmented with dynamics (8) on the slid-
ing manifold σ = σ̇ = 0, any other SOSM control law can be
used, such as the super-twisting control algorithm proposed in
Levant (1993), which requires only the measurement of σ .

5. Stability analysis

In this section, we study the stability of the power net-
work controlled by the proposed control scheme. To do so,
we first show that the closed-loop system reaches in finite
time the sliding manifold σ = σ̇ = 0. Second, to study the
(nonlinear) system restricted to that manifold, we suggest an
incremental storage function that under suitable conditions
attains a local minimum at the desired steady state. Third, the
desired convergence result is obtained by invoking the Bar-
bashin–Krasovskii–LaSalle invariance principle.

In order to prove the stability, we require two (nonrestric-
tive) assumptions. First, we notice that thematricesM1, . . . ,M5,
in (11) can be freely designed to obtain a suitable sliding mani-
fold. As we will show, the upcoming stability analysis suggests
the possible values for M1, . . . ,M5, leading to the following
assumption:

Assumption 5.1 (Desired sliding manifold): Let M1 � 0,
M2 � 0,M3 � 0 diagonal matrices and letM4 andM5 be defined
as

M4 = −(M2 + M3)

M5 = M1X,
(20)

where X is a diagonal matrix satisfying5

0 ≺ TpK−1
p − XTpK−1

p B�[cos(η̄)]BTK−1
p TpX, (21)

and

0 ≺ K−1
p − 1

4K
−1
p XK−1

p − 1
2 (TpK−1

p XB�[cos(η)]BT

+ B�[cos(η)]BTXK−1
p Tp). (22)

Remark 5.1 (Required information on the network topol-
ogy): The value of X needs to be calculated once for the whole
network and can be determined offline. The obtained value of
Xii needs then to be transmitted to control area i. Since all Mi
are diagonal, the proposed control scheme is fully decentralised
once the value ofX is obtained. To facilitate the controller design
that improves the scalability of the proposed solution, we pro-
vide a simple algorithm to determine a value ofX satisfying (21)
and (22) in Section 5.1

Second, the following assumption is made on the differences
of voltage angles at steady state, which is generally satisfied
under normal operating conditions of the power network.

Assumption 5.2 (Steady state voltage angles): The differences
in voltage angles in (7) satisfy

η̄ ∈
(
−π

2
,
π

2

)m
. (23)

The restrictions onMi and η̄ are required to apply the invari-
ance principle later on in Theorem 5.1, where stability of the
proposed control scheme is proven. This shows how the slid-
ing manifold can be designed relying on an energy (storage)
function-based stability analysis. Before discussing this main
result, some useful intermediate results are derived. First, we
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show that the SOSM controller (11)–(19) constrains the system
in finite time to the manifold characterised in the lemma below.

Lemma 5.1 (Convergence to the sliding manifold): Let
Assumptions 3.1–5.1 hold. System (4) augmented with (8) con-
verges in a finite time Tr ≥ 0 to the manifold where

Pg = −M−1
3 (M1ω + M2Pt + M4θ + M5B(� sin(η) − P∗

f )).
(24)

Proof: Following Bartolini et al. (1998a), the application
of (17)–(19) to each control area guarantees that an SOSM is
enforced, i.e. ∃Tr ≥ 0 : σ(t) = σ̇ (t) = 0, ∀ t ≥ Tr , where Tr
is the so-called reaching time. Then, from the definition of σ

in (11), one can easily obtain (24), whereM3 is invertible since,
according to Assumption 5.1,M3 � 0. �

Exploiting relation (24), the equivalent system on the sliding
manifold is as follows:

η̇ = BTω

TpK−1
p ω̇ = −K−1

p ω + Pt − Pd − B� sin(η)

M−1
1 M3TtṖt = −M−1

1 (M2 + M3)Pt − M−1
1 M4θ

− ω − M−1
1 M5B(� sin(η) − P∗

f )

Tθ θ̇ = −θ + Pt
σ = 0,

(25)

where we include the additional dynamic (8). As we now focus
on the asymptotic convergence of the equivalent system to a
desired steady state satisfying Objective 1 and Objective 2, we
make the following assumption (see also Remark 5.3), which is
required in order to allow for a steady state solution.

Assumption 5.3 (Constant power demand): The power
demand (unmatched disturbance) P∗

d is constant.

As a consequence of Assumptions 3.1 and 5.3, there exists a
(ω̄ = 0, η̄, P̄t , θ̄ ) satisfying

0 = BT0

0 = −K−1
p 0 + P̄t − P∗

d − B� sin(η̄)

0 = −M−1
1 (M2 + M3)P̄t − M−1

1 M4θ̄ − 0

− M−1
1 M5B(� sin(η̄) − P∗

f )

0 = −θ̄ + P̄t
σ = 0,

(26)

where in (7), P̄g = θ̄ = ū. To show the desired convergence
properties of the equivalent system (25) we consider the func-
tion

S(ω, η,Pt , θ) = 1
2ω

TTpK−1
p ω − 1Tm�cos(η)

+ ωTTpK−1
p XB� sin(η) + 1

2P
T
t M

−1
1 M3TtPt

+ 1
2θ

TM−1
1 (M2 + M3)Tθ θ , (27)

that consists of an energy function of the power network (Trip
et al., 2016), a cross-term and common quadratic functions for

the states of the turbine and the auxiliary dynamics. The stabil-
ity of the system is then proven using an incremental storage
function that is the Bregman distance (Bregman, 1967) associ-
ated to the function (27). The Bregman distance associated to S
is defined as:

SB = S(ω, η,Pt , θ) − S(0, η̄, P̄t , θ̄ )

− ∂S
∂ω

∣∣∣∣
T

x=x̄
(ω − 0)− ∂S

∂η

∣∣∣∣
T

x=x̄
(η − η̄)− ∂S

∂Pt

∣∣∣∣
T

x=x̄
(Pt − P̄t)

− ∂S
∂θ

∣∣∣∣
T

x=x̄
(θ − θ̄ )

= 1
2
ωTTpK−1

p ω − 1T� cos(η) + 1T� cos(η̄)

− (� sin(η̄))T(η−η̄)+ωTTpK−1
p XB(� sin(η)−� sin(η̄))

+ 1
2
(Pt − P̄t)TM−1

1 M3Tt(Pt − P̄t)

+ 1
2
(θ − θ̄ )TM−1

1 (M2 + M3)Tθ (θ − θ̄ ), (28)

where x = (ω, η,Pt , θ) and x̄ = (0, η̄, P̄t , θ̄ ) satisfies (26). We
remark that the Bregman distance SB is equal to S minus the
first-order Taylor expansion of S around (0, η̄, P̄t , θ̄ ). We now
derive two useful properties of SB, namely that SB has a local
minimum at (0, η̄, P̄t , θ̄ ) and that ṠB ≤ 0. We start with the first
claim.

Lemma 5.2 (Local minimum of SB): Let Assumptions 3.1–5.3
hold. Then SB has a local minimum at (0, η̄, P̄t , θ̄ ).

Proof: Since SB is a Bregman distance associated to (27), it is
sufficient to show that (27) is convex at the point (0, η̄, P̄t , θ̄ ) in
order to infer that SB has a localminimumat that point.We con-
sider therefore the Hessian matrix H(S(ω, η,Pt , θ)), evaluated
at (0, η̄, P̄t , θ̄ ), which we briefly denote H̄(S). A straightforward
calculation shows that

H̄(S) =
[
Q 0
0 M

]
, (29)

with

Q =
[

TpK−1
p TpK−1

p XB�[cos(η̄)]

[cos(η̄)]�BTXK−1
p Tp �[cos(η̄)]

]
(30)

M =
[
M−1

1 M3Tt 0

0 M−1
1 (M2 + M3)Tθ

]
. (31)

It is immediate to see thatM � 0, such that H̄(S) � 0 if and only
if Q � 0. Since �[cos(η̄)] � 0 as a result of Assumption 5.2, it
is sufficient that the Schur complement of block �[cos(η̄)] of
matrix Q satisfies

0 ≺ TpK−1
p − XTpK−1

p B�[cos(η̄)]BTK−1
p TpX. (32)

The claim then follows from Assumption 5.1. �

We now show that SB satisfies ṠB ≤ 0 along the solutions
to (25).
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Lemma 5.3 (Evolution of SB): Let Assumptions 3.1–5.3 hold.
Then ṠB ≤ 0.

Proof: We have that

ṠB = ωT(−K−1
p ω + Pt − P∗

d − B� sin(η)) + (� sin(η)

− � sin(η̄))TBTω + ωTTpK−1
p XB�[cos(η)]BTω

+ (B�(sin(η) − sin(η̄)))TX(−K−1
p ω + Pt − P∗

d

− B� sin(η)) + (Pt − P̄t)T(−M−1
1 (M2 + M3)Pt

− M−1
1 M4θ − ω − M−1

1 M5B(� sin(η) − P∗
f ))

+ (θ − θ̄ )TM−1
1 (M2 + M3)(−θ + Pt)

= −
(

ω

B�(sin(η) − sin(η̄))

)T
Z
(

ω

B�(sin(η) − sin(η̄))

)

− (Pt − θ)TM−1
1 (M2 + M3)(Pt − θ), (33)

where we used (26) in the second equality above and defined

Z =

⎡
⎢⎣K

−1
p − TpK−1

p XB�[cos(η)]BT 1
2
K−1
p X

1
2
XK−1

p X

⎤
⎥⎦ . (34)

Since X � 0, it follows that ṠB ≤ 0 if the Schur complement of
block X of matrix 1

2 (Z + ZT) satisfies

0 ≺ K−1
p − 1

4K
−1
p XK−1

p − 1
2 (TpK−1

p XB�[cos(η)]BT

+ B�[cos(η)]BTXK−1
p Tp). (35)

The claim then follows from Assumption 5.1. �

Now, we can prove the main result of this paper concern-
ing the evolution of the augmented system controlled via the
proposed SSOSM control strategy.

Theorem 5.1 (Main result): Let Assumptions 3.1–5.3 hold.
Consider system (4), augmented with the integrators (8) and con-
trolled via (11)–(19). Then, the solutions to the closed-loop system
starting in a neighbourhood of the equilibrium (ω̄ = 0, η̄, P̄t ,Pg)
approach the set where ω̄ = 0 and B� sin(η̄) = BP∗

f , where BP∗
f

is the desired net power exchanged by the control areas.

Proof: Following Lemma 5.1, we have that the SSOSM con-
trol enforces system (4), (8) to evolve ∀ t ≥ Tr on the sliding
manifold characterised by σ = σ̇ = 0, resulting in the reduced
order system (25). Consider the incremental storage function
SB, given by (28). In view of Lemmas 5.3 and 5.4, we have that
SB has a local minimum at (ω̄ = 0, η̄, P̄t , θ̄ ) and satisfies along
the solutions to (25)

ṠB = −
(

ω

B�(sin(η) − sin(η̄))

)T
Z
(

ω

B�(sin(η) − sin(η̄))

)

− (Pt − θ)TM−1
1 (M2 + M3)(Pt − θ)

≤ 0, (36)

where Z + ZT � 0. Consequently, there exists a forward
invariant set ϒ around (ω̄ = 0, η̄, P̄t , θ̄ ) and by the Bar-
bashin–Krasovskii–LaSalle invariance principle, the solutions

that start in ϒ approach the largest invariant set contained in

ϒ ∩ {(ω, η,Pt , θ) : ω = 0,B� sin(η) = B� sin(η̄),Pt = θ}.
(37)

From (24), it additionally follows that on the largest invariant set
Pg = Pt . Bearing in mind thatB� sin(η̄) = BP∗

f , we can indeed
observe that system (4) approaches the set where the frequency
deviation is zero, and where the net exchanged power is equal
to the desired value, i.e. B� sin(η) = BP∗

f . �

Remark 5.2 (Acyclic network topologies): In case the topol-
ogy of the power network does not contain any cycles, we have
that the corresponding incidencematrixB has full column rank
(Bapat, 2010, Lemma 2.2) and therefore has a left-inverse satis-
fyingB+B = I, such that we can conclude fromTheorem 1 that
the system approaches the set where

B� sin(η̄) = BP∗
f

B+B� sin(η̄) = B+BP∗
f

� sin(η̄) = P∗
f .

(38)

Remark 5.3 (Time-varying current demand): We assume that
the power demand is constant (see Assumption 5.3), to allow
for a steady-state solution (see Assumption 3.1) and to theoret-
ically assess the stability of the power network. Yet, the sliding
mode control strategy proposed in Section 4 is still applicable
if Assumption 5.3 is removed and the solutions to the power
system model will be constrained to the sliding manifold.

Remark 5.4 (Regionof attraction): TheBarbashin–Krasovskii
–LaSalle invariance principle can be applied to all bounded solu-
tions. As follows from Lemma 5.2, we have that on the sliding
manifold the considered incremental storage function attains
a local minimum at the desired steady state, which allows us
to show the existence of a region of attraction once the sys-
tem evolves on the sliding manifold. Furthermore, the time
to converge to the sliding manifold can be made arbitrarily
small by properly initialing the system and choosing the gains
of the SSOSM control algorithm. To characterise the region of
attraction requires a careful analysis of the level sets associ-
ated to the incremental storage function SB, as well as of the
trajectories outside of the sliding manifold. Although, a pre-
liminary numerical assessment shows that the region of attrac-
tion is large, a thorough analysis of the region of attraction is
outside the scope of this paper. An interesting direction is to
incorporate techniques developed in Vu and Turitsyn (2016)
and Dvijotham, Low, and Chertkov (2015) where energy func-
tions, similar to the one used in this paper, are further
characterised.

5.1 Existence and calculation of X

In this subsection, we show that there always exists a diagonal
matrix X that satisfies (21) and (22). Furthermore, in order to
facilitate the controller tuning, we provide a simple algorithm
that permits to compute possible entries of X, that is essentially
based on the coming two lemmas. The first lemma determines
a diagonal matrix X that satisfies (21).
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Lemma 5.4 (X satisfying (21)): If X = ε1KpT−1
p , with

ε1 < min
i∈V

(√
Tpi

2Kpi
∑

k∈Ni
�k

)
, (39)

then (21) is satisfied.

Proof: Note that, after the substitution X = ε1KpT−1
p , (21)

becomes

0 ≺ TpK−1
p − ε21B�[cos(η̄)]BT, (40)

which holds if the largest eigenvalue λmax satisfies

λmax(ε
2
1T

−1
p KpB�[cos(η̄)]BT) < 1. (41)

By the Gershgorin circle theorem, every eigenvalue of ε21T
−1
p Kp

B�[cos(η̄)]BT lies within at least one of the Gershgorin disk
Di(ci, ri) centred at ci, and with radius ri, where

ci = ri = ε21T
−1
pi Kpi

∑
k∈Ni

|�k cos(η̄k)|, (42)

where Ni is the set of lines connecting control area i. We
therefore have that

λmax(ε
2
1T

−1
p KpB�[cos(η̄)]BT) < 1. (43)

if

ε1 < min
i∈V

(√
Tpi

2Kpi
∑

k∈Ni
�k

)
. (44)

�

Similarly, the second lemma determines a diagonal matrix X
that satisfies (22).

Lemma 5.5 (X satisfying (22)): If X = ε2KpT−1
p , with

ε2 < min
i∈V

(
Tpi

1
2 + 2KpiTpi

∑
k∈Ni

�k

)
. (45)

then (22) is satisfied.

Proof: Note that, after the substitution X = ε2KpT−1
p , (22)

becomes

0 ≺ K−1
p

(
I − 1

4ε2T
−1
p

)
− ε2B�[cos(η)]BT, (46)

which holds, in analogy to Lemma 5.4, if

λmax

(
ε2Kp(I − 1

4ε2T
−1
p )−1B�[cos(η)]BT

)
< 1. (47)

Following the same argument as in Lemma 5.4, applying the
Gershgorin circle theorem, we have that (22) is satisfied when

ε2 < min
i∈V

(
Tpi

1
2 + 2KpiTpi

∑
k∈Ni

�k

)
. (48)

�

FromLemmas 5.4 and 5.5, the following corollary is immedi-
ate and indeed shows that there always exists a diagonal matrix
X that satisfies (21) and (22):

Corollary 5.1 (X satisfying (21) and (22)): Let

X = εKpT−1
p , (49)

with ε = min{ε1, ε2}, then (21) and (22) are satisfied.

Remark 5.5 (A simple algorithm to determineX): The results
of this subsection can be straightforwardly adapted to design an
algorithm to determine a suitable local valueXii at every control
area i ∈ V . First, every area determines an upper bound for ε̄i
using (39) and (45)

ε̄i = min

{√
Tpi

2Kpi
∑

k∈Ni
�k

,
Tpi

1
2 + 2KpiTpi

∑
k∈Ni

�k

}
(50)

Notice that determining ε̄i only requires the use of locally
available information. Second, the obtained upper bounds are
broadcasted to the other areas within the network such that all
areas i ∈ V can obtain a value of ε = mini∈V {ε̄i}. Third, if every
area selects Xii = εKpiT−1

pi , it is ensured that X satisfies (21)
and (22).

6. Simulation results

In this section, the proposed control solution is assessed in sim-
ulation6 on a power network partitioned into four control areas.

Figure 2. Scheme of the considered power network partitioned into four control

areas, where Pij = V∗
i V

∗
j

Xij
sin (δi − δj). The arrows indicate the positive direction of

the power flows through the power network.

Table 2. Anoverviewof thenumerical valuesused in the simulations,where abase
power of 1000MW is assumed.

Area 1 Area 2 Area 3 Area 4

Tpi (s) 21.0 25.0 23.0 22.0
Tti (s) 0.30 0.33 0.35 0.28
Tgi (s) 0.080 0.072 0.070 0.081
Kpi (s−1 p.u.−1) 120.0 112.5 115.0 118.5
Ri (s−1 p.u.−1) 2.5 2.7 2.6 2.8
Tθ i (s) 0.1 0.1 0.1 0.1
Pdi(0) (p.u.) 0.010 0.014 0.012 0.013
Pdi(1) (p.u.) 0.020 0.028 0.024 0.026
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The topology of the power network is represented in Figure 2,
and it is described by the incidence matrix

B =

⎡
⎢⎢⎣

1 0 0
−1 1 0
0 −1 1
0 0 −1

⎤
⎥⎥⎦ .

According to the choice of B, the arrow on each edge of
the graph in Figure 2 indicates the positive direction of the
power flow. The relevant network parameters of each area
are provided in Table 2, where a base power of 1000MW
is assumed. The line parameters are γ1 = γ2 = γ3 = 0.1 p.u.,
while the scheduled power flows are P∗

f 1 = 0.015 p.u., P∗
f 2 =

0.0125 p.u. and P∗
f 3 = 0.01 p.u. Let I4 ∈ R

4×4 be the identity

Figure 3. (Scenario 1). Power demands, sliding variables, frequency deviations, turbine output powers, power flows on every line and control inputs. The proposed
controllers are used with X satisfying (49). (a) Power demands, (b) sliding variables, (c) frequency deviations, (d) turbine output powers, (e) power flows and (f ) control
inputs.
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matrix. The matrices in (11) are chosen as M1 = 2 I4, M2 =
0.1 I4, M3 = 0.01 I4, M4 = −(M2 + M3), and M5 = M1X =
εM1KpT−1

p , with ε = 0.0217. The control amplitudeWmaxi and
the parameter α∗

i , in (17) are selected equal to 500 and 1,
respectively, for all i ∈ {1, 2, 3, 4}. Initially, the system is at the
steady statewith power demandPdi(0) in area i ∈ {1, 2, 3, 4} (see
Table 2). In order to investigate the performance of the pro-
posed control approach within a power network, five different

scenarios are implemented. In the last one, we show that when
Assumption 5.1 is not satisfied, the controlled power network
can become unstable.

6.1 Scenario 1: step variation of the power demand

At the time instant t= 1 s, the power demand in each area
becomes Pdi(1) (see Table 2 and Figure 3(a)). From Figure 3(b),

Figure 4. (Scenario 2). Power demands, sliding variables, frequency deviations, turbine output powers, power flows on every line and control inputs. The proposed
controllers are used with X satisfying (49). (a) Power demands, (b) sliding variables, (c) frequency deviations, (d) turbine output powers, (e) power flows and (f ) control
inputs.
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one can observe that the sliding variables are kept to the
manifold σ = 0. Furthermore, the frequency deviations con-
verge asymptotically to zero after a transient during which
the frequency drops because of the increasing load (see
Figure 3(c)). From Figure 3(d) one can note that the proposed
controllers increase the power generation in order to reach
again a zero steady-state frequency deviation, while maintain-
ing, at the steady state, the scheduled power flows P∗

fk on each

line (see Figure 3(e)). In Figure 3(f), the control inputs are
shown.

6.2 Scenario 2: time-varying power demand

In this scenario, the power demand continuously changes dur-
ing the simulation time interval as shown in Figure 4(a). From
Figure 4(b), one can observe that the sliding variables are

Figure 5. (Scenario 3). Power demands, sliding variables, frequency deviations, turbine output powers, power flows on every line and control inputs, considering noises
in the frequency measurements. The proposed controllers are used with X satisfying (49). (a) Power demands, (b) sliding variables, (c) frequency deviations, (d) turbine
output powers, (e) power flows and (f ) control inputs.
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Figure 6. (Scenario 4). Power demands, frequency deviations, turbine output powers and power flows on every line. The control law (51) proposed in Kundur et al. (1994)
is used. (a) Power demands, (b) frequency deviations, (c) turbine output powers and (d) power flows.

kept to the manifold σ = 0. Since the power demand is an
unknown unmatched external disturbance, the frequency devi-
ations evolve until the power demand becomes constant (see
Figure 4(c)). From Figure 4(d), one can note that the proposed
controllers continuously adjust the power generation in order
to reach again a zero steady-state frequency deviation when
the power demand becomes constant. The scheduled power
flows P∗

fk on each line are maintained even during the tran-
sient (see Figure 4(e)). In Figure 4(f), the control inputs are
shown.

6.3 Scenario 3: measurement noises

Here, we repeat Scenario 1 adding noises in the frequency mea-
suremnets. At the time instant t = 1 s, the power demand in
each area becomes Pdi(1) (see Table 2 and Figure 5(a)). From
Figure 5(b), one can observe that the sliding variables converge
to a vicinity of the origin. Also the frequency deviations con-
verge asymptotically to a vicinity of the origin after a transient
during which the frequency drops because of the increasing
load (see Figure 5(c)). From Figure 5(d) one can note that
the proposed controllers increase the power generation, while
maintaining, the scheduled power flows P∗

fk on each line (see
Figure 5(e)). In Figure 5(f) the control inputs are shown.

6.4 Scenario 4: comparisonwith Kundur et al. (1994)

In this subsection, the proposed controller is compared with
the conventional automatic generation control law proposed in
Kundur et al. (1994), which is given by

ui(t) = −KIi

∫ t

0
ACEi(τ ) dτ , (51)

where ACEi is known as area control error and is given
by

ACEi(t) =
(
B� sin(η) − BP∗

f

)
i
+ biωi, (52)

bi = 1/Ri + 1/Kpi being a suitable bias factor for all areas i ∈
V (see Kundur et al., 1994 for more details). We select KIi =
−0.2 and repeat Scenario 1, i.e. at the time instant t= 1 s, the
power demand in each area becomes Pdi(1) (see Table 2 and
Figure 6(a)). The resulting frequency deviations, turbine out-
put powers and line power flows are provided in Figure 6(b–d),
respectively. In comparison with the proposed control scheme
in this work (see Figure 3(c–e)), one can notice that the overall
response when controller (51) is used, is much slower (note that
in the considered scenario the simulation horizon is ten times
longer than all the previous scenarios), with larger frequency
drops and power flowdeviations from the corresponding sched-
uled values.
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Figure 7. (Scenario 5). Sliding variables, frequency deviations, turbine output powers and power flows on every line. The proposed controllers are used with X not
satisfying Assumption 5.1. (a) Sliding variables, (b) frequency deviations, (c) turbine output powers and (d) power flows.

6.5 Scenario 5: condition (49) is not satisfied

To show the importance of the chosen value for ε, we replicate
Scenario 1 with ε = 19.5. One can confirm that this value of ε

does not satisfy (49). In Figure 7, it is shown that the system,
due to the increased value of ε, becomes unstable. Particularly,
one can notice that after the system being initially at steady
state, the change in power demand causes oscillation of the
various states with growing amplitude. Although the system is
kept on the sliding manifold for a limited amount of time, the
growing amplitude of the various oscillations eventually causes
that the sliding condition cannot longer be maintained (see
Figure 7 (a)).

7. Conclusions

A decentralised SSOSM control scheme is proposed for LFC.
We considered a power network partioned into control areas,
where each area is modelled by an equivalent generator includ-
ing second-order turbine-governor dynamics, and where the
areas are nonlinearly coupled through the power flows. Rely-
ing on stability considerations made on the basis of an incre-
mental energy (storage) function, a suitable nonlinear slid-
ing function is designed. Local asymptotic convergence is

proven to the state where the frequency deviation is zero and
where the (net) power flows are identical to their desired
values.

Notes

1. For the sake of simplicity, the order r of the sliding manifold is omitted
in the remainder of this paper.

2. In case the ‘internal’ governor state Pgi or the frequency deviation ω

cannot be measured directly, one can rely, e.g. on the sliding mode
observers proposed in Rinaldi, Cucuzzella, and Ferrara (2017, 2018)
to estimate their values in finite time.

3. The relative degree is the minimum order r of the time derivative
σ

(r)
i , i ∈ {1, . . . , n}, of the sliding variable associated to the ith node in

which the control ui, i ∈ {1, . . . , n}, explicitly appears.
4. The peak detector proposed in Bartolini et al. (1998b) requires only

the measurement of the sliding function σ , which converges to a ρ2-
vicinity of the origin, where ρ > 0 is an arbitrarily small positive
constant.

5. Let [cos(η)] denote the m × m diagonal matrix diag{cos(η1), . . . ,
cos(ηm)}.

6. The power network is modelled in MATLAB-Simulink R2018a by
using the forward Euler method with sampling time interval τs =
1 × 10−3 s. Then, according to Shtessel et al. (2014), the correspond-
ing discrete-sampling version provides an accuracy level of σ =
O(τ 2s ), σ̇ = O(τs).
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