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ABSTRACT 

 While satellite remote sensing aerosol measurements are widely used for climate, 

visibility and air quality studies, issues exist in the current satellite aerosol products such as the 

Elevated Southern Oceans Anomaly (ESOA) phenomenon.  The ESOA is an elevated aerosol 

optical depth (AOD) belt over high latitude southern oceans detected by passive satellites such as 

the Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging 

SpectroRadiometer (MISR).  The ESOA feature, however, is not present in the ground based 

studies.  Cloud contamination was found to have a significant impact on this anomaly, but it is 

not the only contributor.  Wind generated ocean bubbles could increase ocean surface 

reflectance.  However, oceanic bubbles have not been considered in the conventional satellite 

aerosol studies.  In this study, the effects of oceanic bubbles on satellite retrieved AOD values 

are studied using the linked 6S atmospheric and HydroLight oceanic radiative transfer models.  

The modeled Top-of atmosphere radiance values are evaluated using collocated observed MAN 

and MODIS retrievals.  This study suggests that oceanic bubbles have an insignificant impact on 

AOD retrievals for regions with near surface wind speed less than 10 ms
-1

.  However, under high 

wind scenario, the impact of bubbles to aerosol retrievals is significant and needs to be 

considered for future AOD retrievals using passive remote sensing techniques.  Lastly, one year 

of MODIS and Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-

E) data are used to investigate the impacts of oceanic bubble to the ESOA phenomenon.  This 

study suggests that oceanic bubbles are not the major contributor to the ESOA feature. 
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CHAPTER I 

INTRODUCTION 

Atmospheric aerosols are important atmospheric constituents and previous studies have 

suggested that aerosols can affect climate directly by perturbing atmospheric radiation as well as 

indirectly by modifying cloud physical and optical properties.  In addition, the understanding of 

aerosols properties and their spatial and temporal distributions is critical to visibility and air 

quality forecasts.  These applications fuel demand for accurate measurements of atmospheric 

aerosol properties. 

Traditionally, aerosol properties are measured using three different methods: in situ, 

ground-based remote sensing, and satellite remote sensing measurements.  In situ is a direct 

measurement of aerosol properties through a field experiment at a selected location.  This 

method, while accurate, is limited in its spatial and temporal coverage.  Ground-based remote 

sensing has an advantage over in situ measurements in that it allows for long-term observations 

at given locations.  Ground based remote sensing of aerosol properties is based on measuring the 

attenuation of solar energy by aerosols and other atmospheric particles at specific wavelengths 

(sun photometry), which is then inverted to aerosol properties based on Beer’s law (e.g. Holben 

et al., 1998).  Retrievals of aerosol properties based on sun photometry are considered ground 

truth, and are used to validate satellite measurements.  However, like in situ measurements, sun 

photometer observations are limited by their spatial coverage.  Observations from space-borne 

satellites, in general, intercept reflected/emitted radiation from Earth’s surface as well as the 

atmosphere with a high spatial and temporal resolution.  Satellite observations have been widely 
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used for studying the global and regional impacts of aerosols on climate, visibility, and air 

pollution.   

To retrieve aerosol properties from satellite measurements, a precise characterization of 

lower boundary conditions (e.g. surface albedo) is needed (e.g. Shi et al., 2010).  Over global 

oceans, surface albedos are typically assumed to be a function of wind speed, with the 

consideration of specular and scattered reflectance as well as the reflectance due to whitecaps.  

Although studies have suggested that ocean bubbles could also affect ocean surface albedo 

(Zhang 2001, Zhang and Lewis, 2002), ocean bubbles have not been considered in the existing 

operational over-ocean satellite aerosol retrievals (e.g. Remer et al., 2005). 

“Ocean bubbles” refer to the bubbles that are created by crashing waves.  Incoming solar 

radiation that is reflected back into space interacts with the ocean surface in three different ways: 

reflected just above the surface, right at the surface, or below the surface.  Radiation that 

penetrates the ocean surface can be reflected back by ocean bubbles formed below the sea 

surface.  This in turn causes an increase in the amount of radiation reaching the satellite.  It has 

been suggested from field observations that ocean bubbles evolve into a more or less horizontally 

uniform stratus layer of bubbles when the wind speeds are over 7 m/s.  Wind speeds of this 

intensity can produce larger waves at a higher frequency in order to sustain the ocean bubble 

supply (Zhang et al., 2002).  Since bubbles and whitecaps coexist, the total reflectance measured 

by a satellite is a sum of the reflectance from whitecaps and reflectance from bubbles.  Currently, 

however, only the reflectance from whitecaps has been considered in the conventional satellite 

aerosol retrievals.  Over whitecap free regions, the impacts of ocean bubbles have yet to be 

considered. 
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In the past, oceanic bubbles have been studied for the understanding of ocean optical 

properties including ocean surface albedo (Zhang et. al., 2002), water-leaving reflectance (Zhang 

2001), and scattering of light in the ocean (Zhang et. al., 1998).  Zhang (2001) discovered that 

the presence of an underwater bubble layer does produce an elevated yet more diffuse upward 

radiance field.  The relationship between the enhanced background reflectance and wind speed is 

visible in the red and infrared because the multiple scattering is less impactful and absorption by 

liquid water is high such that only single-scattered photons are able to escape into the 

atmosphere (Zhang, 2001).  Ocean bubbles have also been shown to cause a shift in the 

measured color of the ocean.  Increased scattering causes absorption in the green spectrum to 

decrease, allowing more green photons to emerge from the ocean.  This in turn causes the ocean 

color to shift from deep-blue to green (Morel et. al. 2006).  This change in color can have an 

effect on measuring other ocean characteristics such as chlorophyll concentration.  If bubbles are 

not accounted for, the chlorophyll concentration would be overestimated because of the color 

shift.  This relationship increases with increasing wind speed (Zhang 2001).   

 This study explores the impacts of oceanic bubbles on retrieved aerosol properties.  

Zhang (2001) showed that whitecaps are only responsible for a fraction of the total reflectance of 

the ocean surface, and contributions from ocean bubbles can be significant for high wind 

conditions.  However, in the blue and green parts of the visible spectrum, it is difficult to 

separate the contributions of bubbles from the total background reflectance due to the multiple 

scattering.  In the red/infrared, water-leaving radiance is negligible and the multiple scattering is 

less significant, thus the bubble contributions can be determined (Zhang et al., 2002).  

Accordingly, in this study, the effects of oceanic bubbles on atmospheric aerosol retrievals are 

studied at the red/infrared channels. 



4 
 

One particular reason for this study is to attempt to explain the Elevated Southern Oceans 

Anomaly (ESOA) feature as detected by passive satellites such as MODIS and MISR.  This is a 

band of unusually high aerosol optical depth (AOD) measurements that spans around the entire 

globe in the southern hemisphere around 30° S – 60° S latitude.  As suggested from Figure 1, a 

belt of aerosol plume with high aerosol optical depth value is observed from some of the satellite 

products such as MODIS and MISR, but is not present in other satellite products such as the 

Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP).  Contributions from high sea salt 

concentrations have been suggested as one of the causes for the ESOA (Toth et al., 2013), as in 

the open ocean this is the primary aerosol.  However, ground measurements along the southern 

oceans have diminished this theory to a degree.  A vast portion of Maritime Aerosol Network 

(MAN) stations do not show elevated AOD values during high wind episodes, confirming that 

wind alone is not the cause of the ESOA (Toth et. al. 2013).  

 
Figure 1.  Courtesy of Toth et. al. (2013).  This is a composition of average AOD from multiple 

satellites.  It is clearly visible that the ESOA is not present in every sensor.  Aqua MODIS and 

MISR show the enhanced band of AOD values, whereas CALIOP and the Sea-viewing Wide 

Field-of-view Sensor (Sea WiFS) Deep Blue do not.   
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One proven contributor is cloud contamination.  Toth et al. (2013) conducted multiple 

experiments to show the linkage between cloud contamination and the ESOA.  First, sun 

photometer measurements (MAN stations) were compared to the Aqua MODIS satellite 

measurements.  It was discovered that the ESOA is not present in the MAN measurements.  

Therefore, further investigations were done on the MODIS data.  MODIS has cloud screening 

capabilities, but in order to truly determine the full extent of possible cloud contamination Toth 

et al. (2013) utilized CALIOP, a sensor with extremely precise cloud screening methods.  By 

collocating CALIOP and Aqua MODIS, the advanced cloud screening capabilities of CALIOP 

were applied to cloud-clearing of MODIS data in the ESOA region.  This analysis concluded that 

the ESOA can be significantly reduced from cloud screening.  Note that certain cloud types 

contributed more to the contamination than others.  However the phenomenon still remains after 

the screening process is complete.  This means that there are other contributing factors to the 

ESOA. 

The effects of ocean bubbles on satellite radiances may be important for the 

understanding of discrepancies between surface- and satellite-based AOD estimates in the ESOA 

region.  The contributions of ocean bubbles to the uncertainties in satellite retrieved aerosol 

optical depth are still unknown, and are studied by combining satellite observations with 

radiative transfer modeling.  In this study, a linked oceanic and atmospheric radiative transfer 

model is constructed.  To validate the linked radiative transfer model, the modeled TOA 

radiances are inter-compared with radiance observed from MODIS.  Lastly, the effects of 

oceanic bubbles on satellite derived AOD are evaluated using the linked oceanic and 

atmospheric radiative transfer model for three different scenarios. 
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CHAPTER II 

DATA AND METHODOLOGY 

This study uses the Maritime Aerosol Network (MAN) data, along with satellite 

observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the 

Advanced Microwave Scanning Radiometer - Earth (AMSR-E).  The Second Simulation of a 

Satellite Signal in the Solar Spectrum (6S) atmospheric radiative transfer model (Vermote et al., 

2006) is linked to HydroLight (Mobley and Sundman, 2012), which is an ocean radiative transfer 

model, for studying the effect of oceanic bubbles on aerosol retrievals.  The AMSR-E data are 

used for providing near surface wind speed for the study.  The ground-based and satellite 

observations, and both radiative transfer models are discussed in detail in this section. 

2.1 Observational Data 

The Microtops II sun photometer, which is the basic element of MAN, contains five 

wavelengths ranging from 0.34-1.02 µm that are used for retrieving aerosol optical depths, 

column ozone concentrations, and column water vapor concentrations (Smirnov et al, 2011).  A  

GPS is used to compute position and time, and the built-in temperature and pressure sensors 

assist in aerosol property calculations.  The measured attenuated surface radiation at the five 

wavelengths is used to estimate AOD based on Beer’s law (Smirnov et al., 2011).  Uncertainties 

in sun photometers come from calibration issues, changes in electronics, filter degradation, 

effects from the temperature, and improper pointing at the sun (waves causing the ship to sway).  

Even with a high number of sources for uncertainties, these errors can be minimized with the 

proper precautions (Porter et al., 2001, Knobelspiesse et al., 2003).  In this study, MAN data are 
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used to validate the satellite aerosol retrievals.  The reported accuracy for MAN aerosol optical 

depth data is ±0.02 (Smirnov et al., 2011).   

The MODIS sensor is on board both the Terra (passes over the equator at 10:30 a.m. local 

standard time) and Aqua (equator overpass at 1:30 p.m. local standard time) platforms.  MODIS, 

with a wide swatch of 2330 km, contains 36 spectral channels which have spatial resolutions 

ranging between 250 – 1000 meters.  For this study, the Collection 5 MODIS Dark Target 

aerosol products from MODIS-Aqua (Remer et al., 2005) are used.  Over the ocean, standard 

MODIS retrievals of aerosol optical properties are retrieved through a Look-Up Table (LUT) 

method in three steps. Step one: simulated satellite radiances are computed over all seven 

wavelengths as functions of pre-determined observing conditions and aerosol models using a 

radiative transfer model to form a LUT. Second, the observed satellite radiances are matched to 

entries in the LUT by finding the minimum difference between the satellite radiances and the 

LUT radiances. Finally, the aerosol parameters from the selected aerosol models and values from 

step 2 are used to calculate aerosol properties such as AOD.  In the current over ocean retrieval 

algorithm, four pre-determined aerosol models are used for small mode aerosols (example, 

sulfate aerosols) and five are used for large mode aerosols (Remer et al., 2005).  Validated 

against ground based observations, Remer et al. (2005) suggested that the uncertainty for the 

over ocean aerosol optical depth retrieval is on the order of 0.03 ± 0.05*AOD.  

Besides the MODIS Dark target aerosol products, level 1b 250 meter resolution MODIS 

data are collocated with wind speed data from AMSR-E and aerosol optical depth data from 

MAN for evaluating the radiative transfer model simulations.  MODIS Channel 1 TOA radiance, 

along with latitude, longitude, and viewing geometry data are extracted from the level 1b 
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MODIS data.  The MODIS cloud mask data (MOD35) are also used for excluding cloud 

contaminated pixels. 

The near surface wind speed values are obtained from the collocated AMSR-E data.  On 

board the Aqua satellite, the AMSR-E is a conically scanning passive microwave radiometer 

with 12 microwave channels (in frequency, not wavelength).  Data resolution varies depending 

on frequency.  Resolution is as low as 5 km at 89 GHz, to 56 km at 6.9 GHz.  Retrieved surface 

parameters from AMSR-E include precipitation, sea surface temperatures, water vapor, wind 

speed, and other ancillary data (http://www.remss.com/missions/amsre).  Since AMSR-E 

measures microwave radiation emitted by the surface and atmosphere, measurements are not 

dependent on the presence of sunlight.  This is an advantage AMSR-E has over sensors that use 

visible channels.  The data used in this study are in hourly gridded binary files with a spatial 

resolution of 0.25°x0.25°.   

In order to find the wind speed at the MAN station, the MAN/MODIS data are collocated 

with the AMSR-E data in both space and time.  The AMSR-E data are required to be within one 

hour of the MAN/MODIS data.  It is important to note that multiple AMSR-E data points could 

match up to one MAN/MODIS point.  To solve this, the spatial collocation process involves 

finding the closest AMSR-E point to the MAN/MODIS location.  In the end, one AMSR-E data 

point is matched to one MAN/MODIS data point. 

After collocating MODIS, MAN and AMSR-E data, the collocated data pairs that are 

located between 30° S and 60° S are selected for this study using four years of collocated 

datasets (2004, 2007, 2008, and 2009).  The MODIS cloud mask data are then applied so that 

only confidently clear cases are inspected.  After applying the regular cloud screening steps 

using the MODIS cloud products, all datasets are visually inspected to further exclude cloud 
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contaminated data points.  The visual test is done using MODIS true color images.  There are 

thirty-seven cases that pass both the MODIS cloud screening and the visual inspection.  MODIS 

granules have been downloaded for each case for further analysis. 

Next, a given MAN station needs to be located within the corresponding MODIS granule.  

The latitude and longitude of the station are known, making it easy to determine whether or not 

the station lies within the MODIS granule.  The goal is to find the measured MODIS radiance at 

the MAN location.  To do this, a box of pixels is created spanning ±0.05° latitude and longitude 

from the MAN station.  The closest non-cloudy MODIS pixel to the MAN station is chosen.  If 

the closest non-cloudy pixel is outside of the ±0.05° latitude and longitude box, no MODIS 

radiance value is assigned to that station. 

2.2 Oceanic and Atmospheric Transfer Models 

Both oceanic and atmospheric radiative transfer models are used in this study.  To 

simulate TOA radiation retrieved by MODIS, the Second Simulation of a Satellite Signal in the 

Solar Spectrum (6S) model (Vermote et al., 2006) is used.  6S is a clear-air atmospheric radiative 

transfer model and has the ability to simulate TOA radiation from a vast array of satellite 

channels, including all MODIS channels.  The equation used to calculate reflectance due to 

ocean bubbles is valid at the 675 nanometers spectral channel (Zhang, 2001), which lies within 

MODIS channel 1.  

Satellite measured TOA radiation is a sum of the direct and diffuse radiation.  To 

simulate upward TOA radiation, there are multiple components to consider:  1) Photons scattered 

by the atmosphere.  These particles contain no information about the surface itself.  2) Photons 

scattered by the surface back into space.  Both direct and diffuse radiation are included in this 

component.  Direct radiation in this case is any photons scattered by the surface only.  Diffuse 
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radiation is any particles that either on the way toward the surface or back into space are 

scattered by the atmosphere.  The third and final component is where particles are scattered 

multiple times by the surface.  Photons that are multiply scattered give inaccurate information 

about the surface (Vermote et al., 2006).   

The ocean surface reflectance for a given viewing geometry can be assumed as a sum of 

four components: bubble reflectance, whitecap reflectance, specular reflectance at the ocean 

surface (sun glint), and scattered reflectance emerging from sea water (reflectance observed just 

above the sea surface).  For this study, the primary focus is the contributions from bubble 

reflectance.  Since bubble reflectance matters only over non-whitecap regions, bubble reflectance 

needs to be considered as a function of the whitecap coverage area.  The whitecap coverage area 

and reflectance can be estimated based on near surface wind speed.  However, the aging effects 

of whitecaps need also be considered.  For example, Koepke (1984) summarizes it as follows: 

“the optical influence of whitecaps is given by the product of the area of each individual 

whitecap W and its corresponding reflectance ρf(λ).  However, the area of an individual whitecap 

increases with its age, while its reflectance decreases.  Since whitecaps of different ages are 

taken into consideration in the W values, the combination of W with ρf(λ) give ρwc(λ) values that 

are too high”.  By taking this into consideration, it is not optimal to multiply the whitecap 

coverage area W by its individual reflectance.  Instead, an effective reflectance of ocean foam 

patches, ρef(λ), and an efficiency factor, fef, are used.  The effective reflectance is a constant 

value that is calculated based on the data input.  The efficiency factor is slightly dependent on 

wind speed but is independent of the wavelength (fef = 0.4 ± 0.2) (Koepke, 1984). 
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In the 6S model, the whitecap reflectance is calculated based on equations 1 – 5.  First, 

the whitecap coverage area is estimated based on wind speed, as shown in Eq. 1, where W is the 

whitecap coverage area and wspd is the near surface wind speed.   

                                   

The effective reflectance (Refi) from whitecaps is computed based on equations 2 – 4, 

where wl is the pigment concentration, and iwl and wlp are internal parameters.  For this study, 

pigment concentration was set constant at 20 mg/m
3
.   

           
      

   
             

                              

                 
      

   
                                 

Equation 5 calculates the final whitecap reflectance as the product of the whitecap 

coverage area W and effective reflectance Refi. 

                       

 Once the whitecap reflectance is calculated, the total sea surface albedo is calculated 

using Eq. 6 as a sum of whitecap reflectance, glint, and contributions from pigments (Vermote et 

al., 2006). 

                                                   

Where GLINT is the glint reflectance and Refwb is the water-leaving reflectance.  To 

account for ocean bubbles, Eq. 6 needs to be modified.  To achieve this goal, 6S is coupled with 

the HydroLight oceanic radiative transfer model.  HydroLight is designed to simulate radiative 

transfer processes in oceans (Mobley and Sundman, 2012), making it well-suited for estimating 

bubble induced surface reflectance perturbations.  Select parameters in both HydroLight and 6S 
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models are adjusted.  The parameters of interest are viewing geometry, wind speed, the ocean 

bubble phase function, and the ocean bubble concentration, which are used for estimating bubble 

reflectance.   

The ocean bubble phase function is adopted from Zhang et al. (2002), where the bubble 

phase function is estimated from the volume scattering function (VSF).  The VSF is computed 

from Mie scattering theory and is inter-compared with laboratory (using a volume scattering 

meter) and field observations.  Figure 2 (from Zhang et al., 2002) shows angular scattering 

efficiency from both bubbles and other particles for various conditions, and at the 60° – 80° 

scattering angles bubble and particle contributions are clearly separable. 

  

Figure 2.  “The single-bubble angular scattering efficiency for bubbles (black lines) with radius 

between 10 and 300 µm are plotted along with the single-particle angular scattering efficiency for 

particles (gray lines) with refractive index of 1.02, 1.05, 1.10, 1.05, and 1.20 falling in the same size 

range” Zhang et al., 2002. 

 It is worth noting ocean bubbles inevitably get covered in some sort of organic coating of 

varying thickness.  Including the coating in optical computation is critical for remote sensing 

applications because it can increase backscattered light by ocean bubbles by a factor of up to 4 
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(Zhang et al., 1998).  Little is known about the composition and thickness of bubble coatings.  

However a recent study shows that a coating of proteinaceous type (D’Arrigo 1983; D’Arrigo et 

al., 1984) with a refractive index of 1.18 relative to water and a thickness of 0.01 µm provides 

the best match between optical and acoustical observations of bubbles (Czerski et al, 2011).  In 

simulations, the bubble phase function is assumed to remain constant regardless of wind speed 

and in this study the organic coating is represented within the phase function. 

 Bubbles in the upper ocean are primarily generated by breaking ocean waves (Thorpe and 

Humphries, 1980; Lamarre and Melville, 1991).  When wind speeds exceed 7 m/s, field 

observations have shown that a stratus layer of bubbles form under the sea surface and persist as 

a result of a continuous supply of bubbles from frequent wave breaking and subsequent 

advection by turbulence (Thorpe 1982; Thorpe 1986; Crawford and Farmer 1987).  Because of 

the rapid rising of bubbles, the density distribution of the ocean bubbles decreases exponentially 

with depth while overall concentrations increase with increasing wind speeds following a power 

law.  Ocean bubble concentrations in this experiment are obtained from (Zhang 2001; Zhang and 

Lewis, 2002), in which the concentrations at different layers are modeled as a function of wind 

speeds based on field observations. 

2.3 Estimating Bubble Surface Reflectance 

 HydroLight is a Windows-based program.  For this study, the Windows-based 

HydroLight program is inverted to a Linux-based version to speed up the processes.  The outputs 

from the Linux and the Windows versions of HydroLight are inter-compared to ensure the 

conversation does not introduce errors into the calculations.   

To study the contributions of bubbles to aerosol retrievals, the effects of bubbles on the 

surface reflectance need to be known.  The contribution from ocean bubbles adds to the surface 
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reflectance used in the aerosol retrieval.  Background reflectance is easily found by running 

HydroLight with the bubble concentration set to zero.  To get the contribution from ocean 

bubbles, the difference is taken between HydroLight runs with a bubble concentration of zero 

and one with a concentration greater than zero.  To get an equation that represents the bubble 

concentration, this reflectance difference is plotted against wavelength.  The results are shown in 

Fig. 3.  These results are a recreation of a plot from Zhang (2001).  The default bubble 

concentrations are obtained from Zhang (2001).  The phase function is based on Zhang et al. 

(2002), which used controlled laboratory conditions to get an accurate phase function from the 

volume scattering function. 

 

Figure 3.  This is the reflectance difference between the default bubble concentration and a 

bubble concentration of zero.  It is plotted as a function of wavelength.  The equation is valid at 

675 nm, so that is the wavelength in which a linear fit will be done to come up with an equation 

that can calculate the contribution from ocean bubbles at the given concentration. 

 

 Note that multiple scattering is significant in the lower wavelengths of the visible 

spectrum (e.g. green and blue channels).  Therefore, the ocean bubble contributions cannot be 
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discerned from the overall background reflectance.  Multiple scattering is far less in the 

red/infrared spectral channels, making it much easier to separate the ocean bubble reflectance 

from the background.  It is for this reason that 675 nanometers is the chosen wavelength. 

According to Zhang (2001), the format of the equation used to calculate bubble 

contribution is as shown in Eq. 7, where L and J are the desired coefficients.   

                          

Instead of applying an exponential fit, taking the natural log of Eq. 7 will result in a linear 

equation (y = ax + b) that can be used to easier determine the coefficients L and J. 

                                      

 Equation 9 represents the change in reflectance caused by ocean bubbles based on the 

work done by Zhang (2001).  To properly modify 6S, Eq. 9 is first modified and then added to 

Eq. 6.  The resulting equation is Eq. 12 shown in the next chapter. 

                                                                  

For further testing, an experiment is done using upper and lower boundaries of the bubble 

concentrations.  The upper boundary is made by doubling the default bubble concentrations, 

while the lower boundary is represented by half of the default concentrations.  The use of upper 

and lower boundaries allows analysis of two extreme conditions when compared to a normal set 

of conditions.   
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CHAPTER III 

RESULTS AND DISCUSSION 

3.1 Update the 6S Model to Account for Ocean Bubbles 

 The original equation to account for ocean bubbles is represented by Eq. 9.  This equation 

is valid at 675 nanometers.  The first term represents the contribution from ocean bubbles while 

the second term is the contribution from whitecaps.  Figure 4 depicts the whitecap reflectance as 

a function of wind speed from Koepke (1984).  The expected result is that the reflectance and 

also the difference in the reflectance (comparing bubbles being present and not present) both 

increase exponentially with increasing wind speed.  However, preliminary results did not 

correspond with the expectations.  One possible reason for this is sun glint.  

 

Figure 4.  Whitecap reflectance plotted as a function of wind speed according to Koepke (1984).  

There is an exponential increase in reflectance due to whitecaps with increasing wind speed. 
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When the solar zenith angle (SZA) and viewing zenith angle (VZA) are similar in value, 

but are located nearly 180 degrees opposite to each other at the azimuth plane (or near zero glint 

angle), strong specular reflection is expected (sun glint contamination).  Within the glint regions, 

specular reflectance of solar radiation dominates the TOA radiation received by the satellite and 

surface contributions from whitecaps and bubbles become negligible.  Away from the sun glint 

angular domain, the expected results from Fig. 4 are observed.  Figure 5 is an example of 6S 

simulated reflectance (at 675 nm) plotted against wind speed at four different glint angles.  Here 

the cloud and aerosol free standard atmospheric profile is used with the solar zenith angle (SZA) 

set to 0 degrees and the viewing zenith angle (VZA) is varied from 0 to 60 degrees.  By varying 

the VZA, the glint angle varies from 0 to 60 degrees.  The glint angle is calculated using Eq. 10. 

                     

                                              
     

 
            

 
Figure 5.  6S reflectance plotted as a function of wind speed (m/s).  The solar zenith angle is 

constant at 0°.  Sun glint is still present at lower glint angles.  However the exponential growth in 

reflectance begins to show up at higher glint angles.   
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Note that Eq. 9 is from Zhang (2001).  It includes contributions from both bubbles and 

whitecaps.  However, the surface reflectance pattern from whitecaps as represented in Eq. 9 is 

found to be inconsistent with the whitecap reflectance calculations from 6S (Eq. 5).  To best 

preserve whitecap reflectance calculations, Eq. 5 is best suited for this study.  Therefore only the 

bubble portion of Eq. 9 is utilized in this study.  Equation 11 is then multiplied by (1-W) and 

added to the end of Eq. 6 to properly take into account ocean bubbles in the 6S radiative transfer 

model. 

                                             

                                                                 

Clearly a difference is expected in the 6S simulation when Eq. 6 is replaced with Eq. 12 

to give a more complete consideration of ocean bubbles.  A preliminary test is conducted with 

results shown in Fig. 6.  The differences in simulated reflectance at 675 nm with and without 

inclusion of oceanic bubbles are plotted against wind speed for four viewing zenith angles (0, 20, 

40, and 60 degrees).  A cloud and aerosol free standard atmospheric profile is used and the solar 

zenith angle is constant at 0 degrees.  Results in Fig. 6 show the expected relationship between 

the change in reflectance between the scenarios with and without the consideration of oceanic 

bubbles as a function of near-surface wind speed.  This proves that the new equation inserted 

into 6S is functioning. 
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Figure 6.  Difference in 6S reflectance between bubble and no bubble cases as a function of near-

surface wind speed for varying viewing zenith angles. 

 

 

3.2 Evaluate the Original 6S Model 

The next step involves comparison of the original 6S simulated MODIS radiance with the 

observed MODIS radiance data at 675 nm.  The analysis of the 6S model calculations after 

adding ocean bubble contributions is discussed later.  MAN, Aqua MODIS, and AMSR-E data 

are collocated in order to construct an observation-based group of data that includes AOD from 

MAN, wind speed from AMSR-E, and satellite radiance from MODIS.  The MODIS cloud mask 

data are used to eliminate all cloud contamination scenes.  The cloud-clearing step is needed to 

create a clear-air condition.  Shown in Fig. 7, a small scale test is performed on an Aqua MODIS 

image to ensure that the MODIS cloud mask data are applied correctly.  Figure 7a shows the 
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Aqua MODIS radiance for November 21, 2009 from the MODIS Dark Target products.  Figure 

7b shows the results of the MODIS cloud masking data and Fig. 7c shows the Aqua MODIS 

radiance field after the cloud masking process.  Only confidently clear pixels are chosen in hopes 

of eliminating any possible cloud contamination. 

   

 

 

7a. Aqua 

Radiance Data 

7b. Aqua 

Cloud Mask 
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Figure 7.  a) Aqua MODIS radiance data.  Areas of white indicate likely cloud or glint.  b) Aqua 

MODIS cloud mask product for the same granule as 7a. The black is confidently clear data and 

white is any pixel flagged as cloud.  c) Combination of the top and middle to evaluate the 

performance of the cloud mask product. 

 

The closest MODIS cloud free pixel to a given MAN station is used to represent the 

MODIS reflectance value.  Figure 8 shows the comparisons between MODIS observed radiance 

at 650 nm and 6S simulated MODIS spectral channel 1 radiance for all four years of data using 

the unmodified 6S model.  To simulate the observed radiance, AOD from MAN, wind speed 

from AMSR-E, and viewing geometry from MODIS are used as the input parameters for the 6S 

simulations.  The default oceanic aerosol model from 6S (Vermote et al., 2006) is also selected 

for the simulation to account for background ocean aerosol characteristics.   

 

7c. Cloud Mask 

Combined With 

Radiance Data 
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Figure 8.  6S simulated radiance (Wm
-2

sr
-1

µm
-1

) and MODIS observed radiance (Wm
-2

sr
-1

µm
-1

) 

for all years of data. 

 

Biases in the simulated radiance values can be clearly seen that may relate to 

uncertainties in measured properties including wind speed and AOD.  Also, the default ocean 

surface reflectance pattern, the oceanic aerosol model, and the standard atmospheric profile 

assumed in the model runs could also contribute to the biases in the simulations.  Still, Figure 8 

suggests that 6S can be used to simulate MODIS radiance with reasonable accuracy.   

3.3 Bubble Impact Study Using the Collocated MODIS and MAN Data 

 After validation of the 6S model against observations, we attempt to determine the 

impacts of oceanic bubbles on the retrieved aerosol optical depth using the collocated MODIS 

and MAN datasets.  Sensitivity studies are first performed to evaluate the changes in TOA 

radiance in response to changes in AOD as a function of wind speed using the collocated data 
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from November 29, 2004.  For this case the SZA is 44.02° and the VZA is 11.25° as retrieved 

from MODIS.  Figure 9 shows the 6S modeled TOA reflectance from MODIS channel 1 as a 

function of AOD and wind speed without considering ocean bubbles.  The wind speed is varied 

from 1.0 to 20.0 m/s and AOD from 0.01 to 0.20.  It is seen in Fig. 9 that at lower wind speeds 

(e.g. < 7 ms
-1

) the reflectance values do not change drastically at the given range of AOD values.  

When the wind speed becomes greater than 15 ms
-1

, the change in reflectance is much more 

significant. 

   

Figure 9.  6S modeled TOA reflectance from MODIS channel 1 as a function of AOD and wind 

speed without considering ocean bubbles (data from November 29, 2004).   
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Figure 10.  Data from Fig. 9 with the inclusion of ocean bubbles.   

 

Figure 10 shows the same information as Fig. 9 except with the inclusion of ocean 

bubbles.  Comparing Fig. 10 with Fig. 9, there is a significant increase in the reflectance values, 

in particular at higher wind speeds.  Not only do the reflectance values increase at higher wind 

speeds, the changes in reflectance with increasing wind speed also increase.  At lower wind 

speeds the changes in reflectance are still relatively small. 

Next, the impact of bubbles on AOD retrievals are studied using the 37 observations 

mentioned in chapter 2.  These include AOD (MAN), wind speed (AMSR-E), and channel 1 

MODIS radiance.  However, attempts to ascertain the effects of ocean bubbles are not successful 

as the impacts of oceanic bubbles on MODIS radiance are comparable in magnitude to the 

uncertainties in the modeled MODIS radiance values as shown in Figure 8.  Also, standard 

atmospheric model profiles are used which may differ from the atmospheric profiles of the 

observed scenes.  Other methods are needed to study the impacts of bubbles to AOD retrievals. 
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3.4 Theoretical Analysis of Bubble Impacts 

 Since an observational based analysis yields inconclusive results, a theoretical approach 

is applied next to investigate bubble impacts.  Look-Up-Tables (LUT’s) of simulated MODIS 

TOA reflectances are constructed as function of solar zenith angle and viewing zenith angle 

(each varies from 0° to 60° at intervals of 10°), solar and viewing azimuth angle (from 0° to 180° 

at intervals of 30°), AOD (from 0.01 to 0.4 at intervals of 0.01), and wind speed (varies from 1.0 

m/s to 20 m/s).  The LUTs are constructed for two scenarios: one with the inclusion of ocean 

bubbles and one without.  The modified 6S model is used in the simulation.  Here simulations of 

most observational conditions are attempted and average impacts of ocean bubbles on AOD 

retrievals are derived.   

For the purpose of this sensitivity study, two additional scenarios are also included: 

“double bubble” and “half bubble”.  “Double” indicates that the bubble concentration is two 

times that of the default values, and “half” represents a bubble concentration that is only one half 

of the default value.  This is done to examine the effects of bubble concentration on AOD.  

Varying the bubble concentration is done to create an uncertainty envelope.  The 6S model needs 

to be modified to account for both the “double bubble” and the “half bubble” cases.  Equation 9 

is derived by Zhang (2001) and cannot be used because it will not properly compare to the 

equations derived in this experiment for “double” and “half” bubble concentrations.  Therefore 

the same method as Zhang (2001) is adopted to create three new equations.  Using HydroLight, 

the reflectance difference between runs with each bubble concentration and runs with zero 

bubble contribution are plotted against the wavelength.  A linear fit was done at 675 nanometers 

because it is at this wavelength that whitecap reflectance does not dominate over ocean bubbles 

which allows the contribution of ocean bubbles to be extracted accurately.  The derived 



26 
 

equations are shown below where equations 13, 14, and 15 are for Default Bubble, Double 

Bubble, and Half Bubble cases respectively.   

                                             

                                             

                                               

 

 
 

Figure 11.  This is a composition of 6S radiance (Wm
-2

sr
-1

µm
-1

) plotted against Aqua MODIS 

radiance (Wm
-2

sr
-1

µm
-1

) for the default bubble concentration. 

 

 To further validate these equations, each is individually inputted into Eq. 12 and 

experiments similar to those in section 3.2 are conducted for simulating radiance values and 

inter-comparing with the observed MODIS radiance values (see Fig. 8).  Figure 11 shows the 

comparisons between the 6S simulated radiance values and the MODIS observed radiance for 
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the default bubble cases.  Similar results are found for both the half and double bubble cases and 

thus are not shown.  All three cases compare reasonably with the observed radiance, although the 

effects of ocean bubbles are not readily visible.  Clearly, testing the effects of bubbles on aerosol 

retrievals may not be sufficient with a small collection of data pairs as shown in section 3.3.  A 

large scale generalized test is necessary for investigating the averaged effects of oceanic bubbles 

on aerosol retrievals as well as the threshold conditions at which ocean bubbles become a 

significant factor in satellite aerosol measurements. 

 For any given observing conditions, the simulated reflectances (for both with and without 

bubble cases) are used to compute the errors in the retrieved AOD without considering bubbles.  

For example, for a given bubble case with a given wind speed and fixed viewing geometry, a 

relationship between AOD (AODbub) and simulated TOA reflectance is established.  For the 

same observing conditions, the simulated reflectance is then used to search for the corresponding 

AOD value for bubble free conditions (AODno_bub).  The difference between AODbub and 

AODno_bub (ΔAOD) represents the simulated retrieval error without considering ocean bubbles in 

the retrieval process.  Note that the process is done for default, double, and half bubble 

concentration cases. 

Select results are presented to examine the importance of bubble effects as a function of 

viewing geometry as well as bubble concentration.  A single day is chosen from the list of 37 

cases mentioned in chapter 2, January 12, 2008.  Results are found for solar zenith angles (SZA) 

of 0°, 30°, and 60°.   

3.4.1    Fixed SZA, SAZM, VAZM and AODbub 

Figure 12 is a plot of change in AOD against wind speed.  The SZA is 30° while 

the solar azimuth angle of 0°.  The change in AOD (ΔAOD) is found using a starting 
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AOD value (AODbub) of 0.1.  Colors are used to identify each bubble concentration while 

shapes are associated with different viewing zenith angles (VZA).  At all lower wind 

speeds the changes in AOD are minor regardless of the bubble concentration.  As wind 

speed increases, there is an exponential increase in ΔAOD, with a much more significant 

ΔAOD at wind speeds greater than 10 m/s. 

 

Figure 12.  This is the change in AOD using a starting AOD value of 0.1 at a solar zenith angle 

of 30° and a solar azimuth angle of 0°.   

 

The AOD difference is also dependent on the bubble concentration.  This is seen 

when comparing the three concentrations at one viewing zenith angle.  For any viewing 

zenith angle in Fig. 12, the half bubble concentration has the lowest change in AOD 

while double bubble has the highest AOD difference.  It is expected that changing the 

bubble concentration will have an effect on ΔAOD, but it is uncertain how significant the 
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effect is.  It is apparent that at higher wind speeds the bubble concentration becomes an 

important variable.  

3.4.2  Fixed SZA, SAZM, VAZM, and variable AODbub  

 The change in AOD as a function of wind speed, VAZM, and bubble 

concentration for three different AODbub values is examined.  Figures 13 and 14 show the 

change in AOD using starting AOD values of 0.2 and 0.3 respectively with the same 

viewing geometry as Fig. 12.  Changing AODbub does not appear to have an effect on 

ΔAOD based on the results in Fig. 13 and Fig. 14. 

 

Figure 13.  ΔAOD plotted against wind speed with a solar zenith angle of 30, solar azimuth angle 

of 0, and the starting AOD value was 0.2. 
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Figure 14.  ΔAOD plotted against wind speed using a starting AOD value of 0.3.     

 

3.4.3  Fixed SZA, varied AODbub, averaged 

 To remove the consideration of the viewing geometry, ΔAOD values are averaged 

at a constant SZA for all VZAs and SAZMs.  Averaging is performed for each AODbub 

(0.1, 0.2, and 0.3).  This makes it easier to compare the effects of varying bubble 

concentrations on AOD.  Also glint angle (Eq. 10) is calculated for all viewing geometry 

combinations.  To eliminate any possibility of sun glint contamination, data are averaged 

only if the glint angle is greater than 30 degrees.  Figure 15 shows the average ΔAOD 

plotted against wind speed for each starting AOD value for a solar zenith angle of 30°.  

Similar to Figures 12-14, the effect of ocean bubbles is significant only for cases with 

near surface wind speeds over 12 m/s.  Double or half the default bubble concentration 
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can have a significant effect to aerosol retrievals as well, but again, only for wind speeds 

greater than 12 m/s. 
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Figure 15.  Averaged ΔAOD plotted as a function of wind speed for SZA of 30° at top) 

AODbub=0.1, middle) 0.2, and bottom) 0.3.  Viewing geometry is eliminated as a variable, 

allowing strictly analysis of the bubble concentrations. 

 

Sun glint contamination causes uncharacteristically high ∆AOD values.  The 

reasoning behind this is illuminated in Fig. 16, where reflectance is plotted against AOD 

at a constant wind speed.  There are times when the change in reflectance between “no 

bubbles” and “bubbles” is very small.  Figure 16 is an example of one of these cases that 

also contains a shallow slope.  In order to illustrate the actual variations in reflectance, 

the y-axis is restricted to range from 0.1 to 0.12.  Observed from Fig. 16, at an AOD 

value of 0.3, the reflectance value for “with bubbles” is 0.109283.  At AOD values 

greater than 0.3, the reflectance values for “no bubbles” do not reach this value.  In fact 

the only spot in which “no bubbles” does reach this value is between 0.05 and 0.06 AOD.  

This makes for a ∆AOD of around 0.25.  Other cases have situations where one or more 
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starting AOD values have multiple ∆AOD results.  This happens when the parabolic 

shape seen in Fig. 16 has repeated reflectance values.  When sun glint is taken into 

account, all uncharacteristically high ∆AOD results are eliminated and therefore do not 

appear in Fig. 15. 

 

 
Figure 16.  This plot has reflectance plotted against AOD.   The viewing geometry is labeled in 

the plot title, and the wind speed is constant at 17 m/s.  Notice the restricted range of the y-axis. 

 

Based on Figures 12-15, it is evident that at low wind speeds there is no 

significant impact from ocean bubbles; however, as wind speeds increase so does ΔAOD.  

The impact becomes more significant once wind speeds are above 10 m/s as ΔAOD 

values begin to surpass 0.01 and increase exponentially.  While surface wind speeds of 

this magnitude do not occur on a global scale, (average global wind speed is around 6-
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7m/s), for regions with high wind speed such as the ESOA region, the impacts of ocean 

bubbles on the satellite retrieved AOD values can be significant. 

3.4.4  Fixed SZA and AODbub, varied SAZM 

Equation 10 shows that varying the relative azimuth angle (the difference between 

SAZM and VAZM) changes the glint angle.  In this study, VAZM is held constant at 0 

degrees, therefore varying the SAZM will change the relative azimuth angle.  Figure 17 

shows the progression of changing the SAZM from 0 to 180 degrees.  The starting AOD 

value was held constant at 0.1. 
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Figure 17.  ΔAOD plotted as a function of wind speed at a constant SZA of 60 degrees and 

starting AOD value of 0.1. top) SAZM=0°, middle) SAZM=90°, bottom) SAZM=180° 
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 As SAZM increases, ΔAOD increases for certain viewing geometries.  This is 

likely due to contributions from sun glint, which is more pronounced when the relative 

azimuth angle is 180 degrees.  This will in turn have an effect on the reflectance output.  

Figure 18 shows the average ΔAOD from Fig. 17 as a function of wind speed. 

 

Figure 18.  The average ΔAOD as a function of wind speed for solar zenith angle of 60° at a 

starting AOD value of 0.1.   

 

   This indicates that the impact of ocean bubbles at a SZA of 60° is more apparent 

as wind speeds exceed 12 m/s.  This wind speed threshold is slightly higher than what 

was seen at a SZA of 30°.  This reinforces the importance of viewing geometry, as solar 

zenith angle, viewing zenith angle, and relative azimuth angle all have an impact on AOD 

retrievals.   
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3.5  Apply Ocean Bubble Correction to the ESOA 

 It has been shown that, theoretically, ocean bubbles can affect satellite aerosol retrievals 

under conditions with near surface wind speeds greater than 10-12 m/s.  As the last step of this 

analysis, we study the impact of oceanic bubbles to the ESOA feature detected from MODIS.  

For this exercise, one year (2009) of Aqua MODIS AOD and AMSR-E wind speed data are 

used.  For each day, AMSR-E wind speed (Fig. 19a), Gridded Aqua MODIS AOD (Fig. 19b), 

solar zenith, viewing zenith, relative azimuth angels data are constructed at a 1x1 degree 

(Lat/Lon) resolution.  Based on the LUTs constructed in previous section, yearly averaged 

changes in retrieved AOD due to bubbles (AOD) are also calculated (Fig. 19c).  Lastly, ∆AOD 

is subtracted from the data in Fig 19b to created corrected AOD due to the impact of ocean 

bubbles (Fig. 19d). 

Figure 19a is a plot of the average global wind speed for the year 2009.  Notice a high 

wind speed band is found over the high latitude southern oceans, which is consistent with the 

location of the ESOA feature.  Figure 19b is the yearly averaged Aqua MODIS AOD for the 

latitude range of -70 to -30 degrees.  Using the LUTs created in section, the ΔAOD can be 

estimated with the use of the viewing geometry and wind speed as inputs to the LUTs and 

through linear interpolations of LUT outputs.  The ΔAOD values for the same area as Fig. 19b 

are shown in Fig. 19c.  The ΔAOD can then be subtracted from the Aqua MODIS AOD (Fig. 

19b) to evaluate the impact of ocean bubbles.  This step is shown in Fig. 19d.  An evaluation of 

Fig. 19c and Fig. 19d suggests that ocean bubbles have a minor effect to the ESOA.  It is likely 

that ESOA is originated from sources other than oceanic bubbles.   
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Figure 19.  a) Yearly averaged wind speed for 2009 for the latitude range of -30 to -70 degrees. 

b) yearly averaged AOD for the same region as shown in Figure 19a.  c) Corrections to account 

for ocean bubbles based on the yearly averaged wind speed and viewing geometry.  d) New 

yearly averaged AOD after applying the ocean bubble corrections. 

 

 Figure 20 is the percentage change in AOD as a result of ocean bubbles.  It is visible that 

almost all areas sustain an AOD change of less than 10%, with a majority having less than a 4% 

change in AOD.  The average wind speed is not high enough to sustain a large contribution from 

ocean bubbles. 

 
Figure 20.  Similar to Fig. 19c, this is AOD correction plotted as a percentage. 

 

 Figure 21 is a histogram of the wind speeds in the ESOA region over a full year (2009).  

Figure 21a is the wind speed measured in the ascending orbit, and Fig. 21b is the data from the 

descending orbit.  Regardless of the ascending or descending orbit, the wind speed spread peaks 
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around 10 m/s, but then decreases exponentially.  Therefore the vast majority of overall wind 

speeds measurements are less than 10 m/s.  Each orbit indicates that there are instances where 

the wind speeds can exceed 15 m/s and even 20 m/s, however there are very few incidents of 

wind speeds of this magnitude over the course of a year when compared to other wind speed 

events. 

 While there are high speed wind events in the ESOA region, when averaged over a year 

the impact of these events is nullified.  This is reason as to why ocean bubbles do not appear to 

contribute to the ESOA phenomenon.   

 

 

 
Figure 21.  Top histogram: wind speed frequency over a whole year (2009) for the ascending 

orbit.  Bottom histogram: wind speed frequency over the same year for the descending orbit.
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CHAPTER IV 

CONCLUSIONS 

Previous studies have demonstrated the effects of oceanic bubbles on surface reflectance 

patterns.  However, ocean bubble effects have not been related to atmospheric applications such 

as aerosol retrievals by passive remote sensing techniques.  By coupling the HydroLight oceanic 

radiative transfer model (RTM) with the 6S atmospheric RTM, the effects of ocean bubbles on 

satellite aerosol measurements are studied.  

Our initial investigation, using observed aerosol optical depth, wind speed and satellite 

radiance data from MAN, AMSR-E, and MODIS, are inconclusive, as the uncertainties in the 

modeled MODIS radiance are comparable in magnitude with the bubble induced perturbations in 

TOA radiation.  Also, modeled standard atmospheric profiles could differ from observed 

atmospheric profiles.   

A large scale theoretical approach is taken next by varying multiple variables including 

solar zenith angle, viewing zenith angle, solar azimuth angle, wind speed, and AOD.  The 

bubble-induced uncertainty in AOD value retrieved from passive sensors (ΔAOD) is calculated 

as functions of satellite viewing geometry, near surface wind speed, and AOD.  The wind speed 

data are included as bubbles are formed by breaking ocean waves, which are a function of wind 

speed.  It is evident that at low wind speeds there is no significant impact from ocean bubbles on 

AOD retrievals using passive remote sensing techniques.  However the impact becomes much 

more significant at wind speeds above 12 m/s.  On average, the global wind speed is around 6-7 

m/s, which is too low for ocean bubbles to have a significant effect on the global climate.
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However, high wind speeds can be found over regions such as the northern hemisphere 

storm track, and therefore the impact of ocean bubbles may need to be considered for future 

satellite aerosol retrievals in such regions. 

Finally, the impacts of oceanic bubbles to the ESOA phenomenon are evaluated using 

one year of MODIS, and AMSR-E data.   It is found that ocean bubbles are not a major 

contributing factor to the ESOA. 
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