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ABSTRACT

Using Visible/Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band

(DNB) data, a method, dubbed the “variance method”, is developed for retrieving

nighttime aerosol optical thickness (AOT) values based on the dispersion of radiance

values above an artificial light source. An improvement of a previous algorithm, this

updated method derives a semi-quantitative indicator of nighttime AOT using ar-

tificial light sources. Nighttime AOT retrievals from the newly developed method

are inter-compared with an interpolated value from late afternoon and early morning

ground observations from four AErosol RObotic NETwork (AERONET) sites as well

as column-integrated Aerosol Optical Depth (AOD) from one High Spectral Resolu-

tion LiDAR (HSRL) site at Huntsville, AL during the NASA Studies of Emissions

and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys

(SEAC4RS) campaign, providing full diel coverage. This method does not account for

lunar reflectance from either the surface or the aerosol layer. Sensitivity tests do no

indicate large systematic or random errors associated with lunar illumination. VIIRS

AOT retrievals yield a coefficient of determination (r2) of 0.60 and a root-mean-

squared-error (RMSE) of 0.18 when compared against straddling daytime-averaged

AERONET AOT values. Preliminary results suggest that artificial light sources can

be used for estimating regional and global nighttime aerosol distributions in the fu-

ture.
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CHAPTER I

INTRODUCTION

Atmospheric Aerosols

Atmospheric aerosol, as defined by the American Meteorological Society (2015a),

is “A colloidal system in which the dispersed phase is composed of either solid or liquid

particles, and in which the dispersion medium is some gas, usually air.” Atmospheric

aerosol particles range in size from a few nanometers (nm, 10-9 m) to tens of microns

(Eck et al., 2003). Atmospheric aerosol particles can be categorized by their principal

sources (lifted dust, sea spray, biomass burning, fossil fuels, and secondary organic

production) or by their chemical composition (mineral, salt, sulfate, nitrate, black

carbon, and organic).

Dust aerosols originate primarily from deserts, specifically the Sahara and

those located in the Middle East and Eastern Asia. Long range transportation of

dust plumes across the Atlantic and Pacific Oceans is commonly observed (Chin et al.,

2007). Smoke aerosols are emitted by burning biomass, such as forests or crops. Major

source regions for smoke aerosols are Amazonian South America, Central America,

multiple regions in Africa, and the Maritime Continent (Kaufman et al., 2002; Reid

et al., 2009). Urban aerosols are primarily composed of carbonaceous and sulfate

particles, and are found over major urban areas such as the Eastern United States,

Europe, and Southeast Asia (Hegg et al., 1997). Oceanic aerosols, primarily sea salt

particles, are produced by bursting oceanic bubbles and sea spray (Kaufman et al.,

2002). Concentrations of sea salt aerosols are generally less significant than other
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types of aerosols; however the Southern Ocean experiences higher concentrations due

to climatologically windier conditions (Smirnov et al, 2009).

The understanding of aerosol optical and physical properties and their spatial

and temporal distributions is of an importance to climate studies (Husar et al., 1997).

Aerosol particles reflect incoming short-wave radiation from the sun, which has a

cooling effect on the Earth✬s climate (Schwartz et al., 1996). Aerosol particles can

also absorb incoming solar radiation and earth emitted long wave energy and, under

certain conditions, cause localized warming (Kaufman et al., 2002). The scattering

and absorbing of radiation by aerosol particles is known as the aerosol direct effect.

Additionally, in order for a cloud droplet to form, an aerosol particle is required on

which water can condense — these are called cloud condensation nuclei (CCN; AMS,

2015b). The number of aerosol particles present therefore dictates the availability of

CCN, which determines cloud properties and affects precipitation (Rosenfeld et al.,

2008). By acting as CCN, aerosol particles indirectly affect climate; this is known as

the aerosol indirect effect. Besides climatic impacts, aerosol particles can attenuate

radiation and reduce visibility, which is of critical importance to aviation meteorology

and military operations (Charlson et al., 1969; Miller, 2003). Global human health

is also directly impacted by aerosols, as mortality rates increase under exposure to

increased concentrations of aerosol particles, especially for particulate matter with a

particle size of less than 2.5 µ m (PM2.5; Pope and Dockery, 2006).

Remote Sensing of Aerosols

Recognizing their importance, scientists have monitored and studied atmo-

spheric aerosol particles through ground-based, in-situ, and satellite observations.

One example of a ground-based instrument is a sun photometer. These instru-

ments measure the intensity of incoming sunlight at multiple wavelengths and re-
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trieve aerosol properties based on attenuation of sunlight by the atmosphere. A large

network of sun photometers comprises the Aerosol Robotic NETwork (AERONET;

Holben et al., 1998). The ground-based and in-situ data play a critical role in the

observation of the optical and microphysical properties of aerosols, and they provide

crucial validation for satellite-based retrievals (Kaufman et al., 1997). The spatial

and temporal coverages of in-situ and ground-based measurements are very limited,

especially over global oceans.

With their high spatial and temporal coverage, it is desirable to use satellite

observations to monitor and characterize the global distribution of aerosol particles.

Prominent satellite-based aerosol products today include those from the MODer-

ate resolution Imaging Spectroradiometer (MODIS; Kaufman et al, 1997; Hsu et al.,

2004; Remer et al., 2005; Levy et al., 2013), the Multi-angle Imaging SpectroRadiome-

ter (MISR; Diner et al., 1999), the Visible and Infrared Imaging Radiometer Suite

(VIIRS; Jackson et al., 2013) and the Cloud-Aerosol LiDAR (Light Detection And

Ranging) with Orthogonal Polarization (CALIOP; Winker et al., 2009). CALIOP

is an active sensor; this means that the instrument transmits its own radiation and

measures backscattered energy (Purkis and Klemas, 2011, pg 19). MODIS, MISR,

and VIIRS are passive sensors that rely on radiation from the Earth and Sun for ob-

servation. While passive sensors are able to cover significantly more area than active

sensors, one glaring weakness in passive sensors is that they are not sensitive to the

low levels of visible and near-infrared radiation present at night. Therefore, retrievals

cannot be made at night unless sensors designated for nighttime use are implemented.

Nighttime aerosol data are desirable for multiple reasons. Observing aerosol

transport at all times is important for monitoring pollution and visibility (Barreto et

al., 2013). For example, both military and civilian groups are interested in monitoring

aerosol outbreaks that can severely reduce visibility quickly (Zhang et al., 2008b).
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Nighttime aerosol data is also important for climatological records, especially in high

latitude regions that experience extended periods of time without sunlight (Barreto

et al., 2013). As previously mentioned, aerosols impact the Earth’s radiation budget;

this has been hard to quantify at night due to a lack of aerosol data, especially for

climatic impacts on longwave radiation by dust (Zhang et al., 2008b). Finally, Zhang

et al. (2014) conducted an extensive aerosol data assimilation study and noted a

significant data gap during nighttime. They suggest that assimilation of passively

sensed nighttime data could significantly improve model performance.

Currently, quantitative nighttime aerosol data is limited to ground-based pho-

tometers and LiDARs, and satellite-based active sensors (Zhang et al., 2008). Star

and lunar photometry have been employed in numerous studies (Herber et al., 2002;

Berkoff et al., 2011; Perez-Ramirez et al., 2012; Barreto et al., 2013; Baibakov et

al., 2015) as a method of retrieving nighttime aerosol optical thickness (AOT, τ).

Lanciano and Fiocco (2007) even measured nighttime AOD by taking digital pho-

tos of stars with a commercial Nikon D1 Digital Single Lens Reflex (DLSR) camera.

However, some issues with star and lunar photometers include signal-to-noise ratio,

calibration (Perez-Ramirez et al., 2011), and the lunar irradiance pattern (Barreto

et al., 2013). As these instruments are relatively new and very few are deployed,

there is currently no large uniformly calibrated and distributed network similar to

AERONET (However, this will soon change, as AERONET begins to deploy hybrid

sun-sky-lunar photometers [Barreto et al., 2015]). Also, the use of both types of

photometers is limited by extremely small spatial coverage (Zhang et al., 2008).

LiDARs, such as the previously mentioned CALIOP, are active sensors that

can be ground-based or airborne (Purkis and Klemas, 2011, pg 26). Unlike pho-

tometers and passive space-borne sensors, lid can provide the vertical distribution of

aerosol data. Ground-based LiDARs such as those in the Micro-Pulse LiDAR Net-
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work (MPLNET; Welton et al., 2006) are useful to provide vertical information and

other detailed characterization not available from passive instruments (e.g. Campbell

et al., 2015); however they experience the same coverage issues as photometers. As

CALIOP is space-borne, it is able to cover a significant portion of the globe with a 16-

day repeating orbit; however, its small LiDAR footprint limits its coverage (Winker

et al., 2009).

Recent Studies

A few previous studies have attempted to quantify night time aerosol proper-

ties through passive-based satellite observations. Satellite detection of dust at night

has been available since the last century (Legrand et al., 1989; Wald et al., 1998;

Miller, 2003; Hansell et al. 2007). This can be as simple as examining the difference

between a thermal infrared band (∼11µm) and a channel around 8.5µm (Ackerman,

1997). However, quantification has been more elusive. Hao and Qu (2007) introduced

a dust index based on four infrared MODIS bands. Liu et al. (2013) improved upon

the brightness temperature difference methods presented in Ackerman et al. (1997)

and Wald et al. (1998) to produce a Dynamic Reference Brightness Temperature

Difference Index (DRBTDI). Both of these indices performed well (Pearson Correla-

tion Coefficient (r) < 0.78) when compared with CALIOP and MODIS AOT values,

respectively. It should be noted that these indices are considered semi-quantitative

because they are not directly determining aerosol properties (i.e. AOT is not mathe-

matically derived from the brightness temperature difference used in the indices).

Multiple recent studies (e.g. Han and Sohn, 2013; Wong et al., 2015; Xiao et

al., 2015) have presented methods for estimating dust aerosols using Artificial Neural

Networks (ANNs). Lee and Sohn (2012) estimated nighttime AOT of dust in Asia

by building an ANN. This model was trained by ingesting data that was available
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during the day as well as at night, such as various infrared brightness temperatures

and surface emissivities and producing a target output of daytime MODIS AOT

values. Once the model was trained, nighttime input data was used to produce an

estimate of nighttime. This method proved useful for tracking large scale dust events,

but the nature of an ANN presents issues. Because the model was trained for dust

events over Asia, it may not perform well for different types of aerosols in other parts

of the world. Also, since the model was trained to predict MODIS AOT values and,

the model will likely have some of the systematic errors that are found in MODIS

AOT values.

A more direct method for obtaining nighttime τ via passive remote sensing was

presented by Zhang et al. (2008b). This study suggested that changes in magnitude

of satellite observed artificial lights (cities) can be explained via attenuation of light

by aerosol particles in the atmospheric column. The methodology of this study is as

follows. From Beer′s Law (Liou, 2002, pg. 29), the equation for satellite observed

radiance can be described as

Isat = Ise
−τ , (1.1)

where Isat is the satellite observed Visible Near-Infrared radiance (VNIR; in this

study the wavelength range was 0.5µm – 0.9µm), Is is the upward radiance at the

surface (which includes VNIR radiation from artificial lights and surface reflectance of

lunar illumination), and τ is the optical depth of the atmospheric column. Assuming

that the atmosphere is cloud-free leaves AOT as the primary contributor to τ . At

the time of their study, only the Operational Linescan System (OLS; Elvidge et al.,

1999) was available to make VNIR observation at night. Zhang et al. (2008b) note

that the OLS was a poor choice for quantitative aerosol data retrievals as it was
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not designed for calibrated radiance observation; however, this work was done as a

proof of concept with the Suomi National Polar-orbiting Partnership (NPP) satellite

(launched in 2011) — housing the new VIIRS Day/Night Band (DNB) — in mind.

The VIIRS DNB (Lee et al., 2006) is the “sequel” to the OLS. The premise

is the same — VNIR (0.5µm – 0.9µm) observation; however, the VIIRS DNB is

a significant upgrade. The OLS was designed for nighttime cloud detection. Its

coarse radiometric resolution and lack of calibration leave it largely unsuitable for

quantitative studies (Lee et al., 2006). In contrast, the VIIRS DNB was designed to

be suitable for quantitative studies — it is calibrated onboard, has a much higher

radiometric resolution (13-bit compared to 6-bit for the OLS), and has much less

pixel overlap. A list of attributes of the OLS and the VIIRS DNB sensors can be seen

in Table 1. These factors allow the DNB to provide detailed, quantitatively robust

nighttime radiance data.

As Suomi NPP was launched in October of 2011, Johnson et al. (2013) were

able to take advantage of the VIIRS DNB. Expanding on Zhang et al. (2008b), the

VIIRS DNB was used to quantitatively estimate AOT by examining the difference

between VNIR radiance values from artificial lights and nearby dark pixels. The

equation for satellite observed radiance presented in Johnson et al. (2013) is more

complicated and more representative of the atmosphere than the equation in Zhang

et al. (2008b) as it includes terms for surface reflectance of moonlight, diffuse trans-

mission of moonlight, and a higher order aerosol reflectance term in addition to the

artificial light source term; these equations will be discussed further in Chapter 3.

The method from Johnson et al. (2013), dubbed the “contrast method”, is based on

comparing the difference between radiance values for city lights and nearby dark pix-

els on nights with aerosol present to said difference on an ideal night that is aerosol-,

cloud-, and moon-free. They use the cloudless night within the study period with the
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lowest τ as indicated by daytime AERONET observations as a proxy for an ideal

night. Johnson et al. (2013), using interpolated daytime AERONET AOT values as

validation, showed that artificial lights can indeed be used to estimate AOT at night

with quantitative skill, although they noted many issues and sources of uncertainty,

e.g. the instability of the artificial light sources.

The algorithm used in the nighttime aerosol retrieval method of Johnson et al.

(2013) is challenging to apply on a global scale for several reasons. First, near identical

VIIRS pixels from different nights are needed from a selected artificial light source and

the corresponding nearby background. To implement such a method operationally

over a large study domain is difficult, as VIIRS DNB viewing geometries vary from

day to day. This makes it difficult to select the same group of pixels daily. Second, the

inherent variation within an artificial light source, especially for a large city comprised

of hundreds of VIIRS pixels, is not considered. Thus, larger retrieval errors may be

expected from complex artificial light sources. Third, the contribution from diffused

artificial lights needs to be computed, requiring a priori knowledge about aerosol types

and aerosol absorbing properties.

In this study, a modification to the Johnson et al. (2013) algorithm is proposed

which considers the reduction of radiance contrast of VIIRS DNB pixels within a

given nighttime artificial light source as a proxy for aerosol optical depth. This new

method overcomes some of the issues encountered by Johnson et al. (2013) and is

easier to implement on a global scale. The outline of this thesis is as follows: Chapters

II, III, and IV describe the data used in this study, highlight the newly developed

approach, and explore the sensitivity of radiance dispersion within a given light source

to various parameters, respectively. Chapter V shows the inter-comparisons of the

retrieved nighttime AOT from the VIIRS DNB with AERONET and High Spectral
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Resolution LiDAR (HSRL) observations. Considerations of uncertainty are included

in Chapter VI and Chapter VII summarizes the salient findings of this research.
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CHAPTER II

DATA

This study combines VIIRS DNB satellite observations with ground-based

sun photometers from four sites in the AERONET network and an HSRL instrument

in Huntsville, AL deployed for the National Aeronautics and Space Administration

(NASA) Studies of Emissions and Atmospheric Composition, Clouds and Climate

Coupling by Regional Surveys (SEAC4RS) campaign. Table 2 lists the locations,

study periods, number of VIIRS AOT retrievals made in this study, and instrumen-

tation at Alta Floresta, Cape Verde, and Grand Forks (the three sites used in Johnson

et al. (2013)) as well as a fourth site in Huntsville, AL that is new to this study.

Table 2: Basic information for each of the test sites, including site name, AERONET
and HSRL site latitude/longitude locations, and date range of the respective study
periods. The “Size of the city” column indicates the number of pixels used in the
calculations, which is described in Chapter 3.

Attribute Site

Alta Floresta Cape Verde Grand Forks Huntsville

AERONET Location 9.9➦S, 56.1➦W 16.7➦N, 22.9➦W 47.9➦N, 97.3➦W 34.7➦N, 86.6➦W

HSRL Location N/A N/A N/A 34.7➦N, 86.6➦W

Study Period Aug.–Sep. 2012 Aug.–Nov. 2012 Jun.–Aug. 2012 Jun.–Oct. 2013

# AOT Ret. 18 10 17 20

City Size 50 6 117 509
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The VIIRS/DNB Sensor Data Record-SDR (SVDNB) and VIIRS/DNB SDR

Geolocation Content Summary (GDNBO) data are used for providing satellite-observed

radiance and geolocation values (latitude, longitude, etc.), respectively. The VIIRS

DNB observes radiation in a single band with a spectral range from 0.5µm – 0.9µm,

which is considered VNIR. The VIIRS Cloud Cover/Layers Height Data Content

Summary (VCCLO) data are used for cloud-clearing of the selected VIIRS pixels.

The binary correctness (cloud/no-cloud) of this product at night over land is 90%

for cases with an optical depth greater than 1.0 and 85% for cases with an optical

depth less than or equal to 1.0 (“Joint Polar Satellite System...”, 2011). To mitigate

the effects of misclassification by the VCCLO product, VIIRS granules with cloud

at any level, as indicated by the VCCLO product, in the vicinity (∼0.1➦ – 0.2➦ lati-

tude/longitude) of thetarget city are removed. In addition to the calibrated pixel-level

top-of-atmosphere radiance values, the VIIRS DNB data products include metadata

on satellite and lunar geometry, specifically, satellite, solar, and lunar azimuth and

zenith angles, lunar illumination fraction, and quality assurance flags.

For validation purposes, Level 2.0 AERONET data is used in this study.

Level 2.0 data has more quality-assurance measures, including removal of cloud-

contaminated data (Holben et al., 2006) than previous versions. Level 1.5 AERONET

data were chosen in Johnson et al. (2013) as Level 2.0 data were not available for

all desired sites during the respective study periods. Updated comparisons between

Level 2.0 data and results from Johnson et al. (2013) are included to maintain a

consistent comparison between the two studies; however, note that the differences

between AERONET Level 2.0 and Level 1.5 AOT values after cloud screening was

insignificant. AERONET data at 0.675µm were used in this study, as that is the

closest of the AERONET wavelengths to the center of the VIIRS DNB wavelength

range, which is between 0.5µm and 0.9µm.
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Nighttime AERONET AOT values are estimated by taking the mean of the

daytime AERONET retrievals straddling the VIIRS nighttime overpass (the daytime

AERONET AOT values from the evening before the time of the VIIRS overpass

and the morning after the time of the VIIRS overpass, as long as both AERONET

retrievals are within 24 hours of each other). If, for any reason, there is no available

nighttime AERONET AOT estimation, the corresponding VIIRS overpass is not

included in this study.

CALIOP nighttime τ data are not used as a validation tool due to a lack of col-

located CALIOP and VIIRS data pairs over the selected artificial light sources. Also,

recent studies have shown that CALIOP derived AOT values can differ significantly

from AERONET (Omar et al., 2013) and MODIS (Ma et al., 2013) values. CALIOP

will have a better signal-to-noise ratio for nighttime observations vs. daytime, but

Campbell et al. (2012) found that CALIOP AOD had similar errors during both day

and night. Even with a perfect CALIOP AOD, the small spatial coverage combined

with the long repeat cycle eliminates CALIOP from the list of potential validation

tools for this study.

Validating VIIRS nighttime AOT retrievals with daytime AERONET data is

not ideal, as the diurnal variation of AOT is a potentially important source of rep-

resentation error. Thus, nighttime AOT retrievals from the University of Wisconsin

HSRL instrument deployed at Huntsville, Alabama (from Jun. 26 – Oct. 26, 2013) are

used as an independent validation dataset. Different from CALIOP, HSRL measures

both molecular and aerosol backscattering, and thus can be used to derive the ratio

of extinction to backscatter (LiDAR ratio), which can be further used to yield a more

reliable AOT retrieval (Hair et al., 2008). Besides HSRL measurements, AERONET

data are also available for the study period within close proximity to Huntsville,

Alabama (UAHuntsville station, 34➦N, 86➦W). Thus, both Level 2.0 AERONET and

13



HSRL data from Huntsville, Alabama (from Jun.Oct., 2013) are used in the validation

efforts.

Figure 1: The HSRL AOD profile on 8/25/2013. The total column AOD, found by
averaging all values between 10 and 20 km in altitude, is shown in red.

The HSRL data are processed as a ten-minute average at 30 m grid spacing(i.e.,

each AOT value is the 10 minute average of extinction integrated from the surface up

to a given altitude, every 30 m from the surface). Because of noise at higher altitudes,

rather than simply taking the column-integrated AOT value at the highest altitude,

HSRL total column τ was estimated by taking the average of all column-integrated τ

retrievals between altitudes of 10 km and 15 km (Personal communication with Ralph
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Kuehn, University of Wisconsin). An example of this can be seen in Fig. 1. HSRL

profiles are visually inspected for the presence of clouds, and VIIRS overpasses that

occurred on nights with no available HSRL data are not used.

Because the Wisconsin HSRL operates at a wavelength of 0.532 µm, both

AERONET observed and VIIRS retrieved AOT values are interpolated to 0.532 µm

(τ0.532) using the Angstrom exponent relationship after solving for α:

α = −

log
(

τλ1
τλ2

)

log
(

λ1

λ2

) (2.1)

Here, α is the Angstrom exponent. λ1 and λ2 are 0.50 µm and 0.87 µm, respectively.

τλ1
and τλ2

are the daytime-averaged AERONET AOT values at the respective wave-

lengths. In order to obtain τ0.532, Eq. 2.1 is rearranged such that

τλ = τλ0

(

λ

λ0

)

−α

, (2.2)

where, in this case, λ is 0.532 µm, λ0 is 0.675 µm and 0.7 µm (the center of the DNB

wavelength range) for AERONET and VIIRS retrievals, respectively, and τλ0
is the

originally retrieved AOT at those wavelengths.

The three sites (Alta Floresta, Cape Verde, and Grand Forks) from Johnson

et al. (2013) were originally chosen to represent smoke, dust and, urban cases, re-

spectively. It is important to note that they also vary in spatial extent (6-150 pixels).

The Huntsville test site covers a significantly larger area (500 pixels) than the other

three sites, allowing for detailed testing of the impact of city size to τ retrievals. Basic

information about the four sites examined in this study is found in Table 2.
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CHAPTER III

METHODOLOGY

Following Johnson et al. (2013), the satellite observed radiance is composed

of three major components, as illustrated in Eq. 3.1:

Isat = Ise
−τ/µ +D + Ip. (3.1)

Here, τ is the total optical thickness, µ is the cosine of the satellite zenith angle, D

is the additional diffuse radiance, Ip is the path radiance (i.e. additional radiation

reflected and scattered by the atmosphere without interaction with the ground, in-

cluding aerosol layer reflected moon light), and Is is the surface upward radiance for

an artificial light source. The first term on the right hand side (RHS) of Eq. 3.1 rep-

resents the VIIRS observed surface radiance through direct attenuation. The second

and the third terms are the diffuse and path radiances, respectively (Johnson et al.,

2013). As mentioned in Johnson et al. (2013), Is can be defined as:

Is =
rs
(

µ0F0e
−τ/µ0 + µ0F0T (µ0)

)

+ πIa

π(1− rsr̄)
(3.2)

where F0 is the moon light at the Top of Atmosphere (TOA), µ0 is the cosine of the

lunar zenith angle, rs is the surface reflectance and r̄ is the reflectance from the aerosol

layer. T(µ0) is the diffuse transmittance and Ia is the emission from the artificial light

source. The first two terms from the numerator represent reflected direct and diffuse

downward moonlight, respectively. Here we assume that emissions from artificial
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light sources (Ia) are stable throughout the respective study periods. Also, because

pixels comprising a given city are within close proximity, we assume that total optical

thickness, diffuse radiance, path radiance, and the reflected direct (rsµ0F0e
−τ/µ0)) and

diffuse (rsµ0F0T (µ0)) downward moon light are invariant within a given city. Like in

Johnson et al. (2013), the rsr̄ term is assumed to be negligible, although this term

can be significant for optically thick aerosol plumes. Taking the spatial derivative of

Eq. 3.2, and by assuming the D, Ip, rsµ0F0e
−τ/µ0 and rsµ0F0T (µ0) terms are spatially

invariant within an artificial light source, yields Eq. 3.3:

∆Isat = ∆Iae
−τ/µ. (3.3)

∆Isat and ∆Ia are the pixel-to-pixel change in satellite observed radiance and surface

emission for a single artificial light source. Solving Eq. 3.3 for τ and introducing a

correction term “C” gives Eq. 3.4:

τ = −µln
(∆Isat

C∆Ia

)

. (3.4)

Eq. 3.4 shows that optical thickness can be calculated for a single artificial light

source using only the cosine of the satellite zenith angle (µ) and the pixel-to-pixel

differences in satellite observed radiance and upwelling radiance from the artificial

light source (∆Isat and ∆Ia, respectively). It is further assumed that the Rayleigh

optical thickness is constant regardless of viewing geometry; the error introduced by

this assumption is small. C is a correction term applied to account for a dependence

of upwelling radiance on satellite viewing angle, which was found to be applicable

only at the Grand Forks location as identified from Johnson et al. (2013), due to

plausible reasons such as stray light contamination. In Johnson et al. (2013), a linear

relationship between cosine viewing angle and VIIRS radiance is constructed, and
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for each observation, the C value is estimated by dividing the observed radiance by

the radiance value predicted from the linear relationship for the Grand Forks site. C

values for Grand Forks have been adopted directly from Johnson et al. (2013) for this

study. C is set to 1 for all other sites. A more detailed explanation of this correction

term can be found in Johnson et al. (2013). It was suspected that this dependence

on viewing geometry was a product of parallax effect, which was corrected with the

release of terrain corrected geolocation data (released in early 2014). The difference

between terrain-corrected and non-terrain-corrected geolocation data was determined

to be sub-pixel in magnitude for Grand Forks. Therefore, the lack of terrain-corrected

geolocation for the study periods in this study is not expected to introduce additional

error.

As this study intends to examine the radiance contrast between pixels within a

given artificial light source, a way to quantify the pixel-to-pixel differences of radiance

values within this light source is needed. Although, mathematically, Eq. 3.3 is

achieved by taking the spatial derivative of Eq. 3.2, it is beneficial for this method to

look at the spatial derivative in the statistical domain. In other words, a measurement

of statistical dispersion is used in place of taking the actual derivative. A first check

for a signal between dispersion and aerosol loading can be seen in Fig. 2, where, for

each retrievable night within the study period, dispersion is plotted against average

AERONET AOT. A sensitivity study comparing optical thickness values calculated

using each measure of statistical dispersion was also performed. The results from

these calculations, after removing dispersion methods based on Fig. 2 are shown

in Table 3. These exercises determined that standard deviation produces the best

results when compared against AERONET optical thickness values, therefore the ∆

operator in Eqs. 3.3 and 3.4 is the “the standard deviation of . . . ”. The sensitivity

of τ in
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Table 3: Result Statistics for VIIRS AOT retrievals made over Alta Floresta using
different methods of dispersion for ∆.

Method Mean r
2 RMSE Slope

Standard Dev. 0.231 0.725 0.107 0.971

Range (all pixels) 0.332 0.724 0.154 1.027

Range (5% removed) 0.042 0.571 0.239 0.982

Figure 2: Dispersion values against average AERONET AOT on each potential re-
trieval night for Alta Floresta. From top left, moving right then down: standard
deviation, variance, range, range with the top and bottom 5% of pixels removed,
range with the top and bottom 10% of pixels removed, interquartile range, and me-
dian absolute deviation. AERONET AOD is on the y-axis and dispersion value is on
the a-axis. Units of dispersion are Wcm−2sr−1, except in the case of variance, which
has units of (Wcm−2sr−1)2.
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Figure 3: AOT computed by using Eq. 3.4 with varying standard deviations of
radiance (∆Isat, x-axis) and satellite zenith angles, simulating retrievals made using
the variation method. ∆Ia is held constant at 10−7 Wcm−2sr−1.

Eq. 3.4 to varying ∆Isat and satellite zenith angle (with a fixed ∆Ia) is shown in Fig.

3.

The method described above, dubbed the “variance method”, is based on

radiance values within a given artificial light source; therefore, it is necessary to de-

termine which pixels comprise an artificial light source (“city pixels”). With potential

automation in mind, it was decided that city pixels should be determined algorith-

mically. As suggested from Johnson et al. (2013), any pixel with a radiance value

greater than 1.5 times the mean radiance of a given section of a VIIRS DNB granule

enclosing the target city, and a radiance value greater than 0.25× 10−8 Wcm−2sr−1

is considered a city pixel. Fig. 4 shows an example of artificial light detected using
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this method for Huntsville, Alabama. Because atmospheric conditions, and therefore

Figure 4: (a). A Raw VIIRS DNB image of Huntsville from the night of June 26th,
2013. (b). The same image from (a) with algorithmically-determined city pixels in
red. (c). The same as in (b), except only the 100 brightest city pixels are in red.

VIIRS retrieved radiance values, change on a nightly basis, the number of city pixels

for a given city may also change from night to night. In order to remain consistent,

n brightest city pixels are used to compute the standard deviation of radiance values

for each nighttime VIIRS overpass within the study period of a given city, where n

is the minimum number of algorithmically determined city pixels among overpasses

that passed VIIRS cloud screening and visual inspection for each city. VIIRS cloud

screening is performed by removing any pixels that were flagged as containing cloud

at any level in the previously mentioned VCCLO product. Any VIIRS granule of an

artificial light source that contains a cloudy pixel in the vicinity of the artificial light

source (∼0.2➦ latitude/longitude) is not used in this analysis.

The only values required to calculate τ from Eq. 3.4 over an artificial light

source from a single VIIRS nighttime overpass are ∆Isat and ∆Ia — the standard

deviations of radiance values of city pixels from that overpass and the stable (aerosol-

, cloud-, and moon-free) standard deviation of radiance values of the city pixels,

respectively. The former is straightforward; the latter, however, presents multiple
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challenges. First and foremost, a nighttime atmosphere totally free of aerosols and

lunar illumination is very unlikely, so error is inherent. Due to the lengths of the

VIIRS data record and study periods used for this demonstration, the number of

VIIRS overpasses that occur on even nearly aerosol-, cloud-, and moon-free nights

within the study periods is extremely limited. It was therefore decided to take ∆Ia

for each city as the mean of the two greatest standard deviations of city pixel radiance

values within the study period. The rationale behind this is that, in theory, the night

with the lowest aerosol loading and least lunar illumination should have the most

variance among city pixels. This is not always the case; however, the ∆Ia terms for

all locations are taken on nights with τ values below 0.1 (according to the daytime-

averaged AERONET τ). A database of VIIRS retrieved radiance values for artificial

light sources worldwide is currently being constructed to improve the robustness of

this parameter.

Lastly, in contrast to Johnson et al. (2013), only pixels with an artificial light

source are needed. It is assumed that the diffuse radiance is spatially and temporally

invariant within a given light source, and the derivative is zero. Thus, the newly

proposed approach avoids the need for a priori knowledge of aerosol microphysical

properties, making it more suitable for a larger scale analysis. This is not to say

that differing aerosol optical properties due to different aerosol types will not have an

impact on retrievals made via this method; however, the use of a radiative transfer

model based on a predetermined aerosol type for each location as in Johnson et al.

(2013) is not required to achieve better AOT estimates.
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CHAPTER IV

SENSITIVITY STUDIES

The contrast of satellite retrieved radiances within an artificial light source

(∆Isat) is used as the basic information content for the study. It is therefore necessary

to examine the impacts of viewing angles and lunar illumination on ∆ Isat. For

example; for a given aerosol loading, do we expect a change in ∆Isat for a moonless

night versus a night with significant moonlight? Fig. 5 shows the variance of VIIRS

Figure 5: Variance of VIIRS retrieved radiance values versus average lunar zenith
angle for each night an τ retrieval was made, separated by location.
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Figure 6: Variance of VIIRS retrieved radiance values versus average lunar fraction
for each night an τ retrieval was made, separated by location.

retrieved radiance values of artificial light source pixels plotted against lunar fraction

(from the VIIRS GDNBO product). There is a plausible relationship between vari-

ance and lunar fraction for the Alta Floresta, Grand Forks, and Cape Verde sites, but

the Huntsville site displays no such relationship. This may be due to the fact that

the mean radiance for Huntsville is higher than that of Alta Floresta or Grand Forks;

however, it is on the same order of magnitude. The Lunar zenith angle (from the

VIIRS GDNBO product) was examined in the same manner (Fig. 6), but the data

shows no plausible relationship with variance for any location. A variance correction

using a linear model was attempted for the three locations showing a potential rela-
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tionship, however this correction produced results that are worse than those without

the correction, and thus is not used hereafter.

It is anticipated that lunar illumination would introduce a change in ∆Isat.

To test this assumption, the ∆Isat values over the Huntsville site are computed for

nights with and without lunar illumination that have similar nighttime HSRL τ values.

Thus, if the lunar illumination affects ∆Isat under a similar aerosol loading scenario,

Figure 7: The relative difference in radiance variance for nights with lunar contam-
ination (∆I on the y-axis label) and without lunar contamination (∆I’). Each point
consists of a pair (one light, one dark) of retrievals with similar (within 0.008) τ . The
x-axis indicates the difference in lunar fraction between the paired retrievals. The
symbol sizes represent the magnitude of HSRL τ values, which range from 0.15 to
0.25.
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a relationship between ∆Isat and lunar fraction should be observed. An examination

of the difference in the variance of VIIRS retrieved radiance values between nights

with lunar illumination and nights without lunar illumination is shown in Fig. 7.

Each data point consists of a pair (one light, one dark) of retrievals with similar

HSRL total-column τ (within 0.008 of each other). Also, to minimize the effects of

aerosol loading on the derived relationship, only data pairs that have HSRL τ values

less than 0.25 (and greater than 0.16, the lowest HSRL τ among retrieval nights) are

chosen. The y-axis displays the relative difference in variance for each pair — this

is a proxy for the contribution of lunar illumination to the VIIRS τ retrieval. The

x-axis is the difference in lunar fraction for each pair. Values of relative contribution

range from approximately -.12 (meaning the moonlit night had lower variance) to

approximately 0.42. While the sample size is small, this figure displays no clear

relationship between lunar fraction and VIIRS radiance dispersion.

Table 4: RMSE of VIIRS retrieved nighttime τ against straddling daytime-averaged
AERONET τ for retrievals occurring on nights with (top) and without (bottom) the
moon present. Nights with lunar presence are determined as those having a lunar
fraction greater than 15% and having a lunar zenith angle less than 89➦. The number
of retrievals in each category separated by location is also shown.

Huntsville
Alta Grand Cape

Total RMSE
Floresta Forks Verde

Moon present 11 13 8 5 37 0.13
No moon 9 5 9 5 28 0.22

To further test the effects of lunar illumination on the VIIRS retrievals, all

retrievals were separated into two groups — those made during which the moon was

present and those made without the presence of the moon. Retrievals made in the

presence of the moon were determined as all nights having a lunar fraction greater
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than 15% and having a lunar zenith angle below 89➦. Table 4 shows the root-mean-

squared-error (RMSE) of the VIIRS retrieved τ values against daytime-averaged

AERONET τ values separated by the presence of the moon, as well as data counts

for each subset separated by location. Retrievals were not divided further (such as

in Fig. 9) in order to keep the sample size in each subsection sufficiently large and

to prevent further locational bias. The RMSE for retrievals made on nights with

significant lunar illumination is nearly 0.1 lower than for nights without significant

lunar illumination. With this small sample size, lunar illumination cannot be ruled

out as a source of retrieval error; however, tests find no evidence for degraded retrieval

performance under moonlit conditions.

Similar to Johnson et al. (2013), the relationship between (∆Isat)
2 and viewing

geometry is studied. Fig. 8 shows (∆Isat)
2 as a function of satellite zenith angle for

Huntsville, Alta Floresta, Grand Forks, and Cape Verde, respectively. Similar to

what is reported by Johnson et al. (2013), no viewing angle dependence is found

for (∆Isat)
2 for Alta Floresta and Cape Verde. Huntsville also does not display a

dependence on viewing geometry. Again, as in the previously mentioned study, a

significant positive relationship does exist between (∆Isat)
2 and the satellite zenith

angle for Grand Forks. The reason for this relationship, as suggested from Johnson

et al. (2013), is still not known and is left to future research once a larger sample size

is available.

A major caveat regarding the previously discussed sensitivity studies is sample

size. While these sensitivity studies are relatively inconclusive, the study period has

not been extended to achieve statistical robustness for several reasons. The first

is that cloud screening and HSRL, AERONET Level 2.0, and VIIRS DNB data

availability leave little data for analysis. Second, the primary goals of this study are

to demonstrate the efficacy of the variance method and to compare the results directly
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Figure 8: Variance of VIIRS retrieved radiance values versus the cosine of the average
satellite zenith angle for each night that a retrieval is made, separated by location.
Edge of Scan (EOS) and NADIR are labeled on the x-axis for reference.

with the results presented in Johnson et al. (2013). Third, the short study periods are

selected to ensure the relative stability of artificial light sources. For a longer study

period, seasonal variations in artificial light sources need to be accounted for, which

is beyond the topic of this study and is a subject of future work. Fourth, a regional

scale study is underway that will increase the sample size by an order of magnitude;

this should be sufficient for conclusions regarding error sources to be made.
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CHAPTER V

RESULTS

Validation Against AERONET

For the first step, the VIIRS DNB nocturnally retrieved τ values at 0.7

µm (τ0.7) derived based on Eq. 3.4 are inter-compared with the daytime-averaged

AERONET τ at 0.675 µm (τ0.675) values. Fig. 9a shows VIIRS retrieved τ0.7 values

Figure 9: VIIRS retrieved τ as a function of daytime-averaged AERONET τ for
Huntsville (left, Figure 9a, square), Alta Floresta (left, Figure 9a, circle), Grand
Forks (left, Figure 9a, “x”), and Cape Verde (right, Figure 9b, asterisk). One-to-one
(dotted) and best-fit (solid) lines are also shown. Cape Verde is isolated due to its
relative small size (6 pixels). Retrievals made on nights with a lunar fraction less
than 15% or with a lunar zenith angle greater than 89➦ (below the horizon) are shown
in black. Retrievals made on nights with a lunar fraction greater than 15% but less
than 504% and a lunar zenith angle less than 89➦ are shown in red. Retrievals made
on nights with a lunar fraction greater than 50% and a lunar zenith angle less than
89➦ are shown in blue.
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plotted against the corresponding daytime-averaged AERONET τ0.675 for Huntsville

(square), Alta Floresta (circle), and Grand Forks (“x”). Cape Verde (Fig. 9b, aster-

isk) is isolated, as it is comprised of significantly fewer pixels than the other locations.

It is suspected that the cause of the poor performance of the VIIRS τ retrievals over

Cape Verde is due to the inherent weakness in calculating standard deviation with

such a small sample size. This issue is further explored in Chapter VI. The coef-

ficient of determination (r2) of the VIIRS retrieved nighttime τ0.7 for all locations

and daytime-averaged AERONET τ0.675 is 0.60, with a RMSE of 0.18. The r2 values

for Huntsville, Alta Floresta, Grand Forks, and Cape Verde are 0.63, 0.72, 0.38, and

0.43, with RMSEs of 0.04, 0.13, 0.06, and 0.40, respectively. It is noted that because

∆Ia (the “stable” upwelling radiance from the artificial light source) for each city is

taken from the average of two nights within the study period as explained above,

there is one VIIRS τ retrieval for each location that is at or below 0, which is not

physically possible, and one VIIRS τ retrieval slightly above 0. These retrievals were

not removed for the calculations of r2, RMSE, or best-fit lines, and negatively impact

the results.

One of the main purposes of this study is a comparison between the “variance

method” developed here and the method presented in Johnson et al. (2013, hereafter

“background method”). r2, RMSE, and best-fit slope of nighttime τ0.7 retrievals made

using the variance method and nighttime τ0.7 retrievals made using the background

method (Table 5, Johnson et al., 2013) compared against the corresponding daytime-

averaged AERONET τ0.675 values are shown in Tables 5 and 6, respectively. Huntsville

data is not included in Table 5, as it is not reported in Johnson et al. (2013). For

Alta Floresta (moderate aerosol loading, moderate size), the variance method per-

forms better than the background method in all statistics. For Grand Forks (low
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Table 5: Coefficient of determination, root-mean-squared error (RMSE), and best-fit
slope of VIIRS estimated nighttime τ compared against estimated nighttime Level
2.0 AERONET τ at the three original locations for the new method presented in this
study. Average AERONET τ for each location is provided for context.

Location r2 RMSE Slope Mean AOT

Alta Floresta 0.72 0.13 0.96 0.23

Grand Forks 0.38 0.06 0.61 0.10

Cape Verde 0.43 0.40 0.92 0.32

Huntsville 0.63 0.04 0.88 0.14

Table 6: Coefficient of determination, root-mean-squared error (RMSE), and best-fit
slope of VIIRS estimated nighttime τ compared against estimated nighttime Level 2.0
AERONET τ at the three original locations for the new method presented in Johnson
et al. (2013). Average AERONET τ for each location is provided for context.

Location r2 RMSE Slope Mean AOT

Alta Floresta 0.60 0.16 1.07 0.23

Grand Forks 0.33 0.05 0.51 0.10

Cape Verde 0.86 0.13 0.81 0.32

Huntsville N/A N/A N/A N/A

aerosol loading, large size), the methods perform comparably. It is suspected that

the poor performance of both methods over Grand Forks is due to the very low

aerosol loading and relatively high error inherent in these methods. For Cape Verde

(high aerosol loading, very small size), the background method performs significantly

better than the variance method. Based on these results, it is hypothesized that

the background method performs better for smaller or more isolated artificial light

sources and the variance method performs better for larger artificial light sources.
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This hypothesis will be furthered investigated once a large scale analysis has been

performed.

Validation Against HSRL

The variance method is further evaluated with the use of HSRL data over

Huntsville. Fig. 10a shows VIIRS retrieved τ0.7 values interpolated to 0.532 µm

(τ0.532), plotted against the corresponding time-averaged HSRL retrieved total-column

τ0.532 values for Huntsville. The r
2 of the interpolated VIIRS retrieved nighttime τ0.532

values and averaged HSRL retrieved total-column τ0.532 values is 0.48, with a RMSE

of 0.08 (with a mean HSRL τ of 0.25, for context), indicating that the VIIRS-based

nighttime τ retrieval method has some skill. Also, daytime-averaged AERONET

τ0.532 (interpolated to 0.532µm) is plotted versus the averaged HSRL τ0.532 values as

Figure 10: Daytime-averaged AERONET τ532 (Figure 10a) and VIIRS retrieved τ532
(Figure 10b) as a function of Wisconsin HSRL retrieved total-column τ for Huntsville,
Alabama. One-to-one (dotted) and best-fit (solid) lines are also shown.
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shown in Fig. 8b. Clearly, Fig. 10b suggests there is value to using the average of the

“bookend” daytime AERONET τ observations as a nighttime validation tool when

there is a lack of better options. Figs. 9 and 10 show that, while far from perfect, the

method presented in this study has some skill at capturing variations in nighttime τ .

To further investigate the effects of lunar illumination on the VIIRS τ re-

trievals, relative errors (VIIRS retrieval, interpolated, minus HSRL total-column,

divided by HSRL total-column τ) for the Huntsville retrievals are plotted as a func-

tion of HSRL total-column τ as shown in Fig. 11. The lunar fraction (a percentage

Figure 11: Relative error of each VIIRS τ retrieval (interpolated to 0.532m) with
respect to HSRL retrieved total-column τ , plotted as a function of the HSRL retrieval.
The Lunar Fraction (0-100%) is indicated by plot symbol size, as shown by the key
in the bottom right corner.
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from 0-100) on the night of the retrieval is indicated by the plot symbol size. This

figure shows that there is no apparent relationship between retrieval error and lunar

fraction. It is clear from Fig. 11, however, that the relative error of the VIIRS

retrievals decreases as HSRL total-column τ increases (the magnitude of the error

[y-axis] goes to zero moving right on the x-axis), as expected. This indicates that

VIIRS retrievals are more accurate for aerosol loading events with τ greater than

approximately 0.25.

Because this method performs the worst for Cape Verde (the smallest city by

number of pixels), a sensitivity study is performed for Huntsville, Alta Floresta, and

Grand Forks to determine if the number of “city pixels” used in the retrieval is an

important factor for its quality. Cape Verde is not used because reducing the already

small number of pixels produces results that are not robust. To achieve this goal,

the relationship between the number of artificial city light pixel using in the VIIRS

τ retrievals to the ∆Isat values are studied over relative aerosol free nights (HSRL

and/or AERONET τ less than 0.2, see Table 7). For each location, the n brightest

Table 7: Dates with HSRL (for Huntsville) or daytime-averaged AERONET (Grand
Forks and Alta Floresta) τ less than 0.2, which are used for the computations shown
in Fig. 12, and the baseline (i.e. used in the actual τ retrieval) n pixels used for
Grand Forks, Huntsville, and Alta Floresta

Location Year Dates with less than 0.2 AOT Baseline n pixels

Grand Forks 2012 6/12, 6/15, 6/21, 6/26, 6/29, 7/3, 7/9, 7/11, 7/14, 117

7/18, 7/19, 7/23, 7/24, 7/26, 7/27, 7/30, 7/31

Huntsville 2013 7/13, 7/19, 8/2, 8/25, 8/26, 8/27, 8/29, 9/5, 509

9/11, 9/22, 9/27, 10/4, 10/8, 10/11, 10/14

Alta Floresta 2012 8/2, 8/3, 8/4, 8/5, 8/7, 8/8, 8/9, 8/15 50

34



Figure 12: The normalized standard deviation of ∆Isat values (∆∆Isat) as a function
of the normalized number of brightest artificial city light pixels (n) for selected nights
that are relatively aerosol free (HSRL and/or AERONET τ < 0.2) for Huntsville, Alta
Floresta, and Grand Forks. For a given location and for a given number of brightest
artificial city light pixels taken from among the baseline case pixels, the standard
deviation of ∆Isat values are first computed using data from selected relative aerosol
free nights. Both n and ∆∆Isat value are then normalized based on the values used
in the actual retrievals (n′, ∆∆I ′sat) as shown in Figures 9 and 10 (details are listed
in table 7) for a comparison among different locations.

pixels of the original algorithmically determined city pixels (i.e. the data that are

used to create Figs. 9 and 10, also included in Table 7) are treated as the baseline of

the study. For a given location, ∆Isat values are computed for the identified relatively

aerosol free nights using the baseline defined number of brightest artificial light pixels.

Then, a standard deviation of ∆Isat values (∆∆Isat) is computed. ∆∆Isat represents

the relative stability of ∆Isat values used in the VIIRS τ retrievals. Next, we repeat

the process by incrementally reducing the number of artificial light pixels used in the

35



analysis. For example, we reduce the number of pixels used for a Huntsville retrieval

to 400 (as opposed to the original 509 pixels used) by taking the 400 brightest pixels

out of the original 509 pixels. ∆Isat is then computed for each night in Table 7 with

the 400 brightest pixels treated as the artificial light source.

The result of the exercise is shown in Fig. 12. The x-axis is the number of

brightest artificial light pixels used in computing ∆∆Isat normalized by the number

of pixels used in the actual retrieval for each respective location (see Table 7). The y-

axis is ∆∆Isat normalized by the ∆∆Isat from the baseline cases. It is clear from Fig.

12 that the normalized ∆∆Isat increases as the number of pixels used in the retrieval

decreases. This increased variability translates into a less reliable retrieval. It is

hypothesized that this is because standard deviation as a quantification of statistical

dispersion is more robust as the sample size increases. Therefore, it is suggested that

only medium to large cities (on the order of 10s of VIIRS pixels in spatial coverage at

least) are used for nighttime retrievals via the method outlined in this study; however,

an exact size has yet to be determined and is a topic left for future studies.
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CHAPTER VI

UNCERTAINTIES AND LIMITATIONS

Similar to Johnson et al. (2013), by taking the total derivative of Eq. 3.4,

dτ = µ

(

dC

C
+

d∆Ia

Ia
−

d∆Isat

∆Isat

)

; (6.1)

thus, the uncertainty in the estimated VIIRS τ is a combined relative uncertainty

from the correcting factor C (only applied to Grand Forks), as well as relative errors

in the standard deviation of satellite radiance and surface outgoing radiance within

an artificial light source, weighted by cosine of viewing angle. For example, a 10%

error in the derived ∆Is could introduce an error in VIIRS τ of 0.05 at the viewing

angle of 60➦ (µ=0.5), and at nadir, the retrieved error increases to 0.1.

There are major issues that need to be explored that could potentially limit

implementation of the research presented in this paper. For example, ∆Ia, which is

the surface artificial light source emission, is assumed to be invariant through the

study period. However, ∆Ia may, and almost certainly does, change with time and

viewing geometry (Roman and Stokes, 2015). Even with a constant satellite zenith

angle, viewing direction could present an additional issue, especially when viewing

artificial light sources. This is because complex surfaces such as cities are likely less

Lambertian than other surface, which could mean reflected light is a function of the

direction from which (not just the angle) the city is viewed.

Thus, to fully investigate this problem, a careful analysis of the spatial and

temporal variations of artificial light sources is needed. Also, the uncertainties at the
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low and high AOD ranges could be dominated by different factors. In a high AOD

regime, the ignored rsr̄ term can be significant. In a low AOD regime, however, the

rsr̄ term can be ignored, while the ignored Rayleigh optical depth can be comparable

in magnitude to the retrieved AOT. Other currently unresolved factors related to the

artificial light sources that may introduce uncertainty include an unexpected increase

in the artificial light emissions (e.g., a large scale fire event). In this study, city

pixels are determined algorithmically using purely radiance values, which means that

the exact same locations on the earth were not necessarily chosen for each retrieval.

While there may be a way to implement official boundaries into determining which

pixels are city pixels, cities often do not simply end at boundaries. These sources of

uncertainty are in addition to previously mentioned relationships due to lunar and

satellite variables.

Cloud contamination is likely to be another major source of uncertainty. With

only limited visible and infrared channels, nighttime cloud, and especially thin cirrus

cloud, detections may be problematic. Since this is a case study, all VIIRS granules

are visually inspected. However, to fully automate the process, additional cloud

screening checks will most likely be needed, which will require the use of other VIIRS

channels or data from other sensors.
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CHAPTER VII

CONCLUSIONS

This study presents a new method for using radiance values observed by the

Visible/Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) over ar-

tificial light sources to estimate nighttime aerosol optical thickness (τ). This method

is based on theoretical radiative transfer equations for the retrieval of optical thick-

ness using contrast reduction of radiances from artificial light sources within a close

proximity. This study seeks to improve upon the shortcomings inherent in the method

presented by Johnson et al. (2013) and build toward a method that can be imple-

mented in an automated system. This study suggests:

� Compared with the method of Johnson et al. (2013), the new method shows

overall improved agreement between VIIRS DNB nighttime τ and nighttime

τ values estimated from AErosol RObotic NETwork (AERONET) and High

Spectral Resolution LiDAR (HSRL) measurements.

� A reasonable agreement is also found between nighttime HSRL τ values and

interpolated nighttime AERONET τ values that are approximated based on

daytime AERONET data. Thus, daytime AERONET τ observations can be

used semi-quantitatively as validation for nighttime τ retrievals when other

options are not present. The proposed algorithm has significant limitations.

Expected uncertainties arise from lunar illumination, viewing geometry, and

city characteristics. Various tests described in this study did not show any

systematic impact of lunar illumination on the retrieval, but the small sample
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size prevents drawing strong conclusions from this. Also, to implement the

algorithm in a regional or global analysis, an automated cloud screening scheme

is needed to take the place of the manual cloud screening performed in this study.

� While it is expected that lunar illumination has an effect on the retrievals pre-

sented in this study, the magnitude of contribution to retrieved τ values from

lunar contamination is unclear. For example, data from the largest artificial

light source (Huntsville), which has coincident nighttime HSRL measurements,

display no relationships between lunar fraction and VIIRS retrieved τ values,

relative error, or variance of radiance values.

An operational nighttime aerosol product from a passive remote sensing method

is still non-existent. The Cloud-Aerosol LiDAR with Orthogonal Polarization (CALIOP)

does provide nighttime aerosol measurements, but the coverage of the non-scanning

CALIOP observations is very limited (a single track roughly 70m across). This limits

the use of CALIOP data in aerosol modeling and forecasts. This study presents a

novel technique for deriving nighttime aerosol properties from the VIIRS that, despite

important limitations, shows skill in comparison with ground based measurements.

The methods described here will lead to future improvements in developing a reliable

nighttime aerosol product for the aerosol modeling community.
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Appendix A
List of Abbreviations

Table 8: List of Abbreviations

Abbreviation Full Text

AERONET AErosol RObotic NETwork

ANN Artificial Neural Network

AOT Aerosol Optical Thickness

CALIOP Cloud-Aerosol LiDAR with Orthogonal Polarization

CCN Cloud Condensation Nuclei

DNB Day/Night Band

DRTDBI Dynamic Reference Brightness Temperature Index

DSLR Digital Single-Lens Reflex

GDNBO VIIRS/DNB SDR Geolocation Content Summary

HSRL High Spectral Resolution LiDAR

LiDAR Light Detection and Ranging

MISR Multi-angle Imaging Spectroradiometer

MODIS MODerate resolution Imaging Spectroradiomter

MPLNET Micro-pulse LiDAR NETwork

NASA National Aeronautics and Space Administration

NPP National Polar-orbiting Partnership

OLS Operational Line Scan

r2 Coefficient of determination

RMSE Root-Mean Squared Error

SEAC4RS
Studies of Emissions and Atmospheric Composition, Clouds, and Climate

Coupling by Regional Surveys

SVDNB VIIRS/DNB Sensor Data Record-SDR

VCCLO VIIRS Cloud Cover/Layers Height Data Content Summary

VIIRS Visible-Infrared Imaging Spectroradiometer

VNIR Visible and Near-Infrared Radiation
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Appendix B
Distribution of Radiance Values

Figure 13: Average PDF for Radiance of City Pixels for Alta Floresta, Huntsville, and
Grand Forks. Dotted lines indicate the 25th and 75th percentiles of each bin. The
non-Gaussian distribution of radiance values suggests that a measure of dispersion
that is more robust under skewed conditions may be worth investigating.
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Appendix C
Grand Forks Viewing Geometry

Figure 14: Raw VIIRS DNB Images of Grand Forks under Different Viewing Geome-
tries. There are two images where Grand Forks is left of NADIR (top left, bottom
left), two images where Grand Forks is near NADIR (top center, bottom center), and
two images where Grand Forks is right of NADIR (top right, bottom right). Satellite
zenith angles are displayed under each image.

44



Appendix D
Cape Verde Outlier

A significant outlier among VIIRS AOT estimates occurred over Cape Verde

on October 23rd, 2012; the average AERONET AOT was 0.067, while the VIIRS

estimated AOT was over 1.0. The VIIRS DNB image of Sal Island during this over-

pass, with Espargos (the location of the AERONET site and the VIIRS retrieval)

circled in red, is shown in Fig. 15. This image is not significantly different than

VIIRS DNB images from other overpasses during which retrievals were made. The

VIIRS M16 Band (11.54m 12.49m) is shown in Fig 16. Cloud is clearly visible in

this image (regions of blue and green); however, it is approximately 50 miles south

of Sal Island. A basic nighttime cirrus test (Ackerman, 1997) is performed by taking

the difference between VIIRS M12 Band (3.6m 3.79m) and the VIIRS M15 Band

(10.26m 11.26m) and is shown in Fig. 17. Neither VIIRS M Band image indicates

cloud over Sal Island, though both images were re-gridded out of necessity. Also note

that thin cirrus can go undetected by most basic cloud detection techniques. It is

therefore still unknown why the variance method performed so poorly on this night.
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Figure 15: Raw VIIRS DNB Image of Sal Island, Cape Verde, on October 23rd, 2012.
Espargos is circled in red.
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Figure 16: 12 Micron Channel Image over Cape Verde on October 23rd, 2012. Sal
Island is located in the center of the image.
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Figure 17: Difference Between M12 Band and M15 Band over Cape Verde on October
23rd, 2012. Sal Island is located in the center of the image.
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Pérez-Ramı́rez, D., Lyamani, H., Olmo, F. J., Whiteman, D. N., and Alados-

Arboledas, L. (2012). Columnar aerosol properties from sun-and-star photometry:

statistical comparisons and day-to-night dynamic. Atmospheric Chemistry and Physics,

12(20), 9719-9738.

Pope III, C. A., and Dockery, D. W. (2006). Health effects of fine particulate

air pollution: lines that connect. Journal of the air & waste management association,

56(6), 709-742.

Purkis, S. J., and Klemas, V. V. (2011). Remote sensing and global environ-

mental change. John Wiley & Sons.

54



Reid, J. S., Hyer, E. J., Prins, E. M., Westphal, D. L., Zhang, J., Wang, J.,

... and Hoffman, J. P. (2009). Global monitoring and forecasting of biomass-burning

smoke: Description of and lessons from the Fire Locating and Modeling of Burning

Emissions (FLAMBE) program. Selected Topics in Applied Earth Observations and

Remote Sensing, IEEE Journal of, 2(3), 144-162.
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