Taylor & Francis
Taylor & Francis Group

Journal of Spatial Science

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tjss20

An improved algorithm for dynamic nearest-
neighbour models

Franz-Benjamin Mocnik

To cite this article: Franz-Benjamin Mocnik (2020): An improved algorithm for dynamic nearest-
neighbour models, Journal of Spatial Science, DOI: 10.1080/14498596.2020.1739575

To link to this article: https://doi.org/10.1080/14498596.2020.1739575

8 © 2020 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

@ Published online: 09 Sep 2020.

N
CJ/ Submit your article to this journal &

||I| Article views: 218

A
& View related articles &'

View Crossmark data &'

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=tjss20

https://www.tandfonline.com/action/journalInformation?journalCode=tjss20
https://www.tandfonline.com/loi/tjss20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/14498596.2020.1739575
https://doi.org/10.1080/14498596.2020.1739575
https://www.tandfonline.com/action/authorSubmission?journalCode=tjss20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tjss20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/14498596.2020.1739575
https://www.tandfonline.com/doi/mlt/10.1080/14498596.2020.1739575
http://crossmark.crossref.org/dialog/?doi=10.1080/14498596.2020.1739575&domain=pdf&date_stamp=2020-09-09
http://crossmark.crossref.org/dialog/?doi=10.1080/14498596.2020.1739575&domain=pdf&date_stamp=2020-09-09

JOURNAL OF SPATIAL SCIENCE IalyL(zl’ &fl’anCIS
https://doi.org/10.1080/14498596.2020.1739575 aylor & Franis Group

RESEARCH ARTICLE 8 OPEN ACCESS | Greck forupses|

An improved algorithm for dynamic nearest-neighbour
models

Franz-Benjamin Mocnik

Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, The
Netherlands

ABSTRACT KEYWORDS

The naive algorithm for generating nearest-neighbour models Nearest-neighbour model;
determines the distance between every pair of nodes, resulting in kNN; fixed-radius near
quadratic running time. Such time complexity is common among neighbour; Mocnik model;
spatial problems and impedes the generation of larger spatial ~ SPatial network; spatial
models. In this article, an improved algorithm for the Mocnik structure; Tobler's law
model, an example of nearest-neighbour models, is introduced.

Instead of solving k nearest-neighbour problems for each node (k

dynamic in the sense that it varies among the nodes), the improved

algorithm presented exploits the notion of locality through intro-

ducing a corresponding spatial index, resulting in a linear average-

case time complexity. This makes possible to generate very large

prototypical spatial networks, which can serve as testbeds to eval-

uate and improve spatial algorithms, in particular, with respect to

the optimization of algorithms towards big geospatial data.

1. Introduction

Current data sources provide endless possibilities to engage in geospatial data produc-
tion and analysis (Burke et al. 2006, Goodchild 2007, DelLyser and Sui 2012, Harvey 2013).
Besides location, sensors in mobile phones measure tilt, acceleration, the magnetic field,
temperature, proximity to human beings, ambient light, etc.; and they are able to record
sound, images, and video. Also, social media provide information about our sentiments as
well as verifiable information in the form of georeferenced text snippets (Stefanidis et al.
2013, Li et al. 2018). We often act and interact by means of digital technology, which
makes us leaving digital traces that often incorporate the spatial dimension. Such infor-
mation is special in the sense that the information is, to some degree, structured and
shaped by space (Mocnik and Frank 2015, Mocnik 2015a, 2015b).

Some of the characteristics that make space can also be found in the thematic
dimensions of the data, i.e.,, on the dimensions referring to the ‘what’ instead of the
‘where’ or ‘when’. This is because spatial and the thematic aspects are often interdepen-
dent and interwoven. Thereby, thematic information inherits some of the properties of
space, most importantly, the notion of locality: things can exist or happen in the same
vicinity. Space provides thus structure to thematic information, which is why we are able
to perform spatial queries and relate things by their position in space.

CONTACT Franz-Benjamin Mocnik @ franz-benjamin.mocnik@utwente.nl

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any med-
ium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

http://orcid.org/0000-0002-1759-6336
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/14498596.2020.1739575&domain=pdf&date_stamp=2020-09-28

2 (&) F-B.MOCNIK

Spatial and geographical information can, in many cases, formally be conceptua-
lized as networks (Barabasi and Bonabeau 2003, Holme and Saramaki 2012) and
often be modelled by nearest-neighbour models (Aldous and Ganesan 2013,
Mocnik and Frank 2015, Mocnik 2015b). The class of such nearest-neighbour models
can be described by simple rules, but generating such a network is often computa-
tionally intensive. In fact, when generating the network using the naive algorithm,
the nearest neighbours have to be determined for each node of the network. The
running time is thus of average-case time complexity O(n - C(n)), where O(C(n)) is
the complexity of finding, for a given node, all its neighbouring nodes. For determin-
ing the neighbouring nodes, the naive algorithm would check for each node the
distance to all other nodes, yielding an overall average-case time complexity of
O(n?). For finding neighbouring nodes more efficiently, an index can be used,
yielding an overall complexity lower than O(n?) but still higher than O(n).

This article focuses on a particular example of nearest-neighbour models, the
Mocnik model (Mocnik and Frank 2015, Mocnik 2015b, 2018b). Given the parameters
needed to generate the model, i.e., the number of nodes n, the dimension d, and the
parameter p, we seek for an algorithm that generates an instance of the corre-
sponding Mocnik model as efficient as possible — with minimal time complexity. In
this article, we present an algorithm that is able to compute the Mocnik model in
linear time, i.e., in average-case time complexity O(n), which is much faster compared
to the naive algorithm with complexity O(n?). The linear complexity is similar to
solutions of the fixed-radius near neighbour search problem (Bentley 1975b, Bentley
et al. 1977), but as the Mocnik model assumes no fixed radius, a variant with a spatial
index needs to be employed. Such linear average-case time complexity is possible
because the generation of the Mocnik model can be performed locally. As a result,
larger Mocnik models can easily be generated.

The article is organized as follows. First, we briefly discuss spatial networks (Section 2.1)
and nearest-neighbour models (Section 2.2) by setting them into the context of existing
literature. In particular, the Mocnik model is discussed as an example of a nearest-
neighbour model. Then, we discuss the fixed-radius near neighbour search problem,
including its variants like the k nearest-neighbour search problem (Section 2.3). These
techniques can be used to generate nearest-neighbour models efficiently. This is, how-
ever, not possible for the Mocnik model, because the model is dynamic in the sense that
edges are determined by the mutual relative distances of the involved nodes. After a short
discussion of the naive algorithm for generating a Mocnik model (Section 3.1), we
examine how to utilize a spatial grid as a spatial index (Section 3.2). This spatial index,
in turn, renders possible to generate both non-hierarchical and hierarchical Mocnik
models in linear time, which is demonstrated by a novel improved algorithm (Section
3.3 and Section 3.4). The improved algorithm is successfully evaluated by showing that its
average-case complexity is linear in the number of nodes of the network (Section 4).
Finally, we reflect on the opportunities the efficient generation of a Mocnik model offers
in the context of big geospatial data (Section 5). The algorithm for generating the
locations of the nodes (Appendix A) and algorithms related to the spatial grid
(Appendices B and C) can be found annexed to the end of the article. Finally, empirical

JOURNAL OF SPATIAL SCIENCE (&) 3

running time series about the influence of the dimension of the embedding space and the
parameter p on running times is annexed (Appendix D).

2. Related work

This section provides an overview of existing literature on spatial networks in general,
as well as nearest-neighbour models and the Mocnik model in particular. Also, the
literature on the fixed-radius near neighbour search problem and its variants are
discussed.

2.1. Spatial networks

In various fields, the structure of information has been formally described and exam-
ined by the use of networks (Barabdsi and Bonabeau 2003, Holme and Saramaki 2012).
Among these examples are the structure of social interaction and social links (Holland
and Leinhardt 1981, Onnela et al. 2007, Hunter et al. 2008, Sala et al. 2010), computer
networks and the World Wide Web (Albert et al. 1999, Barabasi and Albert 1999,
Barabasi et al. 2000, Yook et al. 2002), scientific collaboration networks (Newman
2001, Barabasi et al. 2002), transport and road networks (Kalapala et al. 2006, Louf
et al. 2014), economic networks in the context of geography (Baum et al. 2003,
Gluckler 2007), brain networks (Sporns et al. 2005, Bullmore and Sporns 2009, van
den Heuvel et al. 2012), genetic networks (Barabdsi and Albert 1999), networks
describing the spread of diseases (Watts and Strogatz 1998), and many more. The
structural view offered by networks is a suitable approach to explore extensive data
sets and big geospatial data.

The specific characteristics of spatial networks have, among others, been examined by
an analysis of volumes in the network. Such a volume is defined as the number of nodes
being reachable from a centre node by a fixed number of edges. The volume in a network
has, e.g., been utilized for understanding how space shapes thematic structure (Mocnik
2015b, 2018a). In particular, it has been shown that the volume in a spatial network often
statistically scales in the same way as the volume in space, known as the polynomial
volume law of spatial networks (Mocnik 2018b): if a network is placed in and strongly
shaped by a d-dimensional space, volumes in the network scale as r?. It has even been
demonstrated that the dimension of the embedding space can be reconstructed from the
abstract network by the analysis of volumes in the network (Mocnik 2018b). Knowledge
about the dimension of a network can, e.g., be used for classifying networks and for
building corresponding search engines for networks. Also, further characteristics of spatial
networks have been discussed (Barthélemy 2011).

Space is one of the major factors that shape networks. Besides the analysis of real-
world networks, several models of spatial networks have thus been introduced. While
planar networks are an important class of networks (Kuratowski 1930, Whitney 1931,
MacLane 1937, Wagner 1937), they describe only networks that can ideally be embedded
in space. Geographical reality does though not enforce networks to be prototypical spatial
but instead combines spatial and thematic dimensions. Networks, the nodes of which are
embedded in geographical space, have been discussed by Haggett and Chorley (1969).
Spatial networks, in general, have been discussed by Barthélemy (2011). An important

4 (&) F.-B.MOCNIK

class of spatial networks are nearest-neighbour models, the nodes of which are adjacent
in the network if they are also neighbouring in space. These models differ in the way the
neighbours of a node are determined. Among these models are the Waxman model,
which makes use of a probability function (Waxman 1988); a model introduced by
Huttenhower et al. (2007); and a model introduced by Aldous and Shun (2010). The latter
one is scale-invariant, a property discussed by Aldous and Ganesan (2013). Another
example of a nearest-neighbour model is the Mocnik model (Mocnik and Frank 2015,
Mocnik 2015b, 2018b). However, all types of nearest-neighbour models can be used to
test algorithms and workflows on large spatial networks, creating the need to algorithmi-
cally generate such networks very efficiently.

2.2. Nearest-neighbour models and the Mocnik model

Tobler’s First Law of Geography can be found within many contexts and in many data sets.
Geographical features are scattered in space, sometimes in a uniform way, but usually, the
features expose patterns or even cluster to some degree. In many cases and oftentimes
independent of how features are arranged, Tobler’s First Law of Geography applies: ‘near
things are more related than distant things’ (Tobler 1970). This law implies that geogra-
phical influences are often of local nature. The complexity of geographical systems is
accordingly limited by the fact that strong influences often happen in spatial neighbour-
hoods. In addition to the notion of locality found in geographical systems, geographical
context goes much beyond the local neighbourhood. Tobler’s First Law accordingly also
states that ‘everything is related to everything else’ (Tobler 1970), which, in turn, means
that a restriction to limited neighbourhoods is often inadequate for geographical analysis
and discussion. A similar effect is described by Tobler's Second Law of Geography, which
states that a ‘phenomenon external to an area of interest affects what goes on in the
inside’ (Tobler 1999). Tobler's laws have been widely acknowledged as being fundamental
to geographical research (Barnes 2004, Goodchild 2004, Miller 2004, Phillips 2004, Smith
2004, Sui 2004, Tobler 2004, Westlund 2013). Also, the often local nature of geographical
influence, complemented by the high complexity of geographical systems, has been
widely discussed in publications (Anselin 1995, Hecht and Moxley 2009, Westerholt
et al. 2016, Mocnik 2018c).

Nearest-neighbour models (Waxman 1988, Huttenhower et al. 2007, Aldous and
Shun 2010, Aldous and Ganesan 2013, Mocnik and Frank 2015, Mocnik 2015b, 2018b)
often resemble Tobler's First Law of Geography in prototypical ways. These models
have in common that nodes are adjacent in the network if they are, in some way, near
in space. They differ, however, by the way the nearest nodes are determined. The
Mocnik model (Mocnik and Frank 2015, Mocnik 2018b), which is examined as an
example in this article, has properties that are of particular interest to geography.
Among these properties is the fact that edges are introduced independently of scale
(Mocnik 2015b). The idea of the model is straightforward. For a given set of nodes that
are placed in a d-dimensional Euclidean space, edges are introduced between nodes in
the same vicinity. Thereby, a directed edge between nodes ny and n, is introduced if
and only if

JOURNAL OF SPATIAL SCIENCE (&) 5

dist(ny,ny) < p - min dist(n,m) (1)
m%n,

where m is the node being nearest to node n;, and p>1 is a parameter influencing the
density of the network, i.e., the number of edges added to each node. Instead of using
a set of given locations, as in Figure 1, nodes are often randomly distributed in the d-
dimensional unit ball with a uniform distribution. Numerous instances of such Mocnik
models with randomly distributed nodes exist, which is why we speak of ‘an instance of
the Mocnik model’ or ‘a Mocnik model’ in this case. In the scope of this article, we assume
such randomly distributed nodes in the unit ball for instances of the Mocnik model.

The Mocnik model is a result of local optimization (Mocnik 2018b). Real networks are,
however, often to some degree guided by global optimization as well. Road networks, e.g.,
consist of many edges that connect nodes being near in space, optimizing for local
distances. At the same time, some of these edges allow for larger travel speed, such as
highways, thereby connecting more distant nodes. Such local and global optimization
typically coexists in geographical networks, which is why the hierarchical Mocnik model
has been introduced (Mocnik 2018b). The hierarchical model consists of different layers.
These layers are constituted by node sets Ny C N;_; C ... C Ny C Ny with a growing
number of nodes, where N, refers to the nodes of the top layer and Ny to the nodes of
the base layer. Each of these layers is, per definition, the Mocnik model of the corresponding

(a) Network representation (b) Mocnik model () Gilbert model

Figure 1. Different networks, the nodes N of which are the stops of the national railway
operator SJin Sweden. (a) Network representation of the original network, (b) the Mocnik model for
the nodes N and p = 2, and (c) a Gilbert model (Gilbert 1959) for the nodes N and probability 1073.
The parameters are chosen such that similarities and dissimilarities visually stand out.

Reprinted/adapted by permission from Springer: Mocnik F.-B., Frank A.U. (2015) Modelling Spatial Structures. In: Fabrikant S.,
Raubal M., Bertolotto M., Davies C., Freundschuh S., Bell S. (eds.) Spatial Information Theory. COSIT 2015. Lecture Notes in
Computer Science, Vol. 9368.

6 (&) F.-B.MOCNIK

set of nodes. The resulting overall network consists thus of many edges between nodes of
the same vicinity and some additional shortcuts between more distant nodes.

The generation of nearest-neighbour models, such as the Mocnik model, poses com-
putational challenges. The naive approach to the generation of such a model needs to
consider all pairs of nodes when computing their distances. The quadratic complexity of
the naive algorithm derives from the fact that the distance needs to be computed even for
pairs of very distant nodes. The same quadratic complexity applies to other cases in which
binary functions shall be evaluated for all elements of a system, e.g., when determining
the Egenhofer relations (Egenhofer 1991) between all pairs of spatial regions in a data set,
or when applying Allen’s interval algebra (Allen 1983) to temporal intervals. As a result,
the creation and reasoning with qualitative spatial relations for a large number of objects
become inefficient (Fogliaroni 2013).

The complexity of generating nearest-neighbour models for a larger set of nodes can
be reduced when exploiting the notion of locality. In spatial networks, ‘being near in
space’ and ‘being adjacent in the network’ often correlates (near-in-space-near-in-
network condition). As shortcuts do not exist in space — this would contradict the
triangle inequality — shortcuts do not exist in nearest-neighbour models either in the
same extent as in other networks. In a nearest-neighbour model, balls with a small radius
do thus not exhaust the network. One is rather able to distinguish between different
neighbourhoods, which is in contrast to small-world networks, such as many social net-
works. In these, two arbitrary nodes are usually related by only a small number of edges. If
one starts at an arbitrary user profile on Facebook and follows four friendship links (all of
them), one will have visited almost every user profile in this social network (Backstrom
et al. 2012). Accordingly, using such techniques for reducing the complexity by exploiting
the near-in-space-near-in-network condition and thus focussing on small neighbour-
hoods only does not work in such small-world networks. If a network, however, inherits
some notion of locality, the number of considered pairs of nodes can be reduced. In the
following section, means to address the complexity by exploiting the near-in-space-near-
in-network condition are discussed.

2.3. The fixed-radius near neighbour search problem and variants

The naive algorithm for generating a nearest-neighbour model can easily be improved
with respect to its efficiency by making use of the notion of locality, which is inherent to
space and thus also to nearest-neighbour models. When generating a nearest-neighbour
model in a naive way, each node is successively considered. For each such node, a nearest
neighbour search problem (also known as the ‘post office problem’, Knuth 1973) needs to
be performed by determining the distance to every other node and then introducing
edges to each node being near. This approach results in considering every pair of nodes at
least once and has thus a complexity of O(n?). When making use of the near-in-
space—near-in-network condition, i.e., of the notion of locality, better running times can
be achieved, as is discussed in the remainder of this section.

A generalization of the near neighbour search problem, the fixed-radius near neigh-
bour search problem, has been discussed by Levinthal (1966) and Bentley (1975b). This
problem asks for all nodes within a fixed radius rather than only for the nearest node.
A corresponding nearest-neighbour network model, in which nodes are adjacent if they

JOURNAL OF SPATIAL SCIENCE (&) 7

are within a fixed distance in space, has been introduced by Aldous and Shun (2010). As
the nearest nodes can be searched for in parallel, algorithmic solutions are much more
efficient than when computing the distance of all pairs of nodes. By using hash tables
(Bentley et al. 1977) or by partitioning space in cells related to the corresponding radius
(Mattson and Rice 1999), the fixed-radius near neighbour search problem can be solved
in linear time in the optimal case. The generation of the network model is thus of
complexity O(n) too.

Another variant is the nearest-neighbour model, in which every node is adjacent to the
k nearest nodes. Instead of computing the distance in space to each other node, a spatial
index can be used. Existing spatial indexing methods usually expose (in the optimal case)
logarithmic complexity for querying the nearest neighbour, as is the case when using an
R tree (Guttman 1984, Cheung and Fu 1998), its variant of an R* tree (Beckmann et al.
1990), or further variants (Roussopoulos and Leifker 1985, Kamel and Faloutsos 1994);
when introducing cells of different size and building a corresponding quad-tree (Finkel
and Bentley 1974); when partitioning space and building a corresponding k-d tree
(Bentley 1975a, Friedman et al. 1977); when partitioning space using PMR quadtrees
(Nelson and Samet 1987, Hjaltason and Samet 1995); or when using SS-trees (White and
Jain 1996, Kurniawati et al. 1997). For the corresponding network model, the use of such
a spatial index would improve running time to O(nlogn) at best if the number of
considered neighbours remains constant.

Further algorithms address the k nearest neighbour search problem, i.e., the problem of
finding the k nearest neighbours of a node, thereby being tailored to different require-
ments. For instance, solutions to the search problem have been optimized for high
dimensional space (ERKNN, Xia et al. 2005) and with respect to reverse search (Figueroa
and Paredes 2009). The search problem has also been explored with respect to networks
(Figueroa and Paredes 2009). When performing several searches, preprocessing the data
can improve overall running time (Zhong et al. 2017). Probabilistic approaches can cope
more efficiently with higher dimensionality while still providing logarithmic performance
with respect to the number of nodes (Weiss 1980). The efficiency of probabilistic
approaches can even be increased when preprocessing the data, as has been discussed
at the example of the AESA algorithm (Vidal 1994) and its improved variants LAESA (Micé
et al. 1994), TLAESA (Micé et al. 1996), and an improved TLAESA algorithm (Tokoro et al.
2006). Further variants of the aforenamed strategies exist (Sproull 1991, Roussopoulos
et al. 1995). It has even been shown that solutions of the fixed-radius near neighbour
search problem can be adapted to also solve the k nearest neighbour search problem
(Gao et al. 2015). Many of these algorithms are sublinear in the number of nodes, still
resulting in an overall running time of complexity larger than O(n) when generating
a Mocnik model.

In contrast to the discussed variants of nearest-neighbour models, the adjacent nodes
of a node in the Mocnik model are not within a fixed radius of the latter, and their number
is neither constant nor restricted. Whether two nodes are adjacent in the Mocnik model
rather depends on their relative distances. In this way, the Mocnik model is an example of
a dynamic nearest-neighbour model, in which neither the number of adjacent nodes nor
the radius is fixed in the above sense. This is why existing strategies for efficiently
generating such a network cannot be used. As has been discussed by Mocnik (2015b)
this difference is of importance for modelling geographical systems. In the next section,

8 (&) F.-B.MOCNIK

we discuss an improved algorithm for generating the Mocnik model, which makes use of
a spatial index and thus exploits the notion of locality. The algorithm has a complexity of
O(n), which is comparable to highly optimized solutions for generating nearest-
neighbour models related to the fixed-radius near neighbour search problem.

3. Algorithms for generating the Mocnik model

This section discusses two algorithms to generate an instance of the Mocnik model:
a naive one in the first subsection, and an improved, much more efficient version in
subsequent sections. The improved efficiency of the latter is achieved by partitioning
space into cells and using these cells as a spatial index, as is a common approach (Finkel
and Bentley 1974, Mattson and Rice 1999). By choosing a suitable cell size, the overall
average-case complexity of the algorithm can thus be reduced to O(n). Both the naive
and the improved algorithm are part of NetworKit (Staudt et al. 2016), an open-source
toolkit for large-scale network analysis.! Further improvements concerning running time
can be achieved by minor changes, among others, by using global variables instead of
local ones, by changing the order of conditions, etc. These improvements do, however,
not change the complexity of the algorithms and strongly depend on the programming
language, the compiler, and the hardware being used, which is why a discussion of these
improvements is not included in this article. The algorithms in NetworKit have been
further optimized.

In subsequent subsections, the naive algorithm (Algorithm 1) and the improved
algorithm (Algorithm 2) are provided. These algorithms make use of algorithms provided
in the appendix - an algorithm to place the nodes in the unit ball (Algorithm A1, Appendix
A), algorithms for indexing the nodes in a spatial grid (Algorithm B1 and B2, Appendix B),
and algorithms for finding neighbouring cells in the spatial grid (Algorithm C1 and C2,
Appendix C). An overview of the various time complexities of these algorithms is provided
in Table 1. As the complexity of the improved algorithm strongly depends on the random
distribution of the nodes, practical running times can differ. We thus focus on the average-
case complexity (Levin 1986) of the algorithms.

Table 1. Average-case time complexity of the algorithms discussed in this article. Algorithm 1
is the naive and Algorithm 2 the improved algorithm for generating a Mocnik model. As Algorithms
A1-C2 are of supplementary nature (they are used by Algorithms 1 and 2) they are discussed in the
appendix. The complexity refers to the dimension d, the number of nodes n, the parameter p of the
Mocnik model, and, in case of Algorithms C1 and C2, to the radius r used in the algorithm. In
Algorithm 2, the typical radius 7 is a constant.

Algorithm Complexity Complexity (d and p const.)
Algorithm 1 O(d-n?+d- (2/vm)* - r(d/2+1)-n) o(n?)

Algorithm 2 o(d- (2/vm)* -r(d/2+1)-n+d-p?- (2)?-n) 0(n)

Algorithm A1 o(d- (2/vm)!-rd/2+1)-n) 0o(n)

Algorithm Bla o(d) o(1)

Algorithm B1b o(d) o(1)

Algorithm B2 0(d) o(1)

Algorithm C1 o(d - (2 o(r)

Algorithm C2 0(d? - (2r)™") o(rf")

JOURNAL OF SPATIAL SCIENCE (&) 9

ALGORITHM 1: Generate an instance of the Mocnik model (naive algorithm)

Data: dimension d, number of nodes n, parameter p > 1
Result: instance of the Mocnik model

func MocnikModelNaive(d, n, p):
nodes = generateNodes(d, n)
edges =[]
fori=0ton—1do
dm = -1
forj=0ton—1do
if i # jthen
dm’ = dist(nodes;, nodes;)
if dm' < dm or dm = —1 then
| dm=dm’
forj=0ton—1do
if i # jand dist(nodes;, nodes;) < p - dm then
| edges.push((i,j))
return (nodes, edges)

3.1. The naive algorithm

An algorithm for generating a Mocnik model obviously has to incorporate the
following parts: first, the generation of the nodes including their coordinates; sec-
ondly, the determination of the distance to the nearest node for each of the nodes;
and thirdly, the generation of the edges. An algorithm for generating nodes ran-
domly distributed in a unit ball with uniform distribution is provided as Algorithm A1
(Appendix A).

After the generation of the nodes, the naive algorithm of the Mocnik model
(Algorithm 1) successively considers each node. For each such node, the nearest neigh-
bour is determined. Then, the distances to all other nodes are computed. In case that
Equation 1 is satisfied, a corresponding edge is introduced. While this approach is
straightforward, it scales badly. Both parts, the determination of the nearest neighbour
and the checking whether Equation 1 is satisfied, use two nested loops for finding all pairs
of nodes. For each such pair of nodes, the distance is determined. As the computation of
the distance is of complexity O(d), the overall complexity of these two steps is O(d - n?).
For a fixed dimension, the naive Algorithm 1 is thus of quadratic complexity (Table 1).

3.2. Indexing by a spatial grid

In order to improve the naive algorithm and achieve much lower complexity with
respect to the running time, the nodes will be indexed in a spatial grid. This allows to
access nodes in the same vicinity efficiently and, ultimately, to generate a Mocnik model
in linear average-case running time. In this section, we provide an overview of the
algorithms used for the indexing (Table 2). The algorithms themselves are annexed in
the appendix.

10 (&) F.-B.MOCNIK

Table 2. Algorithms related to the index and the spatial grid. The algorithms refer to the
dimension d of the space as well as to the number of grid cells per dimension p.

Algorithm Symbol Output
Algorithm Bla tolD(c, i) ID 1 of the grid cell with integer coordinates ¢
Algorithm B1b fromID(1,d,) integer coordinates ¢ of the grid cell with ID 1

Algorithm B2 determineGridCell(v, i) ID of the grid cell containing the pair of coordinates v

Algorithm C1 volumeOfCube(s,r,d,) IDs of the grid cells forming the hypercube centred at 1 and with a radius
of [r]

Algorithm C2 surfaceOfCube(s,r,d,) IDs of the grid cells forming the surface of the hypercube centred at 1 and
with a radius of r

The nodes generated by Algorithm A1 (Appendix A) are contained in the unit ball and
thus also in the cube of edge length 2. By grouping the nodes into spatial neighbour-
hoods, they can easily be retrieved when searching for neighbouring nodes. For this
purpose, each edge of the cube is subdivided into u parts, thereby creating u? grid cells
with an edge length of 2/u (Figure 2). These grid cells function as the spatial neighbour-
hoods of our spatial index. Each node is thereby assigned to the cell it is contained in.
When querying for the nodes contained in some neighbourhood, only the nodes con-
tained in the corresponding grid cells need to be considered. All other grid cells and their
corresponding nodes can be ignored.

The cells of the spatial grid are identified by integer coordinates. Each of the cells is
thereby referred to by a d-tuple of integer values, ranging from 0 to y — 1 when being
in d-dimensional space. While such integer coordinates are a natural choice, they can
in most programming languages not be used as an index of a vector. Such a vector is,
however, needed to store the nodes grouped by the grid cells. The function tolD
(Algorithm B1a, Appendix B) provides a mapping from the integer coordinates of
a grid cell to an integer number, acting as an integer identifier (ID). The inverse
function fromID (Algorithm B1b, Appendix B) accordingly provides for an ID, i.e., an
integer number, the corresponding integer coordinates (Figure 3). Finally, the function
determineGridCell (Algorithm B2, Appendix B) determines for a given pair of coordi-
nates of a node the ID of the corresponding grid cell, as is needed for indexing the
node.

Figure 2. Spatial grid for indexing nodes. The grid consists of u? cells, where d is the dimension and
u an integer. Each cell is of edge length 2/p.

JOURNAL OF SPATIAL SCIENCE 11

(0,4) | (1,4) | (2,4) | (3,4) | (4,4) 4 9 14 | 19 | 24
(0,3) | (1,3) | (2,3) | (3,3) | (4,3) 3 8 13 | 18 | 23
tolD
(0,2) | (1,2) | (22) | 3,2) | (4.2) | ¢ = 2 | 7 |12 7| 2
fromID
0,1) [(1,1) [(2,1)] (3,1) | (4,1) 1 6 1 16 21
(0,0) | (1,0) | (2,0) | (3,0) | (4,0) 0 5 10 | 15 | 20

Figure 3. Identifiers (IDs) for the spatial grid. The function tolD translates from integer coordinates
to IDs, while the function fromlD translates into the opposite direction.

The improved algorithm utilizes the spatial grid introduced above for efficiently
finding neighbouring nodes. Assume that the spatial grid has u? cells and is con-
tained in d-dimensional space. Further assume that we search nodes neighbouring
a given node, which is contained in a grid cell 1. Then, these neighbouring nodes are
contained in the cells adjacent to grid cell 1 if they are within a distance of 2/u -
each cell has an edge length of 2/u. The adjacent grid cells, together with the grid
cell 1, form a hypercube of radius 1 within the spatial grid. When nodes within
a larger distance shall be found, hypercubes of larger radii need to be considered.
The function volumeOfCube (Algorithm C1, Appendix C) computes for a given
centre node / and a given radius r the grid cells contained in the corresponding
hypercube. In addition, the function surfaceOfCube (Algorithm C2, Appendix Q)
computes the grid cells at distance r to a given centre node 4, i.e., the grid cells of
the surface of the hypercube (Figure 4).

r=0 r=1 r=2 r=3 r=4
(a) Volumes

r=0 r=1 r=2 r=3 r=4
(b) Surfaces

Figure 4. Volumes and surfaces in the spatial grid. (a) Volumes in the spatial grid, marked in blue,
form hypercubes of adjacent cells. They are determined by their centre cell, here marked by a cross,
and their radius. The volume at radius r is contained in the volume of radius r + 1. (b) The surface at
radius r is the volume at radius r with the volume at radius r — 1 removed.

12 (&) F-B.MOCNIK

ALGORITHM 2: Generate an instance of the Mocnik model (improved algorithm)

Data: dimension d, number of nodes n, parameter p > 1
Result: instance of the Mocnik model

func MocnikModel(d, n, p):

u=[1/p-(n/2)""
nodes = generateNodes(d, n)

grid =[]
for/=0toud—1do
| grid, =[]

fori=0ton—1do

| griddetermineGridCeII(nodes,,y) 'pUSh(i)
edges = []
for/ = Otoud— 1do
if grid, = []then continue
distMin =]
forvingrid, do

| distMin, = -1
nodesFound = False
r=-1
while not nodesFound or r/u < max(distMin) do
r++
for K in surfaceOfCube(/, r, d, u) do
for vin grid, do
dm = distMin,
for V' in grid, do

if v # v then
dm' = dist(nodes,, nodes,,)
if dm' < dmordm = —1 then
nodesFound = True
‘ dm =dm'
distMin,, = dm
forvingrid, do
r' = p - distMin, - u
for k in volumeOfCube(/, ', d, u) do
for V' in grid, do

if v # v' and dist(nodes,, nodes,) < p - distMin, then

| edges.push((v, V')
return (nodes, edges)

3.3. The improved algorithm

Having established methods to index nodes by a spatial grid and to determine
neighbourhoods in the grid, we can improve the algorithm for generating
a Mocnik model. The use of the spatial grid discussed in the previous section
makes the algorithm much more efficient in comparison to the naive algorithm,
because it renders possible to exploit the locality of the resulting network.

JOURNAL OF SPATIAL SCIENCE (&) 13

Thereby, the algorithm only compares nodes that are near each other in space and
avoids unnecessary computations.

The improved algorithm for generating a Mocnik model, Algorithm 2, generates the
nodes, including their coordinates, in the same way as the naive algorithm does. For
doing so, it again uses Algorithm A1 (Appendix A). In a second step, the improved
algorithm assigns the nodes to a spatial grid, which acts as an index in the way
described above. In the third step, the required distances between nodes are finally
determined to then add corresponding edges. For doing so, the algorithm iterates
through the grid cells and their corresponding nodes. For each grid cell 4, it considers
the distances to all nodes of the grid cell itself (r = 0), to the nodes of adjacent grid cells
(r = 1), and the nodes in further grid cells (r = 2, etc.), until a nearest node is found for
each node of the original grid cell (Algorithm C2, Appendix C). These minimum dis-
tances are then used to find all edges starting at a node of the considered grid cell,
which requires to examine all nodes in the grid cells of the corresponding hypercube
(Algorithm C1, Appendix C).

The size u of the spatial grid has an impact on the running time. Ideally, we try to
achieve O(n) running time by choosing a suitable y, which means to keep constant the
number of grid cells that is to be considered in each iteration step - the determination of
the nearest neighbour for each node and the addition of edges. The number of nodes per
cell should thus be independent of the overall number of nodes n. The d-dimensional
spatial grid with a side length of u consists of u“ cells. Each grid cell contains thus n/u¢
nodes on average. If this number is to be kept constant at value ¢, the side length y equals

(n/c)”d. This choice ensures that the average number of grid cells to consider when
finding the nearest neighbouring nodes remains constant, independent of the overall
number of nodes.

The parameter p influences the density of the network. For larger p, the network has
more edges. While the minimal distances are independent of p — the same number of
nodes is contained in the same amount of space - the average number of edges starting
at each node converges to p? for n — oo and is thus practically independent of the
overall number of nodes contained in the network, as has been shown by Mocnik and
Frank (2015) and Mocnik (2015b). Accordingly, the number of grid cells to be considered
when adding edges would grow for increasing p. To keep this number constant,
however, the number of nodes contained in each grid cell needs to be proportional

to p? on average, and u equals accordingly 1/p - (n/c)"/9. This, in turn, means that for
growing p the grid becomes more coarse, which practically increases the running time
slightly. Despite the fact that the choice of ¢ > 1 does not impact the complexity, the
choice has a practical impact on the running time. A value of ¢ =2 seems to be
a reasonable choice.

The improved algorithm needs to generate the coordinates for the nodes, which is of
complexity O(d - (2/+/m)? -T(d/2+ 1) - n), as is shown in Appendix A. Thereafter, the
algorithm consecutively examines nodes in n/(2p9) grid cells. In each of the grid cells, the
grid cells of a hypercube of some radius r are examined. The determination of the grid

cells of this hypercube is of complexity O(d - (2F)“), as is discussed for Algorithm C1 in

14 (&) F.-B.MOCNIK

Appendix C, yielding O((2F)d) grid cells. By the choice of u and thus the average number
of nodes in a grid cell, the average radius r is kept constant. Further, the algorithm to
determine the edges contains two nested loops that each iterate through the 2p¢ nodes
(on average) of a grid cell. Finally, the distance function is of complexity O(d). When
computing the overall complexity of the improved algorithm, it should be noted that the
computation of the minimal distances is faster than the computation of the edges.
Accordingly, the overall complexity of the improved algorithm is determined by the
complexity of Algorithm A1 (Appendix A), the number of grid cells, the number of grid
cells of the hypercube, the two loops, and the distance function. A short computation
shows that the overall average-case time complexity of Algorithm 2 is given as

o(d- (2/vm?-r(d/2+1)-n+d-p-(27) - n).

For a fixed dimension d and fixed p, the average-case time complexity is thus O(n).

3.4. Hierarchical model

The hierarchical Mocnik model consists of several Mocnik models, which is why it
can be created in a very similar way. Again, the improved algorithm can be used. In
the first step, nodes are created as before. In subsequent steps, the improved
Algorithm 2 is executed for each layer of the hierarchy. Thereby, the generation
of nodes can, of course, be omitted. Instead of new nodes, the first n; nodes are
chosen for the i-th layer and the algorithm can be executed as before. The same
edge can occur in different layers, which creates the need to remove duplicate
edges after running the algorithm.

We have discussed an algorithm to generate instances of the Mocnik model. Both in
the non-hierarchical and the hierarchical variant, the average-case time complexity is
O(n), as has been argued. In the following section, we will evaluate the running time of
the non-hierarchical model empirically. As the hierarchical model consists of several non-
hierarchical models, the running times add up, which is why an empirical evaluation of the
hierarchical model is not necessary.

4. Empirical running time evaluation

The naive algorithm for generating a Mocnik model can be seen as a special case of the
improved algorithm. The improved algorithm makes use of a spatial grid that allows for
exploiting the locality of the network. If the entire grid consists of one grid cell only, the
improved algorithm resembles the naive one. The choice of an optimal number of grid
cells, as is the case in Algorithm 2, makes the algorithm much more efficient in the
average case. If all nodes are, by chance, in the same grid cell, the improved algorithm
will, however, run about as long as the naive one. In this section, we will thus evaluate
running times empirically.

The evaluation of the algorithms has been performed on a MacBook Pro (13-
inch, 2019, 2.8 GHz Intel Core i7 CPU, 16 GB 2133 MHz LPDDR3 memory) running

JOURNAL OF SPATIAL SCIENCE (&) 15

macOS 10.15.2, Python 3.7.5, Clang 1100.0.33.17, and an unmodified version of
NetworKit 6.0. Prior to each test, in which an instance of the Mocnik model is
generated, the library NetworKit was preloaded. Then, all tests were performed five
times in a row, and the shortest running time was selected. The running times are
provided in Table 3.

The comparison of the naive and the improved algorithm does reveal not only
a quantitative difference in running times but also a qualitative one. As becomes
apparent in Figure 5, the improved algorithm is much more efficient than the naive
one. Only for networks with some hundred nodes, running times are of the same
order of magnitude. The improved algorithm is about 5.8 times faster for 10,000
nodes distributed in the unit ball in two-dimensional space, 51.6 times faster for
100,000 nodes, and 50.1 times faster for 1,000,000 nodes. In three-dimensional
space, the improved algorithm is about 2.6 times faster for 10,000 nodes, 23.5
times faster for 100,000 nodes, and 221.1 times faster for 1,000,000 nodes. It can be
seen from Figures 5 and 6 that the running time of the naive algorithm scales
quadratically while the running time of the improved algorithm is near to linear.

In both cases, the naive and the improved algorithm, the computation of
a Mocnik model is slower in higher dimensions. The reason is, however,
a different one for these two algorithms. The running time of the naive algorithm
is, in principle, independent of the dimension and the arrangement of the nodes in
space, because every node is compared to all others. Only the number of edges
and thus the time needed to store the nodes and to evaluate distances increases.
Running times depend thus only very little on the dimension, which is in contrast
to the improved algorithm. The running time of the improved algorithm strongly
depends on the number of grid cells in a hypercube, which, in turn, strongly
increases by dimension. While the naive algorithm is only about 10-20 per cent

Table 3. Running times of the naive and the improved algorithm. The running times refer to the
generation of a Mocnik model with parameter p = 1.6. All times are given in seconds.

d=2 d=3
Improved Improved
Number of nodes Naive Improved parallel Naive Improved parallel
5.0-10° 2161073 5191073 3.02:1073 2.60-1073 1.05-1072 6141073
1.010° 6.58-107 9.57.107 624107 8.90-1073 2.52:1072 1.39-1072
2.5:10° 4111072 2701072 1.54-1072 4471072 6.25-1072 3.59-1072
5.0-10° 1.47-107" 5311072 2.86:1072 172107 1.24107" 7.12:1072
7.510° 3.11-107" 8341072 4231072 3.73107" 1.88.107" 1.08107"
1.0-10* 5.76:107" 1.00-107" 5.82:1072 6.59-107" 2.56:107" 1.44-107"
2.5:10* 3.37-10° 2491077 1.45.107" 3.91-10° 6.53-107" 357107
5.0-10* 1.31-10 502107 2.89-107" 1.47-10" 1.29-10° 7.18107"
7.5-10* 2.83-10" 7.36-107" 439.107" 3.31-10 1.91-10° 1.14-10°
1.010° 5.05-10' 9.79-107" 6.21-107" 6.01-10' 2.56-10° 1.52-10°
2.5:10° 3.46-10? 2.50-10° 1.56-10° 3.99-10? 6.53-10° 3.84-10°
5.0-10° 1.36-10° 5.13-10° 3.21-10° 1.62:10° 1.32:10 7.9410°
7.510° 3.07-10° 7.88-10° 493-10° 3.58-10° 1.98:10" 1.19-10'

1.0-10° 5.26:10° 1.05-10" 6.62-10° 6.19-10° 2.80-10' 1.58-10"

16 (&) F.-B.MOCNIK

60 o—d = 2, naive algorithm
—o—d = 3, naive algorithm
- -0 -d = 2,improved algorithm
50 - -0--d = 3,improved algorithm
1%}
2
S 40
g
£
v
£ 30
[o2}
£
c
=4
2 20
10
0
0 10°

number of nodes

Figure 5. Running times of the naive and the improved algorithm for generating a Mocnik
model (p = 1.6). (compare Table 3)

-o--d=2
I
L’ -o--d=3
25 // o d = 2, parallelized algorithm
P o+ d = 3, parallelized algorithm
5 20 D//
j= ’
[e] e
g .
3 15 ¢
£ -7
E -
£ . <
c e °
g -IO /// . . ””,
/// 0 (,o"/
o (,/’ o
5 e T 0
e o -
-, B - 2]
¥ _o
SO0 PRI
0= .
0 0.2 0.4 0.6 0.8 1 -10
number of nodes

Figure 6. Running times of the improved algorithm for generating a Mocnik model (p = 1.6),
both with and without parallel execution. (compare Table 3)

slower in three-dimensional space compared to a two-dimensional one, the
improved algorithm is about 160 per cent slower (Figure 5 and Table 3).

The improved algorithm can be parallelized for making use of multiple cores. The loop
iterating the grid cells consumes the largest part of the running time of Algorithm 2.
Thereby, the only variable shared with write access is the set of edges. If edges can
concurrently be added to the network, the parallelization of the largest part of the

JOURNAL OF SPATIAL SCIENCE (&) 17

algorithm is straightforward. In the evaluated implementation, edges cannot be added
concurrently. Instead, the edges are first collected in parallel and thereafter consecutively
added to the network. When running on two cores instead of one, the improved algo-
rithm is about 1.6 times as fast in two-dimensional space and 1.8 times in three-
dimensional space (Figure 6 and Table 3).

5. Conclusion

Nearest-neighbour models inherit the notion of locality from the space they are embedded
in. While this is an important feature when modelling spatial structure and spatial informa-
tion, their generation can be time-consuming. The naive algorithm determines the distance
between every pair of nodes, resulting in quadratic running time. By using a spatial grid as
an index for the nodes, the notion of locality can be exploited. In this article, we have
introduced an improved algorithm, which is able to generate a Mocnik model in a very
efficient way. It has been shown that, by choosing a suitable granularity of the spatial grid,
a linear average-case time complexity can be achieved. As a result, it becomes possible to
generate spatial networks with billions of nodes - the generation of a two-dimensional
network with one million nodes takes less than 7 seconds on a laptop.

The Mocnik model and other nearest-neighbour models focus on inheriting properties
of space, as is often needed for modelling spatial phenomena in an appropriate way.
Nearest-neighbour models, however, do not reflect specific properties of real-world
phenomena but rather make sense of space in a prototypical way. This is in contrast to
many real-world examples. Public transport networks usually have a node degree strictly
larger than one, the indegree and the outdegree coincide for most nodes, and the
network has only very few connected components. In a road network, the node degree
is usually limited by five. Communication networks are shaped by geographical space, by
the way cities are organized, by structural elements within companies and organizations,
etc. Time and temporal evolution are other important characteristics of many networks.
Future research might address this issue by adapting nearest-neighbour models such that
they reflect further properties of real-world phenomena. This way, the models will take
further characteristics into consideration, which helps to improve the modelling quality
and improves our understanding of such networks.

Big geospatial data challenges our conceptualizations, our algorithms, and our infra-
structure, because the complexity, size, and heterogeneity of such data far exceed
currently tractable limits. Structural views are suitable means to address such issues
because they allow for abstraction. The effective generation of a Mocnik model at
a large scale renders possible to examine how algorithms perform on prototypical spatial
networks. For instance, an algorithm might perform well on small-world and much worse
on spatial networks, or vice versa. Knowledge about the impact spatial structure has on
networks can lead to insights about how to improve algorithms with respect to average-
case time complexity and thus about how to become more efficient in real-world
scenarios with spatial characteristics. When adapting an algorithm to the spatial structure
of a network or some other data structure, computations can often be restricted to local
neighbourhoods. That is, one can try to use the same approach that has already been
successfully applied to the Mocnik model in this article. Also, additional ways of utilizing

18 (&) F.-B.MOCNIK

the notion of locality are worth to consider. The resulting algorithms might, in turn, be
evaluated by applying them to a Mocnik model, or some other nearest-neighbour model.

Note

1. NetworKit is available at https://networkit.github.io.

Disclosure statement

The author reported no potential conflict of interest.

ORCID

Franz-Benjamin Mocnik (i) http://orcid.org/0000-0002-1759-6336

Data availability statement

The algorithm has been implemented as part of NetworKit (Staudt et al. 2016), an open-source
toolkit for large-scale network analysis. It is available on https://networkit.github.io.

References

Albert, R., Jeong, H., and Barabdsi, A.L., 1999. Diameter of the World-Wide Web. Nature, 401 (6749),
130-131. d0i:10.1038/43601

Aldous, D.J. and Ganesan, K., 2013. True scale-invariant random spatial networks. Proceedings of the
National Academy of Sciences of the United States of America, 110 (22), 8782-8785. doi:10.1073/
pnas.1304329110

Aldous, D.J. and Shun, J., 2010. Connected spatial networks over random points and a route-length
statistic. Statistical Science, 25 (3), 275-288. doi:10.1214/10-STS335

Allen, J.F., 1983. Maintaining knowledge about temporal intervals. Communications of the ACM, 26
(11), 832-843. doi:10.1145/182.358434

Anselin, L., 1995. Local indicators of spatial association — LISA. Geographical Analysis, 27 (2), 93-115.
doi:10.1111/j.1538-4632.1995.tb00338.x

Backstrom, L., et al., 2012. Four degrees of separation. Proceedings of the 4th Annual ACM Web
Science Conference (WebSci), Evanston, IL, 33-42.

Barabasi, A.L., et al., 2002. Evolution of the social network of scientific collaborations. Physica A, 311
(3-4), 590-614. doi:10.1016/50378-4371(02)00736-7

Barabasi, A.L. and Albert, R., 1999. Emergence of scaling in random networks. Science, 286 (5439),
509-512. doi:10.1126/science.286.5439.509

Barabasi, A.L., Albert, R, and Jeon, H. 2000. Scale-free characteristics of random networks: the
topology of the World-Wide Web. Physica A, 281 (1-4), 69-77. doi:10.1016/S0378-4371(00)00018-2

Barabasi, A.L. and Bonabeau, E., 2003. Scale-free networks. Scientific American, 288 (5), 50-59.
doi:10.1038/scientificamerican0503-60

Barnes, T.J., 2004. A paper related to everything but more related to local things. Annals of the
Association of American Geographers, 94 (2), 278-283. doi:10.1111/j.1467-8306.2004.09402004.x

Barthélemy, M. 2011. Spatial networks. Physics Reports, 499 (1-3), 1-101. doi:10.1016/j.
physrep.2010.11.002

Baum, J.A.C,, Shipilov, A.V., and Rowley, T.J., 2003. Where do small worlds come from? Industrial and
Corporate Change, 12 (4), 697-725. doi:10.1093/icc/12.4.697

https://networkit.github.io
https://networkit.github.io
https://doi.org/10.1038/43601
https://doi.org/10.1073/pnas.1304329110
https://doi.org/10.1073/pnas.1304329110
https://doi.org/10.1214/10-STS335
https://doi.org/10.1145/182.358434
https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
https://doi.org/10.1016/S0378-4371(02)00736-7
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1016/S0378-4371(00)00018-2
https://doi.org/10.1038/scientificamerican0503-60
https://doi.org/10.1111/j.1467-8306.2004.09402004.x
https://doi.org/10.1016/j.physrep.2010.11.002
https://doi.org/10.1016/j.physrep.2010.11.002
https://doi.org/10.1093/icc/12.4.697

JOURNAL OF SPATIAL SCIENCE (&) 19

Beckmann, N., et al, 1990. The R*-tree: an efficient and robust access method for points and
rectangles. Proceedings of the 16th ACM International Conference on Management of Data
(SIGMOD), Atlantic City, NJ, 322-331.

Bentley, J.L, 1975a. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18 (9), 509-517. doi:10.1145/361002.361007

Bentley, J.L., 1975b. A survey of techniques for fixed radius near neighbor searching. Stanford Linear
Accelerator Center, Menlo Park, CA: Stanford University. SLAC-186, STAN-CS-75-513.

Bentley, J.L,, Stanat, D.F., and Williams, E.H., Jr., 1977. The complexity of finding fixed-radius near
neighbors. Information Processing Letters, 6 (6), 209-212. doi:10.1016/0020-0190(77)90070-9

Bullmore, E. and Sporns, O., 2009. Complex brain networks: graph theoretical analysis of structural
and functional systems. Nature Reviews Neuroscience, 10 (3), 186-198. doi:10.1038/nrn2575

Burke, J., et al., 2006. Participatory sensing. Proceedings of the 1st Workshop on World-Sensor-Web:
Mobile Device Centric Sensory Networks and Applications (WSW). Boulder, CO.

Cheung, K.L. and Fu, AW.-c., 1998. Enhanced nearest neighbour search on the R-tree. ACM SIGMOD
Record, 27 (3), 16-21. doi:10.1145/290593.290596

Delyser, D. and Sui, D.Z., 2012. Crossing the qualitative-quantitative divide II: inventive approaches
to big data, mobile methods, and rhythmanalysis. Progress in Human Geography, 37 (2), 293-305.
doi:10.1177/0309132512444063

Egenhofer, M.J., 1991. Reasoning about binary topological relations. Proceedings of the 2nd
International Symposium on Advances in Spatial Databases (SSD), Zurich, Switzerland, 143-160.

Figueroa, K. and Paredes, R., 2009. Approximate direct and reverse nearest neighbor queries, and
the k-nearest neighbor graph. Proceedings of the 2nd International Workshop on Similarity Search
and Applications (SISAP), Prague, Czech Republic, 91-98. doi:10.1016/j.antiviral.2009.07.022

Finkel, R.A. and Bentley, J.L., 1974. Quad trees. A data structure for retrieval on composite keys. Acta
Informatica, 4 (1), 1-9. doi:10.1007/BF00288933

Fogliaroni, P., 2013. Qualitative spatial configuration queries. Towards next generation access methods
for GIS. Amsterdam: 10S.

Friedman, J.H., Bentley, J.L., and Finkel, R.A., 1977. An algorithm for finding best matches in logarith-
mic expected time. ACM Transactions on Mathematical Software, 3 (3), 209-226. doi:10.1145/
355744.355745

Gao, J,, et al., 2015. Selective hashing: closing the gap between radius search and k-NN search.
Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Sydney, Australia, 349-358.

Gilbert, E.N., 1959. Random graphs. Annals of Mathematical Statistics, 30 (4), 1141-1144. d0i:10.1214/
aoms/1177706098

Gluckler, J.,, 2007. Economic geography and the evolution of networks. Journal of Economic
Geography, 7 (5), 619-634. doi:10.1093/jeg/lbm023

Goodchild, M.F., 2004. The validity and usefulness of laws in geographic information science and
geography. Annals of the Association of American Geographers, 94 (2), 300-303. doi:10.1111/
j.1467-8306.2004.09402008.x

Goodchild, M.F., 2007. Citizens as sensors: the world of volunteered geography. GeoJournal, 69 (4),
211-221. doi:10.1007/s10708-007-9111-y

Guttman, A., 1984. R-trees: a dynamic index structure for spatial searching. Proceedings of the 10th
ACM International Conference on Management of Data (SIGMOD), Boston, MA, 47-57.

Haggett, P. and Chorley, R.J., 1969. Network analysis in geography. London: Edward Arnold.

Harvey, F.J,, 2013. A new age of discovery: the post-GIS era. Proceedings of the GI_Forum, Salzburg,
Austria, 272-281.

Hecht, B. and Moxley, E., 2009. Terabytes of Tobler: evaluating the first law in a massive, domain-
neutral representation of world knowledge. Proceedings of the 9th International Conference on
spatial information theory (COSIT), Aber Wrac'h, France, 88-105.

Hjaltason, G.R. and Samet, H., 1995. Ranking in spatial databases. Proceedings of the 4th Symposium
on Spatial Databases, Portland, ME, 83-95. doi:10.1177/014860719501900183

https://doi.org/10.1145/361002.361007
https://doi.org/10.1016/0020-0190(77)90070-9
https://doi.org/10.1038/nrn2575
https://doi.org/10.1145/290593.290596
https://doi.org/10.1177/0309132512444063
https://doi.org/10.1016/j.antiviral.2009.07.022
https://doi.org/10.1007/BF00288933
https://doi.org/10.1145/355744.355745
https://doi.org/10.1145/355744.355745
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.1093/jeg/lbm023
https://doi.org/10.1111/j.1467-8306.2004.09402008.x
https://doi.org/10.1111/j.1467-8306.2004.09402008.x
https://doi.org/10.1007/s10708-007-9111-y
https://doi.org/10.1177/014860719501900183

20 (&) F.-B.MOCNIK

Holland, P.W. and Leinhardst, S., 1981. An exponential family of probability distributions for directed
graphs. Journal of the American Statistical Association, 76 (373), 33-50. doi:10.1080/
01621459.1981.10477598

Holme, P. and Saramaki, J., 2012. Temporal networks. Physics Reports, 519 (3), 97-125. doi:10.1016/j.
physrep.2012.03.001

Hunter, D.R,, Goodreau, S.M., and Handcock, M.S., 2008. Goodness of fit of social network models. Journal
of the American Statistical Association, 103 (481), 248-258. doi:10.1198/016214507000000446

Huttenhower, C,, et al., 2007. Nearest neighbor networks: clustering expression data based on gene
neighborhoods. BMC Bioinformatics, 8 (1), 250. doi:10.1186/1471-2105-8-250

Kalapala, V., et al, 2006. Scale invariance in road networks. Physical Review E, 73 (2), 026130.
doi:10.1103/PhysRevE.73.026130

Kamel, I. and Faloutsos, C., 1994. Hilbert R-tree: an improved R-tree using fractals. Proceedings of the
20th International Conference on Very Large Data Bases (VLDB), Santiago de Chile, Chile, 500-509.

Knuth, D.E., 1973. The art of computer programming. Vol. 3. Reading, MA: Addison-Wesley.

Kuratowski, C., 1930. Sur le probléeme des courbes gauches en topologie. Fundamenta
Mathematicae, 15 (1), 271-283. doi:10.4064/fm-15-1-271-283

Kurniawati, R, Jin, J.S., and Shepard, J.A,, 1997. SS* tree: an improved index structure for similarity
searches in a high-dimensional feature space. Proceedings of the SPIE Electronic Imaging
Conference, San José, CA, 110-120.

Levin, L.A., 1986. Average case complete problems. SIAM Journal on Computing, 15 (1), 285-286.
doi:10.1137/0215020

Levinthal, C., 1966. Molecular model-building by computer. Scientific American, 214 (6), 42-52.
doi:10.1038/scientificamerican0666-42

Li, M., Westerholt, R., and Zipf, A, 2018. Do people communicate about their whereabouts?
Investigating the relation between user-generated text messages and Foursquare check-in
places. Geo-spatial Information Science, 21 (3), 159-172. doi:10.1080/10095020.2018.1498669

Louf, R., Roth, C., and Barthélemy, M., 2014. Scaling in transportation networks. PLoS ONE, 9 (7),
€102007. doi:10.1371/journal.pone.0102007

MacLane, S., 1937. A combinatorial condition for planar graphs. Fundamenta Mathematicae, 28 (1),
22-31.

Mattson, W. and Rice, B.M., 1999. Near-neighbor calculations using a modified cell-linked list
method. Computer Physics Communications, 119 (2-3), 135-148. doi:10.1016/50010-4655(98)
00203-3

Micé, M.L,, Oncina, J., and Carrasco, R.C., 1996. A fast branch & bound nearest neighbour classifier in
metric spaces. Pattern Recognition Letters, 17 (7), 731-739. doi:10.1016/0167-8655(96)00032-3

Micé, M.L.,, Oncina, J., and Vidal, E., 1994. A new version of the nearest-neighbour approximating and
eliminating search algorithm (AESA) with linear preprocessing time and memory requirements.
Pattern Recognition Letters, 15 (1), 9-17. doi:10.1016/0167-8655(94)90095-7

Miller, H.J., 2004. Tobler’s first law and spatial analysis. Annals of the Association of American
Geographers, 94 (2), 284-289. doi:10.1111/j.1467-8306.2004.09402005.x

Mocnik, F.-B., 2015a. Modelling spatial information. Proceedings of the 1st Vienna Young Scientists
Symposium (VSS), Vienna, Austria, 46-47.

Mocnik, F.-B., 2015b. A scale-invariant spatial graph model. Thesis (PhD). Vienna University of
Technology.

Mocnik, F.-B.,, 2018a. Dimension as an invariant of street networks. Proceedings of the 7th
International Conference on Complex Networks and Their Applications, Cambridge, UK, 455-457.

Mocnik, F.-B., 2018b. The polynomial volume law of complex networks in the context of local and
global optimization. Scientific Reports, 8, 11274. doi:10.1038/s41598-018-29131-0

Mocnik, F.-B., 2018c. Tradition as a spatiotemporal process - the case of Swedish folk music.
Proceedings of the 21st AGILE Conference on Geographic Information Science. Lund, Sweden.

Mocnik, F.-B. and Frank, A.U., 2015. Modelling spatial structures. Proceedings of the 12th Conference
on Spatial Information Theory (COSIT), Santa Fe, NM, 44-64. http://doi.org/10.1007/978-3-319-
23374-1_3

https://doi.org/10.1080/01621459.1981.10477598
https://doi.org/10.1080/01621459.1981.10477598
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1198/016214507000000446
https://doi.org/10.1186/1471-2105-8-250
https://doi.org/10.1103/PhysRevE.73.026130
https://doi.org/10.4064/fm-15-1-271-283
https://doi.org/10.1137/0215020
https://doi.org/10.1038/scientificamerican0666-42
https://doi.org/10.1080/10095020.2018.1498669
https://doi.org/10.1371/journal.pone.0102007
https://doi.org/10.1016/S0010-4655(98)00203-3
https://doi.org/10.1016/S0010-4655(98)00203-3
https://doi.org/10.1016/0167-8655(96)00032-3
https://doi.org/10.1016/0167-8655(94)90095-7
https://doi.org/10.1111/j.1467-8306.2004.09402005.x
https://doi.org/10.1038/s41598-018-29131-0
http://doi.org/10.1007/978-3-319-23374-1_3
http://doi.org/10.1007/978-3-319-23374-1_3

JOURNAL OF SPATIAL SCIENCE (&) 21

Nelson, R.C. and Samet, H., 1987. A population analysis for hierarchical data structures. Proceedings
of the 13th ACM International Conference on Management of Data (SIGMOD), San Francisco, CA,
270-277.

Newman, M.E.J., 2001. The structure of scientific collaboration networks. Proceedings of the
National Academy of Sciences of the United States of America, 98 (2), 404-409. doi:10.1073/
pnas.98.2.404

Onnela, J.P, et al, 2007. Analysis of a large-scale weighted network of one-to-one human
communication. New Journal of Physics, 9 (6), 179. doi:10.1088/1367-2630/9/6/179

Phillips, J.D., 2004. Doing justice to the law. Annals of the Association of American Geographers, 94 (2),
290-293. doi:10.1111/j.1467-8306.2004.09402006.x

Roussopoulos, N., Kelley, S., and Vincent, F., 1995. Nearest neigbor queries. Proceedings of the 21st
ACM International Conference on Management of Data (SIGMOD), San José, CA, 71-79.
doi:10.1016/0306-4522(94)00460-m

Roussopoulos, N. and Leifker, D., 1985. Direct spatial search on pictorial databases using packed
R-trees. Proceedings of the 11st ACM International Conference on Management of Data (SIGMOD),
Austin, TX, 17-31.

Sala, A, et al, 2010. Measurement-calibrated graph models for social network experiments.
Proceedings of the 19th International World Wide Web Conference (WWW), Raleigh, NC, 861-870.

Smith, J.M., 2004. Unlawful relations and verbal inflation. Annals of the Association of American
Geographers, 94 (2), 294-299. doi:10.1111/j.1467-8306.2004.09402007 .x

Sporns, O., Tonoi, G, and Kotter, R., 2005. The human connectome: a structural description of the
human brain. PLoS Computational Biology, 1 (4), e42. doi:10.1371/journal.pcbi.0010042

Sproull, R.F., 1991. Refinements to nearest-neighbor searching in k-dimensional trees. Algorithmica,
6 (1-6), 579-589. doi:10.1007/BF01759061

Staudt, C., Sazonovs, A., and Meyerhenke, H., 2016. NetworKit: a tool suite for large-scale complex
network analysis. Network Science, 4 (4), 508-530. doi:10.1017/nws.2016.20

Stefanidis, A., Crooks, A., and Radzikowski, J., 2013. Harvesting ambient geospatial information from
social media feeds. GeoJournal, 78 (2), 319-338. doi:10.1007/s10708-011-9438-2

Sui, D.Z., 2004. Tobler’s first law of geography: a big idea for a small world? Annals of the Association
of American Geographers, 94 (2), 269-277. doi:10.1111/j.1467-8306.2004.09402003.x

Tobler, W.R., 1970. A computer movie simulating urban growth in the Detroit region. Economic
Geography, 46, 234-240. doi:10.2307/143141

Tobler, W.R., 1999. Linear pycnophylactic reallocation comment on a paper by D. Martin. International
Journal of Geographical Information Science, 13 (1), 85-90. doi:10.1080/136588199241472

Tobler, W.R., 2004. On the first law of geography: a reply. Annals of the Association of American
Geographers, 94 (2), 304-310. doi:10.1111/j.1467-8306.2004.09402009.x

Tokoro, K., Yamaguchi, K., and Masuda, S., 2006. Improvements of TLAESA nearest neighbour search
algorithm and extension to approximation search. Proceedings of the 29th Australasian Computer
Science Conference (ACSC), Hobart, Australia, 77-83.

van den Heuvel, M.P, et al, 2012. High-cost, high-capacity backbone for global brain
communication. Proceedings of the National Academy of Sciences of the United States of
America, 109 (28), 11372-11377. doi:10.1073/pnas.1203593109

Vidal, E., 1994. New formulation and improvements of the nearest-neighbour approximating and
elimi- nating search algorithm (AESA). Pattern Recognition Letters, 15 (1), 1-7. doi:10.1016/0167-
8655(94)90094-9

Wagner, K., 1937. Uber eine Eigenschaft der ebenen Komplexe. Mathematische Annalen, 114 (1),
570-590. doi:10.1007/BF01594196

Watts, D.J. and Strogatz, S.H., 1998. Collective dynamics of small-world networks. Nature, 393 (6684),
440-442. doi:10.1038/30918

Waxman, B.M. 1988. Routing of multipoint connections. IEEE Journal on Selected Areas in
Communications, 6 (9), 1617-1622. doi:10.1109/49.12889

Weiss, S.F., 1980. A probabilistic algorithm for nearest neighbour searching. Proceedings of the 3rd
Annual ACM Conference on Research and Development in Information Retrieval, Cambridge, UK,
325-333.

https://doi.org/10.1073/pnas.98.2.404
https://doi.org/10.1073/pnas.98.2.404
https://doi.org/10.1088/1367-2630/9/6/179
https://doi.org/10.1111/j.1467-8306.2004.09402006.x
https://doi.org/10.1016/0306-4522(94)00460-m
https://doi.org/10.1111/j.1467-8306.2004.09402007.x
https://doi.org/10.1371/journal.pcbi.0010042
https://doi.org/10.1007/BF01759061
https://doi.org/10.1017/nws.2016.20
https://doi.org/10.1007/s10708-011-9438-2
https://doi.org/10.1111/j.1467-8306.2004.09402003.x
https://doi.org/10.2307/143141
https://doi.org/10.1080/136588199241472
https://doi.org/10.1111/j.1467-8306.2004.09402009.x
https://doi.org/10.1073/pnas.1203593109
https://doi.org/10.1016/0167-8655(94)90094-9
https://doi.org/10.1016/0167-8655(94)90094-9
https://doi.org/10.1007/BF01594196
https://doi.org/10.1038/30918
https://doi.org/10.1109/49.12889

22 (& F.-B.MOCNIK

Westerholt, R, et al., 2016. Abundant topological outliers in social media data and their effect on
spatial analysis. PLOS ONE, 11 (9), e0162360. doi:10.1371/journal.pone.0162360

Westlund, H., 2013. A brief history of time, space, and growth: Waldow Tobler’s first law of
geography revisited. The Annals of Regional Science, 51 (3), 917-924. doi:10.1007/s00168-013-
0571-3

White, D.A. and Jain, R, 1996. Similarity indexing with the SS-tree. Proceedings of the 12th
International Conference on Data Engineering (ICDE), New Orleans, LA, 516-523.

Whitney, H., 1931. Non-separable and planar graphs. Proceedings of the National Academy of Sciences
of the United States of America, 17 (2), 125-127. d0i:10.1073/pnas.17.2.125

Xia, C., Hsu, W., and Lee, M.L., 2005. ERKNN: efficient reverse k-nearest neighbors retrieval with local
kNN-distance estimation. Proceedings of the 14th ACM International Conference on Information
and Knowledge Management (CIKM), Bremen, Germany, 533-540.

Yook, S.H., Jeong, H., and Barabasi, A.L., 2002. Modeling the internet’s large-scale topology.
Proceedings of the National Academy of Sciences of the United States of America, 99 (21),
13382-13386. doi:10.1073/pnas.172501399

Zhong, X.F., et al, 2017. An improved k-NN classification with dynamic k. Proceedings of the 9th
International Conference on Machine Learning and Computing (ICMLC). Singapore, 211-216.

Appendix to the article ‘An improved algorithm for dynamic nearest-neighbour
models’ by Franz-Benjamin Mocnik

Appendix A. Generating randomly distributed nodes in the unit ball

Algorithm A1 generates coordinates for the nodes of a Mocnik model. In a first step, coordinates
randomly placed within the hypercube of side length 2 and centred at the origin are created. In a
second step, it is checked whether the coordinates are within the unit ball. If they are, the
coordinates are kept; otherwise they are discarded. The algorithm repeats until n nodes are found.

Algorithm A1 ideally computes n times the coordinates of a d-dimensional vector, i.e., it ideally
would be of complexity O(d - n). However, some coordinates need to be discarded, which is why the
algorithm has to compute more than n coordinates. The volume of the d-dimensional unit ball is
n%2 /I (d/2 4 1), whereas the volume of the hypercube of side length 2 is 2¢. On average, only each
(2/v/m)? - [(d/2 + 1)-th vector will thus be contained in the unit ball. The overall complexity of

Algorithm A1 is thus O(d - (2/+/m)® - [(d/2 + 1) - n) on average. For a fixed dimension, the com-
plexity is thus linear.

Appendix B. Indexing the nodes in a spatial grid

The improved algorithm stores the nodes in a spatial grid to efficiently find nodes in the same
vicinity. In this section, we introduce three straightforward algorithms to store and retrieve identi-
fiers (IDs) in such a spatial grid.

Algorithms B1a and B1b convert between integer coordinates of a grid cell and their corresponding
IDs. Algorithm B1a converts integer coordinates of a grid cell, i.e,, a d-dimensional vector of integers,
to an ID, i.e., only one integer value. Such an ID can be used to efficiently represent grid cells in the
memory. In particular, the IDs of the grid cells can be used as an index of a vector. By storing the
corresponding collection of nodes in each component of the vector, the nodes can easily be indexed
by their enclosing grid cells. Algorithm B1b converts back an ID of a node to integer coordinates. Both
Algorithms B1a and B1b have complexity O(d), because they execute the same computations for
every dimension. For a fixed dimension, these algorithms are thus of complexity O(1).

Algorithm B2 determines, for given d-dimensional coordinates of a node, the grid cell of the spatial
grid that contains the node. By and large, the algorithm only rounds the coordinates, resulting in the
integer coordinates of the grid cell. These integer coordinates are then converted to the ID of
corresponding the cell by utilizing Algorithm B1a. As Algorithm B2 considers each dimension and

https://doi.org/10.1371/journal.pone.0162360
https://doi.org/10.1007/s00168-013-0571-3
https://doi.org/10.1007/s00168-013-0571-3
https://doi.org/10.1073/pnas.17.2.125
https://doi.org/10.1073/pnas.172501399

JOURNAL OF SPATIAL SCIENCE (&) 23

ALGORITHM A1: Generate coordinates for the nodes
Data: dimension d, number of nodes n
Result: coordinates of nodes in the unit ball

func generateNodes(d, n):
nodes = [|
while nodes.size() < ndo
v=[]
forj=0tod - 1do
| v.push(random(—1, 1))
if norm(v) < 1 then
| nodes.push(v)
return nodes

ALGORITHM B1: Conversion between the integer coordinates of a grid cell and its integer iden-
tifier (ID)

(a) Data: integer coordinates c of a grid cell, (b) Data: 1D of a grid cell, dimension d,

number of grid cells per dimension u number of grid cells per dimension
Result: ID/of the grid cell Result: integer coordinates ¢ of the grid cell
func tolD(c, u): func fromID(/, d, u):
/=0 c= []
forj = c.size() — 1to O do fOI‘j’=0t0d—1do
| 1=1u+g / =1modu
return/ c.push(/')
1=(1=1)/u
return

ALGORITHM B2: Determine the grid cell containing a given node

Data: coordinates v of a node, number of grid cells per dimension u
Result: ID of the grid cell containing the node

func determineGridCell(v, u):

c=[]

fori = Oto v.size() — 1 do

| cpush(min([(v; +1)/2-), u-1))
return tolD(c, 1) // Algorithm B1a, Appendix B

applies Algorithm B1a thereafter, it is of complexity O(d). For a fixed dimension, the algorithm is thus of
complexity O(1).

Appendix C. Volume and surface of a hypercube inside the spatial grid

The spatial grid discussed in the previous section can serve as a spatial index for nodes. In this
section, we provide algorithms to determine neighbourhoods in the spatial grid, i.e., grid cells
adjacent to a given one. These algorithms render possible to query, for a given node, all neighbour-
ing nodes within a certain distance in a very efficient way.

24 (&) F.-B.MOCNIK

ALGORITHM C1: Determine the IDs of the grid cells in a hypercube

Data: D/ of a grid cell at the centre of the hypercube, radius r of the hypercube, dimension d,
number of grid cells per dimension u
Result: IDs of the grid cells forming the hypercube centred at sand with a radius of [1]

func volumeOfCube(/, r, d, U):

s=[[1]
¢ = fromID(s, d, 1) // Algorithm B1b, Appendix B
fori=0tod - 1do

w=[]

forj = max(c; — [r],0) to min(c; + [r],u — 1) do

fors'ins do
| w.push(s’+[j])

s=w

return s.map(tolD(—, u)) // Algorithm B1a, Appendix B

ALGORITHM C2: Determine the IDs of the grid cells of the surface of a hypercube

Data: D/ of a grid cell at the centre of the hypercube, radius r of the hypercube, dimension d,
number of grid cells per dimension u
Result: IDs of the grid cells forming the surface of the hypercube centred at 7and with a radius of r

func surfaceOfCube(/, r, d, u):
if r = 0 then
| return[/]

else
s=[]
¢ = fromID(s, d, u) // Algorithm B1b, Appendix B
fori=0tod—1do
s=[[1]
forj=0toi—1do
w=[]
for k = max(c;—r+1,0)tomin(¢;+r—1,u—1)do
fors'ins do
| w.push(s' + [K])
s=w
w=[]
fors'ins do
if ¢; — r 2 O then
| w.push(s' + [¢; — r])
if ¢; + r < y then
| w.push(s' + [¢; + r])

s=w
forj=i+1tod—-1do

w=[]

for k = max(c; —r,0)tomin(c; + r,u — 1) do

fors'ins do
| w.push(s' + [K])

S=w

S=5+5§

return s.map(tolD(—, u)).unique() // Algorithm B1a, Appendix B

JOURNAL OF SPATIAL SCIENCE (&) 25

Given a centre grid cell, Algorithm C1 determines all grid cells that are at most r steps away in
each direction, i.e., a hypercube of grid cells. In a first step, the ID of the provided centre grid cell is
converted to a d-dimensional vector of integers, which represents its location inside the grid.
Subsequently, the algorithm determines the grid cells that form the hypercube. For this purpose,
a collection is initialized, which ultimately contains the integer coordinates of these grid cells.
Starting with an empty vector in the collection, vector components are successively added to the
vectors of this collection, one for each dimension of the space. Thereby, each vector of the collection
is in each step replaced by several extended vectors, which have one more component. This
component ranges from -r to r (relatively to the centre node), resulting in 2r + 1 vectors. In
subsequent steps, additional components are added, thereby multiplying the number of vectors
contained in the collection - each combination of values needs to be considered. Finally, the
resulting integer coordinates are converted into IDs.

Algorithm C2 is very similar to Algorithm C1 but returns only the ‘outer’ grid cells of the
hypercube. This is in so far useful as an algorithm looking for nodes in the vicinity of a given centre
node can increase the search radius successively until a sufficient number of nodes has been found.
More and more grid cells can be considered without the need to consider a grid cell several times, as
would be the case when using hypercubes of increasing edge length. The algorithm to find the
‘outer’ grid cells first checks whether r vanishes. In this case, the grid cell itself is returned. Otherwise,
the integer coordinates of the grid cells are generated. For every component, all values between —r
and r (relatively to the corresponding component of the centre node) are combined, as is the case in
Algorithm C1. One dimension is though omitted in this iteration, and only the two extreme values -r
and r rather than the full range are inserted. When generating the grid cell vectors this way, some
vectors occur several times. To minimize duplicate values, the first loop does not need to consider
the extreme values because they are already considered when i vanishes. In addition, remaining
duplicates are removed in the last step.

Algorithm C1 is of complexity O(d-(2r)%), because each vector consists of d components and
the number of grid cells contained in the hypercube is (2r + 1)°. The surface area of the
hypercube is 2d - (2r + 1)9°". Accordingly, Algorithm C2 has complexity O(d* - (2r)*""). For a
fixed dimension, the algorithms have complexity O(r%) respective O(r%").

Appendix D. Empirical running time evaluation, Part Il

The running times of the naive and the improved algorithms depend on the number of nodes, the
dimension of the embedding space, and the parameter p. The influence of the number of nodes on
running times has empirically been examined in the article (Table 3 and Figures 5 and 6). In this
section, we provide corresponding tables and figures for the influence of the embedding space
(Table D1 and Figure D1) and for the parameter p (Table D2 and Figure D2).

The way running times depend on the dimension of the embedding space and the parameter p is,
by and large, as expected. The larger the dimension and the larger the parameter p, the less efficient
is the improved algorithm compared to the naive one. This is because the network becomes more
and more complete in this case, and the advantage of an index becomes less prominent. However, it
needs to be noted that such cases of larger dimension and larger parameter p are not very common,
as they lead to very dense and ultimately to almost complete networks. For a larger number of
nodes, this effect would be less prominent.

The interpretation of the displayed running times at larger dimensions and larger parameter p is
not straight forward because the resulting network is near to complete. There are different
processes involved that sum up to the overall running time experienced in the implementation,
in particular, the computation itself, memory management, communication between the C backend
and the Python frontend, building the network representation in Python, outputting the network
representation, etc. These influences on the running times superimpose, which is why they do not
monotonously depend on the dimension, and why they show discontinuities with respect to the
parameter p.

26 (&) F.-B.MOCNIK

Table D1. Running times of the naive and the improved algorithm, depending on the dimen-
sion of the embedding space. The running times refer the generation of a Mocnik model with 10,000
nodes and parameter p = 1.6. All times are given in seconds.

Dimension Naive Improved Improved parallel
1 5.13-107" 4151072 2.55-1072
2 5.28-107" 9.47.1072 5.56:1072
3 6.13-107" 2.50-107" 1.37.107"
4 7.04107" 6.70-107" 3.62:107"
5 861107 1.76-10° 9.90-107"
6 1.08-10° 3.50-10° 1.87-10°
7 1.30-10° 7.64-10° 3.89-10°
8 1.55-10° 4.43.10° 2.57-10°
9 2.30-10° 7.80-10° 47110°

10 3.9810° 1.48-10° 8.77-10°

—6— naive algorithm
14 - -O- - improved algorithm
! o parallelized algorithm

running time in seconds

1 2 3 4 5 6 7 8 9 10

dimension
Figure D1. Running times of the naive and the improved algorithm, depending on the
dimension of the embedding space. The running times refer the generation of a Mocnik model
with 10,000 nodes and parameter p = 1.6. (compare Table D1)

JOURNAL OF SPATIAL SCIENCE (&) 27

Table D2. Running times of the naive and the improved algorithm, depending on the para-
meter p. The running times refer the generation of a Mocnik model with 10,000 nodes. All times are
given in seconds.

d=2 d=3

Improved Improved

P Naive Improved parallel Naive Improved parallel
1.1 5471077 1.14107" 5.92:1072 6.15-107" 261107 1.35:107"
13 539.107" 9.88-1072 5411072 626107 2.49.107" 1.39-107"
15 5.35.107" 9.95.1072 5.54.1072 6.45-107" 244107 1.39-107"
17 5.78-107" 9.62:1072 5.91-1072 6.73-107" 2.60-107" 1.43-107"
19 541107 1.05-107" 5.90-107 6.49-107" 264107 1.50-107"
2.1 5.60-107" 9.95.1072 5871072 6.46:107" 2.76:107" 1.52:107"
23 569107 1.01.107" 5921072 6.95107" 2.87-107" 1.62:107"
2.5 564107 1.03-107" 6141072 6.69-107" 3.19:107" 1.77-107"
2.7 552107 1.03-107" 6.12:1072 6.57-107" 3.15:107" 1.79-107"
2.9 5.47-107" 1.09-107" 6.36:1072 6.49-107" 3.65:107" 2.04107"
3.1 549107 1.09-107" 6.75-1072 6.46-107" 3.69-107" 2.08:107"
33 5.55-107" 1.12:107" 6.76-1072 6.44-107" 3.70-107 2.12:107"
35 5.59:107" 1.14107" 6.83-1072 6.78-107" 451107 2.59-107"
3.7 562107 1.16:107" 7.25:1072 6.79-107" 450107 2.58-107"
3.9 565107 1.19107" 7.36:1072 6.69-107" 455107 264107
4.1 563107 1.23107" 7.50-1072 6.65:107" 465107 269107
43 5641077 1.321107" 7.851072 6.64-107" 6.30-107" 351107
45 552:107" 1.35.107" 8.09-1072 6.65-107" 641107 3.58-107"
47 5.60-107" 135107 8.26-1072 6.83-107" 6.38:107" 3.66:107"
49 5.75-107" 1.39:107" 8741072 6.97-107" 6.58-107" 3.63-107"
5.1 5.55-107" 148107 9.10-1072 714107 6.57-107" 3.67-107"
53 5.90-107" 148107 9.02:1072 6.86:107" 6.73-107" 3.76:107"
55 588107 1.54.107" 9.49-1072 713107 6.66:107" 3.80-107"
57 5781077 1.55.107" 9521072 7.36:107" 951107 581107
59 5741077 1.66:107" 1.01-107" 7.16:107" 9.50-107" 577107
6.1 6.07-107" 1.66-107" 1.03-107" 7.38-107" 9.86:107" 5.85.107"
6.3 5.69-107 1.68-107" 1.03-107" 7.67-107" 9.75-107" 6.06:107"
6.5 5.86-107" 179107 1.09-107" 7.53-107" 9.78-107" 6.12:107"
6.7 5.84.107" 1.87-107" 1.11:107" 763107 9.84.107" 6.23-107"
6.9 581107 1.79107" 1.13-107" 7.69-107" 1.01-10° 6.35107"
7.1 5.80-107" 1.95107" 1.19-107" 7.93-107" 1.00-10° 6.31:107"
73 5.80-107" 2.03-107" 1.21:107" 7.88:107" 1.03-10° 6.55-107"
7.5 6.26107" 1.96:107" 1.20-107" 7.93-107" 1.04-10° 664107
7.7 5.95.107" 2.02:107" 1.22:107" 7.93-107" 1.06-10° 6.74107"
7.9 5.90-107" 2.17-107" 1.32107" 8.11:107" 1.08-10° 6.73-107"
8.1 5.89-107" 2.28-107" 1.32107" 8.26-107" 1.12-10° 6.99-107"
83 6.01-107" 2.20-107" 1.37.107" 8.44-107" 1.13-10° 7.09-107"
8.5 6.05-107" 2.24.107" 1.35.107" 8.61-107" 1.14-10° 7.43107
8.7 6.00-107" 2.25-107" 1.39-107" 8.52:107" 1.54-10° 9.12:107"
8.9 6.05-107" 2.57-107" 1.56:107" 8.91-107" 1.6-10° 9.19-107"
9.1 6.10-107" 2.58-107" 1.60-107" 9.07-107" 1.58.10° 9.33.107"
9.3 6.06:107" 2.60-107" 1.55-107" 9.18:107" 1.59-10° 9.52:107"
9.5 6.00-107" 2.59-107" 1.55-107" 9.43-107" 1.62-10° 9.39:107"

9.7 6.02:107" 2.63-107" 1.61-107" 9.39:107" 1.65-10° 1.00-10°

2.9 6.03-107" 267107 1.62:107" 9.47.107" 1.69-10° 1.00-10°

10.1 6.07-107" 2.69-107" 1.62:107" 9.84-107" 1.69-10° 1.01-10°

28 (&) F.-B.MOCNIK

00 —e—d = 2, naive algorithm
16l Geeoﬂ | —e—d = 3, naive algorithm
' ¢ --0- -d = 2, improved algorithm

- -0- -d = 3, improved algorithm

running time in seconds

=S
c¥etetclcic 0000000

00000
66666666 WWOOQOOOO’OOO

0 L L L L L L L L L
1 2 3 4 5 6 7 8 9 10

P
Figure D2. Running times of the naive and the improved algorithm, depending on the
parameter p. The running times refer the generation of a Mocnik model with 10,000 nodes. (compare
Table D2)

	Abstract
	1. Introduction
	2. Related work
	2.1. Spatial networks
	2.2. Nearest-neighbour models and the Mocnik model
	2.3. The fixed-radius near neighbour search problem and variants

	3. Algorithms for generating the Mocnik model
	3.1. The na<italic>ï</italic>ve algorithm
	3.2. Indexing by aspatial grid
	3.3. The improved algorithm
	3.4. Hierarchical model

	4. Empirical running time evaluation
	5. Conclusion
	Note
	Disclosure statement
	ORCID
	Data availability statement
	References
	Appendix to the article ‘An improved algorithm for dynamic nearest-neighbour models’ by Franz-Benjamin Mocnik

