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Optimal slope units partitioning in landslide susceptibility mapping
Chiara Martinello , Chiara Cappadonia , Christian Conoscenti , Valerio Agnesi and Edoardo Rotigliano

Department of Earth and Marine Sciences, University of Palermo, Palermo, Italy

ABSTRACT
In landslide susceptibility modeling, the selection of the mapping units is a very relevant topic
both in terms of geomorphological adequacy and suitability of the models and final maps. In
this paper, a test to integrate pixels and slope units is presented. MARS (Multivariate
Adaptive Regression Splines) modeling was applied to assess landslide susceptibility based
on a 12 predictors and a 1608 cases database. A pixel-based model was prepared and the
scores zoned into 10 different types of slope units, obtained by differently combining two
half-basin (HB) and four landform classification (LCL) coverages. The predictive performance
of the 10 models were then compared to select the best performing one, whose prediction
image was finally modified to consider also the propagation stage. The results attest
integrating HB with LCL as more performing than using simple HB classification, with a very
limited loss in predictive performance with respect to the pixel-based model.
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1. Introduction

Mapping units (MUs), which are defined as the portion
of terrain where the geo-environmental conditions
differ from the adjacent units across distinct bound-
aries (Carrara et al., 1995; Guzzetti et al., 2006, 1999;
Hansen, 1984; van Westen et al., 1997), are essential
both in predicting performance and output results,
playing a very important role to determine the design
of landslide susceptibility maps. The most used MUs
are grid-cells units and slope-units (Reichenbach
et al., 2018). Usually, grid-cells are directly derived
through a Digital Elevation Model (DEM) and the res-
olution of the predictor variables is assumed as corre-
sponding to that of the DEM pixels. Grid-cell
partitioning is very easy and fast and, generally, a
very good performance is obtained for modeling,
especially when landslide initiation points are to be
detected, as in the case of flow landslides (Cama
et al., 2017; Lombardo et al., 2015; Rotigliano et al.,
2011; Van Den Eeckhaut et al., 2009). However, grid-
cells units can result as too local to diagnostically
express unstable conditions especially when larger
slide failures are to be predicted. Moreover, pixel-
based final maps frequently result hard to read and
not friendly for land use planners. In fact, these maps
are often mosaics of cells (generally, with metric resol-
ution), each having a specific susceptibility, without
any constraint on the spatial coherence or connectivity
between the adjacent pixels in a single slope. Thereby,
the territorial planning becomes very complex and
complicated thus causing even an unwillingness from

administrators to exploit landslide susceptibility maps
as an effective tool for risk analysis and management.

Instead, the slope-units (SLU), which are defined as
the slop sectors limited by drainage and water divide
lines, are preferred since it is assumed the complete
landslide kinematic (initiation, propagation and
accumulation) occurs inside. Nevertheless, the SLU
partitioning criteria may adversely affect the predictive
efficacy of the susceptibility models, resulting in too
large units unsuitable for picking the initiation zone
and discriminating the landslides specific dynamics.
Furthermore, a non-optimal SLU construction would
made the proxy variable characterization into the
slope-units as too smoothed (Amato et al., 2019; Ba
et al., 2018; Rotigliano et al., 2011, 2012) so that apply-
ing zonal statistics to predictors could be very mislead-
ing for the geo-environmental slope conditions
featuring: e.g. averaging the steepness could smooth
gradient jumps along the slope, which play a very
important role in landslide triggering.

Thus, grid-cells units seem to be the better MU for
modeling whilst a dimensionally adequate slope-unit
appear the best way to obtain the final landslide suscep-
tibility maps. Rarely, the attention of researchers has
been focused to convert optimal results achieved by
pixel-based modeling into successful and easy-to-
apply slope-based maps (Domènech et al., 2020).

In this research, several approaches to obtain a suit-
able landslide susceptibility map were tested.

In a test area (the Imera Settentrionale river basin,
in the north sector of Sicily, Italy), a systematic
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rotational/translational slides inventory was obtained
by using high resolution LIDAR images and a set
of 12 layers expressing selected physical-environ-
mental predictors prepared. By using MARS (Multi-
variate Adaptive Regression Splines), a grid-cells
statistical susceptibility model was obtained, which
was then integrated with 10 types of slope-units, pro-
duced through different partitioning criteria, invol-
ving half-basin extraction and landform
classification subdivision. Finally, the 10 SLU-based
susceptibility layers were derived by applying zonal
statistic tools to dissolve the pixel-based scores. In
this way, optimal slope-units partitioning scheme
were explored, by comparing predictive performances
and suitability of the final maps.

2. Materials and methods

2.1. Study area

The Imera Settentrionale river basin extends for 343 km2

in the northern sector of Sicily (Italy, Figure 1(a); Figure
(a) of Main Map). The outcropping rocks mainly con-
sists of carbonate, siliceous-carbonate and siliciclastic
successions, which form tectonic units having imbricate
geometric structures, as a consequence of the compres-
sive phase that built up the Sicilian chain since the Oligo-
cene (Morticelli et al., 2015). During the Late Miocene
the Sicilian chain was associated with the development
of wide to quite narrow syntectonic basins partly located
above the growing thrust sheets (Gugliotta et al., 2013),
filled with terrigenous deposits.

The area is affected by several instability phenomena
(Agnesi et al., 2000; Di Maggio et al., 2017) related to
the climatic conditions but also to the recurrent seismic
events that occurred in the Madonie mountains area
(Agnesi et al., 2005). The neotectonic activity, is also
responsible for the big deep-seated gravitational slope
deformation (Agnesi et al., 1997; Di Maggio et al.,
2014) in the southern part of the basin. The largest
part of the basin, where flysch sediments, multi-cycles
sequences of alluvial clastic sediments and marine pelites
outcrop, is densely marked by water erosion
landforms (rills, gullies, pipes), somewhere giving rise
to typical Italian ‘calanchi’ badlands systems (Buccolini
et al., 2012; Cappadonia et al., 2011, 2016; Pulice et al.,
2012), and landslides, which are typically of flow and
slide type.

The mean annual rainfall (750 mm) and tempera-
ture values of about 16°C allow us to classify the cli-
mate of Imera Settentrionale river basin as
Mediterranean type, with rainfall concentrated mainly
in few of the winter semester days, while summer
period is characterized by almost drought conditions.

2.2. Landslide inventory and landslide
conditioning factors

Landslide recognition was carried out using high resol-
ution (0.25 m) LIDAR (LIght Detection And Ranging)
images taken in 2012 by ARTA (Assessorato Regionale
al Territorio e all’Ambiente). The inventory includes
1608 rotational/translational slides that, on the whole,
affect an area extended for about 26 km2 (∼8% of the

Figure 1. (a) Location of the Imera Settentrionale river basin; (b) Recognized active rotational/translational slides inventory map.

2 C. MARTINELLO ET AL.

https://doi.org/10.1080/17445647.2020.1805807


study area). The obtained landslides inventory (Figure 1
(b)) was checked with a randomly hot spots field survey
which were carried out in 2019; for each of the mapped
landslide polygon the highest point along the crown
(Landslide Identification Point – LIP) was extracted,
which several researches (e.g. Cama et al., 2015; Lom-
bardo et al., 2014, 2016; Rotigliano et al., 2011) high-
lighted as an effective diagnostic site for landslide
susceptibility evaluation.

The local environmental conditions which directly
influence the instability of the slopes are mainly
related to morphology (slope angle, orientation
slope, curvature, elevation, roughness etc.) and others
predisposing characteristics (e.g. lithology, soil use,
tectonic condition, landform classification). Any
kind of controlling factor can be considered as a
potential predictor and can be introduced into the
susceptibility analysis. In this research, a set of 10
topographic predictors was derived by processing
with GIS hydro-morphological tools a 8 m cell digital
elevation model (DEM) obtained from a LIDAR sur-
vey in 2008 by ARTA: elevation (ELE), landform
classification (LCL), steepness (STP), aspect (expressed

as NORTHerness and EASTerness), plan (PLN) and
profile (PRF) curvatures, topographic wetness index
(TWI), terrain ruggedness index (TRI) and stream
power index (SPI).

A bedrock lithology map (LITO) was prepared by
grouping the different outcropping lithologies
(Figure 2) in light of their expected mechanical behav-
ior. The boundaries between the different units were
verified and adapted on the basis of remote and field
surveys. The Corine Land Cover 2018 (USE) was also
used to classify land use of the Imera Settentrionale
river basin.

2.3. MARS modeling

The Multivariate Adaptive Regression Splines (MARS;
Friedman, 1991) stochastic method was applied to
model landslide susceptibility. This method, which
already proved to be suitable for landslide modeling
(e.g. Conoscenti et al., 2015, 2016; Rotigliano et al.,
2018, 2019; Vargas-Cuervo et al., 2019), allows us to
optimize the linear regression obtained between the
dependent and the independent variables.

Figure 2. Bedrock lithology map of the study area: (1) Anthropic deposits; (2) Alluvial deposits; (3) Alluvial fan and talus deposit; (4)
Colluvium and old landslide deposits; (5) Evaporitic rocks; (6) Sandstones; (7) Flysch Numidico pelites; (8) Flysch Numidico sand-
stones/conglomerates; (9) ‘Terravecchia’ pelites; (10) ‘Terravecchia’ sandstones/conglomerates; (11) ‘Varicolori’ clays; (12) Calcar-
eous and clayey marls; (13) Lithoid units.
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The MARS regression function can be written as:

y = f (x) = a+
∑N

i=1

bihi(x)

where y is the dependent variable (the outcome) pre-
dicted by the function f(x), α is the model intercept
and βi the coefficients of the hi basis functions, N is
the number of basis functions.

In this research, the MARS models were
implemented through the ‘earth’ package (Milborrow,
2019) of Rstudio software.

2.4. Pixel-based model building and validation

Each 8 m pixel was classified as stable or unstable
(positive or negative cases) depending on whether or
not it hosts at least one LIP and the local values of all
the proxy predictors assigned. Thereby, a R dataframe
was obtained and exploited to extract a suite of one-
hundred balanced (positive/negative) datasets, each
including the whole set of positive pixels and an
equal number of randomly extracted (without replace-
ment) subsets of negatives. Each dataset was then sub-
mitted to a balanced random partition furnishing a
75% subset for calibration and a 25% unknown subset
for blind validation tests.

The model performance was analyzed in terms of a
cut-off independent metric (by AUC: the Area Under
the receiver operating Curve) as well as, based on an
optimal cut-off (Youden, 1950), in terms of TPR and
TNR (true positive and negatives rates, respectively)
and related accuracy. By exploiting the availability of
the one-hundred replicates, each accuracy metric was
assessed also in terms of precision.

Each model was tested in predicting the validation
test, first, and the whole study area, then. In fact, in
evaluating the suitability of the final maps it is of
great importance to verify to what extent the forced
false positive generation (all the unstable status pixels
are inside the calibration/validation subsets) is
balanced by the performance in terms of true negative
prediction.

2.5. Slope Units partitioning and scoring

By using two main criteria, 10 types of slope-unit par-
titioning schemes were adopted.

Firstly, two classic hydro-morphological units were
obtained by means of contributing area-based pro-
cedures: in this way, by exploiting 2000 and 5000 con-
tributing area thresholds, a 2000 half basin
(2000_HB_SLU) and a 5000 half basin
(5000_HB_SLU) SLU-layers were obtained.

Then, the TPI based Landform Classification
(LCL; Guisan et al., 1999) SAGA tool was exploited
to obtain four different LCL maps from the DEM,

by changing the inner/outer radius as 100/1000,
100/2000, 500/1000 and 500/2000 meters. LCL
divides and classifies the study area in geomorpholo-
gical-classes considering the relative vertical position
of each pixel.

By intersecting the 2000_HB_SLU and
5000_HB_SLU shapes with the four LCL maps, eight
new types of slope-units were obtained (Table 1), in
which each half basin unit was split into several areas
having a different geomorphological classification
(Figure 3).

For each of the 10 types of obtained slope-unit
layers, MEAN (average) and MSTD (mean plus one
standard deviation) of the pixel-based scores were
zoned for producing 10 derived prediction images. A
positive (unstable) status was then assigned to the
slope-units if containing at least one LIP. In this way,
each slope-unit was so characterized by a predicted
(derived by MEAN and MSTD scoring) and an
observed status, so that Receiver Operating Curve
(ROC)-plots and Confusion Matrixes, through a new
Youden Index cut-off, were analyzed.

3. Results

Figure 4(a), which shows the ROC-plot of the one-
hundred pixel-based models, attests for excellent
(Hosmer & Lemeshow, 2000) AUC mean values
(0.89), associated to very low standard deviations
(0.01), and a 0.48 Youden Index cut-off. A similar
high performance in terms of prediction accuracy
(Figure 4(b)) was also obtained from the confusion
matrix both for the balanced pixel-based model
and the entire area (0.79–0.81). Coherently, both
specificity and sensitivity do not change from the
balanced datasets (0.83) to the entire area (0.85).
On the other hand, while similar (about 0.80) Posi-
tive and Negative Predicted Values (PPV and NPV)
were achieved by the balanced test, very different
results were obtained for the whole area (0.001
and 0.999, respectively).

Figure 5(a) shows a graphical resume of the most
important selected predictors, by using the nsubsets
criterion (Conoscenti et al., 2016; Rotigliano et al.,
2019).

The categorical variables (LCL, LITO, USE) were
disassembled into specific classes to analyze their
different impact. In this way, 23 out of 45 variables
have contributed to discriminate the positive to nega-
tive cases but only seven can be considered very impor-
tant. TRI, SPI, PRF, ELE, SLO and PLN are the most
important DEM-derived variables. Between the categ-
orical variables, ‘lithoid units’ and ‘calcareous and
clayey marls’ lithology classes, ‘non-irrigated arable
land’ and ‘sclerophyllous vegetation’ land use classes
and all the LCL classes played a very important role
to discriminate the stable/unstable pixels.
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The binary correlation between the continuous vari-
ables (Figure 5(b)) highlights a very high negative cor-
relation between TWI and SLO, TWI and TRI whilst a
positive one between SLO and TRI.

In Table 2, the MEAN- and the MSTD-derived
LCL_SLU AUCs for the 10 types of slope-units are
showed. The LCL_SLU AUCs perform always slightly
better by using the MSTD-derived score (>0.84) rather
than the MEAN-derived score (>0.82). A similar
behavior is observed also for the HB_SLU models but
down-shifted toward less performing results (between
0.74 and 0.78).

The Youden Index cut-offs are lower than the pixel-
based models ones, with a more marked decreasing
when passing either from HB_SLU to LCL_SLU or
from the MSTD- to the MEAN-derived score.

By using the MSTD-derived score, very high sensi-
tivity values arise for all the LCL_SLU models (>0.90)
together with a lower specificity (about 0.7) resulting

in a less performing accuracy (about 0.7). On the con-
trary, the 2000_HB_SLU and the 5000_HB_SLU per-
formances, in spite of a similar (0.81 and 0.78)
sensitivity, are affected by a marked decreasing in
specificity (0.65 and 0.66) resulting in a just satisfactory
accuracy (about 0.7).

The principal behaviors of the HB_SLU and
LCL_SLU models hold also using the MEAN-derived
score but all the performances result lower than
MSTD-derived score: the accuracy fall down (<0.7)
due to a marked specificity decreasing (<0.7, with an
extreme value equal to 0.56 for 5000_HB_SLU) while
the sensitivity attains good or optimal values (between
0.80 and 0.95).

In order to explore the general coherence between
pixel- and SLU-based scores for the 10 different parti-
tioning adopted criteria, the dispersion of the pixel
scores zoned into the SLUs was analyzed (Figure 6).
It is worth to note that a less variability arises for
HB_SLUs split by LCLs with a minimum internal
radius (100 m), whilst the maximum variability arises
by using the HB_SLUs (especially with the
5000_HB_SLU).

In Figure 7 a comparison between the source pixel-
based and the final LCL_SLU susceptibility maps is
presented for a selected representative sector. In
order to objectively reclassify the susceptibility maps,
three cut-off values were directly obtained by analysing
the ROC-plot. A first main cut-off (m cut-off) was first

Figure 3. Example of LCL_SLU partition (HB_SLU: 5000 + LCL: 100-2000).

Table 1. Characteristics of the LCL_SLU partitioning scheme
adopted.
Hydro-morphological units LCL inner–outer radius LCL_SLU

2000_HB_SLU 100–1000 211_LCL_SLU
100–2000 212_LCL_SLU
500–1000 251_LCL_SLU
500–2000 252_LCL_SLU

5000_HB_SLU 100–1000 511_LCL_SLU
100–2000 512_LCL_SLU
500–1000 551_LCL_SLU
500–2000 552_LCL_SLU
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identified on the ROC plot, as the probability value
resulting in the maximum difference between false
positive (FP) and true positive (TP) rate (Youden,
1950). The same procedure was then applied to the

two semi-plots which were obtained by splitting the
ROC plot using the m cut-off. In this way, the
two secondary cut-off values (l and h) were identified.
Exploiting the l, m and h values, the score was

Figure 4. (a) Roc plot of pixel-based model (the one-hundred replicates are plotted in orange while the averaged ROC is in red); (b)
Summary of the averaged confusion matrices for the pixel-based model validations (balanced and entire area schemes).

Figure 5. (a) Variables importance for the pixel-based model: the predictors with an overall higher than 25 are plotted in cyan while
those with an overall lower than 25 are in light-cyan; (b) Binary correlation between the continuous variables: the radius of circle is
proportional to the intensity of correlation (between 0 and 1) while the color is representative to the direction (yellow for positive
correlation, green for negative one); the X symbol corresponds to a non-significant correlation (p-value <.01).
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finally reclassified into 4 classes depending on the sus-
ceptibility interval: NULL (S0; P < l), LOW (S1; l < P <
m), HIGH (S2; (S1; m< P < h)) and VERY HIGH (S3;
P > h).

4. Discussion and conclusions

The pixel-basedmodel shows excellent performances both
in balanced and in the entire validation area. In fact, iden-
tical excellent AUC values are obtained for the two tests
and the other performance metrics reveal only a slight
variation. This proves that the false positive generation
in the whole area is widely balanced by the true negative
successful prediction. Moreover, the one-hundred repli-
cates demonstrate both high accuracy and precision. In
light of the above, the false positive cases potentially are
to be expected as future positives (in other words, future
landslide initiations) rather than type I errors.

It is worth to note that the variables importance
analysis shows that the LCL classes play a very impor-
tant role in discriminating the landslide initiation
areas. This suggests a further slope-units subdivision
through the LCL classes as useful for the performant
and correct identification of landslide initiation zones
and, as a consequence, for developing a zonal environ-
mental subdivision suitable for optimizing the land-
slide susceptibility map output.

In fact, the results confirmed that the LCL_SLU
models produced homogeneous and more easy to
interpret prediction images, with a predictive perform-
ance higher than HB_SLU, suffering only from a lim-
ited performance lowering with respect to the pixel-
based model, almost totally dependent on type I errors
(false positives); at the same time, the LCL_SLUmodels
resulted in the highest skill in finding/predicting the
unstable pixels (sensitivity). In particular, the best
LCL_SLU model (HB_SLU: 5000 + LCL: 100–2000)
resulted in very high performances (AUC = 0.84; sensi-
tivity = 0.95; specificity = 0.71) and much more read-
able maps. Moreover, the best LCL_SLU model isTa
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Figure 6. Boxplot of the standard deviation pixel scores zoned
into the SLUs.
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Figure 7. (a) Landslide susceptibility pixel-based map; (b) Landslide susceptibility LCL_SLU-based map (HB_SLU: 5000 + LCL: 100-
2000).
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characterized by a very low pixel-score variability
inside each slope-unit, attesting also for a coherent
and stable susceptibility zonation.

Once the best performing susceptibility map was
selected, the final step was to connect the propagation
stage to the landslide initiation obtained from its pre-
diction images. To this aim, the same morphodynamic
meaning of the LCL_SLU was exploited after having
dissolved the LCL_SLU smaller than 20,000 m2 (the
3rd quantile of the landslide frequency distribution).
A degree of fit plot was then prepared to validate the
new integrated susceptibility map in predicting the
source landslide polygons, which actually represent
the real landslide propagation/arrest areas for the cali-
bration inventory. This plot was then compared to that
obtained from a pixel-based model, which differently
was calibrated using the same landslide polygons
(Figure 8). The comparison between the two results
attested a very more performing behavior of the
LCL_SLU integrated model.

All the obtained results show that by integrating the
classical pixel-based modeling (Figure (b) of Main
Map) on the LCL_SLU mapping units (Figure (c) of
Main Map), it is possible to optimize the results of
the landslide susceptibility evaluation. The same
LCL_SLUs allow also to involve the propagation
stage into the predictive images, obtaining easy to
interpret high performing integrated susceptibility
maps (Figure (d) of Main Map).

Software

Google Earth Pro was employed to detect and map the
landslides. GRASS GIS was utilized to partition the
study area in SLU by using the r.watershed processing.
Saga GIS 7.0.0 was employed to produce the LCL maps
and to obtain the zonal statics analyzed. Quantum GIS
3.8.2 Zanzibar was used to clip the SLUs with the LCL
maps and to print all maps displayed in this research.
The modeling and the cut-off independent and

Figure 8. (a) Integrated landslide susceptibility LCL_SLU-based map (HB_SLU: 5000 + LCL: 100-2000) and whole basin degree of fit
plot; (b) Landslide polygons calibrated susceptibility pixel-based map and whole basin degree of fit plot.
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dependent matrices were carried out by using the Rstu-
dio software.
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