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ABSTRACT
Battery emulation is essential for reliable testingof powertrains of electric andhybrid vehicles under repeat-
able conditions. For that purpose, a DC voltage controller provides fast reference tracking capabilities. Due
to imperfect conversionof AC current toDC current, theDCvoltage source of thebattery emulator does not
provide constant voltage but is subject to periodic fluctuations. This disturbance is propagated through
the system to the battery emulator’s output. In this paper, an observer-based compensation strategy is
deployed. As the structure of the multiplicative perturbation is known, it is integrated into the battery
emulator model yielding a state-affine system. An appropriate observer provides asymptotically correct
estimates of the disturbance, which are then used to adequately manipulate the control variable without
interfering with stability properties of the closed-loop system. Simulation and experimental results show
the improvements achieved by the disturbance rejection.
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1. Introduction

The electrification of automotive powertrains is a complex chal-
lenge that requires sophisticated electrical component test sys-
tems. Batteries are certainly among the most vital elements of
powertrains for hybrid and electric vehicles. However, using real
batteries in test beds is often not feasible for several reasons:
(i) at early development stages, a battery might not be available,
(ii) due to battery ageing, tests are not exactly reproducible, and
(iii) preparing the physical batteries for specific operating con-
ditions (like cold temperatures) is time-consuming and costly
(König, Gregorčič, & Jakubek, 2013). To meet these challenges,
battery emulators are deployed to replace batteries in test beds.

A battery emulator basically consists of a DC–DC step-down
converter (buck converter), which is connected to a unit-under-
test, a model of the physical battery and a voltage source.
A schematic is depicted in Figure 1. The battery emulator is
required to provide an output voltage v2 matching the reference
value v∗, which is provided by an appropriate battery model.
This reference tracking has to achieve a high accuracy under all
operating conditions independent of the unit-under-test. Since
the system is supplied by an AC power source, a rectifier first
has to convert the current to be used by the battery emulator.
Periodic fluctuations in the voltage source supplying the emula-
tor are generally a noteworthy problem in the control of battery
emulators. In this paper, we show how to deal with these inter-
ferences by means of an exogenous disturbance model with a
suitable observation and compensation structure. The consid-
ered perturbations stem from the inevitably imperfect conver-
sion from AC current to DC current, which implies that the
obtained DC-link voltage, denoted by V0, is not constant, as
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explicitly assumed in König, Jakubek, and Prochart (2011), but
rather oscillates around the target value. However, V0 is cru-
cial in the calculation of the duty cycles da −dc of the pulse
width modulation. If the exact value of V0 is not known, it is
impossible to adequately control the half-bridges. Therefore, the
disturbance acting on V0 is propagated through the entire sys-
tem and consequently, the battery emulator’s output oscillates
as well. This implies that the regulated voltage cannot follow
the reference value with the demanded accuracy. The impact
of this disturbance propagation is especially relevant at high
voltage levels because the fluctuations in V0 can only advance
through the system, when the upper switches of the half-bridges
are closed. Otherwise, there is no connection between the error-
source and the emulator’s output. When operating at high volt-
age levels, however, the duty cycle is close to 100%, whichmeans
that the half-bridges are closed most of the time during one
sampling interval. Consequently, we observe even larger output
fluctuations. This is of course very undesirable, since a battery
emulator is in particular deployed to emulate extreme voltage
trajectories. In order to ensure high performance in all operat-
ing ranges, the perturbations in the DC-link voltage have to be
compensated.

The battery emulator used in this paper is controlled by
a model predictive control (MPC) algorithm as described
in König et al. (2011), König et al. (2013), König, Hamet-
ner, Prochart, and Jakubek (2013), König, Hametner, Jakubek,
and Prochart (2015). In the literature also various other con-
trol strategies are described (see Alsmadi, Utkin, Haj-ahmed,
& Xu, 2017; Ciezki & Ashton, 1998; Emadi, Khaligh, Rivetta,
& Williamson, 2006; Rahimi & Emadi, 2009). Interestingly,

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is anOpenAccess article distributedunder the termsof the Creative CommonsAttribution License (http://creativecommons.org/licenses/by/4.0/), whichpermits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00207179.2019.1626994&domain=pdf&date_stamp=2020-03-11
mailto:alexander.wasserburger@tuwien.ac.at
http://creativecommons.org/licenses/by/4.0/


INTERNATIONAL JOURNAL OF CONTROL 923

Figure 1. Schematic diagram of the battery emulator and unit-under-test.

none of these references consider the case, where the system’s
voltage source is not constant. It has to be kept in mind, though,
that adding an observer-based compensation algorithm to an
existing controller adds another feedback loop which poten-
tially affects the closed-loop behaviour of the entire system (see
Jakubek & Jörgl, 2000), possibly leading to instability. This is
due to the fact that there is no controller-observer separation
property for general non-linear systems (see Fuhrmann, Euler-
Rolle, Killian, Reinwald, & Jakubek, 2017). So it is an additional
requirement that the compensation scheme does not inter-
fere with the pre-existing control architecture and its stability
properties.

Disturbances or uncertainties are generally widespread
and manifold in industrial applications. Consequently, dis-
turbance rejection is of utmost importance in control sys-
tem design (Gao, 2014; Guo & Wen-Hua, 2005; Li, Yang,
Chen, & Chen, 2014). In the area of harmonic compensation
in power distribution systems, passive and active power fil-
ters are common. For example, in Lascu, Asiminoaei, Boldea,
and Blaabjerg (2007) and Lascu, Asiminoaei, Boldea, and Blaab-
jerg (2009), control strategies for active power filters are
designed and analysed. The drawback of such filters is that their
application involves physical devices like transistors that are
added to the power grid. However, in this article, it is required
that the existing battery emulator set-up remains unchanged
and the disturbance compensation is a purely software-
based solution. Therefore, disturbance-observer-based control
(DOBC) is applied, which is another prominent approach for
tackling the problem of disturbance rejection. DOBC-strategies
at first emerged in the 1980s and since then have been imple-
mented in various areas, such as flight control, mechanical engi-
neering and chemical processes (see Chen, Li, Yang, & Li, 2013;
de Jesús Rubio, Meléndez, & Figueroa, 2014; Yang, Li, Sun,
& Guo, 2013). There are numerous different variations of
DOBC. A broad survey of existing techniques is outlined in
Chen, Yang, Guo, and Li (2016). The general idea, that all the
proposed methods have in common, is to estimate the per-
turbations by means of an adequate observer and to use that
estimation in order to compensate the disturbance.

When it comes to the selection of a suitable observer, vast lit-
erature is accessible. For linear systems, the Luenberger observer
(Luenberger, 1964) and the Kalman filter (Kalman, 1960) are
among the most established techniques. In the non-linear
case, generalisations of the above-mentioned methods exist, as
well as other types of observers, such as high-gain observers

(Adamy, 2009) or sliding mode observers (Floquet, Barbot,
Perruquetti, & Djemai, 2004).

In this paper, however, we can make good use of observers
for state-affine systems as described in Hammouri and de
Leon Morales (1990), Bornard, Couenne, and Celle (1989),
Besancon, León-Morales, and Huerta-Guevara (2006), Klein
and Olbrot (1986), Bara, Daafouz, Kratz, and Ragot (2001).
More precisely, we are interested in systems of the form

ẋ = A(u)x + Bu

y = Cx,
(1)

where x ∈ Rn is the vector of states, u ∈ R is the input deter-
mined by the controller, A(u) ∈ Rn×n is the system matrix
that depends on u, B ∈ Rn×1 is the input matrix, y ∈ Rm is
the vector of measurable outputs and C ∈ Rm×n is the out-
put matrix. We obtain such a state-affine system (1) by aug-
menting the linear battery emulator model with an exogenous
disturbance model, where the unknown perturbation acts mul-
tiplicatively on the input-variable u. The exogenous model is
based on a-priori expert knowledge and is defined as a har-
monic oscillation with a fixed and known frequency. In Yang,
Cui, Li, and Zolotas (2018) and Yang, Wu, Hu, and Li (2018),
active disturbance rejection for DC–DC converters using gen-
eralised proportional integral observers is demonstrated. While
this approach satisfyingly rejects various types of disturbances
and uncertainties, periodic oscillations in the voltage supply are
only mitigated to some extent but not completely compensated.
There are several works dealing specifically with the rejection
of periodic disturbances using internal model control or adap-
tive feedforward cancellation (Bodson, 2001; Francis & Won-
ham, 1976). References (Bodson & Douglas, 1997; Bodson,
Sacks, & Khosla, 1994; Marino, Santosuosso, & Tomei, 2003)
deal with the rejection of periodic disturbances of unknown
frequencies making use of adaptive feedforward schemes. How-
ever, these references are exclusively concerned with additive
disturbances. The battery emulator we are dealing with in
this paper is affected by multiplicative disturbances, though.
Moreover, our approach leaves the existing controller struc-
ture untouched and can simply be added to a running
system.

This paper is structured as follows: In Section 2, the mod-
els of the battery emulator and the disturbance are stated. In
Section 3, these two models are combined and the disturbance
observer is introduced. Stability proofs for the observer and the
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closed loop system with compensation are given. Moreover a
simplified linear version of the observer is introduced at the
end of this section. Simulation and experimental results are
presented in Section 4.

2. System description

2.1 Working principles of the battery emulator

The parallel battery emulation half bridges are configured as an
interleavingDC–DCconverter. The duty cycle is applied equally
to all half bridges with an additional offset for current balancing
between the half bridges. See König et al. (2013) for a descrip-
tion of how to combine all duty cycles to one control signal. See
Correa, König, and Greul (2016) for an approach to implement
the interleaving.

The involved rectifier is configured as an active frontend rec-
tifier (AFE)with IGBThalf bridges and voltage oriented control.
The test system also uses IGBTs as power switches. Of course,
the non-ideal characteristics of the power switches, like inter-
lock dead times, have an effect on the system’s performance.
However, describing and compensating these effects is not the
intended scope of this paper.

In this article, the examined disturbance stems from theAFE.
Theoretically, it is possible to achieve a constant power flow
with a 3-phase AFE such that the DC-link voltage contains no
grid frequency harmonics. However, in a practical implementa-
tion, there are several reasons for residual DC-link oscillations.
The main reasons are: (i) measurement errors of grid current
sensors: an offset error of one sensor causes a 50Hz ripple, a
gain error of one sensor results in 100Hz ripple for 50Hz AC.
(ii) the DC-link voltage sensor, which is required as a feedback
signal to the rectifier controller, is disturbed through auxiliary
power supply, inductive and capacitive coupling. The distur-
bances are therefore mainly harmonics of the grid frequency
including the base frequency of 50Hz. The disturbances in this
work are consequently modelled as sinusoids with known fre-
quencies. Even if the disturbance is not an ideal sinusoid, it is
still possible to compensate the disturbance to a large extent by
assuming it is purely sinusoidal. Any non-sinusoidal but peri-
odic disturbance can be seen as a superposition of individual
harmonic disturbances. In a first step, the proposed observer is
set to the dominant harmonic (in most cases including skewed
sinusoids, this will be the base frequency). In a second step, it
is possible to use multiple instances of the observer to compen-
sate the remaining harmonics. A picture of the battery emulator
is shown in Figure 2.

2.2 Battery emulatormodel

The electric circuit of the battery emulator is depicted in
Figure 1. The controller determines the input voltage variable
u according to the state measurements and the reference volt-
age v∗. The control signal u, however, is transformed into three
duty cycles da, db and dc which control the half bridges via
pulse width modulation. The output stage is assumed to have
equal inductances L1a = L1b = L1c and phase inductor resis-
tances R1a = R1b = R1c. Hence, the three inductors can be con-
sidered to be connected in parallel such that they are replaced

Figure 2. The battery emulator used in this article. The left part of the cabinet con-
tains theACgrid input, isolation transformer and theactive frontend (AFE). The right
part contains the DC–DC converter.

by one inductance L1 = 1
3L1a with R1 = 1

3R1a and a common
duty cycle d = da = db = dc. The duty cycle is therefore given
by d = u

V0
, where V0 is the nominal constant DC-link voltage

assumed for the pulse width modulation and u is the manip-
ulated variable. As a matter of fact, because of the defective
conversion of AC current to DC current performed by the recti-
fier, this assumption does not hold, leading to a corrupted duty
cycle. The filter dynamics are described by a state space model
based on the physical properties of the circuit elements. C1 and
C2 denote filter capacitances. The cable connecting the battery
emulator and the unit-under-test ismodelled as a series connec-
tion of an inductance L2 and a resistance R2. The state vector
is defined as xm = [i1, v1, i2, v2]T , where ij and vj, j= 1, 2 rep-
resent currents and voltages, respectively. The load current is
denoted by i. Kirchhoff ’s circuit laws then yield the following
state-space model with input u ∈ R and output ym ∈ R4:

ẋm =

⎛⎜⎜⎜⎝
−R1

L1 − 1
L1 0 0

1
C1

0 − 1
C1

0
0 1

L2 −R2
L2 − 1

L2
0 0 1

C2
0

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

Am

xm

+

⎛⎜⎜⎝
1
L1
0
0
0

⎞⎟⎟⎠
︸ ︷︷ ︸

Bm

u +

⎛⎜⎜⎝
0
0
0

− 1
C2

⎞⎟⎟⎠
︸ ︷︷ ︸

Em

i

ym = xm

(2)
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Table 1. Baseline parameters for the battery emulator.

R1 R2 L1 L2 C1 C2 V0

0.08� 0.05� 75 μH 12.5 μH 1575 μF 2300 μF 820 V

Since all states can bemeasured, the output vector ym equals the
state vector xm. The controlled variable is the output voltage v2.
A baseline parametrisation is presented in Table 1.

2.3 Disturbance of the DC-Link voltage

Asmentioned in Section 1, the real value ofV0 (denoted byV∗
0 )

is not constant but subject to periodic, sinusoidal disturbances,
which are not considered by the controller:

V∗
0 (t) = V0 + ζ1 sin(2π f1t + ϕ1)+ ζ2 sin(2π f2t + ϕ2)+ . . . ,

(3)
where the amplitudes ζj and phases ϕj are unknown and the fre-
quencies fj, j = 1, . . . are known to be multiples of 50Hz. The
control infrastructure calculates the duty cycle d with the con-
stant valueV0 when in realityV∗

0 should be used. Therefore, the
duty cycle does not precisely reflect the demanded voltage u and
thus the voltage applied to the system does not equal the value
demanded by the controller. In terms of the model formulation,
because of the relation u = V0d, the corrupted DC-link voltage
V∗
0 yields a disturbed input signal u∗:

u∗ = V∗
0 d = u + uζ1 sin(2π f1t + ϕ1)

V0
+ . . . (4)

Note that the disturbance ζj sin(2π fjt + ϕj) is not simply added
to u but rather acts multiplicatively on u

V0
.

As a result of the disturbed input u∗, the controlled voltage v2
oscillates around the desired setpoint. This is especially relevant
at high voltage levels, because the disturbance is amplified by u
as it can be seen in (4).

3. Observation and compensation

3.1 System augmentation

With the structure of the disturbance being known, we can
incorporate its effect in the model. Furthermore, for now, we
assume that the disturbance comprises only one frequency f and
the value of f is known. The differential equation of a harmonic
oscillation with frequency f, as described in (3), is given by

z̈ = −ω2z (5)

with ω = 2π f . Transforming (5) into a first-order differential
equation system with a state vector xz = [a1, a2]T , the distur-
bance z = a1 can now be written as

ẋz =
(

0 1
−ω2 0

)
︸ ︷︷ ︸

Az

xz

z = [1 0]︸ ︷︷ ︸
Cz

xz.
(6)

Expressing the disturbance term in (4) by means of (6), we
obtain

u∗ = u + Czxzu
V0

. (7)

Combining the emulator model (2), the disturbance model (6),
and the disturbed control input (7), yields the following
augmented model with a new state vector x = [i1, v1, i2, v2,
a1, a2]T :(
ẋm
ẋz

)
︸ ︷︷ ︸

ẋ

=
(

Am
1
V0
BmCzu

02,4 Az

)
︸ ︷︷ ︸

A(u)

(
xm
xz

)
︸ ︷︷ ︸

x

+
(
Bm
02,1

)
︸ ︷︷ ︸

B

u +
(
Em
02,1

)
︸ ︷︷ ︸

E

i

y =

⎛⎜⎜⎝
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

⎞⎟⎟⎠
︸ ︷︷ ︸

C

x =

⎛⎜⎜⎝
i1
v1
i2
v2

⎞⎟⎟⎠ .

(8)
0m,n stands for a m × n zero-matrix. Note that the distur-
bance acting on u is now incorporated in the system matrix
A(u) resulting in a state-affine system. This augmented model
can now be used to formulate an observer that estimates the
unknown disturbance-variable z = a1 for a fixed frequency f.
If several frequencies are to be observed simultaneously, the
model can be extended accordingly (two additional equations
for each frequency). Also constant offsets can be included by
setting ω = 0. As the total disturbance of the DC-link voltage
is modelled as a sum of independent sine waves with different
amplitudes, frequencies and phase shifts (see (3)), the proposed
method cannot only measure sinusoidal disturbances but all
kinds of signals that can be approximated by means of a Fourier
approximation as long as the signal’s harmonics are somewhat
similar to the ones defined in the augmented system (8). More-
over, if the most important harmonics of the disturbance sig-
nal can be estimated from measurements, the system can be
augmented with exactly these frequencies. As a result, various
shapes of disturbances can be estimated and the method is not
limited to pure sinusoidal disturbance. Without loss of gen-
erality, in this article we focus exclusively on the case of one
sinusoidal disturbance to be estimated.

3.2 Observer design

An observer for the state-affine system (8), as proposed in
Bornard et al. (1989), is given by

˙̂x = A(u)x̂ − S−1CT(Cx̂ − Cx)+ Bu + Ei

Ṡ = −ψS − A(u)TS − SA(u)+ CTC

S(0) = S0 � 0,ψ ∈ R+.

(9)

S(t) is a time-dependant matrix with the same dimension as
A(u). For a positive definite initial value S0, the matrix S(t)
is guaranteed to be positive definite for all t> 0. Therefore,
the inverse matrix S(t)−1 exists for all t and the observer is
well-defined. The positive, real parameter ψ is a tuning param-
eter which basically defines the speed of convergence of the
observation error. For so-called ψ-strictly persistent inputs the
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exponential convergence of the observer can be shown using
Lyapunov theory with time-varying Lyapunov functions (see
Khalil, 2002). The input u is said to be ψ-strictly persistent if:

∃γ , t̄ > 0 : ∀t ≥ t̄ :∫ t

0
e−ψ(t−σ)�u(σ , t)TCTC�u(σ , t) dσ � γ I,

(10)

where the state-transitionmatrix�u(s, t0) is the unique solution
of

d
ds

�u(s, t0) = A(u)�u(s, t0)

�u(t0, t0) = I.
(11)

For more details and a proof of convergence, we refer to Ham-
mouri and de Leon Morales (1990) and Bornard et al. (1989).

The observer (9) has two major drawbacks: Firstly, solv-
ing the matrix differential equation for S significantly increases
the computational load. Secondly, analytically verifying con-
dition (10) is challenging. Therefore, we propose another
observer, inspired by (9):

˙̂x = A(u)x̂ − S−1CT(Cx̂ − Cx)+ Bu + Ei, (12)

where S is now a constant positive definite matrix, that has to be
determined in such a way that the observation error ε := x − x̂
goes to zero exponentially:

∃k,α > 0 : ∀t > 0 : ||ε(t)||22 ≤ ke−αt . (13)

We obtain conditions for a suitable matrix S using Lyapunov
theory: Differentiating ε with respect to time yields

ε̇ = ẋ − ˙̂x =
(
A(u)− S−1CTC

)
ε. (14)

Obviously, ε = 0 is an equilibrium of system (14). If we can find
a Lyapunov function V(ε) such that

V̇(ε) ≤ −αV(ε) (15)

with α > 0, then the steady state ε = 0 is exponentially stable
(see Khalil, 2002).

Define V(ε) := εTSε. DifferentiatingV with respect to time
yields:

V̇(ε) = ε̇TSε + εTSε̇

= εT
(
A(u)− S−1CTC

)T
Sε

+ εTS
(
A(u)− S−1CTC

)
ε

= εT
(
A(u)TS + SA(u)− 2CTC

)
ε

(16)

Consequently, according to (15), a sufficient condition for expo-
nential stability is

A(u)TS + SA(u)− 2CTC + αS︸ ︷︷ ︸
=:W(u)

� 0. (17)

We have to ask whether this condition can be fulfilled for all
u. In the case u= 0, we can derive from (8) that xm and xz are

completely independent from each other, so there is no way
to reconstruct xz from the measurements of xm. However, for
small, positive values of u the effects of the disturbance are gen-
erally insignificant as seen in (7). Therefore, for 0 ≤ u < umin
there is no need for observation and compensation. Apart from
the condition u ≥ umin, we also need to restrict the space of
admissible inputs u from above:

Theorem 3.1: Let S be an arbitrary positive definite matrix of
appropriate size. There exists a ū > 0 withW(ū) � 0.

Proof: Using the decomposition(
Am

1
V0
BmCzu

02,4 Az

)
︸ ︷︷ ︸

A(u)

=
(

Am 04,2
02,4 Az

)
︸ ︷︷ ︸

A1

(1)

+
(

04,4 1
V0
BmCz

02,4 02,2

)
︸ ︷︷ ︸

A2

u (18)

the quadratic form xTW(u)x can be written as

xTW(u)x = xT
(
AT
1 S + SA1

)
x + xT

(
AT
2 S + SA2

)
︸ ︷︷ ︸

W�

xu

− 2xTCTCx + αxTSx
(19)

With S = (si,j)i=1...6;j=1...6 and because of the simple structure
of A2, the matrixW� has the following form:

W� = 1
V0L1

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 s1,1 0
0 0 0 0 s2,1 0
0 0 0 0 s3,1 0
0 0 0 0 s4,1 0
s1,1 s2,1 s3,1 s4,1 2s5,1 s6,1
0 0 0 0 s6,1 0

⎞⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

W̃�

. (20)

The matrix W̃� has the eigenvalues λ1 = 0 (with algebraic mul-
tiplicity 4) andλ2,3 = s5,1 ±

√
s21,1 + s22,1 + s23,1 + s24,1 + s25,1 + s26,1.

Since S is assumed to be positive definite, s1,1 has to be greater
than zero, according to Sylvester’s criterion. Therefore, the
square root is always larger than the absolute value of s5,1. This
implies that, independent of S, there is always a positive eigen-
value of W̃�, denoted by λ+, with a corresponding eigenvector
v+. Setting x = v+ in (19) and using the fact that v+ is an
eigenvector, we obtain

vT+W(u)v+ = vT+
(
AT
1 S + SA1

)
v+ + 1

V0L1
||v+||22λ+︸ ︷︷ ︸
>0

u

− 2vT+C
TCv+ + αvT+Sv+.

(21)

The second term is positive and multiplied by u. All other
terms are independent of u. This means that there is a ū such
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that the sum is dominated by the term containing ū, so that
vT+W(ū)v+ > 0, which means thatW(ū) is not negative semi-
definite. �

The above theorem shows that no matter how we choose S,
we cannot obtain stability for arbitrarily large inputsu. For every
S, there is an upper limit for u, above which the derivative of
the Lyapunov function is not guaranteed to be negative. This
is the consequence of abandoning the differential equation for
S. However, this fact is not necessarily an issue, since arbitrar-
ily large voltages are not possible anyway and we just need to
cover the operating range of the battery emulator. The highest
voltage the battery emulator can deliver, is defined by the nom-
inal DC-link voltage V0, which is given by 820V (see Table 1).
With umax = V0 = 820 and an appropriately chosen umin > 0
(umin will be defined later), we nowwant to determine a positive
definite matrix S, so that

W(u) � 0,∀u ∈ [umin, umax]. (22)

The following theorem shows that it suffices to consider the
negative semi-definiteness ofW(umin) andW(umax):

Theorem 3.2: Let S be an arbitrary matrix of appropriate size. If
W(u) � 0 (see (17)) for u = umin and u = umax, then W(u) �
0,∀u ∈ [umin, umax].

Proof: Using (19), the quadratic form xTW(u)x can also be
written as

xTW(u)x = xT
(
AT
1 S + SA1 − 2CTC + αS

)
x

+ xTW�xu
(23)

Assume there exists a ū with umin < ū < umax and W(ū) � 0.
This implies that there exists a vector x with

xT
(
AT
1 S + SA1 − 2CTC + αS

)
x + xTW�xū > 0. (24)

But, because of the negative semi-definiteness of W(umin) and
W(umax), we also have

xT
(
AT
1 S + SA1 − 2CTC + αS

)
x + xTW�xumin ≤ 0 (25)

xT
(
AT
1 S + SA1 − 2CTC + αS

)
x + xTW�xumax ≤ 0 (26)

Since, for a fixed x, (23) is a linear function in u, the inequal-
ities (24)–(26) cannot be true at the same time. Therefore, a ū
with the above properties does not exist. �

Thus, solving the following linear matrix inequality (LMI)
guarantees a stable observer: Find a matrix S such that

W(umin) � 0 (27)

W(umax) � 0 (28)

S � 0. (29)

Additionally, the value of umin can now be defined as

umin := min {u > 0 : ∃S � 0 : W(u) � 0 ∧ W(umax) � 0} .
(30)

Before solving system (27)–(29), the value of the parameter α,
which defines the speed of convergence of the observer, has to

be selected. A larger value implies faster convergence but makes
solving the LMI-system harder. Setting α = 1 and using the
parameters from Table 1, we find a feasible solution S of sys-
tem (27)–(29). The minimal voltage as defined in (30) turns out
to be umin = 0.49. With the obtained matrix S, the observation
error ε converges to zero exponentially as long as the input u
lies between 0.49 and 820. For u< 0.49, the propagated error is
negligible and therefore the observation is irrelevant and can be
switched off.

3.3 Compensation of the disturbance

In order to reject the disturbance, a suitable compensation sig-
nal has to be generated from the estimated disturbance ẑ =
C̃x̂ with C̃ = [0 0 0 0 1 0]. The necessary fault compensation,
denoted by c, is generated by

c = uẑ
V0 + ẑ

. (31)

The compensated signal ucomp is then defined as

ucomp = u − c, (32)

where u is the original control signal determined by the con-
troller. The choice of c ensures that the oscillations in V0 are
asymptotically compensated and the control signal u that was
determined by the controller is effectively applied to the plant
(i.e. u = u∗, see (7)), as we have ẑ → z asymptotically:

u∗ = ucomp + ucompz
V0

= u − c
V0

(V0 + z) =

=
u − uẑ

V0+ẑ

V0
(V0 + z) = V0 + z

V0 + ẑ
u → u

(33)

An overview of the method is given in Figure 3. The dis-
turbed signal u∗ enters the plant and the plant dynamics ẋm =
Amxm + Bmu∗ + Emi lead to the measurable state vector xm =
[i1, v1, i2, v2]T . This state vector is fed back to the controller
and to the disturbance observer. The observer has access to
the augmented model (8) and to the compensated signal ucomp,
which would enter the plant if there was no disturbance. The
observer now basically compares the real plant output xm = Cx
to the outputCx̂, which is affected by the estimated disturbance.
The discrepancy Cx̂ − Cx is used to adjust the current esti-
mate of the disturbance following the observer equation ˙̂x =
A(ucomp)x̂ − S−1CT(Cx̂ − Cx)+ Bucomp + Ei (see (12)). Then
a suitable compensation signal c as described in (31) is generated
and subtracted from the control variable u in order to obtain the
new input ucomp.

Introducing the observer and compensation into the con-
trolled process as depicted in Figure 3 yields the following
disturbed closed loop system:

ẋm = Amxm + Bm

(
ucomp + ucompz

V0

)
+ Emi

= Amxm + Bm
V0 + z
V0 + ẑ

u + Emi
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Figure 3. Block diagram of the closed loop system with disturbance compensation.

= Amxm + Bmu

(
1 + C̃ε

V0 + ẑ

)
+ Emi

= Amxm + Bmu + BmC̃
1

V0 + ẑ
εu︸ ︷︷ ︸

=:b

+Emi. (34)

Because of the additional feedback loop introduced by
the compensation, the stability of the observer has to be re-
evaluated. In the closed loop system, the input to the observer
is given by ucomp as it can be seen in Figure 3. The com-
pensated input signal ucomp is determined by (31)–(32) and is
therefore influenced by the estimated disturbance ẑ. If ucomp ∈
[0.49, 820], the observer is guaranteed to be stable. If ucomp >
820, it has to be set to 820: As discussed in Section 2, the
input variable ucomp is translated into a duty cycle using the
formula d = ucomp/820. So, ucomp > 820 would lead to a duty
cycle larger than one, which is physically impossible, because
the emulator’s half bridges cannot be closed formore than 100%
of the time. If ucomp < 0.49, the compensation is disconnected
and u serves again as the input for the plant and the observer.
In a nutshell, every violation of the stability range can be dealt
with easily.

Consequently, the expression b in (34) goes to zero expo-
nentially for ẑ �= −V0 (i.e. ∃kb,αb > 0 : ∀t > 0 : ||b(t)||22 ≤
kbe−αbt), because the control variable u is bounded and ε goes
to zero exponentially in the compensated system.

Lastly, apart from the stability of the observer, the stability
of the whole system depicted in Figure 3 has to be reviewed.
Suppose we have a controller, that stabilises the undisturbed
model (2) at an arbitrary but fixed x∗. Then it is required that
the closed-loop system as described in (34) also stabilises at the
same x∗. This is indeed the case:

Theorem 3.3 (Closed-Loop Stability): Let u be such that sys-
tem (2) converges to a state x∗. Then system (34) also converges
to x∗.

Proof: The solution of the differential Equation (2), denoted by
xm,1(t), is given by

xm,1(t) = eAmt + eAmt
∫ t

0
e−Amτ (Bmu(τ )+ Emi) dτ . (35)

We know that limt→∞ xm,1(t) = x∗. For the solution of sys-
tem (34), denoted by xm,2(t), we obtain

xm,2(t) = eAmt + eAmt
∫ t

0
e−Amτ (Bmu(τ )+ Emi + b(τ )) dτ

= eAmt + eAmt
∫ t

0
e−Amτ (Bmu(τ )+ Emi) dτ︸ ︷︷ ︸

t→∞−−−→x∗

+ eAmt
∫ t

0
e−Amτb(τ ) dτ︸ ︷︷ ︸
t→∞−−−→0

(36)

The second term converges to zero, because b goes to zero expo-
nentially as t goes to infinity and the matrix Am is Hurwitz. The
term b goes to zero exponentially because the observation error
does. As a consequence, xm,2(t) also converges to x∗. �

Figure 4. Simulation results: Actual andobservedDC-link voltagewith a change in
the disturbance after 0.1 s. Both observers estimate correctly but the exact observer
converges faster.
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3.4 Simplified linear version

The observer (12) is exponentially stable for all relevant input
trajectories. One drawback, however, is the necessary comput-
ing time stemming from the high-dimensional andmore or less
stiff differential equation system. In this section, we adapt the

Figure 5. Simulation results: Output voltagewith andwithout compensation. The
reference voltage is given by 400 V. The output fluctuations are compensated
quickly.

model and the observer in order to achieve a maximally easy
and fast, yet not necessarily stable observer. For that purpose,
we define a1 := uζ sin(2π ft+ϕ)

V0
as the new state variable for the

disturbance (see (4)). This means that u is seen as a part of the
now additive disturbance as we interpret uζ

V0
as the amplitude

of the disturbance. Consequently, the amplitude is not constant
any more, but changes with u. In return, we obtain a completely
linear model, whichmakes observation very easy. However, sta-
bility for varying u cannot be guaranteed analytically, because
if u changes constantly, the amplitude of the disturbance does
as well and therefore there are constantly new errors made in
the observation. Furthermore, since only i1 is directly affected
by the input u, it proved sufficient to exclusively use the differ-
ential equation for i1 in the observer in order to further reduce
the computational burden. The state equations of the resulting
reduced system are given by⎛⎝ i̇1

ȧ1
ȧ2

⎞⎠ =
⎛⎝−R1

L1
1
L1 0

0 0 1
0 −ω2 0

⎞⎠⎛⎝ i1
a1
a2

⎞⎠+
⎛⎝ 1

L1
0
0

⎞⎠ u −
⎛⎝ 1

L1
0
0

⎞⎠ v1
(37)

with ω = 2π f . The measured variable v1 has to be added as
an additional input in order to fulfil the differential equation
of i1. This, of course, introduces a second source of inaccuracy.
The measured value v1 is subject to the disturbance, just like
the measured value of i1. When we use the measured value of

Figure 6. Simulation results: Toppanels: The referencevoltage changes at t = 0.2sandat t = 0.3s. Bottompanels: Theexact observer is not influencedbyvarying reference
voltages and matches the true disturbance, whereas the simplified observer produces quite large errors when the reference changes.
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v1 in our observer, the error i1 − î1 cannot be attributed to the
disturbance-state a1 exclusively but also to v1.

Using Equation (37), a standard linear Kalman filter (see
Kalman, 1960) can be used as an observer. The calculation of
a suitable compensation signal is not necessary any more and
the estimated state â1 can be subtracted directly from u. For our
problem, the norm of the Kalman gain matrix is several mag-
nitudes smaller than the norm of S−1, which shows that the
Kalman filter leads to a much less stiff system and is therefore
computationally simpler to handle.

4. Results

In this section, we present simulation and experimental results
demonstrating the excellent performance of the proposed com-
pensation scheme. All results are based on the parametrisa-
tion given in Table 1. All simulation results were obtained
through the simulation of the respective continuous models
with a simple LQR-controller. In the actual testbed, a model
predictive control as described in König et al. (2013) was
utilised.

4.1 Simulation results

In the simulation, we assume a constant load current of 100A
and start with a reference output value of 400V. At first, the
disturbance is a sine with a frequency of 50Hz, an amplitude
of 2V and no phase lag. After 0.1 s of simulation time, the
disturbance is altered to an amplitude of 3V and a phase lag

of π/3 rad. Figure 4 depicts the actual and the DC-link volt-
age observed by the exact observer (12) and the approximate
observer (37). Both observers start with an initial offset of 2V.
The exact observer rapidly adjusts to the actual value. After
about 0.02 s there is no difference between actual and observed
value visible any longer. Similarly, when the disturbance changes
at t = 0.1 s, the observer promptly converges towards the new
real disturbance. The approximate, linear observer also shows

Figure 8. Simulation results: Top panel: Controlled voltage v2 with and without
observation and compensation with simulated measurement noise added. Bot-
tom panel: Spectrum of v2 with and without observation and compensation. The
voltage reference value is given by 700 V and the load current is−190 A.

Figure 7. Simulation results: The top panel shows the voltage reference trajectory. The left column depicts a phase portrait and the euclidean norm of the error vector of
the simplified observer. The right column illustrates the exact observer.
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a satisfying performance. The convergence is slower but still
acceptable.When the disturbance changes at t = 0.1 s, the linear
observer needs noticeably more time to adjust.

Figure 5 illustrates the regulated output voltage v2 with
and without active compensation. The oscillations around the
demanded reference value of 400V are clearly visible in the
uncompensated case. With active compensation using the exact
observer, however, these oscillations are completely negated and

Figure 9. Experimental results: Toppanel:Measurements of the controlled voltage
v2 with andwithout observation and compensation. Bottompanel: Spectrum of v2
with and without observation and compensation. The experiment was conducted
with a voltage target value of 700 V and a load current of−190 A.

the output voltage matches the reference value. As mentioned
before, the observer needs only a minimal amount of time to
adjust to the actual disturbance. Once the observation error is
eliminated, the output oscillations disappear. When the distur-
bance is manipulated at t = 0.1 s, a small perturbation occurs
due to the adjustment of the observer to the new disturbance.
The simplified observer cannot eliminate the fluctuations as fast,
but given enough time, it can compensate the disturbance as
well.

In Figure 6,we see how repeated changes in the reference out-
put voltage affect the disturbance estimation. The exact observer
is not influenced at all, because the observer explicitly consid-
ers the varying inputs. Even though the voltage level influences
how strongly the disturbance influences the system (see (4)),
the estimation is not affected. In the simplified case, this is
very different. As depicted in Figure 6, repeated changes in the
reference voltage cause the estimated disturbance to fluctuate
heavily. The estimator rarely matches the real disturbance in
this case. This is of course not surprising, because the reduced
observer ignores the fact that the effect of the disturbance is
altered by the input. This performance limitation is the main
consequence of reducing themodel’s complexity. In Figure 7 the
evolution of the observer errors of both the exact and simplified
observer are analysed in the case of voltage setpoint changes
every 0.1 seconds. In the exact case the error and its deriva-
tive converge to 0 exponentially. The simplified observer shows
no such convergence. Depending on the desired voltage level,
the errors increase or decrease. Depending on the variations in
the demanded output voltage, the observer errors can therefore
increase and stability is not guaranteed if initial observer errors

Figure 10. Experimental results with simplified observer: Top panel: Trajectories of the output voltage with and without compensation. Bottom panels: Spectra of the
output voltage before and after the setpoint step. The disturbance is compensated by the observer.
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accumulate. However, as the simulation depicted in Figure 7
shows, this is not a practical issue, as there is no destabilisation
even with such an unrealistic high frequency reference signal.
Furthermore, the average execution time is roughly 50% lower
for the simplifiedmodel whichmight be a relevant advantage for
certain real-time applications.However, the calculation speed of
the exact observer can be influenced by choosing different val-
ues for umin or α because these parameters affect the stiffness of
the involved differential equations.

4.2 Experimental results

In order to prove the functioning of both observers, we ran
various experiments on the battery emulator provided by AVL
as described in Section 2.1. First, we compared experimen-
tal and simulation results including simulated measurement
noise. Figure 8 depicts the simulation and Figure 9 illustrates
the experimental results showing measurements and the spec-
trum of the controlled voltage v2 with and without observation
and compensation using model (37). The results are satisfying.
The 50Hz oscillations are eradicated and only measurement
noise remains. In the spectrum, there are no dominant frequen-
cies with active compensation. Furthermore, simulation and
experiment look very similar.

Figures 10 and 11 show experiments including a step
in the desired output voltage for the simplified and the
exact observer, respectively. In both cases the observers are
not visibly influenced by the voltage step. Measurement
noise and controller-induced undershooting outweigh possible

imperfection in the disturbance estimation in the simplified
case. It is also clearly visible in the uncompensated spectra, that
higher voltage levels are more heavily influenced by the distur-
bance than lower voltage levels as indicated by (4). In terms of
quality of the compensation, there is no significant difference to
be found between the two observers. Both versions satisfactorily
compensate the leading harmonics.

5. Conclusion

In this paper, we present an observer-based compensation
scheme which works independently of the existing control
infrastructure. The DC-link fluctuation is modelled using a
priori knowledge about its basic structure. This leads to an aug-
mented model where the disturbance is a new state variable.
Since the control input is multiplicatively affected by the dis-
turbance, the problem is non-linear. By solving a linear matrix
inequality, an exponentially stable observer, inspired by a more
complicated state-affine observer, is derived. The estimated dis-
turbance is transformed into a compensation signal that is sub-
tracted from the control input determined by the controller. It is
shown that the closed-loop stability of pre-existing controllers
is not corrupted by the compensation scheme. Furthermore, a
reduced, linear observer is proposed. The simplified observer
differential equation is less stiff and is therefore easier to solve
for numeric solvers but stability cannot be guaranteed analyti-
cally. Finally, simulation and experimental results demonstrate
the significant improvements that are achieved by both variants
of the compensation.

Figure 11. Experimental results with exact observer: Top panel: Trajectories of the output voltage with and without compensation. Bottom panels: Spectra of the output
voltage before and after the setpoint step. The disturbance is compensated by the observer. The quality of the compensation scheme is roughly the same as with the
simplified observer.
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